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Abstract 
 

The evolution of tall buildings has taken place worldwide, starting in the United 

States in the twentieth century, from the conventional moment resisting frame to more 

effective structural systems, such as braced tubes and diagrid structures. In this Thesis, 

attention has been paid on diagrid structures. Despite the lack of conventional vertical 

columns along the exterior of the building, their capacity to withstand lateral loads has 

made the diagrids highly appreciated in the fields of structural engineering and 

architecture. In particular, many researchers have emphasized their enhanced structural 

performance and ground-breaking aesthetic characteristics. 

The main purpose of the study is to identify the optimal diagrid geometry able to 

ensure simultaneously a good structural behaviour, in terms of lateral and torsional 

stiffness, low consumption of material and easiness of construction. In the existing 

literature, this investigation has usually been carried out through optimization processes 

where some geometrical parameters, like the diagonal inclination and floor plan shape, 

are changed and the building performance is assessed. However, when the population of 

the geometrical solutions is wide, this procedure can hardly be implemented manually, or 

within a Finite Element Method (FEM) environment due to onerous computational costs. 

In this Thesis, the analysis has been performed by using the matrix-based method (MBM) 

coupled with the desirability function approach. The MBM allows to perform the 

structural analysis of the diagrid system considering fewer degrees of freedom than FEM. 

The desirability function approach is an optimization method, that leads to the selection 

of the optimal design parameters within a multi-response framework. The analysis had 

the goal of selecting the optimal geometry, out of a set of both uniform- and varying-

angle diagrid structures, optimizing multiple responses. The outcomes of this analysis 

demonstrated the usefulness and the simplicity of the presented approach for the 

optimization of diagrid structures for the preliminary design. 
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Chapter 1 

1. INTRODUCTION 

In the 18th century a significant tall building development begun, especially in 

United States, to cope with the rapid growth of urban population and consequent 

reduction of the land. The first tall buildings consisted of simple structural systems based 

on the conventional moment resisting frame, but over time new typologies have been 

emerged such as diagrid systems. The latter has been recognized as efficient structural 

system with high aesthetic potential able to resist better to lateral loads without vertical 

columns. The Chapter 1.1 summarizes the evolution of tall buildings until diagrid 

systems, underlying their main features. In Chapter 1.3.1 an overview of researches on 

diagrid are described regarding the preliminary design, the structural analysis in Chapter 

1.3.2 and, finally, the application of optimization process in Chapter 1.3.3. 

1.1. THE HISTORY OF HIGH-RISE BUILDINGS 

A tall building can be defined as a high-rise structure having multiple floors. Its structural 

design is highly influenced by lateral forces, as wind and earthquake actions due to 

considerable height. The tall building development started in the 1880s for commercial 

and residential purposes. The necessity of having adjacent business activities in the city 

centre as near as possible, the necessity to provide peculiar landmarks for commercial 

organizations and to satisfy the business and tourist community demand led to a rapid 

growth of tall commercial buildings [1]. The urban cities advancement has been greatly 

determined by an accelerated increasing of the world population moving from rural areas 

to cities. The desire to limit the urban expansion on land without reducing agricultural 

production and the high land cost are the main causes of an upward building evolution in 

18th and 19th centuries. In order to guarantee the high-rise building development, three 
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important factors have to be considered: available materials, the level of construction 

technology and the types of service purposes necessary for the use of the building [1]. For 

these reasons, the advancement proceeded step by step whenever new material, 

construction method or computer technology was introduced.  

In the 19th century, the Second Industrial Revolution, leading to socioeconomic 

issues and high demand for land, especially in the United States, created a boost to 

promote tall buildings growth, that was possible only thanks to two essential technical 

innovations: the introduction of new material able to resist more and be more efficient, 

steel, and the introduction of the elevator ensuring to get easily to upper floors. The first 

high-rise tall building characterized by steel frame was the 11-story Home Insurance 

Building in Chicago in 1883, but in 1931 one of the most important American skyscrapers 

was built, the Empire State Building, whose 102-story braced steel frame reached 381 m 

of height (Figure 1.2a). Moreover, at that time this height was considered considerable, 

and it was achieved not through technological evolution, but through excessive material 

consumption leading to an over-designed structure [2]. 

During the 1930s a severe worldwide economic depression, the Great Depression, 

stopped the skyscraper evolution, but after the World War II new structural systems 

different from the conventional rigid frames were proposed by means of modernized 

design and construction techniques. Furthermore, in the 1960s Fazlur Khan developed 

the “premium-for-height” framework that constituted a ground-breaking step for tall 

building design. According to Khan, the structural design of high-rise building was 

controlled by the lateral sway due to wind load and therefore different structural systems 

are necessary for increasing heights [3]. Consequently, the higher is the number of stories, 

the higher is the premium for height. Figure 1.1 shows the steel consumption, which 

increases linearly with the number of stories if the building is subjected only to gravity 

loads, but it increases drastically for buildings under lateral loads. The design aim is to 

minimize the weight of steel by choosing an appropriate structural system [3]. As a matter 

of fact, in 1973 the Empire State Building was beaten by the twin towers of the 110-story, 

412 m high World Trade Center in New York, using framed-tube construction. The 
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necessity to reflect different function requirements, such as providing large column-free 

open areas, led to different structural systems. 

Figure 1.1 - Premium for height 

1.2. EMERGING DEVELOPMENTS FOR DIAGRID STRUCTURES 

In the late 19th century, diagonal bracing structural members were acknowledged as 

efficient to withstand lateral actions arising from wind and earthquake actions in high-

rise building design. Thus, the taller the building, the more critical the lateral drifts and 

the necessity of diagonals in the structure becomes fundamental to carry properly lateral 

forces. Moreover, a taller building leads to a sudden rise of material consumption. 

Although the presence of diagonals was recognized as an improvement for the structural 

behaviour, the diagonals constituted an obstruction to the outside view limiting the 

aesthetic image. Thus, diagonals were usually installed within the building cores which 

were placed internally. 

In the late 1960s a new structural solution in tall building design was emerged and 

it was based on the use of a braced tube system. One of the most important examples was 

the John Hancock Building in Chicago which is characterized by external perimeter 

diagonals with a X configuration that cross several stories (Figure 1.2b). This structural 

system allowed to reach considerable heights, to reduce the steel consumption, to resist 

higher lateral forces and to open internal spaces with increased usable surface. All these 

features made the braced tube system an architectural symbol at that time. The braced 

tube system derives from the framed tube, in which the lateral stiffness is provided by 

closely spaced perimeter columns. However, framed tubes ensured a lower structural 

performance and higher material usage than braced tubes. 
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Figure 1.2 - Tall buildings structural system: (a) Empire State Building in New York: moment resisting frame (Source: 
myusa.it) (b) John Hancock Center in Chicago: braced tube system (Source: wikipedia.org/wiki/John_Hancock_Center) 

The use of external diagonals developed a such strong interest in tall building design 

from an architectural and engineering point of view that a further step occurred in tall 

building design concerned the introduction of an innovative structural system called 

diagrid. The term ‘diagrid’ was obtained by the combination of two words: “diagonal” 

and “grid”. It means that both vertical and horizontal loads are carried by only the external 

perimeter diagonals without the help of vertical columns that are present in the 

conventional braced tube solution. Furthermore, diagrid structures, where diagonal 

members carry shear by axial action, are more efficient in minimizing shear deformation 

than conventional braced frame structures, where shear is carried by the bending of 

vertical columns [4].  

The first diagrid structure was built before the realization of the John Hancock 

Center, in the 1970, by the Russian architect Vladimir Shukhov in Moscow (Figure 1.3a). 

The structure is a broadcasting tower 160 m tall made of steel. It is a hyperboloid 

structure, and the diagrid structure allows to minimize the wind load and the required 

material [5]. The first construction of high-rise building using diagrid system was the 

IBM Building in Pittsburgh built in 1963 (Figure 1.3b). The building is constituted by a 

steel exoskeleton lean on eight piers and an internal central core. Moreover, the façades 

have a peculiar aesthetic effect given by stainless steel and glass panels. Nevertheless, the 

diagrid system was not recognized until the 21st century when other diagrid structures 

have been constructed like the Swiss Re’s Building in London and the Hearst Tower in 

(a) (b) 
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New York. Both have been designed by Sir Norman Foster. The Swiss Re’s Building 

(also known as 30 St Mary Axe or the Gherkin) is a 40-story steel framed office building 

with a circular plan of varying size and it reaches 180 m (Figure 1.3c). The double 

curvature of the building façade provides an aerodynamic behaviour limiting wind actions 

and open space offices [6] [7]. Similarly, the Hearst Tower is a 46-story building, 183 m 

tall (Figure 1.3d). The diagrid structure provides stability requirement under vertical and 

horizontal loads increasing both lateral stiffness and strength. Moreover, this innovative 

structural system allows to reduce 20% of the steel consumption with respect to an 

equivalent conventional moment frame structure [8] [9]. After a few years many diagrid 

buildings have been built throughout the world, mainly in American and in Asian 

countries. Some main examples are the CCTV Headquarters and the Guangzhou West 

Tower in China, the Bow in Canada, the Capital Gate in United Arab Emirates, and the 

Tornado Tower in Qatar [10]. These buildings are made of steel because of speed of 

construction and cheap formworks. Nonetheless, there are few examples of concrete 

diagrid structures as the O-14 Building in Dubai and the Doha Tower in Doha [3]. 

Figure 1.3 - Diagrid structures: (a) Shukhov Tower in Moscow (Source: http://www.skyscrapercenter.com/) (b) IBM 
Building in Pittsburgh (Source: ©Natalia Melikova The Constructivist Project) (c) Swiss Re Tower in London (Source: © 
2019 Michael Tessler)  (d) Hearst Tower in New York (Source: https://www.swissre.com/) 

 

 

 

 

 

 

(a) (b) (c) (d) 

http://www.skyscrapercenter.com/
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Diagrid structure developments have been rapidly increasing worldwide due to the main 

following features summarized as:  

1) Lesser amount of structural material than conventional structural systems 

composed of orthogonal members. Figure 1.4 shows the difference between the 

orthogonal structure and the three-dimensional model of a diagrid structure; 

 

Figure 1.4 - 3D model and structural members: (a) orthogonal structure (b) diagrid structure [11] 

2) Easy prefabrication and construction techniques thanks to the modularity and 

repetitive operations; 

3) Able to address most of the designing requirements in terms of lateral stiffness 

and strength reaching enhanced structural performance; 

4) Peculiar aesthetic appearance and remarkable architectural effect provided by 

the outer arrangement of diagonal columns and beams, which gives to the 

building a unique diamond shape pattern, interior column-free floor spaces and 

flexibility on the plan design. 

As known in tall building design, the dominant design factor is the lateral force due 

to wind and seismic loads and therefore in order to resist to these actions internal and 

external resisting systems have to be considered. In the case of the diagrid system the 

external system, located along the building perimeter, is made up of repetitive triangular 

units constituted by diagonal columns and a ring beam, providing an efficient 

performance [10]. These structural members are hinged at nodes, as illustrated in Figure 

1.5. Generally, when the diagrid structure is subjected to both vertical and horizontal 

loads, axial forces mainly arise in diagonals. However, shear and bending stresses could 

be present in diagonals that extend over multiple stories because of the supported floor 

beams at intermediate floors. Nonetheless, these stresses can be disregarded in the 

preliminary design. By observing the existing diagrid structures, it can be also found that 
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the internal resisting system is typically provided by an internal core. Thus, the external 

diagrid system, coupled with the internal core, assumes the so-called tube in tube 

configuration. Note that in preliminary design the diagrid structure is designed under 

gravity and lateral loads, whereas the internal core only under gravity load [10]. 

Figure 1.5 - Three 3‐story diagrid modules and a sample triangular element [12] 

1.3. OVERVIEW OF THE EXISTING LITERATURE RELATED TO 

DIAGRID SYSTEMS 

The structural, architectural and economic advantages described in the previous Chapter 

1.2 allowed diagrid structures to be recognized as emerging innovative solutions in recent 

years, therefore several research works have been developed in order to promote 

advanced design strategies and make diagrid system more efficient and more economical 

[13]. These studies underline the diagrid structural behaviour in function of different but 

important parameters like the height, the numbers of stories for each module and the 

diagonal inclinations. Differently from traditional structural types, few design 

methodologies have been developed and therefore many researchers tried to carry out 

investigations as a means to provide guidelines and provisions to engineers and architects 

for diagrid structure design [14]. 
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1.3.1. METHODOLOGY FOR THE PRELIMINARY DESIGN  

The preliminary design of diagrid structure is necessary in order to determine the 

preliminary diagonal sizes rapidly and this procedure is useful to make decisions at the 

early stage of design for both architects and engineers. For these reasons many researchers 

have carried out many investigations on this problem for determining a simplified and 

approximate method. Among all the researchers it is worth to note Moon et al. [4] and 

Montuori et al. [14]. 

According to Moon’s research, in the preliminary design, the internal core lateral 

stiffness is neglected because its contribution is only 15-20% of the total despite both 

diagrid structure and internal core provide lateral stiffness to lateral action. The design 

methodology proposed in [4] presents an empirical guideline for assessing diagonal cross-

sectional areas necessary to limit the lateral displacement, starting from the evaluation of 

the relative contribution of bending and shear deformations to the total lateral 

displacement of a diagrid structure with rectangular plan, vertical facades and constant 

diagonal inclination along the height of the building. The Moon’s methodology of 

preliminary design of diagrid structures is a stiffness-based approach that considers the 

building as a beam divided into modules. In the case of this study, the module is defined 

by two triangular elements covering a height h as shown in Figure 1.6 and the diagonals 

are inclined with an angle 𝜃. The tall building façade can act as either web or flange 

elements in function of the loading direction. Moreover, the diagonals are subjected only 

to axial forces as they are assumed to be pin ended [4].  

Figure 1.6 - Six-story diagrid structure module for the definition of the stiffness-based approach [4] 



 1 - Introduction 

9 
 

The assessment of cross-sectional areas for each module is carried out determining 

equations that correlate shear force V and bending moment M respectively to relative 

displacement ∆𝑢 and relative rotation ∆𝛽 : 

𝑉 = 𝐾𝑇∆𝑢 (1.1) 

𝑀 = 𝐾𝐵∆𝛽 (1.2) 

The relative displacement and rotation are calculated as the product of module height and 

transverse shear 𝛾 and bending deformation χ, respectively.  

By means of compatibility, constitutive and equilibrium equations, it is possible to 

evaluate the bending and shear stiffnesses as: 

𝐾𝑇 = 2𝑁𝑤 (
𝐴𝑑,𝑤𝐸

𝐿𝑑
cos2 𝜃) (1.3) 

𝐾𝐵 = (𝑁𝑓 + 𝛿) (
𝐵2𝐴𝑑,𝑤𝐸

2𝐿𝑑
)sin2 𝜃 

(1.4) 

Where 𝑁𝑤 and 𝑁𝑓 are the total number of diagonals in the web and façade, respectively, 

𝐴𝑑,𝑤  and 𝐴𝑑,𝑓  the cross-sectional area of the web and flange members, E the elastic 

modulus, B the web dimension, 𝐿𝑑 the diagonal length and 𝛿  is the web diagonals 

contribution for bending rigidity. At that point, fixing the desired transverse shear and 

bending deformations, 𝛾∗ and 𝜒∗, and for given V and M, the preliminary cross-sectional 

areas expressions in the web and flange are obtained: 

𝐴𝑑,𝑤 =
𝑉𝐿𝑑

2𝑁𝑤𝐸𝑑ℎ𝛾∗ cos2 𝜃
 (1.5) 

𝐴𝑑,𝑓 =
2𝑀𝐿𝑑

(𝑁𝑓 + 𝛿) 𝐵2𝐸𝑑𝜒∗ℎ𝑠𝑖𝑛2𝜃
 (1.6) 

As specified before, the lateral load can be applied in different directions, thus each 

diagonal can act as either a web or flange member and its cross-sectional area would be 

evaluated as the maximum value from Equations (1.5) and (1.6). 

According to stiffness-based approach, in order to define 𝛾∗ and 𝜒∗  the top 

deflection is expressed in function of them assuming the building as a cantilever beam: 

𝑢(𝐻) = 𝛾∗𝐻 +
𝜒∗𝐻2

2
 

(1.7) 

Where 𝛾∗𝐻  and 𝜒
∗𝐻2

2
 are the contribution from shear and bending deformation, 

respectively. Each contribution can be determined by introducing a dimensionless factor 
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s, defined as the ratio between the top displacement due to bending and the top 

displacement due to shear [4]: 

𝑠 =
(
𝜒∗𝐻2

2 )

𝛾∗𝐻
=
𝐻𝜒∗

2𝛾∗
 

(1.8) 

Imposing the maximum allowable displacement as 𝑢(𝐻) = 𝐻

𝛼
, the desired transverse 

shear and bending deformations expressions are: 

𝛾∗ =
1

(1 + 𝑠)𝛼
 (1.9) 

𝜒∗ =
2𝛾∗𝑠

𝐻
=

2𝑠

𝐻(1 + 𝑠)𝛼
 

(1.10) 

The dimensionless factor s governs the preliminary cross-sectional areas of 

diagonal members. Indeed, if s assumes high values, the top displacement contribution 

due to bending is dominant with respect to the one due to shear and the design of diagonal 

area is mainly affected by shear deflection. On the contrary, if s assumes low values, the 

shear contribution prevails and the design is governed by bending deflection. Moreover, 

Moon et al. carried out further studies on the optimal value of s in function of the height 

to width ratio H/B and the proposed empirical expression is 𝑠 = (
𝐻

𝐵
− 3) valid for 𝐻

𝐵
≥ 5 

and 60° ≤ 𝜃 ≤ 70°. 

Another geometrical attribute considered major in preliminary design is the 

diagonal angle 𝜃 since it influences the structural behaviour. In this article [4] the authors 

highlight the influence of the diagonal angle on the structural behaviour of tall buildings. 

As a matter of fact, they have found that the optimal angle for maximum shear rigidity is 

about 35° for the case of 60-story structure, meanwhile the optimal angle for maximum 

bending rigidity is 90°. It means that in diagrid system the optimal angle will fall between 

these two extreme values. From a structural perspective, shear behaviour prevails in short 

buildings and bending behaviour prevails in tall buildings. As a consequence, the higher 

is the building, the higher will be the optimal diagonal angle.  

In the following year Moon published another research paper [15] in which the 

previous stiffness-based approach is applied to braced tube systems. Differently from 

diagrid structure, in the braced tube solution the mega-diagonals are subjected to shear 

force and the perimeter vertical columns to bending moment. In this study Moon proposed 

another empirical expression for the optimal s value,  𝑠𝑜𝑝𝑡 = 𝐻/2𝐵 − 1, obtained 
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considering height to width ratio higher than 6 and diagonal angle between 40° and 50°. 

The same models were also employed for diagrid tall building analysis and a new 

empirical equation was suggested, 𝑠𝑜𝑝𝑡 = 𝐻/𝐵 − 2, valid for height to width ratio higher 

than 6 and 𝜃 between 60° and 70°. 

Although tall building design is mainly influenced by stiffness requirement, 

consisting into limiting the lateral displacement at the top of the building, in some cases 

the strength requirement can become primary in the design criteria. This methodology is 

called strength-based approach and it is proposed by Montuori et al. in [14]. The 

investigations are focused on the assessment of simplified formulae for determining 

rapidly cross-sectional area of diagonals according to the strength-based design. At the 

end the results were compared to the ones obtained from the stiffness-based design 

proposed by Moon in order to understand which one governs the design in specific 

conditions. The research paper analyses a 100-story building whose shaft is divided into 

diagrid modules. Each module m is subjected to three actions, i.e. the gravity load 𝑄𝑚, 

the shear force 𝑉𝑚  and the overturning moment 𝑀𝑚 , that generate compression and 

tension axial forces in the diagonals as shown in Figure 1.7.  

Figure 1.7 - Diagrid module scheme for the strength-base preliminary design. Axial force in diagonals of the k-th triangular 
scheme of the m-th module due to: (a) gravity loads 𝑄𝑚  (b) overturning moment 𝑀𝑚  (c) global shear 𝑉𝑚 [14] 

The gravity loads produce a global downward force 𝐹𝑚,𝑘,𝐺  on each module equal to the 

37.5% of the total floor load supposing that the internal core holds the 25% of the total 

floor area. Thus, the compressive axial force in each diagonal is assessed as follows: 

𝑁𝑚,𝑘,𝑄 =
0,375 𝑄𝑚

𝑛𝑘

𝑠𝑒𝑛𝜃

2
 (1.11) 
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The wind load gives rise to overturning moment and shear force. The overturning moment 

generates uniform compression and tension state in the diagonals of leeward and 

windward façade, respectively, and a linear distribution in the webs, arising the following 

axial force: 

𝑁𝑚,𝑘,𝑀 = ±
𝑀𝑚𝑑𝑘

∑ 𝑑𝑖
2𝑛𝑘

𝑖=1

𝑠𝑒𝑛𝜃

2
 

(1.12) 

Where 𝑑𝑖 is module distance from plan shape centroid 

The global shear force leads to horizontal force causing compression and tension forces 

in diagonals belonging to web facades. 

𝑁𝑚,𝑘,𝑉 = ±
𝑉𝑚𝑐𝑜𝑠𝛼𝑘

∑ 𝑐𝑜𝑠𝛼𝑖
𝑛𝑘
𝑖=1

𝑐𝑜𝑠𝜃

2
 (1.13) 

Where α is the angle between module and wind direction. 

By summing all the previous contributions from Equations (1.11)(1.12)(1.13), it is 

possible to calculate the total axial force in each diagonal of each module and to assess 

the minimal cross-sectional area necessary to guarantee strength and stability 

requirements.  

In a second step, the strength and stiffness-based approaches are applied to the 100-story 

diagrid building with rectangular plan considering different diagonal angle (𝜃 = 64°, 𝜃 =

69° and 𝜃 = 79°) and then the results are compared. Of course, the height to width ratio 

is different in function on which side (larger/shorter) is considered. On the basis of the 

results, it is worth to note that the design can be governed by only the strength-, only the 

stiffness-based approach or both of them in function of which façade and module is 

examined. In fact, for the larger side the strength demand prevails at the upper modules, 

whereas the stiffness demand at the lower ones. On the other hand, on the shorter side the 

strength governs the design for the whole building height for 𝜃=64° and stiffness for 𝜃 =

79°. In the case of 𝜃 = 69° both methodologies lead to the same results. In addition, the 

comparison between the two approaches is carried out in terms of horizontal 

displacements, interstory drifts and DCR1 in order to highlight the structural performance 

by changing the diagonal angle. With regard to the stiffness design, the top displacement 

is always lower than the target limit value for all three geometries. Conversely, the 

 
1 DCR stands for demand capacity ratio, and it is obtained as axial force to yield/buckling capacity 

ratio 
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maximum value of the interstory drift 𝑑ℎ is not satisfied mainly at upper modules and it 

is possible to note that the higher is the diagonal angle, the higher is the maximum value 

of 𝑑ℎ because the diagonal member become longer and so more flexible. Concerning the 

strength verification, unsatisfactory performance is observed for solutions 𝜃 = 64° and 

𝜃 = 69° for which 25% of elements have DCR higher than 1, whereas for solution 𝜃 =

79° only 0.3% of elements collapse. On the contrary, in the case of strength design, the 

top displacement exceeds the limit value only for 𝜃 = 79° due to higher flexibility and 

the interstory drift is not fulfilled as in the previous approach. Regarding the DCR, almost 

no diagonals reach DCR=1. Generally, in both methodologies interstory drift problem is 

found, and this can be resolved by introducing a secondary bracing system (SBS) as it is 

shown in [16]. The study performed in this research paper is also carried out by Mele in 

[17] considering a 90-story tall diagrid building with different diagonal angles and the 

investigations confirm the previous results. 

Further research work is published by Mele et al. [18] underlying th effect of 

slenderness on the diagrid structures design by means of both stiffness- and strength-

based approaches. Considering a tall building with varying angle from 50° to 80° and 

slenderness from 2 to 8, it is possible to note that the strength requirement governs the 

design for aspect ratio between 2 and 4 without the influence of the diagonal angle and 

the weight is linearly proportional to H/B, whereas the stiffness prevails for aspect ratio 

higher than 6 and the weight is more than linearly proportional to H/B. The solution with 

H/B=5 represents instead a transition between the two previous behaviours and it 

emphasizes the condition in which both approaches return comparable weight. 

In conclusion, all the studies described previously always confirm the dominant 

role of diagonal angle in design, but they also point out that stiffness and strength 

requirements must be considered complemental and not independent in order to achieve 

a complete design process [14]. Although at the early stage of design it is impossible to 

establish which one will govern the design, it has been underlined that the strength criteria 

prevail in buildings with low diagonal angle and the stiffness criteria prevails in buildings 

with steep diagonal angle. 



Chapter 1    

14 
 

1.3.2. METHODS FOR THE STRUCTURAL ANALYSIS  

As a means to solve various project-specific complex design of diagrid structures, 

simplified methodologies are requested for performing the structural analysis in the 

preliminary design in terms of displacements, rigidity and diagonal axial forces. As the 

Finite Element Analysis is mandatory for detailed models in the ultimate design stages, 

at the early stage of design a simplified analysis is a requisite to understand the overall 

structural behaviour in function of the fundamental diagrid parameters. As a matter of 

fact, the final model depends strongly on the decisions made in the preliminary stage and 

therefore it is necessary to define a reliable and effective method alternative to FEM. As 

follows, two methods are described: the modular method (MM) and the matrix-based 

method (MBM). 

1.3.2.1. MODULAR METHOD (MM) 

Despite diagrid structures have been recognized from an aesthetic perspective 

thanks to the flexible arrangement of plane layout, several researchers have developed 

studies mainly on diagrid tall buildings with rectangular plan such as Moon in [4] and 

Guo in [19]. The former has proposed a lateral stiffness calculation for only rectangular 

diagrid structures neglecting web contribution in bending rigidity, whereas the latter has 

performed the same Moon’s study but considering web contribution in the bending 

stiffness. On the contrary, few works have been published regarding arbitrary polygonal 

diagrid structures. The first research paper providing a simplified calculation model of 

lateral stiffness of arbitrary polygonal diagrid buildings is [20] by Liu and Ma. The 

proposed method is called modular method. It consists into dividing the structure into 

modules along the entire height in order to generate a simplified structure constituted by 

nodes and elastic rods as it is shown in Figure 1.8. Each node represents a module 

considering its relative lateral stiffness, whereas the rods connect nodes with each other. 
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Figure 1.8 - Schematic scheme for the applicability of modular method in diagrid structures: (a) diagrid structure (b) 
modularization (c) nodes with stiffness (d) simplified structure [20] 

In order to evaluate the lateral displacement, it is necessary to distinguish shear and 

bending contribution for lateral stiffness as well as for lateral displacement. It means that 

the total lateral displacement will be given by applying the superposition principle: 

𝑢𝑣𝑖 =
𝑉1
𝐾𝑣1

+
𝑉2
𝐾𝑣2

+⋯+
𝑉𝑖
𝐾𝑣𝑖

 (1.14) 

𝑢𝑚𝑖 =
𝑀1

𝐾𝑚1
ℎ𝑖 +

𝑀2

𝐾𝑚2
ℎ𝑖−1 +⋯+

𝑀𝑖

𝐾𝑚𝑖
ℎ𝑖−(𝑖−1) 

(1.15) 

𝑢𝑖 = 𝑢𝑣𝑖 + 𝑢𝑚𝑖 (1.16) 

Where 𝑢𝑣𝑖  and 𝑢𝑚𝑖  are shear and bending lateral displacements of the i-th module, 

respectively, 𝑉𝑖  and 𝑀𝑖 are the shear and bending forces at i-th module, respectively, 𝐾𝑣𝑖 

and 𝐾𝑚𝑖  are the shear and bending rigidities of i-th module, respectively. Known the 

lateral stiffness of the structure, the lateral displacement can be calculated. The modular 

method is based on the following hypothesis: (a) diagonals are only subjected to axial 

force; (b) linear elastic behaviour of diagonals; (c) the section planarity after deformation 

[20]. Therefore, the expressions of shear and bending stiffnesses are obtained by applying 

horizontal displacement ∆𝑣 and rotation ∆𝛽 to each module, respectively, and by means 

of compatibility, constitutive and equilibrium equations and geometrical considerations, 

Liu and Ma have provided these following equations for the calculation of shear and 

bending stiffnesses: 

(a) (b) (c) (d) 
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𝐾𝑉 =
𝐸𝐴𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝛾

ℎ
∑cos2 𝛼𝑖

𝑁

𝑖=1

+
𝐸𝐴 sin3 𝜃 cos2 𝛾  𝑠𝑖𝑛𝛾

ℎ
∑sin2 𝛼𝑖

𝑁

𝑖=1

 
(1.17) 

𝐾𝑚 =
𝐸𝐴 sin3 𝜃 sin3 𝛾

ℎ
∑𝐵𝑖

2

𝑁

𝑖=1

 
(1.18) 

Where E is the Young modulus, A the diagonal cross-sectional area, 𝜃 the angle between 

diagonals and main ring beams in the façade, 𝛾 the façade inclination with respect to the 

horizontal plane, 𝛼𝑖 the angle between main ring beam and shear direction, h the module 

height, 𝐵𝑖 the distance of diagonals to neutral axis in the main ring beam plane. All the 

geometrical parameters are shown in Figure 1.9. Differently from 𝐾𝑚 which is constituted 

only by one term, the shear stiffness 𝐾𝑉 is obtained by the sum of two contributions. The 

first part is related to the effect of shear parallel to the main ring beam, the second part is 

instead related to the effect of shear orthogonal to the main ring beam. These equations 

represent a generalization of Moon formulae in [4] because they include the effect of 

inclined facades and polygonal planar shapes. Further studies are carried out in order to 

confirm the validity of the modular method by comparing the results with the ones 

obtained from FEM analysis. The results show a good agreement and the possible relative 

errors are on the safe side. 

Figure 1.9 - Scheme of diagrid module and representation of geometrical properties for the definition of shear and bending 
stiffness in the modular method [20] 
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1.3.2.2. MATRIX-BASED METHOD (MBM) 

Another methodology for the structural analysis of a generic freeform diagrid was 

suggested, the so-called matrix-based method proposed by Lacidogna et al. in [21]. It 

consists into the direct assessment of the complete structure stiffness matrix, differently 

from the modular method that considers only bending and shear stiffnesses. Thus, from 

the structural analysis it is possible to assess the overall structural behaviour not only in 

terms of vertical and lateral deformability, but also in terms of out-of-plane and in-plane 

floor rotations.  

The main hypotheses of the MBM are the same ones employed by Moon et al. in 

[4] and Montuori et el. in [14]: (a) linear elastic behaviour of diagonals subjected only to 

axial force; (b) the floor planarity assumption after structure deformation, so the floors 

are assumed rigid in-plane; (c) the intra-module floors are neglected. By means of these 

assumptions the system is constituted by only six degrees of freedom related to the 

displacements and the rotations of each floor for a three-dimensional structure. For this 

reason, this procedure is more convenient than the Finite Element Method from a 

computational perspective since FEM assembles the local stiffness matrices of single 

elements and therefore it considers a huge number of DOFs. In order to assess the global 

stiffness matrix of the structure that correlates the inputs (external forces) and the outputs 

(floor displacements), each matrix coefficient 𝑘𝑖𝑗 has been defined in the Matlab code as 

the total reaction force (or moment) on the ith floor due to an imposed unitary floor 

displacement (or rotation) on the jth floor [21]. Thus, the diagrid stiffness matrix, the 

displacements, the rotations of the floors and the diagonal axial forces are calculated by 

the proposed model for a given diagrid geometrical configuration and external forces.  

For the sake of clarity as a means to understand the main methodology theory, the 

analysis of two-dimensional system has been carried out and therefore each floor has two 

degrees of freedom. The diagrid structure is subjected to lateral load causing lateral 

displacement and out-of-plane rotation. The relationship between external forces and 

displacement can be defined as Hooke’s law: 

{ 
{𝐹}
{𝑀}

 } = [ 
[𝐾𝐹𝛿] [𝐾𝐹𝜑]

[𝐾𝑀𝛿] [𝐾𝑀𝜑]
 ] { 

{𝛿}
{𝜑}

 } 
(1.19) 
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Where N is the number of floors, {𝐹} and {𝑀} are N x 1 forces and moments vectors, 

respectively; {𝛿} and {𝜑} are N x 1 floor displacements and rotations vectors; [𝐾𝐹𝛿], 

[𝐾𝐹𝜑], [𝐾𝑀𝛿] and [𝐾𝑀𝜑] are N x N stiffness matrices that correlate floor forces to floor 

displacements, floor forces to floor rotations, floor moments to floor displacements and 

floor moments to floor rotations, respectively.  Each stiffness coefficient 𝑘𝑖𝑗 is computed 

by means of the analytical definition according to which an imposed unitary horizontal 

displacement or rotation to jth floor generates diagonal deformations, diagonals axial 

force and the total reaction force on the ith floor. The schematic schemes are shown in 

Figure 1.10. 

Figure 1.10 -Two-dimensional diagrid structural system for the definition of the matrix-based method MBM. Calculation of 
the stiffness coefficients: (a) unitary horizontal displacement applied to the jth floor; (b) unitary rotation applied to the jth 
floor [21] 

The expressions of 𝑘𝑖𝑗 are provided in [21] and they are reported as follow: 

• Matrix [𝐾𝐹𝛿]: 

𝑘𝑖,𝑖
𝐹𝛿 = ∑ 𝐸𝑑,𝑖−1𝐴𝑑,𝑖−1

𝑛𝑖−1

𝑑=1

∆𝑥𝑑,𝑖−1
2

𝐿𝑑,𝑖−1
3 +∑𝐸𝑑,𝑖𝐴𝑑,𝑖

𝑛𝑖

𝑑=1

∆𝑥𝑑,𝑖
2

𝐿𝑑,𝑖
3  

(1.20) 

𝑘𝑖−1,𝑖
𝐹𝛿 = −∑ 𝐸𝑑,𝑖−1𝐴𝑑,𝑖−1

𝑛𝑖−1

𝑑=1

∆𝑥𝑑,𝑖−1
2

𝐿𝑑,𝑖−1
3  

(1.21) 

𝑘𝑖+1,𝑖
𝐹𝛿 = −∑𝐸𝑑,𝑖𝐴𝑑,𝑖

𝑛𝑖

𝑑=1

∆𝑥𝑑,𝑖
2

𝐿𝑑,𝑖
3  

(1.22) 
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• Matrix [𝐾𝐹𝜑]: 

𝑘𝑖,𝑖
𝐹𝜑
= −∑ 𝐸𝑑,𝑖−1𝐴𝑑,𝑖−1

𝑛𝑖−1

𝑑=1

∆𝑥𝑑,𝑖−1∆𝑦𝑑,𝑖−1
𝐿𝑑,𝑖−1
3 (𝑥𝑑,𝑖−1,𝑖 − 𝑥𝐶,𝑖)

−∑𝐸𝑑,𝑖𝐴𝑑,𝑖

𝑛𝑖

𝑑=1

∆𝑥𝑑,𝑖∆𝑦𝑑,𝑖
𝐿𝑑,𝑖
3 (𝑥𝑑,𝑖,𝑖 − 𝑥𝐶,𝑖) 

(1.23) 

𝑘𝑖−1,𝑖
𝐹𝜑

= ∑ 𝐸𝑑,𝑖−1𝐴𝑑,𝑖−1

𝑛𝑖−1

𝑑=1

∆𝑥𝑑,𝑖−1∆𝑦𝑑,𝑖−1
𝐿𝑑,𝑖−1
3 (𝑥𝑑,𝑖−1,𝑖 − 𝑥𝐶,𝑖) 

(1.24) 

𝑘𝑖+1,𝑖
𝐹𝜑

= ∑𝐸𝑑,𝑖𝐴𝑑,𝑖

𝑛𝑖

𝑑=1

∆𝑥𝑑,𝑖∆𝑦𝑑,𝑖
𝐿𝑑,𝑖
3 (𝑥𝑑,𝑖,𝑖 − 𝑥𝐶,𝑖) 

(1.25) 

• Matrix [𝐾𝑀𝛿]: 

𝑘𝑖,𝑖
𝑀𝛿 = −∑ 𝐸𝑑,𝑖−1𝐴𝑑,𝑖−1

𝑛𝑖−1

𝑑=1

∆𝑥𝑑,𝑖−1∆𝑦𝑑,𝑖−1
𝐿𝑑,𝑖−1
3 (𝑥𝑑,𝑖−1,𝑖 − 𝑥𝐶,𝑖)

−∑𝐸𝑑,𝑖𝐴𝑑,𝑖

𝑛𝑖

𝑑=1

∆𝑥𝑑,𝑖∆𝑦𝑑,𝑖
𝐿𝑑,𝑖
3 (𝑥𝑑,𝑖,𝑖 − 𝑥𝐶,𝑖) 

(1.26) 

𝑘𝑖−1,𝑖
𝑀𝛿 = ∑ 𝐸𝑑,𝑖−1𝐴𝑑,𝑖−1

𝑛𝑖−1

𝑑=1

∆𝑥𝑑,𝑖−1∆𝑦𝑑,𝑖−1
𝐿𝑑,𝑖−1
3 (𝑥𝑑,𝑖−1,𝑖−1 − 𝑥𝐶,𝑖−1) 

(1.27) 

𝑘𝑖+1,𝑖
𝑀𝛿 = ∑𝐸𝑑,𝑖𝐴𝑑,𝑖

𝑛𝑖

𝑑=1

∆𝑥𝑑,𝑖∆𝑦𝑑,𝑖
𝐿𝑑,𝑖
3 (𝑥𝑑,𝑖,𝑖+1 − 𝑥𝐶,𝑖+1) 

(1.28) 

 

• Matrix [𝐾𝑀𝜑]: 

𝑘𝑖,𝑖
𝑀𝜑

= −∑ 𝐸𝑑,𝑖−1𝐴𝑑,𝑖−1

𝑛𝑖−1

𝑑=1

∆𝑦𝑑,𝑖−1
2

𝐿𝑑,𝑖−1
3 (𝑥𝑑,𝑖−1,𝑖 − 𝑥𝐶,𝑖)

2

+∑𝐸𝑑,𝑖𝐴𝑑,𝑖

𝑛𝑖

𝑑=1

∆𝑦𝑑,𝑖
2

𝐿𝑑,𝑖
3 (𝑥𝑑,𝑖,𝑖 − 𝑥𝐶,𝑖)

2
 

(1.29) 

𝑘𝑖−1,𝑖
𝑀𝜑

= −∑ 𝐸𝑑,𝑖−1𝐴𝑑,𝑖−1

𝑛𝑖−1

𝑑=1

∆𝑦𝑑,𝑖−1
2

𝐿𝑑,𝑖−1
3 (𝑥𝑑,𝑖−1,𝑖 − 𝑥𝐶,𝑖)(𝑥𝑑,𝑖−1,𝑖−1 − 𝑥𝐶,𝑖−1) 

(1.30) 
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𝑘𝑖+1,𝑖
𝑀𝜑

= −∑𝐸𝑑,𝑖𝐴𝑑,𝑖

𝑛𝑖

𝑑=1

∆𝑦𝑑,𝑖
2

𝐿𝑑,𝑖
3 (𝑥𝑑,𝑖,𝑖 − 𝑥𝐶,𝑖)(𝑥𝑑,𝑖,𝑖+1 − 𝑥𝐶,𝑖+1) 

(1.31) 

Where L is the diagonal length, E the Young’s modulus, A the diagonal cross-sectional 

area, ∆𝑥 and ∆𝑦 are the differences in the X- and Y-coordinates of the diagonal nodes 

belonging to each diagonal, respectively, 𝑛𝑖  and 𝑛𝑖−1  are the number of diagonals 

included within the modules i and i-1, 𝑥𝑑,𝑖−1,𝑖  is the diagonal x-coordinate included 

within the (i-1)th module and referred to the ith floor, 𝑥𝐶,𝑖  is the ith floor centroid 

coordinate [21]. For each parameter, the first subscript refers to the diagonal and the 

second one to the diagonal module. After the calculation of all the stiffness coefficients, 

the diagrid global stiffness matrix can be obtained by inverting the linear equation (1.19): 

{ 
{𝛿}
{𝜑}

 } = [ 
[𝐾𝐹𝛿] [𝐾𝐹𝜑]

[𝐾𝑀𝛿] [𝐾𝑀𝜑]
 ]

−1

{ 
{𝐹}
{𝑀}

 } 
(1.32) 

This procedure was implemented in Matlab code and it solves automatically the two-

dimensional structural problem. Further investigations have been carried out regarding 

the analysis of three-dimensional diagrid systems following the same procedure. In this 

case the system has six degree of freedom per floor and the equation (1.19) is generalized 

as follows: 

 (1.33) 

 

{
  
 

  
 

 

{𝐹𝑥}

{𝐹𝑦}

{𝑀𝑧}

{𝑀𝑥}

{𝑀𝑦}

{𝐹𝑧}

 

}
  
 

  
 

=

[
 
 
 
 
 
 
 
 
 

 

[𝐾𝐹𝑥𝛿𝑥] [𝐾𝐹𝑥𝛿𝑦] [𝐾𝐹𝑥𝜑𝑧] [𝐾𝐹𝑥𝜑𝑥] [𝐾𝐹𝑥𝜑𝑦] [𝐾𝐹𝑥𝛿𝑧]

[𝐾𝐹𝑦𝛿𝑥] [𝐾𝐹𝑦𝛿𝑦] [𝐾𝐹𝑦𝜑𝑧] [𝐾𝐹𝑦𝜑𝑥] [𝐾𝐹𝑦𝜑𝑦] [𝐾𝐹𝑦𝛿𝑧]

[𝐾𝑀𝑧𝛿𝑥] [𝐾𝑀𝑧𝛿𝑦] [𝐾𝑀𝑧𝜑𝑧] [𝐾𝑀𝑧𝜑𝑥] [𝐾𝑀𝑧𝜑𝑦] [𝐾𝑀𝑧𝛿𝑧]

[𝐾𝑀𝑥𝛿𝑥] [𝐾𝑀𝑥𝛿𝑦] [𝐾𝑀𝑥𝜑𝑧] [𝐾𝑀𝑥𝜑𝑥] [𝐾𝑀𝑥𝜑𝑦] [𝐾𝑀𝑥𝛿𝑧]

[𝐾𝑀𝑦𝛿𝑥] [𝐾𝑀𝑦𝛿𝑦] [𝐾𝑀𝑦𝜑𝑧] [𝐾𝑀𝑦𝜑𝑥] [𝐾𝑀𝑦𝜑𝑦] [𝐾𝑀𝑦𝛿𝑧]

[𝐾𝐹𝑧𝛿𝑥] [𝐾𝐹𝑧𝛿𝑦] [𝐾𝐹𝑧𝜑𝑧] [𝐾𝐹𝑧𝜑𝑥] [𝐾𝐹𝑧𝜑𝑦] [𝐾𝐹𝑧𝛿𝑧]

 

]
 
 
 
 
 
 
 
 
 

 

{
  
 

  
 

 

{𝛿𝑥}

{𝛿𝑦}

{𝜑𝑧}

{𝜑𝑥}

{𝜑𝑦}

{𝛿𝑧}

 

}
  
 

  
 

 

Where {𝐹𝑥}, {𝐹𝑦} and {𝐹𝑧} are N x 1 vectors of floor forces along X, Y and Z direction, 

{𝑀𝑥}, {𝑀𝑦} and {𝑀𝑧} are N x 1 vectors of out-of-plane floor moments along X and Y 

direction and in-plane floor torque moment along Z direction. In analogy, {𝛿𝑥}, {𝛿𝑦} and 

{𝛿𝑧} are N x 1 vectors of floor displacements along X, Y and Z direction, {𝜑𝑥}, {𝜑𝑦} and 

{𝜑𝑧} are N x 1 vectors of out-of-plane floor rotations along X and Y direction and in-



 1 - Introduction 

21 
 

plane floor rotations along Z direction. The global stiffness matrix of 3D spatial diagrid 

structure has 6N x 6N dimensions and it contains submatrices N x N that correlate floor 

force-moment vector to floor displacement-rotation vector [21]. For the symmetry 

property of [K] only 21 sub-matrices have to be calculated and the following sub-matrices 

[𝐾𝐹𝑥𝜑𝑥], [𝐾𝐹𝑦𝜑𝑦], [𝐾𝑀𝑥𝛿𝑥] and [𝐾𝑀𝑦𝛿𝑦] point out the connection between bending and 

shear stiffnesses that define the lateral deflection [10]. From the equation (1.33) it is 

possible to evaluate displacements and rotations knowing the external acting forces or to 

evaluate the axial forces in the diagonals by means of compatibility and constitutive 

equations. 

1.3.3. OPTIMIZATION OF DIAGRID GEOMETRY 

As explained in the previous chapters, the preliminary design is a fundamental step 

in diagrid design since it greatly influences the structural behaviour. According to the 

preliminary design, it is necessary to assess the diagonal cross sections in function of 

many geometrical parameters and several constraints, such as stiffness, strength and 

constructability requirements. Thus, this process can be onerous from a computational 

point of view. For this reason, this Chapter presents some research papers that have 

provided optimization techniques for diagrid structures to identify the optimal solution 

among a huge number of possibilities. 

In the research paper [4] Moon et al. emphasize the major role of the diagonal angle 

in the diagrid structural design in function of the height. As a matter of fact, employing 

20-, 42- and 60-story tall buildings and dimensioning diagonal cross-sectional area 

through displacement requirement, it is found that the optimal angle increases with 

increasing story height since bending deformation prevails. In particular, the optimal 

angle has a range between 65° and 75° for 60-story building and around 10° lower for 42-

story one. Moreover, it was found that the lateral stiffness is dominant for high aspect 

ratio, i.e. from 5 to 7, whereas the strength is prevalent for low aspect ratio, i.e. 2. 

In the following year Moon published another work paper [15] investigating the 

structural behaviour of diagrid structures with varying angle compared to those with 

uniform angle. Based on shear and bending moment trends along the building height 

under uniform lateral load, the bending stiffness is mainly required at the base because it 

increases quadratically towards the base, whereas the shear stiffness is requested at the 
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top due to its linear trend. Thus, Moon has supposed that diagrid structures with gradually 

stepper angle towards the base would have better structural efficiency than those with 

uniform angle. In order to demonstrate that, the author has carried out several analyses 

employing three different diagrid heights, precisely 40-, 60- and 80-story buildings. For 

each of them three different angle configurations have been considered: (a) varying angle 

with steeper angle at the base (b) uniform-angle (c) varying angle with steeper angle at 

the top, as it is shown in Figure 1.11. 

 

Figure 1.11 - Three diagrid angle configurations: (a) varying angle with steeper angle at the base (b) uniform angle (c) 
varying angle with steeper angle at the top [15] 

According to the results, it is found that uniform angle configuration leads to the most 

economical solution in terms of material consumption with respect to the varying angle 

pattern, but it is valid only for aspect ratio lower than 7 because short buildings act 

similarly to shear beams and therefore the varying-angle solutions results to be inefficient. 

Conversely, the structural behaviour is opposite for aspect ratio higher than 7. In taller 

buildings the bending governs the design and therefore the varying-angle diagrid with 

steeper angle towards the base seems to be the best economical design [15]. The analysis 

related to varying angle with steeper angle towards the top is performed only for 

completeness even if these solutions are the worst ones independently from the aspect 

ratio. 

Although Moon has demonstrated the structural efficiency of varying angle pattern, 

his proposed models are not really efficient because the diagonal does not remain straight 

(a) (b) (c) 
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in its whole length over the total building height, but its direction changes in 

correspondence of the passage from one module to another one. In fact, Zhou et al. in 

[22] underline the importance of diagonal continuity and directness of load path through 

straight diagonals in order to guarantee an enhanced structural performance of tall 

building. The first authors that have performed investigations on the optimal diagrid 

geometries considering straight diagonals with gradually varying angles are Zhang et al. 

in [23]. In the research paper an approximate methodology for performing the preliminary 

design based on stiffness and strength requirements and expressions of the optimal 

diagonal angle in function of aspect ratio ranging from 3.6 to 9 are provided: 

𝜃2,𝑜𝑝𝑡 = arctan
𝐻/𝐵

1 + 0.475√
𝐻/𝐵
4.75

 (1.34) 

{
 
 

 
 
𝜃1,𝑜𝑝𝑡 = 𝜃2,𝑜𝑝𝑡                                                                                           𝑓𝑜𝑟 𝐻/𝐵 ≤ 3.5

𝜃1,𝑜𝑝𝑡 =
1

(1 +
ln(𝐻/𝐵)
3.5

)

𝐻/𝐵
2

(𝜃2,𝑜𝑝𝑡 − 𝑎𝑟𝑠𝑖𝑛
1

√3
) + 𝑎𝑟𝑠𝑖𝑛

1

√3
   𝑓𝑜𝑟 𝐻/𝐵 > 3.5 

(1.35) 

Zhang et al. define two geometrical parameters, namely the top angle 𝜃1 and the bottom 

angle 𝜃2 (Figure 1.12a). The typical values can be presumed by considering that in tall 

buildings gravity load and bending moment prevail in the lower part, and the shear in the 

upper part. Consequently, the lower limit of 𝜃1 is 35° in order to maximize shear rigidity 

at the top levels and the value of 𝜃2 will be greater in function of the aspect ratio to 

maximize bending rigidity at lower levels. The main aim of the study on the optimal 

geometry was to identify the best combination of 𝜃1 − 𝜃2 resulting in less material 

consumption according to strength and stiffness criteria. Based on the results, it is found 

the critical value of the aspect ratio, i.e. H/B=5, representing the optimal solution 

transition from the uniform-angle configuration for short structures to the varying angle 

one for tall structures. In fact, the optimal value of 𝜃2 increases with the aspect ratio and 

the correspondent optimal value of 𝜃1 decreases with the aspect ratio. Furthermore, for 

short structures with the aspect ratio lower than 5 the solutions with 𝜃2,𝑜𝑝𝑡  are all 

structurally acceptable independently from 𝜃1. Conversely, for tall buildings the number 

of acceptable solutions is drastically reduced having fewer  𝜃1 −  𝜃2  possible 

combinations [23]. Out of the optimal range of 𝜃2, the influence of 𝜃1 has much more 

effect and the uniform-angle diagrid is more economical than the varying angle one. 
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Figure 1.12 - Varying-angle diagrid configurations for the definition of optimal solution in terms of material consumption: 
(a) straight diagonals (b) curved diagonals [24] 

Zhao et al. have performed further studies in  [24] regarding varying-angle straight 

diagonals under seismic action. By comparing the results to the ones obtained with wind 

action [23], the formulation of the optimal value of 𝜃2,𝑜𝑝𝑡 is the same Equation (1.34), 

whereas the optimal value of 𝜃1 is not affected by either the aspect ratio or 𝜃2,𝑜𝑝𝑡 . In fact, 

it is very close to 35° or precisely to 𝑎𝑟𝑠𝑖𝑛(1/√3). Moreover, the authors have proposed 

an alternative diagrid pattern made up of curved diagonals defined by the top tangent 

angle 𝜃1 and the bottom tangent angle 𝜃2 (Figure 1.12b). In this case considering a set of 

models from 30- up to 75- story with curved diagonals under wind and seismic loads, the 

paper provides empirical equations for the optimal values of the top and bottom angles: 

𝜃2,𝑜𝑝𝑡 = arctan(𝐻/𝐵) (1.36) 

𝜃1,𝑜𝑝𝑡 = 0.8 (
𝐻/𝐵

8
)

1
8

𝜃2,𝑜𝑝𝑡 
(1.37) 

It is found out that under seismic action if 𝜃2 is lower than 𝜃2,𝑜𝑝𝑡, the optimal value of 𝜃1 

increases close to  𝜃2 and therefore the uniform-angle diagrid is the preferable economical 

solution. However, if  𝜃2 is greater than 𝜃2,𝑜𝑝𝑡, the optimal value of  𝜃1 decreases until 

(a) (b) 
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35°. In addition, the admissible value of  𝜃1 ranging from 50° to 70° is greater in contrast 

to varying-angle straight diagonals. 

Another scientific contribution in diagrid literature has been developed by Montuori 

et al. in [25] exploring alternative design strategies from the structural perspective. For 

this purpose, eight alternative geometrical patterns, namely 3 patterns of regular diagrid, 

3 patterns of variable angle and 2 patterns of variable density (Figure 1.13a), of 90-story 

diagrid building have been investigated under vertical and wind loads. The latter pattern 

represents a new diagonal layout proposed by the authors consisting into increasing the 

number of diagonals from the top to the building base to follow the variable stiffness and 

strength demands along the height. These models have been compared in terms of 

horizontal displacement, interstory drift ratio and DCR after performing the structural 

analysis using FEM. In order to identify the optimal solution among the different patterns, 

a structural efficiency parameter has been defined as the inverse of the top displacement 

multiplied by the structural weight [25]. Figure 1.13b shows the results for the optimized 

patterns. It is found that the optimal pattern is VA1. Conversely, the solutions 80° and 

VA3 are the least efficient and the regular patterns 60° and 70° and the variable ones 

VA2, VD1 and VD2 have slight differences. 

Figure 1.13 - (a) Eight alternative geometrical patterns of diagrid structures: regular, varying angle and varying density (b) 
Efficiency parameter for the optimized solutions [25] 

In the following paper, Angelucci and Mollaioli [26] have investigated a regular 

diagrid building 351 m tall with optimal (69°) and non-optimal (82°) diagonal angles 

under gravity and wind loads to assess the effectiveness of the stiffness-based 

methodology proposed by Moon in [4], comparing the outcomes with the ones evaluated 

by means of the iterative strength-based and displacement-based optimization. Based on 

results, it is found that the Moon stiffness-based approach is valid only for a range of 

diagonal angle between 60°-70° because the method leads to excessive material usage for 

(a) (b) 
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steeper angles. Furthermore, the authors have analysed the performance of different 

density configurations for the case of 82° diagonal angle in order to ensure the stiffness 

demand. To this aim, two typologies of design pattern are considered: diagrid-outrigger 

system, thickening the pattern density at fixed levels (Figure 1.14a) and varying density 

diagrid system, decreasing gradually the number of diagonals towards upper levels 

(Figure 1.14b). These studies have pointed out that the varying density diagrid is more 

effective in limiting lateral drift than the diagrid-outrigger system, though the latter 

ensures a drastic weight reduction. 

Figure 1.14 - Non-uniform diagrid configurations to ensure stiffness requirement: (a) concentrated outrigger at fixed levels 
(b) gradual varying density system [26] 

Another important contribution in literature worth of note is [27] by Tomei et al. 

regarding the optimization of structural patterns for diagrid structures. The paper 

proposed an alternative design strategy based on structural optimization, employing the 

mono-objective genetic algorithm. The latter consists in the definition of the objective 

function OF, i.e. the structural weight, that has to be minimize ensuring the lateral 

stiffness and strength requirements. This procedure has been applied to different patterns 

for the 90-story tall diagrid building. Besides employing the conventional regular, 

variable-angle, Tomei et al. have introduced a double-density regular pattern, obtained by 

doubling the diagonal layout, a variable-density patter and an ISO pattern, made up of 

diagonals along the principal stress lines considering the building as equivalent cantilever 

(a) (b) 
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beam. The main study purpose is the assessment of the structural efficiency of the 

different diagrid patterns in terms of unit structural weight, diagonal cross section 

distribution, lateral displacements, interstory drift ratio and DCR besides the confirmation 

of simplified design methodologies validity. All of them have been also treated in the 

abovementioned papers. The emerging topic is related to the definition of the construction 

complexity index in order to predict the best solution in terms of efficiency and 

economics. This parameter has been defined as the sum of the following normalized 

parameters: the weighted number of nodes, the number of different cross sections, the 

number of slices considering a maximum diagonal length of 12 m, the number of 

diagonals and the number of different lengths [27]. Figure 1.15 shows that the patterns 

80° and VD1 are characterized by the lowest value of the complexity index although the 

great structural weight. On the contrary, both complexity index and structural weight are 

low for the patterns 60°, 70° and VA. 

 

Figure 1.15 - Structural efficiency and economic assessment through the comparison between structural weight and 
complexity index for different diagrid patterns [27] 

The previous genetic algorithm-base optimization is also employed in the research 

of Mirniazmandan et al. [28] to assess the structural efficiency of various non-extruded 

forms different from the usual square and rectangular plans. Unlike the previous study, 

the optimization process is a multi-objective optimization since it has to minimized two 

objectives, i.e. the unit structural weight and the top displacement. These two objectives 

are conflicting as the reduction of the total weight leads to the increase of lateral 

displacement and therefore the optimization returns the average best solution instead of 

the optimum one. To this purpose, 64 parametric models of 180 m height with different 

geometric plans configurations generated by increasing the numbers of sides at the top 
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and base plans, ranging from 3 to 12 in addition to circle, are employed. From the iteration 

of polygonal cross-sections plans and diagrid angle, it is found that, fixing circle base 

plan, the displacement decreases and the weight increases for lower number of top plan’s 

sides, while both displacement and weight increases for lower base plan’s sides with fixed 

top circular plan. For these reasons, the models with best performance are those with base 

circular plan and 8-to-12-sided top plan in addition to circle. Under these considerations, 

the authors affirm that the efficiency grows with the number of polygonal cross sections. 

It is also found that the optimal diagonal angle range is between 53° and 70° in accordance 

with [4]. 

As can be found out in diagrid literature, most of research projects carried out in 

recent decades are concerned various diagrid configurations, starting from regular diagrid 

to varying floor plans, considering only lateral actions. However, it is necessary to take 

into account also torque actions, especially when the mass and stiffness distributions are 

not uniform due to asymmetrical conditions. This issue has been recently investigated in 

[29] by Lacidogna et al. The investigation of the influence of the diagonal inclination and 

the floor plan shape on the structural performance has been performed by means of the 

MBM described in Chapter 1.3.2.2. To this aim, a total of 96 diagrid models are employed 

combining four different heights (126, 168, 210 and 252 m), four different floor plan 

shapes (square, hexagon, octagon and circle) and six different numbers of intra-module 

floors (1, 2, 3, 4, 6 and 12), subjected simultaneously to uniformly distributed horizontal 

and torque loads [29]. Based on the results, it is evident that the structural behaviour is 

mainly affected by the diagonal angle, confirming the previous studies. Unlike the lateral 

stiffness for which it is maximized for diagonal angle ranging from 64° to 72° or greater 

values for taller buildings, the torsional stiffness is maximized for lower diagonal 

inclinations, 35°-38°, because the torsional behaviour depends only on the shear rigidity. 

Regarding the influence of floor plan shape on lateral displacement, slight differences are 

found among different models for diagonal inclination in the optimal range, whereas more 

accentuated dissimilarities far from the optimal condition. As far as torsional behaviour 

is concerned, the circular plan shape with optimal inclination minimizes torsional 

rotation. 

The diagrid tall building models proposed in [29] are also used in another research 

paper [30] by Lacidogna et al. In this case the desirability function approach has been 
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applied for the first time in order to find the best diagrid configuration in terms of 

stiffness, structural weight, performance and construction complexity. This procedure 

is based on the definition of two parameters, namely the individual 𝑑𝑖,𝑝 and overall 

desirability 𝑂𝐷𝑖 (Eq. (1.38)). The former has a range between 0 and 1 and it is evaluated 

for each solution referred to each response variable; the latter has also a range from 0 to 

1 and it is a global score for each diagrid geometry. In particular, the authors have 

considered twenty-four different diagrid geometries with different floor shapes and 

diagonal angles and four response parameters, i.e. top lateral displacement, top torsional 

rotation, mass and complexity index. 

𝑑𝑖,𝑝 = (
𝑚𝑎𝑥𝑖𝑝𝑖 − 𝑝𝑖

𝑚𝑎𝑥𝑖𝑝𝑖 −mini𝑝𝑖
)
𝑟𝑝

                  𝑂𝐷𝑖 =∏(𝑑𝑖,𝑝)
1/𝑘

𝑘

𝑝_=1

 
(1.38) 

The proposed methodology has been employed on 126-, 168-, 210- and 252-meter-tall 

buildings assuming a unitary 𝑟𝑝  for each response parameter. From the analysis, it is 

obtained that the best solution is always the three intra-module floors geometry with 

circular floor shape. Moreover, it is worth of note that the overall desirability is mainly 

affected by the diagonal angle, whereas both structure height and floor shape have minor 

contribution. Conversely, it is found that the worst diagrid geometries have one intra-

module floor due to the highest value of complexity index. The study has been completed 

with a parametric analysis by considering 4096 simulations obtained from different 

values of 𝑟𝑝 and the results show a slight influence of the exponent on the outcomes.  

Besides the typical geometrical parameters, there are other factors that can 

contribute to improve the structural performance of a diagrid building. For example, the 

geometry plan and the building cross-section can affect the structural behaviour. Their 

influence has been investigated in [31] by Ardekani et al. through a FEM analysis. In this 

research work a 160-meter steel diagrid structure has been employed under wind and 

earthquake actions. The geometry modifications are related to different number of shape 

sides from triangle to circle and two tapered building sections (concave and convex). As 

far as plan shape is concerned, it can be noted that the roof displacement increases with 

the number of plan sides with maximum value for the hexagonal plan, whereas the 

structural weight has an opposite trend because it decreases with minimum value for the 

circular plan. Regarding section modification, the tapered geometry results to be more 

efficient than the normal one. In particular, the concave model provides an enhanced 
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performance in terms of roof displacement and structural weight for any plan shape. 

Indeed, the concave sections have 20% less weight than normal structures. 

Recently, the structural design workflow has been enhanced through the 

Computational Design (CD) based on the generative design (GD). This procedure has 

been employed in [32] by Cascone et al. investigating structural efficiency and feasibility 

of optimal solutions. The generative design algorithm creates various and complex 

models by means of triangular units and it is based on the use of structural grammar, 

which is constituted by a shape grammar and structural optimization processes. The 

former generates infinite geometries discretizing the design domain in triangular units 

through diagonals, while the latter selects the optimal solution minimizing the unit 

structural weight by means of structural analysis and genetic algorithm. In particular, in 

the research work the generative design has been applied to three prismatic building 

models with different slenderness ratio H/B, namely 3, 5 and 6.6. Once the optimal 

diagrid pattern (TO) for each H/B are evaluated, the authors provide a comparison with 

regular (RE) diagrids and Principal Direction Inspired 2  (PDI) pattern in terms of 

performance indexes. The novelty of the grammar approach is offering the possibility of 

integrating non-quantitative criteria in the selection process [32]. From the Figure 1.16a 

it is evident that in the case of TO solutions the diagonal density is greater at the façade 

edges and the inclination is less inclined at the centre. Further, the proposed methodology 

has demonstrated its efficiency since it has returned a solution similar to the PDI pattern 

for H/B=6.6 due to the dominating stiffness demand. From the performance assessment, 

the comparative parameters have been defined, precisely the relative strength efficiency 

ratio 𝐸𝑆𝑇𝑅 , the relative stiffness efficiency ratio 𝐸𝑆𝑇𝐹  and the global efficiency parameter 

𝐸 = 𝐸𝑆𝑇𝑅 ∙ 𝐸𝑆𝑇𝐹 . Figure 1.16b shows that the TO patterns have the best performance and 

the best efficiency for each slenderness and they tend to behave similarly to PDI ones for 

H/B≥ 5. 

 

 

 

 

 

 
2 The Principal Direction Inspired pattern corresponds to ISO pattern employed in [28] 
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Figure 1.16  - Results of the structural gramma approach: (a) structural patterns: (RE) regular, (PDI) Principal Direction 
Inspired, (TO) topology optimisation (b) comparison among patterns in terms of efficiency parameters [32] 

Further investigations have been carried out in [33] by Orhan et al. regarding the 

genetic algorithm optimization applied to uniform- and varying-angle diagrid as in [15]. 

Three rectangular plan buildings with different heights, namely 30, 60 and 90 stories, and 

two base module shapes, namely Type 1 (Figure 1.17a) and Type 0 (Figure 1.17b), are 

manually modelled in FEM software in order to transfer in MATLAB a SAP2000 model 

file containing the model geometry (node coordinates, load patterns, loads and material 

properties). The optimization process has been performed on the basis of strength and 

stiffness-based approaches adopting simplified formulas proposed in literature [14, 23] to 

minimize the structural weight. In the case of uniform-angle structures, the optimal 

solution for each slenderness has been found minimizing the structural weight in function 

of the diagonal angle and based on results, it can be seen that the optimal angle increases 

with the aspect ratio independently from the type 0 or 1, as it has been studied in [2]. 

Figure 1.17 - Diagonal geometry types due to base module shape for application of optimization process in unifom- and 
varying-angle diagrid: (a) Type 1 (b) Type 0 [33] 

 In the case of varying-angle diagrid, the genetic optimization has been employed and 

coupled with MATLAB code. Once the optimal models have been defined for each height 

(a) (b) 
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and type, the structural analysis has been performed in terms of DCR, displacements, 

weight and complexity index CI. The results of the analyses confirm again the 

abovementioned literature studies and highlight that varying-angle models have better 

performance than uniform-angle ones although the latter have instead lower complexity 

index values. In addition, type 1 model shows to have greater weight than type 0 model 

in any case due to different load pattern [33]. 

Recently, a new design optimization algorithm has been proposed by Ashtari et al. 

in [34], the so-called accelerated fuzzy-genetic algorithm with bilinear membership 

function, modified cross over and penalty function ensuring better convergence rate with 

respect to the simple genetic algorithm. The reference models used in this study are 

obtained by considering a diagrid tall building with five different stories from 24 to 60-

stories, three different numbers of bays (4, 6 and 8) and three different building 

dimensions (15, 21 and 27 m). Thus, a total of 30 models are considered. The purpose of 

the study is to assess the optimal solution for each slenderness and building dimension by 

varying diagrid angles and cross-sectional areas in order to ensure strength, 

constructability and serviceability requirements. From the results shown in Figure 1.18 it 

can be seen that the optimum weight decreases for big plan dimensions because the lateral 

stiffness is increased and this is more evident for taller structures. Indeed, the weight 

reduction is respectively of 1% and 33% for 36- and 56-story structures. Moreover, the 

effect of the bay number on the weight is visible especially for taller buildings because 

fewer bays correspond to wider openings and consequently reduced material 

consumption. 

 

Figure 1.18 - Results of the accelerated fuzzy-genetic algorithm with bilinear membership function on diagrid structures: 
(a) Effect of plan dimension on the weight (b) Effect of height on the weight [34] 

(a) (b) 
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 Although the previous studies are mainly focused on the structural performance 

optimization aiming to minimize top displacement and material consumption in function 

of geometrical parameters, over the last two decades machine learning techniques have 

been applied on computational optimization for designing sustainable tall buildings in 

order to cope with the rapid worldwide tall building development and the consequent 

significant increasing of energy consumption. In particular, many studies have been 

carried out employing a general approach based on a single-floor level, but the proposed 

procedure requires a great amount of time to investigate an enormous number of design 

parameters. To overcome the computational problem, Ekici et al in [35] [36] have 

proposed a novel multi-zone optimization (MUZO) methodology consisting in 

subdivisions, called zones, of the high-rise building considered as separate design 

problems. In the research paper [36] the multi-zone optimization has been used on quad-

grid and diagrid scenarios to optimize the spatial daylight autonomy (sDA) and annual 

sunlight exposure (ASE), varying more than 200 design parameters for each scenario, 

such as glazing type, number, and rotation of diagonals [36]. By applying Illuminating 

Engineering Society (IES) recommendations ( 𝑠𝐷𝐴300/50%,𝑚𝑖𝑛 = 55% and 

𝐴𝑆𝐸1000,250ℎ,𝑚𝑎𝑥 = 10%), the results show that in the optimal models the sDA have 

greater values at the lower zones and lower values at upper zones due to the dense close 

environment. In addition, the quad-grid buildings provide better daylight performance 

than diagrid buildings.
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Chapter 2 

2. DIAGRID MODELS, EXTERNAL ACTIONS AND 

STRUCTURAL ANALYSIS 

This Chapter describes the diagrid building models employed in this Thesis 

highlighting the different geometrical parameters investigated, namely slenderness, 

diagonal inclination and floor plan shape. In Chapter 2.2 wind load assessment according 

to ASCE recommendation is provided. In Chapter 2.3 strength and stiffness expressions 

are reported. 

2.1. DIAGRID MODELS FOR TALL BUILDINGS ANALYSED IN 

THIS STUDY 

The proposed models in [29] [30] are employed in this study. In particular, four 

different building heights were investigated, precisely 126, 168, 210 and 252 m. For each 

height, twenty-four unform-angle diagrid structures were considered, obtained by varying 

the plan shape, i.e. square, hexagon, octagon and circle, and the diagonal inclination to 

which a different number of intra-module floors corresponds, i.e. 1, 2, 3, 4, 6 and 12, as 

it is shown in Figure 2.1. Thus, a total of ninety-six models of uniform-angle diagrid 

structures are obtained. These are analyzed in order to understand the influence of the 

geometrical parameters on the structural behaviour and to identify the best geometry able 

to minimize simultaneously lateral displacement, torsional rotation, mass and 

construction complexity. Note that each solution will be named with an acronym, 

constituted by a letter for the floor plan shape (S=square, H=hexagon, O=octagon, 

C=circle) and a number for the number of intra-module floors (1, 2, 3, 4, 6, 12). For 
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example, S6 is the model with square floor plan shape and six intra-module floors. In 

Chapter 5 varying-angle diagrid structures will be also investigated. 

In these models certain geometrical parameters are set constant along the building 

height, such as the inter-story height and total floor area. The diagrid structure is assumed 

to be made up of steel hollow circular section CHS with an elastic modulus of 210 GPa, 

steel density of 7.8 ton/m3 and yielding strength of 275 MPa.  

Figure 2.1 - Diagrid tall building models with (a) four different building heights, (b) four different floor plan shapes, (c) six 
different diagonal inclinations [29] 

These structures are assumed to be subjected to both vertical and horizontal loads. 

The former is assessed by combining 7 kN/m2 of dead load and 4 kN/m2 of live load. 

However, it is fundamental to remember that the vertical load is not entirely applied on 

the diagrid structure, since the load is mainly carried by the internal central core. Indeed, 

assuming that the core occupies 25% of the total area, as Montuori et al. have done in 

[14], only 37.5% of the gravity load is carried by the diagrid structure and therefore the 

total vertical load considered is equal to 4.125 kN/m2. As far as the horizontal load is 

concerned, this is generated by the wind and its effect is dual since it induces not only a 

horizontal action, but also a torque moment action. The assessment of these lateral actions 

is carried out through ASCE as it will be explained in the next Chapter 2.2. 

The following Table 2.1 and Table 2.2 summarize the main parameters of the diagrid 

structures. 

Inter-story height  3,5  m  
Total floor area  900 m2  
Diagonals' elastic modulus  210 GPa  
Steel density 7,8 ton/m3  

Table 2.1 - Main parameters of the diagrid buildings 

 



Chapter 2    

36 
 

 

 

  Number of intra-module floors 
  1 2 3 4 6 12 

Floor plan shape 

Square 34,99 54,46 64,54 70,35 76,61 83,21 
Hexagon 36,97 56,4 66,11 71,63 77,51 83,68 
Octagon 37,57 56,98 66,57 72 77,77 83,82 
Circle 38,37 57,73 67,17 72,48 78,11 83,99 

Table 2.2 - Diagonal angle [°] in function of the floor plan shape and the number of intra-module floors [29] 

2.2. WIND LOAD 

2.2.1. INTERACTION BETWEEN TALL BUILDINGS AND WIND ACTIONS 

The design of low-rise buildings with low slenderness is mainly governed by 

gravitational loads, whereas the wind load provides minor effects on the structural 

behaviour. Thus, for rigid structures the expected response under vertical and wind loads 

is static. On the contrary, in the case of tall buildings the wind load plays a major role in 

structural design producing a dynamic response. In particular, in tall buildings with 

aerodynamic shape susceptible to wind action the interaction between wind and structure 

becomes so significant that it modifies the response itself due to high lateral 

displacements. Generally, the wind load induces two important effects, namely 

aerodynamic and aeroelastic actions on the structure [37]. For this reason, the assessment 

of wind loads on slender building is essential. To this aim, various methods can be 

employed, but generally in the preliminary design engineers can refer to practice codes 

to evaluate the wind action. However, in specific and particular cases it is necessary to 

have a more accurate assessment: the typical approaches simulating the impact of the 

geometrical shape of the building on the wind-structure interaction are the wind tunnel 

test and the computational fluid dynamics (CFD) aiming to define the optimal profile of 

tall buildings, as well as to suggest local shape modifications (e.g. building corners or 

top), which ensure better aerodynamic performance [27]. In addition, the proposed 

standard procedures do not consider many issues, such as shielding effect due to the 

interference from other structures, wind directionality, across-wind response and dynamic 

effects including acceleration [38]. Nevertheless, the wind evaluation through National 

regulations is admissible for buildings in which higher modes have slight contribution in 
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displacement response [39] and in the preliminary design because the building geometry 

and properties are still unknown variables.  

2.2.2. ASCE 7-10 PROCEDURE FOR EVALUATING WIND LOADS 

In this Chapter it is shown how to calculate the lateral load due to wind on tall 

buildings according to ASCE 7-10 recommendation [40] in order to perform the 

preliminary design of diagrid structures. 

The basic wind speed V is assumed to be equal to 40 m/s supposing the tall building 

location in New York as Mele et al. have done in [41] for the Hearst Tower. The velocity 

pressure at height z is evaluated as follows: 

𝑞𝑧 = 0.613 𝐾𝑧  𝐾𝑧𝑡 𝐾𝑑𝑉
2  [

N

m2
]  for V in

m

s
 (2.1) 

Where 𝐾𝑑 is the wind directionality factor depending on the structure type and in the case 

of main wind force resisting system of enclosed and partially enclosed buildings ASCE 

recommends𝐾𝑑 = 0.85 , 𝐾𝑧  is the velocity pressure exposure coefficient, 𝐾𝑧𝑡  is the 

topographic factor assumed unitary and V is the basic wind speed. In order to evaluate 

the velocity pressure exposure 𝐾𝑧 ,  it is necessary to define the surface roughness and the 

exposure categories. Supposing that the building is in an urban area, the exposure 

category is B and 𝐾𝑧 is calculated as follows: 

𝐾𝑧 = 2.01 (
𝑧

𝑧𝑔
)

2
𝛼

 [−] for 15 ft. ≤ 𝑧 ≤ 𝑧𝑔 
(2.2) 

Where z is the height above ground level, 𝑧𝑔 and 𝛼 are tabulated in Table 2.3.  

Exposure α 𝑧𝑔 [ft] �̂� �̂� �̅� �̅� c l [ft] ϵ̅ 𝑧𝑚𝑖𝑛  [ft]
∗ 

B 7.0 1200 1/7 0.84 1/4 0.45 0.30 320 1/3.0 30 
∗𝑧𝑚𝑖𝑛  = minimium height used to ensure that the equivalent height  

�̅� is greater of 0.6h or 𝑧𝑚𝑖𝑛. 

Table 2.3 - Terrain exposure constant for definition of wind loads according to ASCE 7-10 [40] 

Thus, the design wind pressure for the main wind force resisting system of enclosed 

flexible buildings can be calculated as: 

𝑝 = 𝑞 𝐺𝑓𝐶𝑝 − 𝑞𝑖(𝐺𝐶𝑝𝑖) [
N

m2
]  (2.3) 



Chapter 2    

38 
 

Where q is the velocity pressure at height z, 𝑞𝑖 is the internal pressure equal to q evaluated 

at z=h for sake of safety, 𝐺𝑓 is the gust-effect factor, 𝐶𝑝 is the external pressure coefficient 

and 𝐺𝐶𝑝𝑖  is the internal pressure coefficient. The evaluation of the design wind pressure 

for tall buildings is based on the definition of the gust-effect factor because it considers 

the interaction between the high-rise building and wind action. To this aim, it is necessary 

the fundamental frequency assessment for flexible building. The approximate 

fundamental frequency 𝑛1 for tall buildings greater than 400 ft (122 m) is given by the 

following expression: 

𝑛1 =
150

ℎ
      [Hz]   (h in ft) (2.4) 

Where h is the total building height. For flexible buildings the dimensionless gust-effect 

factor shall be calculated by the following Equation: 

𝐺𝑓 = 0.925 

(

 
1 + 1.7𝐼�̅�√𝑔𝑄

2𝑄2 + 𝑔𝑅
2𝑅2

1 + 1.7 𝑔𝑣𝐼�̅�
)

  

(2.5) 

Where 𝐼�̅� is the intensity of turbulence at height 𝑧̅ where 𝑧̅ is the equivalent height of the 

structure defined as 0.6h (h in ft), but not less than 𝑧𝑚𝑖𝑛 for all building heights h. 𝑧𝑚𝑖𝑛 

and c are listed in Table 2.3. 

𝐼�̅� = 𝑐 (
33

𝑧̅
)

1
6
 

(2.6) 

𝑔𝑄 and 𝑔𝑣 are the peak factor for background and wind response, respectively, and they 

are equal to 3.4. 𝑔𝑅 is the peak factor for resonant response and it is given by: 

𝑔𝑅 = √2 ln (3600 𝑛1) +
0.577

√2 ln(3600 𝑛1)
 (2.7) 

R is the resonant response factor given by: 

𝑅 = √
1

𝛽
𝑅𝑛𝑅ℎ𝑅𝐵(0.53 + 0.47𝑅𝐿) 

(2.8) 

𝑅𝑛 =
7.47𝑁1

(1 + 10.3𝑁1)
5
3

 (2.9) 

𝑁1 =
𝑛1𝐿�̅�
𝑉�̅̅�

 (2.10) 
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𝑅𝑙 = {

1

𝜂
−

1

2𝜂2
(1 − 𝑒−2𝜂)      𝑓𝑜𝑟 𝜂 > 0

1    𝑓𝑜𝑟 𝜂 = 0

 
(2.11) 

where the subscript l in Equation (2.11) shall be taken as h, B and L. B and L are plan 

dimension measured normal and parallel to the wind direction, respectively. Thus, 𝑛1 is 

the fundamental natural frequency, 𝑅𝑙 = 𝑅ℎ setting 𝜂 = 4.6𝑛1ℎ/𝑉�̅̅�, 𝑅𝑙 = 𝑅𝐵 setting 𝜂 =

4.6𝑛1𝐵/𝑉�̅̅�, 𝑅𝑙 = 𝑅𝐿 setting 𝜂 = 4.6𝑛1𝐿/𝑉�̅̅�, 𝛽 is the damping ratio assumed equal to 1% 

and 𝑉�̅̅� is the mean hourly wind speed in ft/s at height 𝑧̅: 

𝑉�̅̅� = �̅� (
𝑧̅

33
)
�̅�

(
88

60
)𝑉   [

ft

s
]  for z̅ in ft and V in mph 

(2.12) 

Where �̅� and �̅� are constant listed in Table 2.3. 

The background response Q is given by: 

𝑄 =
√

1

1 + 0.63(
𝐵 + ℎ
𝐿�̅�

)
0.63 

(2.13) 

Where 𝐿�̅� is the integral length scale of turbolence at the equivalent height: 

𝐿�̅� = 𝑙 (
𝑧̅

33
)
�̅�

 
(2.14) 

Where l and 𝜖 ̅are reported in Table 2.3. 

The internal pressure coefficient 𝐺𝐶𝑝𝑖  for enclosed buildings is ±0.18 and it has been 

chosen the sign that increases the wind pressure for safety condition, whereas the external 

coefficients 𝐶𝑝 are reported in Table 2.4 for the case of square plan. 

Surface L/B 𝐶𝑝 Use with 

Windward Wall All values 0.8 𝑞𝑧 

Leeward Wall 0-1 -0.5 𝑞ℎ 

Side Wall All values -0.7 𝑞ℎ 

Table 2.4 - External Wall Pressure Coefficients for main wind force resisting system [40] 

Note that the design wind pressure is evaluated considering the wind pressure only on 

windward and leeward walls neglecting the effect on side wall. Moreover, it is 

fundamental for the analysis to take into account the torsional effect due to the wind effect 

on high-rise building, that is considered by applying an eccentricity of 15% with respect 

to plan dimension normal to load direction. Thus, for 30 m plan dimension, 𝑒 = 4.5 𝑚.  
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2.2.3. RESULTS OF WIND LOAD CALCULATION 

Considering the four different heights, precisely 126, 168, 210 and 252 m, the 

abovementioned parameters are reported in the Table 2.5. 
   Tall building height h [m] 

   126 168 210 252 
Velocity 
pressure 
exposure 

𝐾ℎ  - 1,48 1,61 1,72 1,81 

Fundamental 
natural 
frequency 

𝑛1 Hz 0,36 0,27 0,22 0,18 

Intensity of 
turbulence 𝐼�̅�  - 0,21 0,20 0,20 0,19 

Peak factor for 
resonant 
response 

𝑔𝑅 - 3,94 3,87 3,81 3,76 

Mean hourly 
wind speed at 
height 𝑧̅ 

𝑉�̅̅� 
ft

s
 97,78 105,07 111,10 116,28 

Integral length 
scale of 
turbulence 

𝐿�̅�  ft 626,83 689,91 743,19 789,75 

Reduced 
frequency 𝑁1 - 2,33 1,79 1,46 1,23 

  𝜂ℎ  - 7,06 6,57 6,21 5,93 
  𝜂𝐵 - 1,68 1,17 0,89 0,71 
  𝜂𝐿 - 5,62 3,93 2,97 2,36 
  𝑅ℎ  - 0,13 0,14 0,15 0,15 
  𝑅𝐵  - 0,42 0,52 0,60 0,66 
  𝑅𝐿 - 0,16 0,22 0,28 0,33 
  𝑅𝑛  - 0,08 0,10 0,11 0,12 
Resonant 
response factor R - 0,53 0,67 0,79 0,91 

Background 
response factor Q - 0,80 0,79 0,78 0,77 

Gust effect 
factor for 
flexible 
buildings 

𝐺𝑓 - 0,93 0,97 1,01 1,05 

Velocity 
pressure at 
height h 

𝑞ℎ 
N

m2
 1235,83 1341,70 1430,03 1506,50 

Table 2.5 - Calculation of wind load parameters according to ASCE for different building heights 
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In Table 2.5 it is important to note that the gust effect factor increases with the building 

height as the wind load effect is greater on the structural behaviour. 

In the case of the 168-m tall building, Table 2.6 shows the lateral load F and the torque 

moment 𝑀𝑇 values along the building height considering a step of 3.5 m for the interstory 

height. All the calculations are repeated for the other heights. In particular, the maximum 

lateral forces F obtained at the building top are 203, 229, 251 and 273 kN for the 126-, 

168-, 210- and 252 m tall buildings, respectively. The lateral loads are applied to the 

building independently from the plan shape. In order to perform the structural analysis, 

the horizontal and torque actions are converted to concentrated horizontal and torque 

loads to be applied at each rigid floor of the diagrid structure. Note that at the top floor of 

the building the wind force is given only by the wind pressure acting on the upper half of 

the top module.  

Forces along the height due to wind load on the 168-m tall building 
z [m] F [kN] MT [kNm] z [m] F [kN] MT [kNm] 
3,5 155 700 88 210 946 
7 163 735 91 211 950 

10,5 169 760 95 212 955 
14 173 779 98 213 959 

17,5 177 795 102 214 964 
21 180 809 105 215 968 

24,5 182 821 109 216 972 
28 185 832 112 217 976 

31,5 187 842 116 218 980 
35 189 852 119 219 983 

38,5 191 860 123 219 987 
42 193 868 126 220 991 

45,5 195 876 130 221 994 
49 196 883 133 222 998 

52,5 198 890 137 223 1001 
56 199 897 140 223 1005 

59,5 201 903 144 224 1008 
63 202 909 147 225 1011 

66,5 203 915 151 225 1014 
70 205 921 154 226 1018 

73,5 206 926 158 227 1021 
77 207 931 161 228 1024 

80,5 208 936 165 228 1027 
84 209 941 168 229 1030 

Table 2.6 - Lateral force and torque moment distributions for the 168-m tall building due to wind load 
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The distributions of the lateral force and torque moment for different building heights are 

reported in Figure 2.2. It is evident that both lateral force and torque moment increase 

with the building height. In addition, Table 2.7 shows values of wind base shear, wind 

overturning moment and wind base torque moment for different heights. 

 

Figure 2.2 - Forces distribution for different building heights due to wind action: (a) Lateral force F in kN (b) Torque 
moment M in kNm 

  126 168 210 252 
Wind base shear [MN] 7 10 14 18 
Wind overturning moment [MNm] 447 887 1518 2363 
Wind base torque moment [MNm] 30 44 61 79 
Table 2.7 - Wind base shear, wind overturning moment and wind base torque moment for different heights 

The results reported in Table 2.7 demonstrate that the wind effect increases with the 

building height, the overturning moment increases by five times when the height is 

doubled, whereas the base shear and base torque moment increase almost linearly with 

the height. This observation implies that the bending behaviour prevails on the shear one 

for taller buildings and therefore steeper diagonals should be needed to ensure lateral 

stiffness, as mentioned in Chapter 1.3. 
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2.3. STRENGTH AND STIFFNESS REQUIREMENTS 

In tall building design is fundamental to ensure two requirements, namely the strength 

and the stiffness. As mentioned in Chapter 1.3, it is not possible to predict a priori which 

one will govern the design and therefore both strength and stiffness have to be taken into 

account. As far as the global stiffness of the structure is concerned, it consists in limiting 

the lateral displacement, especially at the top of the building, in order to cope with the 

lateral load due to wind action. To this aim, the stiffness requirement is simply given by 

imposing the limit target top displacement equal to H/500. Regarding the strength, since 

the diagrid system is made up of the diagonals subjected only to tensile or compressive 

axial forces, the strength requirement is based on the assessment of tensile and 

compressive strengths, as it is shown in the following Chapter. However, in the case of 

compressed diagonal the buckling strength must be defined in order to prevent instability 

phenomena. Strength values are evaluated referring to Eurocode 3 [42] for the case of 

steel structures. 

2.3.1. TENSILE STRENGTH 

The verification of a diagonal in traction subjected to the design axial force 𝑁𝐸𝑑 is 

satisfied when its bearing capacity 𝑁𝑡,𝑅𝑑 is not exceeded: 

𝑁𝐸𝑑 ≤ 𝑁𝑡,𝑅𝑑  (2.15) 

The term 𝑁𝑡,𝑅𝑑 is assumed to be equal to the design plastic strength of a gross section by 

neglecting the presence of holes in the structural members: 

𝑁𝑡,𝑅𝑑 =
𝐴 ∙ 𝑓𝑦
𝛾𝑀0

 
(2.16) 

Where A is the gross transversal section area, 𝑓𝑦  is the yielding strength and 𝛾𝑀0 is a 

safety factor. In the study case 𝛾𝑀0 is not considered for sake of simplicity. 

2.3.2. COMPRESSIVE STRENGTH 

The verification of a diagonal in compression subjected to the design axial force 

𝑁𝐸𝑑 is satisfied when its bearing capacity 𝑁𝑐,𝑅𝑑 is not exceeded: 

𝑁𝐸𝑑 ≤ 𝑁𝑐,𝑅𝑑 (2.17) 
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The design compression strength 𝑁𝑐,𝑅𝑑  is defined in function of cross section 

classification: 

- Sections of class 1, 2 or 3: 

𝑁𝑐,𝑅𝑑 =
𝐴 ∙ 𝑓𝑦
𝛾𝑀0

 
(2.18) 

- Sections of class 4: 

𝑁𝑐,𝑅𝑑 =
𝐴𝑒𝑓𝑓 ∙ 𝑓𝑦
𝛾𝑀0

 
(2.19) 

where A is the gross transversal section area, 𝐴𝑒𝑓𝑓 is the effective transversal area, 𝑓𝑦  is 

the yielding strength and 𝛾𝑀0 is a safety factor. The local instability reduces the bearing 

capacity of compression elements in class 4 as their crisis occurs when the axial force is 

lower than the yielding force evaluated with reference to the gross section area. 

2.3.3. BUCKLING  

The state of stress of a compressed element, especially for steel members, is always 

associated to buckling phenomena. Thus, the strength verification has to be coupled with 

buckling verification which is often the most critical one for the design, especially in 

slender structural elements. In this Chapter the assessment of Euler load by equilibrium 

analysis and buckling strength calculation through EC3 are described. 

2.3.3.1. THE EULER CRITICAL LOAD BY EQUILIBRIUM ANALYSIS 

The assessment of Euler load has been carried out for the first time by Euler in 

1744. In order to evaluate the Euler’s critical load a simply supported (pin-ended) beam 

with length l is considered (Figure 2.3a). This system is assumed to be ideal without any 

imperfection and subjected to a positive compression axial force N. For small values of 

N, the beam remains in equilibrium, but for greater values the system reaches an 

instability condition. In particular, the load N produces a bending moment 𝑀 = −𝑁𝑣 

along the beam length, where v represents the lateral deflection. Thus, it is possible to 

define the second order differential equation of bending considering the effect of 

deflection on the equilibrium conditions (second-order theory [43]) as: 

𝑣′′ + 𝛼2𝑣 =
𝑀

𝐸𝐼
 (2.20) 



 2 - Diagrid models, external actions and structural analysis 

45 
 

𝑣′′ + 𝛼2𝑣 = 0       𝑤𝑖𝑡ℎ 𝛼2 =
𝑁

𝐸𝐼
 (2.21) 

The Equation (2.21) is an ordinary linear differential equation. By imposing the boundary 

conditions, precisely lateral deflection null at the ends ( 𝑣(0) = 𝑣(𝑙) = 0), the general 

solution for N>0 is: 

𝑣(𝑧) = 𝐴 𝑐𝑜𝑠𝛼𝑧 + 𝐵 𝑠𝑖𝑛𝛼𝑧 (2.22) 

Where A and B are arbitrary constants obtained by the boundary conditions: 

𝐴 = 0          𝐵𝑠𝑖𝑛𝛼𝑙 = 0 (2.23) 

The last equation is satisfied only if 𝛼𝑙 = 𝑛𝜋 for any value of the coefficient B, where n 

is a natural number, and substituting in 𝛼2  definition the following critical loads are 

obtained: 

𝑁𝑐𝑛 =
𝑛2𝜋2

𝑙2
𝐸𝐼          (𝑛 = 1,2,3,… ) 

(2.24) 

𝑁𝑐𝑛  are the eigenvalues of the buckling problem and are called critical loads. The 

corresponding eigenmodes or deflection shapes at critical loads are: 

𝑣𝑛(𝑧) = 𝐵 sin (
𝑛𝜋𝑧

𝑙
) (2.25) 

Where 𝐵 is arbitrary constant. The deformed shape is constituted by n sinusoidal half-

waves as shown in Figure 2.3b. 

 

Figure 2.3 - Euler's critical load definition: (a) Static scheme of compressed beam with hinge ends (b) Deformed 
configurations  

The lowest critical load is the first eigenvalue (n=1): 

𝑁𝑐1 =
𝜋2

𝑙2
𝐸𝐼 

(2.26) 

𝑁𝑐1 is also called the Euler’s critical load and it represents the load beyond which a perfect 

elastic beam fails due to buckling. Indeed, for 𝑁 < 𝑁𝑐1 the equilibrium is stable; for 𝑁 =

𝑁𝑐1 the equilibrium is neutral; for 𝑁 > 𝑁𝑐1 the equilibrium is unstable. Further, it can be 

seen that the Euler’s critical load is proportional to the beam rigidity EI, whereas it is 

inversely proportional to the beam length [44]. In case of different restraints, the deformed 

shape of the system can be obtained by the following forth order differential equation: 

(a) (b) 
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𝐸𝐼𝑣𝐼𝑉 + 𝑁𝑣𝐼𝐼 = 0 (2.27) 

The integral of Equation (2.27) is 

𝑣(𝑧) = 𝐴 𝑐𝑜𝑠𝛼𝑧 + 𝐵 𝑠𝑖𝑛𝛼𝑧 + 𝐶𝑧 + 𝐷 (2.28) 

Equation (2.28) has four arbitrary constants A, B, C and D because there are four degrees 

of freedom (two deflections and two rotations). These are partly kinematic (or essential) 

conditions and partly static (or natural) conditions [44]. Thus, it is possible to evaluate 

the critical load in function of the basic schemes of different restraints. Analysing the 

critical formulations for different restraints, the more general Euler’s critical load 

formulation can be obtained for any case as follows:  

𝑁𝑐1 = 𝜋
2
𝐸𝐼

𝑙0
2  (2.29) 

where 𝑙0  is the free length of deflection, which represents the distance between two 

successive inflection points in the critical deformed configuration [44]. 

2.3.3.2. EVALUATION OF THE BUCKLING CRITICAL LOAD 

Assuming no presence of geometrical imperfections and linear-elastic behaviour of the 

material, namely the ideal bar, it is possible to demonstrate that exists a critical load value 

𝑁𝑐𝑟 beyond which the global buckling phenomena is activated. There are three types of 

buckling: flexural, torsional and flexural-torsional [45]. For circular hollow cross section 

(CHS) the typical instability is the flexural one because the section is characterized by 

two symmetry axes. In case of flexural instability, the critical value would be given by 

the minimum among two values evaluated in function of geometrical and mechanical 

parameters: 

 
𝑁𝑐𝑟 = min {

𝜋2𝐸𝐼𝑦

𝐿0,𝑦
2 ,

𝜋2𝐸𝐼𝑧
𝐿0,𝑧
2 } 

(2.30) 

Where E is the Young modulus, I second moment of inertia, 𝐿0 effective length and y and 

z subscripts are referred to principal axes.  
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From a design perspective, it could be convenient to have an expression in terms of 

tension: 

𝜎𝑐𝑟 =
𝑁𝑐𝑟
𝐴
= min {

𝜋2𝐸𝜌𝑦
2

𝐿0,𝑦
2 ,

𝜋2𝐸𝜌𝑧
2

𝐿0,𝑧
2 } = min {

𝜋2𝐸

𝜆𝑦2
,
𝜋2𝐸

𝜆𝑧2
} 

(2.31) 

Where A is the cross-section area, ρ gyrator radius of inertia and λ is the slenderness 𝜆 =

𝐿0/𝜌. In the verification the slenderness choosen is the maximum between the one in y 

direction and the other in z direction. In general, an ideal bar is not considered for the 

structural design because it is valid for elements characterized by perfectly linear-elastic 

behaviour and without geometrical imperfections. Actually, the structural members used 

in construction field are characterized by non-linear behaviour limited by the strength and 

mechanical and geometrical imperfections due to manufacture and assembly processes. 

Indeed, considering an element with cross section area A without imperfections, the 

critical load cannot overpass the value at which there is the complete plasticization of 

section (𝑓𝑦𝐴). The associated stability curve is given in Figure 2.4 in terms of tension σ – 

slenderness λ. 

Figure 2.4 - Strength domain tension-slenderness for compressed element [45] 

The intersection between Euler curve and the horizontal line in correspondence of 𝑓𝑦  is 

the point P that has 𝜆𝑃 as abscissa. It is called proportionality slenderness and it is defined 

as: 

𝜆𝑃 = 𝜋√
𝐸

𝑓𝑦
 

(2.32) 

 

Plastic collapse 

Instability collapse 

Eulero  

 
curve  
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The definition of 𝜆𝑃 is important in order to define the type of structural collapse: 

- If 𝜆 < 𝜆𝑃 the cross section reaches the total plasticization due to strength failure; 

- If  𝜆 > 𝜆𝑃 the elastic instability phenomena would occur; 

- If  𝜆 = 𝜆𝑃 plastic and instability failure occur at the same moment. 

The mechanical and geometrical imperfections are always present in a real structural 

element and they influence its bearing capacity. If the presence of an initial imperfection 

as an initial sinusoidal deformed shape is considered, the higher is the load applied N, the 

higher is the deflection δ and therefore the higher is the bending moment due to the 

eccentricity. The structural member response in terms of load – transverse displacement 

corresponds to the ideal system with initial imperfection and the curve reaches the 

asymptote 𝑁𝑐𝑟 because the material has an elastic behaviour as it is shown in Figure 2.5a. 

Furthermore, the deflection is approximated in function of the initial imperfection: 

𝛿 = 𝛿0 ∙
1

1 −
𝑁
𝑁𝑐𝑟

 (2.33) 

The section in midspan is in bending-compression and the maximum tension σ is 

evaluated as: 

𝜎 =
𝑁

𝐴
+
𝑁 ∙ 𝛿

𝑊
=
𝑁

𝐴
+
𝑁 ∙ 𝛿0
𝑊

∙
1

1 −
𝑁
𝑁𝑐𝑟

 
(2.34) 

Figure 2.5 – Definition of buckling capacity: (a) Load-transverse displacement behaviour with initial imperfection and (b) 
state of stress in midspan [45] 

When the yielding stress is reached, the stiffness of regions in post-elastic field is 

decreased. Therefore, there is a gradual increasing of flexural deformability after 

overpassing the maximum strength 𝑁𝑢 that is lower than the critical load 𝑁𝑐𝑟. From a 

Elastic 

Elasto-plastic 
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comparison between the tension – slenderness curve of an element without imperfection 

and the one with imperfection it is evident that the latter has lower bearing capacity than 

the former due to the elasto-plastic behaviour and the defects (Figure 2.6). The transition 

from plastic collapse to instability one depends on instability phenomena and it starts 

from 0.2𝜆𝑃 instead from 𝜆𝑃 . 

Figure 2.6 – Comparison of tension-slenderness curve with and without imperfection [45] 

According to the Eurocode EC3 [42], the stability verification of a compressed element 

subjected to an axial force 𝑁𝐸𝑑 is satisfied if it does not exceed the bearing capacity 𝑁𝑏,𝑅𝑑: 

𝑁𝐸𝑑 ≤ 𝑁𝑏,𝑅𝑑 (2.35) 

The buckling strength is evaluated in function of cross section classification: 

- Class 1,2 and 3 sections: 

𝑁𝑏,𝑅𝑑 = 𝜒 ∙ 𝐴
𝑓𝑦
𝛾𝑀1

 
(2.36) 

- Class 4 sections: 

𝑁𝑏,𝑅𝑑 = 𝜒 ∙ 𝐴𝑒𝑓𝑓
𝑓𝑦
𝛾𝑀1

 
(2.37) 

Where A is the cross-section nominal area, 𝐴𝑒𝑓𝑓  section effective area, 𝑓𝑦  yielding 

strength, 𝜒 is a reduction factor and 𝛾𝑀1   is the safety factor. The reduction factor is 

calculated in function of instability typology and it is given as: 

𝜒 =
1

𝜙 +√𝜙2 − 𝜆2
≤ 1 (2.38) 

𝜙 = 0.5 ∙ [1 + 𝛼(�̅� − 0.2) + �̅�2]    (2.39) 

Plastic limit 

Eulero curve 

Buckling curve with imperfection 
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Where α represents the imperfection coefficient and it depends on the stability curve 

(Table 2.8) that has to be selected in function of the transverse section, limits, axis of 

instability and steel quality. 

Buckling curve a0 a b c d 

Imperfection factor α 0.13 0.21 0.34 0.49 0.76 

Table 2.8 - Imperfection factor values in function of stability curve [42] 

The relative slenderness �̅� depends on cross section classification: 

- Class 1,2 and 3 sections: 

�̅� = √
𝐴 ∙ 𝑓𝑦
𝑁𝑐𝑟

 
(2.40) 

- Class 4 sections: 

�̅� = √
𝐴𝑒𝑓𝑓 ∙ 𝑓𝑦
𝑁𝑐𝑟

 
(2.41) 

Where 𝑁𝑐𝑟 is the critical elastic force. 

In the case of the problem examined, the stability curve chosen is related to hot finished 

circular hollow sections (CHS), as it is shown in Table 2.9. Thus, the correspondent 

buckling curve is a and the imperfection coefficient α is equal to 0.21. 

Table 2.9 - Buckling curve for circular hollow sections CHS [42]

Transverse section Limits 
Buckling 

about axis 

Buckling curve 

Hot finished 

Cold formed 

Any 

Any 

Hollow sections 
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Chapter 3 

3. STRENGTH- AND STIFFNESS-BASED 

PRELIMINARY DESIGN 

Chapter 3 describes the proposed strength- and stiffness-base preliminary design 

developed within Matlab environment in order to define the geometrical properties of 

each model able to withstand vertical and horizontal loads ensuring both stiffness and 

strength requirements by minimizing the structural weight. Chapter 3.1 highlights step by 

step the methodology employed, while Chapter 3.2 summarizes the main outcomes. 

3.1. METHODOLOGY 

The methodology consists in the evaluation of diagonal sectional areas to ensure 

strength and stiffness requirements. From an engineering perspective, it is a better choice 

that these requirements are satisfied with minimum structural weight as related to 

sustainability problem. The proposed procedure is implemented within Matlab 

environment and it employed the matrix-based method (MBM) described in detail in [21] 

in order to perform the structural analysis of diagrid structures.  

In order to carry out this analysis, it is necessary to define initial parameters to be 

introduced in the preliminary design and the MBM codes. Based on the diagrid models 

described in Chapter 2.1, there are parameters that are assumed constant independently 

from the building height, diagonal angle and floor plan shape: diagonals’ elastic modulus 

𝐸, steel density 𝜌, inter-story height and total floor area. The correspondent values are 

reported in Table 2.1. In the next step, the definition of the base module geometry has 

been determined in function of the floor plan shape (square, hexagon, octagon and circle) 

and the number of intra-module floors. Moreover, it is assumed that each module is made 

up of diagonals with same cross-section. Since the diagonals’ cross section areas have to 
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be provided for performing the structural analysis, in the preliminary stage the cross-

section areas are initially assumed equal to 0.1 m2 and 0.01 m2 for the base and the top 

module, respectively, while a linear interpolation is used for the intermediate modules. 

The obtained values are compared to a vector of cross-section areas provided by 

handbooks of profiles available in commerce in order to consider a real and not fictitious 

cross-sections in the analysis. In particular, Table 3.1 shows circular hollow sections 

(CHS) with different outer diameters and thicknesses used in this study. These values 

refer to cross sections belonging to class 1, 2 and 3. Specifically, the sections of class 4 

with diameter and thickness ratio higher than 90 ∙ 235/𝑓𝑦 have been excluded as the local 

instability problem occurs before reaching the yielding resistance, remaining in the elastic 

range. The cross-sections reported are sorted in ascending order in terms of diameters and 

areas. The diagonal area distribution along the height has been verified through the MBM  

for the structural analysis, ensuring strength and stiffness demands. Before performing 

the analysis, it is fundamental to define another input data, i.e. the load. From Chapter 

2.1, the vertical load has been set equal to 4.125 kN/m2 by combining dead and live 

loads; while in Chapter 2.2, the lateral forces in kN and torque moments in kNm are 

obtained for each rigid floor. Since the intra-module floors are neglected in the MBM for 

hypothesis, the lateral actions are exclusively carried by the rigid floors and these actions 

are evaluated by means of an isostatic repartition. In particular, the lateral force and torque 

moment resultant are respectively result of the sum of lateral forces and torque moments 

acting on the upper half of the lower module and on the lower half of the upper module, 

except for the top floor where there is only the contribution of half of the top module. 

Thus, given all the above-mentioned parameters the analysis can be performed and for 

each model with different height, floor plan shape and diagonal angle, the MBM provides 

the structure response in terms of lateral displacements parallel and orthogonal to wind 

direction, torsional rotation, structural weight and axial diagonal forces. 
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CHS section [mm] A 
[cm2]   CHS section [mm] A 

[cm2] 
70 × 16 27  194 × 60 252 
70 × 18 29  219 × 50 266 
70 × 20 31  219 × 55 284 
76 × 18 32  219 × 60 300 
76 × 20 35  219 × 65 315 
83 × 18 36  219 × 70 328 
83 × 20 39  245 × 60 348 
83 × 22 42  245 × 65 367 
83 × 25 45  245 × 70 384 
89 × 22 47  245 × 80 413 
89 × 25 50  245 × 90 437 

102 × 20 51  267 × 80 470 
102 × 22 55  267 × 90 500 
102 × 25 60  267 × 100 525 
102 × 28 65  273 × 100 543 
102 × 30 67  299 × 80 549 
108 × 28 70  299 × 90 590 
108 × 30 74  299 × 100 624 
114 × 28 76  324 × 90 661 
114 × 30 79  324 × 100 703 
114 × 32 83  356 × 90 751 
114 × 36 89  356 × 100 803 
127 × 30 91  368 × 100 842 
127 × 32 96  406 × 90 895 
127 × 36 103  406 × 100 963 
127 × 40 109  419 × 100 1002 
127 × 45 116  457 × 90 1038 
140 × 36 117  457 × 100 1122 
140 × 40 125  508 × 90 1182 
140 × 45 134  508 × 100 1282 
140 × 50 141  559 × 90 1326 
152 × 40 141  559 × 100 1442 
152 × 45 152  610 × 90 1470 
152 × 50 161  610 × 100 1602 
159 × 45 161  660 × 90 1612 
159 × 50 171  660 × 100 1759 
159 × 60 187  711 × 100 1920 
168 × 60 204  1620 × 40 1985 
178 × 55 212  1820 × 36 2018 
178 × 60 222  1820 × 40 2237 
194 × 50 226  2020 × 36 2244 
194 × 55 240  2020 × 40 2488 

          2220 × 40 2739 
Table 3.1 - Steel structural circular hollow section (outer diameter × thickness in mm) and area for diagrid structures [46] 
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As mentioned before, the diagrid structure has to be designed in order to fulfill not 

only the global stiffness, but also the strength. To this aim, the demand capacity ratio 

(DCR) has been introduced as indicator of diagonal capacity under axial force. It is 

computed as the ratio between the design value of acting axial force and the diagonal 

strength. However, a diagonal can be in compression or in tension and therefore the 

expression of DCR is given by Equation (3.1):  

𝐷𝐶𝑅 =

{
 
 

 
 

|NEd|

min(Nc,Rd, Nb,Rd)
                              if NEd < 0 (compression)

NEd
Nt,Rd

                                           if NEd > 0 (tension)

 

(3.1) 

Where 𝑁𝐸𝑑 is the axial force acting in the diagonal evaluated from the MBM: it is positive 

if diagonal is in tension and negative if diagonal is in compression; 𝑁𝑡,𝑅𝑑  and  𝑁𝑐,𝑅𝑑  are 

the tensile and compressive strength evaluated in Eq. (2.16)(2.18), respectively; 𝑁𝑏,𝑅𝑑 is 

the buckling strength evaluated in Eq. (2.36) for compressed diagonals due to instability 

issue. Note that the safety factor is not considered for sake of simplicity. The DCR is 

calculated for each diagonal of a diagrid module. However, the preliminary design deals 

with the maximum value of DCR of each module in order to ensure greater diagonal 

exploitation and lower structural weight. 

The proposed methodology is constituted by three fundamental steps. As follows, 

there is a detailed description of each step underlying the main aim of each of them: 

STEP 1 – Initialization: for a given diagonal cross-section distribution chosen by 

the user in function of the initial diagonal cross section area of the base and top module, 

each module is analysed by means of the MBM and the strength calculation in order to 

evaluate the maximum value of DCR among diagonals of ith module. Supposing to start 

from the top module, for each module the undersized diagonal cross section area is 

assessed until obtaining DCR greater than the unit. This step is fundamental to minimize 

the diagrid structural mass. In addition, this iteration leads to a diagrid structure in failure 

condition, not being able to bear vertical and horizontal load. 

STEP 2 – Strength: this step is opposite to the previous one because the diagonal 

cross section area is increased instead of decreasing it in order to ensure the resistance of 

each module. In general, the starting point is given by the diagonal area distribution along 

the building height obtained from STEP 1. Thus, the DCR is evaluated by performing the 

structural analysis and the strength calculation. If its value is greater than unit, it means 
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that the strength demand is not fulfilled and consequently it is necessary to further 

increase the diagonal cross section area of the ith module until the DCR is less than or 

equal to 1. After, this operation is repeated for all lower modules step by step. Moreover, 

it is also essential to specify that the top lateral displacement is checked at each iteration. 

Indeed, if at the end of STEP 2 the top displacement is lower than the target limit value 

evaluated as H/500, the structure satisfies both strength and stiffness requirements and 

the STEP 3 does not have to be implemented. Conversely, in case of greater value the 

preliminary design is not concluded and the STEP 3 must be performed to ensure the 

global stiffness as described next. To sum up, STEP 2 allows to define a diagrid structure 

able to cope with the external load without yielding and buckling issues for all diagonals 

of each module.  

It should be noted that it would have been possible to develop a code in Matlab that 

considered simultaneously STEP 1 and STEP 2, but with the difference that at each 

iteration cycle the diagonal cross section area can be increased or decreased according to 

DCR value with respect to the unit. Consequently, in this Thesis the distinction between 

STEP 1 and STEP 2 has been made aimed at obtaining clearer graphs and keeping the 

iterative process under control. 

STEP 3 – Stiffness: this step is implemented only when the STEP 2 returns a 

structure that is too flexible and deformable due to the excessive top displacement. 

Differently from the first two steps, the diagonal cross section area is increased starting 

from the base module to fulfill stiffness requirements. The purpose is to proceed the 

iteration process until stiffening the structure enough to limit the global top lateral 

displacement. In case of flexible structure with high slenderness the final geometry may 

not satisfy the stiffness demand due to the limited maximum diagonal cross section area, 

i.e. 𝐴𝑚𝑎𝑥 = 0.2739 𝑚2  obtained from Table 3.1. Thus, in this particular case the 

algorithm returns a structure with constant stiffness along the building height and with 

huge structural weight.  

The whole iterative process is schematized in Figure 3.1. The flow chart is divided 

into four parts: definition of input parameters, initialization step, strength step and 

stiffness step.  
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Figure 3.1 - Flow chart of the preliminary design; DCR = Demand to capacity ratio, 𝛿𝑡𝑜𝑝= top lateral displacement, 𝛿lim = target 
limit top lateral displacement value  
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3.2. UNIFORM-ANGLE DIAGRID STRUCTURES: RESULTS AND 

DISCUSSION 

The previous algorithm developed within the software Matlab is employed to define 

the distribution of diagonal cross section minimizing the structural weight and satisfying 

both strength and stiffness requirements. The analysis is carried out for a total of ninety-

six models obtained by choosing building height, floor plan shape and number of intra-

module floors (or diagonal angle). This Section is divided into three sub-sections aiming 

at describing the top lateral displacement trend during the preliminary design in Chapter 

3.2.1, the effect of the building height and diagonal inclination on DCR in Chapter 3.2.2 

and the effect of the floor plan shape in Chapter 3.2.3. 

3.2.1. EVOLUTION OF THE TOP LATERAL DISPLACEMENT 

THROUGHOUT THE PRELIMINARY DESIGN STAGE 

As mentioned in Chapter 3.1, the iterative preliminary design is based on three 

fundamental steps which have been distinguished with different colors in the following 

graphs. In particular, blue for the initialization step, red for the strength step and yellow 

for the stiffness step. Further, the graphs represented in Figure 3.2 are related only to 

diagrid structures with square floor plan shape because the curves follow similar trend for 

buildings with other plan shapes. The choice of representing the top lateral displacement 

trend instead of the torsional rotation or the structural weight trend is due to the stiffness 

constrain, expressed in terms of the target limit value H/500. 

 As regard the top lateral displacement, in the case of the 126-m tall building with 

an aspect ratio of 4.2 it can be seen that the strength demand governs the structure design. 

Indeed, as it is shown in Figure 3.2(a-f), it is found that all diagrid structures have a top 

lateral displacement lower that the target limit value (𝛿𝑙𝑖𝑚 =0.252 m) at the end of step 2 

without the necessity of performing the step 3. Moreover, it is also evident that the 

diagonal angle influences the top lateral displacement since the minimum value  

(𝛿𝑚𝑖𝑛 =0.149 m) is provided by diagonal angle of about 65°, corresponding to S3 

solution. By increasing or decreasing the diagonal angle far from 65°, the lateral stiffness 

decreases, leading to greater top lateral displacement. Generally, all diagrid structures 

have good lateral behaviour except for the twelve intra-module floors solution because it 
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is the unique geometry for which the step 3 is performed. In fact, in case of low 

slenderness, like in the case of the 126-m tall building, the shear contribution is greater 

than the bending one and therefore the twelve intra-module floors geometrical solution 

provides more bending stiffness than the shear rigidity because of steep diagonals. 

Nevertheless, it has been possible to increase diagonals inertia to ensure more rigidity. 

Further, it can be noted that the initial diagonal area distribution of 0.1 𝑚2 and 0.01 𝑚2 

at the base and top module, respectively, oversizes the structure except for the S12 model.  

By increasing the building height, the stiffness requirement tends to prevail for 

aspect ratio greater than 5 since the value of the top lateral displacement is very close to 

the limit value. In particular, the case of the 168-m tall building represents a transition 

condition in which both stiffness and strength provide same contribution in the structural 

design. In fact, according to Moon et al. in [4] the slenderness value of transition is 5 and, 

in the case examined, the slenderness is 5.6. From the results, it can be said that the stiffest 

structure is always provided by the geometrical solutions with three intra-module floors, 

whereas the most flexible is provided by solutions with one and twelve intra-module 

floors. This phenomenon is more accentuated in the case of the 210- and 252-m tall 

buildings because the structure with only one intra-module floor is so deformable that it 

is not able to guarantee the target limit value. Thus, the preliminary design returns 

geometries characterized by the highest structural weight with maximum inertia constant 

along the height. For this reason, in Figure 3.2m and Figure 3.2s the curves follow an 

asymptote. 

As far as the torsional rotation is concerned, the curves are not reported since they 

have similar trends to the previous ones and in this case there is no target limit value to 

respect, as the torsional rotation tends to increase with the diagonal inclination. In 

particular, the maximum value is always provided by solutions with twelve intra-module 

floors for any height.  

Regarding the structural weight, the graphs present curves similar to the previous 

ones, but they are flipped horizontally. Thus, it means that if the top lateral displacement 

or torsional rotation increases, the mass decreases to obtain flexible structure that is more 

susceptible to wind, whereas if the top lateral displacement decreases, the mass increases 

to stiffen the structure. 
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Figure 3.2 – Evolution of the top lateral displacement throughout the preliminary design stage: (a-f) H=126 m (g-l) H=168 
m (m-r) H= 210 m (s-x) H=252 m 
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3.2.2. THE INFLUENCE OF THE BUILDING ASPECT RATIO AND 

DIAGONAL INCLINATION ON THE DEMAND CAPACITY RATIO 

(DCR) 

After studying the parameters obtained by the structural analysis, it could be useful 

to carry out an investigation on DCR distribution. In Figure 3.3 there are graphs 

representing DCR values for each diagonal referred to each module. It can be seen that 

DCR distribution depends on the aspect ratio and specifically on the dominant 

requirement in the structural design. In fact, in the case of low slenderness of 4.2 in which 

strength demand prevails (Figure 3.3a-e), DCR range is from 0.2 to 1 for all the 

geometrical solutions, ensuring an enhanced strength performance. However, the S12 

model which is characterized by steeper diagonals is not able to ensure sufficient shear 

rigidity to cope with the lateral load and therefore in this case DCR values drop below 

0.4 (Figure 3.3f).  

In the case of the 168-m tall building the DCR points are well distributed having 

maximum value close to 1 for all diagrid geometries except for S1 and S12 because the 

structural design is governed by the stiffness demand for slenderness greater than 5. In 

fact, for the latter solutions the DCR points are more concentrated within range between 

0 and 0.4-0.45 (Figure 3.3g-l). This phenomenon of having low DCR values is strongly 

accentuated in slender structures, i.e. the 210-m and 252-m tall buildings, because the 

stiffness requirement is more important than the strength demand (Figure 3.3m-x). In 

particular, the cloud of points tends to move toward left below 0.6 for structures with 

slenderness of 7 and below 0.4 for the ones with slenderness of 8.4. Thus, it means that 

the diagonals are so oversized that their strength becomes much greater than the acting 

axial force, leading to a cloud of points more concentrated toward lower DCR values. By 

observing these graphs, it can be also found that there are two graphs in Figure 3.3m and 

Figure 3.3s with different trend with respect to others because the distribution is zero at 

the top of the structure and it increases almost linearly at the bottom. The reason is given 

by the diagonal cross section area distribution obtained from the preliminary design. As 

mentioned before, since the stiffness of these structures is constant along the height with 

the maximum diagonal area, the DCR increases as diagonal axial force increases toward 

the building base. 
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Figure 3.3 - DCR distribution for each diagonal in each module along height obtained from the preliminary design: (a-f) 
H=126 m (g-l) H=168 m (m-r) H= 210 m (s-x) H=252 m 
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Figure 3.4 - DCR values at the base in function of building height and diagonal angle for structures with square floor plan 
shape: (a) Maximum values (b) Minimum values 

In order to understand the effect of building height and diagonal angle on maximum 

and minimum value of DCR at the building base, Figure 3.4 has been provided aimed at 

summarizing the main aspects. Figure 3.4a shows that in the case of the 126-m tall 

building all geometries, except the S12 solution, tend to have maximum DCR values close 

to 1, and it means that the design is governed by the strength requirement, while in the 

case of the 168-m tall building, the geometrical solution providing highest DCR value is 

the one with three intra-module floors. Since the diagonal angle of 66° seems to be the 

optimal one in terms of strength for a slenderness of 5.6, in case of solutions with steeper 

or shallower diagonals maximum value of DCR decreases. As the structure height 

increases, the stiffness condition prevails. In fact, a further reduction of DCR value occurs 

due to oversized diagonals and as a consequence some diagonals even have null DCR, as 

it is shown in Figure 3.4b. Moreover, it can be noted that there are two types of curves, 

(a) 

(b) 
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namely continuous and dashed. The dashed curves are related to more flexible structures, 

i.e. S1 and S12, and they start to go up starting from 168 and 210 m heights respectively 

because, as it can be seen in Figure 3.2s and Figure 3.2m, they do not satisfy the target 

limit value of the top lateral displacement even if characterized by the maximum inertia. 

Thus, DCR growth is mainly caused by the huge structural weight. Conversely, the 

continuous curves are referred to stiff structures that fulfil both strength and stiffness 

requirements at the end of the preliminary design. All these observations are in line with 

the studies carried out in literature reported in Chapter 1.3. 

3.2.3. THE INFLUENCE OF THE DIFFERENT FLOOR PLAN SHAPES 

Until now structures with square floor plan have been analysed to point out the main 

results. As follow, instead, the results of all geometrical solutions with different floor plan 

shapes are provided in terms of diagonal cross section area and response parameters, 

namely top lateral displacement, torsional rotation and structural weight. The results 

related to diagonal cross section areas are reported in Figure 3.5. The graphs show 

diagonal cross section area at the top (blue curve) and at the base (red curve) of the 

building obtained from the preliminary design. In general, it is evident that diagonals are 

stiffer at the base than at the top and for each floor plan shape the curves follow the 

repetitive parabolic shape with minimum on solution with three or four intra-module 

floors. Thus, the effect of different floor plan shapes is more negligible than diagonal 

inclination and building height. Moreover, from the previous results it could have been 

predicted the diagonal cross section area growth with the building height because of the 

flexible behaviour. In fact, in the case of the 252-m tall building it is clear in Figure 3.5d 

that the structures with one intra-module floor provide constant diagonal area along the 

height since the two curves intersect.  
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Figure 3.5 - Diagonal cross section area at the top and base module in function of floor plan shape and diagonal inclination 
for building with height of: (a) H=126 m (b) H=128 m (c) H=210 m (d) H=252 m 

As far as the top lateral displacement is concerned, Figure 3.6a illustrates four 

curves for each building height and it also points out that for buildings with slenderness 

greater than 5 the top deflection is almost the same independently from the floor plan 

shape and the diagonal inclination due to the dominant stiffness demand. However, for 

the 252-m tall building the stiffness requirement is not always ensured due to the presence 

of peaks for one intra-module floor solutions. Conversely, in the case of the 126-m tall 

building the top displacement is not constant because the prevailing constraint is given 

by the strength requirement and furthermore the most efficient solutions are the ones with 

two or three intra-module floors.  

(a) 

(b) 

(c) 

(d) 
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Regarding the torsional rotation shown in Figure 3.6b, it can be noted that the effect 

of floor plan shape on structural behaviour is slight, but the effect of diagonal inclination 

is more evident. In fact, the minimum value is provided by the lowest diagonal angle and 

the maximum value by the steepest diagonals. The last but not least investigated 

parameter is the structural weight reported in Figure 3.6c. It has found that for each floor 

plan shape the curves are alike to parable and the best geometry which minimizes the 

mass is the one with intermediate diagonal inclinations. In addition, it is worth to note 

that the effect of floor plan shape is minor inside of the optimal diagonal inclination range 

(66°-72°) corresponding to three and four intra-module floors solutions, but it is major 

outside the optimal range, as it is illustrated in Figure 3.7. In particular, the one intra-

module floor square building provides the highest mass, whereas the twelve intra-module 

square building provides the lowest one. Conversely, the circular structure with one intra-

module floor is the lightest, whereas the heaviest is the one with twelve intra-module 

floors. These outcomes are in line with the ones obtained in [29]. 

Figure 3.6 - Structural response parameters in function of floor plan shape, number of intra-module floors and building 
height: (a) top lateral displacement (b) torsional rotation (c) mass 

(a) 

(b) 

(c) 
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Figure 3.7 - Diagrid structure mass in function of the floor plan shape and the number of intra-module floors for building 
height of: (a) H=126 m (b) H=168 m (c) H=210 m (d) H=252 m 

Finally, it can be concluded that for the 126-m tall building the strength requirement 

governs the structural design, whereas for the other heights the stiffness demand prevails. 

From the stiffness- and strength-based preliminary design it is found that the structural 

behaviour depends mainly on the building height and diagonal inclination. In fact, the 

minimum of torsional rotation and mass have often been obtained for one- and three-

intra-module floors solutions, respectively. Regarding the top lateral displacement, it is a 

further restrain for tall buildings with slenderness greater than 5 since it tends to be close 

to the target value for different diagrid geometries. However, in the case of the 126-m tall 

building the top lateral displacement is variable. In fact, the two- and three-intra module 

floors models have provided the lower values of the parameter.

(d) (c) 

(a) (b) 
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Chapter 4 

4. MULTI-RESPONSE OPTIMIZATION BASED ON 

THE DESIRABILITY FUNCTION APPROACH 

From Chapter 3 the structural response has been obtained in terms of top lateral 

displacement, torsional rotation and structural weight. It is evident that the best solution, 

able to minimize simultaneously and individually all parameters, does not exist. In fact, 

the geometrical model with the greatest torsional stiffness is the one with diagonal 

inclination of about 35° corresponding to one intra-module floor. Conversely, the lowest 

value of top lateral displacement has been provided by three and four intra-module floors 

solutions having diagonal angle range between 66° and 72° to ensure both shear and 

bending stiffness in case of the 126-m tall building. For this reason, it necessary to define 

a methodology that allows to select the optimal diagrid solution in terms of the response 

parameters. However, the engineer can choose other variables to be analysed, such as the 

maximum inter-story drift, the maximum acceleration under seismic action and the 

construction complexity. The latter has been used by Tomei et al. in [27] and Lacidogna 

et al. in [30] as further parameter besides the conventional ones, namely top lateral 

displacement, torsional rotation and structural weight, for investigating the optimal 

diagrid geometry. To this aim, these four parameters are sufficient to fully describe both 

structural behaviour and main features of tall building: capacity to withstand external 

loads by ensuring both strength and stiffness, reduction of material consumption to solve 

sustainability problem and feasibility of construction. Thus, in this Chapter a similar 

investigation is carried out in order to establish the optimal solution among the ones 

described in Chapter 2.1 providing simultaneously shear and bending stiffness, lightness 

and easiness of construction. To this purpose, the post-optimization process employed in 
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this study is based on the desirability function and it is described in Chapter 4.1. The 

results are provided in Chapter 4.2. 

4.1. DESIRABILITY FUNCTION APPROACH 

The desirability function approach is a powerful tool widely used in industry. It has 

been firstly proposed by Harrington in [47] and developed by other authors as Derringer 

and Suich in [48] to define the optimal product or process that guarantees optimal quality 

cutting out the ones outside of a “desirable” limit [49]. According to Derringer and Suich, 

the proposed approach aims at reaching simultaneously the optimal value for all the 

evaluated variables by defining a unique function obtained by combining the individual 

responses [49]. In particular, the method starts from the definition of the individual 

desirability 𝑑𝑖(𝑦𝑖) for each response variable 𝑦𝑖(𝑥) and generally its typical range is 

between 0 and 1. The variable x represents the examined population. In case of 

unacceptable response, the individual desirability is null, while for the most desirable 

response it will be unitary. If the response is acceptable, the value falls between the two 

extreme values. The authors have proposed three individual desirability functions 

depending on the acceptable range of response 𝑈𝑖 − 𝐿𝑖, where 𝑈𝑖 and 𝐿𝑖 are respectively 

the upper and the lower acceptable bounds, if the response must be minimized or 

maximized in that range or depending on the target value of the response 𝑇𝑖 if the optimal 

response lies within 𝑈𝑖 − 𝐿𝑖  [49]. 

If the response variable has to be maximized, the desirability function 𝑑𝑖(𝑦𝑖(𝑥)) 

expression is provided as follows: 

 𝑑𝑖(𝑦𝑖(𝑥)) =

{
 
 

 
 0                             𝑦𝑖(𝑥) < 𝐿𝑖

(
𝑦𝑖(𝑥) − 𝐿𝑖
𝑈𝑖 − 𝐿𝑖

)

𝑠𝑖

             𝐿𝑖 ≤ 𝑦𝑖(𝑥) ≤ 𝑈𝑖

1                           𝑦𝑖(𝑥) > 𝑈𝑖

 

(4.1) 

Where 𝑠𝑖 is a weight exponent defined by the user to distinguish the different importance 

of the response variable close to the optimal value 𝑈𝑖. Thus, if 𝑠𝑖 is low, it means that the 

individual desirability tends to the unit also for a wider range of response values not close 

to the optimal range, whereas if 𝑠𝑖 is greater, the individual desirability leans on 1 for a 

narrower range of response values very close to 𝑈𝑖 . From Equation (4.1), it can be 

observed that the individual desirability is null for response values lower than the lower 
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bound, while it is equal to one for response values greater than the upper bound. Within 

the acceptable range 𝑈𝑖 − 𝐿𝑖 , the response variable assumes intermediate values 

according to a trend that depends on the value of 𝑠𝑖 . In particular, the linear trend is 

provided for 𝑠𝑖 = 1 and the non-linear ones for 𝑠𝑖 ≠ 1, as it is represented in Figure 4.1a. 

If the response variable has to be minimized, the equation of the individual 

desirability function is given by: 

 𝑑𝑖(𝑦𝑖(𝑥)) =

{
 
 

 
 1                             𝑦𝑖(𝑥) < 𝐿𝑖

(
𝑈𝑖 − 𝑦𝑖(𝑥)

𝑈𝑖 − 𝐿𝑖
)
𝑡𝑖

            𝐿𝑖 ≤ 𝑦𝑖(𝑥) ≤ 𝑈𝑖

0                           𝑦𝑖(𝑥) > 𝑈𝑖

 

(4.2) 

Where 𝑡𝑖 is the weight exponent as 𝑠𝑖. Equation (4.2) is similar to Eq.(4.1), but in this 

case the optimal value is the lower bound 𝐿𝑖 instead of the upper one 𝑈𝑖. The function is 

illustrated in Figure 4.1b. 

If the response variable has to be close to the target value, the individual desirability 

function is as follows: 

 𝑑𝑖(𝑦𝑖(𝑥)) =

{
 
 
 
 

 
 
 
 

0                             𝑦𝑖(𝑥) < 𝐿𝑖

(
𝑦𝑖(𝑥) − 𝐿𝑖
𝑇𝑖 − 𝐿𝑖

)

𝑠𝑖

             𝐿𝑖 ≤ 𝑦𝑖(𝑥) < 𝑇𝑖

1                           𝑦𝑖(𝑥) = 𝑇𝑖

(
𝑦𝑖(𝑥) − 𝑈𝑖
𝑇𝑖 − 𝑈𝑖

)

𝑡𝑖

             𝑇𝑖 < 𝑦𝑖(𝑥) ≤ 𝑈𝑖

0                           𝑦𝑖(𝑥) > 𝑈𝑖

 

(4.3) 

The trend of Eq. (4.3) is represented in Figure 4.1c 

Figure 4.1 - Graphical representation of the individual desirability function in function of the optimization criteria adopted. 
The most desirable response value is: (a) the upper bound 𝑈𝑖 (b) the lower bound 𝐿𝑖 (c) the target value 𝑇𝑖 [49] 

 

 

(a) (b) (c) 
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The second step of the desirability function approach is the definition of a unique 

function, namely the overall desirability (OD), obtained by the combination of the n 

individual desirability function values as follows: 

𝑂𝐷 = [𝑑1(𝑦1) ∙ 𝑑2(𝑦2) ∙ ⋯ ∙ 𝑑𝑛(𝑦𝑛)]
1
𝑛 = [∏𝑑𝑖(𝑦𝑖)

𝑛

𝑖=1

]

1
𝑛

 

(4.4) 

The typical range of OD is between 0 and 1. It can be observed that it is sufficient to have 

only one null value among the individual desirability values to make OD null, whereas it 

is necessary to have all unitary values to obtain unitary OD. In intermediate cases, if all 

values of individual desirability are different from zero and at least one is non-unitary, 

OD is less than 1. Thus, the definition of the overall desirability allows the analyst to 

select the optimal process or product by simply identifying the best desirable one with the 

greatest value of OD.  

As described in Chapter 1.3.3, the desirability function approach has been 

employed for the first time as multi-response diagrid optimization process in [30]. In this 

present Chapter a similar study has been carried out considering four response variables, 

namely the top lateral displacement, torsional rotation, structural weight and complexity 

index. The latter parameter is fundamental since it is correlated to construction issues that 

can lead to greater cost of the building. It has been proposed by Tomei et al. that defines 

the complexity index as the sum of each parameter normalized to the maximum value 

among the ones obtained for different patterns [27]: 

𝐶𝐼𝑖 =∑
𝑁𝑗

𝑚𝑎𝑥𝑖𝑁𝑗

5

𝑗=1

 
(4.5) 

Where the subscript i refers to each geometrical solution and j to each metric, namely 

𝑁1, 𝑁2, 𝑁3, 𝑁4  and 𝑁5 . Specifically, 𝑁1  is the weighted number of nodes, 𝑁2  is the 

number of different cross sections employed for the diagonals in the pattern, 𝑁3 is the 

number of splices required for the diagonals in the pattern assuming a maximum diagonal 

length of 12 m, 𝑁4 is the number of diagonals of the patterns and 𝑁5 is the number of 

different lengths (distance between two nodes) of diagonal members in the pattern [27]. 

Regarding 𝑁1 metric, it has been evaluated assuming that the nodes at rigid floors are 

more complex that nodes at intra-module floors because, respectively, six and four 
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diagonals converge. Thus, a unit weight has been considered for the former joints and a 

weight of 4/6 (67%) for the latter ones. 

The purpose of the study is to select the optimal solution that minimizes 

simultaneously four response variables. Under these considerations, the individual 

desirability function is defined as reported in Equation (4.2), where the upper bound is 

the maximum value of the responses among all geometrical solutions and the lower bound 

𝐿𝑖  is assumed zero: 

𝑑𝑖(𝑦𝑖(𝑥)) = (
max
x
𝑦𝑖(𝑥) − 𝑦𝑖(𝑥)

max
x
𝑦𝑖(𝑥)

)

𝑟𝑖

 (4.6) 

Where x represents the geometrical solutions with different diagonal inclinations and 

floor plan shapes, 𝑦𝑖(𝑥) is the response variable and 𝑟𝑖 is the weight exponent. Note that 

the subscript i is related to each response variable. Equation (4.6) is applied to the top 

torsional rotation 𝜑(𝑥) and the structural weight M(𝑥) as follows: 

𝑑𝑖,𝜑 = (
max
x
𝜑𝑖 −𝜑𝑖

max
x
𝜑𝑖

)

𝑟𝑖,𝜑

 
(4.7) 

𝑑𝑖,𝑀 = (
max
x
𝑀𝑖 −𝑀𝑖

max
x
𝑀𝑖

)

𝑟𝑖,𝑀

 
(4.8) 

In the case of the evaluation of the individual desirability of the complexity index CI the 

upper bound of the Eq. (4.2) has been assumed equal to 5 and the 𝑑𝑖,𝐶𝐼 expression is given 

by: 

𝑑𝑖,𝐶𝐼 = (
5 − 𝐶𝐼𝑖
5

)
𝑟𝑖,𝐶𝐼

 
(4.9) 

Conversely, the definition of the individual desirability of the top lateral displacement is 

more complicated than the previous response parameters because the displacement is also 

used as a constraint to ensure building stiffness by imposing the target limit value of 

H/500. In general, three cases can be obtained: (a) 𝑑𝑖,𝛿  is null if the top lateral 

displacement exceeds the limit value 𝛿𝑙𝑖𝑚 (b) 𝑑𝑖,𝛿 is unitary if the 𝛿𝑖 variation for a given 

height is low (c) if the variation range is wide the expression of 𝑑𝑖,𝛿 is given by: 

𝑑𝑖,𝛿 = 0.5 + 0.5 (
𝛿𝑙𝑖𝑚 − 𝛿𝑖
𝛿𝑙𝑖𝑚

)
𝑟𝑖,𝛿

= 0.5 [1 + (1 −
𝛿𝑖
𝛿𝑙𝑖𝑚

)
𝑟𝑖,𝛿

] (4.10) 

The trend of Eq. (4.10) is reported in Figure 4.2. 
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Figure 4.2 - The trend of the individual desirability for the lateral displacement at the top of the building. The continuous 
line is related to 𝑟𝑖,𝛿 = 1, the dashed line to 𝑟𝑖,𝛿 > 1 and the zig-zag line to 𝑟𝑖,𝛿 < 1 

From a numerical point of view, the second and the third cases are implemented in 

function of the coefficient of variation 𝐶𝑉𝛿 , defined as the ratio between the standard 

deviation 𝜎𝛿  and the mean value 𝜇𝛿 . Thus, assuming a limit value 𝐶𝑉𝑙𝑖𝑚  of 10%, the 

individual desirability of the top lateral displacement is equal to 1 if the correspondent 

coefficient of variation 𝐶𝑉𝛿  is lower than the limit value (case b). In particular, it means 

that the effect of the lateral displacement on the overall desirability (OD) is neglected. 

Conversely, for greater value than 𝐶𝑉𝑙𝑖𝑚 Equation (4.10) is employed (case c). It can be 

noted that the range of 𝑑𝑖,𝛿 is between 0.5 and 1 because for some diagrid structures, 

whose structural behaviour depends simultaneously on stiffness and strength 

requirements, the lateral displacement at the top increases getting closer to the limit value. 

Therefore, 𝑑𝑖,𝛿  has to be decreased, but without reaching the zero value because the 

structures are considered acceptable in terms of rigidity and strength. The above-

mentioned procedure has been repeated for each building height. 

By combining the individual desirability for each response variable, the overall 

desirability (OD) can be obtained by applying Equation (4.4) considering n=4: 

𝑂𝐷(𝑥) = [∏𝑑𝑖(𝑦𝑖)

4

𝑖=1

]

1
4

= [𝑑(𝛿(𝑥)) ∙ 𝑑(𝜑(𝑥)) ∙ 𝑑(𝑀(𝑥)) ∙ 𝑑(𝐶𝐼(𝑥))]
1
4 (4.11) 

Based on OD values, it is possible to identify the optimal solution that minimizes 

simultaneously the four response variables. 
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4.2. UNIFORM-ANGLE DIAGRID STRUCTURES: RESULTS AND 

DISCUSSION 

The desirability function approach described in the previous Chapter 4.1 has been 

applied to the twenty-four diagrid geometrical models for each building height reported 

in Chapter 2.1. For sake of simplicity, the 168-m tall building is firstly analysed in 

Chapter 4.2.1 with its correspondent twenty-four diagrid models in order to point out the 

main aspects. In Chapter 4.2.2 the study has been repeated for the other three buildings 

with different heights. 

4.2.1. RESULTS FOR THE 168-M TALL BUILDING 

4.2.1.1. SELECTION OF THE OPTIMAL GEOMETRY 

In the case of the 168-m tall building the four response parameters (𝛿, φ,M, CI) 

evaluated from the preliminary design and Equation (4.5) are reported in Table 4.1 for 

each 𝑖𝑡ℎ solution.  

By investigating Table 4.1, the following considerations can be made. First of all, 

the second column related to the lateral displacement at the top of the building obtained 

from the preliminary design shows similar values to 𝛿𝑙𝑖𝑚  independently from the 

considered diagrid geometry due to the prevalence of stiffness over strength demand in 

design. In fact, in this case the coefficient of variation 𝐶𝑉𝛿  assumes lower value than 

𝐶𝑉𝑙𝑖𝑚 , namely 𝐶𝑉𝛿 = 1.15%. Thus, the individual desirability 𝑑𝑖,𝛿  is expected to be 

unitary for all geometries (𝑑𝑖,𝛿 = 1 for 𝑖 = 1 ÷ 24). Regarding the top torsional rotation 

reported in the third column of Table 4.1, the highest torsional rigidity is provided by the 

hexagonal structure with one intra-module floor H1, leading to the highest values of the 

individual desirability 𝑑𝐻1,𝜑. However, the other solutions with one intra-module floor 

(S1, O1, C1) have always a good torsional behaviour thanks to the low diagonal 

inclination (35°-38°). On the contrary, the solutions with highest torsional rotations are 

referred to the ones with steeper diagonals (S12, H12, O12, C12) having diagonal angle 

of about 83°. In particular, the S12 solution which is the worst one in terms of 𝜑 will have 

𝑑𝑆12,𝜑 = 0, based on Equation (4.7). By analysing the next column of Table 4.1 related 

to the structural weight of the external diagrid system, it can be noted that the lightest 



Chapter 4    

80 
 

structure is the four intra-module floors structure with square plan (S4), corresponding to  

diagonal inclination of about 70°, whereas for the other plan shapes the minimum mass 

is provided by the three intra-module floors solution (H3, O3, C3) having diagonal angle 

of 66°- 67°. Conversely, the heaviest structures are the one intra-module floor solutions 

(S1, H1, O1, C1) due to greater diagonal density. Therefore, the most desirable structure 

S4 will have highest 𝑑𝑆4,𝑀 and the least desirable one will have 𝑑𝑆4,𝑀 = 0, according to 

Equation (4.8).  

𝑖𝑡ℎ 
solution 

𝛿 
[𝑚] 

φ 

[10−4𝑟𝑎𝑑] 
M 

[ton] 
N1 
[-] 

N2 
[-] 

N3 
[-] 

N4 
[-] 

N5 
[-] 

CI 
[-] 

S1 0,336 0,88 5204 572 28 0 1152 1 3,70 
S2 0,335 3,24 1392 668 22 0 576 1 3,13 
S3 0,335 6,62 1023 700 15 0 384 1 2,77 
S4 0,336 10,44 991 716 12 288 288 1 3,61 
S6 0,334 17,02 1224 732 8 192 192 1 3,08 

S12 0,333 27,30 2990 748 4 288 96 1 3,22 
H1 0,336 0,85 4477 572 27 0 1152 1 3,66 
H2 0,335 3,20 1311 668 21 0 576 1 3,09 
H3 0,334 6,37 1029 700 16 0 384 1 2,80 
H4 0,333 9,71 1041 716 12 288 288 1 3,61 
H6 0,334 15,57 1318 732 8 192 192 1 3,08 

H12 0,335 24,18 3392 748 4 288 96 1 3,22 
O1 0,335 0,87 4165 572 26 0 1152 1 3,63 
O2 0,335 3,20 1272 668 22 0 576 1 3,13 
O3 0,335 6,35 1014 700 15 0 384 1 2,77 
O4 0,335 9,65 1036 716 11 288 288 1 3,57 
O6 0,332 15,28 1359 732 8 192 192 1 3,08 

O12 0,333 23,15 3545 748 4 288 96 1 3,22 
C1 0,336 0,87 3928 572 30 0 1152 1 3,76 
C2 0,335 3,24 1249 668 21 0 576 1 3,09 
C3 0,336 6,36 1018 700 16 0 384 1 2,80 
C4 0,335 9,51 1055 716 12 288 288 1 3,61 
C6 0,335 15,02 1391 732 8 192 192 1 3,08 
C12 0,334 22,48 3675 748 4 288 96 1 3,22 

Table 4.1 - Response parameters (𝛿, φ, M, CI) for the twenty-four diagrid geometrical models in case of the 168-m tall 
building. Absolute minimum values are in bold underlined, minimum values for each floor shape are in bold, absolute 
maximum values are in italic underlined, maximum values for each floor shape are in italic. 

The following five columns of Table 4.1 report the values of the five metrics needed 

to assess the complexity index (CI) for each geometry. 𝑁1 is the weighted number of 

nodes that increases with the diagonal inclination since the number of nodes at intra-

module floors is greater. In fact, the corresponding maximum value is 748 for all plan 
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shapes and, specifically, it is related to twelve intra-module floors solutions (S12, H12, 

O12, C12), whereas the S1, H1, O1 and C1 solutions provide the least number of nodes. 

The number of different cross sections employed for the diagonals in the pattern is 

represented by 𝑁2 which is always lower or equal to the number of diagrid modules. The 

employed diagonal cross-sections evaluated in the preliminary design are reported in 

Annex A. The minimum value of 𝑁2  is provided by the twelve intra-module floors 

solutions (S12, H12, O12, C12), while the maximum value by the one intra-module floor 

geometries (S1, H1, O1, C1). 𝑁3 is the number of splices required for the diagonals in the 

pattern assuming a maximum diagonal length of 12 m. Thus, 𝑁3 is null for geometries 

with one, two and three intra-module floors because diagonal length is lower than 12 m, 

whereas it is maximum for solutions with greater diagonal inclination. 𝑁4 is the total 

number of diagonals which is maximum for S1, H1, O1 and C1 solutions and minimum 

for S12, H12, O12 and C12 ones. Lastly, 𝑁5 represents the number of different lengths of 

diagonal members in the pattern and it is always unitary for each geometry because the 

diagonal inclination is constant along the height of the building. By combining these five 

metrics according to Equation (4.5), the complexity index can be calculated and its values 

are reported in the tenth column of Table 4.1. It can be noted in Figure 4.3 that the 

complexity index decreases with the diagonal inclination from 35° to 65° due to 𝑁2 and 

𝑁4, and it suddenly increases for four intra-module floors solutions due to 𝑁3. Moreover, 

it is evident that the complexity index is minimum for solutions with diagonal angle 

between 65° and 67° (S3, O3), leading to greater value of the individual desirability. 

Conversely, it is maximum for the circular structure with the shallowest diagonals and in 

this case 𝑑𝐶1,𝐶𝐼 = 0. 

Figure 4.3 - Complexity index for different geometrical solutions in case of the 168-m tall building 

Once the response parameters for each diagrid geometry have been evaluated 

according to Chapter 3, the individual desirability 𝑑𝑖,𝑝 has been calculated by means of 
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Equations (4.7)-(4.10), assuming 𝑟𝑝 equal to one for each response variable for sake of 

simplicity, namely 𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 1 . This assumption leads to consider each 

response parameter with the same weight. The values are shown in the first four columns 

of Table 4.2 and illustrated in Figure 4.4a. It has to be noted in Figure 4.4a that the 

individual desirability trend of each response variable is similar for each floor plan shape. 

Therefore, the effect of the plan shape on 𝑑𝑖,𝑝 is very slight with respect to the effect of 

the diagonal angle, that leads to a more important variation of 𝑑𝑖,𝑝.  

At last, the final step of the desirability function approach consists into the 

assessment of the overall desirability (𝑂𝐷𝑖) of each 𝑖𝑡ℎ solution by combining together 

the four obtained individual desirabilities by applying Equation (4.11). The results are 

presented in last column of Table 4.2 and OD trend in Figure 4.4b. Based on the OD 

results, the most desirable solution is the three intra-module floors solution with octagonal 

floor plan shape because 𝑂𝐷𝑂3  assumes the highest value of 72.46%  among all 

geometrical solutions. In particular, O3 solution is characterized by a unitary 𝑑𝑂3,𝛿 = 1, 

that does not affect the 𝑂𝐷 value, a good but not optimal torsional stiffness because 

𝑑𝑂3,𝜑 = 76.73% is not the highest value among all solutions (𝑑𝐻1,𝜑,𝑚𝑎𝑥 = 96.89%), a 

low structural weight (𝑑𝑂3,𝑀 = 80.51%) and the O3 solution is also the easiest structure 

to be constructed having the highest values of 𝑑𝑂3,𝐶𝐼 = 44.62%. However, similar values 

of OD for S3, H3 and C3 solutions, respectively 𝑂𝐷𝑆3 = 72.18%,𝑂𝐷𝐻3 = 72.11%  and 

𝑂𝐷𝐶3 = 72.16%, demonstrate again the slight influence of the floor plan shape on the 

selection of the optimal geometry. Conversely, the diagonal inclination seems to be the 

predominant geometrical parameter that distinguishes the most and the least desirable 

solution, as it is evident in Figure 4.4b. In fact, as the diagonal inclination is increased or 

decreased with respect to 65°-67°, the overall desirability OD value tends to decrease. In 

particular, in case of S1 and S12 solutions OD is null because S1 is the heaviest structure 

(𝑑𝑆1,𝑀 = 0 ) and S12 is the most torsionally flexible structure ( 𝑑𝑆12,𝜑 = 0 ). This 

consideration can be done also for the other floor plan shapes with the difference that OD 

reaches low and not null value. Indeed, for the H1, O1 and C1 solutions OD varies from 

43.6% to 49.21% due to high torsional stiffness (𝑑𝑖,𝜑 ≅ 96.8%), huge steel consumption 

( 𝑑𝑖,𝑀 ≅ 13.97 − 24.53% ) and difficult constructability ( 𝑑𝑖,𝐶𝐼 ≅ 24.71 − 26.71% ), 

whereas for the H12, O12 and C12 solutions OD is between 34.52% and 36.89% due to 
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high torsional flexibility (𝑑𝑖,𝜑 ≅ 11.44 − 17.66%), quite high weight (𝑑𝑖,𝑀 ≅ 29.39 −

34.82%) and quite easy constructability (𝑑𝑖,𝐶𝐼 = 35.67%). The solutions with two intra-

module floors (S2, H2, O2, C2) corresponding to diagonal angle around 55° represent the 

second most desirable solutions having OD between 70.13% and 71.10%. These 

structures are characterized by a good torsional stiffness (𝑑𝑖,𝜑 ≅ 88%), good exploitation 

of steel material (𝑑𝑖,𝑀 ≅  73.26-76.01%) and easy constructability (𝑑𝑖,𝐶𝐼 ≅ 37.47 −

38.14%).  

𝑖𝑡ℎ𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑑𝑖,𝛿[−] 𝑑𝑖,𝜑[−] 𝑑𝑖,𝑀[−] 𝑑𝑖,𝐶𝐼[−] 𝑂𝐷𝑖[−] 
S1 1 0,9678 0 0,2604 0 
S2 1 0,8813 0,7326 0,3747 0,7013 
S3 1 0,7573 0,8035 0,4462 0,7218 
S4 1 0,6177 0,8095 0,2786 0,6109 
S6 1 0,3765 0,7649 0,3843 0,5767 
S12 1 0 0,4254 0,3567 0 
H1 1 0,9689 0,1397 0,2671 0,4360 
H2 1 0,8826 0,7481 0,3814 0,7084 
H3 1 0,7667 0,8022 0,4395 0,7211 
H4 1 0,6444 0,8000 0,2786 0,6156 
H6 1 0,4298 0,7467 0,3843 0,5926 
H12 1 0,1144 0,3482 0,3567 0,3452 
O1 1 0,9682 0,1997 0,2737 0,4796 
O2 1 0,8827 0,7557 0,3747 0,7071 
O3 1 0,7673 0,8051 0,4462 0,7246 
O4 1 0,6465 0,8009 0,2852 0,6199 
O6 1 0,4402 0,7389 0,3843 0,5946 
O12 1 0,1521 0,3188 0,3567 0,3626 
C1 1 0,9680 0,2453 0,2471 0,4921 
C2 1 0,8815 0,7601 0,3814 0,7110 
C3 1 0,7671 0,8044 0,4395 0,7216 
C4 1 0,6515 0,7972 0,2786 0,6167 
C6 1 0,4496 0,7328 0,3843 0,5965 

C12 1 0,1766 0,2939 0,3567 0,3689 
Table 4.2 -Individual desirability 𝑑𝑖,𝑝 and overall desirability 𝑂𝐷𝑖 for each response variable assuming 𝑟𝑝 = 1 in case of the 
168-m tall building. Absolute maximum values are in bold 

The overall desirability OD value drops to 62% for S4, H4, O4 and C4 solutions with 

diagonal angle around 70° because of low torsional stiffness (𝑑𝑖,𝜑 ≅61.77-65.15%) and 

construction issues (𝑑𝑖,𝐶𝐼 ≅ 27.86 − 28.52%) despite the structure lightness (𝑑𝑖,𝑀 ≅

80%). Further reduction of OD values (57.67-59.65%) is found for the S6, H6, O6 and 

C6 solutions mainly due to lower torsional rigidity (𝑑𝑖,𝜑 ≅ 37.65-44.96%) in contrast 
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with low mass (𝑑𝑖,𝑀 ≅ 73.28 − 76.49%) and few constructability problems (𝑑𝑖,𝐶𝐼 ≅

38.43%). Lastly, as mentioned before, the least desirable solutions are the ones with 

shallower and steeper diagonals. 

Figure 4.4 - Results of the desirability function approach in case of the 168-m diagrid tall building: (a) Individual 
desirability values for each response variable (b) Overall desirability values (𝑟𝑝 = 1) 

4.2.1.2. PARAMETRIC ANALYSIS 

The previous analysis has been carried out considering the same weight of the 

response parameters by means of the 𝑟𝑝 exponent. As follows, another investigation is 

simulated by supposing different importance of each response parameter. To this aim, the 

exponent 𝑟𝑝 presented in Equations (4.7) (4.10) assumes values varying between 0.25 and 

2 with a constant step of 0.25, i.e. 𝑟𝑝  = (0.25, 0.5, 0.75, 1, 1.25,1.5, 1.75, 2). Thus, since 

there are four response parameters, the total number of possible combinations to be 

performed is 84 = 4096. In Table 4.3 some combinations are reported. Note that for 

structures with slenderness greater than 5, i.e. the 168, 210 and 252 m tall buildings, the 

individual desirability of the top lateral displacement is generally unitary for all 

geometrical solutions due to dominant stiffness demand and therefore the effect of 𝑟𝛿  is 

negligible. Nevertheless, 4096 combinations will always be employed for these buildings. 

 

 

 

 

(a) 

(b) 
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Table 4.3 - Different values of the 𝑟𝑝 exponent for each response parameter for application of the desirability function with 
4096 simulations [30] 

The assessment of the individual desirability of each response parameter is always 

provided by Equations (4.7) (4.10) applied to the obtained response variables shown in 

Table 4.1. In this case, it is not possible to predict a priori the most desirable solution, but 

it is expected that different geometrical solutions will be more desirable than others 

depending on the chosen combination. In particular, the most desirable solution with the 

greatest OD value has been selected for each combination and the relative frequency of 

occurrence has been evaluated as it is illustrated in Figure 4.5. Based on results, it is 

evident that the three intra-module floors solution with octagonal floor plan shape is 

preferable for 3040 out of 4096 combinations, leading to a relative frequency of about 

74.22%. This outcome of O3 as optimal solution has been obtained also for the uniform-

angle diagrid structure analysis with unitary 𝑟𝑝  exponent with OD value of 72.46%. 

However, the final values of the overall desirability are a bit different. Generally, it can 

be noted that OD tends to decrease for greater value of 𝑟𝜑 , 𝑟𝑀 and 𝑟𝐶𝐼. Moreover, it is 

found that OD varies between 0.525 and 0.923. The minimum value is provided by 

combinations with highest value of 𝑟𝑝 for the torsional rotation, structural weight and 

complexity index independently from the value of 𝑟𝛿, i.e. 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 2, whereas the 

maximum value by combinations with  𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 0.25. Figure 4.5 shows also that 

the two intra-module floors solution with circular floor plan shape is more desirable than 

the previous one when the weight related to the torsional rotation is greater than others 

(𝑟𝜑 > 𝑟𝐶𝐼 and  𝑟𝜑 ≥ 𝑟𝑀 , ∀𝑟𝛿 ). In particular, 25.78% of the combinations corresponding to 

1056 out of 4096 cases leads to C2 geometry as the most preferable solution. It is found 

Combination 𝑟𝛿  [−] 𝑟𝜑  [−] 𝑟𝑀 [−] 𝑟𝐶𝐼  [−] 
1 0.25 0.25 0.25 0.25 
2 0.25 0.25 0.25 0.5 
3 0.25 0.25 0.25 0.75 
⋮ ⋮  ⋮  ⋮  ⋮  

1755 1 1 1 0.75 
1756 1 1 1 1 
1757 1 1 1 1.25 
⋮ ⋮  ⋮  ⋮  ⋮  

4094 2 2 2 1.5 
4095 2 2 2 1.75 
4096 2 2 2 2 
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that the overall desirability has a range between 0.632 and 0.911 corresponding 

respectively to 𝑟𝜑 = 2, 𝑟𝑀 = 0.5, 𝑟𝐶𝐼 = 1.5  and 𝑟𝜑 = 0.5,  𝑟𝑀 = 0.25 , 𝑟𝐶𝐼 = 0.25 

combinations. Similarly, OD is equal to 71.10% for C2 solution with unitary 𝑟𝑝.  

Figure 4.5 - Relative frequency of each geometrical solution for the 168-m tall building considering 4096 simulations 

4.2.2. RESULTS FOR THE OTHER BUILDING HEIGHTS  

Up to this point the analysis of the outcomes obtained from the desirability function 

for the 168-m tall building has been carried out, but the same procedure has been applied 

to the other three buildings with different heights, namely the 126, 210 and 252 m tall 

buildings, aimed at highlighting the influence of the building height on the selection of 

the optimal diagrid model. For sake of completeness, the values of the response 

parameters obtained from the preliminary design and Equation (4.5) are reported in Table 

4.4, Table 4.5 and Table 4.6 for respectively 126, 210 and 252 m tall buildings. Based on 

the results, many considerations can be made and most of them have been pointed out in 

Chapter 3.2.2 referred to the top lateral displacement, torsional rotation and structural 

weight of the external diagrid system in function of the building height. Thus, attention 

is paid on the complexity index which is also illustrated graphically in  Figure 4.6, Figure 

4.7 and Figure 4.8. In general, it is found that the complexity index tends to assume 

slightly higher values with slender structures because the number of nodes and the number 

of diagonals employed are greater. However, in case of S1 geometry with 210 m height 

(Figure 4.7) and one intra-module floor solutions (S1, H1, O1, C1) besides C12 with 252 

m height (Figure 4.8) the complexity index assumes the lowest value of 2.8 with respect 

to other solutions due to 𝑁2. In fact, the latter parameter is unitary since the preliminary 

design has returned a structure with only one cross section for all diagonals characterized 

by the maximum area available in Table 3.1. 
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𝑖𝑡ℎ 
solution 

𝛿 
[𝑚] 

φ 

[10−4𝑟𝑎𝑑] 
M 

[ton] 
N1 
[-] 

N2 
[-] 

N3 
[-] 

N4 
[-] 

N5 
[-] 

CI 
[-] 

S1 0,243 1,046 1603 428 20 0 864 1 3,60 
S2 0,153 2,354 705 500 17 0 432 1 3,10 
S3 0,149 4,403 566 524 12 0 288 1 2,77 
S4 0,163 7,092 535 536 9 216 216 1 3,58 
S6 0,227 14,627 523 548 6 144 144 1 3,06 

S12 0,246 21,822 1359 560 3 216 72 1 3,21 
H1 0,227 0,951 1469 428 20 0 864 1 3,60 
H2 0,152 2,277 672 500 16 0 432 1 3,06 
H3 0,155 4,320 553 524 12 0 288 1 2,77 
H4 0,178 7,115 517 536 8 216 216 1 3,54 
H6 0,251 14,485 521 548 6 144 144 1 3,06 

H12 0,249 19,403 1520 560 3 216 72 1 3,21 
O1 0,221 0,933 1412 428 23 0 864 1 3,72 
O2 0,151 2,255 660 500 16 0 432 1 3,06 
O3 0,156 4,306 548 524 11 0 288 1 2,73 
O4 0,182 7,087 513 536 9 216 216 1 3,58 
O6 0,250 13,939 539 548 6 144 144 1 3,06 

O12 0,248 18,406 1600 560 3 216 72 1 3,21 
C1 0,218 0,928 1350 428 24 0 864 1 3,76 
C2 0,155 2,290 640 500 15 0 432 1 3,02 
C3 0,160 4,396 537 524 12 0 288 1 2,77 
C4 0,187 7,207 510 536 9 216 216 1 3,58 
C6 0,250 13,565 558 548 6 144 144 1 3,06 
C12 0,250 18,023 1726 560 3 216 72 1 3,21 

Table 4.4 - Response parameters (𝛿, φ, M, CI) for the twenty-four diagrid geometrical models in case of the 126-m tall 
building. Absolute minimum values are in bold underlined, minimum values for each floor shape are in bold, absolute 
maximum values are in italic underlined, maximum values for each floor shape are in italic. 

Figure 4.6 - Complexity index for different geometrical solutions in case of the 126-m tall building 
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𝑖𝑡ℎ 
solution 

𝛿 
[𝑚] 

φ 

[10−4𝑟𝑎𝑑] 
M 

[ton] 
N1 
[-] 

N2 
[-] 

N3 
[-] 

N4 
[-] 

N5 
[-] 

CI 
[-] 

S1 0,445 0,56 18780 716 1 0 1440 1 2,80 
S2 0,419 2,84 3531 836 24 0 720 1 3,25 
S3 0,419 6,04 2507 876 19 0 480 1 2,95 
S4 0,419 9,63 2358 896 15 360 360 1 3,74 
S6 0,418 17,15 2693 916 10 240 240 1 3,17 

S12 0,418 31,26 5765 936 5 360 120 1 3,26 
H1 0,420 0,63 12826 716 23 0 1440 1 3,59 
H2 0,419 2,82 3323 836 26 0 720 1 3,32 
H3 0,419 5,81 2513 876 18 0 480 1 2,91 
H4 0,416 9,12 2450 896 15 360 360 1 3,74 
H6 0,420 16,00 2873 916 10 240 240 1 3,17 

H12 0,416 27,60 6348 936 5 360 120 1 3,26 
O1 0,420 0,68 11341 716 25 0 1440 1 3,66 
O2 0,419 2,81 3219 836 24 0 720 1 3,25 
O3 0,419 5,86 2466 876 18 0 480 1 2,91 
O4 0,419 9,06 2421 896 14 360 360 1 3,71 
O6 0,420 15,69 2904 916 10 240 240 1 3,17 

O12 0,413 26,16 6628 936 4 360 120 1 3,23 
C1 0,419 0,70 10521 716 28 0 1440 1 3,76 
C2 0,420 2,85 3149 836 28 0 720 1 3,39 
C3 0,420 5,79 2471 876 20 0 480 1 2,98 
C4 0,417 9,07 2466 896 15 360 360 1 3,74 
C6 0,419 15,41 2992 916 10 240 240 1 3,17 
C12 0,419 25,70 6790 936 4 360 120 1 3,23 

Table 4.5 - Response parameters (𝛿, φ, M, CI) for the twenty-four diagrid geometrical models in case of the 210-m tall 
building. Absolute minimum values are in bold underlined, minimum values for each floor shape are in bold, absolute 
maximum values are in italic underlined, maximum values for each floor shape are in italic, in red unsatisfactory top lateral 
displacement 

Figure 4.7 - Complexity index for different geometrical solutions in case of the 210-m tall building 
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𝑖𝑡ℎ 
solution 

𝛿 
[𝑚] 

φ 

[10−4𝑟𝑎𝑑] 
M 

[ton] 
N1 
[-] 

N2 
[-] 

N3 
[-] 

N4 
[-] 

N5 
[-] 

CI 
[-] 

S1 0,998 0,88 22536 860 1 0 1728 1 2,80 
S2 0,501 2,48 7718 1004 27 0 864 1 3,21 
S3 0,502 5,33 5387 1052 22 0 576 1 2,94 
S4 0,502 8,92 4916 1076 17 432 432 1 3,72 
S6 0,500 16,57 5316 1100 12 288 288 1 3,18 

S12 0,501 31,35 9586 1124 4 432 144 1 3,20 
H1 0,899 0,76 21495 860 1 0 1728 1 2,80 
H2 0,503 2,50 7246 1004 23 0 864 1 3,09 
H3 0,504 5,28 5327 1052 22 0 576 1 2,94 
H4 0,501 8,58 5059 1076 17 432 432 1 3,72 
H6 0,504 15,47 5588 1100 11 288 288 1 3,15 

H12 0,504 27,25 10743 1124 3 432 144 1 3,17 
O1 0,850 0,73 21198 860 1 0 1728 1 2,80 
O2 0,503 2,52 6974 1004 29 0 864 1 3,27 
O3 0,501 5,29 5248 1052 23 0 576 1 2,97 
O4 0,500 8,57 5019 1076 16 432 432 1 3,69 
O6 0,501 15,33 5685 1100 12 288 288 1 3,18 

O12 0,502 25,48 11625 1124 2 432 144 1 3,14 
C1 0,816 0,71 20816 860 1 0 1728 1 2,80 
C2 0,503 2,54 6846 1004 33 0 864 1 3,39 
C3 0,503 5,34 5235 1052 24 0 576 1 3,00 
C4 0,504 8,46 5048 1076 18 432 432 1 3,75 
C6 0,503 15,15 5780 1100 12 288 288 1 3,18 
C12 0,506 24,75 12995 1124 1 432 144 1 3,11 

Table 4.6 - Response parameters (𝛿, φ, M, CI) for the twenty-four diagrid geometrical models in case of the 252-m tall 
building. Absolute minimum values are in bold underlined, minimum values for each floor shape are in bold, absolute 
maximum values are in italic underlined, maximum values for each floor shape are in italic,in red unsatisfactory top lateral 
displacement 

Figure 4.8 - Complexity index for different geometrical solutions in case of the 252-m tall building 

 

 

 

 



Chapter 4    

90 
 

By applying the desirability function approach to all geometrical solutions for each 

building height, the individual and overall desirabilities can be calculated considering 

initially same weight for each response parameter (𝑟𝑝 = 1). Regarding the 126-m tall 

building, it is evident in the first column of Table 4.7 that 𝑑𝑖,𝛿 is not unitary since it varies 

from 0.5029 to 0.7038 because in case of strength-based preliminary design the top lateral 

displacement has greater variability. In fact, 𝐶𝑉𝛿 = 20.86% is higher than 𝐶𝑉𝑙𝑖𝑚 = 10%. 

In particular, the three intra-module floors solution with square floor plan provides the 

lowest lateral displacement at the top, leading to an individual desirability 𝑑𝑆3,𝛿  equal to 

70.38%. Conversely, the most flexible structure is the six intra-module floors solution 

with hexagonal plan (𝑑𝐻6,𝛿 = 50.29%). As far as the top torsional rotation, structural 

mass and complexity index are concerned, the trends are similar to the ones obtained in 

case of the 168-m tall building, as it is shown in Figure 4.9. In fact, the individual 

desirability of the torsional rotation reaches peak values for one intra-module floors 

solutions (S1, H1, O1, C1) ranging between 95.21-95.75% and it tends to decrease for 

steeper diagonals. On the contrary, 𝑑𝑖,𝑀  and  𝑑𝑖,𝐶𝐼   are maximum for solutions with 

diagonal inclination of 65°-67° (S3, H3, O3, C3) and minimum for the shallowest and the 

steepest diagonals. In the last column of Table 4.7 the overall desirability values are 

reported. As for the 168-m tall building, the most desirable solution is always the three 

intra-module floors solution with octagonal floor plan corresponding to 𝑂𝐷𝑂3 =

64.41%, whereas the least desirable ones are the twelve intra-module floors solutions 

with square and circular plans because of the greatest torsional deformability (𝑂𝐷𝑆12 =

0%) and highest structural mass (𝑂𝐷𝐶12 = 0%), respectively.  

Based on the results of the 210-m tall building represented in Table 4.8 and Figure 

4.10, the individual desirability of the top lateral displacement is unitary since 𝐶𝑉𝛿 =

0.37% is lower than 𝐶𝑉𝑙𝑖𝑚, except for the unique geometry that does not provide enough 

lateral stiffness (𝑑𝑆1,𝛿 = 0) . The optimal solution is always O3 (𝑂𝐷𝑂3 = 73.68%) thanks 

to good torsional behaviour, lightness and easiness of construction, whereas the worst 

ones are S1 and S12 due to excessive lateral displacement, torsional rotation and mass 

(𝑂𝐷𝑆1 = 𝑂𝐷𝑆12 = 0%).  

Finally, in case of the 252-m tall building there are more structures that do not 

ensure the stiffness demand and therefore the S1, H1, O1, C1 and C12 solutions provide 

null 𝑑𝑖,𝛿 , whereas for the others 𝑑𝑖,𝛿 = 1 with 𝐶𝑉𝛿 = 0.24%. In this case, the most 
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desirable solution is H3 with 𝑂𝐷𝐻3 = 71.55% and the least desirable ones are S1, S12, 

H1, O1, C1 and C12 for unsatisfactory displacement, high torsional rotation and 

complexity index. 

𝑖𝑡ℎ𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑑𝑖,𝛿[−] 𝑑𝑖,𝜑[−] 𝑑𝑖,𝑀[−] 𝑑𝑖,𝐶𝐼[−] 𝑂𝐷𝑖[−] 
S1 0,5188 0,9521 0,0713 0,2805 0,3152 
S2 0,6973 0,8921 0,5912 0,3798 0,6113 
S3 0,7038 0,7983 0,6719 0,4462 0,6406 
S4 0,6767 0,6750 0,6898 0,2836 0,5467 
S6 0,5488 0,3297 0,6971 0,3876 0,4702 
S12 0,5118 0 0,2127 0,3583 0 
H1 0,5503 0,9564 0,1488 0,2805 0,3850 
H2 0,6977 0,8957 0,6104 0,3881 0,6203 
H3 0,6924 0,8020 0,6796 0,4462 0,6406 
H4 0,6462 0,6739 0,7006 0,2919 0,5463 
H6 0,5029 0,3362 0,6982 0,3876 0,4625 
H12 0,5060 0,1109 0,1194 0,3583 0,2213 
O1 0,5622 0,9572 0,1815 0,2555 0,3975 
O2 0,7000 0,8967 0,6176 0,3881 0,6228 
O3 0,6913 0,8027 0,6826 0,4545 0,6441 
O4 0,6398 0,6752 0,7026 0,2836 0,5416 
O6 0,5038 0,3613 0,6878 0,3876 0,4693 
O12 0,5076 0,1566 0,0731 0,3583 0,2136 
C1 0,5672 0,9575 0,2179 0,2471 0,4136 
C2 0,6932 0,8951 0,6294 0,3964 0,6273 
C3 0,6817 0,7986 0,6888 0,4462 0,6396 
C4 0,6291 0,6697 0,7042 0,2836 0,5386 
C6 0,5034 0,3784 0,6767 0,3876 0,4728 

C12 0,5045 0,1741 0 0,3583 0 
Table 4.7- Individual desirability 𝑑𝑖,𝑝 and overall desirability 𝑂𝐷𝑖 for each response variable assuming 𝑟𝑝 = 1 in case of the 
126-m tall building. Absolute maximum values are in bold 

Figure 4.9- Results of the desirability function approach in case of the 126-m diagrid tall building: (a) Individual 
desirability values for each response variable (b) Overall desirability values (𝑟𝑝 = 1) 

(a) 

(b) 
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𝑖𝑡ℎ𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑑𝑖,𝛿[−] 𝑑𝑖,𝜑[−] 𝑑𝑖,𝑀[−] 𝑑𝑖,𝐶𝐼[−] 𝑂𝐷𝑖[−] 
S1 0 0,9820 0 0,4399 0 
S2 1 0,9093 0,8120 0,3499 0,7130 
S3 1 0,8066 0,8665 0,4104 0,7319 
S4 1 0,6918 0,8744 0,2514 0,6245 
S6 1 0,4513 0,8566 0,3662 0,6134 
S12 1 0 0,6930 0,3476 0 
H1 1 0,9800 0,3170 0,2827 0,5444 
H2 1 0,9097 0,8230 0,3357 0,7080 
H3 1 0,8141 0,8662 0,4176 0,7366 
H4 1 0,7081 0,8696 0,2514 0,6273 
H6 1 0,4880 0,8470 0,3662 0,6237 
H12 1 0,1169 0,6620 0,3476 0,4050 
O1 1 0,9782 0,3961 0,2684 0,5679 
O2 1 0,9101 0,8286 0,3499 0,7167 
O3 1 0,8124 0,8687 0,4176 0,7368 
O4 1 0,7102 0,8711 0,2585 0,6324 
O6 1 0,4979 0,8454 0,3662 0,6266 
O12 1 0,1632 0,6471 0,3548 0,4400 
C1 1 0,9775 0,4398 0,2470 0,5708 
C2 1 0,9087 0,8323 0,3214 0,7021 
C3 1 0,8146 0,8684 0,4033 0,7308 
C4 1 0,7099 0,8687 0,2514 0,6275 
C6 1 0,5070 0,8407 0,3662 0,6285 

C12 1 0,1779 0,6385 0,3548 0,4480 
Table 4.8- Individual desirability 𝑑𝑖,𝑝 and overall desirability 𝑂𝐷𝑖 for each response variable assuming 𝑟𝑝 = 1 in case of 
210-m tall building. Absolute maximum values are in bold 

Figure 4.10- Results of the desirability function approach in case of 210-m diagrid tall building: (a) Individual desirability 
values for each response variable (b) Overall desirability values (𝑟𝑝 = 1) 

(a) 

(b) 
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𝑖𝑡ℎ𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑑𝑖,𝛿[−] 𝑑𝑖,𝜑[−] 𝑑𝑖,𝑀[−] 𝑑𝑖,𝐶𝐼[−] 𝑂𝐷𝑖[−] 
S1 0 0,9720 0 0,4409 0 
S2 1 0,9207 0,6575 0,3577 0,6822 
S3 1 0,8299 0,7610 0,4128 0,7146 
S4 1 0,7155 0,7818 0,2555 0,6149 
S6 1 0,4714 0,7641 0,3649 0,6021 
S12 1 0 0,5746 0,3591 0 
H1 0 0,9757 0,0462 0,4409 0 
H2 1 0,9202 0,6785 0,3820 0,6988 
H3 1 0,8315 0,7636 0,4128 0,7155 
H4 1 0,7261 0,7755 0,2555 0,6159 
H6 1 0,5065 0,7520 0,3709 0,6131 
H12 1 0,1307 0,5233 0,3652 0,3975 
O1 0 0,9767 0,0594 0,4409 0 
O2 1 0,9195 0,6905 0,3456 0,6844 
O3 1 0,8313 0,7671 0,4068 0,7136 
O4 1 0,7266 0,7773 0,2616 0,6200 
O6 1 0,5109 0,7477 0,3649 0,6110 
O12 1 0,1873 0,4841 0,3712 0,4283 
C1 0 0,9775 0,0763 0,4409 0 
C2 1 0,9188 0,6962 0,3214 0,6733 
C3 1 0,8298 0,7677 0,4007 0,7108 
C4 1 0,7302 0,7760 0,2495 0,6132 
C6 1 0,5168 0,7435 0,3649 0,6119 

C12 0 0,2105 0,4234 0,3773 0 
Table 4.9- Individual desirability 𝑑𝑖,𝑝 and overall desirability 𝑂𝐷𝑖 for each response variable assuming 𝑟𝑝 = 1 in case of the 
252-m tall building. Absolute maximum values are in bold 

Figure 4.11- Results of the desirability function approach in case of the 252-m diagrid tall building: (a) Individual 
desirability values for each response variable (b) Overall desirability values (𝑟𝑝 = 1) 

(a) 

(b) 
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In Figure 4.12 the overall desirability OD is plotted in function of the two 

geometrical parameters, namely the diagonal inclination and the floor plan shape, for each 

building height, aimed at obtaining a three-dimensional surface. It is worth to note how 

the geometrical parameters have totally different effect on the selection of the most 

desirable solution. Specifically, it is evident that the influence of the floor plan shape is 

almost negligible. Conversely, as stated several times, the diagonal inclination has a 

stronger effect on the value of the overall desirability. This means that a variation of the 

diagonal angle can lead to a different structural behaviour in terms of lateral displacement 

and torsional rotation, structural weight and construction issues.  

Figure 4.12 - Overall desirability (OD) in function of the diagonal angle and floor plan shape for each building height 

For the 126, 210 and 252-m tall buildings the same analysis with different weights 

for different response parameters has been carried out. To this purpose, the combinations 

presented in Table 4.3 are employed. As for the 48-story building, the principal outcomes 

related to the optimal solution have been expressed in terms of the relative frequency of 

occurrence out of the total combinations for each geometrical solution, as shown in Figure 

4.13. In case of the 36-story building, the most desirable solution in most combinations 
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shown in Figure 4.13a is the three intra-module floors solution with octagonal plan for 

3423 out of 4096 simulations, leading to a corresponding relative frequency of 83.57%. 

Based on the results, OD values varies between 0.434 and 0.891. Specifically, the 

minimum value is returned for 𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 2  combination, whereas the 

maximum one for 𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 0.25. In some other combinations where the 

torsional rotation exponent is greater (𝑟𝜑 > 𝑟𝐶𝐼  and 𝑟𝜑 ≥ 𝑟𝑀 , 𝑟𝛿) the two intra-module 

floors solution with circular plan is preferable in 574 out of 4096 combinations, leading 

to a relative frequency of occurrence equal to 14.01%. The overall desirability is between 

0.582 ( 𝑟𝛿 =  𝑟𝜑 = 2, 𝑟𝑀 = 𝑟𝐶𝐼 = 1 ) and 0.879 ( 𝑟𝛿 = 𝑟𝑀 = 𝑟𝐶𝐼 = 0.25,  𝑟𝜑 = 0.5 ). 

Moreover, there are also other solutions with low relative frequency of occurrence: the 

S3, O2 and C3 geometries have greatest overall desirability in 46 (1.12%), 36 (0.88%) 

and 17 (0.42%) combinations, respectively.  

Secondly, for the 60-story building the O3 solution is always the one most desirable 

in most combinations, namely 2440 out of 4096 (59.57%), having OD range between 

0.543 (𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 2) and 0.927 (𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 0.25), whereas the H3 solution 

provides the greatest overall desirability in 936 cases (22.85%) where  𝑟𝜑 and  𝑟𝐶𝐼 prevail. 

In some other simulations the O2 geometry results to be the optimal one in 720 

combinations (17.58%) where  𝑟𝜑 ≥  𝑟𝑀  and  𝑟𝜑 >  𝑟𝐶𝐼 . The results are presented in 

Figure 4.13b. 

Lastly, regarding the 72-story building, the H3 geometry is the optimal solution in 

3088 out of 4096 combinations (75.39%) with OD values from 0.512 (𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 =

2) to 0.9197 (𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 0.25), whereas the H2 solution results the best one in 624 

simulations (15.23%) where the exponent related to torsional rotation 𝑟𝜑 is greater than 

the others. In some cases, 384 combinations (9.38%) return the O3 solution with highest 

overall desirability. Specifically, it occurs when the exponent referred to structural weight  

𝑟𝑀 is greater than 𝑟𝜑 and 𝑟𝐶𝐼. Note that the 72-story building is the particular case that 

returns the H3 geometry as optimal solution in most of combinations instead of the O3 

model. However, as mentioned before, it is expected a slight influence of the floor plan 

shape on the overall desirability, e.g. considering the combination given by 𝑟𝜑 = 𝑟𝑀 =
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𝑟𝐶𝐼 = 2 the O3 geometry is characterized by 𝑂𝐷𝑂3 = 50.52% with a difference of 0.68% 

with respect to 𝑂𝐷𝐻3. The results are shown in Figure 4.13c. 

Figure 4.13 - Relative frequency of each geometrical solution considering 4096 simulations for: (a) the 126-m tall building 
(b) the 210-m tall building (c) the 252-m tall building  

In conclusion, it is worth to note that the three intra-module floors solution results 

the most desirable geometry in terms of the top lateral displacement, torsional rotation, 

structural weight and complexity index for each building height. In fact, from the 

parametric analysis it was found that having diagonal inclination ranging between 65°-

67° is optimal in 85.11%, 74.22%, 82.42% and 84.77% of the total number of 

(a) 

(b) 

(c) 
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combinations for the 36-, 48-, 60- and 72-story buildings, respectively. Conversely, the 

effect of exponent on the selection of the optimal geometry is slight as it also occurs for 

both building height and floor plan shape. However, the evidence that the building height 

is not significant in the choice of the optimal solution seems to contradict the studies in 

literature because many authors, like Moon, state that the optimal diagonal inclination 

increases with the height of the building as the bending moment prevails on the shear in 

slender structures. In the proposed study, instead, it was found that the three intra-module 

floors solution is almost always the optimal one independently from the building height. 

This phenomenon is caused by considering not only the lateral deflection, but also other 

response parameters, i.e. torsional rotation, structural weight of the external diagrid 

system and complexity index, in order to ensure an enhanced performance. Specifically, 

it is evident that the torsional rotation is the unique parameter that does not allow to obtain 

an optimal solution with steeper diagonals for taller buildings since the torsional stiffness 

is maximized by shallower diagonals (35°). On the contrary, the other parameters (𝛿, M, 

CI) reach minimum values for steeper inclinations: 65°-67° for the top deflection (only 

for the 126-m tall building) and the complexity index, whereas 70°-78° for the mass. 

Therefore, if the desirability function approach had been employed neglecting the 

torsional rotation, an optimal solution with steeper diagonals would have been expected 

for taller structures.  

Up to this point, it has been demonstrated that the three intra-module floors solution 

is the most preferable solution among all geometries in the proposed study and in 

literature [29] [30]. However, this outcome may not necessarily be the same considering 

other response parameters, such as the maximum inter-story drift due to lateral actions, 

fundamental period of oscillation, fire resistance and many others. In any case the choice 

depends on the designer at the preliminary stage of the structural design.
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Chapter 5 

5. VARYING-ANGLE DIAGRID STRUCTURES 

In literature many researchers such as Moon have affirmed a better performance of 

varying-angle diagrid structures than uniform-angle ones, mainly for taller buildings, as 

the bending moment increases quadratically towards the base of the building prevailing 

on the shear effect. Therefore, having steeper diagonals towards the base is expected to 

the structural behaviour despite greater construction complexity than unifom-angle 

structures. The interest of several authors into comparing uniform- and varying-angle 

diagrid structures leads to perform a similar investigation in the present Thesis. To this 

purpose, same geometrical models with different floor plan shapes, i.e. square, hexagon, 

octagon and circle, presented in Chapter 2.1 are employed in this study and same vertical 

and lateral loads are applied to tall buildings which are reported in Chapter 2.2. This 

Chapter is divided into the following sub-chapters: in Chapter 5.1 the diagrid geometry 

generation is described, whereas the outcomes obtained from the stiffness- and strength-

based preliminary design and the desirability function approach are illustrated 

respectively in Chapter 5.2 and 5.3. Finally, Chapter 5.4 is related to the computational 

cost of the performed analysis. 

5.1. VARYING-ANGLE DIAGRID GEOMETRY  

In the previous Chapters the analysis has been performed on uniform-angle diagrid 

structures having diagonal inclination constant along the building height. Conversely, in 

the present Chapter attention is paid on varying-angle diagrid structures characterized by 

variable diagonal angles from the top to the base of the building. It means that the basic 

triangular module will be variable in the building spanning over different number of 

floors. Since in the analysis of uniform-angle diagrid structures it has been found that the 
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twelve intra-module floors solution is the one of the least desirable geometries, in case of 

varying-angle structures, the considered diagonal inclinations correspond to number of 

intra-module floors varying from one to six, namely 1, 2, 3, 4, 5 and 6. Therefore, for a 

given building height with N stories, the external diagrid system can be obtained by 

combining different diagonal angles and it is also possible to have two or more 

consecutive modules with the same number of intermediate floors. In order to evaluate 

the total number of possible combinations, the following expression is provided: 

nall combinations =∏(
N

j
+ 1)

6

𝑗=1

 
(5.1) 

Where N is the number of the building stories, j is the number of intra-module floors (𝑗 =

1, 2, 3, 4, 5, 6). The term (𝑁/𝑗 + 1) in Equation (5.1) represents the probability that the j 

intra-module unit can occur in the varying-angle diagonal pattern, including the case 

where j intra-module unit is not present [50]. However, not all of these combinations are 

geometrically feasible because they have to ensure the following geometrical constraint 

equation [50]: 

𝑁 =∑𝑀𝑗𝑗

6

𝑗=1

 
(5.2) 

Where 𝑀𝑗 is the number of modules with j intra-module floors. Moreover, it is possible 

to further reduce the number of combinations on the basis of the studies carried out in 

literature. Indeed, Moon in [15] has demonstrated that varying-angle pattern with steeper 

angle towards the top has the worst structural performance. Therefore, these geometrical 

models are also neglected in the present analysis. Based on these two considerations, the 

reduced value nfeasible comb  can be assessed. At the end, the total number of diagrid 

structures that will be analysed in the preliminary design, coupled with the desirability 

function approach, will be nfeasible comb × 4 due to the four floor plan shapes. As follows, 

in Table 5.1 nall combinations  and nfeasible comb are reported for each building height. 

Height [m] 126 168 210 252 

nall combinations 5 117 840 24 365 250 90 858 768 256 851 595 

nfeasible comb 2 432 7 760 19 858 43 752 

nfeasible comb × 4 9 728 31 040 79432 175 008 

Table 5.1 - Total number of all combinations and feasible combinations in function of the building height for the generation 
of varying-angle diagrid geometry 
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Based on the values reported in Table 5.1, it is evident that for each building height the 

population is much wider than the twenty-four uniform-angle diagrid models. This huge 

difference is fundamental to demonstrate the efficiency of the two proposed methods, i.e. 

the matrix-based method (MBM) and the desirability function approach. In Figure 5.1 

three examples of varying-angle diagrid structures are shown. Note that among all 

possible combinations some of them return uniform-angle pattern as it is illustrated in 

Figure 5.1a. 

Figure 5.1 - Three varying-angle diagrid structures for the 168-m tall building: (a) combination #88: 𝑀1 = 𝑀2 = 𝑀4 =
𝑀5 = 𝑀6 = 0,𝑀3 = 16 (b) combination #2023: 𝑀1 = 3,𝑀2 = 3,𝑀3 = 1,𝑀4 = 2,𝑀5 = 2, 𝑀6 = 3 (c) combination #5802: 
𝑀1 = 13,𝑀2 = 10,𝑀3 = 5,𝑀4 = 𝑀5 = 𝑀6 = 0 

5.2. PRELIMINARY DESIGN: RESULTS AND DISCUSSION 

Each geometrical solution defined by a specific combination of intra-module units 

is analysed by means of the strength- and stiffness-based preliminary design described in 

Chapter 3 applying both vertical and horizontal loads. Note that the assessment of the 

concentrated lateral force on each rigid floor is a bit more complicated due to different 

number of intra-module floors between two consecutive modules. In any case, the 

evaluation of these loads is always based on the isostatic load repartition. As in the 

previous Chapters related to uniform-angle diagrid structures, the 168-m tall building is 

firstly analysed in detail, whereas the others are discussed next for sake of completeness. 

Therefore, performing the structural analysis of all the 31040 structures for the 48-story 

tall building, the four response variables, i.e. top lateral displacement, top torsional 

rotation, diagrid structural mass and complexity index, can be evaluated. Their values for 

(a) (b) (c) 
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each diagrid geometry are shown in Figure 5.2 with their relative distribution curves 

illustrated in Figure 5.3. 

Figure 5.2 - Response variables, i.e. top lateral displacement, top torsional rotation, structural diagrid mass and complexity 
index, for the 168-m tall building with 31040 diagrid geometries. The optimal geometry (#23936) obtained from the 
desirability function approach with 𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 1 is highlighted with the red star 

Figure 5.3 – Statistical distribution of response variables, i.e. top lateral displacement, top torsional rotation, structural 
diagrid mass and complexity index, for the 168-m tall building with 31040 diagrid geometries. The optimal geometry 
(#23936) obtained from the desirability function approach with 𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 1 is highlighted with the red star 

Based on results of Figure 5.2, it can be seen again the almost negligible effect of 

floor plan shape on the four response variables as the trend is repetitive for each plan 

shape. For the 168-m tall building the square, hexagonal, octagonal and circular plan 

shapes correspond respectively to diagrid geometries varying from 1 to 7760, from 7761 

to 15520, from 15521 to 23280 and finally from 23281 to 31040. Conversely, the 

influence of diagonal inclination is more evident.  

As far as the statistical distribution curves are concerned, Figure 5.3 shows values 

that are most and least frequent out of 31040 structures. In particular, the top lateral 

displacement curve seems to have exponential distribution. It reaches a maximum peak 

at 0.33589 m for 2340 structures, whereas the minimum value of 0.329 m is provided by 
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only one diagrid geometry. By observing the limit of x axis, it is already evident that the 

maximum top lateral displacement variation is very small of  7  mm because of the 

stiffness-based design. Therefore, by performing the desirability function approach, it is 

expected to have unitary individual desirabilities for all geometries (𝑑𝑖,𝛿 = 1). Moreover, 

it also important to point out that in case of the 48-story tall building all 31040 diagrid 

structures satisfy both strength and stiffness requirements. Regarding the statistical 

distribution curves of the top torsional rotation, structural mass and complexity index, 

they are more alike to Gaussian distribution as both minimum and maximum values are 

provided by few geometries, whereas most of structures lie within the extremes. 

By analysing the trends in Figure 5.2 in function of inclinations of diagonals, it is 

found that for a given plan shape the top torsional rotation decreases as the number of 

modules with one or two intermediate floors increases, corresponding to shallower 

diagonals. Indeed, the maximum torsional stiffness is guaranteed by diagonal angle of 

35°. In particular, the one intra-module floor geometry with hexagonal plan provides the 

minimum value of 8.482 ∙ 10−5 rad, which is the same one obtained in the uniform-angle 

structure analysis. Conversely, the greatest torsional stiffness is given to the six intra-

module floors solution with square plan (𝜑𝑚𝑎𝑥 = 0.017 rad). Conversely, the structural 

mass and the complexity index tend to increase for less steeper diagonals. 

The slight increasing trend of the complexity index for each plan shape is mainly 

due to greater number of nodes (𝑁1) and greater number of diagonals with maximum 

length of 12 m (𝑁3), whereas the other metrics, i.e. number of different cross-sections 𝑁2 

and number of diagonals in the pattern 𝑁4, increase of a small amount. The number of 

different lengths (𝑁5) does not follow a specific trend but assumes integer values between 

1 and 6 in function of the number of different modules. This last aspect is different from 

the one obtained in uniform-angle structures as 𝑁5 was always unitary for all geometries. 

The trends of these five metrics are graphically reported in Figure 5.4. Moreover, it can 

be noted that the six intra-module floors solution has the greatest number of nodes (𝑁1 =

732) and the least number of different cross-sections (𝑁2 = 8) and of diagonals (𝑁4 =

192). Conversely, the one intra-module floor geometry has the least number of nodes 
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(𝑁1 = 572) and the greatest number of different cross-sections and diagonals (𝑁2 =

30,𝑁4 = 1152). 

Figure 5.4 – Five metrics, 𝑁1, 𝑁2, 𝑁3 , 𝑁4  and 𝑁5, for the assessment of the complexity index for the 168-m tall building with 
31040 diagrid geometries 

      φ [rad] M [ton]  CI [-]  

va
ry

in
g min 

 
8.48 ∙ 10−5 H1 946 Varying

(square)∗                                       1,956 S3 

max 
  

0,017 S6 5204 S1 3,568 Varying 
(square)∗∗ 

un
ifo

rm
 min 

 
8.48 ∙ 10−5 H1 991 S4 2,769 S3, O3 

max 
  

0,00273 S12 5204 S1 3,765 C1 

* 𝑀1 = 1,𝑀2 = 4,𝑀3 = 6,𝑀4 = 4,𝑀5 = 1,𝑀6 = 0                           ** 𝑀1 = 10,𝑀2 = 2,𝑀3 = 1,𝑀4 = 5,𝑀5 = 1,𝑀6 = 1 

Table 5.2 - Maximum and minimum values of the top torsional rotation, structural mass and complexity index obtained 
from the structural analysis of 31040 structures (varying) and 24 structures (uniform) for the 168-m tall building 

Another observation that can be made concerns the comparison between the 

maximum and minimum values of each response variables obtained from the analysis 

performed on 24 geometrical solutions for uniform-angle structures and 31040 for 

varying-angle ones. It can be observed that there is a good compatibility of the results. 

For example, as shown in Table 5.2, in both analysis the uniform-angle structure with one 

intra-module floor provides the least torsional rotation but the greatest diagrid mass, 

whereas the most deformable geometry from a torsional point of view is always the one 

with steeper diagonals. However, regarding the structural mass, the varying-angle 
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structure with this combination of modules  𝑀1 = 1,𝑀2 = 4,𝑀3 = 6,𝑀4 = 4,𝑀5 =

1,𝑀6 = 0 is lighter than S4 of about 45 tons. Note that this table will be fundamental for 

the definition of the individual desirability because 𝑑𝑖,𝑝  will be null for geometries 

providing the maximum value of one parameter and it will be the greatest for the ones 

with minimum value. 

Finally, a final observation is made on diagonal cross-section areas and on values 

of demand capacity ratio (DCR). The results are shown in Figure 5.5 where the values 

are referred to the top and the base of the building. In particular, Figure 5.5a points out a 

similar trend to the one illustrated in Figure 5.2 related to the structural mass as it 

increases for shallower diagonals. It is also evident that cross-section area at the top is 

almost equal for all geometries (𝐴𝑡𝑜𝑝 ≅ 0.0067 𝑚2), whereas at the base it reaches peaks 

in correspondence to the one intra-module floor solutions, which have the least lateral 

stiffness and therefore the diagonals cross-sections are bigger. Moreover, this leads to 

lower value of DCR (𝐷𝐶𝑅𝑚𝑎𝑥,𝑡𝑜𝑝 < 0.5). Conversely, as presented in Figure 5.5b, for 

the other geometries there is a good exploitation of diagonals in terms of strength because 

DCR has a range between 0.6 and 1 and therefore this aspect ensures a reduction of steel 

consumption.  

Figure 5.5 - 31040 varying-angle structures in function of: (a) diagonal cross section area (b) demand capacity ratio (DCR) 
for the 168-m tall building 

Similarly, as mentioned before, now the 126-, 210- and 252-m tall buildings are 

analysed and the same graphs are proposed. By observing Figure 5.6-Figure 5.7, it is 

immediately evident from the repetitive trend for each plan shape that the structural 

(a) 

(b) 
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behaviour of all diagrid geometries is more affected by diagonals inclinations rather than 

floor plan shape, independently from the building height. 

Now, an individual analysis is carried out for each building height. Regarding the 

36-story building, the graphs are plotted in such a way that geometries from 1 to 2432 are 

referred to square plan, from 2433 to 4864 to hexagonal plan, from 4865 to 7296 to 

octagonal plan and from 7297 to 9728 to circular plan. It is important to underline that 

the main difference with respect to the 168-m tall building is referred to the top lateral 

displacement. In fact, as shown in Figure 5.6a, the variation range is wider 

(𝛿 =0.145÷0.252 m) as the design of less slender structures is governed by the strength 

demand instead of the stiffness one. Specifically, there is a reduction of the top lateral 

deflection for shallower diagonals in the upper modules, whereas the trend slightly grows 

up for shallower diagonals also in the lower modules. This is caused by the fact that the 

bending moment prevails in the lower part and the shear in the upper part. Moreover, the 

relative statistical distribution reported in Figure 5.6b does not have an exponential trend, 

but it is more similar to a Gaussian distribution as most values fall within the two extremes 

(𝛿𝑚𝑖𝑛 = 0.145 𝑚, 𝛿𝑚𝑎𝑥 = 0.252 𝑚). For the other response variables, namely the top 

torsional rotation, structural mass and complexity index, no further considerations are 

made since graphs in Figure 5.6a-b show similar trends to the ones in Figure 5.2 and in 

Figure 5.3. As a matter of fact, the top torsional rotation decreases with shallower 

diagonals, whereas the structural mass and the complexity index increase for the same 

reasons mentioned before. However, two useful considerations on Figure 5.6d can be 

made. First of all, DCR curve at the top and at the base of the building are almost 

overlapped. Secondly, DCR is greater than 0.8 for most of the structures. These two 

considerations demonstrate that most of 9728 geometries are well dimensioned from 

strength perspective. Conversely, the uniform-angle structures with only one intra-

module floors have instead the lowest DCR values. Finally, for the 36-story building it is 

also evident as in the previous case that the geometrical solutions providing maximum 

and minimum values of each response variable among 24 uniform-angle and 9728 

varying-angle structures are compatible (Table 5.3). 
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     𝛿 [𝑚] φ [rad] M [ton]  CI [-]  
va

ry
in

g min 0,145 Varying
(square)∗

1 9.28 ∙ 10−5 C1 454 Varying
(hexagon)∗

4 1,9145 O3 

max 0,252 Varying
(circle)∗

2 1.53 ∙ 10−3 
Varying
(square)∗

3 1603 S1 3,5235 Varying
(octagon)∗

5 

un
ifo

rm
 

min 0,149 S3 9.28 ∙ 10−5 C1 510 C4 2,727 O3 

max 0,251 H6 0,002182 S12 1726 C12 3,764 C1 

∗1 𝑀1 = 0,𝑀2 = 1,𝑀3 = 6,𝑀4 = 0,𝑀5 = 8,𝑀6 = 0                                         ∗2 𝑀1 = 6,𝑀2 = 1,𝑀3 = 1,𝑀4 = 4,𝑀5 = 3,𝑀6 = 3                                
∗3 𝑀1 = 1,𝑀2 = 0,𝑀3 = 0,𝑀4 = 0,𝑀5 = 1,𝑀6 = 5                                         ∗4 𝑀1 = 0,𝑀2 = 1,𝑀3 = 0,𝑀4 = 7,𝑀5 = 0,𝑀6 = 1                           
∗5 𝑀1 = 12,𝑀2 = 1,𝑀3 = 1,𝑀4 = 2,𝑀5 = 1,𝑀6 = 1 

Table 5.3 - Maximum and minimum values of the top lateral deflection, top torsional rotation, structural mass and 
complexity index obtained from the structural analysis of 9728 structures (varying) and 24 structures (uniform) for the 126-
m tall building  

 

 
(a) (b) 

(c) 
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 Figure 5.6 – Results of the preliminary design for the 126-m tall building with 9728 diagrid geometries: (a) Response 
variables, i.e. top lateral displacement, top torsional rotation, structural diagrid mass and complexity index (b) Statistical 
distribution of response variables. The optimal geometry (#4908) obtained from the desirability function approach with 
𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 1 is highlighted with the red star (c) diagonal cross section area (d) demand capacity ratio (DCR) 

A further increasing of the building height, as for the 210-m tall building, leads to 

results with trends really close to the ones obtained for the 48-story building since the 

stiffness demand prevails on the strength one. Indeed, it is found that in Figure 5.7a the 

top lateral displacement has a small variation from 0.41 m to 0.42 m and in Figure 5.7b 

the relative statistical distribution has a cusp in correspondence of the target limit value 

of 0.42 m. However, there exists only one solution that is not able to ensure the stiffness 

requirement. In fact, as visible in Figure 5.7a, there is a sudden jump beyond the limit 

value. It is referred to #19858 solution having only one intra-module floors (𝑀1 =

60,𝑀𝑗 = 0 for j ≠ 1)  as the top lateral displacement is equal to 0.445 m. This 

phenomenon has an impact on the diagonal cross sections and on DCR. In particular, 

from the preliminary design it has been obtained an oversized structure with so big 

diagonal cross sections that DCR tends to null value, as evident in Figure 5.7c-Figure 

5.7d. Therefore, this case represents the worst condition for which, by applying the 

desirability function, the overall desirability will be null. Regarding the other response 

variables, the previous considerations hold valid. Note that in this case geometries from 

1 to 19858 are referred to square plan, from 19859 to 39716 to hexagonal plan, from 

39717 to 59574 to octagonal plan and from 59575 to 79432 to circular plan. Moreover, 

Table 5.4 is provided for sake of completeness. 

 

 

 

 

 

 

(d) 
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      φ [rad] M [ton]  CI [-]  

va
ry

in
g min 

 
5.61 ∙ 10−5 S1 2257 Varying

(square)∗∗ 1,9796 S1 

max 
  

0,001727 Varying
(square)∗ 18780 S1 3,7164 Varying

(hexagon)∗∗∗ 

un
ifo

rm
 min 

 
5.61 ∙ 10−5 S1 2358 S4 2,8007 S1 

max 
  

0,003126 S12 18780 S1 3,7430 S4,H4,C4 

* 𝑀1 = 1,𝑀2 = 0,𝑀3 = 0,𝑀4 = 0,𝑀5 = 1,𝑀6 = 9                                  ** 𝑀1 = 1,𝑀2 = 3,𝑀3 = 7,𝑀4 = 4,𝑀5 = 2,𝑀6 = 1                           
*** 𝑀1 = 22,𝑀2 = 2,𝑀3 = 1,𝑀4 = 5,𝑀5 = 1,𝑀6 = 1 

Table 5.4 - Maximum and minimum values of the top torsional rotation, structural mass and complexity index obtained 
from the structural analysis of 79432 structures (varying) and 24 structures (uniform) for the 210-m tall building 

 (a) (b) 

(c) 
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Figure 5.7 - Results of the preliminary design for the 210-m tall building with 79432 diagrid geometries: (a) Response 
variables, i.e. top lateral displacement, top torsional rotation, structural diagrid mass and complexity index (b) Statistical 
distribution of response variables. The optimal geometry (#41107) obtained from the desirability function approach with 
𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 1 is highlighted with the red star (c) diagonal cross section area (d) demand capacity ratio (DCR) 

Finally, the 252-m tall building is analysed. Its structural behaviour is similar to the 

60-story tall building since the stiffness requirement prevails. In fact, also in this case the 

top lateral deflection is almost equal to the target limit value (𝛿𝑙𝑖𝑚 = 0.504 m) as it can 

be noted in Figure 5.8a. In particular, its correspondent statistical distribution, shown in 

Figure 5.8b, is characterized by a vertical jump at 0.504 m for most diagrid structures. 

Nevertheless, 480 geometries do not ensure the stiffness requirement since the top lateral 

displacement exceeds the limit value. Among these, there are uniform-angle diagrid 

geometries made up of one intra-module floor, i.e. #43752, #87504, #131256 and 

#175008 solutions (𝑀1 = 72,𝑀𝑗 = 0 for 𝑗 ≠ 1) as it is also shown in Chapter 4.2.2, and 

varying-angle ones with at least fifty base modules composed by one intra-module floor. 

For these geometries the expected overall desirability will be null for the unsatisfactory 

required stiffness. Regarding the top torsional rotation, the structural mass and the 

complexity index, same previous considerations are valid. Note that in this case 

geometries from 1 to 43752 are referred to square plan, from 43753 to 87504 to hexagonal 

plan, from 87505 to 131256 to octagonal plan and from 131257 to 175008 to circular 

plan. In Figure 5.8c and Figure 5.8d the distribution of diagonal cross sections and DCR 

are provided. In the former graph it is evident that for unsatisfactory geometries the 

stiffness of the building is constant along the height as all diagonals have the maximum 

area of 0.27 𝑚2. For this reason, the curve relative to the transversal area of diagonals at 

top module has sudden peaks. Moreover, it can be also noted that all structures have a 

great stiffness at the base in order to ensure a satisfactory performance. Consequently, 

these peculiarities influence DCR because its maximum value at base module drops 

below 0.5 for most geometries, whereas for the unacceptable models the minimum value 

at top is almost null and the maximum value at base is about 0.7. Thus, it can be concluded 

(d) 



Chapter 5    

110 
 

that increasing the height of the building leads to a heavier structure aimed at 

compensating its deformability. Also, in this case the difference of outcomes between the 

analyses of 24 uniform-angle and 175008 varying-angle structures is reported in Table 

5.5. 

      φ [rad] M [ton]  CI [-]  

va
ry

in
g Min 

 
7,06 ∙ 10−5 C1 4687 Varying

(square)∗∗ 1,9779 S1 

Ma
x   

0,001673 Varying
(square)∗ 22536 S1 3,7422 Varying

(hexagon)∗∗∗ 

un
ifo

rm
 Min 

 
7,1 ∙ 10−6 C1 4916 S4 2,80 S1,H1,O1,C1 

max 
  
3,135 ∙ 10−3 S12 22536 S1 3,75 C4 

* 𝑀1 = 1,𝑀2 = 0,𝑀3 = 0,𝑀4 = 0,𝑀5 = 1,𝑀6 = 11                                  ** 𝑀1 = 0,𝑀2 = 2,𝑀3 = 6,𝑀4 = 6,𝑀5 = 4,𝑀6 = 1                           
*** 𝑀1 = 32,𝑀2 = 1,𝑀3 = 1,𝑀4 = 6,𝑀5 = 1,𝑀6 = 1 

Table 5.5 - Maximum and minimum values of the top torsional rotation, structural mass and complexity index obtained 
from the structural analysis of 175008 structures (varying) and 24 structures (uniform) for the 252-m tall building 

 (a) (b) 
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Figure 5.8 - Results of the preliminary design for the 252-m tall building with 175008 diagrid geometries: (a) Response 
variables, i.e. top lateral displacement, top torsional rotation, structural diagrid mass and complexity index (b) Statistical 
distribution of response variables. The optimal geometry (#46370) obtained from the desirability function approach with 
𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 1 is highlighted with the red star (c) diagonal cross section area (d) demand capacity ratio (DCR) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

(d) 
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5.3. DESIRABILITY FUNCTION APPROACH: RESULTS AND 

DISCUSSION 

Once all the response variables have been obtained, the desirability function 

approach is applied to select the most desirable diagrid geometry among the varying-

angle structures. To this purpose, the individual desirability of each structure referred to 

each parameter is assessed from Equations (4.7),(4.8),(4.9) and (4.10). In the following 

step the overall desirability is evaluated for each structure by applying Equation (4.11). 

The adopted procedure is exactly the one described in Chapter 4.1 but with one difference. 

Since the varying-angle population generated through combinations of triangular units is 

really wide, the selection of the optimal geometry with the greatest value of the overall 

desirability (𝑂𝐷𝑚𝑎𝑥) leads to neglect other geometries that have OD value close to the 

maximum one. Therefore, in order to solve this problem, besides identifying the optimal 

solution with 𝑂𝐷𝑚𝑎𝑥, other geometrical solutions with OD ranging from 𝑂𝐷𝑚𝑎𝑥 − 2% 

and 𝑂𝐷𝑚𝑎𝑥 are selected and called “winners”.  

Now, the results of the desirability analysis, obtained with 𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 =

1, for the 168-m tall building with 31040 diagrid geometries are represented. In Figure 

5.9 the individual desirability of the top lateral displacement, top torsional rotation, 

structural mass and complexity index are shown. It is evident that the influence of the top 

lateral displacement on the overall desirability is null as it is always unitary for all 

geometries. In fact, in this case the coefficient of variation is equal to 0.0036. 

Figure 5.9 – Individual desirability of the top lateral displacement, top torsional rotation, diagrid structural mass and 
complexity index, for the 168-m tall building with 31040 diagrid geometries. The optimal geometry (#23936) obtained 
from the desirability function approach with 𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 1 is highlighted with the red star 
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By applying Equation (4.11), the overall desirability can be evaluated. Figure 5.10 

shows the obtained value of the overall desirability for each diagrid geometry with its 

relative statistical distribution among all geometries. Moreover, in both Figure 5.10a and 

Figure 5.10b the optimal solution #23936 is highlighted with a red star and the three-

dimensional geometry is represented in Figure 5.10c.  

Figure 5.10 – Results of the desirability function approach for the 168-m tall building with 31040 geometries (𝑟𝛿 = 𝑟𝜑 =

𝑟𝑀 = 𝑟𝐶𝐼 = 1): (a) overall desirability values for each geometry (b) statistical distribution of OD (c) 3-D representation of 
the optimal solution (#23936), which is highlighted with a red star 

Based on the results, the greatest value of the overall desirability is 76.08% that is 

provided by #23936 solution. The latter is referred to a uniform-angle circular diagrid 

structure with two intra-module floors, corresponding to diagonal inclination of 57.73°. 

By analysing the individual desirability of each response variable of the optimal solution, 

it is clear that the optimal geometry has a good lateral and torsional behaviour (𝑑𝛿 =

1, 𝑑𝜑 = 80.99%), reduced steel material consumption (𝑑𝑀 = 76.01%) and quite low 

construction complexity ( 𝑑𝐶𝐼 = 54.42%). However, it is not the geometry that 

individually minimizes the top lateral displacement, top torsional rotation and structural 

mass. Specifically, based on the results shown in Table 5.2, the uniform-angle hexagonal 

structure with one intra-module floor (#15520) has the greatest torsional stiffness (𝑑𝜑 =

95.02%) but high structural mass (𝑑𝑀 = 13.97%) and high construction complexity 

(𝑑𝐶𝐼 = 43.04%), leading to 𝑂𝐷 = 48.89%. Conversely, the solution that minimizes the 

structural mass (𝑑𝑀 = 81.83%) is the varying-angle square structure with 𝑀1 = 1,𝑀2 =

4,𝑀3 = 6,𝑀4 = 4,𝑀5 = 1 and 𝑀6 = 0 (#970) characterized by high torsional rotation 

( 𝑑𝜑 = 45.95% ) and many construction issues ( 𝑑𝐶𝐼 = 39.21% ), leading to 𝑂𝐷 =

61.96%. Similarly, the uniform-angle square structure with three intra-module floors is 

(a) 

(b) 

(c) 
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the least complex from construction perspective (𝑑𝐶𝐼 = 60.87%) but it has limited 

torsional rigidity (𝑑𝜑 = 61.08%) despite the reduced structural mass (𝑑𝑀 = 80.35%), 

leading to 𝑂𝐷 = 73.93%. 

From Figure 5.10a it is worth to note that the repetitive trend of the overall 

desirability confirms the almost negligible effect of the floor plan shape. In fact, the two-

intra-module floors uniform-angle solutions with respectively square, hexagonal and 

octagonal plan shape have in order 𝑂𝐷 = 75.14%, 𝑂𝐷 = 75.82% and 𝑂𝐷 = 75.78%, 

which are not too dissimilar to the maximum OD value of 76.08%, referred to the optimal 

geometry with circular shape. This slight difference is also evident in the individual 

desirability values, as reported in Table 5.6. Therefore, these geometries, i.e. #656, #8416 

and #16176 beside to the optimal one #23936, can be considered as the most desirable 

solutions and thus as “winners”. 

#solution 𝑑𝛿  [−] 𝑑𝜑[−] 𝑑𝑀[−] 𝑑𝐶𝐼[−] 𝑂𝐷 [−] Model 
656 1 0.8096 0.7326 0.5375 0.7514 S2 

8416 1 0.8117 0.7481 0.5442 0.7582 H2 
16176 1 0.8119 0.7557 0.5375 0.7578 O2 
23936 1 0.8099 0.7601 0.5442 0.7608 C2 

Table 5.6 – Individual desirability values of each response variable, i.e. top lateral displacement, top torsional rotation, 
structural mass and complexity index, and overall desirability for the 168-m tall building with two intra-module floors 
(𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 1). In bold the optimal solution 

 From the analysis presented in Chapter 4.2.1 that has been performed on the 168-

m tall building with 24 uniform-angle structures considering always 𝑟𝑝 = 1, it should be 

noted that the optimal solution is the three intra-module floors geometry with octagonal 

shape instead of the two intra-module floors solution as in this case. Therefore, 

apparently, the results obtained from considering 31040 varying-angle structures seem to 

be contradictory with respect to the results considering 24 uniform-angle structures 

because the corresponding optimal solutions have different diagonal inclinations. 

Actually, it is nothing like that. In fact, in both cases, i.e. 31040 varying-angle and 24 

uniform-angle structures, the difference of the overall desirability between geometries 

with two and three intra-module floors is lower than 2%. In particular, in the case of 

31040 varying-angle structures, these geometries, namely #88, #7848, #15608 and 

#23368, with three intra-module floors (𝑀3 = 16,𝑀𝑗 = 0 for 𝑗 ≠ 3) have respectively 

𝑂𝐷 = 73.93%,𝑂𝐷 = 74.15%,𝑂𝐷 = 74.45% and 𝑂𝐷 = 74.22% , whereas the two 

intra-module solutions (𝑀2 = 24,𝑀𝑗 = 0  for 𝑗 ≠ 2 ), i.e. #656, #8416, #16176 and 
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#23936, have respectively 𝑂𝐷 = 75.14%,𝑂𝐷 = 75.82,𝑂𝐷 = 75.78%  and 𝑂𝐷 =

76.08%. These values are also reported in Table 5.7. Moreover, it is also evident that the 

two intra-module floors geometries are the most desirable because of greater 𝑑𝜑 despite 

lower value of 𝑑𝑀  and 𝑑𝐶𝐼 . However, the three intra-module solutions are good 

candidates for the optimal geometry.  

Further considerations can be made on results reported in Table 5.7. First of all, 

referring to Figure 5.10b, it can be seen that the OD values of “winners” correspond to 

the small right tail of the statistical distribution, that assumes a Gaussian shape 

distribution. Similarly, there are few solutions providing the lowest OD value. 

Conversely, most of 31040 structures lie around the OD average value of 60.66%. Among 

the “winners” there are not only uniform-angle structures but also varying-angle ones 

which are characterized by values of individual desirability and overall desirability 

between the values referred to the two and the three intra-module floors solutions. In 

addition, most of “winners” among varying-angle structures turns out to be more 

desirable than the three intra-module floors geometries even if OD difference is very 

slight. Secondly, 22 solutions out of 30 “winners” are varying-angle structures made up 

of diagonals with inclination varying from 35°-38° (one floor per module) at upper 

modules to 70°-72° (four floors per module) at lower modules. In particular, it is found 

that these geometrical models have a maximum of two different diagonal inclinations. 

Conversely, geometries with diagonal angles higher than 72°, corresponding to five or 

six intra-module floors, have lower OD due to low torsional stiffness. Finally, although 

the desirability function approach returns a total of 30 “winners”, among these the 

uniform-angle diagonal pattern with two intra-module floors is the most preferable for 

each plan shape. 
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#solution 𝑑𝛿 [−] 𝑑𝜑[−] 𝑑𝑀[−] 𝑑𝐶𝐼[−]  𝑂𝐷 [−] 𝑀1   𝑀2 𝑀3  𝑀4  𝑀5  𝑀6  
SQ

U
A

R
E 

88 1 0,6108 0,8035 0,6087 0,7393 0 0 16 0 0 0 
630 1 0,7157 0,7855 0,5534 0,7468 0 15 6 0 0 0 
647 1 0,7462 0,7738 0,5236 0,7415 0 18 4 0 0 0 
654 1 0,7770 0,7563 0,5472 0,7530 0 21 2 0 0 0 
655 1 0,7637 0,7559 0,5239 0,7416 0 22 0 1 0 0 
656 1 0,8096 0,7326 0,5375 0,7514 0 24 0 0 0 0 

H
EX

A
G

O
N

 

7848 1 0,6259 0,8022 0,6021 0,7415 0 0 16 0 0 0 
8390 1 0,7280 0,7901 0,5400 0,7465 0 15 6 0 0 0 
8407 1 0,7555 0,7809 0,5170 0,7432 0 18 4 0 0 0 
8414 1 0,7831 0,7665 0,5339 0,7524 0 21 2 0 0 0 
8415 1 0,7679 0,7671 0,5106 0,7405 0 22 0 1 0 0 
8416 1 0,8117 0,7481 0,5442 0,7582 0 24 0 0 0 0 
9578 1 0,8046 0,7498 0,5144 0,7464 2 23 0 0 0 0 
10585 1 0,8081 0,7460 0,5113 0,7451 4 22 0 0 0 0 
11450 1 0,8123 0,7412 0,5083 0,7438 6 21 0 0 0 0 
12189 1 0,8180 0,7355 0,4985 0,7400 8 20 0 0 0 0 

O
C

TA
G

O
N

 

15608 1 0,6267 0,8051 0,6087 0,7445 0 0 16 0 0 0 
16116 1 0,6997 0,8006 0,5364 0,7404 0 12 8 0 0 0 
16150 1 0,7265 0,7953 0,5400 0,7474 0 15 6 0 0 0 
16167 1 0,7551 0,7857 0,5236 0,7466 0 18 4 0 0 0 
16174 1 0,7814 0,7735 0,5339 0,7537 0 21 2 0 0 0 
16176 1 0,8119 0,7557 0,5375 0,7578 0 24 0 0 0 0 
17338 1 0,8053 0,7573 0,4944 0,7410 2 23 0 0 0 0 

C
IR

C
LE

 

23368 1 0,6265 0,8044 0,6021 0,7422 0 0 16 0 0 0 
23876 1 0,6999 0,8013 0,5364 0,7406 0 12 8 0 0 0 
23910 1 0,7264 0,7961 0,5334 0,7453 0 15 6 0 0 0 
23927 1 0,7534 0,7879 0,5303 0,7490 0 18 4 0 0 0 
23934 1 0,7820 0,7756 0,5339 0,7543 0 21 2 0 0 0 
23935 1 0,7708 0,7728 0,5106 0,7426 0 22 0 1 0 0 
23936 1 0,8099 0,7601 0,5442 0,7608 0 24 0 0 0 0 

Table 5.7 - Individual desirability values and overall desirability for geometrical solutions called “winners” among 31040 

varying-angle structures of the 168-m tall building (𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 1). In bold the optimal solution 

The previous analysis is referred to the case where all response variables have same 

weight, i.e. 𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 1. As follows, the parametric analysis is performed 

considering a variation of 𝑟𝑝 from 0.25 to 2 with a step of 0.25, leading to a total of 4096 

combinations, which are already reported in Table 4.3. In this way it is possible to 

highlight the influence of weight exponents on the selection of the “winners”. Note that 

for each combination the optimal solution among 31040 structures with the highest OD 

value is always identified, then the “winners” with OD value not different of 2% 
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compared to the maximum value will be selected. The results of the parametric analysis 

are reported in Figure 5.11 in terms of the probability of occurrence of each diagrid 

geometry. It can be seen that the desirability function selects a total of 3415 “winners” 

out of 31040 structures and the four geometries that appear to be the most desirable ones 

in most combinations are, in descending order: #23936 in 3616 cases, which is related to 

the uniform-angle circular structure made up of triangular unit of two intra-module floors 

(𝑀2 = 24,𝑀𝑗 ≠ 0 for 𝑗 ≠ 2); #8416 in 3496 cases, which is referred to the uniform-angle 

hexagonal structure with two-intra module floors; #16176 in 3456 cases, which 

corresponds to the uniform-angle octagonal structure with always two intra-module 

floors; lastly, #654 in 3408 cases, which is related to the varying-angle square structure 

with 𝑀2 = 21,𝑀3 = 2,𝑀𝑗 ≠ 0 for 𝑗 ≠ 2, 3 . Moreover, based on the obtained results, 

other geometries with similar diagrid pattern provide slightly lower probability of 

occurrence than the previous ones and they are in descending order: #23934 in 3464 cases, 

which is related to the varying-angle circular structure with 𝑀2 = 21,𝑀3 = 2,𝑀𝑗 ≠ 0 for 

𝑗 ≠ 2, 3 ; #16174 in 3440 cases, which corresponds to the varying-angle octagonal 

structure with 𝑀2 = 21, 𝑀3 = 2,𝑀𝑗 ≠ 0  for 𝑗 ≠ 2, 3 ; #8414 in 3368 cases, which 

corresponds to the varying-angle hexagonal structure with 𝑀2 = 21, 𝑀3 = 2,𝑀𝑗 ≠ 0 for 

𝑗 ≠ 2, 3 ; lastly, #656 in 3200 cases, which corresponds to the uniform-angle square 

structure with 𝑀2 = 24,𝑀𝑗 ≠ 0 for 𝑗 ≠ 2. In any case no geometrical solution is the 

optimal or “winner” in all 4096 combinations.  

Figure 5.11 - "Winners" diagrid geometries based on 4096 combinations with different exponents 𝑟𝑝  for the 168-m tall 
building 
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The other “winners” are mainly referred to varying-angle structures, i.e. 3407 

geometries out of 3415, whereas there are only four uniform-angle structures with three 

intra-module floors as “winners” besides the previous four three intra-module floors 

solutions. Most of the varying-angle structures (2246 out of 3415) are made up of 

diagonals with inclination ranging from 35°-38° at upper modules, corresponding to one 

intra-module floor, to 70°-72° at lower modules, corresponding to four intra-module 

floors. The relative probability of occurrence varies from 8 to 2528. However, few 

solutions have steeper diagonals at lower modules, namely 875 and 294 varying-angle 

structures with diagonal inclination of 74°-76° and 77°-78°, respectively. Moreover, for 

these structures the maximum value of the probability of occurrence drops to lower value 

of 200-240. Generally, these steep inclinations occur in maximum two or three lower 

modules. Another aspect to highlight is that all “winner” structures have a maximum of 

four different diagonal inclinations.  

Finally, it can be concluded that despite in 92.91% of cases the “winners” are 

varying-angle structures the preference is towards the uniform-angle diagrid pattern with 

two intra-module floors since they return the maximum value of the overall desirability. 

In fact, if the analysis had been performed by selecting only the optimal solution, it would 

have been obtained that 95.70% of cases (3920 out of 4096 combinations) are referred to 

uniform-angle structures. Moreover, there is a slight preference towards plan shapes with 

more sides, i.e. octagonal and circular shapes, as already shown in Table 5.6 and in Figure 

5.11. 

Similarly, based on the analysis performed for the 48-story tall building, the 

desirability function approach has been applied to other buildings with different heights, 

i.e. 126, 210 and 252-m tall buildings, in order to identify the optimal geometry and the 

“winners”. First of all, Figure 5.12 shows the overall desirability values for each diagrid 

geometry obtained by Equation (4.11) considering 𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 1. It is found 

that the optimal geometry is respectively #4908 solution corresponding to the uniform-

angle octagonal structure made up of three intra-module floors with 𝑂𝐷 = 67.04% for 

the 36-story tall building, #41107 solution corresponding to the uniform-angle octagonal 

structure made up of two intra-module floors with 𝑂𝐷 = 78.02% for the 60-story tall 

building and #46370 solution corresponding to the uniform-angle hexagonal structure 

made up of two intra-module floors with 𝑂𝐷 =75.02% for the 72-story tall building. Also 
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in these cases, it is evident the slight effect of the plan shape on the overall desirability, 

as shown graphically in Figure 5.12. In all three different heights the statistical 

distribution of the overall desirability is alike to Gaussian distribution. Also in this case 

“winners” are selected and the results are reported in Table 5.8 in terms of individual 

desirability for each response variable, overall desirability and combinations of triangular 

units. The results are similar to the ones obtained for the 168-m tall building. In fact, the 

“winners” among varying-angle structures have a maximum of two different diagonal 

inclinations lying between 35° at upper modules and 65° at lower modules. In addition, 

the overall desirability values of uniform-angle structures with two and three intra-

module floors are very close since the difference is lower than 2%. 

 

. 

 

 

 

(a) 
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Figure 5.12 – Desirability function results in terms of the overall desirability values and its relative statistical distribution 
for each diagrid geometry in case of 𝑟𝛿 = 𝑟𝜑 = 𝑟𝑀 = 𝑟𝐶𝐼 = 1: (a) the 126-m tall building with 9728 geometries (b) the 210- 
tall building with 79432 geometries (c) the 252-m tall building with 175008 geometries. The optimal solution is highlighted 
with a red star 

 

 

(b) 

(c) 
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    H=126 m        

#solution 𝑑𝛿  [−] 𝑑𝜑[−] 𝑑𝑀[−] 𝑑𝐶𝐼[−]  𝑂𝐷 [−] 𝑀1   𝑀2 𝑀3  𝑀4  𝑀5  𝑀6  
SQ

U
A

R
E 

44 0,7038 0,7129 0,6467 0,6088 0,6667 0 0 12 0 0 0 
140 0,6865 0,7012 0,6681 0,5713 0,6547 0 3 10 0 0 0 
200 0,6961 0,7319 0,6499 0,5756 0,6607 0 6 8 0 0 0 
234 0,7040 0,7620 0,6304 0,5465 0,6557 0 9 6 0 0 0 
251 0,7060 0,7901 0,6123 0,5424 0,6560 0 12 4 0 0 0 
258 0,7058 0,8195 0,5867 0,5466 0,6563 0 15 2 0 0 0 
260 0,6973 0,8465 0,5598 0,5425 0,6507 0 18 0 0 0 0 

H
EX

A
G

O
N

 

2476 0,6924 0,7183 0,6550 0,6088 0,6673 0 0 12 0 0 0 
2572 0,6690 0,7024 0,6823 0,5713 0,6542 0 3 10 0 0 0 
2632 0,6797 0,7328 0,6688 0,5589 0,6569 0 6 8 0 0 0 
2666 0,6934 0,7659 0,6469 0,5548 0,6607 0 9 6 0 0 0 
2683 0,6987 0,7952 0,6296 0,5424 0,6600 0 12 4 0 0 0 
2690 0,7047 0,8261 0,6029 0,5299 0,6567 0 15 2 0 0 0 
2692 0,6977 0,8515 0,5805 0,5509 0,6602 0 18 0 0 0 0 

O
C

TA
G

O
N

 

4908 0,6913 0,7192 0,6582 0,6171 0,6704 0 0 12 0 0 0 
5004 0,6710 0,7069 0,6822 0,5713 0,6557 0 3 10 0 0 0 
5064 0,6844 0,7382 0,6674 0,5589 0,6589 0 6 8 0 0 0 
5098 0,6957 0,7695 0,6486 0,5465 0,6600 0 9 6 0 0 0 
5115 0,7009 0,7979 0,6327 0,5424 0,6619 0 12 4 0 0 0 
5122 0,7024 0,8257 0,6132 0,5299 0,6589 0 15 2 0 0 0 
5124 0,7000 0,8529 0,5883 0,5509 0,6632 0 18 0 0 0 0 
5567 0,6699 0,8345 0,6259 0,5134 0,6510 2 17 0 0 0 0 

C
IR

C
LE

 

7340 0,6817 0,7134 0,6649 0,6088 0,6661 0 0 12 0 0 0 
7436 0,6565 0,6974 0,6922 0,5713 0,6523 0 3 10 0 0 0 
7496 0,6684 0,7279 0,6797 0,5589 0,6557 0 6 8 0 0 0 
7530 0,6847 0,7636 0,6572 0,5548 0,6608 0 9 6 0 0 0 
7547 0,6921 0,7935 0,6414 0,5507 0,6637 0 12 4 0 0 0 
7554 0,6963 0,8231 0,6215 0,5466 0,6643 0 15 2 0 0 0 
7555 0,6944 0,8099 0,6163 0,5161 0,6503 0 16 0 1 0 0 
7556 0,6932 0,8507 0,6009 0,5592 0,6672 0 18 0 0 0 0 
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    H=210 m        

#solution 𝑑𝛿  [−] 𝑑𝜑[−] 𝑑𝑀[−] 𝑑𝐶𝐼[−]  𝑂𝐷 [−] 𝑀1   𝑀2 𝑀3  𝑀4  𝑀5  𝑀6  
SQ

U
A

R
E 

1331 1 0,7521 0,8529 0,5231 0,7611 0 18 8 0 0 0 
1365 1 0,7721 0,8468 0,5207 0,7638 0 21 6 0 0 0 
1382 1 0,7956 0,8368 0,5120 0,7641 0 24 4 0 0 0 
1389 1 0,8134 0,8269 0,5095 0,7651 0 27 2 0 0 0 
1391 1 0,8358 0,8120 0,5341 0,7759 0 30 0 0 0 0 

H
EX

A
G

O
N

 

20013 1 0,6634 0,8662 0,5962 0,7651 0 0 20 0 0 0 
21129 1 0,7384 0,8615 0,5319 0,7627 0 15 10 0 0 0 
21189 1 0,7574 0,8577 0,5356 0,7680 0 18 8 0 0 0 
21223 1 0,7779 0,8519 0,5144 0,7641 0 21 6 0 0 0 
21240 1 0,7998 0,8433 0,5120 0,7666 0 24 4 0 0 0 
21247 1 0,8170 0,8352 0,5033 0,7655 0 27 2 0 0 0 
21249 1 0,8366 0,8230 0,5216 0,7742 0 30 0 0 0 0 

O
C

TA
G

O
N

 

39871 1 0,6604 0,8687 0,5962 0,7647 0 0 20 0 0 0 
40891 1 0,7187 0,8664 0,5406 0,7617 0 12 12 0 0 0 
40987 1 0,7379 0,8643 0,5256 0,7609 0 15 10 0 0 0 
41047 1 0,7579 0,8607 0,5294 0,7666 0 18 8 0 0 0 
41081 1 0,7770 0,8555 0,5082 0,7624 0 21 6 0 0 0 
41098 1 0,7998 0,8478 0,5182 0,7699 0 24 4 0 0 0 
41105 1 0,8164 0,8402 0,5033 0,7665 0 27 2 0 0 0 
41107 1 0,8373 0,8286 0,5341 0,7802 0 30 0 0 0 0 
54639 1 0,8573 0,8107 0,4811 0,7604 16 22 0 0 0 0 

C
IR

C
LE

 

59729 1 0,6644 0,8684 0,5837 0,7618 0 0 20 0 0 0 
60905 1 0,7589 0,8605 0,5169 0,7622 0 18 8 0 0 0 
60939 1 0,7791 0,8556 0,5082 0,7629 0 21 6 0 0 0 
60956 1 0,7972 0,8505 0,4995 0,7628 0 24 4 0 0 0 
60963 1 0,8145 0,8427 0,4970 0,7643 0 27 2 0 0 0 
60965 1 0,8347 0,8323 0,5091 0,7712 0 30 0 0 0 0 
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H=252 m 

#solution 𝑑𝛿 [−] 𝑑𝜑[−] 𝑑𝑀[−] 𝑑𝐶𝐼[−]  𝑂𝐷 [−] 𝑀1   𝑀2 𝑀3  𝑀4  𝑀5  𝑀6  
SQ

U
A

R
E 

249 1 0,6812 0,7610 0,5793 0,7403 0 0 24 0 0 0 
1382 1 0,6931 0,7610 0,5478 0,7331 0 6 20 0 0 0 
1764 1 0,7085 0,7594 0,5339 0,7321 0 9 18 0 0 0 
2050 1 0,7234 0,7568 0,5260 0,7326 0 12 16 0 0 0 
2257 1 0,7396 0,7520 0,5298 0,7368 0 15 14 0 0 0 
2402 1 0,7549 0,7466 0,5160 0,7344 0 18 12 0 0 0 
2498 1 0,7710 0,7390 0,5140 0,7356 0 21 10 0 0 0 
2558 1 0,7895 0,7269 0,5002 0,7319 0 24 8 0 0 0 
2592 1 0,8029 0,7164 0,5158 0,7380 0 27 6 0 0 0 
2609 1 0,8179 0,7012 0,5019 0,7325 0 30 4 0 0 0 
2616 1 0,8339 0,6821 0,4999 0,7302 0 33 2 0 0 0 
2618 1 0,8515 0,6575 0,5253 0,7364 0 36 0 0 0 0 

H
EX

A
G

O
N

 

44001 1 0,6843 0,7636 0,5793 0,7418 0 0 24 0 0 0 
45516 1 0,7140 0,7616 0,5339 0,7341 0 9 18 0 0 0 
45802 1 0,7288 0,7606 0,5319 0,7369 0 12 16 0 0 0 
46009 1 0,7452 0,7571 0,5298 0,7394 0 15 14 0 0 0 
46154 1 0,7611 0,7518 0,5337 0,7434 0 18 12 0 0 0 
46250 1 0,7758 0,7465 0,5257 0,7428 0 21 10 0 0 0 
46310 1 0,7910 0,7379 0,5296 0,7456 0 24 8 0 0 0 
46344 1 0,8087 0,7253 0,5216 0,7437 0 27 6 0 0 0 
46361 1 0,8213 0,7134 0,5314 0,7470 0 30 4 0 0 0 
46365 1 0,8112 0,7105 0,5091 0,7360 0 32 0 2 0 0 
46368 1 0,8394 0,6954 0,5058 0,7371 0 33 2 0 0 0 
46369 1 0,8322 0,6963 0,4947 0,7317 0 34 0 1 0 0 
46370 1 0,8504 0,6785 0,5488 0,7502 0 36 0 0 0 0 

O
C

TA
G

O
N

 

87753 1 0,6838 0,7671 0,5734 0,7406 0 0 24 0 0 0 
88388 1 0,6859 0,7686 0,5557 0,7357 0 3 22 0 0 0 
88886 1 0,6971 0,7684 0,5360 0,7320 0 6 20 0 0 0 
89268 1 0,7120 0,7673 0,5339 0,7349 0 9 18 0 0 0 
89554 1 0,7270 0,7657 0,5319 0,7377 0 12 16 0 0 0 
89761 1 0,7429 0,7626 0,5240 0,7381 0 15 14 0 0 0 
89906 1 0,7593 0,7586 0,5101 0,7363 0 18 12 0 0 0 
90002 1 0,7747 0,7531 0,5081 0,7379 0 21 10 0 0 0 
90062 1 0,7898 0,7451 0,4943 0,7344 0 24 8 0 0 0 
90096 1 0,8065 0,7342 0,4981 0,7370 0 27 6 0 0 0 
90113 1 0,8202 0,7226 0,4902 0,7342 0 30 4 0 0 0 
90120 1 0,8375 0,7064 0,4881 0,7331 0 33 2 0 0 0 
90122 1 0,8491 0,6905 0,5135 0,7408 0 36 0 0 0 0 
95169 1 0,6724 0,7672 0,5595 0,7330 3 0 23 0 0 0 

(Continue…) 
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  #solution 𝑑𝛿 [−] 𝑑𝜑[−] 𝑑𝑀[−] 𝑑𝐶𝐼[−]  𝑂𝐷 [−] 𝑀1   𝑀2 𝑀3  𝑀4  𝑀5  𝑀6  
C

IR
C

LE
 

131505 1 0,6810 0,7677 0,5676 0,7381 0 0 24 0 0 0 
132638 1 0,6988 0,7674 0,5301 0,7302 0 6 20 0 0 0 
133306 1 0,7295 0,7653 0,5143 0,7320 0 12 16 0 0 0 
133513 1 0,7471 0,7612 0,5063 0,7325 0 15 14 0 0 0 
133658 1 0,7625 0,7572 0,4984 0,7324 0 18 12 0 0 0 
133754 1 0,7770 0,7524 0,4905 0,7318 0 21 10 0 0 0 
133814 1 0,7908 0,7464 0,4884 0,7327 0 24 8 0 0 0 
133848 1 0,8055 0,7374 0,4805 0,7309 0 27 6 0 0 0 
133874 1 0,8479 0,6962 0,4900 0,7334 0 36 0 0 0 0 
Table 5.8 - Results of the desirability function for optimal solution and "winners" of the three buildings. The optimal 
solution is in bold 

Once the analysis based on the desirability function is carried out considering the 

same weight of the four response variables, the parametric analysis is performed as well 

with the 4096 combinations of Table 4.3. The results for the three buildings are shown in 

Figure 5.13 in terms of probability of occurrence.  

Regarding the 126-m tall building, a total of 1305 “winners” have been selected and 

among these the geometrical solutions with greatest probability of occurrence are in 

descending order: #4908 in 3528 cases, #2476 in 3405 cases, #44 in 3318 cases and #7340 

in 3312 cases, as evident in Figure 5.13a. All of them correspond to the uniform-angle 

diagrid pattern made up of triangular units of three intra-module floors with octagonal, 

hexagonal, square and circular plan, respectively. Of course, also in this case, most of 

“winners” are varying-angle geometries. Specifically, 904 of them have a maximum 

diagonal inclination at base module lower than 72° corresponding to four intra-module 

floors, whereas it is lower than 76° and 78°, corresponding to five and six intra-module 

floors, respectively for 316 and 77 structures. For the latter the probability of occurrence 

is lower than 244. Finally, the uniform-angle pattern turns out to be the optimal one in 

93% of cases (3808 out of 4096 combinations). Note that the geometrical solutions with 

greater number of modules made up of one intra-module floor are not among the 

“winners” due to high construction complexity and greatest structural mass. 

As far as the 210-m tall building is concerned, similar considerations can be made. 

In particular, the first four geometries that result being the most preferable ones among 

6805 “winners” in most combinations, as shown in Figure 5.13b, are in descending order: 

#41107 in 3617 cases, #1391 in 3465 cases, #21249 in 3377 cases and #60965 in 3193 

cases. These solutions are referred to the uniform-angle diagrid pattern made up of 
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triangular units of two intra-module floors with octagonal, square, hexagonal and circular 

plan shape, respectively. Also in this case, most of “winners” among varying-angle 

structures (3937 out of 6805) are made up of lower modules composed by a maximum of 

four intermediate floors, whereas the remaining 2857 structures are characterized by 

steeper diagonal at the base. Note that in 272 cases the one intra-module floor geometry 

results to be “winner” when greater weight is given to the top torsional rotation. In this 

case, 95.90% of the combinations returns the uniform-angle pattern as the optimal 

geometry. 

Regarding the 252-m tall building, the parametric analysis returns 14746 “winners” 

out of 175008 diagrid structures. It is found that the four peaks relative to each floor plan 

shape, as shown in Figure 5.13c, correspond to #46361, #90122, #87753 and #131505 

solutions. These structures result to be preferable in 3480, 2840, 2520 and 2392 cases, 

respectively. Moreover, it can be noted that #46361 solution has a varying-angle pattern 

made up of modules constituted by two and three floors (𝑀2 = 30,𝑀3 = 4,𝑀𝑗 = 0 for 

j≠ 1,4,5,6), whereas the other three geometries are referred to the uniform-angle 

population. Specifically, #90122 is the square structure made up of two intra-module 

floors, #87753 is the octagonal structure made up of three intra-module floors and 

#131505 is the circular structure made up of three intra-module floors. Also in this case, 

varying-angle structures with steep diagonals at the base lower than 72° are preferable in 

most combinations. In this case, 85.55% of the combinations returns the uniform-angle 

pattern as the optimal geometry. 

Finally, it can be concluded that the influence of the weight exponent is very slight 

as in most combinations the most desirable geometry is always the same, i.e. the two 

intra-module floors geometry for tall buildings with slenderness greater than 5 and the 

three intra-module floors one for lower slenderness. Moreover, it can be observed that the 

shift from three intra-module floors for the 126-m tall building to two intra-module floors 

for the other three buildings is caused by the simultaneous minimization of the four 

response variables. In particular, it was found that the top lateral deflection influences the 

selection of the optimal solution for less slender structure, whereas the effect disappears 

for slender structure. 
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Figure 5.13 - Results of the parametric analysis in terms of probability of occurrence considering 4096 combinations: (a) 
the 126-m tall building with 9728 geometries (b) the 210- tall building with 79432 geometries (c) the 252-m tall building 
with 175008 geometries  

 

 

(a) 

(b) 

(c) 
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5.4. COMPUTATIONAL COST 

In case of varying-angle structures it has been found that the number of geometries 

to be analysed through the strength- and stiffness-based preliminary design and the 

desirability function is huge, especially for the 252-m tall building. In fact, based on the 

values reported in Table 5.1, it is clear that all the analyses have lasted a significant time 

and therefore the concept of computational cost has to be introduced. Now, attention is 

paid on how much time the preliminary design occurs. Figure 5.14 shows graphically the 

time needed to carry out the preliminary design of each geometry. It is evident again that 

the trend is mainly influenced by the diagonal inclination rather by the floor plan shape 

since it is repetitive. Moreover, it can be seen that the time increases with the number of 

modules made up of only one intra-module floor as a higher number of diagonals has to 

be checked in terms of strength and stiffness. In particular, the graphs related to the 210- 

and 252-m tall buildings show that the uniform-angle diagrid solutions with one intra-

module floor represent a particular condition since the preliminary design takes an outlier 

time. Specifically, in the case of the 60-story building the #19858, #39716, #59574 and 

#79432 solutions have been analysed respectively in 135, 49, 45 and 41 seconds, whereas 

in the case of the 72-story building the #43752, #87504, #131256 and #175008 solutions 

have been analysed respectively in 213, 242, 219 and 244 seconds. Note that all these 

geometries are made up of one intra-module floor, demonstrating their unsatisfactory 

performance. 

Figure 5.14 – Computational cost of the preliminary design for each diagrid geometry and for each building height 
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The main aspect that has to be pointed out is related to the effect of the building 

height. The results are reported in Table 5.9: the second and third columns are related to 

the maximum and the minimum values of time occurred, the fourth column is referred to 

the mean value and the remaining two columns are referred to the total time needed to 

perform the preliminary design for a given building height, changing diagonal inclination 

and floor plan shape. From the fourth column it can be noted that an entire diagrid 

structure is designed in the preliminary stage according to stiffness and strength criterion 

on average around 3, 5, 8 and 15 seconds for the 126-, 168-, 210- and 252-m tall buildings, 

respectively. This aspect highlights the computational speed of the preliminary design 

since these values are referred to an analysis that performs hundreds and thousands of 

iterations for each structure. Regarding the total time needed to perform the analysis, in 

case of the 72-story tall building, the preliminary design seems to take a long time, almost 

one month, because the number of analysed diagrid structures is very large, namely 

175008 structures. Moreover, from the values of total time, it is found that the transition 

from one tall building to the slender one the total time increases of about from 4 to 4.7 

times. For each height of the building the coefficient of variation (CV) among all 

geometries has been assessed and it is found that it is equal to 37.06%, 38.60%, 44.35% 

and 71.65% for the 36-, 48-, 60- and 72-story tall buildings, respectively. However, the 

required time to perform the preliminary design depends on specifications of the 

employed computer. In this case a computer, characterized by Intel Core i3 CPU 2.40 

GHz as processor, has been used. 

H [m] max [s] min [s] mean [s] 
total 

[h] [gg] 
126 12,98 0,532 3,09 8 0,35 
168 17,78 0,858 4,54 39 1,63 
210 135,04 1,369 8,25 182 7,59 
252 244,24 2,861 14,66 713 30 
Table 5.9 – Computational cost of the preliminary design for each building height 

The results demonstrate the efficiency of the matrix-based method (MBM) for the 

preliminary design of diagrid structures as it is able to analyse many structures in limited 

time. Conversely, if this study had been carried out manually or within a Finite Element 

Method (FEM) environment, it would have been much more difficult. However, once the 

optimal geometry is identified, FEM is necessary to design the structure in detail
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Chapter 6 

6. CONCLUSIONS 

This Thesis investigates the role of some geometrical features, e.g. diagonal 

inclination and floor plan shape, in the preliminary design stage of a diagrid structure, 

expected to exhibit efficient structural behaviour (in terms of lateral and torsional 

stiffness), lightness and ease of construction. To this purpose, the procedure developed in 

this work consisted of a preliminary structural analysis by means of the matrix-based 

method (MBM) and a posteriori multi-response optimization process based on the 

desirability function approach. In particular, once strength- and stiffness-based 

preliminary design has been performed for each diagrid geometry, the four response 

variables, i.e. top lateral deflection, top torsional rotation, structural mass and complexity 

index, have been assessed. The complexity index (CI) is a parameter referred to the 

construction complexity evaluated in function of number of nodes, number of diagonals, 

number of diagonals with length greater than 12 m, number of different diagonal cross-

sections and number of different diagonal lengths. After, the desirability function 

approach has been applied. It consists into the evaluation of the overall desirability (OD) 

for each diagrid geometry by combining the individual desirability values related to each 

response variable. Finally, it was possible to select the optimal diagrid geometry as the 

one with the greatest value of the overall desirability (OD). 

This methodology has been applied to a set of uniform- and varying-angle diagrid 

structures, by considering firstly the four response variables with the same weight. In 

order to point out the main outcomes, it is necessary to distinguish the populations out of 

which the optimal geometry was selected, namely unifom- and varying-angle diagrid 

structures.  

In both cases, it is evident that the influence of the floor plan shape is almost negligible, 

whereas the diagonal inclination has a major effect on the selection of the least and the 
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most desirable geometries. As a matter of fact, it was found that the worst geometries are 

the ones with very shallow or very steep diagonals, because of excessive lateral 

displacement under wind loads, large amount of structural mass and excessive torsional 

rotation.  

Regarding the best geometry, in the case of the uniform-angle population, the 

optimal diagrid geometry is always provided by diagonals with inclination around 65°, 

corresponding to diagonals spanning over three floors per module. This result was found 

to be independent from the height of the building. Conversely, in case of the varying-

angle population, the optimal diagrid geometries are found towards shallower diagonals 

around 55°, corresponding to diagonals including two intra-module floors. This 

difference is due to the following reasons. Firstly, the desirability function approach 

minimizes simultaneously several response variables, which are taken into account 

differently when considering the uniform- or varying-angle population. Secondly, the 

variation of the OD value between geometries with two and three intra-module floors is 

almost negligible, as lower as 2%, therefore both solutions can be considered optimal in 

both populations. Lastly, in the varying-angle population, the maximum diagonal 

inclination is about 78°, corresponding to diagonals spanning over six floors, whereas in 

the uniform-angle population steeper diagonals (83°), corresponding to twelve intra-

module floors, were also considered. Therefore, the reduction of the maximum diagonal 

angle in the varying-angle population has led to a slight preference towards diagrid 

structures made up of two intra-module floors, providing a better torsional behaviour. 

Moreover, considering a wider population led to different values of the individual 

desirability for the top torsional rotation, the structural mass and the complexity index. 

Further investigation has been carried out by performing the parametric analysis. 

Based on the results, although the optimal geometry is always the same for most weight 

combinations, in other cases the optimal diagrid solution is different as it depends on the 

weight given to each response variable. For this reason, it is important to define the 

importance of each parameter and the choice is expected to the designer.  

Some considerations on the advantages and limits of the proposed methodology can 

also be made. Firstly, the procedure employed, i.e. the MBM coupled with the desirability 

function, allows to analyse a wide population of structures in relatively short time and 

within the same computational environment.  As a matter of fact, in this Thesis a total of 
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295304 diagrid structures have been investigated in two months and a half considering 

both uniform- and varying-angle structures. Both the input phase, pre-processing, 

analysis and post-processing of data has been entirely carried out in Matlab, without the 

aid of additional external softwares. Conversely, other methodologies available 

nowadays, such as the Finite Element Method (FEM), do not ensure the same 

computational cost as they would take much longer time. Moreover, they often require 

the user to have specific codes to be developed to have a proper interface with the FE 

software. All these aspects represent one of the most significant advantages of the 

proposed methodology.  

However, there are also some limitations. As a matter of fact, the MBM is a modular 

method based on simplifications that lead to neglect the interstory drifts, and it is based 

on the linear elastic analysis, therefore it neglects the non-linear and dynamic behaviour 

of the structure. Although this procedure is valid for the preliminary design, the 

applicability of this method to further design stages might be not recommended. As far 

as the limitation of the desirability function is concerned, it was found that the optimal 

diagrid geometry depends on the analysed population since this approach is a post-

optimization process based on the comparison of all structures. 

Finally, the proposed procedure can also be generalized in future research. In this 

Thesis attention has been paid on specific diagrid structures with certain geometrical 

parameters, i.e. diagonal inclination, floor plan shape and building height, in order to 

guarantee structural performance, in terms of top lateral deflection and top torsional 

rotation, lightness and constructability. Of course, the designer or the researcher is totally 

free to choose other features to be studied. As an example, it is possible to consider not 

only cylindrical envelopes for the exterior of the building, but also different shapes 

obtained from tapering, twisting and tilting modifications. Since the geometric 

configuration of the form can strongly influence the system’s efficiency [51], this is 

expected to have a certain influence on the results. Similarly, other or different response 

variables can also be chosen to be fed to the desirability function. The choice can fall on 

several variables, depending on aesthetical, economical, energetical and architectural 

considerations. Moreover, further study can be done by coupling the desirability function 

approach with the Genetic Algorithm, remembering that both are used to investigate the 

optimal diagrid geometry. In particular, the desirability function approach is a multi-
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response optimization process that selects the optimal geometry by comparing the OD 

values of different individuals in a population. Conversely, the Genetic Algorithm 

identifies the optimal solution by combinations and alterations of initial geometrical 

parameters from a starting population until reaching the convergence towards the optimal 

one. In order to coupled them, one could then use the OD value as objective function of 

a Genetic Algorithm environment, where several response variables are then taken into 

account simultaneously.  

In conclusion, it can be said that the computational procedure presented here for the 

selection of the optimal diagrid geometry, based on the MBM and the desirability function 

approach, is an efficient, innovative and easy way to treat the problem. It also represents 

a valid tool for designers and researchers to design diagrid structures in the preliminary 

stage. 
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ANNEX A 

Table 1. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the square building with 
N = 36. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are ordered 
from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. S1 S2 S3 S4 S6 S12 
1 108 × 28 88.9 × 22.2 82.5 × 20 82.5 × 22.2 101.6 × 20 168.3 × 60 
2 127 × 32 114.3 × 28 114.3 × 32 127 × 30 139.7 × 36 298.5 × 80 
3 139.7 × 45 127 × 45 139.7 × 36 152.4 × 40 168.3 × 60 406.4 × 100 
4 152.4 × 45 139.7 × 45 152.4 × 40 159 × 60 193.7 × 55  
5 168.3 × 60 152.4 × 45 168.3 × 60 177.8 × 55 219.1 × 65  
6 168.3 × 60 159 × 60 177.8 × 55 193.7 × 60 244.5 × 65  
7 177.8 × 55 168.3 × 60 193.7 × 50 219.1 × 55   
8 193.7 × 50 177.8 × 55 219.1 × 50 244.5 × 60   
9 193.7 × 50 193.7 × 50 219.1 × 55 244.5 × 65   

10 219.1 × 50 193.7 × 60 219.1 × 65    
11 219.1 × 50 219.1 × 50 244.5 × 60    
12 219.1 × 50 219.1 × 55 244.5 × 65    
13 219.1 × 55 219.1 × 65     
14 219.1 × 65 244.5 × 60     
15 244.5 × 60 244.5 × 60     
16 244.5 × 60 244.5 × 65     
17 244.5 × 60 244.5 × 80     
18 244.5 × 60 244.5 × 90     
19 244.5 × 70      
20 244.5 × 80      
21 267 × 80      
22 267 × 80      
23 267 × 80      
24 267 × 80      
25 267 × 90      
26 267 × 100      
27 273 × 100      
28 298.5 × 80      
29 298.5 × 80      
30 298.5 × 80      
31 298.5 × 90      
32 298.5 × 90      
33 323.9 × 90      
34 323.9 × 90      
35 323.9 × 90      
36 323.9 × 90      

 
Table 2. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the hexagonal building 
with N = 36. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are 
ordered from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. H1 H2 H3 H4 H6 H12 
1 101.6 × 28 82.5 × 22.2 82.5 × 17.5 82.5 × 22.2 101.6 × 20 177.8 × 60 
2 127 × 30 114.3 × 28 114.3 × 30 127 × 30 139.7 × 36 298.5 × 100 
3 139.7 × 36 127 × 32 139.7 × 36 139.7 × 50 168.3 × 60 457 × 90 
4 152.4 × 40 139.7 × 36 152.4 × 40 159 × 50 193.7 × 50  
5 159 × 45 152.4 × 40 159 × 60 177.8 × 55 219.1 × 65  
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6 168.3 × 60 159 × 45 168.3 × 60 193.7 × 60 244.5 × 65  
7 177.8 × 55 168.3 × 60 193.7 × 50 219.1 × 50   
8 177.8 × 55 177.8 × 55 219.1 × 60 244.5 × 60   
9 193.7 × 50 193.7 × 50 219.1 × 55 244.5 × 60   

10 193.7 × 50 193.7 × 55 219.1 × 65    
11 219.1 × 50 219.1 × 50 244.5 × 60    
12 219.1 × 50 219.1 × 50 244.5 × 70    
13 219.1 × 50 219.1 × 65     
14 219.1 × 50 244.5 × 60     
15 219.1 × 65 244.5 × 60     
16 244.5 × 60 244.5 × 65     
17 244.5 × 60 244.5 × 80     
18 244.5 × 60 244.5 × 90     
19 244.5 × 60      
20 244.5 × 65      
21 244.5 × 80      
22 267 × 80      
23 267 × 80      
24 267 × 80      
25 267 × 80      
26 267 × 90      
27 273 × 100      
28 273 × 100      
29 298.5 × 80      
30 298.5 × 80      
31 298.5 × 80      
32 298.5 × 90      
33 298.5 × 100      
34 298.5 × 100      
35 323.9 × 90      
36 323.9 × 90      

 
 
Table 3. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the octagonal building 
with N = 36. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are 
ordered from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. O1 O2 O3 O4 O6 O12 
1 101.6 × 22.2 82.5 × 20 82.5 × 17.5 82.5 × 22.2 101.6 × 20 193.7 × 55 
2 127 × 30 114.3 × 28 114.3 × 28 127 × 30 139.7 × 40 323.9 × 90 
3 139.7 × 36 127 × 30 139.7 × 36 139.7 × 50 177.8 × 55 457 × 100 
4 152.4 × 40 139.7 × 36 152.4 × 40 159 × 50 193.7 × 60   
5 159 × 45 152.4 × 40 159 × 50 177.8 × 55 219.1 × 65   
6 168.3 × 60 159 × 45 177.8 × 55 193.7 × 55 244.5 × 70   
7 168.3 × 60 168.3 × 60 193.7 × 50 219.1 × 55     
8 177.8 × 55 177.8 × 55 219.1 × 50 219.1 × 65     
9 193.7 × 50 193.7 × 50 219.1 × 50 244.5 × 65     
10 193.7 × 50 193.7 × 55 219.1 × 65       
11 193.7 × 60 219.1 × 50 244.5 × 60       
12 219.1 × 50 219.1 × 50 244.5 × 70       
13 219.1 × 50 219.1 × 60         
14 219.1 × 50 244.5 × 60         
15 219.1 × 55 244.5 × 60         
16 219.1 × 70 244.5 × 65         
17 244.5 × 60 244.5 × 70         
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18 244.5 × 60 244.5 × 90         
19 244.5 × 60           
20 244.5 × 65           
21 244.5 × 70           
22 244.5 × 90           
23 267 × 80           
24 267 × 80           
25 267 × 80           
26 267 × 80           
27 267 × 90           
28 273 × 100           
29 273 × 100           
30 298.5 × 80           
31 298.5 × 80           
32 298.5 × 80           
33 298.5 × 90           
34 298.5 × 100           
35 298.5 × 100           
36 323.9 × 90           

 
Table 4. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the circular building with 
N = 36. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are ordered 
from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. C1 C2 C3 C4 C6 C12 
1 101.6 × 20 82.5 × 20 82.5 × 17.5 82.5 × 22.2 101.6 × 22.2 193.7 × 55 
2 127 × 30 108 × 30 114.3 × 28 127 × 30 139.7 × 45 323.9 × 90 
3 139.7 × 36 127 × 30 139.7 × 36 139.7 × 50 177.8 × 60 508 × 100 
4 152.4 × 40 139.7 × 36 152.4 × 40 159 × 50 219.1 × 50   
5 152.4 × 45 152.4 × 40 159 × 50 177.8 × 55 219.1 × 70   
6 159 × 60 159 × 45 168.3 × 60 193.7 × 55 244.5 × 70   
7 168.3 × 60 168.3 × 60 193.7 × 50 219.1 × 50     
8 177.8 × 55 177.8 × 55 193.7 × 60 219.1 × 70     
9 193.7 × 50 193.7 × 50 219.1 × 50 244.5 × 65     
10 193.7 × 50 193.7 × 50 219.1 × 65       
11 193.7 × 55 219.1 × 50 244.5 × 60       
12 219.1 × 50 219.1 × 50 244.5 × 65       
13 219.1 × 50 219.1 × 55         
14 219.1 × 50 219.1 × 70         
15 219.1 × 50 244.5 × 60         
16 219.1 × 60 244.5 × 60         
17 244.5 × 60 244.5 × 70         
18 244.5 × 60 244.5 × 80         
19 244.5 × 60           
20 244.5 × 60           
21 244.5 × 65           
22 244.5 × 80           
23 244.5 × 90           
24 267 × 80           
25 267 × 80           
26 267 × 80           
27 267 × 80           
28 267 × 90           
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29 267 × 100           
30 273 × 100           
31 298.5 × 80           
32 298.5 × 80           
33 298.5 × 80           
34 298.5 × 90           
35 298.5 × 100           
36 323.9 × 90           

 
Table 5. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the square building with 
N = 48. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are ordered 
from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. S1 S2 S3 S4 S6 S12 
1 139.7 × 36 101.6 × 20 82.5 × 22.2 88.9 × 22.2 101.6 × 30 177.8 × 60 
2 159 × 45 114.3 × 32 114.3 × 36 127 × 30 152.4 × 45 323.9 × 90 
3 193.7 × 55 139.7 × 45 139.7 × 36 152.4 × 40 193.7 × 55 508 × 100 
4 219.1 × 50 152.4 × 45 152.4 × 40 159 × 60 219.1 × 65 660 × 90 
5 244.5 × 60 159 × 50 168.3 × 60 193.7 × 50 244.5 × 90   
6 244.5 × 65 177.8 × 60 177.8 × 55 219.1 × 50 267 × 100   
7 244.5 × 70 193.7 × 50 193.7 × 55 219.1 × 60 298.5 × 90   
8 244.5 × 80 193.7 × 55 219.1 × 50 244.5 × 60 323.9 × 100   
9 244.5 × 90 193.7 × 60 219.1 × 60 244.5 × 80     
10 267 × 90 219.1 × 60 219.1 × 70 267 × 80     
11 267 × 90 219.1 × 60 244.5 × 65 267 × 100     
12 267 × 90 219.1 × 65 244.5 × 70 298.5 × 80     
13 267 × 100 244.5 × 65 267 × 80       
14 298.5 × 90 244.5 × 70 267 × 80       
15 298.5 × 100 244.5 × 80 267 × 100       
16 298.5 × 100 244.5 × 90 273 × 100       
17 298.5 × 100 267 × 90         
18 323.9 × 90 267 × 100         
19 355.6 × 90 267 × 100         
20 355.6 × 100 273 × 100         
21 368 × 100 298.5 × 80         
22 368 × 100 298.5 × 90         
23 368 × 100 323.9 × 90         
24 368 × 100 323.9 × 100         
25 406.4 × 100           
26 419 × 100           
27 457 × 90           
28 457 × 90           
29 457 × 90           
30 457 × 90           
31 457 × 100           
32 508 × 90           
33 508 × 100           
34 508 × 100           
35 508 × 100           
36 508 × 100           
37 559 × 90           
38 610 × 90           
39 610 × 90           
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40 610 × 90           
41 610 × 100           
42 610 × 100           
43 660 × 90           
44 660 × 90           
45 660 × 100           
46 660 × 100           
47 660 × 100           
48 660 × 100           

 
Table 6. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the hexagonal building 
with N = 48. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are 
ordered from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. H1 H2 H3 H4 H6 H12 
1 127 × 36 88.9 × 22.2 82.5 × 20 88.9 × 25 108 × 30 193.7 × 55 
2 152.4 × 45 114.3 × 30 114.3 × 32 127 × 32 159 × 45 355.6 × 100 
3 168.3 × 60 127 × 40 139.7 × 36 152.4 × 45 219.1 × 50 559 × 90 
4 193.7 × 55 139.7 × 45 152.4 × 40 168.3 × 60 244.5 × 60 711 × 100 
5 219.1 × 55 152.4 × 45 159 × 60 193.7 × 50 267 × 80   
6 219.1 × 70 159 × 50 177.8 × 55 193.7 × 60 273 × 100   
7 244.5 × 60 177.8 × 55 193.7 × 50 219.1 × 65 323.9 × 90   
8 244.5 × 60 177.8 × 60 219.1 × 50 244.5 × 65 355.6 × 90   
9 244.5 × 70 193.7 × 55 219.1 × 60 267 × 80     
10 244.5 × 70 219.1 × 50 219.1 × 70 267 × 90     
11 267 × 80 219.1 × 55 244.5 × 65 298.5 × 80     
12 267 × 80 219.1 × 60 244.5 × 80 298.5 × 90     
13 267 × 80 244.5 × 60 267 × 80       
14 267 × 90 244.5 × 65 267 × 90       
15 298.5 × 80 244.5 × 70 298.5 × 80       
16 298.5 × 90 244.5 × 80 298.5 × 90       
17 298.5 × 90 267 × 80         
18 298.5 × 90 267 × 90         
19 298.5 × 100 267 × 100         
20 323.9 × 90 267 × 100         
21 355.6 × 90 298.5 × 90         
22 355.6 × 100 298.5 × 90         
23 355.6 × 100 323.9 × 100         
24 355.6 × 100 323.9 × 100         
25 368 × 100           
26 368 × 100           
27 406.4 × 100           
28 419 × 100           
29 419 × 100           
30 419 × 100           
31 457 × 90           
32 457 × 90           
33 508 × 90           
34 508 × 90           
35 508 × 90           
36 508 × 90           
37 508 × 100           
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38 508 × 100           
39 559 × 90           
40 559 × 90           
41 559 × 90           
42 559 × 100           
43 559 × 100           
44 610 × 90           
45 610 × 90           
46 610 × 100           
47 610 × 100           
48 660 × 90           

 
 
Table 7. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the octagonal building 
with N = 48. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are 
ordered from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. O1 O2 O3 O4 O6 O12 
1 127 × 30 82.5 × 25 82.5 × 20 88.9 × 25 108 × 30 193.7 × 60 
2 152.4 × 40 114.3 × 30 114.3 × 32 127 × 32 159 × 45 355.6 × 100 
3 159 × 60 127 × 36 139.7 × 36 152.4 × 45 219.1 × 50 559 × 100 
4 193.7 × 50 139.7 × 40 152.4 × 40 168.3 × 60 244.5 × 60 1620 × 40 
5 219.1 × 50 152.4 × 45 159 × 60 177.8 × 60 244.5 × 90   
6 219.1 × 65 159 × 60 177.8 × 55 219.1 × 55 298.5 × 90   
7 219.1 × 65 177.8 × 55 193.7 × 50 219.1 × 60 323.9 × 90   
8 219.1 × 70 177.8 × 60 219.1 × 50 244.5 × 65 368 × 100   
9 244.5 × 65 193.7 × 55 219.1 × 55 244.5 × 80     
10 244.5 × 65 219.1 × 50 244.5 × 60 267 × 100     
11 244.5 × 90 219.1 × 55 244.5 × 60 267 × 100     
12 244.5 × 90 219.1 × 60 244.5 × 80 298.5 × 100     
13 244.5 × 90 219.1 × 65 244.5 × 90       
14 244.5 × 90 244.5 × 65 267 × 90       
15 267 × 90 244.5 × 65 273 × 100       
16 298.5 × 80 244.5 × 80 298.5 × 90       
17 298.5 × 80 244.5 × 90         
18 298.5 × 80 267 × 90         
19 298.5 × 80 267 × 90         
20 298.5 × 100 267 × 100         
21 323.9 × 90 273 × 100         
22 355.6 × 90 298.5 × 90         
23 355.6 × 90 323.9 × 90         
24 355.6 × 90 323.9 × 100         
25 355.6 × 90           
26 355.6 × 100           
27 368 × 100           
28 406.4 × 90           
29 406.4 × 100           
30 406.4 × 100           
31 406.4 × 100           
32 419 × 100           
33 419 × 100           
34 457 × 100           
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35 508 × 90           
36 508 × 90           
37 508 × 90           

38 508 × 100           
39 508 × 100           
40 559 × 90           
41 559 × 90           
42 559 × 90           
43 559 × 90           
44 559 × 100           
45 610 × 90           
46 610 × 90           
47 610 × 90           
48 610 × 100           

 
 
Table 8. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design. for the circular building with 
N = 48. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are ordered 
from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. C1 C2 C3 C4 C6 C12 
1 114.3 × 32 82.5 × 22.2 82.5 × 17.5 101.6 × 20 114.3 × 28 219.1 × 50 
2 152.4 × 40 114.3 × 30 114.3 × 30 127 × 36 159 × 50 406.4 × 90 
3 159 × 60 127 × 32 139.7 × 36 152.4 × 50 219.1 × 55 610 × 90 
4 193.7 × 50 139.7 × 40 152.4 × 40 177.8 × 55 244.5 × 65 1820 × 36 
5 193.7 × 55 152.4 × 45 159 × 60 193.7 × 50 267 × 80   
6 219.1 × 60 159 × 50 177.8 × 55 219.1 × 55 298.5 × 80   
7 219.1 × 65 177.8 × 55 193.7 × 50 219.1 × 65 323.9 × 100   
8 219.1 × 70 177.8 × 60 219.1 × 55 244.5 × 70 368 × 100   
9 244.5 × 65 193.7 × 55 219.1 × 60 244.5 × 80     
10 244.5 × 65 193.7 × 60 244.5 × 60 267 × 100     
11 244.5 × 70 219.1 × 55 244.5 × 65 273 × 100     
12 244.5 × 90 219.1 × 55 244.5 × 80 298.5 × 100     
13 244.5 × 90 219.1 × 65 267 × 80       
14 244.5 × 90 244.5 × 65 267 × 90       
15 267 × 80 244.5 × 65 273 × 100       
16 267 × 100 244.5 × 70 298.5 × 80       
17 298.5 × 80 244.5 × 90         
18 298.5 × 80 267 × 90         
19 298.5 × 80 267 × 100         
20 298.5 × 80 273 × 100         
21 298.5 × 100 298.5 × 80         
22 323.9 × 90 298.5 × 90         
23 355.6 × 90 323.9 × 90         
24 355.6 × 90 323.9 × 90         
25 355.6 × 90           
26 355.6 × 90           
27 355.6 × 100           
28 368 × 100           
29 406.4 × 90           
30 406.4 × 100           
31 406.4 × 100           
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32 406.4 × 100           
33 419 × 100           
34 457 × 90           
35 457 × 90           
36 457 × 100           
37 457 × 100           
38 457 × 100           
39 508 × 90           
40 508 × 100           
41 508 × 100           
42 508 × 100           
43 508 × 100           
44 559 × 90           
45 559 × 100           
46 610 × 90           
47 610 × 90           
48 610 × 100           

 
 
Table 9. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the square building with 
N = 60. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are ordered 
from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. S1 S2 S3 S4 S6 S12 
1 2220 × 40 114.3 × 30 101.6 × 30 108 × 28 114.3 × 32 193.7 × 55 
2 2220 × 40 139.7 × 40 139.7 × 45 139.7 × 50 177.8 × 55 368 × 100 
3 2220 × 40 168.3 × 60 159 × 45 177.8 × 55 219.1 × 70 559 × 100 
4 2220 × 40 193.7 × 55 177.8 × 60 219.1 × 55 244.5 × 90 1820 × 36 
5 2220 × 40 219.1 × 55 219.1 × 55 219.1 × 70 298.5 × 80 2220 × 40 
6 2220 × 40 219.1 × 70 219.1 × 60 244.5 × 70 323.9 × 100   
7 2220 × 40 244.5 × 60 244.5 × 60 244.5 × 90 368 × 100   
8 2220 × 40 244.5 × 70 244.5 × 70 267 × 100 419 × 100   
9 2220 × 40 244.5 × 80 244.5 × 90 298.5 × 100 508 × 90   

10 2220 × 40 267 × 80 267 × 100 323.9 × 100 559 × 90   
11 2220 × 40 267 × 80 273 × 100 355.6 × 90     
12 2220 × 40 267 × 100 298.5 × 100 406.4 × 90     
13 2220 × 40 298.5 × 90 323.9 × 100 406.4 × 100     
14 2220 × 40 298.5 × 90 323.9 × 100 457 × 90     
15 2220 × 40 298.5 × 100 368 × 100 457 × 100     
16 2220 × 40 323.9 × 100 406.4 × 90       
17 2220 × 40 355.6 × 90 419 × 100       
18 2220 × 40 355.6 × 100 457 × 90       
19 2220 × 40 368 × 100 457 × 100       
20 2220 × 40 368 × 100 508 × 90       
21 2220 × 40 406.4 × 100         
22 2220 × 40 419 × 100         
23 2220 × 40 457 × 90         
24 2220 × 40 457 × 100         
25 2220 × 40 508 × 90         
26 2220 × 40 508 × 90         
27 2220 × 40 559 × 100         
28 2220 × 40 559 × 100         
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29 2220 × 40 610 × 90         
30 2220 × 40 610 × 90         
31 2220 × 40           
32 2220 × 40           
33 2220 × 40           
34 2220 × 40           
35 2220 × 40           
36 2220 × 40           
37 2220 × 40           
38 2220 × 40           
39 2220 × 40           
40 2220 × 40           
41 2220 × 40           
42 2220 × 40           
43 2220 × 40           
44 2220 × 40           
45 2220 × 40           
46 2220 × 40           
47 2220 × 40           
48 2220 × 40           
49 2220 × 40           
50 2220 × 40           
51 2220 × 40           
52 2220 × 40           
53 2220 × 40           
54 2220 × 40           
55 2220 × 40           
56 2220 × 40           
57 2220 × 40           
58 2220 × 40           
59 2220 × 40           
60 2220 × 40           

 
Table 10. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the hexagonal building 
with N = 60. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are 
ordered from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. H1 H2 H3 H4 H6 H12 
1 168.3 × 60 108 × 30 101.6 × 28 108 × 30 114.3 × 36 219.1 × 60 
2 219.1 × 60 139.7 × 36 139.7 × 40 139.7 × 50 177.8 × 60 406.4 × 90 
3 244.5 × 70 152.4 × 50 159 × 45 177.8 × 60 219.1 × 70 610 × 100 
4 267 × 90 168.3 × 60 177.8 × 55 219.1 × 60 267 × 80 2020 × 40 
5 298.5 × 80 193.7 × 50 219.1 × 55 219.1 × 70 298.5 × 100 2220 × 40 
6 323.9 × 90 219.1 × 55 219.1 × 60 244.5 × 80 323.9 × 100   
7 323.9 × 100 219.1 × 65 244.5 × 60 244.5 × 90 406.4 × 90   
8 355.6 × 90 219.1 × 70 244.5 × 70 273 × 100 457 × 90   
9 355.6 × 100 244.5 × 65 244.5 × 90 298.5 × 90 559 × 90   
10 368 × 100 244.5 × 80 267 × 100 323.9 × 100 559 × 100   
11 406.4 × 100 244.5 × 90 298.5 × 80 355.6 × 90     
12 406.4 × 100 267 × 80 298.5 × 90 406.4 × 100     
13 406.4 × 100 298.5 × 80 323.9 × 90 419 × 100     
14 419 × 100 298.5 × 80 355.6 × 90 457 × 100     
15 508 × 100 298.5 × 100 406.4 × 90 508 × 100     
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16 508 × 100 323.9 × 90 406.4 × 100       
17 508 × 100 355.6 × 90 457 × 90       
18 508 × 100 355.6 × 90 457 × 90       
19 559 × 100 355.6 × 100 508 × 90       
20 610 × 90 368 × 100 508 × 90       
21 660 × 90 406.4 × 100         
22 660 × 90 419 × 100         
23 660 × 90 457 × 90         
24 660 × 90 457 × 100         
25 660 × 100 508 × 90         
26 711 × 100 508 × 90         
27 1820 × 36 559 × 90         
28 1820 × 36 559 × 100         
29 1820 × 40 610 × 90         
30 1820 × 40 610 × 90         
31 2020 × 36           
32 2020 × 40           
33 2220 × 40           
34 2220 × 40           
35 2220 × 40           
36 2220 × 40           
37 2220 × 40           
38 2220 × 40           
39 2220 × 40           
40 2220 × 40           
41 2220 × 40           
42 2220 × 40           
43 2220 × 40           
44 2220 × 40           
45 2220 × 40           
46 2220 × 40           
47 2220 × 40           
48 2220 × 40           
49 2220 × 40           
50 2220 × 40           
51 2220 × 40           
52 2220 × 40           
53 2220 × 40           
54 2220 × 40           
55 2220 × 40           
56 2220 × 40           
57 2220 × 40           
58 2220 × 40           
59 2220 × 40           
60 2220 × 40           

 
Table 11. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the octagonal building 
with N = 60. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are 
ordered from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. O1 O2 O3 O4 O6 O12 
1 152.4 × 50 108 × 28 101.6 × 25 108 × 28 114.3 × 36 219.1 × 70 
2 193.7 × 60 139.7 × 36 139.7 × 40 139.7 × 45 193.7 × 50 406.4 × 100 
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3 219.1 × 70 152.4 × 50 159 × 45 177.8 × 55 244.5 × 60 660 × 90 
4 244.5 × 80 168.3 × 60 177.8 × 55 219.1 × 55 267 × 90 2220 × 40 
5 267 × 90 193.7 × 50 219.1 × 50 244.5 × 60 298.5 × 90 2220 × 40 
6 298.5 × 80 219.1 × 60 219.1 × 60 244.5 × 80 355.6 × 90   
7 298.5 × 90 219.1 × 65 219.1 × 70 267 × 90 368 × 100   
8 298.5 × 90 219.1 × 70 244.5 × 70 273 × 100 457 × 100   
9 323.9 × 90 244.5 × 65 244.5 × 80 298.5 × 100 508 × 100   
10 323.9 × 90 244.5 × 90 267 × 100 323.9 × 100 610 × 90   
11 355.6 × 100 244.5 × 90 267 × 100 355.6 × 100     
12 355.6 × 100 267 × 90 298.5 × 100 406.4 × 90     
13 355.6 × 100 267 × 100 323.9 × 90 457 × 90     
14 368 × 100 298.5 × 80 323.9 × 100 457 × 90     
15 406.4 × 90 298.5 × 80 355.6 × 100 508 × 90     
16 457 × 90 323.9 × 90 406.4 × 90       
17 457 × 90 323.9 × 100 419 × 100       
18 457 × 90 355.6 × 90 457 × 100       
19 457 × 90 355.6 × 90 457 × 100       
20 508 × 90 368 × 100 508 × 100       
21 508 × 100 406.4 × 90         
22 559 × 100 419 × 100         
23 559 × 100 419 × 100         
24 559 × 100 457 × 100         
25 559 × 100 457 × 100         
26 610 × 90 508 × 90         
27 610 × 100 508 × 100         
28 660 × 100 508 × 100         
29 660 × 100 559 × 100         
30 660 × 100 610 × 90         
31 660 × 100           
32 711 × 100           
33 1620 × 40           
34 1820 × 36           
35 1820 × 36           
36 1820 × 40           
37 2020 × 36           
38 2020 × 36           
39 2020 × 40           
40 2020 × 40           
41 2020 × 40           
42 2220 × 40           
43 2220 × 40           
44 2220 × 40           
45 2220 × 40           
46 2220 × 40           
47 2220 × 40           
48 2220 × 40           
49 2220 × 40           
50 2220 × 40           
51 2220 × 40           
52 2220 × 40           
53 2220 × 40           
54 2220 × 40           
55 2220 × 40           
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56 2220 × 40           
57 2220 × 40           
58 2220 × 40           
59 2220 × 40           
60 2220 × 40           

 
Table 12. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the circular building with 
N = 60. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are ordered 
from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. C1 C2 C3 C4 C6 C12 
1 139.7 × 50 108 × 28 101.6 × 25 108 × 30 127 × 30 244.5 × 60 
2 193.7 × 55 139.7 × 36 139.7 × 40 139.7 × 50 193.7 × 50 419 × 100 
3 219.1 × 65 152.4 × 45 159 × 45 177.8 × 60 244.5 × 65 660 × 100 
4 244.5 × 70 159 × 60 177.8 × 55 219.1 × 60 267 × 100 2220 × 40 
5 244.5 × 90 193.7 × 50 219.1 × 50 219.1 × 70 298.5 × 100 2220 × 40 
6 273 × 100 219.1 × 50 219.1 × 65 244.5 × 80 355.6 × 100   
7 273 × 100 219.1 × 65 244.5 × 60 267 × 80 406.4 × 90   
8 298.5 × 80 219.1 × 70 244.5 × 80 273 × 100 457 × 100   
9 298.5 × 100 244.5 × 65 244.5 × 90 298.5 × 100 559 × 90   
10 298.5 × 100 244.5 × 80 273 × 100 323.9 × 100 610 × 90   
11 323.9 × 90 244.5 × 90 298.5 × 80 355.6 × 90     
12 355.6 × 90 267 × 80 298.5 × 100 406.4 × 100     
13 355.6 × 90 267 × 100 323.9 × 100 457 × 90     
14 355.6 × 90 298.5 × 80 355.6 × 90 457 × 100     
15 355.6 × 100 298.5 × 80 368 × 100 508 × 100     
16 406.4 × 100 298.5 × 100 406.4 × 90       
17 419 × 100 323.9 × 100 419 × 100       
18 419 × 100 355.6 × 90 457 × 90       
19 419 × 100 355.6 × 90 457 × 100       
20 457 × 90 355.6 × 100 508 × 90       
21 508 × 90 406.4 × 90         
22 508 × 100 406.4 × 100         
23 559 × 90 419 × 100         
24 559 × 90 457 × 90         
25 559 × 90 457 × 100         
26 559 × 90 508 × 90         
27 559 × 100 508 × 100         
28 610 × 100 559 × 90         
29 660 × 90 559 × 100         
30 660 × 90 610 × 90         
31 660 × 90           
32 660 × 100           
33 660 × 100           
34 711 × 100           
35 1620 × 40           
36 1620 × 40           
37 1620 × 40           
38 1820 × 36           
39 1820 × 40           
40 1820 × 40           
41 1820 × 40           
42 1820 × 40           
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43 2020 × 36           
44 2020 × 40           
45 2220 × 40           
46 2220 × 40           
47 2220 × 40           
48 2220 × 40           
49 2220 × 40           
50 2220 × 40           
51 2220 × 40           
52 2220 × 40           
53 2220 × 40           
54 2220 × 40           
55 2220 × 40           
56 2220 × 40           
57 2220 × 40           
58 2220 × 40           
59 2220 × 40           
60 2220 × 40           

 
Table 13. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the square building with 
N = 72. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are ordered 
from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. S1 S2 S3 S4 S6 S12 
1 2220 × 40 127 × 45 127 × 32 127 × 30 127 × 40 267 × 80 
2 2220 × 40 159 × 50 159 × 60 159 × 50 219.1 × 55 508 × 90 
3 2220 × 40 219.1 × 55 193.7 × 55 219.1 × 55 244.5 × 90 1820 × 40 
4 2220 × 40 244.5 × 60 219.1 × 65 244.5 × 70 298.5 × 80 2220 × 40 
5 2220 × 40 244.5 × 80 244.5 × 80 267 × 80 355.6 × 90 2220 × 40 
6 2220 × 40 267 × 90 267 × 80 273 × 100 406.4 × 100 2220 × 40 
7 2220 × 40 267 × 100 273 × 100 323.9 × 90 457 × 100   
8 2220 × 40 298.5 × 80 298.5 × 80 323.9 × 100 559 × 90   
9 2220 × 40 298.5 × 90 323.9 × 90 406.4 × 90 610 × 100   

10 2220 × 40 323.9 × 90 355.6 × 90 406.4 × 100 660 × 100   
11 2220 × 40 323.9 × 100 368 × 100 457 × 100 1820 × 36   
12 2220 × 40 355.6 × 90 406.4 × 100 508 × 100 1820 × 40   
13 2220 × 40 406.4 × 90 419 × 100 559 × 100     
14 2220 × 40 406.4 × 90 457 × 90 610 × 90     
15 2220 × 40 419 × 100 508 × 100 610 × 100     
16 2220 × 40 457 × 90 559 × 90 660 × 90     
17 2220 × 40 508 × 90 610 × 90 1620 × 40     
18 2220 × 40 508 × 90 610 × 90 1620 × 40     
19 2220 × 40 508 × 100 660 × 90       
20 2220 × 40 559 × 90 660 × 90       
21 2220 × 40 610 × 90 660 × 100       
22 2220 × 40 610 × 90 711 × 100       
23 2220 × 40 660 × 90 1620 × 40       
24 2220 × 40 660 × 90 1820 × 40       
25 2220 × 40 660 × 100         
26 2220 × 40 711 × 100         
27 2220 × 40 1620 × 40         
28 2220 × 40 1620 × 40         
29 2220 × 40 1820 × 36         
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30 2220 × 40 1820 × 40         
31 2220 × 40 2020 × 36         
32 2220 × 40 2020 × 36         
33 2220 × 40 2220 × 40         
34 2220 × 40 2220 × 40         
35 2220 × 40 2220 × 40         
36 2220 × 40 2220 × 40         
37 2220 × 40           
38 2220 × 40           
39 2220 × 40           
40 2220 × 40           
41 2220 × 40           
42 2220 × 40           
43 2220 × 40           
44 2220 × 40           
45 2220 × 40           
46 2220 × 40           
47 2220 × 40           
48 2220 × 40           
49 2220 × 40           
50 2220 × 40           
51 2220 × 40           
52 2220 × 40           
53 2220 × 40           
54 2220 × 40           
55 2220 × 40           
56 2220 × 40           
57 2220 × 40           
58 2220 × 40           
59 2220 × 40           
60 2220 × 40           
61 2220 × 40           
62 2220 × 40           
63 2220 × 40           
64 2220 × 40           
65 2220 × 40           
66 2220 × 40           
67 2220 × 40           
68 2220 × 40           
69 2220 × 40           
70 2220 × 40           
71 2220 × 40           
72 2220 × 40           

 
 
Table 14. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the hexagonal building 
with N = 72. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are 
ordered from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. H1 H2 H3 H4 H6 H12 
1 2220 × 40 127 × 36 114.3 × 36 127 × 30 127 × 45 323.9 × 100 
2 2220 × 40 152.4 × 50 159 × 50 159 × 50 219.1 × 65 711 × 100 
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3 2220 × 40 193.7 × 50 193.7 × 50 219.1 × 55 267 × 80 2220 × 40 
4 2220 × 40 219.1 × 55 219.1 × 55 244.5 × 70 298.5 × 90 2220 × 40 
5 2220 × 40 219.1 × 70 244.5 × 70 267 × 80 355.6 × 100 2220 × 40 
6 2220 × 40 244.5 × 80 244.5 × 80 273 × 100 406.4 × 100 2220 × 40 
7 2220 × 40 267 × 80 267 × 90 298.5 × 100 508 × 90   
8 2220 × 40 267 × 80 273 × 100 323.9 × 100 559 × 100   
9 2220 × 40 273 × 100 298.5 × 100 406.4 × 90 660 × 100   
10 2220 × 40 298.5 × 90 323.9 × 100 406.4 × 100 660 × 100   
11 2220 × 40 298.5 × 90 368 × 100 508 × 90 1820 × 40   
12 2220 × 40 323.9 × 90 406.4 × 90 508 × 100 2020 × 36   
13 2220 × 40 355.6 × 100 419 × 100 610 × 90     
14 2220 × 40 355.6 × 100 457 × 90 610 × 90     
15 2220 × 40 406.4 × 100 508 × 100 660 × 90     
16 2220 × 40 406.4 × 100 559 × 90 711 × 100     
17 2220 × 40 457 × 90 559 × 100 1820 × 36     
18 2220 × 40 457 × 90 610 × 90 1820 × 40     
19 2220 × 40 508 × 90 660 × 90       
20 2220 × 40 508 × 100 660 × 90       
21 2220 × 40 559 × 100 711 × 100       
22 2220 × 40 559 × 100 711 × 100       
23 2220 × 40 610 × 100 1820 × 40       
24 2220 × 40 610 × 100 2020 × 36       
25 2220 × 40 660 × 100         
26 2220 × 40 660 × 100         
27 2220 × 40 711 × 100         
28 2220 × 40 711 × 100         
29 2220 × 40 1820 × 36         
30 2220 × 40 1820 × 40         
31 2220 × 40 2020 × 36         
32 2220 × 40 2020 × 36         
33 2220 × 40 2220 × 40         
34 2220 × 40 2220 × 40         
35 2220 × 40 2220 × 40         
36 2220 × 40 2220 × 40         
37 2220 × 40           
38 2220 × 40           
39 2220 × 40           
40 2220 × 40           
41 2220 × 40           
42 2220 × 40           
43 2220 × 40           
44 2220 × 40           
45 2220 × 40           
46 2220 × 40           
47 2220 × 40           
48 2220 × 40           
49 2220 × 40           
50 2220 × 40           
51 2220 × 40           
52 2220 × 40           
53 2220 × 40           
54 2220 × 40           
55 2220 × 40           
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56 2220 × 40           
57 2220 × 40           
58 2220 × 40           
59 2220 × 40           
60 2220 × 40           
61 2220 × 40           

62 2220 × 40           

63 2220 × 40           

64 2220 × 40           

65 2220 × 40           

66 2220 × 40           

67 2220 × 40           

68 2220 × 40           

69 2220 × 40           

70 2220 × 40           

71 2220 × 40           

72 2220 × 40           

 
Table 15. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the octagonal building 
with N = 72. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are 
ordered from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. O1 O2 O3 O4 O6 O12 
1 2220 × 40 127 × 32 114.3 × 32 127 × 30 127 × 45 419 × 100 
2 2220 × 40 152.4 × 50 159 × 50 159 × 50 219.1 × 65 2220 × 40 
3 2220 × 40 177.8 × 60 193.7 × 50 219.1 × 55 267 × 80 2220 × 40 
4 2220 × 40 219.1 × 50 219.1 × 55 244.5 × 70 298.5 × 90 2220 × 40 
5 2220 × 40 219.1 × 65 244.5 × 70 267 × 80 355.6 × 100 2220 × 40 
6 2220 × 40 244.5 × 80 244.5 × 80 273 × 100 419 × 100 2220 × 40 
7 2220 × 40 244.5 × 90 267 × 90 298.5 × 90 457 × 100   
8 2220 × 40 267 × 90 273 × 100 355.6 × 90 610 × 90   
9 2220 × 40 267 × 100 298.5 × 90 368 × 100 610 × 100   

10 2220 × 40 298.5 × 90 323.9 × 100 419 × 100 711 × 100   
11 2220 × 40 298.5 × 90 355.6 × 90 457 × 90 1620 × 40   
12 2220 × 40 323.9 × 90 406.4 × 100 559 × 90 2220 × 40   
13 2220 × 40 355.6 × 90 406.4 × 100 559 × 100     
14 2220 × 40 355.6 × 100 457 × 90 610 × 100     
15 2220 × 40 368 × 100 457 × 100 610 × 100     
16 2220 × 40 406.4 × 100 559 × 90 711 × 100     
17 2220 × 40 419 × 100 559 × 100 711 × 100     
18 2220 × 40 457 × 90 610 × 90 1820 × 40     
19 2220 × 40 457 × 100 610 × 100       
20 2220 × 40 508 × 100 660 × 100       
21 2220 × 40 559 × 90 711 × 100       
22 2220 × 40 559 × 100 1620 × 40       
23 2220 × 40 610 × 90 1820 × 36       
24 2220 × 40 610 × 100 2020 × 36       
25 2220 × 40 610 × 100         
26 2220 × 40 660 × 100         
27 2220 × 40 660 × 100         
28 2220 × 40 711 × 100         
29 2220 × 40 1620 × 40         
30 2220 × 40 1820 × 40         
31 2220 × 40 1820 × 40         
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32 2220 × 40 2020 × 36         
33 2220 × 40 2020 × 36         
34 2220 × 40 2220 × 40         
35 2220 × 40 2220 × 40         
36 2220 × 40 2220 × 40         
37 2220 × 40           
38 2220 × 40           
39 2220 × 40           
40 2220 × 40           
41 2220 × 40           
42 2220 × 40           
43 2220 × 40           
44 2220 × 40           
45 2220 × 40           
46 2220 × 40           
47 2220 × 40           
48 2220 × 40           
49 2220 × 40           
50 2220 × 40           
51 2220 × 40           
52 2220 × 40           
53 2220 × 40           
54 2220 × 40           
55 2220 × 40           
56 2220 × 40           
57 2220 × 40           
58 2220 × 40           
59 2220 × 40           
60 2220 × 40           
61 2220 × 40           
62 2220 × 40           
63 2220 × 40           
64 2220 × 40           
65 2220 × 40           
66 2220 × 40           
67 2220 × 40           
68 2220 × 40           
69 2220 × 40           
70 2220 × 40           
71 2220 × 40           
72 2220 × 40           

 
Table 16. CHS cross-sections (diameter × thickness, in mm) adopted for the twenty-four uniform-angle 
diagrid patterns based on the strength- and stiffness-based preliminary design, for the circular building with 
N = 72. Each cross-section refers to a specific diagrid module in the building. Diagrid modules are ordered 
from the top to the bottom, i.e. module no.1 is the top module. 

Diagrid module no. C1 C2 C3 C4 C6 C12 
1 2220 × 40 127 × 30 114.3 × 32 127 × 30 139.7 × 36 2220 × 40 
2 2220 × 40 152.4 × 50 159 × 50 159 × 60 219.1 × 70 2220 × 40 
3 2220 × 40 177.8 × 60 193.7 × 50 219.1 × 60 267 × 90 2220 × 40 
4 2220 × 40 219.1 × 50 219.1 × 55 244.5 × 80 298.5 × 100 2220 × 40 
5 2220 × 40 219.1 × 65 244.5 × 70 267 × 90 368 × 100 2220 × 40 
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6 2220 × 40 244.5 × 70 244.5 × 80 298.5 × 80 419 × 100 2220 × 40 
7 2220 × 40 244.5 × 90 267 × 90 298.5 × 100 508 × 90   
8 2220 × 40 267 × 80 273 × 100 355.6 × 90 610 × 90   
9 2220 × 40 267 × 100 298.5 × 90 406.4 × 90 660 × 90   

10 2220 × 40 298.5 × 80 323.9 × 100 419 × 100 1620 × 40   
11 2220 × 40 298.5 × 90 355.6 × 90 457 × 100 1820 × 40   
12 2220 × 40 298.5 × 100 406.4 × 90 559 × 90 2020 × 40   
13 2220 × 40 355.6 × 90 406.4 × 100 610 × 90     
14 2220 × 40 355.6 × 100 419 × 100 610 × 100     
15 2220 × 40 368 × 100 508 × 90 660 × 90     
16 2220 × 40 406.4 × 100 508 × 100 711 × 100     
17 2220 × 40 419 × 100 559 × 100 1620 × 40     
18 2220 × 40 457 × 90 610 × 100 1820 × 36     
19 2220 × 40 457 × 100 660 × 90       
20 2220 × 40 508 × 90 660 × 100       
21 2220 × 40 559 × 90 711 × 100       
22 2220 × 40 559 × 100 1620 × 40       
23 2220 × 40 610 × 90 1820 × 36       
24 2220 × 40 610 × 100 1820 × 40       
25 2220 × 40 660 × 90         
26 2220 × 40 660 × 100         
27 2220 × 40 711 × 100         
28 2220 × 40 1620 × 40         
29 2220 × 40 1820 × 36         
30 2220 × 40 1820 × 36         
31 2220 × 40 1820 × 40         
32 2220 × 40 2020 × 36         
33 2220 × 40 2020 × 36         
34 2220 × 40 2020 × 40         
35 2220 × 40 2220 × 40         
36 2220 × 40 2220 × 40         
37 2220 × 40           
38 2220 × 40           
39 2220 × 40           
40 2220 × 40           
41 2220 × 40           
42 2220 × 40           
43 2220 × 40           
44 2220 × 40           
45 2220 × 40           
46 2220 × 40           
47 2220 × 40           
48 2220 × 40           
49 2220 × 40           
50 2220 × 40           
51 2220 × 40           
52 2220 × 40           
53 2220 × 40           
54 2220 × 40           
55 2220 × 40           
56 2220 × 40           
57 2220 × 40           
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58 2220 × 40           
59 2220 × 40           
60 2220 × 40           
61 2220 × 40           
62 2220 × 40           
63 2220 × 40           
64 2220 × 40           
65 2220 × 40           
66 2220 × 40           
67 2220 × 40           
68 2220 × 40           
69 2220 × 40           
70 2220 × 40           
71 2220 × 40           
72 2220 × 40           

 
 


