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Abstract

REM Behaviour Disorder (RBD) is a parasomnia characterized by the absence of
the physiologic muscle atonia during REM stage. The diagnosis of this disorder is
based on the assessment of muscle activity and REM sleep without atonia (RSWA)
by means of an electromyogram during polysomnography. In recent years RBD
has attracted the attention of researchers because in its isolated form it is linked
to the subsequent onset of neurogenerative diseases such as Parkinson’s disease,
dementia with Lewy Bodies and Multiple System Atrophy.

This study focuses on the analysis of polysomnographic reports from three
different databases containing also RBD and RSWA patient records. Two of them
were provided by the Sleep Disorders Centre of A.O.U. Molinette in Turin, Italy;
while the other is created from the CAP Sleep Database, made available in open
access on PhysioNet by the Sleep the Disorders Center of the Ospedale Maggiore
of Parma, Italy. The polysomnographies were analysed in order to evaluate the
muscular activity during REM stage with the parameters most commonly used
in the clinic and known in literature for the study of REM sleep without atonia.
The RSWA scoring methods chosen are as follows: REM Atonia Index (automatic,
submitted by Ferri in 2008 and 2010), Montréal (visual, Lapierre and Montplasir
in 1992 and 2010) and SINBAR (visual, Barcelona and Innsbruck groups, from
2011 to 2013).

An algorithm has been developed to calculate these methods as described in the
literature. With regard to the visual methods, the algorithm developed is based on
the criteria presented and translates the methods into automatic form. The RAI
calculation method was developed and consolidated on the CAP database, and then
applied to the others, while the automation of visual methods was developed in
collaboration with the Sleep Disorders Centre of A.O.U. Molinette in Turin on the
databases provided by them. This study outlines the results and the challenges of
this automation process. One of the databases contains PSG recordings of subjects
during the intake of an antidepressant drug and in its absence. The data obtained
from the algorithm were used to compare the two conditions in terms of RSWA
scoring.
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Chapter 1

Sleep and Atonia in Adults

Sleep in humans is a physiological state induced and regulated by the nervous system
and set by the circadian sleep-wake rhythm. Voluntary activities are suppressed to
make room for rest and regulatory mechanisms. The level of consciousness during
sleep changes but is not necessarily related to disconnection from the external
environment [1]. For this reason, it is difficult to give a complete definition of
sleep. Moreover the exact function of sleep is not yet totally explored, but sleep
deprivation has verified negative effects on several processes such as attention,
memory, blood pressure regulation, mood regulation and many others [2]. It is
shown that sleep disruption and deprivation lead to immune, inflammatory and
stress response. Immune response has also been linked with cognitive impairment,
but the mechanisms of the relationship are not yet fully known due to the small
number of studies in humans [3]. Moreover, the quality of sleep is closely related
to the quality of wakefulness, in a reciprocal relationship. The amount and type of
sleep changes with age, but, in any case, about one third of life is spent sleeping.

1.1 Sleep Macrostructure
Sleep characteristics are not constant in many respects during rest, which is
why sleep has been divided into stages. In order to detect these differences and
detect the sleep stage, electroencephalogram (EEG), electroculogram (EOG) and
electromyogram (EMG) are mainly used. Before 2007, Rechtschaffen & Kales
(R&K) standardized scoring method was the most popular. Later on the guidelines
from the American Academy of Sleep Medicine (AASM) took place. As the latter
suggest, sleep is divided into one rapid eye movement (REM) and three non-REM
(NREM) stages: N1, N2, N3. These stages define the macrostructure of sleep.
In physiological sleep, the stages follow each other in a set order and once the
REM stage is reached, a sleep cycle is completed. In humans, a sleep cycle lasts
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approximately 90-110 min and 4-5 cycles are completed in a night. In physiological
sleep, the time spent in the various stages and their succession during the night is
fairly common. The first cycles are characterised by longer and more frequent N3
stages, while the last cycles by longer REM phases with more phasic activations.
When sleep is disturbed, the macrostructure is altered. In the medical field, the
onset of the different stages of sleep during the night is represented in a graphical
layout called a hypnogram. An example of hypnogram is shown in Figure 1.1. The

Figure 1.1: Hypnogram of normal sleep [4].

polysomnographic (PSG) recordings are observed divided into time segments. The
stage scoring is done on 30s epochs. In the R&K method only one central-lobe
EEG channel is used and the NREM sleep in divided in four stages. The fourth one
is absorbed in the third in the AASM instruction and three (frontal, central, and
occipital) EEG channels are recommended for epochs scoring. The use of multiple
channels makes it possible to see certain waveforms better and thus distinguish
more precisely between sleep and wakefulness and central nervous system arousals.
Both methods use also one EOG derivation and submentalis EMG for scoring REM.
The scoring is usually performed visually, but many automatic scoring algorithms
are available and are taking place in the field. They are particularly requested
because visual scoring is time consuming.

1.1.1 NREM Stages
In general, brain activity shows fluctuations that are recognisable in localised events
over time. In addition, brain regions can be activated at different times. At the
beginning of rest, in relaxed wakefulness, an alpha rhythm (8-13 Hz) appears in
the EEG, which is recognisable in the occipital regions. When falling asleep, the
frequencies of the waves begin to decrease, indicating that the activated pattern of
wakefulness is being left behind. From here one moves on to the stages of NREM
sleep. These stages are characterised by a progressive decrease in the frequency of
the brain activity, indicating neuronal synchronisation linked to the reduced activity.
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The body temperature drops as does the heart rate. The metabolic activity and
blood flow are globally reduced compared to resting wakefulness. The muscle tone
is progressively relaxed, but not absent. In fact, involuntary motor activity occurs
occasionally, approximately every 10-20 minutes. Sensitivity to external stimuli is
also lowered, so the "arousal threshold" is increased. Imaging studies suggest that
this is due to the fact that activation of primary sensory areas is not transmitted
to higher-order areas. Cortical connectivity is especially compromised at the level
of the "thalamic gate" [1]. In these stages, also called slow-wave sleep, encephalic
activity does not decrease in all areas and it is possible for the subject to think
and dream. However, dreams are rare and have a less detailed, less emotional and
more logical content than in the REM phase. The forebrain is responsible for the
onset of slow-wave sleep and the crucial neurotransmitter is adenosine [5].

N1

Sleep officially begins when theta activity (4-7 Hz) becomes prominent in the EEG.
Muscle tone begins to relax. Eye movement, which while awake with eyes closed
shows both slow and fast activity, becomes slow and circular.

N2

Shortly afterwards, the N2 stage usually starts. The theta rhythm is still prominent.
N2 can be recognised by certain events in the EEG of the central regions: sleep
spindles and K-complexes. Sleep spindles are portions of the EEG trace with a
frequency typically of 12-15 Hz and duration of about 1s occurring several times a
minute.Their amplitude first rises and then falls. A K-complex is a recognisable
waveform, characterised by a narrow peak followed by a slow one of opposite sign
with amplitudes that stand out from the background activity.

N3

The main frequency range in the EEG becomes the theta range (0.5-2Hz, higher
amplitude). Eye movement and muscle activity decrease further, while the arousal
threshold increases. in Figure 1.2 the different EEG frequency rhythms and typical
waveform of all NREM stages are shown.

1.1.2 REM Stage
This stage is the last of the cycle and differs greatly from the others, in fact, it is
sometimes referred to as paradoxical sleep because of its similarity to the waking
state. Paradoxical is also the fact the arousal threshold is the highest, but it is
the time when one is most likely to wake up spontaneously. The most intense
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Figure 1.2: Electroencephalogram showing typical brain waves of sleep and
wakefulness [6].

and involving dream activity takes place here. Rapid eye movements (REMs),
which give the stage its name, are defined as conjugate, irregular, sharply peaked
eye movements with an initial deflection usually lasting < 500 ms in The AASM
Manual [7]. The pons is responsible for the onset of REM sleep and the crucial
neurotransmitter is acetylcholine [5].

REM stage is not further divided into phases, but tonic and phasic phenomena
are usually distinguished in it. Phasic phenomena occur episodically. Between
tonic phenomena there are:

• EEG that shows desynchronised activity with mixed frequencies, similar to
that of wakefulness. A theta rhythm is recognisable especially in the area
of the frontal cortex and the midline. Other distinctive waves are sawtooth
waves (triangular, 2-6 Hz) and PGO waves (Ponto-Geniculus-Occipital) which
occur as isolated large amplitude potentials just before the REM sleep onset.

• At muscular level there is atonia, i.e., a total loss of muscle tone. This allows
the subject to remain motionless despite intense brain activity. Exceptions
are the medial extraocular (that produces REMs), the middle ear and the
diaphragm. REMs are characterised by both tonic and phasic phenomena.
The tonic one is the combination of the relaxation of the rectus muscles
and the tonic contraction of the medial one that causes the eyes to converge
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downwards.

• Blood pressure rising;

• Homeostatic thermoregulation mechanisms, such as sweating, stopping;

• Pupils constriction;

• Erections.

Between phasic phenomena there are:

• Rapid eye movements presence both in isolation and in bursts;

• Irregular breathing;

• Irregular heartbeat;

• Middle ear contraction;

• Twitches.

1.1.3 Sleep Microstructure
Scoring 30s epochs for sleep stages fully describe the macrostructure of sleep,
but it is not able to report information about short-duration events. Within the
individual NREM stages, a distinction can still be made between CAP (Cyclic Al-
ternating Pattern) and non-CAP (NCAP) sleep periods. This distinction describes
the microstructural organisation of sleep and summarises the micro-events. The
microstructure of sleep interacts with the expected sleep pattern and represents the
body’s adaptation to the internal and external conditions that occur during sleep,
modifying rapidly the level of consciousness and vigilance. During CAP periods,
sleep is dynamic. The polysomnographic traces oscillate between a greater depth
of sleep, also called phase B, and moments of lightened sleep during which arousals
or even imperceptible micro-awakenings occur, called phase A. Phase A can be
classified into three subtypes that generate more or less marked increases in vegeta-
tive activities, e.g. pulse [8]. On the contrary, NCAP periods are characterised by
a homogeneous tracing and a constant sleep depth level. The CAP is physiological
and helps to give an indication of the type and quality of sleep, in fact it reflects
the instability of the arousal level. The percentage of CAP indicates the quality
and stability of sleep. A value that is too high indicates unstable, and therefore
disturbed, sleep.

Regarding REM microstructure, the tonic and phasic phenomena listed before
are also seen as two different microstate. Is suggested that "Tonic periods are
intermediate states between phasic REM sleep and wakefulness with respect to

5



Sleep and Atonia in Adults

external information processing. Whether this restored environmental alertness is
restricted to simple tasks such as auditory discrimination or enables more complex
processing, possibly even learning is still unexplored and remains a generally
controversial issue in sleep research" [9].

1.2 Sleep Disorders
Sleep disorders are very numerous and differ in many ways. For this thesis work,
REM Behaviour Disorder (RBD), which is part of the REM sleep parasomnias, is
of particular relevance. However, many elements of other disorders and phenomena
have to be taken into account in research about this topic. The purpose of this
paragraph is to outline the general issue and to collect all the elements that will be
useful for the following discussion.

Sleep can be disturbed by a number of factors: physical, psychic, circadian and
environmental disorders or by psychotropic substances. Whatever the disturbing
element, sleep is progressively deconstructed. First the microstructure changes,
sleep becomes more unstable and the CAP rate increases. Then there may be
alterations in the macrostructure until sleep is fragmented with the appearance
of several awakenings of varying length. This creates sleep deprivation in both
quantity and quality.

To classify sleep disorders, reference is made to the International Classification
of Sleep Disorders (ICSD) published by the American Academy of Sleep Medicine
(AASM) in its latest version of 2014: ICSD-3. The manual contains diagnostic
criteria as well as symptoms, etiology, pathophysiology and treatment. It groups a
total of 59 sleep disorders into 7 main sections:

1. Insomnia

2. Sleep-related breathing disorders

3. Central disorders of hypersomnolence

4. Circadian rhythm sleep-wake disorders

5. Parasomnias

6. Sleep-related movement disorders

7. Other sleep disorders.

Parasomnias are a group of sleep disorders characterised by dissociation state,
i.e., some features of the sleep stage are impaired or exchanged for another. This
results in the occurrence of non-physiological and often unpleasant behaviour or
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sensory experiences. The most common are sub-classified according to the stage
that is disturbed: disorders of arousal (NREM sleep), REM parasomnias and
corresponding to the transition between stages [10]. REM parasomnias are:

• Nightmare Disorder: intense dreaming becomes terrible nightmares that occur
in REM stage or N2 and result in awekening;

• Recurrent Isolated Sleep Paralysis: the atonia, peculiar to REM stage, occurs
also in the sleep-wake transition;

• REM Sleep Behavior Disorder: the atonia, peculiar to REM stage, is lost.

RBD is central for the development of this work and is further discussed in the
next section.

1.2.1 REM Behaviour Disorder
RBD is a parasomnia characterized by the absence of muscle atonia during REM
phase. This can lead to the patient’s enactment of dreams (dream-enactment
behaviors), with the risk of endangering themselves or the bed partner. Usually
the content of the dreams is violent and emotionally involving, so, as an example,
the patient reproduces the movements of a kick, a heated argument or an escape.
Cases of potentially lethal behaviour such as choking, bed falling or defenestration
have been reported in literature [11]. Males are more affected and the average age
of onset is beyond middle age. The population prevalence is estimated around the
1% for the age group of more than 50-60 years [12]. It is assumed that the vast
majority of RBD cases go undiagnosed, in fact dream enactment is thought to
become more evident when the content is violent (on average more often in men)
and in the presence of a bed partner who notices the behaviour (on average women
outlive men). It is in these cases that the subject seeks medical advice that then
leads to the diagnosis. In addition, observation of video polysomnographies has
allowed video classification of motor events, and studies conducted in this regard
appear to show that, even in the most severe cases of RBD, motor events are more
likely to be simple and low-amplitude rather than violent, suggesting that the latter
are only the most alarming and easily recognisable and therefore best known to
the literature [13].

Chronic RBD is given by the failure of spinal motor neuron inhibition. This can
be due to α-synuclein and other forms of neurodegeneration, narcolepsy, structural
pontine lesions, medications (especially antidepressants) and it is also associated
with paraneoplastic and autoimmune encephalitides. RBD is present in 25–58% of
patients with Parkinson"s disease, up to 90% of those with Dementia with Lewy
Bodies (DLB) and up to 100% of those with Multiple System Atrophy (MSA) [12].
In 60% of cases it is idiopathic [14]. Idiopathic RBD (iRBD) has recently been the
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subject of numerous studies and is now firmly associated with the development
of neurodegenerative diseases. In fact, the currently calculated risk of conversion
to an α-synucleinopathy from an iRBD is more than 80% after 10 years and in
any case biomarkers of neurodegeneration are present [15]. Consequently, iRBD is
now considered to be a symptom of α-synucleinopathies that appears many years
before the others and is commonly referred as isolated RBD instead of idiopathic
(also cryptogenic). It has therefore prompted great interest both in the study of
neurodegeneration development and in neuroprotective trials. Since RBD occurs
both years before and after the diagnosis of these diseases, the relationship with
neurodegeneration is still unclear. One hypothesis is that there is a subtype in
which neuronal damage begins in the areas that regulate atonia so that RBD is
the prodromal clinical manifestation of the disease [12]. Furthermore, as regards
PD, there is evidence in the literature that PD together with RBD (PDRBD+)
corresponds to more severe parkinsonian symptoms, autonomic dysfunction, and
cognitive impairment, suggesting the existence of a malignant clinical phenotype
[16]. This further increases the importance of diagnosing RBD even in the presence
of other pathologies that may already alter sleep characteristics.

The diagnosis of this parasomnia uses the characteristics of the electromyographic
signal, as specified by the ICSD diagnostic criteria. The diagnostic criteria for
RBD proposed by theInternational Classification of Sleep Disorders (ICSD)-3 [17]
are the following:"

1. Repeated episodes of sleep-related vocalization and/or complex motor behav-
iors.

2. These behaviors are documented by polysomnography to occur during REM
sleep or, based on clinical history of dream enactment, are presumed to occur
during REM sleep.

3. Polysomnographic recording demonstrates REM sleep without atonia (RWA).

4. The disturbance is not better explained by another sleep disorder, mental
disorder, medication or substance abuse. "

These must be fulfilled for a definitive diagnosis and necessarily include polysomnog-
raphy and REM Sleep Without Atonia (RWA or RSWA) assessment. The latter is
crucial in diagnosis and numerous methods have been developed and refined over
time. These are based on the evaluation of the electromyographic signal of one
or a group of muscles and the quantification of tonic and phasic muscle activity
occurring in REM phase. ICSD-3 mentions reference cut-off values at the present
time, but this will be detailed in the Section: "RSWA quantification methods".
Several questionnaires have been proposed to try to avoid PSG, but due to the risk
of misclassification these are only used as screening or as a diagnosis of "probable
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RBD" [13]. These criteria are crucial for diagnosis given the fact that there are
several conditions that mimic RBD: "different conditions may mimic RBD, the
most frequent being obstructive sleep apnea during sleep, non-REM parasomnia,
and sleep-related hypermotor epilepsy. These diseases might also be comorbid with
RBD, challenging the evaluation of disease severity, the treatment choices and
the response to treatment evaluation" [18]. In fact, RSWA assessing goes through
the collection of electromyographic signals and it is influenced by other nocturnal
events that cause movement such as Periodic Leg Movement (PLM) or Restless
Leg Movement (RLM).

1.3 How Sleep Is Studied
Clinically, there are different approaches to the diagnosis and treatment of sleep-
related symptoms. They include history and questionnaires, physical examination,
laboratory tests and nocturnal polysomnography. In fact, as illustrated in the
previous section, sleep characteristics can be investigated by recording bioelectrical
signals. Mainly of interest are EEG, EMG, EOG and respiratory or cardiac signals
in the presence of disorders related to them. Sleep monitoring is necessary in the
diagnosis of the most frequent sleep disorders such as: Insomnia, Snoring and
Obstructive Sleep Apnea Syndrome (OSAS), Bruxism, Restless Legs Syndrome,
Sleep Epilepsy, Sleepwalking, Narcolepsy and Sleep Disorders in Children. The most
comprehensive and routine monitoring is done by polysomnography (PSG). The
characteristics of this diagnostic test are explained in the next section. Regarding
RBD and atonia studies, PSG is the required test because it is complete and
allows the evaluation of REM Sleep Without Atonia (RSWA). Other common types
of sleep studies are actigraphy, Positive Airway Pressure (PAP) titration study,
Multiple sleep latency test (MSLT), Maintenance of wakefulness test (MWT). Many
evaluations can be done with these tests’ results.

1.3.1 Polysomnography
Polysomnography (PSG) is a diagnostic test that, as mentioned before, allows both
the macro and micro structure of sleep to be appreciated. Polysomnography is
the gold standard in the study of sleep and in the diagnosis of various disorders.
Guidelines about when and how PSG is to be used are present in clinical practice.
PSG involves the simultaneous recording of several signals, is conducted overnight
at a sleep study center or other designated site by sleep technicians. Bio-signals
recorded include at least 3 EEG channels, submentalis EMG, EOG, EKG and
signals regarding respiratory function in order to evaluate breathing related sleep
disorders. Bio-signals have particular characteristics and often low voltage. In
addition, they are sometimes superimposed in band, making it difficult to isolate
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them. For this reason, ad hoc techniques have been developed to optimise the
sampling of each signal and are now well established. In general, the sampling of
signals takes place through a setup defined by:

• The configuration of the electrodes: referential recording (EEG, EOG, EMG),
true bipolar recording (EKG in PSG, thermal flow), DC recording (nasal
pressure, SpO2). Referential recording is usually used when the signal ampli-
tude is very low and very susceptible to noise. The common mode rejection
amplifier configuration is exploited. Amplifiers amplify the difference between
two signals, in this case what is common on both signals (background noise,
DC, AC power lines) will be deleted, moreover all the amplifiers are referred
against the common ground (e.g. forehead for EEG channels). Impedance
balancing is essential to exploit this effect, so the type of electrode also has an
influence. Usually a derivation is displayed, i.e. two channels are subtracted
so that the common reference is deleted and the difference of the two signal is
shown on display. This is done digitally for observation purposes only, in case
of an electrode went bad it is possible to observe another derivation. If the
reference electrode is faulty all the others are affected;

• Sampling rate and A/D conversion features;

• Monitor resolution, which is particularly important in the case of PSG since
very different signals are shown together in a certain time window that runs
during the recording. This can produce aliasing so is suggested to change the
time window of observation to see if there are strong changes in the shape of
the waves. Display screens definition suggested is 1600×1200 pixels;

• Hardware and software filtering.

Detailed recording recommendations of how to perform PSG and what to do in
different scenarios are provided by AASM in The AASM Manual for the Scoring
of Sleep and Associated Events [7]. There they provide indications about how to
setup electrodes or recording settings. Recording recommendations for Digital
Polysomnography extracted from AASM standards manual and adapted in Principle
and Practice of sleep medicine [19] are shown in Figure 1.3. To record the EEG,
EOG, and EMG, electrodes are placed on the scalp and skin surfaces. The spot is
cleansed and properly prepared to ensure good contact and ensure the right electrical
impedance. Usually a conductive gel is applied. EEG recording in PSG requires
the recording of at least 3 derivatives: frontal, occipital, central (8 electrodes).
This allows observation of overall brain activity (from the scalp) and scoring of
sleep stages and arousals. As already said, those are recorded by differential AC
amplifiers in referential recording mode. The electrodes are positioned according
to the American Electroencephalographic society’s international 10-20 system,
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Figure 1.3: Recording recommendations for Digital Polysomnography [20].

whereby the electrodes are placed according to a Nasion Inion percentage distance
(anatomical repere). The position of each electrode on the scalp is indicated by an
abbreviation, which is also referred to in the guidelines. Recommended positions
are F4, F3, C4, C3, O2, O1, M1, M2. Moreover, amplifiers require calibration
both at the beginning and the end of the recording. This verifies that amplitude
changes of the recorded signal really reflect changes of the brain activity. EOG
recording in PSG requires the recording of two derivatives (4 electrodes): E1,
E2, M1, M2 EOG voltages are higher than EEG signals because there is no bone
attenuation. EOG placement was on the outer canthus of the eye: 1cm above
it on right side (ROC) and the other 1cm below it on left side (LOC). AASM
recommendations suggest E1 and E2, the respective positions are shown in Figure
1.4. The signal is due to the polarity of the eye, in fact the cornea (front) has a
positive polarity while the retina (back) has a negative one. When the eyes moves,
retina and cornea move closer to/farther from the electrodes causing a voltage
variation. A schematic representation of the signal behaviour in both recommended
and alternate configuration is shown in figure 1.5.

EMG in PSG is recommended for evaluating muscle tone and limb movements.
For example, chin EMG is used for assessing atonia during REM stage (and so
recognising it) while leg movements are used for Periodic Limb Movement evaluation
or RLS diagnosis. Submental (chin) EMG is the gold standard for recording muscle
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Figure 1.4: Recommended, previous, and alternate eye movement electrode
positions. LOC: left oute canthus; ROC: right outer canthus [21].

Figure 1.5: On the right, schematic deflections in E1 - M2 and E2 - M2 from eye
movements [21]. M2 stays for right mastoid and it is the reference electrode. On
the left Schematic deflections in E1 - Fpz and E2 - Fpz (alternate setup) due to
horizontal and vertical eye movements [21]. Fpz is used as reference electrode.

tone and staging REM stage. Electrode positions are usually indicated by chin1,
chin2 and chin3 eventhough there is not a standard name. Three electrodes are
recommended: midline 1 cm above interior edge of mandible, 2 cm below inferior
edge of mandible and 2 cm right of the midline, 2 cm below inferior edge of mandible
and 2 cm left of the midline. A drop in muscle tone is expected in REM stage:

12



Sleep and Atonia in Adults

"The reduction in the chin EMG amplitude during REM sleep is a reflection of the
generalized skeletal-muscle hypotonia present in this sleep stage" [21]. An example
of the falling chin EMG amplitude just before the REM stage onset in shown in
Figure 1.6 from Fundamentals of Sleep Medicine by Berry. Moreover in the PSG
setup two electrodes on the anterior tibialis (right and left) are added in order to
detect leg movements. As already mentioned, the respiratory conditions are also

Figure 1.6: A 30-second tracing shows a reduction in the chin EMG on transition
to REM stage (A). It is also possible to see saw-tooth waves just before the R stage
onset (B) and REMs (C) [21].

evaluated, e.g. in search of apnea or observing breath rate for sleep staging and
interference. For this reason respiratory flow, respiratory effort, saturation as well
as ECG are recommended channels. To asses behaviour aspects it is possible to
perform video-polysomnography. After the recording of the signals and subsequent
analysis, the assessments of different parameters is carried out: sleep staging,
sleep efficiency, sleep onset latency, arousals, breathing and cardiac abnormalities,
leg movements, sleep fragmentation, sleep quality, sleep disorders diagnosis and
differential diagnosis.

PSG Alternatives

Regarding PSG it is important to emphasise that it is a painless examination free
from side effects, however it presents with some significant complications for both
the patient and the technicians who has to complete the report. The equipment
required is voluminous and expensive and therefore not portable; this examination
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can only be performed in suitable centres. The patient’s sleep is made difficult by
the presence of the equipment and unfamiliarity with the location, which often
forces the examination to be repeated on several consecutive nights [22]. For the
healthcare facility, this means committing space and instrumentation over a long
period of time and also involving an operator in completing the classification into
sleep stages of 5-10 hours of recordings. It also requires skilled sleep technologists.
For these reasons, both simplified polysomnography (PSG) kits that can be taken at
home and algorithms for automatic classification of sleep stages and/or recognition
of various disorders are being studied [23], [24], [25], [26]. Examples of technologies
that can substitute PSG in certain cases are actigraphy, audio recording, OSA
home assessing devices, PSG home monitoring [27], [28], [29], [30], [31], [32], [33],
[34]. Regarding novel techniques for identifying sleep mechanisms and disorders
genetic and optogenetic ones are catching on.

1.3.2 RSWA Quantification Methods
As already mentioned, the diagnosis of RBD is based on the finding of abnormal
electromyographic activity. In particular, elevation of the muscle tone, both tonic
in the chin, i.e. maintained, and phasic in the limb. These parameter has shown
high stability, but at the beginning (till ICSD-2) was not specified how to quantify
the elevation or rather how to quantify the absence of muscle atonia. Moreover,
it was not specified which muscles should be taken into account for the analysis.
Therefore, several methods to quantify REM Sleep Without Atonia have been
developed. The first and currently in use in the clinic are visual scoring methods:
Montréal and SINBAR. Many automatic parameters were proposed and presented
in literature to replace/ support visual methods such as the REM Sleep Atonia
Index (RAI) or the supra-threshold REM EMG activity metric (STREAM) ,[35],
[36]. Currently ICSD-3 contains SINBAR group indication. These methods are
used in general to study and evaluate Atonia. Interest in this topic has grown over
time, given its link to neuroregeneration. The current objective is to find effective,
objective and more rapidly assessable descriptors of atonia that can lead to the
early detection of pathological features. It is hoped to be able to describe the
evolution of the RSWA condition over time with these variables.

Visual scoring

Visual scoring methods are based on the quantification of phasic, tonic and any
muscle activity. In literature cut-off value for each method are present. They
indicate the values above which the detected activity is abnormal and therefore
demonstrates RSWA [37]. All methods use at least one chin electromyographic
channel recorded according to recommendations (10-100 Hz filtering). The signal
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is carefully examined for artifacts of various types: due to instrumentation, patient
movements or related to specific patient pathologies. If the signal is severely com-
promised, the epochs are excluded from the analysis. The signal under examination
is rectified. Methods, definitions and cut-off values are summarised in the table
shown in Figure 1.7. As can be seen, these methods are based on amplitude
thresholds of the electromyogram. Subject-specific background activity defined as
the minimum activity (amplitude) detected in non-REM sleep is used as reference.

The SINBAR group has presented numerous papers in literature on this topic
and is, as noted above, taken as a reference. Over the years, it first established
new cut-off values, then examined all possible combinations of muscle channels
in order to maximize the diagnostic value of the parameters [38], [39]. In the
end, the combination of two muscles recordings showed the best performance: the
submentalis muscle and the bilateral Flexor Digitorum Superficialis (FDS). They
recently use automatic density parameter scoring software based on their criteria
and validated by them.

1.4 The Future of RSWA Scoring
The analysis of polysomnographies is always complicated as the signals are recorded
for several hours, consequently any kind of evaluation on them is time consuming.
It is therefore evident that in this field much of the research is focusing on trying to
automate the procedures for analyzing or at least skimming this type of examination.
In this work, the scoring procedures of sleep stages and those of RSWA scoring
have been described. As regards the former, in literature and in commerce there are
already validated softwares in use for a long time and on a large scale that automate
the procedure. While for the latter, although options have already appeared on
the market, it is still in the midst of research. In this case, the scoring methods are
based on amplitude thresholds. This mainly creates three types of difficulties in
the direct automation process:

• The amplitude is affected by noise and interference that are impossible to
remove completely without compromising the signal content or significantly
increasing the complexity of the processing. In the case of polysomnogra-
phy, the recording of the signal takes place for several consecutive hours,
accentuating this problem. In addition, the subject may move and detach
electrodes, causing significant amplitude jumps. These types of events have
little impact on the evaluations from the expert eye of a sleep technician, who
readjust the criteria to the changes in the signal they recognise, whereas on a
threshold-based algorithm this issue has a strong impact;

• The signal processing applied to the signal can strongly affect the amplitude.
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Filter with the same purpose and nominal features, but different implementa-
tion can lead to different amplitude variations. For this reason it is important
to verify the type of processing applied when using amplitude thresholds and
amplitude based criteria. Information about the type of implementation of
the filter used are not reported in literature;

• The thresholds chosen are based on the visual assessment that an operator
makes when looking at the signal, not on an objective quantification of the
information present. Moreover "Surface EMG is an uncalibrated signal, which
is believed to show large inter- and intra-individual variability, even during
the same recording; for this reason, it is very difficult to consider its absolute
amplitude as a parameter for quantitative analysis" [40]. This causes intra-
and inter-individual variability in both threshold and scoring evaluations. It
also makes it necessary to translate the recommended criteria into quantitative
rather than qualitative terms, for example in the use of the terms "average",
"minimum" and "maximum";

• The amplitude may be affected by physiological phenomena characteristic of
the subject and his specific pathologies. Again, operators are familiar with
these phenomena and knows how to recognise and distinguish them from
the phenomena under investigation, whereas the algorithm would need a
considerable increase in complexity to achieve the same goal.

For these reasons, the most modern automatic classification methods, such as
artificial intelligence, are taken into account in implementing these classification
algorithms. Many attempts have been already made to automate scoring [41],
[26], [42]. More or less sophisticated methods can be considered. Supervised and
unsupervised, automatic or semi-automatic. However, this type of implementation
separates itself from the clinical definitions and methods described in medicine,
because it directly exploits data. This requires further clinical validation from the
staff, as they are responsible for the diagnosis/information provided by the algorithm.
If the basis on which this decision is made is not clear, healthcare staff will be
reluctant to use it. From this, RAI and many others automatically scored parameters
already cited, immediately comprehensible, were developed. Although attempts
to bypass the classical methods of RSWA quantification are present in literature,
especially with regard to the role of RSWA and RBD related to degeneration
and thus its predictive and descriptive value of the evolution of neurodegenerative
diseases [16], [43], [44]. Another problem with these polysomnographic applications
is that there is not a lot of data available. For example, in the case of RSWA scoring,
the algorithm must be able to correctly classify tonic and phasic epochs regardless
of the patient’s pathology, so databases of polysomnographic recordings of RBD
patients, RSWA, controls, OSA, PD ( etc.) may be required. In addition, the
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validation or training of the algorithms requires that the scoring of both sleep stages
and RSWA is done by technicians. As already mentioned, these are extremely time-
consuming procedures, which in the clinic are carried out with more approximation
unless there are research purposes. For all these reasons it is difficult to find
sufficiently large and sufficiently complete databases. Therefore, in this thesis work
the algorithm developed follows as closely as possible the indications in literature
for developing each method. With regard to the limitations of amplitude-based
methods described above, the algorithm presented here also showed considerable
susceptibility. It was decided mainly to focus on two elements: the estimate of
the background activity value (BKG) and the effect of the ECG artefact. In fact
BKG activity is established once and for all for each patient and corresponds to
an amplitude value. In the clinical practice, however, in addition to being a value
already not unique in itself and defined only qualitatively, technicians often readjust
the definition according to the trace, for example based on artifacts or peculiar
waveforms. The EKG, on the other hand, is a complex artefact to remove as it is
superimposed in band to the EMG signal. Depending on the sampling setup and
the patient, the amplitude of the EKG can be very visible. In this work, a method
is implemented to reduce this artefact without frequency filtering (thus modifying
the entire signal). The effects of this parameters on the algorithm are described in
the following chapters.

1.4.1 RAI
One attempt to overcome visual scoring methods problems and to have a strictly
quantitative evaluation of atonia is Ferri’s REM Atonia Index. This indicator is
also based on the amplitude of the electromyographic signal. Ferri demonstrated
its effectiveness in distinguishing pathological cases of RBD and MSA from healthy
subjects using a threshold he proposed and thus revealing its potential diagnostic
use [40], [45]. However, it is not yet clear whether this index can be used as the sole
descriptor of the condition of atonia or of the evolution of the subject’s condition.
RAI is calculated on the submentalis muscle EMG channel. The signal is band pass
filtered 10-100 Hz according to recommendations, a 50 Hz notch filter is also used.
The signal is rectified. The classic 30 s sleep epochs are divided in 1-s mini-epochs.
For each mini epoch the average amplitude (AA) is calculated. RAI is calculated
as the ratio between the number of EMG mini-epochs with average amplitude ≤
1µV and the total number of mini epochs (excluding those with 1 µV< AA ≤2
µV). Thus, the RAI takes on values ranging from 0 (no small amplitude epochs,
i.e., total absence of atonia) to 1 (perfect atonia). This choice stems from the
observation of the normalised distribution histograms of the AA, in fact using
amplitude intervals such as 1 µV< AA ≤ 2 µV, 2 µV< AA ≤ 3 µV,..., AA > 20
µV as bins, it is possible to see how often the mini-epochs assume an amplitude
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in a certain amplitude interval. In particular, in atonia it can be seen that the
amplitude usually does not exceed 1 microvolt, thus increasing the first bin. On
the contrary phasic and tonic activations, increasing the average amplitude of the
EMG, will be represented by the increase of the successive bins. Observation of
these histograms also made it possible to note the strong influence of age on the
characteristics of the signal amplitude and therefore of the condition of atonia that
it describes.

In 2010, Ferri published an improved version of RAI computation, whose aim
is to reduce noise [35]. This consists in subtracting from the AA calculated on
the mini-epoch a value obtained as the minimum value present in a window of 60
seconds around the epoch under examination. This subtracted value represents
the estimated background noise in that window. The computation procedure is
otherwise unchanged from the first version. With this method all young controls
showed AI>0.9, aged controls AI>0.8, MSA AI<0.8, 74,4% of iRBD AI<0.9 [35].

18



Sleep and Atonia in Adults

Figure 1.7: Visual RSWA scoring Methods: Montréal and SINBAR.
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Chapter 2

Materials and methods

2.1 Database

2.1.1 CAP
The CAP Sleep Database is a collection of 108 polysomnographies, provided in
open access by the Sleep Disorders Centre of the Ospedale Maggiore of Parma,
Italy on Physionet [46], [47]. Each polysomnography is provided as an edf file and
a txt file with the sleep stage score for each 30s epoch. The edf files of the database
include at least "3 EEG channels (F3 or F4, C3 or C4 and O1 or O2, referred to
A1 or A2), EOG (2 channels), EMG of the submentalis muscle, bilateral anterior
tibial EMG, respiration signals (airflow, abdominal and thoracic effort and SaO2)
and EKG. Additional traces include EEG bipolar traces, according to the 10-20
international system (Fp1-F3, F3-C3, C3-P3, P3-O1 and/or Fp2-F4, F4-C4, C4-P4,
P4-O2)". The edf format also provides channel labels, filtering, recording duration
and other features. It contains recordings of subjects with different pathologies. 22
recordings of subjects with RBD (label: rbd*) and 16 recordings of controls (label
n*) were taken into account. The 22 RBD submental EMG channel recordings
have the following features: 512Hz sampling frequency except rbd6 which has 256
Hz, microvolt unit of measurement (UoM) except for rbd8 which has mV, 10-100
Hz bandpass filter and 50 Hz Notch applied to the channel, exept for rbd 6 which
has 0.3-100 Hz. Files for rbd11 have been excluded because they are the same as
rbd10. EMG recordings for the controls do not provide comprehensive information.
It is not sure that the EMG signals are all from submentalis channel. For some, the
recording settings are not present. Given the type of sampling frequency (should be
at least 200Hz for Nyquist) and filtering, many tracks are not suitable for the type
of analysis implemented, so they have been excluded from the summary results
and from the comparison between RBD and controls an in any case, for these
reasons, they have little significance in the analysis. Controls recordings features
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are presented in Table 2.1.

UoM Sampling
Frequency Applied Filters Comments

n1 uV 256 Hz 10-100 Hz + N50
n2 uV 512 Hz 10-100 Hz + N50
n3 mV 512 Hz 10-100 Hz + N50
n4 mV 200 Hz - LP:100 Hz + N:50 on
n5 uV 512 Hz 10-100 Hz + N50
n6 uV 128 Hz - Not suitable
n7 uV 128 Hz - Not suitable
n8 mV 200 Hz - LP:100 Hz + N:50 on
n9 uV 128 Hz - Not suitable
n10 mV 512 Hz 10-100 Hz + N50
n11 uV 512 Hz 10-100 Hz + N50
n12 uV 100 Hz 0.1-100Hz
n13 - 200 Hz - Filters on
n14 - 200 Hz - Filters on
n15 - 200 Hz - Filters on, amplified amplitude (?)
n16 - - - No EMG

Table 2.1: CAP Database. Controls group features.
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REM
(s)

rbd1 3810
rbd10 2490
rbd12 4800
rbd13 6000
rbd14 8940
rbd15 5040
rbd16 3450
rbd17 4170
rbd18 2820
rbd19 4140
rbd2 5460
rbd20 5550
rbd21 3870
rbd22 9000
rbd3 3810
rbd4 8790
rbd5 4920
rbd6 3870
rbd7 1980
rbd8 4320
rbd9 6180

REM
(s)

n1 7170
n10 6540
n11 11430
n13 5490
n14 4950
n15 5940
n2 4530
n3 5640
n4 6270
n5 6960
n8 5940

Table 2.2: CAP Database RBD and CONTROLS subjects. Total REM time
recorded.

2.1.2 TURIN

The TURIN Database is a collection of 16 polysomnographic recordings regis-
tered at the Sleep Disorders Centre of A.O.U. Molinette in Torino, Italy. The
Polysomnographic setup is described in Table 2.4. Polygraph was used. Each
polysomnography reported in an EDF file comes with two other txt files: one of
them contains the hypnogram, i.e. the sleep stage scored for each 30s-epoch, the
other contains a description of the events detected during the night. Both the txt
files are filled in by one sleep technologist and revised by another one. The events
detected during the night regards episodes of arousals, localised interference in the
signal, particular subject’s movements or behaviour (e.g. bruxism episodes, leg
movements) and cardiac or respiratory events. As for CAP, the edf files provide
labels and features of recording of each channel. The total time recorded in REM
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stage and the number of events detected to be deleted (reported in the txt files)
are shown in table 2.3. The events to be deleted in are due to a recognisable event,
which causes changes in the signals, but which are not to be taken into account in
the analysis. For this application are: arousals, rhythmic movement and transient
muscle activity.

REM
(s)

N. of
Events

S1 4830 11
S2 2850 57
S3 3570 0
S4 3870 54
S5 3450 39
S6 4320 4
S7 4980 40
S8 2010 26
S9 5730 25
S10 4950 48
S11 3450 10
S12 3480 11
S13 1770 8
S14 1590 0
S15 840 2
S16 4200 30

Table 2.3: TURIN Database. Subjects features.
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Channel Sampling
Frequency Filtering

6 Electroencephalograms 256 Hz LP:50.00Hz HP:0.30Hz N:50
2 Electrooculograms 256 Hz LP:30.00Hz HP:0.30Hz N:50
EMG of Mylohyoid muscle 256 Hz LP:100.00Hz HP:10.00Hz N:50
EMG of Masseter muscle 256 Hz LP:100.00Hz HP:10.00Hz N:50
2 EMG of right Tibialis anterior 256 Hz LP:100.00Hz HP:10.00Hz N:50
2 EMG of left Tibialis anterior 256 Hz LP:100.00Hz HP:10.00Hz N:50
Thermistor 32 Hz LP:15.00Hz HP:0.05Hz N:0
Air Flow 32 Hz No
Thoracic Effort 32 Hz LP:15.00Hz HP:0.10Hz N:0
Abdominal Effort 32 Hz LP:15.00Hz HP:0.10Hz N:0
SpO2 1 Hz No
Snoring 32 Hz LP:100.00Hz HP:10.00Hz N:50
Plethysmography 256 Hz No
Electrocardiogram 256 Hz LP:70.00Hz HP:0.30Hz N:50
Position 32 Hz No
LP: Low Pass, HP: High Pass, N:Notch, EMG: Electromyogram

Table 2.4: TURIN Database. Polysomnographic Setup.

2.1.3 Vortioxetina Trial

The database consists of 18 polysomnographic recordings of 9 patients, one during
the period of administration (ON) of an antidepressant drug (Vortioxetine), the
other in the absence of the drug (OFF). The recordings took place at the the
Sleep Disorders Centre of A.O.U. Molinette by means of a polygraph. 24 channels
were collected with recording characteristics as for the Turin database and shown
in table 2.4. All submentalis EMG channel recodings have a sampling frequency
of 512Hz, microvolt unit of measurement, 10-100 Hz bandpass filter and 50 Hz
Notch filter applied. The total time recorded in REM stage and the number of
events detected to be deleted (reported in the txt files) are shown in table 2.6.
The participants of these trial do not have a history of RSWA or RBD, but the
RSWA quantification on their recordings is relevant because of the antidepressant
drugs effect on RSWA. Molinette also provided the manual scoring of Tonic density,
Phasic Density Montréal and Phasic Density SINBAR of four recordings. They are
reported in Table 2.5.
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Tonic
Epochs

Phasic
Epochs

M

Phasic
Epochs

S
S2 OFF 13 69 57
S5 ON 0 40 77
S6 OFF 0 18 45
S9 OFF 0 45 59

Table 2.5: Number of epochs scored for each class as resulting from the manual
scoring of Tonic and Phasic Epochs with Montréal and SINBAR criteria.

ON OFF

Subj: REM
(s)

N of
Events

REM
(s)

N of
Events

S1 3270 12 3600 18
S2 4140 19 960 102
S3 690 21 750 43
S4 2550 34 2310 31
S5 3150 34 2070 7
S6 960 18 3390 30
S7 3810 33 1440 13
S8 1530 24 990 13
S9 1500 52 2970 87

Table 2.6: Vortioxetina database. Subjects Features.

2.2 RSWA quantification

The aim of this thesis is to analyse the data collected in terms of muscle parameters
relating to muscular atonia in an automatic manner, i.e. in the first instance
to translate into an algorithm what are currently the visual scoring methods:
Montréal and SINBAR. Consequently, this section will describe which parameters
were calculated on the recordings for each database and how. Before explaining
the method of estimation of the calculated muscle parameters, it is important to
point out that the polysomnographies are saved in EDF format and were processed
with MATLAB 2021a software. For each one, it was verified that the import was
correct, that the file containing the hypnogram and the events was correctly read
and corresponded to the polysomnography setting reported in label.
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2.2.1 Pre-Processing
A MATLAB function is used to parse data from the edf file and store them in
a data structure, with info on the channels and recordings. Another function is
used to create a vector from the hypnogram txt file. If the txt file describing the
events is also available, another function is needed to read from it the number of
the epochs in which there is an event to be deleted. This function scans every line
of the txt files searching for events of the type: Arousals, Rhythmic Movement and
Transient Muscle Activity. The number of each event affected epoch is saved. The
CAP database is already given with MATLAB functions to manage it. The signal
of interest and used is the channel recording submental muscle. It is identified
through the label and its sampling characteristics are collected. If the signal has
a sampling frequency lower than 256 Hz, it is resampled. The unit of measure is
changed to microvolt, if different. First of all, the hypnogram is adapted to the
sampling characteristics of the channel of interest, i.e., a variable is constructed
which contains for each signal sample a label (obtained from the hypnogram one)
identifying its sleep stage. If events affected epochs are noted than they are deleted
from the signal and from the hypnogram. At this point the signal is prepared for
the muscular evaluations so: the average is removed and if the filtering reported in
the signal label is different from 10-100Hz, additional filtering is applied as nedeed.
If the label do not report any filtering, Power Spectral Density is observed. Extra
filter used are:

• High Pass filter at 10Hz realised by a digital Butterworth filter with an order
and a cutoff frequency specified by the MATLAB function "buttord" that is
set so that guarantees no more than 4.5 dB of passband ripple and at least 20
dB of attenuation in the stopband.

• Band Pass filter 10-100Hz realised by a digital Butterworth filter set as specified
before, but with cutoff frequency of 100 Hz added.

• The Notch filter for powerline is obtained through a recursive Notch filter
where the centre band frequency (Fc) is set to powerline frequency (50 Hz),
the minimum attenuation at frequency Fc is set to 0.01, the bandwidth
corresponding to attenuation 0.707 is set to 3 and the sampling interval is set
to the time duration of a sample of the signal to be filtered.

CAP rbd subjects recordings were already suitable for the algorithm so no further
processing was applied. Controls subjects required more evaluations because of
the lack of labels. PSD were used to understand the missing filters and processing
was added as needed with the filters specified above. Vortioxetina Database EMG
recordings were already suitable for the algorithm so no further processing was
applied. Turin Database EMG recordings were suitable for the algorithm, but the
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notch filter is not always already applied. No guideline is provided for Notch filters,
but some of the recordings present in Turin database where corrupted by power
line interference, so a Notch filter is added as specified before.

2.2.2 REM Atonia Index
The function implemented to calculate the RAI follows the improved method
presented in 2010. If not present, a notch filter is applied to the recordings, in line
with the guidelines on RAI scoring [35]. The RAI function takes as arguments: the
signal on which the index is to be calculated, its sampling frequency, the hypnogram
and the sleep stage on which it is to be calculated. First the signal is rectified,
then the indications in the hypnogram are used to identify the epochs marked as
the sleep stage indicated in the function argument. In this case the sleep stage of
interest is REM stage, indicated with "5" in the hypnogram. These REM epochs are
divided into 1-second sub-epochs, called mini-epochs. The average calculated over
the mini-epoch is saved (aa). For each sub-epoch a window of 30 seconds before
and 30 seconds after is selected for a total of 61 seconds and the minimum of this is
calculated (minWin). At this point the AA (average amplitude of the mini-epoch)
is calculated as AA = aa−minWin. The total number of miniepochs (TOT), the
number of miniepochs with AA ≤ 1µV (AA1) and the number of miniepochs with
µV< AA ≤2 µV (1AA2) are saved to calculate AI. Indeed AI is easily obtained as:

AI = AA1
TOT − 1AA2 = AA1/TOT

1 − (1AA2)/TOT.

The function also compute the Normalized Distribution Histogram construction. It
sorts the AA values in 20 classes. The histogram is constructed by calculating the
percentage of miniepochs in each amplitude class. The classes are as specified in
the article by Ferri [35] and reported in the previous chapter in section 1.4.1.

2.2.3 Automating Montréal Method
The function implemented to calculate Tonic Density and Phasic density as Montréal
Method indicate takes these as arguments: the signal (submentalis EMG) after
pre-processing the sampling frequency and the hypnogram. This function has been
implemented to directly return the densities.

It processes the arguments to obtain Tonic density as follows:

1. The signal is rectified;

2. The background activity (BKG) is calculated as the 40th percentile of the N3
epochs only (marked as 3);
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3. Each 30-seconds REM epoch (marked as 5) is examined:

• A sample is considered to be increased activity if its amplitude is twice as
large as the background or if it exceeds 10 microvolts;

• The epoch is scored as tonic if more than 50% of the samples are increased
activity;

4. Tonic Density is computed as the percentage of tonic epochs out of total REM
epochs.

The function processes the arguments to obtain Phasic Density as follows:

1. The signal is rectified;

2. The background activity (BKG) is calculated as the 40 percentile of the N3
epochs only (marked as 3);

3. The REM epochs only are taken into account and are examined:

• The position (sample number) of all samples with an amplitude greater
than four times the background activity (supra- threshold) is saved;

• Activity bursts are identified by checking when the position of supra-
threshold samples is not adjacent. Neighbouring supra-threshold samples
are considered to belong to the same burst. Distant supra-threshold
samples are considered to belong to two different bursts. The limiting
distance is considered to be 3 samples: 3 or more samples far apart means
different bursts;

• Once the activity bursts have been identified as indicated above, their
duration is calculated;

• Bursts with duration between 0.1 and 10 seconds were considered. For
each of them the duration is stored;

• The number of 2-s epochs contained in their total duration (sum of all
the bursts’ duration) is counted and taken into account as phasic scored
epochs;

4. The phasic density is calculated as the number of phasic scored epochs out of
total REM epochs. It is then multiplied for 100 to have the percentage.

2.2.4 Automating SINBAR Method
The function implemented to calculate Tonic Density, Phasic density and Any
density as SINBAR Method indicate takes these as arguments: the signal (submen-
talis EMG), the sampling frequency and the hypnogram. This returns the scoring
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result for each epoch, not directly calculating the density, which is calculated
retrospectively. Scoring involves creating a vector of the length of the number of
epochs (either 30 seconds or 3 seconds epochs) and indicating for each:

• 0 if is not scored;

• 1 if it is tonic/phasic;

• 2 if it is NOT tonic/phasic.

The function processes the arguments to obtain Tonic Density in a different way
from the other function used for the Montréal method, however the criteria for
this indicator are the same and the results must match and actually match. Both
implementations are presented for illustrative purposes, but only one indicator will
be shown in the results, corresponding to the tonic density parameter calculated
on epochs of 30 seconds. The function presented here gives a vector containing the
tonic scoring of each REM 30s-epochs (ScoringT30) and a vector containing the
phasic scoring of each REM 3s-epochs (ScoringP3) as an output. It processes the
arguments as follows:

1. The signal is rectified;

2. The background activity (BKG) is calculated as the 40th percentile of the N3
epochs only (marked as 3);

3. The vector containing the tonic scoring of each 30s-epochs (ScoringT30) is
initialised (length of the number of REM epochs and value 0) Same for the
vector containing the phasic scoring of 3s-epochs (ScoringP3);

4. 30-seconds REM epochs (marked as 5) are isolated and linked. Each epoch is
considered separately;

5. Tonic Scoring of the epoch is done as follows:

(a) A sample is considered to be increased activity if its amplitude is twice as
large as the background or if it exceeds 10 microvolts;

(b) If more than 50% of the samples of the epoch are increased activity then
the element of the vector ScoringT30 corresponding to the epoch under
consideration is set to 1. If not then to 2;

6. Tonic Density is easily calculated at the end of the process from ScoringT30
as the ratio between the number of "1" in the vector and the total length of
the vector (corresponding to the total number of REM epochs). It is then
multiplied for 100 to have the percentage;
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7. Phasic Scoring of the epoch is done as follows:

(a) The 30s-epoch is divided into ten 3s-epochs.
(b) For each of them the position (sample number) of all samples with an am-

plitude greater than two times the background activity (supra- threshold)
is saved;

(c) Activity bursts are identified by checking when the position of supra-
threshold samples is not adjacent. That is, neighbouring supra-threshold
samples are considered to belong to the same burst. Distant supra-
threshold samples are considered to belong to two different bursts. The
limiting distance is considered to be 3 samples: 3 or more samples far
apart means different bursts;

(d) Once the activity bursts have been identified as indicated, their duration
is calculated and stored;

(e) If there is at least a burst with duration between 0.1 and 5 seconds then
the element of the vector ScoringP3 corresponding to the epoch under
consideration is set to 1. If not then to 2;

8. From the total duration of all the bursts in each miniepoch, the phasic activities
longer than 5 seconds are found and counted (as consecutive epochs of phasic
activity close to 3 seconds) so that they can be subtracted from the number
of epochs scored as 1;

9. Phasic Density is easily calculated at the end of the process from ScoringP3
as the ratio between the number of "1" in the vector and the total length of
the vector (corresponding to the total number of REM epochs). It is then
multiplied for 100 to have the percentage;

10. Any Chin Density is calculated as the number of 3s-epochs scores as tonic
or as phasic (or both together) out of the total REM epochs obtained from
the length of ScoringP3 as before. It is then multiplied for 100 to have the
percentage.

The calculation of phasic activity implemented in this work, as can be seen, varies
substantially in implementation from the Montréal method one. As a matter of
fact here one looks for phasic activity in the sub-epoch while in the previous case
there was no pre-division. This means that the bursts detected here can never
be longer than 3 seconds. Since the searched bursts have a minimum duration of
0.1 second in order to score the entire 3s-epoch as phasic this should in theory
not change the count for bursts of less than 5s duration covering different epochs.
However, if the burst has a duration of more than 5s, since the epochs are analysed
separately, the algorithm cannot actually detect it. For this reason the eighth step
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in the calculation of the phasic scoring is added. In these databases the FDS EMG
signal was not recorded therefore it was not possible to score the phasic activation
of this muscle and obtain the "Chin+FDS Density".

2.3 Background Activity Evaluation
The key amplitude threshold of visual methods is the background muscle activity
(BKG). This is defined as the minimum muscle activity found in slow-wave sleep
[16]. It allows not having to establish a single amplitude threshold for all patients,
but to adapt the value to the patient’s maximum resting muscle tone. Indeed, it is
possible for different subjects to maintain a different residual muscle tone even in
non-pathological conditions. This threshold is established visually by observing the
rectified signal. The algorithm must translate this observation into mathematical
terms. The method employed in this work is the 40th percentile of the rectified N3
electromyogram, because it provides background values that are much closer to
those visually perceived than the mathematical minimum. This threshold, however,
is not the only one in this method, the elevated muscle activity is also indicated
by a threshold ( it is the activity that exceeds 2/4 times that of BKG) and the
critical threshold that distinguishes normal from pathological density values is yet
another threshold. These 3 thresholds influence each other; e.g, if the BKG value is
lowered keeping the same definition of sustained activity, pathological densities will
be represented by a higher density. Following the guidelines, the density values of
healthy subjects are normally very low, even around 0%. Physiologically they are
unlikely to be high. This makes this metric not fully exploitable in the description
of the phenomenon and makes the choice of background activity more difficult.
Indeed, a low threshold (e.g., 25 percentile) is always patient specific, but would
include many more samples in the analysis and allow a finer description (e.g.,
exploiting the whole 0-100% density scale). However, a low threshold includes
background noise as well as cross talk from other channels and makes it impossible
to distinguish the source of the amplitude increase. Therefore it is also important
to rely on medical information such as the fact that the muscle activity of interest
exceeds the baseline by 2/4 times. For these reasons, an effective translation of the
visual information into mathematical terms is crucial in the faithful automation of
this method, as it is being, as is maintaining consistency between thresholds. To
show the effect of the BKG threshold changes, RSWA scoring results with different
BKG estimations are reported:

• BKG calculated as the mean of the rectified N3 electrormyogram;

• BKG calculated as the median of the rectified N3 electrormyogram;

• BKG calculated as the 25 percentile of the rectified N3 electrormyogram.
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2.4 EKG Artifact Removal
Often there is a clearly visible EKG artefact in the submental EMG recording.
Indeed, the power of the EKG signal is much higher than that of the electromyo-
graphic signal and the two signals partly overlap in bandwidth. Under certain
conditions, whether setup or subject-specific, it can happen that the EKG has
a considerable amplitude also in the EMG recording. When parameters based
on amplitude are evaluated on this trace, this artefact definitely represents a
disturbance.

In electrical potential detection using surface electrodes on the skin, the electrical
behaviour of the heart is, under standard sampling conditions, displayed in a
characteristic waveform called the PQRST complex. The complex is shown in
Figure 2.1. Each beat of the heart corresponds to a train of electrical impulses
that allow asynchronous contraction of the atria and ventricles through complex
innervation. The contraction of the walls of the ventricle is the most demanding
and for this reason the polarisation of the ventricles has the greatest amplitude in
the signal. This produces the QRS complex in the tracing, in which the R wave
stands out in amplitude. The shape of the complex, however, depends on the
position of the electrodes (as well as the quality of the recording). For this reason
the wave shape is not maintained on the other surface pick-up channels. However,
even if deformed, it is usually possible to see the R, RS or QRS complex on the
other recording channels. If it cannot be eliminated by filtering, it is possible that
the R-wave, representing such an intense electrical polarisation, will stand out on
the trace. This often occurs in EMG channels.

Figure 2.1: PQRST Complex wave [48].

In this work a method of R peak isolation is presented. It was developed
exploiting the TURIN database, which features many traces affected by a clearly
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visible EKG artifact on the EMG channel. An example is shown in Figure2.2,
where the R peak exceeds the muscular activity in amplitude.

Figure 2.2: Around 12 s of chin EMG in subj 11. In orange samples marked as
EKG artefact.

This method uses the EKG channel to identify R peaks, as a matter of fact the
electrocardiographic signal is usually well recorded and clean (given its characteris-
tics). In summary, the algorithm works in 3 main steps:

1. The R peaks in the EKG trace are identified temporally;

2. The delay between the appearance of the R peak in the EKG trace and in the
EMG trace of interest ( submental in this case) is estimated;

3. A number of samples around the R peak covering its waveform is estimated.

At this point the EKG artefact present in the EMG trace is localised. It can
be flagged or directly eliminated from the overall trace. In this case we tried to
eliminate it to see how the values of the muscle parameters are affected by this
artefact.

To identify the R peaks in the EKG trace the MATLAB function findpeaks is
exploited. It is used to find (in the REM EKG trace) peaks with an amplitude
at least of "minH" amplitude and distant more than "minD" samples. MinD is
set by default at 1/3 seconds so fs/3 samples. This means that it not possible to
detect more than 3 beats per second, corresponding to 180 bpm. This threshold
was used to help the algorithm to identify R peaks in presence of noise, but it
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is also physiologic, indeed, it is very unlikely that the heart rate will reach 180
bpm during the night, however possible extrasystoles are not caught (conservative
choice). MinH is set by default to 1 mV, but because of the fact that not all
the recording set ups produce the same amplitudes, a threshold resetting is also
foreseen in case the 97th percentile of the signal is less than minH (regardless of
the sign). This threshold was deduced from the data. It has also been taken into
account that the track can be recorded with the polarity reversed. This means
that the findpeaks function was usedto find peaks greater than minH both on the
signal and on the signal changed sign. The algorithm is able to figure out by itself
whether the R peak is in the positive or negative part of the signal even if the
polarity of the EKG trace changes overnight, as found in some recordings in our
dataset. One of the recordings in Turin database showed an EKG with polarity
inversion and not standard EKG channel recording, a portion of EKG is showed in
Figure 2.3.

Figure 2.3: R peak detection in EKG tracing with sign inversion.

as a matter of fact, once the algorithm has found (position and amplitude are
saved) the peaks that meet the above criteria, for each of these it checks that the
peak of the opposite polarity, if any, is smaller. If this is not the case, the peak
is replaced by the one of greater amplitude. This process guarantees the correct
identification of the R peak for this database. At this point the corresponding
temporal position on the EMG traces is saved. To do that the delay between the
appearance of the R peak in the ECG trace and that in the EMG trace is estimated.
For the electrode configuration of the TURIN database, the delay was visually
estimated between 4 and 6 samples and set to 5 samples. An example of visual
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estimation is shown in Figure 2.4.

Figure 2.4: R peak Delay Estimation.

This means that each R-peak position found in the EKG is increased by 5. In
addition, it is estimated how many samples around the R peak are part of the EKG
artefact. This can vary from patient to patient, for the TURIN database it was
seen that the most visible complex in the EMG tracing is the QS complex which
in most cases is between nine samples before the R peak and four samples after,
corresponding to a duration of about 55 milliseconds (256Hz sampling frequency).
In this case, a conservative choice was made, i.e. as few samples as possible were
marked as corrupted, so that only the most prominent parts of the peak were
removed. Examples of EMG waveform marked as EKG artefact are shown in Figure
2.5 .

Figure 2.5: EMG Samples Marked as EKG Artefact.

In reality some patients also have the S peak quite visible, for these cases it
is possible to set the parameters individually after viewing the trace. This also
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applies to the other thresholds. In order to have a comparable result, the same
thresholds were used in the results for all patients:

• minH = 1 mV or 97th percentile of REM EKG,

• minD = fs/3,

• Delay= 5 samples,

• Artifact duration: 14 samples, 9 before R location and 4 after.

The results present the scoring of the previously described muscle parameters carried
out on the submental EMG recordings after all samples marked as corrupted were
removed. The percentage of samples removed is also reported. The limitations of
this method are identified as follows:

• Objective quantification of when the EKG removal is needed and is missing.

• The QRS complex in the EMG can vary in shape and and be subject to jitter,
i.e., the delay between the R peaks in the EMG and EKG is not fixed. This
means that it is not possible to be sure about the number of samples to be
marked as artifact around the R-peak. However, as long as the aim is to
identify the most prominent peak, this problem has a limited effect.

• The R peak identification is based on EKG channel. If the EKG the tracing
presents amplitude jumps or heavy distortions, the R peak identification can
not properly work.
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Chapter 3

Results

3.1 Atonia Index Scoring

In the subsequent subsections the results of REM Atonia Index computation are
reported in details for each database. The AI value is adimensional, in literature
values under 0.8 are considered indicative of RBD.

3.1.1 CAP Database

Atonia index scoring for RBD subjects of the CAP Database are shown in Table
3.1. The AI value is adimensional, in literature values under 0.8 are considered
indicative of RBD. The percentage of subjects that scored an AI in the intervals:
AI>0.9, AI<0.8 and 0.8<AI<0.9 are at the bottom of the Table. Only one subject
has an AI grater than 0.8. Anyway there is no event location for the CAP database,
so there is no evidence that the overall increased amplitude is uniquely due to the
lost atonia. The Atonia Index computed for Controls subjects in CAP Database
are shown in Table 3.2; 37.5 % of the subjects showed an AI>0.8.
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AI
rbd1 0.0046
rbd10 0.753
rbd12 0.491
rbd13 0.0035
rbd14 0.218
rbd15 0.0434
rbd16 0.0258
rbd17 0.992
rbd18 0
rbd19 0.129
rbd2 0.193
rbd20 0.615
rbd21 0.643
rbd22 0.11
rbd3 0
rbd4 0.0361
rbd5 0.0553
rbd6 0
rbd7 0
rbd8 0.456
rbd9 0

MEAN 0.2271
STD 0.3024
P(AI>0.9) 4.3 %
P(0.8<AI<0.9 0 %
P(AI<0.8) 92.2 %

Table 3.1: CAP Database RBD subjects. REM Atonia Index Scoring.
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RAI
n1 0.955
n10 0.882
n11 0.377
n2 0.344
n3 0.909
n4 0
n5 0.653
n8 0.0078

MEAN 0.516
STD 0.39
P(AI>0.9) 25 %
P(0.8<AI<0.9) 12.5 %
P(AI<0.8) 62.5 %

Table 3.2: CAP Database. Controls REM Atonia Index Scoring.

In summary, using this parameter 92.2% out of the rbd subjects in CAP database
showed AI under 0.8, but the values too close to zero are probably due to different
recordings setup or lack of information. Indeed also between controls AI values
are very low: only 37.5 % of the subject showed an AI>0.8. However it must be
considered that controls’ subjects recordings present with incomplete documentation.
As a matter of fact, n13, n14 and n15 show very high amplitudes and seem to be
recorded in US, given the powerline notch at 60 Hz. It is not possible to establish
if there was an amplification applied and how great, therefore these subjects are
excluded from this analysis that uses a fixed amplitude threshold. Normalized
Distribution Histogram for all subjects RBD is shown in Figure 3.1. It is intresting
to notice that RBD histogram respect in shape the one presented in Ferri article
for iRBD [35], showing the first bin lower than the second.
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Figure 3.1: CAP Database - RBD. Normalized Distribution Histogram of REM
Chin EMG Averaged Amplitude of all subjects, with Standard Error (SE).

3.1.2 TURIN Database

The subjects in this database present with RBD-like manifestation (severity is not
known). Results are shown in Table 3.3. Only 50% of the subjects actually showed
an AI<0.8. Although the recordings are recent and conducted in a specialised
centre following the guidelines, it is clear that amplitude-based methods need a
more accurate set up description or specific data visualization protocol in order to
produce reliable results.
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AI
S1 0.762
S2 0.956
S3 0.937
S4 0.108
S5 0.946
S6 0.953
S7 0.245
S8 0.582
S9 0.96
S10 0.64
S11 0.837
S12 0.972
S13 0.0059
S14 0.983
S15 0
S16 0.58

MEAN 0.6542
STD 0.3668
P(AI>0.9) 43.75 %
P(0.8<AI<0.9) 6.25 %
P(AI<0.8) 50 %

Table 3.3: TURIN Database. Atonia Index Scoring.

3.1.3 Vortioxetina Database

The Results are shown in Table 3.4. The Vortioxetina database contains PSG
recordings of subjects before (OFF) and after (ON) the use of an antidepressant
drug. Antidepressants are supposed to affect the atonia, subjects after using it
should present lower AI and higher densities. The effect of the antidepressant drug
on the RAI scoring is shown in Figure 3.2.

The Normalized Distribution Histogram was also created by sorting the ampli-
tude values in 20 classes. The classes are of the type: 1 µV< AA ≤ 2 µV, 2 µV<
AA ≤ 3 µV etc. Where AA stays for average amplitude of the 1s-epoch. They can
be built for each sleep stage and were used in the development of RAI. They can
indicate whether the Database is suitable for RAI or not. Histograms obtained
from Vortioxetina database regarding REM chin EMG are shown in Figure 3.3 for
the first recording and Figure 3.4 for the second.
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Figure 3.2: Vortioxetina Database. RAI scoring ON vs OFF.

ON OFF
Subj AI AI
S1 0,9862 0,9972
S2 0,9776 0,5517
S3 0,9216 0,8853
S4 0,9764 0,9944
S5 0,104 0,5531
S6 0 0,9949
S7 0,2258 0,5444
S8 0,996 0,9929
S9 0,2154 0,8557

MEAN 0,6003 0,8188
STD 0,4455 0,2083
P(AI>0.9) 56 % 44 %
P(0.8<AI<0.9) 0 % 22 %
P(AI<0.8) 44 % 33 %

Table 3.4: Vortioxetina database. Atonia Index Scoring.
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Figure 3.3: Vortioxetina Database. Normalized Distribution Histogram of REM
Chin EMG Averaged Amplitude in T0 of all subjects (with SE)

Figure 3.4: Vortioxetina Database. Normalized Distribution Histogram of REM
Chin EMG Averaged Amplitude in T1 of all subjects (with SE).
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3.2 RSWA Scoring

Tonic Density and Phasic Density are the percentage of tonic and phasic epochs out
of the total REM epochs (artefacts excluded). They can be scored with Montréal
or SINBAR methods [37]. Both methods are based on amplitude thresholds but
these threshold are dependent on the Background muscular activity (BKG) of
the subject that is estimated specifically on the patient’s recording. The BKG is
estimated as the 40th percentile of chin REM EMG recording. Here the results of
these parameters estimation with the method described in the previous chapter
are reported. It is important to notice that the algorithm used closely follows
the guidelines, in the attempt of translating them in automatic form. This has
important limitations.

Tonic Density is considered as pathological when is greater than 30 % (Montréal
and SINBAR). Phasic Density is considered to be pathological when is grater than
15% for Montréal method or greater than 16.3% for SINBAR method. Chin Any
Density is only described in the SINBAR method and it is considered pathological
when greater than 18%.

3.2.1 CAP Database

In the CAP Database, 15 rbd subjects out of 21 showed pathological densities. Rbd
1, 5, 6, 7, 9 and 13 showed a very high estimated background activity, which could
be due to artifacts or noise on the channel. Rbd 7, 6, 16 showed high densities
anyway, while the others are all under pathological threshold. This could mean
that the N3 stage is more affected by noise than REM or that the subject’s resting
tone in higher. The same subjects showed AI scoring close to 0, confirming the high
amplitude of the trace and the susceptibility to noise of ampltude-based methods.
Rbd 5 and rbd 18 showed RAI around 0 (complete loss of atonia), but under
pathological threshold densities. This could mean that the channel has a higher
amplitude than expected, but no strong corruption, so that RAI is influenced, in
contrast to the densities. Complete results are shown in Table 3.5. The CAP
database Control subjects are referred to as n*. In this computation n13, 14 and
15 are considered because an amplitude amplification, if any, does not affect the
method since it is based on the BKG threshold and not on an absolute one. As
expected they show high BKG values. Complete results are shown in table 3.6.
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BKG
(µV) TD PD

M
PD
S

AD
S

rbd1 4.8220 0 0.052 5.9 5.9
rbd10 1.2210 1.2 0.32 8.1 8.4
rbd12 0.8242 15 5.2 40 43
rbd13 1.7090 76 8 77 83
rbd14 0.6715 53 4 65 73
rbd15 2.1980 21 8.8 31 34
rbd16 3.4800 6.1 0.75 22 23
rbd17 0.3052 0 0.43 5.9 5.9
rbd18 2.5030 0 0.071 8.5 8.5
rbd19 1.7710 11 1.1 23 25
rbd2 1.8620 38 5.7 49 55
rbd20 0.7325 30 1.9 37 40
rbd21 0.7473 26 4.9 36 42
rbd22 2.4110 11 1.8 17 19
rbd3 2.6860 29 0.94 33 40
rbd4 0.8851 47 1.8 39 57
rbd5 5.4950 2.4 0.12 8.2 8.9
rbd6 6.5020 21 4.2 40 42
rbd7 3.2670 3 2.3 40 41
rbd8 0.8507 19 2.2 43 45
rbd9 4.5780 0 0.065 5.2 5.2

MEAN 2.3582 19.5095 2.6023 30.1810 33.5619
STD 1.76 20.52 2.64 19.89 22.48

Table 3.5: CAP Database RBD subjects. RSWA Scoring. TD: Tonic Density,
PD: Phasic Density, AD: Any Density, M: Montréal Method, S: SINBAR Method.
Densities are measured in percentage.
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BKG
(µV) TD PD

M
PD
S

AD
S

n1 0.6466 3.8 0.8900 11 12
n10 0.4861 19 2.3000 26 30
n11 1.099 45 14 39 51
n13 6.184 6.6 2.8 17 18
n14 7.896 25 16 23 33
n15 16.26 19 1.4 16 24
n2 2.007 31 16 32 34
n3 0.4591 31 3.5 27 32
n4 0.9821 3.8 1.5 31 31
n5 0.7936 17 1.4 19 23
n8 0.993 1.5 0.61 8.1 8.2

MEAN 3.437 18.4 5.5 22.6 26.9
STD 4.9368 13.9 6.4 9.4 11.8

Table 3.6: CAP Database Controls subjects. RSWA Scoring. TD: Tonic Density,
PD: Phasic Density, AD: Any Density, M: Montréal Method, S: SINBAR Method.

3.2.2 TURIN Database

The SINBAR and Montréal algorithms provide the results shown in Table 3.7. Nine
out 16 subjects showed pathological values. The BKG estimations are very high
for subjects 4 and 15. Subject 15 showed high densities anyway.
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BKG
(µV) TD PD

M
PD
S

AD
S

S1 1.345 0 0.5 6.8 6.8
S2 0.9801 0 0.35 11 11
S3 0.569 5.9 2.6 38 39
S4 8.3 0 0.1 3.1 3.1
S5 0.6817 0 0.93 27 27
S6 1.049 0 0.32 5.6 5.6
S7 1.288 3 1.9 35 35
S8 0.8481 4.5 2.7 50 51
S9 2.46 0 0.17 3.4 3.4
S10 0.6257 23 13 55 62
S11 0.6452 5.2 3.4 70 71
S12 0.6767 0.86 1 13 13
S13 2.8 3.4 1 24 24
S14 1.387 0 0.13 3.6 3.6
S15 6.627 3.6 0.24 24 25
S16 0.8417 1.4 1.3 37 37

MEAN 1.9453 3.1788 1.8525 25.4063 26.0938
STD 2.27 5.69 3.15 20.6851 21.6619

Table 3.7: TURIN Database. RSWA scoring. TD: Tonic Density, PD: Phasic
Density, AD: Any Density, M: Montréal Method, S: SINBAR Method.

3.2.3 Vortioxetina Database
Complete computed results on the Vortioxetina database are shown in Table 3.8
and Table 3.9. The subjects’ expected RSWA score is not known, but they are not
diagnosed RBD patients. Moreover ON densities are supposed to be higher than
OFF ones, since Vortioxetina is supposed to worsen the motor symptoms. This
trial did not provide evidence of this effect. Subjects 5 and 7 showed pathological
densities in both recordings with plausible values of BKG. ECG artefact is reported
by sleep technologists for subject 7, but no abnormality for subject 5. Subjects 1,
4, 5, 6 showed higher values of Any Densities in ON recordings. Subjects 1, 2, 3, 4,
8 showed higher values of Phasic Densities computed with Montréal method in ON.
Regarding the comparison with manual scoring result it is possible to notice the
great importance of proper recording. Indeed, all the recordings except S6 have
high BKG and high amplitudes that results in high densities scoring not related
to the manual scoring. Results comparison in shown in Table 3.10. To better
appreciate the data in summary form, the calculated (On and Off vortioxetine)
metrics are presented in Figure 3.5.
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In most of the cases it is easy to explain where computed values come from. While
a sleep technologist knows witch which part of the recording it is not significant,
the algorithm takes everything into account. As an example REM chin EMG in
REM and N3 stages of subject 5 in T1 (OFF Vortioxetina) are shown in Figure
3.6. It is clear that the first part of the EMG recording is not following the classic
amplitude values for this channel, as well as N3 that shows many amplitude jumps.
The high amplitude of the first part of REM EMG explains the high values of TD
and PD found (TD = 32%, PD M = 22%, PD S = 30%).

BKG
(µV) TD PD

M
PD
S

AD
S

S1 1.7700 0 0.056 0.58 0.58
S2 2.8690 0 0 1.6 1.6
S3 1.6480 0 0.27 11 11
S4 0.9759 0 0.087 2.7 2.7
S5 0.9153 32 22 30 43
S6 0.8541 0 0.12 1.8 1.8
S7 0.7942 29 18 48 54
S8 0.7335 0 0.2 13 13
S9 0.9417 8.1000 4.3 12 16

MEAN 1.3864 9.6778 2.1926 16.1867 17.0756
STD 0.6615 17.3338 3.3093 20.5984 21.3900

Table 3.8: Vortioxetina Database. RSWA Scorings OFF. TD: Tonic Density, PD:
Phasic Density, AD: Any Density, M: Montréal Method, S: SINBAR Method. The
unit of densities is the percentage.
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BKG
(µV) TD PD

M
PD
S

AD
S

S1 2.748 0 0.12 1.5 1.5
S2 2.932 0 0.29 1.1 1.1
S3 2.016 0 0.29 5.2 5.2
S4 1.955 0 0.16 3.4 3.4
S5 1.282 45 8.8 52 54
S6 1.404 0 0 9.7 9.7
S7 1.403 34 5.9 51 53
S8 0.611 0 0.26 6.7 6.7
S9 1.708 0 0.13 2.8 2.8

MEAN 1.676 6.7778 4.5833 12.0444 14.1556
STD 0.828 13.47 8.798 16.152 19.845

Table 3.9: Vortioxetina Database. RSWA Scorings ON. TD: Tonic Density, PD:
Phasic Density, AD: Any Density, M: Montréal Method, S: SINBAR Method. The
unit of densities is the percentage.

Manual Automatic

TD PD
M

PD
S TD PD

M
PD
S

S2 OFF 40.6 14.3 17.8 0 0 1.6
S5 ON 0 2.54 7.33 45 8.8 52
S6 OFF 0 1.062 3.98 0 0.12 1.8
S9 OFF 0 3.03 5.96 8.1 4.3 12

Table 3.10: Manual vs Automatic scoring of Tonic and Phasic Epochs with
Montréal and SINBAR criteria.
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Figure 3.5: AI and Densities summary results ON and OFF Vortioxetina.

Figure 3.6: Vortioxetina Database. Chin EMG of subject 5 OFF in REM and
N3 Sleep Stage.

3.3 BKG Activity Evaluation
Scoring of Tonic Density, Phasic Density as Montréal, Phasic Density as SINBAR
and Any Density as a function of the Background activity estimation are shown
in the Tables 3.11, 3.12 and 3.13. BKG1 refers to the estimation of the BKG as
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the mean of the N3 submental EMG, BKG2 is estimated as the median of the N3
submental EMG, while BKG3 as the 25 percentile of the N3 submental EMG. It is
interesting to see that the changing of the BKG does not change the scoring linearly.
Taking as an example Tonic Densities for the sixteen subjects, it is important to
notice that subjects: 1, 2, 4, 6, 9, 12, 14 present very similar TD values with all
three BKG. Tonic Density scoring as a function of the four different BKG is shown
in Figure 3.7.

Figure 3.7: Turin Database. Tonic Density as a function of the BKG estimation.
TD is calculated as in the algorithm, T2 with BKG2, TD3 with BKG3.

Because of the fact that 40 percentile, the median of a distribution and in some
cases also the mean are closer than the 25 percentile can be that TD1, TD2 and
TD are closer than TD and TD3. That is generally observed and Tonic Densities
scoring with median and mean are superimposed except for subjects 3,10,11. As a
matter of fact, for all the subjects except 10, TD scoring remain close and under
the diagnostic threshold for TD in all three cases. Without reference scoring of
densities it is impossible to establish an optimized value of the background but
is also possible to notice in Figure 3.7 that with background around the mean or
median of the distribution represented by the samples of the submental EMG in
N3 stage there is a subsequent saturation around 0 of the TD.
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BKG
(µV) TD PD

M
PD
S

AD
S

S1 2.249 0 0.2 4 4
S2 1.781 0 0.1 4 4
S3 1.071 0.8 1 10 10
S4 15.13 0 0.05 0.7 0.7
S5 1.139 0 0.5 8 8
S6 2.099 0 0.09 2 2
S7 2.55 0 0.6 10 10
S8 1.83 0 1 20 20
S9 4.13 0 0.07 2 2
S10 1.29 10 7 30 30
S11 1.7 2 0.4 10 10
S12 1.67 0 0.3 3 3
S13 4.418 0 0.5 10 10
S14 2.5 0 0.1 2 2
S15 10.35 4 0.2 3 6
S16 1.555 0 0.6 10 10

MEAN 3.4651 1.054 0.794 8.0437 8.231
STD 3.84 2.62 1.68 7.7 7.61

Table 3.11: Turin Database. RSWA scoring with BKG1. TD: Tonic Density, PD:
Phasic Density, AD: Any Density, M: Montréal Method, S: SINBAR Method.
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BKG
(µV) TD PD

M
PD
S

AD
S

S1 1.7360 0 0.4000 4 4
S2 1.2740 0 0.3000 7 7
S3 0.7473 3 2 20 20
S4 10.9200 0 0.0500 2 2
S5 0.8794 0 0.7000 10 10
S6 1.3860 0 0.2000 3 3
S7 1.7250 0 1 20 20
S8 1.1120 0 2 30 30
S9 3.2270 0 0.1000 3 3
S10 0.8097 20 10 40 50
S11 0.8490 4 2 40 40
S12 0.8889 0.9000 0.7000 7 7
S13 3.6280 0 0.7000 20 20
S14 1.8230 0 0.1000 3 3
S15 8.5650 4 0.2000 8 10
S16 1.1010 0 0.9000 20 20

MEAN 2.5420 1.9937 1.3344 14.8125 15.5625
STD 2.96 5.02 2.41 12.90 14.30

Table 3.12: Turin Database. RSWA scoring with BKG2. TD: Tonic Density, PD:
Phasic Density, AD: Any Density, M: Montréal Method, S: SINBAR Method.
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BKG
(µV) TD PD

M
PD
S

AD
S

S1 0.8134 2 1 20 20
S2 0.5896 2 1 40 40
S3 0.3353 40 5 100 100
S4 4.9300 0 0.3000 9 9
S5 0.4140 60 2 100 100
S6 0.6207 0 0.7000 50 50
S7 0.7533 30 5 70 70
S8 0.5022 60 6 90 90
S9 1.4620 0.5000 0.5000 6 6
S10 0.3779 70 20 90 100
S11 0.3822 20 7 100 100
S12 0.4030 3 2 80 80
S13 1.6950 7 3 40 40
S14 0.8255 0 0.3000 20 20
S15 4.0090 20 0.7000 60 60
S16 0.4983 20 3 100 100

MEAN 1.1632 20.9063 3.5938 60.9375 61.5625
STD 1.3569 24.32 4.88 34.93 35.57

Table 3.13: Turin Database. RSWA scoring with BKG3 . TD: Tonic Density,
PD: Phasic Density, AD: Any Density, M: Montréal Method, S: SINBAR Method.

3.4 EKG Removal
The effects of EKG removal on RSWA quantification are showed in this Section.
The TURIN database results after applying the EKG removal algorithm are shown
in Table 3.14. The EKG channel is sampled at 256 Hz (as well as the EMG) and
the pre-filter is composed by a band pass filter with 0.3-70 Hz bandwidth and Notch
filter centered in 50 Hz. Visual inspection of the tracings showed that subjects 3,
4, 6, 7, 8, 11, 12, 13, 14 and 16 have a clearly visible EKG artefact on the chin
EMG channel. The samples marked as corrupted by EKG artifact and deleted are
around 6% out of all REM samples. Comparing these scoring with the previous one
(without EKG removal) it is possible to notice that it varies the most for subjects
7. The difference is significant for subjects 7, 8, 11, 13. Subject 1 presents with
an unexpected variation. In general, the EKG removal procedure increases the AI
value because it deletes high amplitude samples. These differences are highlighted
in Figure 3.8. The same comparison is done on the Tonic Density. Normal TD and
TD computed after the EKG removal is shown in Figure 3.9.
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R REM
(%) AI BKG

(µV) TD PD
M

PD
S

AD
S

S1 5.1 0.8088 1.3450 0 0.5000 6 6
S2 5.9 0.9535 0.9801 0 0.4000 10 10
S3 5.4 0.9439 0.5690 3 3 20 30
S4 5.8 0.1670 8.3000 0 0.1000 3 3
S5 6.9 0.9466 0.6817 0 0.9000 30 30
S6 5.4 0.9761 1.0490 0 0.3000 4 4
S7 6.5 0.4470 1.2880 0.6000 2 30 30
S8 6.4 0.7074 0.8481 2 3 40 40
S9 5.3 0.9590 2.4600 0 0.2000 3 3
S10 6.0 0.6614 0.6257 20 10 50 60
S11 4.1 0.9238 0.6452 5 3 20 20
S12 6.4 0.9749 0.6767 0.9000 1 10 10
S13 5.2 0.0879 2.8000 2 1 20 20
S14 5.9 0.9859 1.3870 0 0.1000 3 3
S15 4.9 0 6.6270 4 0.3000 20 20
S16 7.4 0.8623 0.8417 0 1 30 30

MEAN 5.8379 0.7128 1.9453 2.3438 1.6750 18.6875 19.9375
STD 0.8334 0.3450 2.2670 4.9751 2.4572 14.3560 16.1636
P(AI>0.9) 50 %
P(AI<0.8) 37.5%

Table 3.14: Turin Database. RSWA scoring with EKG Removal. R REM:
Percentage of REM samples removed, TD: Tonic Density, PD: Phasic Density, AD:
Any Density, M: Montréal Method, S: SINBAR Method.
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Figure 3.8: TURIN Database. RAI scoring. Normal vs EKG Removal.

Figure 3.9: TURIN Database. Tonic density scoring. Normal vs EKG Removal.
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Chapter 4

Discussion and Conclusion

This thesis work presented an algorithm to calculate the muscle parameters used to
quantify muscle atonia during REM stage in an automatic manner. The algorithm
follows as closely as possible the methods found in literature and the international
guidelines. Evaluations of REM Sleep Without Atonia in literature are mainly
based on the visual quantification methods, Montréal and SINBAR, currently in
use in clinic. Several automatic methods are gaining ground and in this work the
REM Atonia Index presented by Ferri was also implemented. Impairment of muscle
atonia during REM sleep, in addition to being a disorder in itself, is also linked to
the diagnosis of REM Behaviour Disorder, and has generally been correlated with
neurodegeneration. At this time, RSWA and RBD, when isolated, are considered
prodromal symptoms of neurodegenerative diseases, but the evolution is yet to be
explored. The need for parameters capable of objectively describing this loss of
atonia during REM is therefore crucial. The aim is also to establish a measure that
can describe the progression of neurodegeneration.

Three databases were used for this work: two provided by the Sleep Disorders
Centre of the A.O.U. Molinette of Turin, Italy, while the other is excerpted from
the CAP Sleep Database, made available in open access on PhysioNet by the Sleep
Disorders Centre of the Maggiore Hospital of Parma, Italy. The REM Atonia
Index has been implemented following the indications found in literature. It is a
method based on a fixed amplitude value, which accounts for the amount of samples
that have an amplitude less than 1 µV (considered as muscle atonia) in 1s-epochs.
Overall, the RBD patients showed very low RAI and in more than 92% of the cases
below the indicative pathological threshold of 0.8 in the CAP database. However,
it is not known whether the high amplitude depends on the condition of the subject
or on the sampling and recording conditions (also it is important to notice that the
database comes from a 20-year-old study). In the Turin database, approximately
43% of subjects achieved an AI greater than 0.9, indicative of preserved atonia.
As we do not know the pathological condition of the subjects, it is not possible to
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know if this result is consistent; however, unless the signal recording is completely
mis-set, or absent (e.g., electrode disconnected), night events, motion artefacts or
noise are unlikely to significantly decrease the overall signal amplitude. Regarding
the Vortioxetina database, four subjects out of nine (s1, s3, s4, s8) showed very
similar AI value in the two recording. Considering that they are healthy subjects
and that the drug effect on atonia is still under evaluation and in any case limited,
these results seem the most reliable. In the end, the evaluation of the effect of
Vortioxetine on REM atonia for the subjects was inconclusive.

The implemented automation of the visual methods allowed the calculation of
phasic and tonic densities according to the indications of the Montréal and SINBAR
methods. Densities represent the percentage of REM epochs that meet the definition
of tonic/phasic out of all REM epochs considered (i.e., events excluded). These
definitions are based on the estimation of the subject’s background muscular activity,
as an amplitude value, and relay on overcoming an amplitude threshold established
by it. This makes the method free of a-priori defined absolute amplitude thresholds
and adapts the value to each subject. However, this value is established by the
sleep technicians on the basis of the specific trace and of their expertise (e.g. the
operator visually recognises which part of the trace is a muscular activation and
then assesses its amplitude) and there are no absolute rules specifying how to
establish it precisely. Therefore the background activity assumes a value dependent
on the operator rather than on an actual objective measure. This can still produce
consistent results between different operators, but makes it difficult to translate the
method into an algorithm. Moreover, the results obtained show that the typical
muscle tone of the subject is not the only parameter to be taken into account in the
evaluation of the epochs. Indeed, the algorithm produces very high density values
even when the trace presents amplitude characteristics that are not related to the
characteristics of the subject but rather to the recording or the recording conditions.
For example, if the subject moves in bed at night and presses an electrode, this will
produce a change in the amplitude of the recorded signal, but does not represent
a different muscle tonic activity. The same applies to the respiratory artefact,
which sometimes creates a clearly visible envelope on the trace. A fixed amplitude
threshold is therefore mathematically meaningless unless accompanied by medical
knowledge. Hence, it is evident that the description of nocturnal events to be
excluded from the analysis, such as arousals or rhythmic movements, should be
extended to all those moments in which the trace is not regular, but this introduces
(as well as being very time consuming) subjectivity in the identification of these
events. Anyway, the evaluation of the algorithm on varying estimates of the BKG
activity has shown that the value closest to the visual estimate of the resting muscle
tone is around the median of the rectified signal. However, employing this type of
threshold (or higher) leads to a saturation towards zero in the density’s values.

Finally, by observing the traces in the various databases, the problem of the
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EKG artefact emerged; indeed, many subjects feature, in correspondence of the
greatest muscular relaxation, the cardiac complex with significant amplitude. This
waveform is difficult to remove with filtering because it is partially superimposed in
band with the EMG signal. In addition, the use of very restrictive filters changes
the amplitude in the passband due to the ripple, thus making the signal unusable
for this type of amplitude-based method. The Turin database has several tracks
with this artefact and the results calculated following the EKG artefact removal
procedure implemented here showed very different AI values for subjects 7, 8, 11,
16 (AI increased by about 0.1 to 0.25) which indeed showed strong EKG corruption.
Tonic density, on the other hand, is modified mainly for subjects 3, 7, 8 and 10
(increase of about 4 percentage points). The graphical display of the detection of
the EKG artefact in the EMG trace seems satisfactory, taking into account the
limitations already mentioned.

The importance of these metrics in describing atonia is clear, as much as their
automation, but the latter presents considerable challenges, especially in the case
of faithful automation of visual methods used in the clinic, given their link to
amplitude assessments. This thesis work implemented the literature metrics in
an automatic scoring algorithm, providing an open-access method for scoring
REM anomalies. Future works should address a robust clinical validation of such
automated measures, as well as the implementation of a global, objective score
which accurately describes lack of atonia during REM Sleep.
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