
POLITECNICO DI TORINO

DIPARTIMENTO DI INGEGNERIA MECCANICA E
AEREOSPAZIALE (DIMEAS)

Master’s Degree Course in Biomedical Engineering

Embedded Machine Learning for Hand
Gesture Recognition: Development and
Validation of an ATC-based Armband

Supervisors

Prof. Danilo DEMARCHI

Ph.D. Paolo MOTTO ROS

M.Sc. Fabio ROSSI

M.Sc. Andrea MONGARDI

Candidate

Federica PASQUALI

TORINO, December 2021

Abstract

Gesture recognition refers to the mathematical interpretation of human motions
using a computing device. With the increasing use of technology, hand-gesture
recognition has become an essential aspect of Human-Machine Interaction (HMI),
allowing the machine to capture the user’s intention and respond accordingly. It is
a fundamental tool to enable novel interaction paradigms in numerous applications,
such as robotics, prosthetic control, healthcare and sign language. Several technolo-
gies are currently available to detect gestures. Data acquisition systems based on
surface ElectroMyoGraphic (sEMG) signals, collected from non-invasive electrodes
on the skin of the area of interest, are extensively used, especially in biomedical
research.

This thesis work aims to develop and validate a seven-channel sEMG armband
for hand gesture recognition. The embedded low-power system is based on an
event-driven approach focused on the Average Threshold Crossing (ATC) feature,
which reduces the complexity of the classification algorithms by transmitting a
lower amount of data, hence diminishing the power consumption. This parameter
is obtained by averaging the number of sEMG Threshold Crossing (TC) events in a
pre-defined time window, reflecting muscle activation.

A first analysis has been conducted on a previously acquired dataset with seven
acquisition channels involving 14 people, each performing seven gestures over three
sessions. Different machine learning techniques were taken into consideration to
create a system able to recognize and classify hand gestures in real-time. Neural
Network (NN), Random Forest (RF), Support Vector Machine (SVM) and K-
Nearest Neighbour (KNN) has been tested and implemented embedded. Software
implementation carried out in the MATLAB® environment and firmware deployment
for the ARM Cortex microProcessor (µP) has been conducted to obtain low power
consumption, matching the requirements of a wearable battery-powered device, and
a latency below 300ms, suitable for real-time applications.

A model of the armband has been designed and 3D printed. The proposed
system comprises seven bipolar acquisition channels consisting of dry electrodes,
each acquiring the sEMG signal and providing the extracted TC signal. The
research group has developed a PCB with an Apollo 3 Blue MicroController Unit
(MCU) with an ARM Cortex M4F µP onboard, performing signal conditioning and
the computation of the ATC data, fed to the embedded machine learning algorithms
for the classification, and containing a Bluetooth Low Energy (BLE) module for
data transfer.

ii

The validation phase entailed the creation of a new dataset involving 20 people,
each executing nine movements, repeated twice, within three sessions. The afore-
mentioned machine learning algorithms have been trained and deployed on the MCU.
Among them, the NN has reached an average classification accuracy of 95.09%, and
a maximum system latency of 1.037ms, that summed to the acquisition window
(i.e., 130ms) is way below the 300ms required for the online application, making
the system suitable for wearable real-time use.

iii

Table of Contents

Abstract iii

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Introduction to the Muscular System 1

1.1.1 The Skeletal Muscle . 2
1.1.2 Forearm Muscles . 6

1.2 ElectroMyoGraphic (EMG) Signal 7
1.2.1 Surface ElectroMyoGraphy (sEMG) 10
1.2.2 sEMG Feature Extraction 13

1.3 Average Threshold Crossing Technique (ATC) 15
1.4 Machine Learning Classification Algorithms 17

1.4.1 Neural Network . 18
1.4.2 Support Vector Machine . 20
1.4.3 Random Forest . 21
1.4.4 K-Nearest Neighbour . 23
1.4.5 Naive Bayes . 24

2 State of the Art 25
2.1 Artificial Intelligence (AI) in embedded systems 25
2.2 Gesture Recognition . 30
2.3 EMG based Armband for Gesture Recognition 33

2.3.1 Myo Armband by Thalmic Lab 33
2.3.2 gForce-Pro Armband by Oymotion 33
2.3.3 3DC Armband . 34

2.4 ATC in Hand Gesture Recognition 35

3 Further Investigation on 7 Channel Dataset 39
3.1 Offline training . 39

3.1.1 Neural Network . 40
3.1.2 Support Vector Machine . 40
3.1.3 Random Forest . 41
3.1.4 K-Nearest Neighbour . 42
3.1.5 Naive Bayes . 42

v

3.1.6 Offline performance comparison 42
3.2 Firmware for Online prediction . 43

4 System description 47
4.1 Acquisition system . 48
4.2 Armband model . 50

5 System Validation: Data Acquisition and Classification Algorithms
Deployment 54
5.1 Armband Positioning and Performed Gestures 54
5.2 Acquisition protocol . 58
5.3 Offline Training . 60

5.3.1 Neural Network . 61
5.3.2 Support Vector Machine . 62
5.3.3 Random Forest . 64
5.3.4 K-Nearest Neighbour . 65

5.4 Offline Performance Comparison . 67

6 Experimental results 69
6.1 Online classifiers performance . 69
6.2 System Latency . 71
6.3 Power consumption . 72
6.4 Online results comparison . 75
6.5 Comparison with Existing sEMG-based Armbands 76

7 Conclusions and Future Works 77

Bibliography 80

vi

List of Tables

2.1 SVM classifier performance obtained by Sapienza et al. 35
2.2 NN performance obtained by Mongardi et al. 36
2.3 SVM performance obtained by Barresi et al. 36
2.4 K-Means performance obtained by Barresi et al. 37
2.5 Online comparison of the ML algorithm tested by Tolomei et al. . 37
2.6 Comparison of the ML algorithm tested by Tolomei et al. on the

new dataset . 38

3.1 Top 5 results for NN preliminary study. 40
3.2 Top 5 results in hyperparameter selection. 41
3.3 Top 5 results in Parameter selection. 41
3.4 Preliminary analysis for KNN algorithm. 42
3.5 Preliminary analysis for NB algorithm. 42
3.6 Offline performance comparison. 43
3.7 Statistical results obtained with the Nystroem approximation method. 45
3.8 Comparison among the method used for the reduction in the number

of SV. 45

4.1 SNRdB comparison between wet and dry electrodes. Wrist extension
is referred to the signal acquired from the extensor carpi radialis,
while forearm flexion to the signal collected from the brachial bicep 49

4.2 Forearm circumferences. 53

5.1 Statistical analysis for the Neural Network over an acquisition set. 61
5.2 Statistical analysis for the Neural Network over a profile of 6 ATC

values. 62
5.3 Statistical analysis for the Support Vector Machine over an acquisi-

tion set. 63
5.4 Statistical analysis for the Support Vector Machine over a profile of

4 ATC values. 64
5.5 Statistical analysis for the Random Forest classifier over an acquisi-

tion set. 64
5.6 Statistical analysis for the Random Forest classifier over a profile of

4 ATC values. 65
5.7 Statistical analysis for the K-Nearest Neighbour classifier over an

acquisition set. 66

vii

5.8 Statistical analysis for the K-Nearest Neighbour classifier over a
profile of 5 ATC values. 67

5.9 Comparison among all the tested classifier in the offline training
phase. 67

6.1 Statistical Results for the Neural Network. 69
6.2 Statistical Results for the Random Forest. 70
6.3 Statistical Results for the Support Vector Machine. 70
6.4 Statistical Results for the K-Nearest Neighbour. 71
6.5 Online performance comparison. 71
6.6 System Latency for the Tested Classifiers. 72
6.7 System Latency for the Tested Classifiers. 72
6.8 Online Classifiers Comparison. 75
6.9 Comparison among sEMG based Armbands. 76

viii

List of Figures

1.1 Skeletal Muscle structure [3]. 2
1.2 Muscle fibres [3]. 3
1.3 Sarcomere [3]. 4
1.4 Motor unit anatomy [4]. 5
1.5 Anterior compartment muscle groups [9]. 6
1.6 Posterior compartment muscle groups [9]. 7
1.7 Characteristic parameters of the motor unit action potential (MUAP)

[12]. 8
1.8 Surface Electromyographic signal (sEMG) decomposed in its consti-

tutive MUAPs) [15]. 9
1.9 Example of gelled electrodes on the market [17]. 11
1.10 Example of dry electrodes on the market [18]. 11
1.11 Monopolar configuration. 12
1.12 Bipolar configuration. 12
1.13 Double differential. 12
1.14 Implementation of the ATC technique [12]. 15
1.15 Quasi-digital signal. 16
1.16 Machine learning working flow [27]. 17
1.17 Neural network structure [31]. 19
1.18 Training of a NN: Backpropagation algorithm. 20
1.19 Hyperplane in support vector machine algorithm [33]. 20
1.20 Example of a Decision Tree [35]. 22
1.21 Random Forest algorithm. 23
1.22 K-Nearest Neighbour implementation using Kd-tree [37]. 24

2.1 Hardware/Software codesign of an embedded system [39]. 26
2.2 Cloud-based, edge-device and end device systems depiction. 27
2.3 Implemented steps in a gesture recognition system. 30
2.4 Applications areas of hand gesture recognition. 32
2.5 Myo armband [65]. 33
2.6 gForce-Pro Armband by Oymotion [67]. 34
2.7 3DC Armband [68]. 34

4.1 System overview. 47
4.2 Measures of the Armband channels components. 50
4.3 Slave module. 51
4.4 Master module. 51

ix

4.5 Components inside the Armband units. On the right the master
module, on the left the slave one. 52

4.6 Measures of the Master and Slave modules. 53
4.7 Measures of the covers of the Master and Slave modules and of the

stoppers. 53

5.1 Armband’s electrode disposition referenced to the forearm muscles.
On the left, the forearm section from distal to proximal.On the right,
armband positioning during an acquisition session. 55

5.2 ATC parameter over the 7 channels of the Armband during an
acquisition.Muscles activation investigated by each channel: CH1:
Extensor digitorum/Extensor digiti minimi, CH2: Extensor carpi
radialis brevis, CH3: Brachioradialis, CH4: Flexor carpi radialis,
CH5: Flexor carpi ulnaris, CH6: Extensor carpi ulnaris, CH7:
Flexor digitorum profondus. 55

5.3 Wrist extension. 56
5.4 Wrist flexion. 56
5.5 Wrist radial deviation. 56
5.6 Wrist ulnar deviation. 57
5.7 Hand grasp. 57
5.8 Pinch 1-2. 57
5.9 Pinch 1-3. 58
5.10 Open hand. 58
5.11 Idle. 58
5.12 GUI developed in Python by the research group used for the training

and testing phase for the acquisition of the signal. 59
5.13 NN performance over ATC profiles of different length. 62
5.14 SVM performance over ATC profiles of different length. 63
5.15 RF accuracy over profiles of different length. 65
5.16 KNN accuracy over profiles of different length. 66

6.1 Setup used for measuring the power consumption. 72
6.2 Current absorption when the armband is turned on. In this condition,

only the advertising is visible. 73
6.3 Current absorption during ATC data sending and during threshold

setting. 73
6.4 Current absorption graph for Neural Network. 73
6.5 Current absorption graph for Random Forest. 74
6.6 Current absorption graph for Support Vector Machine. 74
6.7 Current absorption graph for K-Nearest Neighbour. 74

x

Chapter 1

Introduction

1.1 Introduction to the Muscular System
The Muscular System is a set of anatomical structures comprising muscle cells,
contractile elements, and linked connective tissues responsible for the execution of
body movements. Muscle contraction also accomplishes other essential functions in
the body, such as posture, joint stability, transport of blood and nutrients and heat
production.
The Central nervous system tightly controls the functionality of the muscles through
electrical stimuli, called Action potentials (AP).
The human body is composed of about 600 different muscles, classified into three
morphological types [1]:

1. Skeletal muscle: The skeletal muscles account for 40% of the body weight in
an adult. They are the only voluntary muscles of the body and are controlled
by the peripheral component of the Central Nervous System (CNS). They
are applied to the skeleton’s external surface, and their contraction generates
the movement of joints and associated structures. Skeletal muscles fibres
have numerous peripherally located nuclei with organized striations in the
sarcoplasm due to the alternating bands of actin and myosin filaments, confering
them a striated appearance [2].

2. Smooth muscle: Smooth or visceral muscle is present in the walls of hollow
internal organs and blood vessels, but not in the heart. Their fibres do not
present striations having a single nucleus and are arranged in parallel lines.
The smooth tissues are involuntary and controlled by the medulla oblongata
in the brain, which guides involuntary activity throughout the body.

3. Cardiac muscle: Cardiac muscles or myocardia are involuntary muscles that
form the heart’s walls. Their primary function consists in making the right
atrium contract permitting to impel blood into circulation. Cardiac muscle
cells are striated single-nucleated fibres, also called myogenic fibres, because
they contract rhythmically without fatigue independently of any direct nervous
stimulation. This arrangement enables the cardiac muscles to contract as a
unit.

1

Introduction

1.1.1 The Skeletal Muscle
This study aims to perform gesture recognition based on the feature extracted from
the sEMG signal collected from the forearm muscles. A deep understanding of
skeletal muscles’ main features permits comprehension of the movements and the
signal thoroughly.

Each skeletal muscle is an organ that consists of multiple integrated tissues, in-
cluding skeletal muscle and nerve fibres, connective tissue, and blood and lymphatic
vessels.
The muscle fibres are large-sized multinucleated cells bundled into fascicles and
enclosed by three layers of fibrous connective tissue, the Mysia, which primary aim
is to provide structure to the muscle as shown in Figure 1.1.

Figure 1.1: Skeletal Muscle structure [3].

A layer of irregular connective tissue called the epimysium envelopes individual
muscles. It preserves their structural integrity while allowing the muscles to
contract and move autonomously, separating them from other tissues in the area.
The perimysium is a middle layer of connective tissue that encircles the bundles of
muscular fibres called fascicles. The fascicular organization gives the ability to the
nervous system to trigger a specified movement by recruiting a subset of muscle
fibres within a muscle fascicle[3].
A thin layer of connective tissue called the endomysium encloses the individual
muscle fibres of a fascicle. The endomysium plays a crucial role in transferring the
force generated by the muscle fibres to the tendons. In order to produce a force on
the bones, the skeletal muscles work with the tendons. At one end, the tendon’s
collagen tightly interlaces with the collagen of the three connective layers. At the
other end, the tendon connects with the dense irregular connective tissue that coats
the bone, called the periosteum. The contraction of the muscle fibres generates a
tension, transmitted through the Mysia to the tendon and then to the periosteum,
acting on the bones, resulting in the motion of the skeleton.
In other sites, the three connective layers can fuse with the aponeurosis, a broad
flat sheet of dense fibrous connective tissue, or to the fascia, a band of connective
tissue that supports the muscle and provides a pathway for the nerve, blood and
lymphatic vessels.

2

Introduction

Blood vessels richly supply the skeletal muscle for oxygen delivery, waste removal
and nourishment. Moreover, the axon of somatic motor neurons is connected to
each muscle fibre and provides the signals that enable the fibre to contract.

Skeletal muscle cells are multinucleated. This characteristic allows an abundant
production of enzymes and proteins needed for the maintenance of muscle stan-
dard functionality. The nuclei are disposed below the plasma membrane called
sarcolemma. The sarcoplasmic reticulum (SR) stores calcium ions (Ca+

2) and then
when the fibre is stimulated to contract, release and retrieve it.

Figure 1.2: Muscle fibres [3].

The proteins inside the muscle fibres form structures called myofibrils, which
contains sarcomeres connected in series. A highly ordered organisation of contractile,
structural and regulatory proteins forms the sarcomere, the muscle fibre’s smallest
functional unit. The shortening of each sarcomere causes the contraction of the
skeletal muscle fibres. The range of a myofibril enclosed between two cytoskeletal
structures called Z-lines defines a sarcomere which presents an arrangement of
thick and thin myofilaments. This configuration confers the striated appearance
of the skeletal muscle. The thick filaments containing myosin compose the dark
striated A band. This band covers the space between the centre of the sarcomere
and the Z-lines. The protein myomesin anchor these thick filaments to the M-line,
which indicates the middle of the sarcomere. The light regions are called I bands
and comprise thin actin filaments secured to the Z-lines by a protein called α-actinin.
The thin filaments partially overlap with regions of the thick filaments, extending
toward the M-line into the A band. The H zone at the centre of the A band
contains only thick filaments, as shown in Figure 1.2.

During a contraction, the myofilaments slide across each other, shortening the
distance between the Z-lines. Due to this mechanism, the A band does not change
in length while the I band and H zone shrinks. During contraction, filaments overlap
increases consequencing a decrease of the region with no overlap.

3

Introduction

Figure 1.3: Sarcomere [3].

Two filiform actin chains (F-actin), composed of single actin proteins, form the
thin filaments represented in Figure 1.3. The globular actin monomer (G-actin)
within the filaments presents a binding site for myosin and is associated with two
regulatory proteins, troponin and tropomyosin. These proteins control the exposure
of the actin-binding sites to myosin. Myosin protein complexes form the thick
filaments. These complexes comprise six different proteins, four light chains and
two heavy chains molecules. The light chains present a regulatory role, while the
heavy chains contain a globular head equipped with two binding sites, one for
actin and another for ATP (Adenosine TriPhosphate). Other structural proteins
have secondary roles in force production. Titin provides elasticity to the sarcomere
and helps in the alignment of the thick filaments, while nebulin stabilizes the thin
filaments and spans the length of the thick filaments.

The contraction of a skeletal muscle fibre takes place upon the reception of a
signal from a motor neuron. This cause the pulling and sliding of the thin filaments
past the thick ones in the sarcomere. The filament sliding process occurs only with
the exposure of myosin-binding sites. The exposure process starts when the Ca+

2
ions enter the sarcoplasm. This mechanism is known as Excitation-Contraction
Coupling. Tropomyosin prevents actin from binding to myosin by twisting around
the actin filaments and covering the binding sites. The troponin-tropomyosin
complex use calcium ions to control the formation of cross-bridges between the
myosin head and the actin filaments. When calcium is present, filament sliding and
cross-bridge formation occur.

4

Introduction

The Somatic Nervous System, is part of the peripheral nervous system and
actuate the voluntary control of body motility trough the skeletal muscles. Each
muscle fibre is innervated by a single motor neuron, which can connect to multiple
muscle fibres. The complex composed of a single motor neuron and all the muscle
fibres innervated by it is called motor unit (MU), as shown in Figure 1.4.

Figure 1.4: Motor unit anatomy [4].

The function of a motor unit is strictly related to its size. Small sized motor
units allow precise motor control of a muscle, while larger ones are responsible for
gross movements. Most human body muscles consist of a blend of small and large
motor units, giving the nervous system a high grade of control over each muscle.
The smaller motor units are the first to be activated during movements, while the
larger ones are recruited if the movement requires higher strength levels. This
mechanism that permits the regulation of the tension generated by the muscle is
called recruitment. The nervous system can recruit different motor units during the
contraction to prevent complete muscle fatigue and permit more prolonged muscle
contractions [5].

Based on their speed of contraction and strength, skeletal muscle fibres can be
classified into three types:

1. Type I: They use aerobic respiration (oxygen and glucose) to produce ATP
and contract slowly. They are suitable for prolonged contractions and are the
first fibres that are recruited, producing small forces.

2. Type IIa: They primarily use anaerobic glycolysis and have rapid contractions.
They produce greater forces compared to the type I fibres.

3. Type IIb: They primarily use aerobic metabolism and are the most powerful
muscle fibres. They are recruited for demanding and short-term efforts and
have a high conduction speed that makes them fast to respond but more
sensible to fatigue [6].

5

Introduction

1.1.2 Forearm Muscles
The twenty muscles present in the forearm are split into two compartments: the
anterior, constituted by the flexor muscles and the posterior, composed by the
extending muscles [7].

The anterior compartment is the flexor compartment, in which muscles have
the primary function to flex and pronate the digits and wrist. This compartment
consists of a superficial, an intermediate and a deep layer.
In the superficial layer, there are four muscles: Palmaris Longus, Flexor Carpi
Ulnaris, Flexor Carpi Radialis and Pronator Teres. The first three produce the
extension of the wrist, while the last permits the pronation of the forearm. All
these muscles originate at the medial epicondyle, which is the common flexor origin.
The Flexor Digitorum Superficialis is the only muscle present in the intermediate
compartment. Its action generates the flexion of the metacarpophalangeal and
proximal interphalangeal joints of digits II-V [8].
Lastly, the deep compartment contains three muscles: Flexor Digitorum Pro-
fundus, Flexor Pollicis Longus, and Pronator Quadratus. The Flexor Digitorum
Profundus allows the flexion of the distal interphalangeal joints of the digits. Flexor
Pollicis Longus is responsible for flexing the wrist, the metacarpal-phalanx and
the interphalangeal joints of the digit. The Pronator Quadratus, together with the
Pronator Trees, aid the pronation of the forearm. The Flexor Digitorum Profundus
starts proximally on the ulna, the Flexor Pollicis Longus on the anterior radius and
the Pronator Quadratus on the distal anteromedial ulna.

Figure 1.5: Anterior compartment muscle groups [9].

The posterior compartment is the extensor compartment since its prime
function is to extend the wrist and the hand’s digits and thumb abduction. This
compartment consists of a superficial and a deep muscle group.
The superficial compartment comprises seven different muscles. The Extensor
Digitorum Communis generates the extension of the wrist, the metacarpal-phalanx
and the interphalangeal joints of the phalange. The Extensor Digiti Minimi, is

6

Introduction

responsible for the extension of the wrist and the fifth digit. The Extensor Carpi
Ulanris coordinates the extension and abduction of the wrist together with the
Extensor Carpi Radialis Brevis. The Extensor Carpi Radialis Longus permits the
abduction and extension of the hand and also hand grasping. The Brachioradialis
is primarily an elbow fixator but also produces elbow flexion. Finally, the Anconeus
grants support to the other muscles.
The five muscles contained in the deep layer all start from the posterior interosseous
nerve. The Supinator origins from the lateral epicondyle of the humerus and
assists the supination of the forearm. The Abductor Pollicis Longus consents
to wrist extension, thumb abduction and the extension of the carpometacarpal
joint. The Extensor Pollicis Longus and the Extensor Pollicis Brevis are both
involved in the wrist and the thumb extension. They also control the extension of
the metacarpophalangeal and the carpometacarpal joints of the first digit. The
Extensor Indicis allows the extension of the second digit.

Figure 1.6: Posterior compartment muscle groups [9].

1.2 ElectroMyoGraphic (EMG) Signal
The EMG signal detects the electrical activity of the muscle fibres that activate
during a contraction, presenting depolarizing and repolarizing zones. It gives
essential information about muscle contraction reflecting neuronal and muscular
activity. Biological tissue separates the signal sources from the recording electrodes,
acting as a Spatio-temporal low-pass filter on the potential distribution [10].

The intracellular space of muscle fibre at rest condition presents a membrane
potential of 70-90mV, negative inside the cell, positive in the extracellular en-
vironment. The sodium-potassium pump (NaK ATPase) is responsible for the
maintenance of the resting potential. This pump work against the concentration
gradient of ions crossing the cell membrane. The action potentials generated by
the motor neurons travel to the neuromuscular junctions, causing acetylcholine

7

Introduction

release in the space between the muscle fibre membrane and the nerve terminal.
Acetylcholine causes the excitement of the fibre membrane and the consequent
generation of a local potential gradient, corresponding to an inward current density
(depolarization zone). The generated intracellular action potential (IAP) propagates
along the fibre down to the tendons ending, leading to an ionic transmembrane
current profile that propagates along the sarcolemma [11].
The IAP consists of 3 phases:

1. Depolarization: When a stimulus occurs changing the membrane potential
over the value of the threshold potential equal to -55mV, an action potential
arises. An action potential follows the all-or-nothing law, meaning that any
subthreshold stimulus will cause no response. During the depolarization,
the calcium channels open, causing the entry of calcium ions that bring the
membrane potential to a value equal to +40mV.

2. Repolarization: in this phase, the potassium channels open and lead to the
entrance of potassium ions, bringing back the potential close to its resting
state.

3. Hyperpolarization: membrane potential stabilizes to its resting state only
after this stage in which its value descend below -90mV.

Figure 1.7: Characteristic parameters of the motor unit action potential (MUAP)
[12].

As seen in chapter 1.1, the smallest functional unit controlled by the nervous system
is the motor unit. The activation of a motor unit and the consequent generation
of an action potential will lead to the excitation of all the fibres innervated by
the motor neuron. The resulting signal consists of a spatial-temporal summation
of all the action potentials produced by the depolarization of the muscle fibres.
This cumulative potential is called MUAP (Motor Unit Action Potential). The
amplitude of these potentials collected through the ElectroMyoGraphy will vary
based on the position and characteristics of the electrodes used for the acquisition
and the muscles’ properties. Also, multiple MUAPs are usually collected by the

8

Introduction

electrode in the detection zone, which will acquire the contribution of multiple
motor units [10].

Electromyograms can be collected from the skin surface or from within the
muscle [13].

1. Surface Electromyography (sEMG): is a non-invasive technique in which
the electrodes for recording the EMG signal are placed on the skin’s surface,
making this technique easy to use and suitable for dynamic acquisitions.
Surface EMG is not specific to the muscle over which electrodes are placed
due to its low selectivity. The recorded signal is the summation of the signals
generated by all the motor units recruited for that specific movement. Bipolar
surface EMGs provides global evidence on the extent and timing of muscle
activity. In particular, the sEMG technique is mainly used to analyse muscle
disorders or abnormalities and diagnose neuromuscular diseases. It is used in
muscle rehabilitation and to control prostheses and orthosis [14].

Figure 1.8: Surface Electromyographic signal (sEMG) decomposed in its consti-
tutive MUAPs) [15].

2. Intramuscular Electromyography (iEMG): It is an invasive technique.
The electrodes used are needles inserted directly into the muscle of interest.
Due to its high selectivity, the signal collected represent the activity of a single
motor unit. Contrary to the sEMG, this technique doesn’t present any filtering
effect induced by the tissues, as the electrode is positioned directly inside the
muscle. iEMG permits the study of physiological properties of motor units,
such as recruitment threshold and fatigue. Due to its invasiveness and the
inability to be used in dynamic conditions, it is commonly used to diagnose
myopathies.

9

Introduction

1.2.1 Surface ElectroMyoGraphy (sEMG)
The sEMG signal is a stochastic signal that can be approximated with a Gaussian
distribution. Its peak-to-peak amplitude varies between 0 - 10mV, and its frequency
content is contained between 0 - 500Hz. The spectral components that contain the
most prominent information are those between 50 and 150Hz [16].

A typical acquisition chain for the sEMG consists of four main blocks: detection,
amplification, conditioning and digitalization. The signal acquisition requires the
placement of electrodes on the subject’s skin. Their positioning concerning the
muscle is essential to obtain a good quality signal. After that, amplification adapts
the sEMG signal to the ADC dynamics, used later in the digitalization step. The
filtering blocks are introduced to obtain a recording in which only the band of the
sEMG signal is present and to attenuate artefacts and noise.

In fact, during the acquisition of the signal, multiple sources of noise are present
that afflicts the final quality of the electromyogram [17]:

• Inherent electrical noise: electronic components introduces intrinsic white
noise throughout the band of interest. The use of properly designed circuits
and quality electronic components can reduce its influence. However, its
contribution cannot be completely eliminated.

• Power line interference: it is also a type of electrical noise. Parasitic
capacitances with the ground and power line, form voltage dividers that lead
to the generation of interferences with amplitudes more significant than that
of the EMG signal. The dominant frequency is 50Hz or 60Hz, respectively,
for the EU and the USA. The interference should be rejected by the detection
system avoiding saturation of the amplifier.

• Cross-Talk: the low selectivity of the sEMG signal, together with the simul-
taneous activation of several muscle fibres during the actuation of a movement,
generates cross-talk in the recorded signal. During the recording, the sampling
system detects the activity of neighbouring muscles. Cross-talk is always
present but can be improved by controlling the positioning of the electrodes
and their inter-electrode distance.

• Motion artefacts: is a low-frequency noise caused by the relative movement
of the electrodes sliding on the skin or the movement of the amplifier system
cables. Because the noise is below 20 Hz, it can be removed with proper circuit
design.

• Electrocardiographic artefacts: the activity of the heart is detected by
the sEMG acquisition system. This biological noise cannot be removed, but it
can be reduced using bipolar recording with high CMRR channels.

• Muscular fatigue: fatigue can appear during a prolonged or strenuous
muscle contraction, leading to decreased conduction speed and features in the
frequency domain and increased values of the features in the temporal domain,
as reported in the next section.

There are many types of electrodes on the market. The electrodes shape, size,
inter-electrodic distance and material will influence the acquisition system. The

10

Introduction

most used are silver chloride (AgCl) electrodes thanks to their property of not being
polarizable, but also silver/silver chloride (Ag / AgCl), gold (Au) and silver (Ag)
are common. These materials are conductive, making it possible to observe the
electrical activity of the muscles. Wet electrodes use a conductive electrolytic gel
on the metal surface interfacing the skin surface. The gel permits good electrode
adhesion, diminishing the electrode-skin impedances, reducing the noise caused
by friction and increasing the mechanical stability. Disposable electrodes with a
built-in gel layer reduce the application time and are accessible in different shapes
and sizes where these criteria influence the spatial resolution. Nevertheless, these
electrodes have some drawbacks. Being disposable, they cannot be reused, and they
are difficult to recycle. Also, the use of gel requires a preliminary skin preparation
step. Finally, throughout the acquisition, the gel will dry, causing skin irritation
that leads to variations in its electrical characteristics, such as impedance.

Figure 1.9: Example of gelled electrodes on the market [17].

Dry electrodes do not require the use of conductive gel, making them reusable.
They are also suitable for long term acquisition or continuous monitoring through
direct contact with the skin. The disadvantages, in this case, are the necessity to
have the electrodes well pressed over the skin, avoiding their misplacement during
dynamic acquisitions and the high electrode-skin impedance that must be taken
into consideration in the electronic circuitry fabrication.

Figure 1.10: Example of dry electrodes on the market [18].

For the sEMG, two sampling techniques can be used:

• Monopolar configuration: it uses two electrodes, an active one placed on
the skin above the muscle to be examined and a reference one placed in a
neutral position. A differential amplifier receives the acquired signals, returning
their difference. Even though it is easy to implement, this technique is usually
not used because of its noise.

11

Introduction

Figure 1.11: Monopolar configuration.

• Bipolar configuration: it uses a pair of active electrodes, both set up on
the muscle of interest, and a third reference electrode, again positioned in a
neutral position. The standard inter-electrode distance is about 2 cm. This
recording grants better resistance to disturbances and noise but is less selective
and requires a complex positioning for small muscles. The signals deriving
from the active electrodes are the input for the instrumentation amplifier that
amplifies their difference, rejecting the common noise. This configuration is
called the single differential.

Figure 1.12: Bipolar configuration.

The double differential can also be used, but it is less common. It uses, in this
case, three active electrodes with three instrumentation amplifiers, as shown
below in Figure 1.13. This mode permits the creation of a spatial filter making
it further selective to detect more superficial signals.

Figure 1.13: Double differential.

12

Introduction

1.2.2 sEMG Feature Extraction
The information in the sEMG signal is decoded using feature extraction, which aims
to eliminate irrelevant and noisy data and retain relevant and informative data.
From literature, it can be seen that three are the main domains from which the
features can be extracted: time, frequency and time-frequency. In the last years
also the fractal domain started to be investigated. In this dissertation, the last two
domains are not considered due to their high complexity [19].

Time-domain
Time-domain characteristics are easy and fast to implement, being computed

on the raw EMG signal. However, the main drawback resides in the stationary
assumption over the signal. The most used are:

• Root Mean Square (RMS): this parameter provides the most insight on
the amplitude of the signal, giving a measure of the signal power.

RMS =

öõõô 1
N

NØ
n=1

x2
n (1.1)

• Variance of EMG (VAR): it employs the power of the sEMG signal as a
feature.

V AR = 1
N − 1

NØ
n=1

|xn|2 (1.2)

• Mean Absolute Value (MAV): it gives information about muscle contrac-
tion level, and it is computed taking the average of the absolute value of the
signal.

MAV = 1
N

NØ
n=1

|xn| (1.3)

• Mean Absolute Value Slope (MAVSLP): is determined as the difference
of the MAVs computed over adjacent signal segments.

MAV SLP = MAVi+1 −MAVi (1.4)

• Integrated EMG (IEMG): it is the integral sum of the sEMG signal. It is
normally used as an index of muscular activation, and it is given by the sum
of the absolute values that the signal acquires in a temporal window.

IEMG =
NØ
n=1

|xn| (1.5)

• Waveform Length (WL): It measures the signal complexity, defined as the
cumulative length of the waveform over a time window.

WL =
NØ
n=1

|xn+1 − xn| (1.6)

13

Introduction

• Simple Square Integral (SSI): is equal to the summation of the absolute
square energy in the time domain.

SSI =
NØ
n=1

|xn|2 (1.7)

Frequency domain
The characteristics in the frequency domain are estimated from the Power

Spectral Density (PSD) of the sEMG signal. This step is time-consuming, making
these features not suitable for real-time applications.

• Mean Frequency (MNF): it represents the mean value of the PSD. It is
obtained as the sum of the product between the frequency and the PSD of the
signal divided by the sum of the PSD.

MNF =
qM
i=1 fiPSDiqM
i=1 PSDi

(1.8)

• Frequency Median (MDF): corresponds to the PSD median, dividing the
sEMG signal power spectrum into two equal areas.

MDF = 1
2

MØ
i=1

PSDi (1.9)

14

Introduction

1.3 Average Threshold Crossing Technique (ATC)
The acquisition system for the sEMG signal on the market presents a standard
circuitry. The electrodes positioned on the skin surface permits the acquisition
of the ElectroMyoGraphic signal in a bipolar configuration. In the amplification
chain, we can distinguish two main parts. The first part is the analogic circuit
which comprises an amplifier and one or more filters. The second is the digital
part formed by an Analog to Digital Converter (ADC) and a microcontroller. The
amplification stage amplifies the signal while the filters remove undesired or noisy
frequency components. The ADC and the microcontroller convert and send the
data extracted from the EMG signal to the computer digitally.

Figure 1.14: Implementation of the ATC technique [12].

The detection of the muscular contraction can be efficiently obtained using
an event-driven technique based on a threshold. This bio-inspired approach is
founded on an engineering paradigm that mimics the human body’s highly efficient
voluntary control strategies, resulting in the minimization of the sent information.
The Average Threshold Crossing (ATC) technique is a transmission technique
based on the generation of events when the sEMG signal surpasses a threshold.
The implementation is obtained via hardware providing two signals to a voltage
comparator: the sEMG signal and a threshold voltage with which the comparison
is made [[20],[21],[22]].
The signal exiting from the comparator is quasi-digital, containing its information in
the time domain and maintaining a high logical state when the sEMG signal exceeds
the threshold and a low logical state otherwise. The reading of the analog signal is
managed by the Interrupt Capture Unit (ICU) since the TC signal has only two
logic levels. So, the ATC is equal to the number of times the sEMG signal surpasses
the established threshold within a predefined time interval, divided by the length of
the interval itself. The addition of a comparator to the standard acquisition chain
permits the extraction of the ATC parameter from the electromyographic signal.
The microcontroller has the possibility to transmit both the ATC and the sEMG

15

Introduction

signal. The ATC data can be combined with wireless transmission, triggered by the
threshold exceeding, obtaining a quasi-digital signal that permits the attainment
of a device with low power consumption and good to interferences. The number
of transmitted events drastically reduces with a threshold-based transmission, as
clearly seen in Figure 1.14. In the current application, the threshold is maintained
fixed during the acquisition. However, it is possible to make it dynamic to augment
the selectivity in the detected events, further reducing the power consumption.

Figure 1.15: Quasi-digital signal.

Methods using the features introduced in 1.2.2 for the detection of the onset and
offset of a muscular contraction result in high power consumption, low real-time
performances and high computational complexity. This technique has been selected
as the most appropriate for this application because of three main advantages [23]:

1. Simplification of the information broadcasting thanks to the event-driven
sampling, which reduces the complexity of the classification algorithms.

2. Low power consumption, due to the narrowband required for the transmission
with not continuously acquired data.

3. Simplification and reduction in the dimension of the hardware making it
suitable for wearable devices.

Nevertheless, the primary challenges related to this technique’s use are the difficulty
in choosing the threshold for event revelation. The loss of information in the
original sEMG signal that cannot be recovered, in particular the signal morphology,
is completely lost, precluding the possibility to extract characteristic features of
the sEMG signal.

16

Introduction

1.4 Machine Learning Classification Algorithms
Different classifiers have been tested and ultimately used in the final system to
perform hand gesture recognition. This section covers a brief introduction to
machine learning and the theory behind the classifiers used.

Through training, machine learning algorithms find correlations and patterns in
large data sets and make predictions based on that analysis. Their prediction ability
improves the more data they have access to and with use [24]. When building a
machine learning model, we can choose among different algorithms based on the
problem at hand. However, for the no free lunch theorem [25], it cannot be stated
that if an algorithm has worked well in a specific field, it will also fit other problems
belonging to the same area. Moreover, algorithm performance is strictly related to
the quality of the data passed as inputs to it in the training phase. It is proved
that any model will reach the same accuracy if supplied with enough data [26].
For this reason, particular attention in the development of a machine learning model
is reserved for the collection and processing of data.

A learning algorithm deployment has two main phases. The first is the model
generation, in which the algorithm is trained over data passed to it. In this phase,
the algorithm is able to create a data representation that will later be used to
predict new outputs. The second phase is inference, consisting of passing unseen
data to the trained model and evaluating the correctness of the provided output.
In a few algorithms, these outputs are used to improve or rebuild the learning
model. The training and the inference blocks are neatly separated. Therefore they
can run on different machines. The learning phase requires high computational
and memory resources, increasing with the data complexity. The model training
involves splitting the dataset into three, where 60% of the data is used for learning,
20% for validation, and the remaining 20% for testing. The validation and testing
stages show the accuracy reached by the algorithm.

Machine Learning is a branch of Artificial Intelligence that teaches computers
to learn from data without explicitly programming.

Figure 1.16: Machine learning working flow [27].

17

Introduction

Depending on the nature of the data, four different learning models can be used:
supervised, unsupervised, semi-supervised and reinforcement learning [28].

• Unsupervised learning: employs machine learning algorithms to analyse
and cluster unlabelled datasets, discovering data groupings or hidden patterns.
The primary function of this learning method is mostly data clustering, but
it can also be used to reduce the number of features through dimensionality
reduction.

• Supervised learning: generates predictive models based on input and output
data pairs. Based on the nature of the data, supervised learning algorithms are
categorized into Classification when the inputs are categorical or Regression if
the inputs are continuous.

• Semi-supervised learning: uses a smaller labelled dataset in the training
phase to guide the classification and extraction of features from a larger
unlabelled dataset. It is commonly used when there are few labelled data
disposable.

• Reinforcement learning: is a behavioural learning model, similar to super-
vised learning. It develops a system called agent that betters its performance
by interacting with its environment. The agent takes action on each time step
and receives a reward value, which measures how good the action is towards
the goal to be achieved. The system interacts with the environment in order
to take action. The best action is chosen based on the reward. Through the
interaction with the environment, the agent uses an exploratory trial-and-error
method to learns acts that lead to the maximization of the reward.

Different algorithms have distinct learning dynamics, providing insight into
the model plasticity and how it handles data. In batch learning, the algorithm
trains on a single batch, and once it is generated, it cannot learn anything new.
Contrarily, the algorithm is constantly rebuilt on new data, learning on the fly in
online learning [29]. Finally, the data representation modelled by the algorithms
during the training step has different natures, connected to how much memory the
model will use. Instance-based models store the entire dataset and compare the new
inputs with it during inference with a measure of similarity. Model-based deduces a
function to obtain the output from the new feature vectors.

1.4.1 Neural Network
An Artificial Neural Network (ANN) is a supervised classification method which
takes inspiration by how the human nervous system process information. Artificial
NN comprises multiple layers of nodes or neurons. The neuron is the basic informa-
tion processing unit that collects inputs and generates an output [30]. It consists
of:

• A set of connecting links, each defined by a numeric weight that defines
the input’s strength to that specific neuron. These interneuron connection
strengths are used to store the acquired information. The weights are modified

18

Introduction

to represent the specific learning task based on the characteristics of the
training examples.

• An adder function that calculating the weighted sum of the inputs.

• A non-linear activation function that limits the output of the neuron in terms
of amplitude. Different activation functions can be chosen: step function, sign
function, sigmoid function and Rectified linear unit function (ReLu). Each of
them emulates the typical response of the biological neuron, which only fires if
the total input of the incoming synapses is higher than a threshold potential.

y = hW,b(x) = f(b+ wTx) = f(b+
nØ
i=1

wixi) (1.10)

where f : R → R is called the activation function.

The main components of a neural network are the neurons, but the behaviour of
the network is related more to how they are organized and connected.

Figure 1.17: Neural network structure [31].

The most common architecture is the feed-forward neural network. In this
organization, the connections can have only one possible direction. The neurons are
organized in sequences of multiple layers linked from the inputs to the outputs. The
input layer contains a certain number of input units that represent the inputs of the
network and do not perform any calculation. The number of inputs is equivalent
to the number of elements of the feature vector. The output layer provides the
neural network’s output, taking a certain number of inputs and returning one single
output. In between them, there can also be hidden layers. Their amount and the
number of nodes per layer dictate the complexity of the learning model. In fully
connected layers, each input is provided to each neuron of the network [32].

Training an NN is about finding values of the network parameters (W, b) to make
the training error small, minimizing the cost function J(W, b), using Backpropagation
algorithm, where the cost function is:

J(W, b) = 1
m

mØ
t=1

1
2(hW,b(x(t)) − y(t))2 + λ

2

nl−1Ø
l=1

Ø
i=1

Ø
j=1

|W (l)
ij |2 (1.11)

19

Introduction

Where b is the bias, W are the weights and λ, the regularization parameter, that
penalizes the magnitude of the wights, m represents the training point quantity
and l the considered layer.

The initialization of all the parameters W and b is performed with small random
values, serving the purpose of symmetry breaking and after, an optimization
algorithm is used. Usually, batch gradient descent is selected even though it is
susceptible to local optima, being the cost function non-convex. All the parameters
W , b for all the neurons are updated in one iteration. Backpropagation algorithm
is an efficient recursive way for computing the above derivatives, based on the chain
rule. The gradients are calculated backwards, starting from the output going to
the network’s input. In each pass, we update the parameters accordingly to the
gradient.

Figure 1.18: Training of a NN: Backpropagation algorithm.

1.4.2 Support Vector Machine
A Support Vector Machine (SVM) is a supervised algorithm applied for regression
and classification problems. SVMs seek the hyperplane that best divides a dataset
into two classes. A Hyperplane (H) is a discriminative surface that linearly separates
a set of data and it is used for their classification. Geometrically, H is the zero
sublevel set of an affine function that separates the whole space R into two half
spaces.
Data points are classified based on staying on one side or the other of this decision
boundary. If the point lies further from H, there is more confidence in its correct
classification.

Figure 1.19: Hyperplane in support vector machine algorithm [33].

20

Introduction

The algorithm aims to construct the separating hyperplane based on a penalty
measure equal to the distance of the point from it. Data points that lay in the
correct space do not receive any penalty; the misclassified ones are given a penalty
equal to their distance from H. The hyperplane selected is the one that gives the
maximum separation margin between the two classes and that minimize these
misclassification errors. This class of models is called liner Linear Support Vector
Machine (L-SVM).

min C
NØ
i=1

[1 − yi(w0 + wTxi)]+ + 1
2 ||w||22 (1.12)

Here, C is the regularization parameter that penalizes the misclassification error
and N is the number of data points.

However, in binary classification problems, the data is often far from being
linearly separable. The problem is overcome by introducing a nonlinear feature
map that transforms the feature vector non-linearly. Additionally, the feature map
φ : Rn → Rd maps the n-dimensional input space into a d-dimensional feature
space, typically with d >> n. Data non-linearly separable in the primary input
space may become linearly separable when brought in a higher dimensional feature
space. The decision boundary in the primary input space is now nonlinear and
determined by the equation:

wTφ(x) + w0 = 0 (1.13)

Usually, this nonlinear function is not known. Constructing the dual formulation
from the primal (1.12) we can solve it without explicitly knowing the feature map
but using the kernel matrix related to it. A kernel is a function that operates a
transformation in the primary feature space on the input data with the advantage
of not increasing the dimensional space [34]. The most used kernel functions are
sigmoid, polynomial, radial basis function (RBF). After choosing the most suitable
kernel, SVM classifiers require careful tuning of the parameter, mainly C and
gamma.

• The regularization parameter C controls the penalization of misclassified points.
Increasing its value leads to smaller margins and lower misclassification rates.

• Gamma defines the influence of the single training examples. A lower value
considers points further from the hyperplane, and a higher value only points
closer to it.

1.4.3 Random Forest
Random Forest is an ensemble classifier based on Decision Trees, a non-parametric
supervised learning method.

Decision Trees are simple supervised classifiers that operate a partition of the
instance space recursively. The trees are built top-down, generating nodes, starting
from an initial one called root that has no incoming terms. The other nodes receive
only one input and are called internal nodes when they have outgoing edges or

21

Introduction

leaves or decision nodes otherwise. Iterative Dichotomiser 3 (ID3) algorithm is
used for the generation of decision trees. The algorithm constructs them top-down,
starting by finding the attribute that should be tested first. Entropy, a statistical
test that assesses how well the feature alone classifies the training data, is commonly
used. The entropy of an empirical probability distribution is defined as:

H = −
mØ
i=1

pilog2pi (1.14)

Where p1, ..., pm is a general discrete distribution of the output values.
It gives a measure of the impurity of the samples. Low entropy means that members
of a point set tend to belong to the same class; otherwise, they are well mixed.
Together with entropy, decision trees use also another metric that measures the
ability of an attribute to classify the training instances correctly. In ortìder to
quantify the attribute efficacy, Information Gain (IG) is computed as the decrease
in entropy obtained by dividing the instances of the dataset according to the
considered attribute.

IG(y, A) = H(y) −H(y|A) (1.15)

The selected attribute is the one with the highest IG and is used as the root of the
tree. Starting from the root node, a branch for each possible value of the attribute
is created, and the training data are sorted accordingly. This process is repeated
for all the features.

Figure 1.20: Example of a Decision Tree [35].

Random Forests (RF) are ensemble methods explicitly destined for decision tree.
RF introduce two origins of randomness: bagging and random vector vectors:

1. Bagging: each tree is grown using a bootstrap sample of the training data.
Given a training set D, containing N samples, Bootstrap sampling creates a set
Di, i = 1, ..., k by drawing N examples at random with replacement from D.

2. Random vector method: the best split is chosen from a random subset of
m features at each node instead of all features. The IG is not computed for all
the attributes but only for this random subset.

22

Introduction

For each Di a different classifier is trained, and the new instances are classified
by majority voting.

Figure 1.21: Random Forest algorithm.

1.4.4 K-Nearest Neighbour

K-Nearest Neighbour (KNN) algorithm is a non-parametric simple, supervised
classifier used in the context of classification and regression [36]. K, the number of
considered neighbours, is selected through cross-validation, choosing the one that
minimizes the errors while preserving the algorithm ability to generalize to new
unseen data. The algorithm assumes that data points belonging to the same class
are close to each other. This idea of similarity or proximity is captured by computing
the Euclidean distance between points on a graph. The computed distances between
the current input and each training example are sorted in ascending order. The
first K entries are picked, and the returned output corresponds to the mode of the
K labels.
Attention must be paid when using KNN because the classification is time-consuming
and computationally intensive with a large amount of data.

k-Nearest Neighbour Search Using a Kd-Tree

Kd-trees divide data into nodes, each containing a fixed amount of data selected
by the user. The K-nearest points for a given input are first searched within the
node in which the point resides. After, the algorithm chooses all other nodes having
any area within the same distance, in any direction from the input point to the
k-th closest point. In this identified region, the algorithm searches for points closer
to the input. K-d trees are used with large datasets, being much more efficient than
using the exhaustive search method, reducing the computational cost [37].

23

Introduction

Figure 1.22: K-Nearest Neighbour implementation using Kd-tree [37].

1.4.5 Naive Bayes
Naïve Bayes is a supervised probabilistic algorithm that exploits Bayes’ theorem
under naive conditional independence assumptions. Bayes theorem provides the
mechanism to update the prior knowledge based on the evidence of unseen data.

P (θ|D) = P (D|θ)P (θ)
P (D) (1.16)

P (θ|D) = Posterior probability, probability of θ given data D.
P (D|θ) = Likelihood, probability of data D given θ.
P (θ) = Prior probability, describe the a-priori knowledge about θ.
P (D) = Marginal probability, probability of data D.

The Posterior is computed as the product between the Likelihood and the Prior
probability distribution and represents the updated state of knowledge about θ,
exploiting the new information brought by the data D. As an underlined hypothesis,
the algorithm considers the features conditionally independent given the class label.
Moreover, the Likelihood follows one of the statistical distributions: Gaussian,
Multinomial or Bernoulli. The Bayesian approach is inherently recursive, which
means that it is suitable for online recursive inference.
The classifier works by assigning each input feature vector a class probability
P (x|Ck), and then deciding as output class the one that maximizes the above
probability.

P (Ck|x) = P (x|Ck)P (Ck)
P (x) (1.17)

given the assumption of class-conditional independence:

P (x1, ..., xm|Ck) = P (x1|Ck)P (x2|Ck)...P (xm|Ck) =
mÙ
j=1

P (xj|Ck) (1.18)

The output class if finally given by:
y = arg maxk=1,...,k P (Ck|x) (1.19)

24

Chapter 2

State of the Art

2.1 Artificial Intelligence (AI) in embedded sys-
tems

Electronic systems have become widely used in several fields and indispensable for
many daily activities, aiming to improve quality of life. Embedded systems acquire
multiple users’ data to adapt and respond to their needs. Connection to data
networks allows these systems to share this information and retrieve the elements
to formulate proper decisions. In this optic, machine learning provides the tools
enabling the decisions introducing the concept of intelligence in embedded systems.
A critical aspect is the optimization of their computational capabilities that must
satisfy memory and battery constraints for practical use [38].

MicroControllers Units (MCU) are the central processor unit of embedded
systems. They collect analog or digital data, process information and return a
specific output through their peripherals. The rapid development of this field is
strictly related to open-source hardware boards, which constitute a free-access
platform with a manifold of data introducing a lower-cost strategy.

Systems On a Chip (SOC) recently became broadly diffused, enabling several
microprocessors’ integration and increasing their processing abilities, having all the
system functional elements integrated into one chip. Their ability to acquire data
in real-time and process it faster has also improved machine learning algorithms
performances.

With this information, an embedded system (ES) is an electronic system de-
signed to carry out a specific function and inserted into a more extensive system
device, using sensors and actuators to interact with the external environment. It
executes on highly specialized machines that are not primarily computers. Their
design is based on the concept of codesign that brings together the software and
the hardware components. During the system conception, computation capacity,
memory, timing and number of external devices limitations must be considered.
Software deployment is carried out according to the specific application. Traditional
codesign is an iterative approach that starts from a system functional specification.
Its completeness and precision are fundamental for the deployment of an efficient
system. Proceeds with the hardware and software components subdivision, which
result in three parallel flows [29]:

25

State of the Art

• ES compilation: programmed in C, or less frequently in assembly language.

• Hardware synthesis: specified using VHDL, or more recently using model
of computations (MOC).

• Hw/Sw interface realization

Figure 2.1: Hardware/Software codesign of an embedded system [39].

Integrated and tested in a co-simulation environment. The standard program-
ming language for Hw/Sw design is SystemC, an extension of C++, supporting
many levels of abstraction. Together with a system-level description language
(SLDL), three elements are required for the software:

• Processor model: describe it at various levels of abstraction.

• RTOS: supply the real-time timing, connectivity between tasks and synchro-
nization.

• Software generation tool: produce code for the chosen RTOS.

ES can be centralized or networked. Networked ES represents a network of nodes
that uses wired or wireless communication, Internet of Things (IoT), as an example.

Nowadays, ES has become more complex, networked and intelligent, which has
brought to the appearance of a novel category of ES known as intelligent embedded
systems (IES). It can be used for decision-making, learning or execution of intelligent
algorithms due to its characteristics of self-learning and optimizing, including also
AI-software systems.

In particular, Machine Learning and Deep Learning have seen the most devel-
opment, thanks to technological progress and the uprising of intelligent networks,
which has encouraged the creation of ML models and their use in problem solving.
An intelligent network has three boundaries [40]:

1. End devices are resource-scarce devices that collect data through sensors and
broadcast them to the edge device.

26

State of the Art

2. Edge devices use internet connections to transmit data to the Cloud.

3. The Cloud processes the received information for storage or as input for an
ML model, returning the output that can be sent back to the end device.

This type of system depends entirely on an internet connection for data transfer,
introducing delays due to the time required for the request to reach the Cloud and
the response to be received and security concerns. In real-time applications, the
chosen system’s intelligence’s location is the end device MCU.

End devices
End devices monitor their environment through sensors and actuators that

employ a wide variety of communication protocols. They are usually battery-
powered, so they require low power consumption and deep-sleep states. They are
application focus aiming at energy saving, and are used in real-time, running an
RTOS that allows multi-task and prioritization. MCUs in end devices are resource-
scarce with small RAMs, memory storage, and processing power to accommodate
these needs. Consequently, end-devices MCUs pose limits in software development.
As presented in Section 1.4, ML models are built in two steps. The training phase,
being computationally demanding, is carried out in a high-computational space in
the Cloud, using high-level languages (Python, TensorFlow, Caffe, MATLAB). Then
the inference code is implemented on the end device’s MCU, with low-level languages
(C, C++), passing through exporters for the code conversion. Examples of available
converters are Sklearn-porter [41] a Python package that allows exporting a model
trained using Scikit-Learn in different programming languages. MATLAB Coder
is a transpiler for MATLAB to C/C++, which, however, cannot directly convert
models to C and Weka-Porter that transpile Decision Trees only. These converters
do not introduce code optimization and are highly generic to consent to run the
code on any platform.

Figure 2.2: Cloud-based, edge-device and end device systems depiction.

In order to enhance these systems capabilities and ML methods portabilities,
several technologies and algorithms have been introduced.

27

State of the Art

MCU with Enhanced ML Capabilities and Compatibility

• PIC32MZ DA family by Microchip (2017) [42]: MCU with high-performance 2D
GPU improves execution time and introduce parallel computation, permitting
the implementation of more complex models.

• ARMv8.1 MCUs (Cortex-M) with Helium technology (2019) [43]: higher
performances in ML and DSP applications.

• ASIC + ARM Cortex-M3 ECMxx MCU by ETA Compute [44]: low-power
device that can be integrated into battery-powered systems and used in ap-
plications such as healthcare, speech recognition and video. The use of ASIC
technology improve performances and lower size and power consumption.

ML Algorithms for Embedded Systems

• ProtoNN [45]: algorithm that implements kNN, taking into consideration the
memory constraints of embedded systems. The optimization is carried out
with prototypes and low-d projections that build the model to fit the maximum
size.

• Bonsai [46]: algorithm based on the creation of a single shallow tree with nodes
that can make non-linear predictions. The output is given by summing the
predictions provided at each node.

• CMSIS-NN [47]: Cortex-M processor cores software library for NN. Neural
Networks generated with it improve 4x their performances and reduce their
memory footprint. Its use requires fixed-point quantization.

• FastRNN and FastGRNN [48]: algorithms for the implementation of recurrent
neural networks. Achieve significant reduction of these models by using low-
rank, sparse quantized (LSQ) matrices and residual connections.

Resource scarce MCUs: ML implementation examples
Szydio et al. have implemented different ML algorithms (i.e. Multi-layer

perceptron, Decision tree and Naive Bayes classifiers) into an ARM STM32F429.
They executed the training phase in Python environment on a personal computer
and exported the obtained models on the MCU. The code has been optimized to fit
the memory constraints using compiler optimizations, such as GNU supplied [49].

Leech et al. [50] have implemented an algorithm to estimate room occupancy
using an infinite Hidden Markov model and a system composed of a PIR sensor
and an MCU. The model has been implemented in MATLAB and exported to
C/C++ by making multiple optimizations to decrease the occupied memory. The
trained model has been tested on two different microcontrollers (Cortex-M4 with
floating-point unit and Cortex-M0), but it cannot satisfy real-time constraints. The
model, stored into a 10.36 KB SRAM, shows an accuracy of 80% and a minimum
computational time of 1.15 s, using Cortex-M4.

In their work, Haigh et al. [51] developed an SVM model on an ARMv7 and a
PPC440 MCUs for decision making in mobile ad hoc networks (MANETs). To bring

28

State of the Art

and optimize the model in C++, the authors used different libraries, eliminated
packages relying on malloc and included different optimization for data structures,
algorithms development and numerical representation. They applied inlining to the
most called functions and decreased the stack call by collapsing the object hierarchy
obtaining a 20% reduction in runtime. They also tested the use of different variables
types (integer 32-bits, float 32-bits, and 64-bits double), with the hybrid approach
(integer + float) being the fastest.

Parker et al. [52] studied and deployed a distributed neural network using
multiple Arduino Pro Mini (APM) MCUs, each representing a node of the NN.
The new approach has been developed to brig parallelism into NN. The simple
network comprises four APM: an input, a hidden layer with two neurons and an
output layer. The communication between the MCUs has been obtained using an
I2C protocol. The model learning is based on the backpropagation algorithm and
has been used to learn simple logical operations, achieving 43 s to learn the XOR.

The critical aspects of ML models implementation on resource-scarce MCUs can
be briefly summarized as follow:

• Memory footprint: the majority of the algorithms requires the storage of
data points, hyperplanes or thresholds that occupy a considerable amount of
memory. Code optimization is essential to reduce memory footprint while
maintaining the achieved accuracy.

• Power consumption: low power consumption became a constraint when
working with battery-powered devices. Many factors influence this aspect,
but regarding wireless devices more than 65% of the power is consumed in
communication. In this case, the most effective strategy for power reduction is
reducing the number of communication performed. In addition to that, modern
systems provides low power and sleep states to further trim consumption down.
Another important aspect is memory. Power consumption is higher as its size
increases, and some memory types have higher consumes requiring a periodical
refresh.

• Execution time: time constraints are critical in real-time applications. Ex-
ecution time is connected to the clock cycle that determines how fast the
processor can complete a task. Machine cycle must also be taken into consider-
ation and is the time required by the processor to perform fetching, decoding,
execution, and storage, variable among different MCUs. The algorithms must
be implemented to run in the smallest amount of machine cycles as possible
to complete the desired task.

• Accuracy: this aspect is deeply influenced by the data used in the training
phase. The construction of a well-balanced dataset with a good representation
of all the possible cases and low noise is the key to obtaining high accuracy.

• Scalability and flexibility: these two aspects are challenging to achieve.
In ML, data from different sources may not be suitable for other platforms
because of differences in data acquisition methods or data handling. However,
flexibility renders a model scalable and fit for a set of platforms and data.
Techniques such as data standardization and preprocessing can make the model
more robust.

29

State of the Art

2.2 Gesture Recognition
Gesture recognition tries to confer a mathematical interpretation to the human
movement using computing devices. With the increasing use of technology, hand-
gesture recognition has become a primary field of Human-Computer Interaction
(HCI) because it gives the machine to comprehend the user needs and respond
consequently. The majority of the gesture recognition systems follows three steps:

Figure 2.3: Implemented steps in a gesture recognition system.

The data acquisition systems vary among different studies and applications [53],
with the most common being:

Wired gloves: in their work, Chouhan et al. [54] created a low-cost wired glove
with a 3-axis accelerometer, four Hall effect, and seven bending sensors to map
hand and fingers orientation. The sensors acquire the data stored in an array which
is then sequentially transmitted to a computer using a UART connection and an
automatic repeat request (ARQ) as a fault controlling setup. The preprocessed
data is used to train a logistic regression model in the MATLAB environment. The
validation phase assessed the correctness of the model classification by evaluating
the output of the trained algorithm on new data that arrived on the PC. The
reached average accuracy of the system is around 96%. Its intended application is
the conversion of sign language to a more human-understandable form.

Motion capture: Bargellesi et al. [55] used a motion capture (MoCAP) system
to perform hand gesture recognition. The MoCAP setup consists of 12 infrared
cameras with a sampling frequency of 340 Hz, capturing 3D position information
from 8 markers. This type of system requires a preliminary step of camera calibration
to identify markers, setting up a coordinate reference system in the acquisition
environment. The features fed to the Random Forest, chosen as the classification
algorithm, have been extracted testing three different methods: time-series cropping
(CROP) that reached an accuracy in gesture recognition of 93%, summary statistics
(STAT) with an accuracy of 96% and time series resampling (RESAMP) reaching
97%.

Leap motion controller: in their work, Yang et al. [56] developed a Leap
Motion Controller (LMC) system for dynamic hand gesture recognition based
on a Bidirectional Recurrent NN. LMC represents dynamic gestures employing
a set of feature vectors containing information such as coordinate, velocity and
acceleration of the fingers, wrist and palm. The dynamic motions are considered as
sequential frames obtained through the aggregation of different hand characteristics.
LMC utilizes binocular RGB high-definition cameras to enhance gesture mapping
efficiency, while infrared cameras lessen the background impact. A convolutional
NN extracts the feature data, performing multi-layer convolutional filtering. Two

30

State of the Art

datasets containing 12 and 10 gestures were tested (using k-fold cross-validation
with k = 5), reaching an average accuracy of 93.5% and 90%, respectively.

Stereo camera: Mohidul Alam Laskar et al. [57] exploited stereo cameras to
pass from 2D to 3D gesture recognition. In order to be used, the system requires
an initial calibration of the two RGB sensors and cameras to assess their geometric
relationship. Features extraction is performed on the disparity maps produced from
the images captured by the two cameras. The classification algorithm implemented
has been the Conditional Random Forest (CRF) employing the OpenCV 2.0 library
in C/C++. The proposed system reached an accuracy of 88%.

Wireless sensing: WiCatch is a novel device-free hand gesture recognition
system developed by Zengshan et al. [58]. It bases hand motion recognition on
the channel state information. This system works with hand reflected weak signals
employing an inference elimination algorithm interference reduction produced by
the reflection from unmoving objects creating a direct signal. The received signals
are sampled in the time domain to extract the virtual antenna array on which the
motion locus of the gesture is rebuilt. The classification is conducted using SVM,
achieving an average accuracy of 96%.

sEMG signal: Benatti et al. [59] developed and validated an sEMG wearable
device for real-time gesture recognition. The system uses an ARM Cortex M4
microcontroller for data extraction and classification, interfaced via SPI to a Cerebro
Afe. The acquisition system presented eight channels and a sampling frequency of
1 kHz. The acquired data were transmitted via Bluetooth to a PC for the offline
training of the SVM classifier in the MATLAB environment. After the training,
the model has been deployed on the MCU to perform real-time classification. The
averaged accuracy reached was 89.2% over seven movements to be classified and a
computational time that satisfies real-time application constraints.

Relevant features are extracted from the data acquired and used for training and
testing the classification algorithm that will ultimately return the output gesture.
Classification enables the systems to recognize the executed movements. Hand
gesture recognition systems have several application fields:

Robotic control. It is one of the largest and most diversified areas of appli-
cations. An application example is the work of Zhao et al. [60] who designed a
hand gesture control model for mobile robots. Gestures are extracted from the
background and recognized by applying image processing techniques. After that,
gesture recognition is obtained by applying a matching algorithm based on the
invariant moment matching method and used to control the mobile robots.

Gaming. This application aims to render the virtual gaming experience more
immersive and interactive. S. Rautaray and A. Agrawal [61] combined image
processing algorithms (e.g. Lucas Kanade and Camshift) implemented in C++
using OpenCV library and haar cascade classifier to create an easy to use system
based on real-time gesture recognition. In the game, the user can control the
movement of a character using four different gestures. The system showed an
accuracy ranging from 93 to 80% based on the selected gestures.

31

State of the Art

Hand Gesture
Recognition
ApplicationsRobotic control

Healthcare

Sign language

Gaming

Domotics

Figure 2.4: Applications areas of hand gesture recognition.

Domotics. Home automation systems create smart homes by monitoring several
aspects such as lighting, security and heating. Nguyen et al. [62] developed a
three-component system to control house appliances. A smartwatch equipped with
accelerometers and gyroscopes (sampling frequency of 25 Hz) acquire data related
to the execution of hand gestures and transmits them to a smartphone. Here
the classification process occurs, and the output is sent to the home automation
platform, connected to smart devices. A deep Convolutional NN (CNN) and a
DeepConvLSTM have been tested, obtaining an F1-Score value of 73.7% and 75.8%,
respectively, over the execution of 18 different gestures.

Sign language recognition. Sign languages use manual communication, in-
cluding hand gestures and fingers orientation, arm, head and body movement,
and facial expressions to deliver a specific word or meaning. Several works aim
to overcome the communication barriers suffered by deaf people using gesture
recognition systems. Canavan et al. [63] proposed an automatic system based on
a random regression forest and a skeleton-based feature representation from data
collected with a LMC system. The real-time setup was tested on the American Sign
Language, removing dynamic letters and obtaining a classification rate of 98.36%.

Healthcare. In this field, gesture recognition is mainly used to control prosthesis
and orthosis, movement of electric wheelchairs and manipulation of medical images.
This last application was implemented by Wachs et al. [64] who proposed ’Gestix ’,
a video capture based system for the navigation of MRI images within medical
records. The accuracy reached in recognition of eight gestures over ten subjects
was equal to 96%. The system has also been tested in the surgical context during
neurosurgical biopsies by a surgeon at Washington Hospital Center.

32

State of the Art

2.3 EMG based Armband for Gesture Recogni-
tion

2.3.1 Myo Armband by Thalmic Lab
Thalamic Lab company has developed the Myo Armband. This device is the
most widespread sEMG armband for gesture recognition due to its ease of use and
technical characteristics. The armband has a 9-axis Inertial Measurement Unit
(IMU) and eight bipolar channels and recognizes eight gestures. It uses a BLE 4.0
(data transmission chip BLE NRF51882) transmission module, has a maximum
sampling frequency of 200Hz and an eight bits ADC. It also contains a vibrator
motor for user feedback. The microcontroller used is the Freescale Kinetis ARM
Cortex M4, and it has two rechargeable lithium batteries (3.7V - 260mAh) [65].

Figure 2.5: Myo armband [65].

Many articles have investigated its applications and evaluated the relative
performances in fields like robot control interface, virtual reality gaming and control
of prostheses. For this last application, the Department of Innovation Engineering
of the University of Salento and BionIT Labs Company used Myo Armband to
control the prototype prosthesis they developed, Adam’s Hand [66]. Through
Myo armband, an algorithm performs gesture recognition on the rectified EMG
and the 9-axis IMU signals and establish the strength required for the movement
execution. This time-averaged data are fed to a neural network which weights are
obtained during the training stage when the system is started. The myoelectric
prosthesis possesses 15 DoF and a single motor to reduce its weight and is provided
with actuators and sensors. It permits the fingers’ movement independently and
generates an appropriate force based on the task to be performed.

2.3.2 gForce-Pro Armband by Oymotion
gForce-Pro is an sEMG hand gesture recognition armband, developed by Oymotion,
that tracks arm position monitoring biometric forearm signals. The system consists
of a 9-axis motion sensor and eight acquisition channels with bipolar configuration,
and it can recognize eight gestures. Data transmission is handled via Bluetooth
(BLE4.1), and it is compatible with Windows, Android and Arduino. Its maximum
sampling frequency is 1000, and it has a built-in bandpass filter at 200-500Hz.
The ADC works on 8 bits to convert the analog signal to digital. ARM Cortex

33

State of the Art

M4 High-Performance microcontroller is used to achieve low power consumption
(below 0.1W). OTrain interface helps the user with the set-up of the armband.
After establishing the device connection (for which gForce Dongle is necessary), a
training phase in which the user can personalize the active gestures starts. After
that, the armband can be used offline [67].

Figure 2.6: gForce-Pro Armband by Oymotion [67].

2.3.3 3DC Armband

Laval University’s Biomedical Microsystems Laboratory designed the 3DC Armband,
a 3D printed wireless system for gesture recognition [68]. The band has ten
bipolar acquisition channels and a 9-axis IMU, and it can identify eleven hand and
wrist movements. The transmission unit is based on the Enhanced Shockburst, a
2.4GHz low-power customized protocol similar to BLE. The sampling frequency is
1,000Hz, and the system contains a bandpass filter between 20-500Hz. The device
is powered by a 100mAh LiPo battery and uses a low-power microcontroller unit
and transceiver. Its performance has been evaluated and compared with the result
obtained from the Myo Armband.

Figure 2.7: 3DC Armband [68].

The researchers collected a new dataset containing the signal from 22 subjects
and tested different classification algorithms fed with three different data types:
raw sEMG signal, baseline feature set and time/frequency domain features. The
best accuracy was reached using the raw sEMG signal and a ConvNet classifier,
attaining an average accuracy of 89.47% against the 86.41% of the Myo Armband.

34

State of the Art

2.4 ATC in Hand Gesture Recognition
The Istituto Italiano di Tecnologia (IIT) started to study the prospect to use ATC
data in sEMG detection in their study [20]. They developed a wireless low-power
system for miniaturized biomedical applications based on the ATC data with an
Impulse Radio Ultra-Wide Band (IR-UWB) transmission technology. They validate
the use of the ATC parameter to obtain information about muscle activation
by computing its correlation with the muscle generated strength, measured with
dynamometers, achieving a value of 0.95 ± 0.02 and comparing it to the correlation
calculated between the sEMG signal and the ARV (i.e. 0.97 ± 0.02). Their work
continued in [21]. The ATC transmission was extended to a multi-channel case
using an Address-Event Representation (AER), and the system has been deployed
on a full-custom chip. Further simulations on the ATC were also conducted to
justify its final intended use in gesture recognition. They proved ATC parameter
robustness against saturation and distortion effects caused by the amplifier and
that 5-6 dB of Signal to Noise Ration (SNR) allows to the ATC correlation value
to attain its maximum. Correlation also shows a 70% tolerance for lost events.

The MiNES research group employed the ATC feature in ML algorithms for
hand gesture recognition in the last few years, starting from Sapienza et al. [69].
Their work developed a system to recognize four hand movements (wrist flexion,
wrist extension, hand grasp, wrist radial) and the idle state using three channels
positioned on the forearm. In the MATLAB environment, an SVM classifier was
trained using the Statistics and Machine Learning Toolbox. The model performance
and classification time reached fair values with a latency of 160ms, while the average
accuracy obtained after cross-validation is shown in Table 2.1.

Table 2.1: SVM classifier performance obtained by Sapienza et al.

Accuracy(%) Sensitivity(%) Specificity(%) Precision(%)
EX 88.25 73.00 93.33 78.49
GR 93.25 91.00 94.00 83.49
UD 92.00 84.00 94.67 84.00
FL 98.00 95.00 99.00 96.94
Avg. 92.87 85.75 95.25 85.73

Continuing on this application, Mongardi et al. [70] increased the number of
active, distinguished gestures up to five, introducing the wrist ulnar deviation. NN
was selected as classification model to reduce power consumption and move the
classification process on an MCU. The Network architecture presented 2 hidden
layers with 26 neurons each. A custom board was used for the collection of the
sEMG signal and ATC data extraction. The selected MCU was the Apollo 2 by
Ambiq. The validation phase required the acquisition of a new dataset using three
couples of 24mm electrodes. The obtained system latency is 268.5ms while the
performances are reported below:

Using the same dataset, Barresi [71], replaced the MCU used in the previous
work with an Apollo 3 and tested two additional machine learning algorithms,

35

State of the Art

Table 2.2: NN performance obtained by Mongardi et al.

Accuracy(%) Sensitivity(%) Specificity(%) Precision(%)
EX 96.87 84.64 99.20 91.34
FL 96.47 90.29 88.30 89.28
RD 97.18 91.76 91.30 91.53
UD 94.97 93.63 74.90 83.22
GR 94.92 88.06 88.40 84.06
ID 97.63 87.57 100.00 93.37
Avg. 96.34 89.32 89.02 88.80

K-Means and SVM. The average accuracy obtained in the training phase was
83.35% and 95.3%, respectively, encouraging the algorithm’s deployment on the
MCU. The system latency was equal to 239.85ms for the SVM and to 130.124ms
for the K-Means. Online prediction results are reported in Table 2.3 and 2.4.

Table 2.3: SVM performance obtained by Barresi et al.

Accuracy(%) Sensitivity(%) Specificity(%) Precision(%)
EX 96.79 78.84 79.34 79.13
FL 97.50 78.92 88.16 83.24
RD 98.86 99.38 86.09 92.26
UD 96.83 66.66 68.97 67.80
GR 98.08 80.00 81.36 80.67
ID 99.83 99.94 99.82 99.87
Avg. 97.98 83.95 83.05 83.07

36

State of the Art

Table 2.4: K-Means performance obtained by Barresi et al.

Accuracy(%) Sensitivity(%) Specificity(%) Precision(%)
EX 95.00 97.06 35.87 79.13
FL 93.71 52.65 100.00 83.24
RD 99.62 98.90 96.25 92.26
UD 92.79 40.00 98.28 67.80
GR 93.46 62.14 35.16 80.67
ID 96.25 99.74 94.72 97.16
Avg. 95.14 75.08 76.71 69.64

Finally, in his work Tolomei [72], started a further investigation on the previous
dataset using different machine learning algorithms: NN, SVM, RF, Naive Bayes
and Gaussian Mixture Modelling (GMM). Among them, only the best-performing
ones were deployed on the MCU and compared as reported in Table 2.5.

Table 2.5: Online comparison of the ML algorithm tested by Tolomei et al.

Global Computational Average Power
Accuracy(%) Time(µs) Consumption(mW)

NN 88.15 2560 0.5442
SVM 84.55 54840 0.9324
RF 82.70 185.49 0.5131

K-Means 76.45 61.92 0.5126
NB 81.50 140.46 0.3758

In this study, the feasibility for the development of a wearable armband was also
investigated. A new dataset was acquired, and two additional gestures were added
(pinch grip and open hand). The channels were brought up to seven, and the sEMG
signal was acquired using pre-gelled electrodes (24 mm) and the g.HIamp-Research
amplifier by g.tec.The previously tested algorithms were trained on the new dataset,
and a final comparison was made.

Protocol for Dataset Acquisition

Because this dataset has been used for further investigation, the acquisition
protocol is briefly reported. The campaign recruited 14 people (11 males and 3
females) performing eight gestures (i.e. seven active and the idle). After giving their
consent for participation in the study and signing the informed consent drafted
following the regulations of the local bio-ethical committee, the session started.
The participants sat in a comfortable position, and the electrodes were carefully
placed following the standardization previously studied. A calibration check was
made to verify proper muscle activation on all channels. The subjects performed
the gestures sequentially and the supervisor remained the gesture to be performed,
setting a timer.

The acquisition protocol followed was:

37

State of the Art

• The acquisition starts in idle condition.

• The gesture to be performed is maintained for 30s.

• Each gesture is followed by a rest interval of 5s.

• After the execution of all the movements, a 30s rest is observed.

• This acquisition is repeated three times.

The table 2.6 below presents the statistical results obtained on the dataset and
represents the starting point for the investigation of this thesis work.

Table 2.6: Comparison of the ML algorithm tested by Tolomei et al. on the new
dataset

Classifier Global Accuracy (%)
NN 80.30
SVM 78.10
RF 78.90

K-Means 35.70
GMM NB 70.90

38

Chapter 3

Further Investigation on 7
Channel Dataset

3.1 Offline training
A preliminary investigation of the most suitable Machine Learning algorithms has
been conducted using the dataset acquired in a previous work [72] to develop a
wearable armband for Gesture Recognition.

In order to be helpful for the classification process, the data acquired have to be
processed. The elaboration of the data, performed in MATLAB, adds the output
label depending on the movement performed, required by supervised classifiers, and
cleans the data from possible noise or involuntary movements during the recordings.
Instead of considering only data between the 5th and the 95th percentile, a threshold
is set in this work. The routine defines as idle all the values below the designated
threshold.

Th =
ñ
f 2

1 + f 2
2 + f 2

3 + f 2
4 + f 2

5 + f 2
6 + f 2

7 ≤ N (3.1)

The user selects the N value, and fi represents the TC values that constitute an
acquisition set.

This implementation permits the maintenance of more border values, helpful
in discriminating among different classes during the classification process. The
algorithms’ implementation takes advantage of the computational efficiency of
MATLAB environment, exploiting the Statistics and Machine Learning Toolbox.

The training phase considers 100 initialization of the ML algorithms and uses
K-fold cross-validation, with K = 5. Each fold preserves the percentage of examples
for each class, applying a stratified K-fold method. For the parametric classifiers,
accurate tuning of the hyperparameters is performed to determine the optimal
algorithm for the data at hand. The input data are divided into train and validation
sets and loaded separately, avoiding the occurrence of correlation between them.
The data matrices are not standardized, having that the data are evenly distributed,
and the seven features belong to the same range (0-32).

39

Further Investigation on 7 Channel Dataset

3.1.1 Neural Network
The Neural Network algorithm implementation exploits the Deep Learning Toolbox
and uses the backpropagation method described in Section 1.4.1. The optimization
of the network parameters is carried out by a routine that examines different
architectures, considering 2 or 3 layers with an equal number of nodes ranging from
16 to 64. For each tested architecture, the learning rate is varied from 0.001 to 1.
Adam (Adaptive Moment Estimation) optimizer is used during the training sessions,
setting the maximum number of epochs to 500 and using a mini-batch with 1/6
of the total number of observations of the training dataset at each iteration. A
validation patience setting stops the iterations when the accuracy of the classifier
does not increase significantly. The conventional gradient descent algorithm updates
the network weights and biases by minimizing the loss function by moving in the
direction of the negative gradient computed on the loss with a small step, which
size is dictated by the learning rate value. The five best performances and their
related architectures are reported in the table below.

Table 3.1: Top 5 results for NN preliminary study.

Layers Nodes Learning rate (α) Accuracy(%)
2 40 0.01 87.25
3 63 0.01 87.11
3 59 0.03 87.04
2 56 0.001 86.91
2 36 0.01 86.77

The selected network presents the following structure:

1. Input layer: the number of nodes in the input layer is equal to the number
of acquisition channels of the system, 7 in this case.

2. Hidden layers: the network includes two equally sized fully connected hidden
layers, each comprising 40 nodes. The Rectified Linear Unit function is used
as an activation function to avoid divergence. It sets to zero all the negative
input instances and maintain unaltered the positive ones, applying a threshold
operation.

3. Output layer: in the output layer, each recognized gesture corresponds to a
node. The Softmax layer used for the output applies the softmax function to
its inputs. This function can also be referred to as the normalized exponential,
and it acts as the logistic function for a multi-class case.

The Learning rate value is equal to 0.01.

3.1.2 Support Vector Machine
The Matlab function fitcecoc fits multiclass models for Support Vector Machines
and is used to implement the classifier. An Error-Correcting Output Codes (ECOC)
model simplifies the multi-class classification problems into a set of binary ones. In

40

Further Investigation on 7 Channel Dataset

particular, this function train a multiclass ECOC model using SVM binary learners.
The number of binary learners is 8, having set the coding as one vs all and for
each of them, one class is considered as positive while the other is negative. A new
input is assigned to the specific class that minimizes the cost functions for each
binary classifier. Also, in this case, a routine optimizes the hyperparameter for the
classifier.

Table 3.2: Top 5 results in hyperparameter selection.

Kernel Regularization parameter (C) Gamma Accuracy(%)
’rbf ’ 100 ’scale’ 87.10
’rbf ’ 1000 ’scale’ 86.66
’rbf ’ 10 ’scale’ 86.46
’rbf ’ 1 ’auto’ 86.43

’sigmoid’ 10 ’auto’ 85.89

The best model’s parameters are:

• Kernel: radial basis function (RBF)

• Regularization parameter (C): ’100’. It is a positive value, inversely
proportional to the strength of regularization. As the value of C increases, the
number of generated support vectors decrease.

• Gamma: ’scale’. In this condition, its value is equal to 1
nfeatures∗variance

3.1.3 Random Forest
Fitcensemble function deploys Random Forest models. The algorithm grows shallow
trees, which depth can be controlled by specifying the maximum number of splits and
the minimum leaf size. Each tree grows on a bootstrapped dataset, which resamples
the original with replacement, maintaining the same size. The classification ensemble
for the prediction is created by using all the features in the data. Then, the other
trained ensembles will use fewer features. The output class is chosen trough majority
voting, comparing the in-sample accuracies.

Table 3.3: Top 5 results in Parameter selection.

Tress Parent Size Accuracy(%)
100 30 87.02
80 35 86.97
30 15 86.88
90 15 86.47
30 40 86.32

The selected parameters for the Random Forest classifiers are:

• Number of Trees: ’30’, the number of trees generated in the forest.

41

Further Investigation on 7 Channel Dataset

• Parent Size: ’15’, the maximum number of branch nodes observations.

This model has not the highest performance but offers an appropriate trade-off
between the accuracy and the contained number of learners.

3.1.4 K-Nearest Neighbour
For the implementation of the K-Nearest Neighbour algorithm, the fitcknn function
is used. It returns a KNN classification model based on the input features. fitcknn
creates a Kd-tree by default to find the K-nearest neighbours, using a radius search.
The proximity metric selected is the Euclidean distance, and the number K of
neighbours has been chosen equal to 15. Also, the distance weight is equal for all
the examples contained in the training set.

Table 3.4: Preliminary analysis for KNN algorithm.

Neighbour number Distance metric Accuracy(%)
15 ’Euclidean’ 87.32
30 ’Minkowski’ 87.27
17 ’Chebychev’ 87.17
13 ’Minkowski’ 87.13
27 ’cityblock’ 87.02

3.1.5 Naive Bayes
Fitcnb can implement different types of multiclass Naive Bayes models. In particular,
it is possible to choose among different data distributions like the multinomial, the
multivariate multinomial, the Gaussian and the Kernel smoothing density estimate.
All tested on the training data. The algorithm does not require hyperparameter
tuning because it estimates the probability densities of the predictor within each
class on the labelled data. The results for the examined distributions are reported
in Table 3.5:

Table 3.5: Preliminary analysis for NB algorithm.

Distribution Accuracy(%)
’kernel’ 74.02
’mn’ 73.78

’mvmn’ 73.62
’normal’ 70.88

3.1.6 Offline performance comparison
Table 3.6 offers a comparison among the performance of the tested algorithms.

42

Further Investigation on 7 Channel Dataset

The examined classifiers show comparable results at a good usability level.
Only the NB classifier exhibits overall lower performances, resulting in its exclusion
from the following phase of formulating an embedded algorithm for the MCU.
Among NN, SVM, RF and KNN, the Neural Network offers the lowest power
consumption and computational effort. However, in this preliminary phase, all the
above classifiers have been deployed. For the firmware design, memory constraints
and maximum latency of 300 ms must be guaranteed. This part is discussed in the
following section.

Table 3.6: Offline performance comparison.

Algorithm Accuracy(%) Precision(%) Recall(%) F1-Score(%)
NN 87,25 82,23 82,40 82,28
RF 86,88 82,39 82,41 82,42
SVM 87,10 83,54 83,56 83,54
KNN 87,32 83,08 83,21 83,15
NB 74,02 69,38 70,01 69,26

3.2 Firmware for Online prediction
Here, only the firmware related to the ML implementation is treated.

• Neural Network
The NN implementation applies feed-forward propagation using the weights
obtained in the training session. The hidden layers employ the ReLu activation
function, while the output layer the SoftMax function. The use of the CMSIS
DSP library optimizes the matrices computation without using other external
libraries.

• K-Nearest Neighbour
K-Nearest Neighbour model did not necessitate any specialized library, being
based on the Euclidean distance computation from the datapoint of the train-
ing set. Due to the constraint in the memory available, instance reduction was
applied to reduce the dimension of the dataset.
Instance Selection (IS) is a data-mining pre-processing technique that chooses
a representative subset of instances from the available dataset while trying
to achieve the slightest loss in performance possible. After applying different
algorithms presented in the literature, DROP3 (Decremental Reduction Opti-
mization Procedure) was selected as the one offering the best balance between
accuracy and dimensionality reduction.
DROP3 is a decremental algorithm that removes both central and border
points [73]. The pseudocode is reported below.
Briefly, the algorithm starts by applying a noise filter that removes all the
instances in the training set misclassified by their K nearest neighbour. For
this new subset of features, the lists of nearest neighbours and associates

43

Further Investigation on 7 Channel Dataset

are calculated. An instance X is removed in the main loop if the number
of associates correctly classified without X is greater than the number of
associates correctly classified with X.

• Support Vector Machine
The SVM algorithm was deployed with the use of the LIBSVM library [74].
The routine takes as input from the trained model the kernel matrix, the
gamma value, the support vectors, the intercepts and the coefficients. This
implementation required a one vs one approach, resulting in a total of 28
binary learners.
However, the resulting number of support vectors (i.e. 17561) derived from
the training does not satisfy the memory constraints of the MCU. In order
to reduce the memory footprint of the SVM model, different implementations
of the classifier were attempted. SVM is a kernel method that projects
data points in a higher dimensional feature space where the original data
are represented in a kernel matrix. This type of algorithm, requiring kernel
matrices computation, presents high computational costs, at least quadratic
in the number of training data. A possible solution is the use of low-rank
matrix approximation methods. So, the first trial entailed using the Nystroem
method, implemented in both Python and MATLAB. The Nystroem method
is a general low-rank kernel approximation method that subsamples the data
on which the kernel is computed. It can be applied to any kernel. Here it is
used with the RBF kernel. The algorithm decreased the number of support
vectors, bringing their number to 5514 and its performance, as shown in Table
3.7. This method was discarded due to the still high number of support vectors
and the lowered performance achieved.
The second implementation used the reduced dataset created for the kNN
algorithm. Starting from a minor number of data points, the number of
generated support vectors has also decreased, making the model suitable for
the memory constraints of the MCU.

44

Further Investigation on 7 Channel Dataset

Table 3.7: Statistical results obtained with the Nystroem approximation method.

Accuracy(%) Precision(%) Recall(%) F1-Score(%)
76,53 74,35 73,21 75,18

However, in order to use the entire original dataset, a sparse implementation
was also realized, following the Newton Sparse SVM (NSSVM) algorithm
presented in [75]. This method solves a sparsity constrained kernel-based SVM
optimization problem:

minα∈Rm D(α) := d(α) +
mØ
i=1

hcc(αi), s.t.
mØ
i=1

αiyi = 0, ||α||0 ≤ s

(3.2)
Where the primal d(α) and the dual D(α), are respectively:

minα∈Rm d(α) := 1
2

mØ
i=1

mØ
j=1

αiαjyiyjéxi, xjê −
mØ
i=1

αi (3.3)

s.t.
mØ
i=1

αiyi = 0, 0 ≤ αi ≤ C, i ∈ [m] (3.4)

minα∈Rm d(α) := 1
2

mØ
i=1

mØ
j=1

αiαjyiyjéxi, xjê −
mØ
i=1

αi (3.5)

minα∈Rm D(α) := d(α) +
mØ
i=1

hcc(αi), s.t.
mØ
i=1

αiyi = 0 (3.6)

Here, s ∈ [m] is an integer number s ¹ m called sparsity level which counts
the number of non-zero elements of α ,and ||w||0 is the zero norm of α. For
each binary classifier the value of the sparsity level has been tuned iteratively,
in order to select its optimal value.
The Table below 3.8 shows the global accuracy and the number of support
vectors obtained for the different implementations:

Table 3.8: Comparison among the method used for the reduction in the number
of SV.

Method Accuracy(%) N° SV
Nystroem 76.53 5514

Reduced dataset 87.15 2357
NSSM 85.2 681

45

Further Investigation on 7 Channel Dataset

• Random Forest The Random Forest algorithm has been brought to the MCU
thanks to the use of the emleran library [76]. This library allows converting a
model trained model to a header file, used on the MCU. In order to reduce the
occupied space in memory, the classifier hyperparameters have been changed
diminishing the number of trees to 10. The maximum depth to which each tree
can grow was limited to 10 and the number of split to 2. The performance of
the classifier did not change significantly. In this way the memory constraints
are satisfied and no additional changes had to be done.

46

Chapter 4

System description

The aim of the developed wearable armband is the real-time classification of hand
gestures, using as input the ATC data extracted from the ElectroMyoGraphic
surface (sEMG) signal. The embedded low-power system is based on an event-
driven approach which reduces the complexity of the classification algorithms by
transmitting a lower amount of data, hence diminishing the power consumption.
This feature matches the requirements for a wearable battery-powered device. The
proposed system comprises seven bipolar acquisition channels consisting of dry
electrodes, each acquiring the sEMG signal and providing the extracted TC signal.
The research group has developed a PCB with an Apollo3 Blue ultra-low power
MicroController Unit (MCU) with an ARM Cortex M4F µP onboard, performing
signal conditioning and the computation of the ATC data, fed to the embedded
machine learning algorithms for the classification, and containing a Bluetooth Low
Energy (BLE) module for data transfer. Figure 4.1 shows an overview of the system.

Predicted
Class

ATC data

sEMG
acquisition

sEMG
acquisition

sEMG
acquisition

sEMG
acquisition

sEMG
acquisition

sEMG
acquisition

sEMG
acquisition

Predicter

Dongle
CC2540

Figure 4.1: System overview.

47

System description

4.1 Acquisition system
The superficial ElectroMyoGraphic acquisition system consists of the Analog Front
End (AFE) channels and their digital control unit. The AFEs are coupled with
the Apollo3 Blue MicroController Unit (MCU) equipped with a Bluetooth Low
Energy antenna. The main steps of the EMG signal conditioning and the ATC
computations are reported in the schematic below.

The electrodes, used in a single-differential sampling configuration, are connected
to an overvoltage protection circuit, protecting voltage-sensitive PCB components
from the accumulation of electrostatic discharges and transient voltage events.
Each of them is linked to a Voltage Follower, introduced for the decoupling of the
electrode-skin impedance. Their positioning in the system ensures the collection
of the same signals from the electrodes. The reference electrode is linked to the
Driven Right Leg (DRL) circuit for reducing the common mode voltage. A passive
differential high pass filter with a cut-off frequency of 33.86Hz is applied to the
signal exiting the voltage follower to reduce motion artefacts. The instrumentation
amplifier reduces the electromagnetic noise, providing a gain of 501V/V, thus
improving the input impedance. A second-order multiple feedback low pass active
filter (cut-off frequency of 70.83Hz) efficiently rejects the common mode, and an
additional adjustable gain allow for further amplification of the signal. Another filter,
a second-order Sallen-Key low pass active filter (cut-off frequency of 397.42Hz),
limits the upper bandwidth of the signal. Finally, a voltage comparator is set to
a high logical level when the signal is higher than a set threshold, low otherwise,
outputting the TC signal, transmitted to the Microcontroller. The ATC parameter
is extracted onboard and directly sent through the Bluetooth antenna to the
computer.

Each PCB presents onboard four different peripherals: SPI, I2C slave, I2C master
and USB. The I2C communication has been chosen for the information exchange
among the various units composing the armband. I2C (Inter integrated circuit) is a
bus interface used for communication between a master (or multiple masters) and
one or more slaves. This connection utilizes only two wires to establish connections,
reducing the number of connectors used in the armband assembly. Each device on
the I2C bus has a specific address differentiating it from other devices present on
the same bus. A slave cannot transmit data unless the master has addressed it.
I2C protocol uses two bidirectional open-drain pins, the serial data (SDA) and the
serial clock (SCK), for data communication [77]. Both lines are connected to the

48

System description

VCC through a pull-up resistor present onboard, and which resistance value can
be selected depending on the amount of capacitance on the I2C lines. The value
of this resistance will affect the velocity at which the lines are brought to a high
level. Data transfer starts when the bus is in idle condition, having both the SDA
and the SCK lines high. One data bit is transmitted during each clock pulse of the
SCL. A byte representing the device address first and a byte of data written to or
read from a slave after is sent during the communication.

The classification and the Low Energy Bluetooth routines have been loaded
over different PCBs, the former on the slave unit preceding the master and the
latter on the master. Each unit collects the sEMG signal and performs the signal
conditioning and the TC signal extraction onboard. After that, the ATC parameter
is computed for each unit and transmitted to the next sequentially until all the
ATC data reaches the Master. After that, if classification is requested, the Master
passes the ATC data to the Slave designated for the prediction. This unit outputs
the class label of the executed gesture, passing it back to the Master responsible for
the Bluetooth Low-Energy transmission to a computer. This transmission method,
employing the I2C, takes the name of Daisy chain, being the devices wired together
forming a ring. An additional advantage of this system is the possibility to use
different units as masters or changing the predicter designated unit.

The use of dry electrodes is essential for the usability of a wearable device and
has been thoroughly investigated in a previous work [78]. The comparison between
dry and wet electrodes has been conducted using a stand-alone channel similar to
the ones exploited for the armband deployment. The metric used for the comparison
has been the Signal to Noise ratio (SNR), evaluated on the sEMG signals extracted
from the upper and lower limbs. The results obtained showed comparable values of
the SNR for the two electrodes used, and in some cases, higher ratios for the dry
ones, as shown in Table 4.1.

Table 4.1: SNRdB comparison between wet and dry electrodes. Wrist extension
is referred to the signal acquired from the extensor carpi radialis, while forearm
flexion to the signal collected from the brachial bicep

Movement Intensity Wet electrodes Dry electrodes
SNR (dB) SNR (dB)

minimal 13.46 10.74
Wrist extension normal 20.38 21.85

maximal 25.28 27.16
minimal 13.73 15.08

Forearm flexion normal 21.17 21.70
maximal 27.41 26.42

These outcomes made them suitable for implementation in the current system.
Each channel contains three dry electrodes. The two lateral ones are the active
electrodes, acquiring the sEMG signal, and the central one is the reference electrode,
used in a bipolar configuration. The system is pressed to the subjects skins to

49

System description

meliorate the quality of the acquired signal, reducing the otherwise high electrode-
skin impedance characterizing dry electrodes without creating discomfort. The
signal conditioning performed onboard further improve the quality of the acquired
sEMG signal.

4.2 Armband model
As a consequent step in the realization of the armband, a 3D model was developed,
taking inspiration from the model for the previous PCB. The model was designed
in the CAD environment of Fusion 360® and 3D printed with Clear Resin using the
FormLab Form 3D printer, offering a resolution of 1 µm. The armband has seen
the realization of two different cases: one model for the master unit and the other
for the six slave channels due to the difference in the components contained in the
two units. The models have been designed to maximally reduce the dimensions for
the components that the channels have to hold, improving the wearability of the
device and accommodating different forearm sizes. The measurement of the various
constituents are reported in Figure 4.2.

Snap

Electrode

PCB

Battery

Button

Figure 4.2: Measures of the Armband channels components.

Concerning the Slave modules, the case contains the three dry electrodes used
in a bipolar configuration to collect the sEMG signal of the forearm. Together with
their sockets, the electrodes are maintained in position thanks to three stoppers that
rotate clockwise to lock them in place. The PCB is located above them, and kept in
place thanks to two lateral protrusions over it. The cover, closing the unit, permits
the passage of an elastic band used to adjust the armband at the desired measure
with Velcro, to fit different forearm sizes. The cover closes the box, constituting
a single channel of the system, with a sliding mechanism. A reset button is also
inserted for each unit, making it possible to reset the MCU. The thickness of the
walls is equal to 2mm, and the inter-electrode distance is 16mm. The lateral holes

50

System description

in the module serve for the passage of the connectors that bring the four wires for
the common ground, common power supply and two for the I2C communication.

Top

Side Front

Figure 4.3: Slave module.

The Master module is similar to the slave ones, with few differences. The case is
larger for the accommodation of the rechargeable Li-Po battery, that alone powers
the entire device, characterized by a rated voltage of 3.7V and capacity of 175mAh.
It also has two lateral supports used for the passage of the elastic band, which
is sewn on one side and passed through the other to consent the adjustment of
the armband to the forearm circumference of the subject. The difference in the
stopping mechanism for the elastic band permits to have the same height for all
the units. In this case, in addition to the reset button, a custom button is added to
control the master functionality. The two additional openings in the module are
used for the passage of two switches, one that control the powering of the master
module, the other the slave ones. Also in this case, the wall thickness is 2mm, and
the inter-electrode distance is 16mm.

Top

Side Front

Figure 4.4: Master module.

51

System description

The components constituting a unit therefore are:

• Case: recipient for the electronic components.

• Cover: closing part, that accommodate the elastic band for the armband
fixing.

• Socket and electrodes: three dry electrodes making a clip connection with
the sockets.

• Stopper: 3 different stoppers containing the sockets for the electrodes. The
opening present on the top of the stoppers is added to facilitate their positioning
using a screwdriver. The third stopper has also a protrusion that keep the
PCB in place when the USB connector is inserted.

• PCB: fixed in place thanks to the stopper support and the lateral hooks.

• Reset button: used to reset the MCU present on the PCB.

• Custom button: available for user interaction (master only).

• Battery: rechargeable Li-Po battery with voltage of (master only) of 3.7V
and capacity of 175mAh (Cellevia Batteries: model LP421730).

Wires are used to connect the sockets, the battery and the buttons to the PCB.

Stoppers (x3)

PCB

Battery

Connectors

Switch

Buttons (x2)Electrodes (x3)
Snaps (x3)

Figure 4.5: Components inside the Armband units. On the right the master
module, on the left the slave one.

The width of a single slave module is equal to 23.5mm, while the width of
the master unit is 28.5mm, bringing the total length of the armband to 17.75 cm,
adjustable using the elastic band to higher values. In accord with the average
forearm circumferences (Table 4.2), the armband is appropriate to suit a wide range
of subjects, without problems of anorexia or obesity.

52

System description

Table 4.2: Forearm circumferences.

Size Circumference (cm)
Small 18-22

Medium 22.28
Large 28-36

M
as

te
r

Sl
av

e

Side Front

Top

Figure 4.6: Measures of the Master and Slave modules.

Top Side Front

TopSide

Figure 4.7: Measures of the covers of the Master and Slave modules and of the
stoppers.

53

Chapter 5

System Validation: Data
Acquisition and
Classification Algorithms
Deployment

5.1 Armband Positioning and Performed Gestures

Correct positioning of the channels is essential to obtain good quality of the recorded
signal, avoiding noise and maintaining morphological identity. The armband
positioning follows the standardization studied in [72], with the first channel,
coinciding with the master, placed on the Extensor Digitorum muscle and the
armband positioned at around 1/3 of the total forearm length, starting from the
elbow. The other channels follow the undermentioned disposition and are equally
spaced, starting from the medial section.

• CH1 – Extensor digitorum/Extensor digiti minimi

• CH2 – Extensor carpi radialis brevis

• CH3 – Brachioradialis

• CH4 – Flexor carpi radialis

• CH5 – Flexor carpi ulnaris

• CH6 – Extensor carpi ulnaris

• CH7 – Flexor digitorum profondus

54

System Validation: Data Acquisition and Classification Algorithms Deployment

Figure 5.1: Armband’s electrode disposition referenced to the forearm muscles.
On the left, the forearm section from distal to proximal.On the right, armband
positioning during an acquisition session.

With this disposition, each channel approximately acquire the signal deriving
from the muscle below it, giving information about their activation during the
execution of the gestures.

Wrist
flexion

Wrist
extension

Pinch
1-2

Pinch
1-3

Open
hand

Wrist
Radial deviation

Wrist
Ulnar deviation

Hand
grasp

Figure 5.2: ATC parameter over the 7 channels of the Armband during an acquisi-
tion.Muscles activation investigated by each channel: CH1: Extensor digitorum/Ex-
tensor digiti minimi, CH2: Extensor carpi radialis brevis, CH3: Brachioradialis,
CH4: Flexor carpi radialis, CH5: Flexor carpi ulnaris, CH6: Extensor carpi
ulnaris, CH7: Flexor digitorum profondus.

Figure 5.2 shows the ATC data acquired with the armband during a training
session, showing little to no noise over all the channels, even with the use of dry
electrodes.

55

System Validation: Data Acquisition and Classification Algorithms Deployment

The acquisition phase considered eight active movements and the idle position.
The additional gesture introduced, is the pinch 1-3, which has been difficult to
recognize and to classify with respect to the pinch 1-2, due to similarity in the
activation pattern. This work aims to discern the two gestures.

• Wrist extension: the hand back is moved closer to the distal forearm causing
the activation of the extensor carpi radialis longus, the extensor carpi radialis
brevis and the extensor carpi ulnaris and of other deep muscles.

Figure 5.3: Wrist extension.

• Wrist flexion: is the movement of the hand palm towards the inner part of the
forearm. The mainly used muscles are palmaris longus, flexor carpi radialis,
and flexor carpi ulnaris, and also digitorum superficialis and profundus.

Figure 5.4: Wrist flexion.

• Wrist radial deviation: the hand is moved upwards in the thumb direction.
Abductor pollicis longus, flexor carpi radialis, extensor carpi radialis longus
and

Figure 5.5: Wrist radial deviation.

56

System Validation: Data Acquisition and Classification Algorithms Deployment

brevis are activated for this movement.

• Wrist ulnar deviation: the hand is brought down, in the derection of the little
finger involving the extensor carpi ulnaris and the flexor carpi ulnaris.

Figure 5.6: Wrist ulnar deviation.

• Hand grasp: the fingers are broight into the palm in a fist. The muscles
activated include the flexor digitorum and palmaris longus primarly, alongside
other muscles of the hand.

Figure 5.7: Hand grasp.

• Pinch 1-2 : precision grip in which the index finger touches the palmar surface
of the thumb. The muscles used in the movement are the flexor digitorum
superficialis, flexor digitorum profundus, palmaris longus, and flexor pollicis
brevis coupled with the adducting force of the adductor pollicis.

Figure 5.8: Pinch 1-2.

• Pinch 1-3 : another precision grip in which the thumb and the middle finger
touches. The activated muscles are flexor carpi radialis, flexor digitorum
profundus ans superficialis, palmaris longus and the adductor pollicis.

57

System Validation: Data Acquisition and Classification Algorithms Deployment

Figure 5.9: Pinch 1-3.

• Open hand: the fingers are fully extended and the palm is open. Involve the
activation of all the forearm muscles, mainly the flexor carpi radialis.

Figure 5.10: Open hand.

• Idle: rest position in which all the muscle are at rest maintaining the hand in
a steady position.

Figure 5.11: Idle.

5.2 Acquisition protocol
The validation phase entailed the launch of an in vivo experimentation for the
acquisition of a new dataset, on which the classifiers will be trained. For the
collection of the data 25 people has been enrolled, 10 females and 15 males, with
an age ranging between 23 and 29. Before the start of the acquisition sessions, each
volunteer received exhaustive information about the experimental protocol and
signed the informed consent describing the details of the study, drafted in accord
to the bioethical committee regulations.

The acquisition phase comprised two stages with the participation of different
subjects. For the first phase, 20 people taken part in the collection of the new

58

System Validation: Data Acquisition and Classification Algorithms Deployment

dataset for the training of the algorithms. The second phase consisted in the online
validation of the system and 5 people participated in it. The procedure followed
in the two sessions were slightly different, as described below. The two sessions
have been performed in different days, without trying to replicate environmental
conditions, ensuring the independence of the training and testing phase.

The participants sat in a comfortable position with their arm at rest on a plain
surface. After accommodating the armband on the volunteer arm, regulating its
diameter and finding the right position as indicated in the section above, the
session began. The acquisition started with an initial calibration phase for the ATC
threshold setting, while the subjects maintains a rest condition. The quality of the
signal is checked in order to assess the correctness of the armband positioning and
the absence of noise from the channels. If these conditions are not satisfied, the
calibration phase is repeated or the gain for the single channels is regulated, through
the acquisition GUI (Figure 5.12), in order to improve the signal quality. After
that, the subject is asked to perform sequentially a set of eight active gestures, each
repeated twice, spaced out by a rest interval. The order in which the movements
are performed is kept the same throughout the acquisition for all the subjects. The
subject is instructed on the movements to be performed visually.

Figure 5.12: GUI developed in Python by the research group used for the training
and testing phase for the acquisition of the signal.

Training acquisition protocol

The acquisition protocol steps followed in the training phase are:
1. The subject execute one movement at a time starting from the rest condition,

kept for 10 s. During the acquisition period, a total number of 77 ATC values
are acquired, being the time window of 130ms.

2. Each gesture is executed twice and maintained for 10 s, and repeated after a
rest time of 10 s, introduced in order to avoid muscle fatigue onset.

3. A rest interval of 15 s is observed and after that the following movement is
performed.

4. Step 2-3 are repeated until all the eight active gestures are completed. At the
end of the first repetition, a rest period of 60 s is maintained.

59

System Validation: Data Acquisition and Classification Algorithms Deployment

5. Three repetitions are performed, in order to acquire a sufficient amount of
data.

The obtained data are saved in a .txt file and process in MATLAB environment
for the labelling required by the supervised classifiers. Also for this dataset, a
threshold for the idle gesture was set. Every ATC set, considered over the seven
channels, below the threshold is defined as idle.

Testing acquisition protocol

The testing phase was performed after the training of the classifiers over the
training set previously acquired. It consisted in executing the eight gestures, each
performed three consecutive times and maintained for 10 s. The movements were
spaced out by a rest period of 10 s. The acquisition was performed only once
for each volunteer. The supervisor reminded the subject of the movement to be
performed.

1. The session starts with the setting of a timer while the subject is in a rest
condition.

2. The current gesture is executed and maintained for a period of 10 s.

3. The execution of an active movement is followed by a rest of equal time (i.e.
10 s).

4. The same gesture is repeated twice.

5. The next movement is initiated after observing a rest of 15 s.

6. The acquisition ends with the completion of all the active gestures.

The data are saved through the GUI in a .txt file and used to evaluate the
performance of the classifiers.

5.3 Offline Training
The obtained dataset was used for the training of the previously presented machine
learning algorithms, with the same training settings. Hyperparameter optimization
was conducted again for the parametric classifiers using custom routines.

In this training phase, the classifiers were fed with two different types of inputs.
As previously implemented, the first models were trained over the single ATC
values from the seven channels, constituting an acquisition set. The second ones
were obtained using input windows of different lengths, containing a variable
number of ATC values ranging from 2 to 10, from each acquisition channel. This
implementation was tested to evaluate if the ML algorithms show improvements
by using profiles that give information about the evolution of the gestures. It is
expected an improvement in classification rate, especially during a gesture’s starting
and ending phase. This second implementation was tested only in the offline phase,
while the hyperparameter tuning was performed in both cases. The first models
were then implemented for the online testing.

60

System Validation: Data Acquisition and Classification Algorithms Deployment

5.3.1 Neural Network
The NN architecture was defined with the same custom routine over 1000 epochs
of training. The best architecture for the single ATC set is the following:

• Input layer: the input layer has 7 nodes, one for each acquisition channel.

• Hidden layers: 2 hidden layers, each one comprising 38 nodes. The used
activation function is the ReLu.

• Output layer: in this case, the number of nodes is equal to 9, as the number
of gestures to be recognized. SoftMax activation function is applied to each
node.

The net was trained using Adam optimizer and the selected learning rate is 0.01.

Table 5.1: Statistical analysis for the Neural Network over an acquisition set.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EX 97.93 81.95 85.57 83.72
FL 99.06 92.30 91.76 92.03
RD 98.15 86.87 82.40 84.58
UD 98.73 90.64 86.65 88.60
GR 98.73 90.64 86.65 88.60
P1-2 95.54 55.55 51.54 53.44
P1-3 96.57 68.05 65.58 66.79
OH 97.38 76.55 76.97 76.76
ID 100 100 100 100
Avg. 97.74 79.28 79.74 79.29

The ATC profiles are the input for the second model. Window length was set
equal to 6 for the Neural Network. Also, in this case, the model architecture was
selected for each window, as the one with the highest performances.

• Input layer: the input layer has 42 nodes, one for each acquisition channel
multiplied for the number of ATC features considered, 6 in this case.

• Hidden layers: 2 hidden layers, comprising 40 nodes with ReLu activation
function.

• Output layer: 9 output nodes, one for each output with a SoftMax activation
function.

The learning rate is equal to 0.03.
The classifier’s performance tested over the different windows length (i.e. 2-10)

is reported in Figure 5.14. The accuracy increased by increasing the window length
up to the maximum length of the examined profile, showing an exponential trend.
Considering the MCU code implementation constraints, a window containing 6
ATC values was chosen for the Neural Network, reaching an average accuracy of
98.91%.

61

System Validation: Data Acquisition and Classification Algorithms Deployment

1 2 3 4 5 6 7 8 9 10

Window length

90

91

92

93

94

95

A
c
c
u

ra
c
y
 (

%
)

Layers:2-Nodes:38-LR:0.01

Layers:2-Nodes:40-LR:0.01

Figure 5.13: NN performance over ATC profiles of different length.

Table 5.2 shows how the error rate decreased for all the movements, improving
the overall performances of the classifier.

Table 5.2: Statistical analysis for the Neural Network over a profile of 6 ATC
values.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EX 99.07 90.80 94.59 92.66
FL 99.52 96.66 95.11 95.88
RD 97.98 80.21 82.56 81.37
UD 99.16 94.06 92.26 93.15
GR 99.52 96.47 94.99 95.73
P1-2 97.77 79.22 74.65 76.87
P1-3 98.23 82.62 83.88 83.24
OH 98.95 89.91 91.50 90.70
ID 98.91 89.95 89.99 89.95
Avg. 98.91 89.95 89.99 89.95

Wrist extension, Wrist flexion, Ulnar deviation and Hand Grasp are the gestures
that have the highest accuracy, while Radial deviation and the Pinches 1-2 and
1-3 have lesser performances.

5.3.2 Support Vector Machine
Support Vector Machine model was obtained performing hyperparameter optimiza-
tion. For the single ATC set, the best classifier parameters were an rbf Kernel, a
regularization parameter C equal to 100 and Gamma set as ’scale’. The obtained
statistical results are presented in Table 5.3.

62

System Validation: Data Acquisition and Classification Algorithms Deployment

Table 5.3: Statistical analysis for the Support Vector Machine over an acquisition
set.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EX 97.99 82.23 86.37 84.25
FL 99.04 93.51 91.83 92.66
RD 96.46 65.15 72.55 68.65
UD 98.06 85.58 82.34 83.93
GR 98.71 89.02 88.25 88.64
P1-2 95.62 56.83 49.54 52.93
P1-3 96.44 65.97 66.45 66.21
OH 97.52 78.37 77.04 77.70
ID 99.84 99.70 100 99.85
Avg. 97.75 79.60 79.37 79.42

For the ATC profile implementation, the selected window length was 4, offering
a good compromise between the number of consecutive values considered and the
obtained performances. Also, in this case, the kernel used was the rbf, while the
regularization parameter C was set equal to 10.

1 2 3 4 5 6 7 8 9 10

Window length

89.5

90

90.5

91

91.5

92

92.5

93

93.5

A
c
c
u

ra
c
y
 (

%
)

rbf C:100

rbf C:10

Figure 5.14: SVM performance over ATC profiles of different length.

The performance of the SVM shows a different behaviour compared to that
of the NN. The accuracy of the classifier starts to significantly increase only at
a profile of 4 values and up to a window length of 8 ATC features and, after it,
considerably decreases.

63

System Validation: Data Acquisition and Classification Algorithms Deployment

Table 5.4: Statistical analysis for the Support Vector Machine over a profile of 4
ATC values.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EX 98.72 89.16 90.36 89.76
FL 99.33 94.51 94.14 94.32
RD 97.47 74.40 80.14 77.17
UD 98.79 91.69 88.28 89.96
GR 99.29 93.67 93.86 93.76
P1-2 97.20 72.87 69.69 71.24
P1-3 97.83 80.56 77.40 78.95
OH 98.45 84.80 88.32 86.52
ID 99.87 99.94 99.82 99.88
Avg. 98.55 86.84 86.89 86.64

5.3.3 Random Forest
Random Forest classifier required hyperparameter optimization. The model selected
in the first training settings (i.e. single ATC acquisition set) was:

• Number of Trees: ’50’, number of trees generated in the forest.

• Parent Size: ’15’, maximum number of branch nodes observations.

Performance are shown in Table 5.5

Table 5.5: Statistical analysis for the Random Forest classifier over an acquisition
set.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EX 98.06 83.90 85.08 84.49
FL 98.97 91.16 91.57 91.36
RD 96.47 65.02 73.43 68.97
UD 98.01 85.83 81.09 83.39
GR 98.73 90.94 86.45 88.64
P1-2 95.43 54.07 53.53 53.80
P1-3 96.58 67.57 67.03 67.30
OH 97.31 76.49 75.14 75.81
ID 100 99.99 100 100
Avg. 97.72 79.44 79.25 79.03

For the profiles, a window length of 4 consecutive ATC values was selected. With
this input, the best parameters for the algorithm are:

• Number of Trees: ’90’, trees.

• Parent Size: ’10’, branches.

64

System Validation: Data Acquisition and Classification Algorithms Deployment

Table 5.6: Statistical analysis for the Random Forest classifier over a profile of 4
ATC values.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EX 98.73 89.66 89.93 89.79
FL 99.28 93.39 94.59 93.99
RD 97.28 72.48 79.00 75.60
UD 98.59 90.59 85.99 88.23
GR 99.29 96.00 91.39 93.64
P1-2 96.91 70.98 64.01 67.31
P1-3 97.56 74.97 80.31 77.54
OH 98.43 85.29 87.02 86.15
ID 99.99 99.98 100 99.99
Avg. 98.45 85.93 85.80 85.80

The highest results are obtained for profiles between 3 and 7 consecutive ATC
data. After, the accuracy decreases, becoming lower than the initial one. The length
was selected equal to 4, considering the computational costs of a high dimensional
dataset and the slight increase in classification performance.

1 2 3 4 5 6 7 8 9 10

Window length

90

90.5

91

91.5

92

92.5

93

93.5

94

A
c
c
u

ra
c
y
 (

%
)

Trees:50-Parents:15

Trees:90-Parents:10

Figure 5.15: RF accuracy over profiles of different length.

5.3.4 K-Nearest Neighbour
The value K for the KNN classifier, was selected using cross validation. For the
single acquisition set, K was equal to 17 while the similarity metric used was the
Euclidean distance.

65

System Validation: Data Acquisition and Classification Algorithms Deployment

Table 5.7: Statistical analysis for the K-Nearest Neighbour classifier over an
acquisition set.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EX 97.61 77.81 86.07 81.74
FL 98.92 91.66 89.89 90.76
RD 95.88 59.13 74.50 65.93
UD 97.87 82.83 82.51 82.67
GR 98.71 90.17 86,98 88.55
P1-2 95.25 52.52 47.12 49.68
P1-3 96.62 69.66 63.08 66.21
OH 97.24 79.11 69.23 73.84
ID 100 100 100 100
Avg. 97.57 78.10 77.71 78.10

In the Figure 5.16, it can be seen that also for the KNN the performances
increased with the number of ATC values considered inside the window, reaching
its maximum value at 8. After that, the performance of the classifier started to
decrease. In this case, an ATC profile of 5 data was considered.

1 2 3 4 5 6 7 8 9 10

Window length

89

89.5

90

90.5

91

91.5

92

92.5

93

93.5

A
c
c
u
ra

c
y
 (

%
)

K:17 Euclidean

K:13 Euclidean

Figure 5.16: KNN accuracy over profiles of different length.

The number of neighbour was set equal to 13 and the distance used was the
Euclidean. Statistical results are reported in Table 5.8.

66

System Validation: Data Acquisition and Classification Algorithms Deployment

Table 5.8: Statistical analysis for the K-Nearest Neighbour classifier over a profile
of 5 ATC values.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EX 98.59 87.85 89.68 88.75
FL 99.35 95.17 93.76 94.46
RD 96.95 68.29 80.14 73.74
UD 98.74 90.99 88.28 89.62
GR 99.29 96.46 90.92 93.61
P1-2 96.63 65.74 67.20 66.46
P1-3 97.49 77.59 73.42 75.45
OH 98.07 85.50 78.94 82.09
ID 99.72 99.61 99.87 99.74
Avg. 98.31 85.24 84.69 84.88

5.4 Offline Performance Comparison

Table 5.9: Comparison among all the tested classifier in the offline training phase.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
NN 97.74 79.28 79.74 79.29
RF 97.72 79.44 79.25 79.03
SVM 97.75 79.60 79.37 79.42
KNN 97.57 78.10 77.71 78.10
NN (6) 98.91 89.95 89.99 89.95
RF (4) 98.45 85.93 85.80 85.80
SVM (4) 98.55 86.84 86.89 86.64
KNN (5) 98.31 85.24 84.69 84.88

Table 5.9 reports the obtained statistical results of the offline training phase,
considering both the single acquisition set and the profile set implementations.

• When using as input a single ATC value, the results for all the algorithms are
comparable, with the SVM having the highest accuracy, with a difference of
only 0.01% from the NN and of 0.02% from the RF. KNN offers slightly lower
results.

• The use of a window containing multiple consecutive ATC values caused an
increase in the performance of all the tested classifiers, particularly in terms
of Precision, Recall and F1-Score. This solution offers a more robust gesture
recognition ability for the classifier that presents lower misclassification rates
for all the classes. By using several consecutive ATC values as input, the
algorithms can also consider the evolution of each gesture over time which can
lead to an increase in the final classification rates.

67

System Validation: Data Acquisition and Classification Algorithms Deployment

• In this implementation, the NN classifier offers the highest accuracy, while the
KNN the lowest.

68

Chapter 6

Experimental results

To complete the validation of the system, the classifiers online accuracy, system
latency and power consumption were analysed and compared with existent sEMG-
based armbands.

6.1 Online classifiers performance
The aforementioned classifiers were deployed on the MCU, using the libraries and
the algorithms presented in 3.1.6. In this work, only the classifiers trained with
the single ATC acquisition set were tested online. The classifiers accuracy was
measured after the testing phase conducted over five volunteers. The acquisition
protocol was followed and repeated for each classifier.

Table 6.1: Statistical Results for the Neural Network.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EX 98.55 93.31 93.81 93.56
FL 98.97 92.25 99.19 95.59
RD 87.53 46.12 69.16 55.34
UD 96.45 78.86 93.27 85.46
GR 98.16 90.88 92.22 91.74
P1-2 89.27 58.49 33.42 42.53
P1-3 91.64 59.46 73.55 65.76
OH 90.17 71.88 51.91 60.28
ID 100 100 100 100
Avg. 94.60 76.81 78.55 76.69

The Neural Network presents the highest recognition rate for the Wrist Extension,
Wrist Flexion, Ulnar Deviation and Power Grip. Radial Deviation and Pinch 1-2
have low Precision and Recall because the algorithm tends to classify one for the
other due to a similar muscle activation pattern. Pinch 1-3 offers better accuracy
for this classifier.

69

Experimental results

Table 6.2: Statistical Results for the Random Forest.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EX 96.93 82.25 92.47 87.19
FL 97.09 81.65 95.69 88.12
RD 90.43 68.92 67.74 68.32
UD 97.63 91.29 87.36 89.28
GR 96.69 94.27 75.26 83.70
P1-2 89.06 61.00 47.62 53.48
P1-3 90.16 59.02 58.87 58.95
OH 92.84 74.28 55.91 63.38
ID 100 100 100 100
Avg. 94.54 79.22 75.66 76.98

From Table 6.2 it is possible to observe that the worst-performing movements
for the Random Forest are Pinch 1-2 and Pinch 1-3. Radial Deviation, instead,
shows higher accuracy compared to the Neural Network.

Table 6.3: Statistical Results for the Support Vector Machine.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EX 95.02 69.93 96.91 81.24
FL 96.32 75.53 99.07 85.71
RD 86.15 37.29 35.80 36.53
UD 97.28 89.39 85.80 87.56
GR 92.95 80.83 48.14 60.35
P1-2 91.48 80.50 29.68 43.37
P1-3 88.45 48.61 70.27 57.46
OH 93.23 70.29 67.90 69.07
ID 99.99 100 99.99 99.99
Avg. 93.42 70.40 75.66 69.03

Support Vector Machine algorithm presents overall lower performances, also
misclassifying the Idle state. In the online training phase, its accuracy was compa-
rable to that of the other algorithms. The lower performances can be related to
the sparse implementation adopted to reduce the number of support vectors, which
slightly compromises the classifier’s ability to classify the gestures correctly.

K-Nearest Neighbour shows the lowest statistical results among the tested
classifiers. In particular, the algorithm adopted to perform instance reduction
radically decreased the number of examples representing the seventh class, causing
the almost absent classification of this gesture, as can be seen from the Recall score.

70

Experimental results

Table 6.4: Statistical Results for the K-Nearest Neighbour.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
EX 94.71 68.70 96.77 80.35
FL 97.17 83.57 93.01 88.04
RD 86.23 41.46 56.18 47.71
UD 96.54 80.96 90.32 85.38
GR 94.98 84.05 68.01 75.18
P1-2 84.53 42.21 39.68 40.91
P1-3 87.56 46.78 39.89 43.06
OH 89.18 92.30 0.03 0.07
ID 100 100 99.99 99.99
Avg. 92.31 71.12 65.23 62.99

Table 6.5: Online performance comparison.

Accuracy (%) Precision (%) Recall (%) F1-Score (%)
NN 94.60 76.81 78.55 76.69
RF 94.54 79.22 75.66 76.98
SVM 93.42 70.40 75.66 69.03
KNN 92.31 71.12 65.23 62.99

Table 6.5 compares the statistical results obtained during the online testing
phase for all the classifiers.

6.2 System Latency
System latency is a fundamental parameter in real-time systems when deciding the
best classification algorithm. It was measured exploiting the Apollo 3 Blue MCU of
the predicter module of the armband, using a timer with a set frequency of 6MHz.
The MCU clock frequency is set at 24MHz. The timer was initialized and started
in correspondence to the arrival of an ATC acquisition set and stopped after the
definition of the output class. The averaging values are reported in Table 6.6.

The total latency is obtained by adding the ATC window length and computation
time, equal to 130ms, to the values mentioned above. All tested algorithms have
a latency lower than the 300ms required for the online application, making the
system suitable for wearable real-time application. However, NN and RF system
latencies are way below the ones for SVM and KNN making them preferable for
the developed system. Moreover, in the case of the SVM classifier, the total latency
(i.e. prediction + ATC window and computation) is equal to 297.56ms, being at
the upper limit for the transmission of the data. In this case, the system cannot
send all the data but lose 24.53% of the ATC values. This delay is not cumulative
because the received data is always the newest sent, not constituting a problem for
the system during the classification process.

71

Experimental results

Table 6.6: System Latency for the Tested Classifiers.

NN RF SVM KNN
System
Latency 1.036 0.269 167.561 70.326
(ms)

6.3 Power consumption

Power consumption analysis was performed using a DMM7510 7 1/2 digit graph-
ical sampling multimeter and a digital oscilloscope. For the measurements, an
INA240EVM with a gain of 200 V/V was also used. The device is a voltage output
current shunt that senses drops across shunts at specific common-mode voltages.
The setup is shown in Figure 6.1.

Figure 6.1: Setup used for measuring the power consumption.

In active mode, the system power consumption is low, at 0.58mW, and shows only
peaks at intervals of 500 ms corresponding to the advertising (Figure 6.2). When
sending the ATC data, the system power consumption is instead 1.13mW, which
sligthly increase while calibrating the threshold 1.63mW. During the acquisition
window the current is maintained low but it presents an higher step due to the
calculation required by the prediction, with different length, depending on the used
algorithm. As expected, the classification occurs every 130ms, except for the SVM
classifier, due to the introduced delay. Figures 6.4, 6.5, 6.6, 6.7 show the measured
current for each classifier.

Table 6.7: System Latency for the Tested Classifiers.

NN RF SVM KNN
Power

Consumption 1.230 1.179 4.318 2.606
(mW)

72

Experimental results

Figure 6.2: Current absorption when the armband is turned on. In this condition,
only the advertising is visible.

Figure 6.3: Current absorption during ATC data sending and during threshold
setting.

Figure 6.4: Current absorption graph for Neural Network.

73

Experimental results

Figure 6.5: Current absorption graph for Random Forest.

Figure 6.6: Current absorption graph for Support Vector Machine.

Figure 6.7: Current absorption graph for K-Nearest Neighbour.

74

Experimental results

6.4 Online results comparison
The results obtained in the analysis of the tested ML classifiers are reported in
Table 6.8.

• NN and RF are the overall best classifiers, offering low computational time,
nearly equivalent classification accuracy and low power consumption during
computation. RF offers a better trade-off in terms of computational time and
power consumption.

• KNN and SVM returned lower accuracies, higher computational times, es-
pecially for the SVM, which has introduced a delay in data sending and
also power consumption. Additionally, their implementation on the MCU is
challenging in terms of memory constraints, leading to the requirement of
additional algorithms for the reduction of the dataset or of the support vectors.
These alterations lead to the lowering of the online performances and do not
completely resolve the higher computational weight that these algorithms
requires.

Table 6.8: Online Classifiers Comparison.

Global Computational Average Power
Accuracy (%) Time (ms) Consumption (mW)

NN 94.60 1.036 1.230
RF 94.54 0.269 1.179
SVM 93.42 167.561 4.318
KNN 92.31 70.326 2.606

75

Experimental results

6.5 Comparison with Existing sEMG-based Arm-
bands

As presented in Section 2.3, in the research field, several sEMG armbands have been
proposed and developed. The presented system shows similar technical parameters
and competitive performances, with fewer sEMG channels and a medium to high
number of recognized gestures, offering also low power consumption and latencies.

Table 6.9: Comparison among sEMG based Armbands.

gForce-Pro Myo 3DC This
[65] [67] [68] work

sEMG channels 8 8 10 7

N° of Gestures 8 6 11 9

Transmitter BLE BLE Enhanced BLE
4.2 4.0 Shockburst 4.2

Autonomy (h) N.A. 16 6 5

Battery 200mAh 100mAh 100mAh 110mAh
Li-On Li-ion LiPo LiPo

Accuracy(%) N.A. 95.62 89.47 94.60

76

Chapter 7

Conclusions and Future
Works

In this thesis project, an ATC-based armband for hand gesture recognition is pro-
posed. The embedded low power system acquires the surface ElectroMyoGraphic
signal from the forearm employing dry electrodes and extracts the ATC parameter,
fed as input for the Machine Learning algorithms used for the classification. Ex-
ploiting the ATC event-driven technique, the computational complexity of the ML
classifiers is decreased, leading to low power consumption and latency, which make
the final implementation suitable for real-time wearable applications.

A preliminary analysis was conducted on an existing dataset created to study
the feasibility of a seven-channel armband. In this phase, Neural Network, Sup-
port Vector Machine, Random Forest and K-Nearest Neighbour were tested and
successively implemented online. The offline implementation was conducted in the
MATLAB® environment taking advantage of its high computational efficiency and
specific toolboxes to recognize seven active gestures. Firmware deployment has
been carried out to obtain low power consumption, matching the requirements of a
wearable battery-powered device, and a latency below 300 ms, suitable for real-time
applications.

After that, a model of the armband was designed, and 3D printed. The proposed
device comprises seven bipolar acquisition channels consisting of dry electrodes,
each acquiring the sEMG signal. The PCB with an Apollo 3 Blue MCU with
an ARM Cortex M4F µP performs signal conditioning and the ATC parameter
extraction onboard. The data is then used as input for the trained classifiers. Data
transfer is achieved using a Bluetooth Low Energy module (BLE 4.2).

System validation entailed the creation of a new dataset involving 20 people, each
executing nine movements, repeated twice, within three sessions. The previously
evaluated algorithms were trained on the newly acquired data and deployed on the
MCU for testing, conducted over five volunteers. The performances reached by the
classifiers are similar, with the NN and the RF being the best algorithms. In terms
of global accuracy, NN reaches 94.60 %, and RF 94.54%. Power consumption is
lower for the RF with 1.179mW, against the 1.230mW of the NN. Also, for the
computational time, the RF presents better performance with a latency of 0.269ms

77

Conclusions and Future Works

while the NN is at 1.036ms. The obtained results are comparable with the state
of art sEMG-based armband present in literature, making the wearable system
suitable for real-time use.

Several future improvements can be performed on the system.
Firmware optimization can reduce power consumption and memory constraints

for high-cost computational algorithms such as the SVM, leading to faster compu-
tation.

The use of the window in the online phase can be investigated by deploying the
trained algorithms on the MCU to see if the use of ATC profiles as the classifier
input can lead to performance improvements.

Another improvement is related to the positioning of the armband. The recogni-
tion of the gestures is strictly related to a good placement of the electrodes over
the correct muscle. Adding a routine that identifies the first channel during the
calibration phase can lead to an increase in the system performance and usability,
making it more user-friendly.

Regarding the hardware, the design of the armband modules can be improved
to enhance wearability and ease of use. The closure system of the armband can be
designed to make the system more stable on the forearm and easier to wear.

78

Bibliography

[1] N. Muralitharan I. Peate. Fundamentals of Anatomy and Physiology for
Nursing and Healthcare Students. pp. 154-168: Wiley Blackwell, 2016 (cit. on
p. 1).

[2] D. W. Onyango S. M. Kisia. Muscular System of Vertebrates. pp. 39-50:
Enfield, 2005 (cit. on p. 1).

[3] L. M. Biga, S. Dawson, A. Harwell, R. Hopkins, J. Kaufmann, M. LeMaster,
P. Matern, K. Morrison-Graham, and J. Runyeon D. Quick. Anatomy and
Physiology. OpenStax/Oregon, State University. 2013. url: https://open.
oregonstate.education/aandp/chapter/10- 1- overview- of- muscle-
tissues/ (cit. on pp. 2–4).

[4] Gerard J.Tortora and Bryan H.Derrickson. Principles of Anatomy and Physi-
ology (11th edition). Hoboken, NJ.: Jhon Wiley and Sons, 2009, Chap. 10-11,
ISBN:9780470084717 (cit. on p. 5).

[5] C. L. Stanfield. Fisiologia del muscolo. Napoli: EdiSES s.r.l., 2012. Chap. 12,
pp.330-359. ISBN: 9788879597142 (cit. on p. 5).

[6] J.E.Hall. Guyton and hall textbook of medical physiology (12th edition). Saun-
ders, 2010. pp.71-90. ISBN: 9780323389303 (cit. on p. 5).

[7] B. Mitchell and L. Whited. Anatomy, Shoulder and Upper Limb, Fore-
arm Muscles. Treasure Island (FL): StatPearls Publishing, Aug 15, 2020.
https://www.ncbi.nlm.nih.gov/books/NBK536975/ (cit. on p. 6).

[8] M. Chaudhry, H. Aminullah, M. Sinkler, and et al. Anatomy, Shoulder and
Upper Limb, Forearm Compartments. Treasure Island (FL): StatPearls Publish-
ing, Aug 8, 2021. https://www.ncbi.nlm.nih.gov/books/NBK539784/ (cit. on
p. 6).

[9] Anterior Forearm. url: https://basicmedicalkey.com/anteri or-forearm/ (cit.
on pp. 6, 7).

[10] R. Merletti and D. Farina. SURFACE ELECTROMYOGRAPHY Physiology,
Engineering, and Applications. Hoboken, New Jersey: John Wiley and Sons,
Inc., 2016. ISBN: 978-1-118-98702-5 (cit. on pp. 7, 9).

[11] J. Vasković. Action Potential. url: https://www.kenhub.com/en/library/ anatomy/action-
potential (cit. on p. 8).

[12] İmran Göker. «Detection and Conditioning of EMG». In: (Jan. 2014), pp. 58–
94. doi: 10.4018/978-1-4666-6090-8.ch003 (cit. on pp. 8, 15).

80

https://open.oregonstate.education/aandp/chapter/10-1-overview-of-muscle-tissues/
https://open.oregonstate.education/aandp/chapter/10-1-overview-of-muscle-tissues/
https://open.oregonstate.education/aandp/chapter/10-1-overview-of-muscle-tissues/
https://doi.org/10.4018/978-1-4666-6090-8.ch003

BIBLIOGRAPHY

[13] T. Vieira, A. Botter, S. Mucelia, and D. Farina. «Specificity of surface EMG
recordings for gastrocnemius during upright standing». In: Scientific Reports
7 (Oct. 2017). doi: 10.1038/s41598-017-13369-1 (cit. on p. 9).

[14] Runer Augusto Marson and César Ferreira Amorim. «Application of Surface
Electromyography in the Dynamics of Human Movement». In: Chap.16 (Oct.
2012). doi: http://dx.doi.org/10.5772/52463 (cit. on p. 9).

[15] C. J. De Luca, A. Adam, R. Wotiz, L. D. Gilmore, and S. H. Nawab. «De-
composition of surface emg signals». In: Journal of neurophysiology 96, no.3
(2006). doi: https://doi.org/10.1152/jn.00009.2006 (cit. on p. 9).

[16] R. Merletti and D. Farina. SURFACE ELECTROMYOGRAPHY Physiology,
Engineering, and Applications. Hoboken, New Jersey: IEEE Press, Wiley
Publishing, 2016. isbn: 978-1-118-98702-5 (cit. on p. 10).

[17] Pre-Gelled Ag/AgCl Electrodes. url: https://www.biopac.com/product-category/
research/electrodes/ (cit. on pp. 10, 11).

[18] Non-gelled Reusabe Ag/AgCl. url: https://plux.info/electrodes/60- non-gelled-
reusable-agagcl-electrodes.html. (cit. on p. 11).

[19] A. Phynyomark, P. Phukpattaranont, and C. Limsakul. «Feature reduction and
selection for EMG signal classification». In: Science Direct, Expert System with
Applications 39 (2012). doi: https://doi.org/10.1152/jn.00009.2006
(cit. on p. 13).

[20] Marco Crepaldi, Marco Paleari, Alberto Bonanno, Alessandro Sanginario,
Paolo Ariano, Duc Hoa Tran, and Danilo Demarchi. «A quasi-digital radio
system for muscle force transmission based on event-driven IR-UWB». In:
2012 IEEE Biomedical Circuits and Systems Conference (BioCAS). 2012,
pp. 116–119. doi: 10.1109/BioCAS.2012.6418406 (cit. on pp. 15, 35).

[21] P. Motto Ros, N. Celadon M.Paleari, A. Sanginario, A. Bonanno, and M.
Crepaldi. «A Wireless Address-Event Representation System for ATC-Based
Multi-Channel Force Wireless Transmission». In: 5th IEE Int. Workshop
Advances in Sensors and Interfaces (June 2013), pp. 51–56 (cit. on pp. 15,
35).

[22] Shahshahani, P. Motto Ros, A. Bonanno, M. Crepaldi, M. Martina, D. De-
marchi, and G. Masera. «An All-Digital Spike-based Utra-Low-Power IR-
UWB Dynamic Average Threshold Crossing Scheme for Muscle Force Wireless
Transmission». In: Design, Automation and Test in Europe Conference and
Exhibition (DATE) (2015) (cit. on p. 15).

[23] S. Sapienza, M. Crepaldi, P. Motto Ros, A. Bonanno, and D. Demarchi. «On
Integration and Validation of a Very Low Complexity ATC UWB System for
Muscle Force Transmission IEE Biomedical Circuits and Systems». In: 5th
IEE Int. Workshop Advances in Sensors and Interfaces () (cit. on p. 16).

[24] A. Ng.Machine Learning by Stanford University. url: https://www.coursera.org/
learn/machine-learning/home/welcome, 2018 (cit. on p. 17).

[25] W.G Wolpert D.H.; Macready. «No Free Lunch Theorems for Optimization.»
In: IEEE Trans. Evol. Comput. (1997), pp. 67–82 (cit. on p. 17).

81

https://doi.org/10.1038/s41598-017-13369-1
https://doi.org/http://dx.doi.org/10.5772/52463
https://doi.org/https://doi.org/10.1152/jn.00009.2006
https://doi.org/https://doi.org/10.1152/jn.00009.2006
https://doi.org/10.1109/BioCAS.2012.6418406

BIBLIOGRAPHY

[26] A. Halevy, P. Norvig, and Pereira F. «The Unreasonable Effectiveness of
Data». In: IEEE Intell. Syst. 24 (2009), pp. 8–12 (cit. on p. 17).

[27] Artem Oppermann. Artificial Intelligence vs. Machine Learning vs. Deep
Learning. Oct. 2019. url: https://towardsdatascience.com/artificial-
intelligence-vs-machine-learning-vs-deep-learning-2210ba8cc4ac
(cit. on p. 17).

[28] Machine Learning. url: https://www.ibm.com/cloud/learn/machine-learning
(cit. on p. 18).

[29] Fateh Boutekkouk. «Embedded systems codesign under artificial intelligence
perspective: a review». In: International Journal of Ad Hoc and Ubiquitous
Computing 32 (Jan. 2019), pp. 257–269 (cit. on pp. 18, 25).

[30] Amit D.Kachare A.D.Dongare R.R.Kharde. «Introduction to Artificial Neural
Network». In: International Journal of Engineering and Innovative Technology
(IJEIT) 2 (July 2012), pp. 189–194 (cit. on p. 18).

[31] Stacey Ronaghan. Deep Learning: Overview of Neurons and Activation Func-
tions. url: https ://srnghn.medium.com/deep-learning-overview-of- neurons-
and-activation-functions-1d98286cf1e4, July 2018 (cit. on p. 19).

[32] E. Ficarra. Bioinformatics - Overview of Machine Learning and Pattern
Recognition. Mar. 2019, [Bioinformatics lecture] (cit. on p. 19).

[33] Esperanza García-Gonzalo, Zulima Fernández-Muñiz, Paulino Jose Garcia
Nieto, Antonio Sánchez, and Marta Menéndez. «Hard-Rock Stability Analysis
for Span Design in Entry-Type Excavations with Learning Classifiers». In:
Materials 9 (June 2016), p. 531. doi: 10.3390/ma9070531 (cit. on p. 20).

[34] Zhiliang Liu and Hongbing Xu. «Kernel Parameter Selection for Support
Vector Machine Classification». In: Journal of Algorithms and Computational
Technology 8.2 (2014), pp. 163–177. doi: 10.1260/1748-3018.8.2 (cit. on
p. 21).

[35] Avinash Navlani. Decision Tree Classification in Python. 2018. url: https:
//devopedia.org/decision- trees- for- machine- learning#Navlani-
2018 (cit. on p. 22).

[36] Onel Harrison. Machine Learning Basics with the K-Nearest Neighbors Algo-
rithm. Aug. 2018. url: https://towardsdatascience.com/machine-learn
ing-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
(cit. on p. 23).

[37] MathWorks. Classification Using Nearest Neighbors. url: https://it.mathw
orks.com/help/stats/classification-using-nearest-neighbors.html
(cit. on pp. 23, 24).

[38] Paul Rosero, Vivian Batista, Edwin Rosero, Edgar Jaramillo, Jorge Caraguay-
Procel, José Pijal-Rojas, and Diego Peluffo. «Intelligence in Embedded Sys-
tems: Overview and Applications: Volume 1». In: Jan. 2019, pp. 874–883.
isbn: 978-3-030-02685-1. doi: 10.1007/978-3-030-02686-8_65 (cit. on
p. 25).

82

https://towardsdatascience.com/artificial-intelligence-vs-machine-learning-vs-deep-learning-2210ba8cc4ac
https://towardsdatascience.com/artificial-intelligence-vs-machine-learning-vs-deep-learning-2210ba8cc4ac
https://doi.org/10.3390/ma9070531
https://doi.org/10.1260/1748-3018.8.2
https://devopedia.org/decision-trees-for-machine-learning#Navlani-2018
https://devopedia.org/decision-trees-for-machine-learning#Navlani-2018
https://devopedia.org/decision-trees-for-machine-learning#Navlani-2018
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://it.mathworks.com/help/stats/classification-using-nearest-neighbors.html
https://it.mathworks.com/help/stats/classification-using-nearest-neighbors.html
https://doi.org/10.1007/978-3-030-02686-8_65

BIBLIOGRAPHY

[39] Massimo Ravasi, Marco Mattavelli, Paul Schumacher, and Robert Turney.
«High-Level Algorithmic Complexity Analysis for the Implementation of a
Motion-JPEG2000 Encoder». In: vol. 2799. Sept. 2003, pp. 440–450. isbn:
978-3-540-20074-1. doi: 10.1007/978-3-540-39762-5_50 (cit. on p. 26).

[40] André G. Ferreira Sérgio Branco and Jorge Cabral. «Machine Learning in
Resource-Scarce Embedded Systems, FPGAs, and End-Devices: A Survey».
In: Electronics 8 (Nov. 2019). doi: 10.3390/electronics8111289 (cit. on
p. 26).

[41] Darius Morawiec. «sklearn-porter». Transpile trained scikit-learn estimators
to C, Java, JavaScript and others. url: https://github.com/nok/sklearn-
porter (cit. on p. 27).

[42] A. Chandler. Microchip Introduces the Industry’s First MCU with Integrated
2D GPU and Integrated DDR2 Memory for Groundbreaking Graphics Capabil-
ities. Sept. 2019. url: https://www.microchip.com/pressreleasepage/mi
crochip-introduces-the-industry-s-first-mcu-wit%20h-integrated-
2d-gpu-and-integrated-ddr2-memory-for-groundbreaking-graphics-
capabilities (cit. on p. 28).

[43] R. Dirvin. Next-generation Armv8.1-M aRchitecture: Delivering Enhanced
Machine Learning and Signal Processing for the Smallest Embedded Devices.
Oct. 2019. url: https://www.arm.com/company/news%20/2019/02/next-
generation-armv8-1-m-architecture (cit. on p. 28).

[44] ETA Compute. ASICs for Machine Intelligence in Mobile and Edge Devices.
2019. url: https:%20//etacompute.com/ (cit. on p. 28).

[45] Chirag Gupta et al. «ProtoNN: Compressed and Accurate kNN for Resource-
scarce Devices». In: Proceedings of the 34th International Conference on
Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceed-
ings of Machine Learning Research. PMLR, June 2017, pp. 1331–1340. url:
https://proceedings.mlr.press/v70/gupta17a.html (cit. on p. 28).

[46] Ashish Kumar, Saurabh Goyal, and Manik Varma. «Resource-efficient Machine
Learning in 2 KB RAM for the Internet of Things». In: Proceedings of the
34th International Conference on Machine Learning. Ed. by Doina Precup and
Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR,
June 2017, pp. 1935–1944. url: https://proceedings.mlr.press/v70/
kumar17a.html (cit. on p. 28).

[47] Liangzhen Lai, Naveen Suda, and Vikas Chandra. CMSIS-NN: Efficient Neural
Network Kernels for Arm Cortex-M CPUs. 2018. arXiv: 1801.06601 [cs.NE]
(cit. on p. 28).

[48] Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain,
and Manik Varma. FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte
Sized Gated Recurrent Neural Network. 2019. arXiv: 1901.02358 [cs.LG]
(cit. on p. 28).

[49] Tomasz Szydlo, Krzysztof Zielinski, and Marcin Jarzab. «Resource-aware log
monitoring data transmission for Smart and IoT devices». In: MobiQuitous
2020, in print. ACM, 2020, pp. 1–10 (cit. on p. 28).

83

https://doi.org/10.1007/978-3-540-39762-5_50
https://doi.org/10.3390/electronics8111289
https://github.com/nok/sklearn-porter
https://github.com/nok/sklearn-porter
https://www.microchip.com/pressreleasepage/microchip-introduces-the-industry-s-first-mcu-wit%20h-integrated-2d-gpu-and-integrated-ddr2-memory-for-groundbreaking-graphics-capabilities
https://www.microchip.com/pressreleasepage/microchip-introduces-the-industry-s-first-mcu-wit%20h-integrated-2d-gpu-and-integrated-ddr2-memory-for-groundbreaking-graphics-capabilities
https://www.microchip.com/pressreleasepage/microchip-introduces-the-industry-s-first-mcu-wit%20h-integrated-2d-gpu-and-integrated-ddr2-memory-for-groundbreaking-graphics-capabilities
https://www.microchip.com/pressreleasepage/microchip-introduces-the-industry-s-first-mcu-wit%20h-integrated-2d-gpu-and-integrated-ddr2-memory-for-groundbreaking-graphics-capabilities
https://www.arm.com/company/news%20/2019/02/next-generation-armv8-1-m-architecture
https://www.arm.com/company/news%20/2019/02/next-generation-armv8-1-m-architecture
https:%20//etacompute.com/
https://proceedings.mlr.press/v70/gupta17a.html
https://proceedings.mlr.press/v70/kumar17a.html
https://proceedings.mlr.press/v70/kumar17a.html
https://arxiv.org/abs/1801.06601
https://arxiv.org/abs/1901.02358

BIBLIOGRAPHY

[50] Charles Leech, Yordan P. Raykov, Emre Ozer, and Geoff V. Merrett. «Real-
time room occupancy estimation with Bayesian machine learning using a
single PIR sensor and microcontroller». English. In: 2017 IEEE Sensors Appli-
cations Symposium (SAS 2017) Proceedings. 12th IEEE Sensors Applications
Symposium, SAS 2017 ; Conference date: 13-03-2017 Through 15-03-2017.
United States: IEEE, Apr. 2017. doi: 10.1109/SAS.2017.7894091 (cit. on
p. 28).

[51] Karen Zita Haigh, Allan M. Mackay, Michael R. Cook, and Li G. Lin. «Machine
Learning for Embedded Systems : A Case Study». In: 2015 (cit. on p. 28).

[52] Gary B. Parker and Mohammad O. Khan. «Distributed neural network:
Dynamic learning via backpropagation with hardware neurons using arduino
chips». In: 2016 International Joint Conference on Neural Networks (IJCNN)
(2016), pp. 206–212 (cit. on p. 29).

[53] Jusoh S. Yasen M. «MA systematic review on hand gesture recognition
techniques, challenges and applications.» In: PeerJ Comput Sci. (Sept. 2019).
doi: 10.7717/peerj-cs.218 (cit. on p. 30).

[54] Tushar Chouhan, Ankit Panse, Anvesh Voona, and Sameer M. «Smart Glove
With Gesture Recognition Ability For The Hearing And Speech Impaired».
In: Sept. 2014. doi: 10.1109/GHTC-SAS.2014.6967567 (cit. on p. 30).

[55] Nicolò Bargellesi, Mattia Carletti, Angelo Cenedese, Gian Antonio Susto,
and Matteo Terzi. «A Random Forest-based Approach for Hand Gesture
Recognition with Wireless Wearable Motion Capture Sensors». In: IFAC-
PapersOnLine 52 (Jan. 2019), pp. 128–133. doi: 10.1016/j.ifacol.2019.
09.129 (cit. on p. 30).

[56] Linchu Yang, Ji’an Chen, and Weihang Zhu. «Dynamic Hand Gesture Recog-
nition Based on a Leap Motion Controller and Two-Layer Bidirectional Re-
current Neural Network». In: Sensors 20.7 (2020). issn: 1424-8220. doi:
10.3390/s20072106. url: https://www.mdpi.com/1424-8220/20/7/2106
(cit. on p. 30).

[57] Mohidul Alam Laskar, Amlan Jyoti Das, Anjan Kumar Talukdar, and Kan-
darpa Kumar Sarma. «Stereo Vision-based Hand Gesture Recognition under
3D Environment». In: Procedia Computer Science 58.Complete (2015), pp. 194–
201. doi: 10.1016/j.procs.2015.08.053 (cit. on p. 31).

[58] Zengshan Tian, Jiacheng Wang, Xiaolong Yang, and Mu Zhou. «WiCatch: A
Wi-Fi Based Hand Gesture Recognition System». In: IEEE Access 6 (2018),
pp. 16911–16923. doi: 10.1109/ACCESS.2018.2814575 (cit. on p. 31).

[59] Benatti S, Casamassima F, Milosevic B, Farella E, Schönle P, Fateh S, Burger
T, Huang Q, and Benini L. «A Versatile Embedded Platform for EMG
Acquisition and Gesture Recognition». In: IEEE Trans Biomed Circuits Syst.
(Oct. 2015), pp. 620–630. doi: 10.1109/TBCAS.2015.2476555 (cit. on p. 31).

[60] Hang Zhao, Jiangping Hu, Yuping Zhang, and Hong Cheng. «Hand gesture
based control strategy for mobile robots». In: 2017 29th Chinese Control
And Decision Conference (CCDC). 2017, pp. 5868–5872. doi: 10.1109/CCDC.
2017.7978217 (cit. on p. 31).

84

https://doi.org/10.1109/SAS.2017.7894091
https://doi.org/10.7717/peerj-cs.218
https://doi.org/10.1109/GHTC-SAS.2014.6967567
https://doi.org/10.1016/j.ifacol.2019.09.129
https://doi.org/10.1016/j.ifacol.2019.09.129
https://doi.org/10.3390/s20072106
https://www.mdpi.com/1424-8220/20/7/2106
https://doi.org/10.1016/j.procs.2015.08.053
https://doi.org/10.1109/ACCESS.2018.2814575
https://doi.org/10.1109/TBCAS.2015.2476555
https://doi.org/10.1109/CCDC.2017.7978217
https://doi.org/10.1109/CCDC.2017.7978217

BIBLIOGRAPHY

[61] Siddharth S. Rautaray and Anupam Agrawal. «Interaction with virtual game
through hand gesture recognition». In: 2011 International Conference on
Multimedia, Signal Processing and Communication Technologies. 2011, pp. 244–
247. doi: 10.1109/MSPCT.2011.6150485 (cit. on p. 31).

[62] Trong Khanh Nguyen, Bui Ha, and Cuong Pham. «Recognizing Hand Gestures
for Controlling Home Appliances with Mobile Sensors». In: Sept. 2019. doi:
10.1109/KSE.2019.8919419 (cit. on p. 32).

[63] Shaun Canavan, Walter Keyes, Ryan Mccormick, Julie Kunnumpurath, Tan-
ner Hoelzel, and Lijun Yin. «Hand gesture recognition using a skeleton-based
feature representation with a random regression forest». In: 2017 IEEE Inter-
national Conference on Image Processing (ICIP). 2017, pp. 2364–2368. doi:
10.1109/ICIP.2017.8296705 (cit. on p. 32).

[64] Helman Stern, Yael Edan, Michael Gillam, Jon Handler, Craig Feied, and
Mark Smith. «A Gesture-based Tool for Sterile Browsing of Radiology Images».
In: Journal of the American Medical Informatics Association : JAMIA 15
(May 2008), pp. 321–3. doi: 10.1197/jamia.M241 (cit. on p. 32).

[65] Paolo Visconti, Federico Gaetani, Giovanni Zappatore, and Patrizio Primiceri.
«Technical Features and Functionalities of Myo Armband: An Overview on
Related Literature and Advanced Applications of Myoelectric Armbands
Mainly Focused on Arm Prostheses». In: International Journal on Smart
Sensing and Intelligent Systems 11 (June 2018), pp. 1–25. doi: 10.21307/
ijssis-2018-005 (cit. on pp. 33, 76).

[66] Paolo Visconti, Federico Gaetani, Giovanni Zappatore, and Patrizio Primiceri.
«Technical Features and Functionalities of Myo Armband: An Overview on
Related Literature and Advanced Applications of Myoelectric Armbands
Mainly Focused on Arm Prostheses». In: International Journal on Smart
Sensing and Intelligent Systems 11 (June 2018), pp. 1–25. doi: 10.21307/
ijssis-2018-005 (cit. on p. 33).

[67] gForcePro EMG Armband. url: https%20:%20/%20/%20www%20.%20tea
chpe%20.%20com%20/%20anatomy%20-%20physiology/types-of-muscle
(cit. on pp. 34, 76).

[68] Ulysse Côté Allard, Gabriel Gagnon-Turcotte, Francois Laviolette, and Benoit
Gosselin. «A Low-Cost, Wireless, 3-D-Printed Custom Armband for sEMG
Hand Gesture Recognition». In: Sensors 19 (June 2019), p. 2811. doi: 10.
3390/s19122811 (cit. on pp. 34, 76).

[69] Stefano Sapienza, Paolo Motto Ros, David Alejandro Fernandez Guzman,
Fabio Rossi, Rossana Terracciano, Elisa Cordedda, and Danilo Demarchi.
«On-Line Event-Driven Hand Gesture Recognition Based on Surface Elec-
tromyographic Signals». In: 2018 IEEE International Symposium on Circuits
and Systems (ISCAS) (2018), pp. 1–5 (cit. on p. 35).

[70] Andrea Mongardi, Paolo Motto Ros, Fabio Rossi, Massimo Ruo Roch, Maurizio
Martina, and Danilo Demarchi. «A Low-Power Embedded System for Real-
Time sEMG based Event-Driven Gesture Recognition». In: 2019 26th IEEE
International Conference on Electronics, Circuits and Systems (ICECS) (2019),
pp. 65–68 (cit. on p. 35).

85

https://doi.org/10.1109/MSPCT.2011.6150485
https://doi.org/10.1109/KSE.2019.8919419
https://doi.org/10.1109/ICIP.2017.8296705
https://doi.org/10.1197/jamia.M241
https://doi.org/10.21307/ijssis-2018-005
https://doi.org/10.21307/ijssis-2018-005
https://doi.org/10.21307/ijssis-2018-005
https://doi.org/10.21307/ijssis-2018-005
https%20:%20/%20/%20www%20.%20teachpe%20.%20com%20/%20anatomy%20-%20physiology/types-of-muscle
https%20:%20/%20/%20www%20.%20teachpe%20.%20com%20/%20anatomy%20-%20physiology/types-of-muscle
https://doi.org/10.3390/s19122811
https://doi.org/10.3390/s19122811

BIBLIOGRAPHY

[71] Vincenzo Barresi. «Machine Learning Approaches for Embedded Real-Time
Gesture Recognition». Tesi di laurea. Politecnico di Torino, Jul. 2019 (cit. on
p. 35).

[72] Matteo Tolomei. «Towards an Electromyographic Armband: an Embedded
Machine Learning Algorithms Comparison». Tesi di laurea. Politecnico di
Torino, Dec. 2020 (cit. on pp. 37, 39, 54).

[73] Álvar Arnaiz Gonzales. «Estudio de Métodos de Selección de Instancias». Tesi
di dottorato. UNIVERSIDAD DE BURGOS, Jen. 2018 (cit. on p. 43).

[74] Chih-Chung Chang and Chih-Jen Lin. LIBSVM : a library for support vector
machines”. In: ed. by ACM Transactions on Intelligent Systems and Technolgy.
2011. url: http://www.csie.ntu.edu.tw/%20cjlin/libsvm (cit. on p. 44).

[75] Shenglong Zhou. «Sparse SVM for Sufficient Data Reduction». In: IEEE
Transactions on Pattern Analysis and Machine Intelligence (Apr. 2021), pp. 1–
11. doi: 10.1109/TPAMI.2021.3075339 (cit. on p. 45).

[76] Jon Nordby. emlearn: Machine Learning inference engine for Microcontrollers
and Embedded Devices. Mar. 2019. doi: 10.5281/zenodo.2589394. url:
https://doi.org/10.5281/zenodo.2589394 (cit. on p. 46).

[77] Jared Becker Jonathan Valdez. Understanding the I 2C Bus. June 2015. url:
https://www.ti.com/interface/i2c/overview.html (cit. on p. 48).

[78] Andrea Zimarra. «Towards an Electromyographic Armband with dry elec-
trodes for Hand Gesture Recognition». Tesi di laurea. Politecnico di Torino,
Mar. 2020 (cit. on p. 49).

86

http://www.csie.ntu.edu.tw/%20cjlin/libsvm
https://doi.org/10.1109/TPAMI.2021.3075339
https://doi.org/10.5281/zenodo.2589394
https://doi.org/10.5281/zenodo.2589394
https://www.ti.com/interface/i2c/overview.html

	Abstract
	List of Tables
	List of Figures
	Introduction
	Introduction to the Muscular System
	The Skeletal Muscle
	Forearm Muscles

	ElectroMyoGraphic (EMG) Signal
	Surface ElectroMyoGraphy (sEMG)
	sEMG Feature Extraction

	Average Threshold Crossing Technique (ATC)
	Machine Learning Classification Algorithms
	Neural Network
	Support Vector Machine
	Random Forest
	K-Nearest Neighbour
	Naive Bayes

	State of the Art
	Artificial Intelligence (AI) in embedded systems
	Gesture Recognition
	EMG based Armband for Gesture Recognition
	Myo Armband by Thalmic Lab
	gForce-Pro Armband by Oymotion
	3DC Armband

	ATC in Hand Gesture Recognition

	Further Investigation on 7 Channel Dataset
	Offline training
	Neural Network
	Support Vector Machine
	Random Forest
	K-Nearest Neighbour
	Naive Bayes
	Offline performance comparison

	Firmware for Online prediction

	System description
	Acquisition system
	Armband model

	System Validation: Data Acquisition and Classification Algorithms Deployment
	Armband Positioning and Performed Gestures
	Acquisition protocol
	Offline Training
	Neural Network
	Support Vector Machine
	Random Forest
	K-Nearest Neighbour

	Offline Performance Comparison

	Experimental results
	Online classifiers performance
	System Latency
	Power consumption
	Online results comparison
	Comparison with Existing sEMG-based Armbands

	Conclusions and Future Works
	Bibliography

