
POLITECNICO DI TORINO

Master’s Degree in Communications and Computer Networks Engineering

Master’s Thesis

Outdoor Localization
of an Assistive Autonomous Robot

Supervisors Candidate
Prof. Roberto Garello Alessandro Moro
Prof. Marina Mondin

Academic Year 2020-2021



Abstract

This thesis regards the design, development and testing of the localization system

for Autonomous Mobile Robots in outdoor environments, a project carried out

in collaboration with InnoTech Systems L.L.C. and California State University of

Los Angeles. The ability to localize itself on the map is at the base of autonomous

navigation, an imperative skill for any autonomous vehicle. The proposed solution

to the outdoor localization problem is based on the combination of the current

state-of-the-art GNSS technology with data from inertial sensors, encoders and

stereo camera, where the fusion of multiple information is performed by means of

a Kalman filter algorithm with the purpose of reducing the estimation uncertainty.

In addition to the system development and validation, this work aims at showing

the potential of sensor fusion for localization purposes. After a general introduction

on autonomous mobile robots and on the localization problem, this document

covers the theory behind the sensors and techniques at the core of the system, to

conclude with the project development and the validation results.
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Chapter 1

Introduction

1.1 Autonomous Mobile Robots

Autonomous Mobile Robots (AMRs) identify those computer-controlled machines

that are able to move and accomplish complex tasks in complete autonomy, ca-

pable of making decisions and react based on the environmental stimulus they

perceive, without any human interaction. The rapid increment in popularity in

recent years makes the field of mobile robotics more relevant than ever before[1].

The recent progress made in the field of machine learning and computer vision al-

lows mobile robots to improve in tasks such as object recognition[2] or autonomous

navigation[3], making them suitable for more and more applications. AMRs are

often used to substitute humans for repetitive or dangerous tasks in many different

fields like industrial automation, transportation (humans or goods), construction,

exploration, agriculture, medical care or any operation in hazardous or extreme en-

vironments, but also for simpler tasks like house cleaning or house monitoring. To

perform its tasks, any AMR must have a number of sensors, either mounted on the

robot or external sensors placed on the environment. Sensors can be categorized

as proprioceptive or exteroceptive and active or passive. Proprioceptive sensors
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Introduction

measure values internal to the robot, like motor speed from encoders or angular

velocity from a gyroscope, while exteroceptive ones measure external quantities

from the environment, like the distance of the robot from a wall measured by

an ultrasonic sensor. Active sensors measure the environmental response to the

energy they emit like sonars or radars, while passive ones measure the received

energy coming directly from the environment, like thermometers or touch sensors.

At the basis of autonomous mobile robotics there are the following four fields:

perception, cognition, locomotion and navigation.

• Perception is the ability to correctly interpret the surrounding environment

from the sensors measurements. The information coming from sensors must

be properly perceived in order to execute complex tasks such as localization

or object detection.

• Cognition is the ability to properly take the actions required for the robot to

complete its tasks, based on the perceived information.

• Locomotion is the act of the robot to move itself. It depends on the me-

chanical characteristics of the robot but also on its maneuverability, stability,

on terrain conditions and so on. Based on the medium the robot moves it

can be defined as an aerial, water or ground vehicle. Ground robots are gen-

erally wheeled, legged or hybrid, a characteristic that strongly impacts its

locomotion.

• Navigation is the capability to successfully reach a destination on the map. In

order to do so the robot must know where it is, where the destination is and

how to reach it. It is evident how navigation, other than on the three fields

reported above, strongly depends on aspects like localization, path planning

and obstacle avoidance.

An efficient path planning algorithm is mandatory for an effective autonomous
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navigation. Finding the best route in terms of shortness and simplicity can be

very challenging, and parameters like length of the path, energy consumption and

required time also affects the possible applications of the robot. Path planning

differentiates in global algorithms for static or dynamic but known environments

and local algorithms, used in dynamic and partially unknown environments. An

important prerequisite for navigation is a collision-free trajectory, since collision

with objects in the environment would compromise the achievement of the target

destination, hence the obstacle avoidance aspect is vital for mobile robots. Fun-

damental requirement for navigation is the knowledge of the robot position and

orientation in the map. A proper localization system must be able to continuously

provide a reliable estimate of the robot’s pose and orientation in order to achieve

any navigation goal.

Path planning, obstacle avoidance and localization are some of the most chal-

lenging aspects in the design of mobile robots[4], making autonomous navigation

one of the most difficult tasks for AMRs.

1.2 The Localization System

As stated in [5] the navigation system is the most important aspect in the design

of autonomous mobile robots. In order to successfully navigate to a target desti-

nation, the robot must be able to localize itself on the map, hence the localization

system represents an imperative part in the design of AMRs. The final goal of

a localization system for a mobile autonomous robot is to allow the latter to au-

tonomously and efficiently locate itself. The location of the robot is meaningful

only if defined with respect to a reference. Such a reference is usually the origin

of the map in which the robot is supposed to move, but it can also be the Earth’s

reference frame in case of global localization or it can be an arbitrary point on the

map, stationary or not. Consider for example an application for which the robot
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must follow a human; in this scenario the localization system should provide the

position relative to the moving target in addition to the one relative to the station-

ary reference. Localizing the robot means to provide the position and orientation

information with respect to the reference system. To effectively achieve this goal

in complete autonomy the robot needs to be equipped with proper sensors which

measure some quantities useful to localize it. All the data coming from the sensors

must then be processed in some way to obtain the position and orientation of the

robot in the map. The quality of the localization system’s output directly depends

on which sensors are used, on their quality and on how their measurements are

combined.

1.2.1 Uncertainty in Localization

As stated above, the localization system estimates position and orientation of

the robot starting from the information perceived by the sensors. The output of

the system is an estimate of the true value whose accuracy depends first on the

uncertainty the robot has to face when operating in the real world and second on

the way it exploits the information perceived through the sensors. Uncertainty

arises from the following sources:

• Sensors: sensors have limitations in range and resolution that make them

unable to perfectly measure the true value of the target quantity. More-

over, sensors are always subject to noise which causes unpredictable errors

in measurements and some sensors are also prone to nonuniqueness of sensor

readings, or sensor aliasing.

• Robot hardware: the robot itself can be a source of uncertainty. Motors, for

example, can be more or less accurate; the same control input may cause

different motion resulting in different robot movements.
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• Mathematical models: mathematical models are always abstractions of the

real world. These approximated models, if used to predict the next state of

the robot, produce approximated results.

• Environments: the real world always introduces uncertainty being highly dy-

namic and unpredictable.

Even if it is not possible to completely eliminate them, some of the uncertainties

can be reduced. Higher quality sensors and actuators, for example, limit the

uncertainty in the system. In the following we will introduce the idea of sensor

fusion and how it can help limit the uncertainty of the final estimation. Later in

the paper we will cover this topic in greater details.

1.2.2 Sensors and Techniques

Mobile robot localization can be achieved by different methods and techniques,

some of which are more suitable in certain scenarios than others. Depending on

the type of sensors on which these methods are based, localization can be divided

into two categories: relative and absolute localization[6].

• Relative localization techniques - also called dead reckoning - estimate both

position and orientation by integrating the information from one or more

sensors continuously in time, starting from the initial state of the robot.

Dead reckoning is reliable only for a short period of time since it is subject to

cumulative errors. The estimated position and orientation are the results of

multiple integrations of measurements that, as previously said, are not error-

free, and therefore all the errors accumulate in the final estimation decreasing

the accuracy over time. In mobile robotics the estimation of position from

motion sensors is often called odometry, where measurements of velocities and

accelerations usually come from encoders and/or inertial sensors.
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• Absolute localization techniques instead estimate the robot position and ori-

entation directly from the environment. No integration is performed and

therefore the estimation error does not depend on time or covered distance.

Nevertheless, such techniques often have limitations in frequency and are

location-dependent. Some of these methods are based on global positioning

systems, active beacons, magnetic compasses, landmark navigation or model

matching.

Another important distinction can be done in terms of indoor or outdoor localiza-

tion. While some techniques are completely independent from that, some others

obtain good performance depending on the environment. In the following we will

quickly present some techniques and relative sensors commonly used to localize

mobile robots, covering advantages and disadvantages of each of them.

Odometry

Odometry is a simple technique exploiting mathematical equations to predict the

next position and orientation of the robot based on the previous state and on ve-

locity and acceleration measurements. Consider for example the two-wheel robot

moving on a two-dimensional plane in figure 1.1. Both linear and angular veloc-

ity can be measured by means of wheel encoders and used in simple kinematic

equations like the following:

xt+∆t = xt + cos(θt) · vx,t ·∆t+ 1/2 · cos(θt) · ax,t ·∆t2 (1.1)

yt+∆t = yt + sin(θt) · vx,t ·∆t+ 1/2 · sin(θt) · ax,t ·∆t2 (1.2)

to estimate the next position of the robot, whose accuracy not only depends on

the measurements errors, but also on the frequency at which the sensors work

since velocity and acceleration vary continuously in real word. The obtained error

can be categorized as systematic or unsystematic error. Systematic errors derive
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Figure 1.1. Position estimation in a 2D plane through odometry

from mechanical imperfection of the robot like differences between the wheels or

from uncertainty in wheel diameters or wheel-to-wheel distance. Unsystematic

errors are instead due to unpredictable interactions of wheels with the ground,

like bumps or slippage. In such a system the largest error contribution usually

comes from a poor precision in the orientation estimation from encoders. In a

two-dimensional plane even few degrees of error cause a large displacement in

the estimated pose even after short distances. For this reason inertial sensors

are often exploited in addition to encoders for odometry. Even if still subject

to drift problems, much more accurate orientation information can be estimated

from accelerometers and gyroscopes and used to limit the error also in the pose.

Combining accelerometer and gyroscope, Inertial Measurement Units are often

exploited in mobile robotics for odometry. Despite the problem of unbounded

cumulative errors, odometry remains an inexpensive way largely used in mobile
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robot localization, often combined with absolute localization methods to correct

eventual errors.

Active beacons

High reliability and high sampling rate, along with the minimal processing required

for position estimation, have made active beacons commonly used in localization

of ships, airplanes and robots, despite the costs for installation and maintenance.

Active beacons usually broadcast radio or ultrasonic signals allowing the receivers

to detect where they are and to estimate their own position. Trilateration and

triangulation are the methods used to estimate the position from beacons.

• Trilateration consists in the estimation of the receiver position based on

the measured distances from the known beacons positions. For a three-

dimensional estimation a minimum of 4 transmitting beacons must be pre-

cisely placed in the environment, while the receiver is placed on the robot or

vehicle to localize. Deriving the distances from the measured time-of-flight,

this information is used to compute the intersection between multiple spheres

and to obtain the area (ideally the point) where the robot stands.

• Triangulation consists in the estimation of the receiver position and orienta-

tion based on the measured angles between the robot’s longitudinal axis and

the beacons. By detecting at least three beacons, the respective angles can be

used to estimate the x and y coordinates of the receiver in a two-dimensional

map and its heading. Usually a rotating sensor mounted on the vehicle is

used for this purpose.

The main drawback of both triangulation and trilateration is that, in order to

work, a minimum number of beacons simultaneously detected by the robot is

required. Moreover, the accuracy of the estimation depends on the geometry of
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Figure 1.2. Two-dimensional triangulation (left) and trilateration (right)

the transmitters with respect to the receiver. Minimum number of beacons and

“good” geometry are not always easy to satisfy, especially for indoor or large

environments, or for low cost solutions where the overall number of beacons on

the map is limited.

Global positioning

The Global Navigation Satellite System exploits different constellations of satel-

lites to allow any receiver on Earth to estimate its own position in terms of latitude,

longitude and altitude through trilateration. The satellite-receiver distance is es-

timated from the travel time of a RF signal broadcasted by the satellite, which

also carries additional location and timing information. The GNSS is currently the

most used positioning system in outdoor environments. It is largely used for navi-

gation purposes by ground vehicles (including mobile robots), aircrafts, spacecraft,

boats and ships, but also for land surveying, precision agriculture, geology and so

on. Being a fundamental part of this work, GNSS technology will be covered in

detail in chapter 2.
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Magnetic compasses

Magnetic compasses provide a measure of absolute heading by measuring the

Earth’s magnetic field. These sensors are very important in navigation since an

absolute reference heading would solve the problem of inaccurate orientation es-

timated from dead reckoning approaches. The main disadvantage of magnetic

compasses is that they are subject to any close magnetic interference. Moreover,

the Earth’s magnetic field is distorted around steel structures or objects. Hence,

magnetic compasses can only be used outdoors and may provide inaccurate mea-

surements when mounted on mobile robots close to electrical components.

Landmark navigation

In landmark navigation the robot exploits distinct features of the environment

to localize itself. Landmarks are fixed in known positions and may include addi-

tional information in form of bar code or QR code for example. Landmarks are

usually categorized as natural and artificial ones. Natural landmarks are features

already present in the environment with a primary function different from the

robot navigation, like ceiling light or corridor edges for example. With respect to

artificial ones, they do not modify the surrounding environment. Artificial land-

marks are instead specifically designed for helping the robot navigation and are

typically much easier to be recognized and more effective for position estimation,

since they can be strategically placed in the environment and both shape and size

are known. Regardless of the type of landmarks, the robot must store in advance

their position and characteristics to be able to recognize them and estimate its

own position. Moreover, the ability to recognize them and the accuracy of the

estimation depends on aspects like the ambient light or the distance and angle

between the robot and the marker. Landmark navigation is based on computer-

vision capabilities requiring usually more processing power with respect to other

10
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methods.

Model matching

In localization, model matching is a technique used by the robot to find its position

and orientation in the map by comparing what the robot “sees” against a global

map stored in memory. Model matching requires the robot to already have a map

model stored in memory or to be able to build it while in operation. Map matching

is then performed comparing the environmental features perceived from the sensors

with the known map, and if a match occurs, the robot computes its position and

orientation. A map-based localization algorithm does not require a perfect match,

but it provides its belief on position and orientation. The process of simultaneously

building the map while localizing the robot on it is called Simultaneous Localiza-

tion And Mapping. SLAM algorithms have been the subject of much research

in the past years, but thanks to the recent improvements in computer processing

speed and high quality sensors such as cameras or LiDAR, this technique is nowa-

days successfully used in many fields. Model matching techniques require sensors

with good accuracy to be able to properly extract map features, and work best in

the case of easily distinguishable and stationary attributes. For these reasons, in

mobile robot localization SLAM gives best results in indoor environments where

the map is usually not too large and full of features.

So far we have introduced the most common techniques and the relative sensors

used to solve the localization problem in autonomous mobile robots, highlight-

ing the main strengths and weaknesses of each of them. What emerges from this

paragraph is that there exists no unique sensor or technique which guarantees a

reliable localization, since each of them is always subject to some kind of uncer-

tainty. Some of the methods presented before only partially solve the localization
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problem, properly working only with time or environmental constraints. In the fol-

lowing paragraph we introduce and justify the need for sensor fusion, an efficient

solution to the uncertainty problem in localization.

1.3 The Need for Sensor Fusion

All the localization methods presented in the previous paragraph rely on sensors

that are subject to some kind of uncertainty. Odometry is not reliable for long

operation due to accumulation of systematic and random errors from encoders

or inertial sensors. Trilateration or triangulation strongly depend on the geom-

etry and number of beacons deployed on the map, and on certain environments

their visibility from the robot is difficult to guarantee for limited budget solu-

tions. GNSS localization is great for outdoor spaces but for precision localization

it suffers in proximity of tall buildings or any kind of object obstructing the sky

visibility. Landmark navigation alone is not suitable for continuous localization

since it is subject to distance and angle constraints of the robot from markers.

Model matching techniques are largely used for indoor mobile robots localization,

but their performance drops in case of strongly dynamic or wide outdoor environ-

ments. Vision SLAM for example is limited by high computational costs and it is

not as precise as LiDAR based SLAM, which on its side is much more expensive.

Even if none of these systems guarantee a continuous and reliable localization re-

gardless of the environment, a combination of them can overcome the uncertainty

problem that each sensor or technique is subject to. If we want to improve the esti-

mation accuracy a sensor fusion approach is needed, since it combines data coming

from multiple sensors to reduce their uncertainty contribution to the final estima-

tion. A known definition of data fusion has been provided in [7]: "Data fusion

techniques combine data from multiple sensors and related information from asso-

ciated databases, to achieve improved accuracy and more specific inferences than
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could be achieved by the use of a single sensor alone". The integration of multi-

ple sensors allows to compensate for the weaknesses of one with the strengths of

another. For these reasons sensor fusion algorithms are widely used in robotics

applications such as localization, object recognition and environmental mapping.

Sensor fusion is the core of the localization system discussed in this thesis and it

will be covered in greater detail in chapter 4.

1.4 Thesis Goal

This work is part of a bigger project of Innotech Systems L.L.C., a startup born

in Los Angeles with the mission of providing Artificial Intelligence based solutions

and services for a wide range of applications in different fields like robotics, trans-

portation and healthcare. Innotech Systems L.L.C. is working on an autonomous

mobile robot platform for delivery services of food, beverages, packages etc. in

defined areas like airports, university campuses and so on, where the robot is re-

quired to move in complete autonomy. To allow such application, an efficient and

reliable localization system is needed. For this reason, the thesis is focused on

the design and development of the outdoor localization system for an assistive

mobile robot. The core of the system consists of a sensor fusion node combining

data from multiple sensors in order to estimate the position and orientation of the

robot in the environment with the highest possible accuracy. Exploiting a state-

of-the-art GNSS receiver for mobile applications as the main source of absolute

measurements, the system also makes use of inertial sensors, encoders and cameras

to make up for the GNSS weaknesses and to guarantee a continuous and reliable

localization service. The goal of the thesis is not only to develop a working lo-

calization system, but also to show with real results how the localization problem

can benefit from a multiple sensor fusion approach.
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1.5 Thesis Organization

In this first chapter we provided an introduction on autonomous mobile robots

and on the concept of autonomous navigation, focusing on the importance of the

localization system and presenting some of the related techniques commonly used.

Then we introduced the key role of sensor fusion and the goal of this thesis. Being

a fundamental part of this project, in chapter 2 we cover the theory behind the

GNSS technology, how the user position is derived from the signals coming from the

satellites, the error sources affecting the estimation and the augmentation systems

used to obtain high accuracy measurements. In chapter 3 we introduce the inertial

sensors and how their measurements are combined to estimate the orientation of

the device. In chapter 4 we explain the concept of sensor fusion and we go through

the Kalman filter algorithms implemented in the localization system. Finally, in

chapter 5 we describe the project development, the software and the hardware

used to design the robot and the localization system, and we describe the tests

used to validate the system, presenting the relative results. The thesis concludes

with final considerations on the project and on possible future related works.
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Chapter 2

Global Navigation Satellite

System

Global Navigation Satellite System refers to the set of constellations of medium

Earth orbit satellites that provide positioning and timing services on a global or

regional basis. At the time of writing, the constellations providing global cover-

age are the United States’ GPS, that with its 31 satellites currently in orbit is

the world’s most utilized satellite system, the Russian GLONASS, the European

Galileo and the Chinese BeiDou, while the Indian NavIC is an autonomous sys-

tem designed to provide coverage for the Indian region and the surrounding area,

and the Japanese QZSS is used to complement the GPS to improve coverage in

East Asia and Oceania. GNSS allows electronic receivers to derive their position

in terms of latitude, longitude and altitude by using time signals transmitted on

radio channels by the satellites. The signals also allow to precisely calculate the

current local time. The achieved position accuracy may go from several meters in

case of bad conditions (obstruction of the sky, low quality receiver . . . ) down to

centimeter level with the current state-of-the-art technology.

15



Global Navigation Satellite System

The Global Navigation Satellite System exploits the concept of time-of-arrival

(TOA) to determine the user position. The receiver estimates the propagation

time of the signal coming from satellite (SV), then it multiplies it by the speed of

light to derive the SV-to-user distance. Since the satellites positions are precisely

known by the receiver thanks to the modulated data carried by the signals, through

trilateration the user is able to estimate its position when a sufficient number of

measurements are available. The fact that a satellite is theoretically visible does

not mean that it is actually used for obtaining the position; the presence of obsta-

cles or low quality of the signal may cause the receiver not to successfully process

the signal. In theory, with at least four satellites in visibility, by intersecting the

four spheres derived from the respective SV-to-user distances, the user is able to

identify the point in the three-dimensional space corresponding to its position, as

shown in figure 2.1. In practice, as we will see later, many sources of error af-

fect the estimation process and usually more satellites are required to achieve a

reasonable accuracy.

Figure 2.1. Three-dimensional trilateration with four satellites [8]
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GNSS is composed of three segments: space, control and user segment.

• The Space segment is the constellations of satellites used as reference points

in the space for the user positioning estimation. Each satellite broadcasts a

PRN coded signal (pseudorandom noise) modulated to carry the satellite’s

position and timing information, from which the receiver derives the SV-

to-user distance. From the user point of view the GNSS is a passive system,

since the receiver passively receives the transmitted signals from the satellites,

allowing an unlimited number of users to simultaneously utilize the service.

• The Control segment consists in a network of monitoring stations distributed

all around the Earth responsible for maintaining the status of the satellites

and signals. The satellite’s orbital position, battery power level, clock and

ephemeris (satellite’s trajectory) are only some of the parameters that need

to be periodically monitored by the control segment. Frequent updates of

parameters like clock and ephemeris help in reducing the space segment and

control segment contribution to the range measurement error. Furthermore,

the control segment activates spare satellites when needed to maintain system

availability and resolve possible anomalies. To accomplish all these tasks, the

control segment comprises three components: the Master Control Station,

monitor stations and ground antennas.

• The User segment is made of a wide range of different receivers with different

performance levels, which estimate the position, velocity and time - PVT - of

the user on the basis of the signals transmitted by the satellites.

Let us step a little deeper in the process of PVT estimation.
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2.1 The Position Velocity Time solution

Above we briefly introduced the trilateration process to estimate the user position

by intersecting multiple spheres, assuming to be able to precisely compute the

SV-to-user distance neglecting all the possible errors. In reality this is never the

case, and a different number of error sources affect the range measurements, like

synchronization, ephemeris, relativistic, multipath errors and so on. The error

introduced by non-synchronized clocks is generally much bigger than the other

contributions, so to simplify the concept of range estimation here we neglect all

the other sources of error, which will be covered in the next section.

Position

We want to determine the position of the user with respect to the Earth’s reference

frame. Reference frames will be discussed in detail in section 2.3, but for now we

only need to know that we are interested in finding the coordinates of the user

with respect to the ECEF frame, a Cartesian system centered at the center of

the Earth. Our unknowns are then the coordinates (xu, yu, zu) of the user, while

the satellite position given by (xs, ys, zs) with respect to ECEF are derived from

ephemeris data broadcasted by the satellite. The SV-to-user range is derived from

the propagation time of the signal in space. Taking as an example the baseline

civil GPS service, each transmitted signal consists of a BPSK modulated binary

sequence (named Coarse/Acquisition code) over the same carrier frequency, and

each satellite is identified by a different code (CDMA scheme). Two ways to

measure the propagation time are possible:

• Code phase measurement: the propagation time between SV and user is es-

timated measuring the ∆t between a local replica of the C/A code and the

received signal in space. This process is illustrated in figure 2.2. For example,
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a specific code phase transmitted by the satellite at time t1 gets at the receiver

at t2. The receiver generates an identical code replica at time t1 with respect

to user time, which is shifted in time until it achieves correlation with the

satellite-generated code. If the receiver and SV were perfectly synchronized,

the correlation process would give the true propagation time ∆t. Multiplying

it by the speed of light, the SV-to-user distance is obtained.

• Carrier phase measurement: with this method, the receiver evaluates the

phase difference between the local carrier and the received one. We will talk

about carrier phase measurements when covering the RTK technology.

Figure 2.2. Use of replica code to determine satellite transmission time

The receiver and satellite clocks are not generally synchronized. Both clocks

19



Global Navigation Satellite System

have an offset from the ideal GNSS time. Figure 2.3 shows the time relationships

of the range measurements, where:

Ts is the system time at which the signal left the satellite

Tu is the system time at which the signal reached the user receiver

δts is the offset of the satellite clock from system time

δtu is the offset of the receiver clock from system time

Ts + δts is the satellite clock reading at the time that the signal left the satellite

Tu + δtu is the user clock reading at the time the signal reached the user receiver

Figure 2.3. Time relationship of range measurements

While the satellite time offset δts is known by the control segment and then

can be corrected, the receiver one can not. For this reason, we will assume δts
negligible and we will only consider the receiver time offset δtu in the following

discussion. The measured distance is then different from the true geometric one

and for this reason it is called pseudorange:

ρ = c · (∆t+ δtu) (2.1)
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The user, by measuring at least four pseudoranges from four satellites (with known

coordinates), can determine four unknowns: the user coordinates (xu, yu, zu) and

the user clock bias δtu. Considering the generic jth satellite, the corresponding

pseudorange is given by:

ρj =
√

(xj − xu)2 + (yj − yu)2 + (zj − zu)2 + but (2.2)

where (xj, yj, zj) is the satellite position (center of the pseudo-sphere), ρj is the

pseudorange (radius of the pseudo-sphere), and but is equal to c · δtu, the range

bias due to the clock bias. To find the four unknowns, four equations of this kind

are needed, so four satellites are the minimum required for this estimation, and

they must of course be in line-of-sight with the receiver. For a more precise esti-

mation more satellites and more frequencies can be used (multi-constellation and

multi-frequency).

The non-linear equation above can be simplified considering the large SV-to-user

distance (R ≥ 20000km) to reduce the computational complexity. The pseudo-

sphere equation can be linearized by approximating it through the Taylor expan-

sion around a known location/time with coordinates (x̂u, ŷu, ẑu, ˆδtu). The trilater-

ation process can be transformed in the intersection of the planes tangent to the

pseudo-sphere in the user position.

ρ̂j =
√

(xj − x̂u)2 + (yj − ŷu)2 + (zj − ẑu)2 + b̂ut (2.3)

ρj = ρ̂j + ∂ρj
∂xu |xu=x̂u

· (xu − x̂u) + ∂ρj
∂yu |yu=ŷu

· (yu − ŷu)

+ ∂ρj
∂zu |zu=ẑu

· (zu − ẑu) + ∂ρj
∂but |but=b̂ut

· (but − b̂ut) (2.4)

Defining

∆xu = xu − x̂u , ∆yu = yu − ŷu , ∆zu = zu − ẑu
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∆ρj = ρ̂j − ρj , ∆but = but − b̂ut

we get the linearized equation which is function of the displacement with respect

to the approximation point:

∆ρj = axj∆xu + ayj∆yu + azj∆zu −∆but (2.5)

where

axj = xj − x̂u√
(xj − x̂u)2 + (yj − ŷu)2 + (zj − ẑu)2

ayj = yj − ŷu√
(xj − x̂u)2 + (yj − ŷu)2 + (zj − ẑu)2

azj = zj − ẑu√
(xj − x̂u)2 + (yj − ŷu)2 + (zj − ẑu)2

The four unknowns ∆xu,∆yu,∆zu,∆btu can be found by making ranging measure-

ments to four satellites and by solving the following linear system:

∆ρ1 = ax1∆xu + ay1∆yu + az1∆zu −∆but

∆ρ2 = ax2∆xu + ay2∆yu + az2∆zu −∆but

∆ρ3 = ax3∆xu + ay3∆yu + az3∆zu −∆but

∆ρ4 = ax4∆xu + ay4∆yu + az4∆zu −∆but

Assuming to use n satellites, the following matrix equation holds:

∆ρ = H∆x (2.6)

where

H =



ax1 ay1 az1 1

ax2 ay2 az2 1
... ... ... ...

axn ayn azn 1


, ∆ρ =



∆ρ1

∆ρ2
...

∆ρn


, ∆x =



∆xu
∆yu
∆zu
−∆but


Since we are interested in finding the values ∆x, the solution is given by:
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• if n = 4: ∆x = H−1∆ρ

• if n > 4: the solution is given by ∆x that minimizes the square of the residual

RSE(∆x) = (H∆x−∆ρ)2. Differentiating with respect to ∆x, the gradient

∇RSE is set to zero to search for the minimum value (Least Square solution).

The final solution, provided that (HTH)−1 is non-singular, is:

∆x = (HTH)−1HT∆ρ (2.7)

A GNSS receiver solves this equation by recursive methods.

Velocity

GNSS allows the user to compute its three-dimensional velocity ẋ. In some receiver

the user velocity is computed as an approximate derivative of the position:

ẋ = dx
dt
≈ x(t2)− x(t1)

t2 − t1
(2.8)

but this approach is reliable only if the velocity stays constant during the time

interval and only if the errors in the positions are smaller with respect to the

difference x(t2)−x(t1). A more accurate method exploits the fact that the relative

motion of the satellite with respect to the user causes a Doppler shift in the signal

received by the receiver. This approach estimates the user’s velocity from carrier

phase measurements, from which the Doppler frequency of the received satellite

signals can be precisely estimated [9].

Time

GNSS also provides the capability for time synchronization of users worldwide.

Other than the synchronization needed for position and velocity estimations, GNSS

time synchronization is very important for different applications in telecommuni-

cations, power grid or financial market for example. In section 2.3.2 we will talk

about the time reference frame used for time synchronization.
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To keep it as clear as possible, in this section we have described the range

estimation process neglecting all the error sources except the receiver clock offset.

In the following we will see that in reality the whole process is subject to many

impairments which may introduce a significant error on the position estimate.

2.2 Error sources

From its generation to its reception the transmitted signal always experiences

several impairments which produce variations on delay and power attenuation.

These variations produce the pseudorange error and are caused by the following

phenomena:

• Satellite generation impairments, which include ephemeris errors (difference

between the expected and actual orbital position of the SV), on board clock

biases, errors in code generation ...

• Satellite antenna gain pattern.

• Propagation losses and atmospheric impairments, which include:

– Ionosphere effect: the propagation delay depends on the frequency and

on the density of electrons along the path.

– Troposphere effect: the propagation delay depends on the pressure, tem-

perature, humidity of the air.

– Multipath effects: reflections of the signals due to close obstacles.

• Interference.

• Receiver antenna gain pattern.

• Reception impairments, which include measurement errors, receiver noise,

uncompensated relativistic effects.
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Predictable and correctable biases aside, each contribution to the pseudorange er-

ror can be modelled as a gaussian random variable with zero mean and variance σ2
j ,

independent and identically distributed on the different pseudoranges. According

to this hypothesis, the standard deviation of the total pseudorange error, or user

equivalent range error, is:

σUERE =
√∑

j

σ2
j (2.9)

Taking now into account all the other error sources, equation (2.6) becomes:

∆ρ+ δρ = H(∆x+ δx) (2.10)

δx represents the error in the position and time estimation due to all the impair-

ments listed above, which contributions are included in the pseudorange error δρ.

Moreover, δx also depends on the geometry of the satellites with respect to the

user from which the position has been derived.

Dilution Of Precision

To understand the role of geometry in GNSS position estimation we have to recall

that the final estimate is given by the intersection of several spheres in the three-

dimensional space. In ideal conditions this intersection corresponds to a point with

the real coordinates of the user, but in reality, due to the uncertainty on the spheres

radius (i.e. the pseudoranges), the intersection results in an area in which the user

can be located instead of a single point. The accuracy of the estimation is directly

related to the size of this area, which depends on the pseudorange errors and on

the satellites-user relative geometry. Assuming the same pseudorange error, the

intersection of the pseudo-spheres gives different results based on the position of the

satellites with respect to the user, resulting in a different position accuracy. Figure

2.4 reports an example in a two-dimensional scenario. The idea that the position

error depends on the satellites-user geometry is called dilution of precision. The
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Figure 2.4. Higher accuracy, low GDOP (left) - Lower accuracy, high GDOP (right)

geometric dilution of precision (GDOP) is a parameter defined to characterized

the amplification of the standard deviation of the measurements error caused by

the geometry. Other DOP parameters are used to characterized the accuracy of

various components of the PVT solution. Position dilution of precision (PDOP),

horizontal dilution of precision (HDOP), vertical dilution of precision (VDOP) and

time dilution of precision (TDOP). For details on the DOP derivation refer to [9].

Ephemeris error

In order to properly estimate its position, the user must know the location of the

reference points in visibility. Since the satellite is not able to provide its own

position at any time instant, it broadcasts its orbital parameters - ephemeris -

to the users, which use them to compute the position of the satellite through an

orbital function f(t). Ephemeris are broadcasted from the satellite about every

30 seconds, but they are updated by the control segment every 2 hours. Possible
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errors in the orbital parameters bring to wrong estimation of the satellite location,

which couses errors in the estimeted user position.

Figure 2.5. Ephemeris error

Ionosphere

The ionosphere is the Earth’s upper atmosphere, from about 48 km to 965 km

altitude, ionized by solar radiation. It has practical importance because, among

other functions, it influences radio propagation to distant places on the Earth.

Under a GNSS point of view, the ionization level of the ionosphere is measured

by the Total Electron Content, which is defined as the number of electrons in a

tube of 1m2 cross section from the receiver to the satellite. The TEC is usually

greatest in the middle of the day and lowest at night. The strongest effect of the

ionosphere on the radio signal is its speed variation, which depends on the number

of free electrons along the path. This effect induces a pseudorange delay that gives

a bias

Iρ = 40.3 · TEC
f 2 (2.11)
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measured in meters. This ionospheric error bias can be corrected at receiver side

in two ways:

• it can be estimated and compensated using a double frequency receiver;

• a proper model must be employed by sigle frequency receivers, exploiting the

parameters broadcatsed by the satellite.

Double frequency receiver Measuring the pseudorange at two frequancies

from the same satellite we get:

ρf1 = ρ∗ + 40.3 · TEC
f 2

1
(2.12)

ρf2 = ρ∗ + 40.3 · TEC
f 2

2
(2.13)

where ρ∗ is the ionosphere-free pseudorange. The set of equations can be solved

for ρ∗ and for TEC obtaining:

ρ∗ = f 2
1

f 2
1 − f 2

2
· ρf1 −

f 2
2

f 2
1 − f 2

2
· ρf2 (2.14)

This approach cancels the bias due to ionosphere but increases the variance of the

noise due to other error contributions.

Single frequency receiver In single frequency receivers it is not possible to

obtain the iono-free pseudorange, so a model of the ionosphere has to be imple-

mented, to estimate the iono delay depending on position and time of the day.

Such a model can provide the expected delay or maps of the ionosphere and it can

be either updated by the GNSS system or by some external aiding system.

Troposphere

The troposhpere is a non-dispersive part of the atmosphere which introduces a

delay on the radio signal independently from the frequency. The troposhpere
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delay consists in a dry and a wet contribution which depend on the refractive

index n:

T = 10−6 ·
∫

(n− 1) · 10−6dn = Td + Tw (2.15)

Relativistic effects

The satellite clock drift is affected by relativistic effects. In GPS the satellite clock

frequency is adjusted so that the frequency observed by the user at sea level has

the nominal value. Periodic effects due to the eccentricity of the satellite orbit

introduce errors and must be taken into account:

• half of the error is due to the periodic change in the speed of the satellite

relative to the ECI (Earth Centered Inertial) frame;

• the other half is caused by the satellite’s periodic change in its gravitational

potential:

– at the perigee, the satellite velocity is higher and the gravitational po-

tential is lower, and the satellite clock runs slower;

– at the apogee, the satellite velocity is lower and the gravitational potential

is higher, so the satellite clock runs faster.

Another relativistic effect is due to the rotation of the Earth during the signal

transmission, and a clock on the Earth’s surface will experience a rotation with

respect to the reference frame during the propagation time.

Considering the error sources we have seen up to now, the receiver has to apply

corrections on the raw pseudoranges for at least the following impairments: bias

of the satellite clock, ionospheric delay, troposhperic delay, relativistic effect. The

corrected measurements can then be used for the PVT computation.

Rawmeasurements→ Correctedmeasurements→ PV T computation
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Some error is always present in the final estimated position, due to residual contri-

bution of the previous sources or to sources that cannot be predicted (like receiver

noise). Residual errors are modelled as gaussian random variables with zero mean

and standard deviation σUERE. We can then re-write the equation (2.1) obtained

from the jth satellite as:

ρj = Rj + c · (δtu − δts,j) + Iρj
+ Tρj

+ ερj
(2.16)

where Rj = c ·∆t is the true SV-to-user distance.

2.3 Reference Frames

In order to compute the distance between the user and the satellite it is necessary

to have spatial and timing reference systems common for both. The position of

the user is conventionally expressed in a coordinate system fixed to the Earth (so

that a stationary object on the Earth remains fixed), while the satellite location

is computed according to motion equations in an inertial system.

2.3.1 Positioning Reference Frames

The user reference system is the conventional terrestrial reference system called

ECEF (Earth Centered Earth Fixed) shown in figure 2.6 in which :

- the origin is the center of mass of the Earth;

- the z-axis extends through true north (CTP - Conventional Terrestrial Pole),

which does not coincide with the instantaneous Earth rotational axis;

- the x-axis intersects the sphere of the earth at 0° latitude (the equator) and

0° longitude (prime meridian in Greenwich). This means that ECEF rotates

with the earth, and therefore coordinates of a point fixed on the surface of

the earth do not change;
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- the y-axis is in the equatorial plane completing a right-handed system.

Figure 2.6. ECEF reference system

An inertial reference system is also needed for the satellite locations. The

Conventional Inertial Reference System (CIRS) is realized through a catalog of

position and proper motions with respect to fundamental stars and, contrary to

ECEF, it does not rotate with the Earth.

GNSS provides a positioning system on a global basis, hence the user coor-

dinates are given according to a terrestrial reference system, also called geodetic

datum. For GPS the geodetic datum corresponds to the WGS84 datum, which in-

cludes the definition of the ellipsoidal coordinate system, the Earth gravitational

model, the associated magnetic model and local datum transformations. GNSS

then provides the user’s position in ellipsoidal coordinates:

• geodetic latitude φ: is the angle in the meridian plane through the point P

between the equatorial (x-y) plane of the ellipsoid and the line perpendicular

to the surface of the ellipsoid passing in P (positive north from the equator);

• geodetic longitude λ: is the angle in the equatorial plane between the reference

meridian and the meridian plane through P (positive east);
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• geodetic height h: is measured along the normal to the ellipsoid through P.

Figure 2.7. Ellipsoidal coordinates

Since the Earth’s surface is not regular, the height h is defined with respect to

an idealized mean see level. The surface used as the global zero reference for the

height measurements is called geoid and it is defined as the locus of all the points

with the same gravity potential best fitting the average see level globally. The

geoid takes into account geological formation and topographic relief, then it is not

regular and can be represented as a grid of point, mapped relative to the reference

ellipsoid.

Several applications, like mobile robot localization, usually require to localize

the user on a local map, a small area with respect to the Earth’s surface. Local

reference frames are then more suitable than ECEF or WGS84 in this scenarios.

An example of local frame is the ENU frame (East for x, North for y and Up for

z axis), which is a local Cartesian system with the x-y plane tangent on its origin

to the Earth’s surface. According the the specific application, the user’s geodetic

coordinates can be converted into the most suitable reference system. Figure 2.8

shows the relationship between geodetic, ECEF and ENU reference systems.
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Figure 2.8. Geodetic, ECEF and ENU systems

2.3.2 Timing Reference Frames

Generation of precisely synchronised signals aboard spacecrafts and measurement

of the transmission time is at the heart of GNSS. A precise and stable time scale for

time-tagging the measurements is then needed. The Coordinated Universal Time

(UTC) is a time scale based on SI seconds rearranged to keep into account the

non uniform earth rotation and revolution around the sun. The difference between

UTC and the Interantional Atomic Time is taken into account by introducing leap

seconds. A specific time instant in GNSS is defined as an epoch. GNSS time is

defined as counter of number of seconds from a reference date. This GNSS time

has a countinuous time scale which differs from UTC (of about 18 seconds in GPS),

and the bias of the satellite clock is computed relatively to this GNSS time. In

GPS time for example (GPST), the zero is set at 0h, 6th Janaury, 1980.
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2.4 GNSS Signals

The signal broadcasted by the navigation satellites is usually denoted as signal-in-

space and it must allow users to estimate the pseudo-distances user-SV, carry some

useful data, be robust to the transmission through the atmosphere and uniquely

identify the satellite. Most of the GNSS use the Code Division Multiplexing tech-

nique to obtain mutually orthogonal codes and to identify the satellite without

ambiguity, so each of the SV can transmit on the same time-frequency resource.

The unique code (ranging code) is broadcasted periodically and continuously from

the satellite. GNSS systems exploit different carriers in the L band, which includes

the radio spectrum from 1 to 2 GHz. L band electromagnetic waves are used for

satellite navigation since they are able to penetrate rain, clouds, fog and vegetation,

limiting the impact of atmospheric phenomena on the system. The signal-in-space

transmitted by the satellite is a data sequence (navigation message) modulated on

top of the unique ranging code at a carrier frequency f0. The unique chip code for

satellite i is a BPSK modulation of a sequence of bits of lenght p:

xicode(t) =
p−1∑
n=0

binr(t− nTc) (2.17)

where bn ∈ {±1}, r(t) is a rectangular pulse shape and Tc is the chip time (duration

of one bit). Being periodically transmitted, the ranging code will then be:

ci(t) =
+∞∑

n=−∞
xicode(t− nTcode) (2.18)

with Tcode = pTc is the chip code duration.

The ranging code ci(t) is a deterministic code on which the navigation message,

carrying useful data, is modulated. It is still a BPSK modulation of a bit sequence

where the bit duration Tb is an integer multiple of Tcode:

di(t) =
+∞∑

n=−∞
dinr(t− nTb) (2.19)
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The unique bit sequence for the chip code must be able to uniquely identify

the satellite in the constellation and must posses good autocorrelation and cross-

correlation (with other chip codes) properties. Taking GPS as a reference, Gold

Codes are used since they are pseudo random noise (PRN) codes with good au-

tocorrelation and cross-correlation properties and can easily be generated through

a Maximal Length Linear Shift Register implemented in digital circuit. The GPS

signal-in-space consists of three components:

• Carrier, a RF sinusoidal signal with one of the designated frequencies of the

L band.

• Ranging code, each SV transmits two codes: Coarsial/Acquisition code for

civil users and Precision code (encrypted) for military applications.

• Data sequence, modulated on top of the ranging code, carrying the navigation

message.

Figure 2.9 shows the modulation of data and C/A code on the GNSS signal.

2.5 Augmentations

The accuracy provided by the standard GNSS services is not sufficient in many

important applications where the requirements may be very different. As we saw in

section 2.2, the precision of the estimate depends on the pseudorange error and on

the satellites-user relative geometry. A GNSS augmentation is any system external

to the SV-user system which aims at the reduction of these error contributions,

so the pseudorange error variance σUERE and the GDOP. A typical solution to

reduce the GDOP are the so-called pseudolites. A pseudolite or pseudo-satellite is

a terrestrial transmitter able to emit GNSS-like signals. The aim of the pseudolite

is to give an additional reference point so to improve both availability and geometry.
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Figure 2.9. Example of a GNSS SIS modulation

Each pseudolite must be synchronized with the satellites and have its own PRN

code. In addition to this, the pseudolite must be in line-of-sight with the receiver,

so cannot be further than a few kilometers from the it, and should not disturb the

other signals coming from other satellites (since they must operate on the same L

band). This last problem is the most difficult one to solve since the pseudolite is

much closer to the user than any satellite, and so its transmitted power must be

carefully set to avoid any disturb on the other signals, but since the user moves,

this power management should also be dynamic and very precise. For this reason

pseudo-satellites are used only in specific areas, like airports, and cannot be used

in crowded environments where many users require the same GNSS service.

Concerning now the reduction of the pseudorange error, excellent results are

obtained with the Differential GNSS technology.
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2.5.1 Differential GNSS

The fundamental idea behind Differential GNSS is to reduce the σUERE - the stan-

dard deviation of the residual error on the pseudorange after the corrections - so to

improve the precision of the estimate. This can be done by exploiting a reference

station (or a network of RS) which, being fixed on a known location, is able to

precisely estimate the error and to broadcast the corrections to the users through

a dedicated communication channel or through the internet. The idea is that the

reference station, called base, receives the satellite signals and measures the pseu-

doranges using a GNSS receiver. Then it computes the pseudorange errors since

the true position of the RS is known with geodetic precision, and the corrections

are broadcasted to the users, called rovers, in the local area. The true position

of the reference stations is manually set when known a priori, otherwise an initial

setup time in survay mode is required for the RS to compute it. DGNSS can be

applied in two different domain:

• Position domain: the RS sends to the user the position errors (∆x,∆y,∆z)

which are applied to the user estimated position. This approach is valid only

if both user and RS use the same satellites (same GDOP) but the quality of

the correction quickly degrades with the distance between them.

• Range domain: the RS sends to the user the pseudorange errors (for each

satellite) and the corrections are applied to the user pseudoranges.

Each correction is valid for the time instant tc in which the reference station com-

putes the pseudorange. Due to latency in the transmission the user always applies

the corrections at t > tc and then it must also receive its derivative to properly

estimate the right correction when it is actually applied. If the base and rover

are not too far, DGNSS works since the impairments experienced by the signals
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while propagating through the atmosphere are very similar, and the resulting er-

rors are almost the same. However, DGNSS cannot correct local errors, generated

for example from receiver noise or multipath effects, since they are completely

uncorrelated between base and rover. DGNSS properly works within some tens of

kilometers from the reference station, with the quality of the corrections decreasing

with the distance.

Figure 2.10. Differential GNSS

2.5.2 Real Time Kinematics

A very powerful technology exploiting the concept of differential GNSS is the

Real Time Kinematics technique. What differentiate RTK technology from stan-

dard DGNSS is that, in the former, the pseudorange is computed by applying

the carrier-phase ranging approach, while in the latter the code-phase ranging ap-

proach is used. Carrier-phase ranging exploits correlation at the carrier wave level

instead of code level, and being the period of the sinusoidal wave much shorter
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than the chip period, the resulting measurement has much higher precision. The

SV-to-user distance is computed by multiplying the carrier wavelength times the

number of whole cycles between transmitter and receiver and adding the phase

difference. The most difficult part is the determination of the number of cycles,

since the phase may be shifted by more than one cycle. The key feature of RTK

is its ability to solve this carrier ambiguity in real time. Taking the L1 band as

a reference (f0 = 1575.42MHz), the corresponding wavelength is 19cm, resulting

in a potential estimation accuracy relative to the reference station below the cen-

timeter level. RTK corrections are valid up to 20km from the base station and,

depending on the application and the environment, they can be transmitted on a

dedicated radio link or through the internet. RTK technology finds application in

surveying, precision farming, mobile robotics and related fields.

2.6 Conclusions

We have seen how GNSS is a very powerful technology able to provide positioning

services at low cost, high availability and reliability on a global scale. For our

specific application, GNSS augmentation systems are required to maximize the

localization performance, since the accuracy of the stand-alone technology, around

1 − 2m, is not enough to guarantee an efficient and safe delivery service with

mobile robots in potentially small and crowded outdoor environments. For this

reason, the Real Time Kinematics technology is exploited in our system allowing

the localization to reach centimeter level precision. Despite the fact that GNSS

represents the main source of absolute measurements for our system, alone it is not

enough to solve the localization problem and additional sub-systems are required.

In chapter 5 we will discuss how this technology is implemented in our project.
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Chapter 3

Inertial Measurements

The term inertial measurements refers to the measurements of angular velocities

and external forces applied to a body. Such measurements are performed by iner-

tial sensors, i.e. gyroscopes for angular velocities and accelerometers for external

forces. The term Inertial Measurement Unit, or IMU, refers to an electronic de-

vice which measures angular velocity, acceleration and sometimes orientation of a

body by combining three mutually orthogonal accelerometers and three mutually

orthogonal gyroscopes. In addition, IMU devices commonly include magnetome-

ters, which do not perform inertial measurements but are used to improve the

orientation estimation from accelerometers and gyroscopes. Nowadays, inertial

sensors based on MEMS technology (microelectromechanical systems) are more

and more widespread in IMU devices since their accuracy have increased over the

years and they are inexpensive, light, small, have low power consumption and

short start-time, allowing their use in devices with strict requirements like smart-

phones, wearable or drones. IMU sensors are frequently used in robots, cars, boat

and airplanes for navigation purposes but also in fields like motion capture for the

movie or gaming industries, bio-mechanical analysis, consumer electronics and so

on.
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As anticipated in section 1.2.2, one of the main purposes of IMU in navigation

is the estimation of the vehicle’s orientation and position. The orientation is esti-

mated with a dead reckoning approach and is then subject to error accumulation,

unless a magnetometer is used to obtain a reference heading. Position from IMU

only is instead always subject to strong drifts since it is derived from the orientation

and double integration of acceleration measurements, therefore it must always be

combined with other type of sensors if used in localization. The main error sources

that affects inertial sensors are biases, bias stability and thermo-mechanical noise

[10]. Biases are the average values of the measured angular velocity and accel-

eration when no acceleration or rotation is actually experienced. Biases cause

a systematic drift in position, velocity and orientation obtained from integrated

measurements. This kind of error can be compensated by measuring the bias when

the sensor is static and subtracting it during the operation. Bias stability defines

how the bias changes in stable conditions. Temperature fluctuation and flicker

noise are some of the causes of bias variation. The bias stability introduces a non-

systematic error that cannot be corrected. Thermo-mechanical noise is a white

noise which affect the position, velocity and orientation estimations introducing a

random walk.

After going through the main sensors of an inertial measurement unit, in section

3.4 we present how the body’s orientation can be estimated from their measure-

ments.

3.1 Accelerometer

An accelerometer is an inertial-frame sensor that measures the proper accelera-

tion it experiences. Proper acceleration is the rate of change in velocity of a body,
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measured in m/s2, in its rest frame, which is different from the acceleration expe-

rienced with respect to a fixed coordinate system. An accelerometer resting flat

on a table on the Earth will measure an acceleration equal to the Earth’s gravity

(g ' 9.81m/s2) in upwards direction, corresponding to the force applied by the

surface on the body to counteract the gravity. When instead the accelerometer

is in free fall, an acceleration of 0m/s2 will be measured in the falling direction.

According to the Einstein’s equivalence principle, the gravitational effect on an

object is indistinguishable from any other experienced acceleration, therefore an

accelerometer is not able to distinguish between being in deep space and acceler-

ating at 1g or resting on the Earth’s surface. For this principle, an application

interested in linear accelerations of a body with respect to the Earth requires grav-

ity compensation, usually obtained by calibrating the sensor while resting or from

the knowledge of the gravity model. Accelerometers are also used to detect the

gravity vector, which can be useful for some application, like creating a magnetic

compass. Assuming gravity compensation on the Earth, from the provided accel-

eration one can get the velocity by integrating once in time and the position by

integrating twice:

v =
∫

a dt , x =
∫

v dt

Due to measurements errors each integration creates drift, which causes inaccurate

estimates, especially for position. The measurement coming from an accelerometer

can be modelled as:

ât = at + ∆at + ea,t (3.1)

where at is the true total acceleration applied to the body, ∆at is a constant or

slowly varying bias vector and ea,t ∼ N (0,Σa) is the noise typically modelled as

Gaussian, at time t. Accelerometers are widely used in many fields like engineering,

medical applications, structural monitoring, consumer electronics etc. For certain

applications accelerometers are less useful by themselves and so are often combined
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with other sensors, like in IMU devices as we saw before for navigation purposes.

3.2 Gyroscope

A gyroscope is an inertial-frame sensor that measures the angular velocity rela-

tive to itself. The angular velocity is the rate at which the body rotates around

a specific axis in its local frame and it is measured in rad/s. Gyroscopes exploit

the Coriolis effect to perform such measurements. The Coriolis effect denotes the

deflection of an object due to the Coriolis force, an inertial force acting on ob-

jects moving on a reference frame that rotates with respect to an inertial frame.

Gyroscopes are mainly used as orientation sensors, to derive the orientation of

the body from the angular velocities around the three orthogonal axes of its local

frame. In aviation the rotation of an aircraft is called roll, pitch or yaw when

occurring around the longitudinal (x), transversal (y) or vertical (z) axis respec-

tively, but nowadays these terms are widely adopted also in the field of mobile

robotics. The rotation angle around one of the axis is obtained by integrating the

angular velocity from the gyroscope:

θ =
∫
ω dt

but also in this case the resulting quantity will be affected by drift. Moreover, since

the angular velocity may not be constant during this operation, the integration

should be done as quickly as possible (reducing the integration time interval) to

reduce the error due to non constant angular rates. The measurement coming

from the gyroscope can be modelled as:

ω̂t = ωt + ∆ωt + eω,t (3.2)

where ωt is the true angular velocity of the body, ∆ωt is a constant or slowly

varying bias and eω,t ∼ N (0,Σω) is the noise typically modelled as Gaussian, at

time t.

43



Inertial Measurements

3.3 Magnetometer

A magnetometer is a sensor able to measure the magnetic field passing through it.

Magnetometer are able to measure both magnitude and direction of the magnetic

field vector, while sensors that only measure the direction of the field are usually

called compasses. If no magnetic interference is present, magnetometers measure

the Earth’s magnetic field, which points toward magnetic North. Magnetometers

are commonly used in navigation to obtain a reference heading and to correct the

drift in the relative orientation estimated from gyroscopes, since an absolute head-

ing is derived from the Earth’s magnetic field. Magnetometers are often combined

with accelerometers since the gravity vector is required to compute the orienta-

tion of the device. The reliability of the estimated heading of the device on the

Earth’s surface is subject to magnetic interference since a magnetometer measures

the total magnetic field passing through it. This means that not only magnetic

sources ruin the measurements, but also any ferromagnetic material in proximity

of the sensor may distort the Earth’s magnetic field, resulting in a wrong orienta-

tion estimation. For this reason these sensors are usually not suitable for indoor

applications or environment where the Earth’s magnetic field is highly distorted.

Another source of error is represented by the high temperature, which causes in-

creasing noise on the measurements, then magnetometers should be design to limit

the temperature effect or should use compensation algorithms. The measurement

coming from a magnetometer can be modelled as:

m̂t = mt + em,t (3.3)

where mt is the true magnetic field passing through the sensor and em,t ∼ N (0,Σm)

is the noise typically modelled as Gaussian, at time t.
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3.4 Orientation estimation

As we discussed above, each sensor has its own weaknesses when it comes to esti-

mating orientation. Inertial Measurement Units combine those sensors to overcome

their weaknesses and to produce a more precise and reliable estimation. Some IMU

devices also come with an integrated microcontroller to directly provide the ori-

entation estimate as output of a sensor fusion algorithm, in addition to the raw

sensor data. Usually IMUs can work in different modes, employing different con-

figurations of sensors, but in general the estimated orientation can be divided into

relative or absolute orientation. Relative orientation is expressed with respect to

the starting orientation of the device and it is computed from gyroscope, while

absolute orientation is expressed with respect to the magnetic North, and it is

computed from magnetometer and accelerometer.

Absolute orientation Let us assume we want to estimate the orientation of a

robot while it stands still on the ground, with respect to the ENU frame (section

2.3.1). The orientation vector can be derived from the magnetic field vector and

the gravity vector. If the robot does not move, the accelerometer measures a

vector in the opposite direction of gravity, while the magnetometer measures the

Earth’s magnetic field passing through the robot (assuming no interference) which

points toward magnetic North. Depending on the hemisphere, the lines of the

magnetic field point North but also up or down. In the Los Angeles area for

example, the magnetic field is angled about 60° down. Consider figure 3.1 as a

reference. From the accelerometer we get the acceleration vector pointing in the

same direction of the ENU Up axis, and the opposite of it is the Down direction.

From the magnetometer we get the magnetic field vector, pointing toward North

but also Down. From the cross product between these two vectors we get the

East direction. Finally, we compute the North direction as the cross product
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Figure 3.1. Orientation estimation from accelerometer and magnetometer

between East and Down. Denoting with uN, uE, uD the unitary vectors pointing

respectively North, East and Down and with uM, uG the unitary vectors for the

magnetic field and acceleration, we have:

uD = −uG , uE = uD× uM , uN = uE× uD

uN, uE and uG represent the ENU frame orientation in the robot’s frame, from

which we can derive the robot’s orientation in the ENU frame. This approach is

very good if the robot does not move and no magnetic interference affects it. If

these conditions are not met, the following problems arise:

• The accelerometer measures all the acceleration on the robot, so if it moves

we are no more able to isolate the gravity vector. In the case of human-

controlled or autonomous vehicles, this problem can be solved by estimating

the linear acceleration from the actuator commands. The vehicle is driven
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by us or by an autonomous algorithm, either ways it is possible to estimate

the accelerations that make it move and subtract them from the measured

acceleration vector to isolate the gravity component.

• The magnetometer returns the magnetic field passing through the sensor,

and if the device is subject to magnetic interference we are no longer able to

isolate the Earth’s one. However, if the Earth’s magnetic field is only subject

to constant biases, they can be compensated with calibration.

Relative orientation The same goal can also be reached with a completely dif-

ferent approach, exploiting the gyroscope alone. Measuring the angular velocities

in the three orthogonal axes and knowing the time interval between measurements,

we are able to compute the rotation angles and so the orientation with respect to

the initial state. Figure 3.2 reports the scheme of the process. This approach is

reliable only for a short interval since the drift caused by the integration grows

with time.

Figure 3.2. Orientation estimation from gyroscope

3.5 Conclusions

Summarizing, the orientation from accelerometer and magnetometer is not affected

by error accumulation but its accuracy depends on external accelerations and

magnetic interference. On the other side, the gyroscope is not affected by external
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conditions but the measurements’ noise causes an increasing error and the initial

orientation of the device must be known. What is done in most IMUs is to combine

the two systems so that one compensates the weaknesses of the other. Sensor fusion

is commonly performed with a Complementary filer or a Kalman filer algorithm

[11], where the orientation estimated from magnetometer and accelerometer is

used to correct the drift introduced from the gyroscope. Regarding the localization

problem, an IMU is a very powerful sensor for the estimation of the robot’s heading

and the measurement of accelerations, making it commonly used for dead reckoning

in two or three dimensions.
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Chapter 4

Sensor fusion

Sensor fusion, data fusion or information fusion are all synonyms used to identify

any kind of combination of multiple sources with the aim of obtaining improved

information. With improved information we mean that, with respect to the obser-

vation of a single sensor, the output of the fusion algorithm usually benefits from

the following:

• Uncertainty reduction: fusion of data coming from multiple sources lower the

unavoidable uncertainty characterizing each sensor.

• Improved accuracy and reliability: a system combining multiple sensors is able

to provide accurate information even in case of partial failure.

• Extended spacial and temporal coverage: different sensors might cover different

areas, complementing each other, both in space and time.

The multidisciplinary nature of sensor fusion and its application in several different

fields make difficult the classification of the employed techniques. In the following

we provide a classification based on the relation between the data sources, but other

criteria are often used for the same purpose [12], like the input/output data type,

level of abstraction, architecture type of algorithms and so on. We talk about:
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1. Complementary sensor fusion when the data coming from different sources do

not depend on each other but complement themselves. Each sensor capture

a different part of the scene and the combination of them produce a more

complete information. This type is the most used in mobile robot localization.

2. Redundant sensor fusion when the sensors independently measure the same

quantity. In this case the data is used in a competitive way and fused to

improve the confidence in the estimation. Redundant sensor fusion is often

used in fault tolerant systems, enhancing their robustness against failures.

3. Cooperative sensor fusion when the data coming from multiple sensors is

combined to produce a new, more complex information not obtainable with

a sensor alone. An example is the combination of two images from slightly

different points of view to derive a three-dimensional information.

One of the purpose of many sensor fusion algorithms is the estimation of the state

of a target given the sensors observations or measurements. The estimation prob-

lem consists in finding the variables of the state vector that best fit the observed

data. Identified as state estimation methods, they could be divided into linear or

nonlinear methods. Linear state estimation algorithms are suitable when measure-

ments and the target state equations are linear. Nonlinear algorithms are instead

applied in case of nonlinear system dynamics and are generally more complex.

Taking as example the robot localization problem, the state vector can be rep-

resented by the position, velocity and orientation of the robot. A part from the

one-dimensional scenario, for both 2D or 3D environment the robot has a non-

linear dynamics and the problem must be solved by a nonlinear state estimation

algorithm. The following section introduces the concept of state estimation and

covers some of the most important related algorithms.
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4.1 State estimation methods

With the term state we identify those variables defining the status or condition of

a system at a specific time instant. For example, the state of a biological system

can be represented by the body temperature, heart rate and blood pressure, while

the state of a motor can be the speed and position of the shaft. State estimation

tries to solve the problem of estimating these quantities from the sensors readings,

quantities which are often not directly observable. Any area of engineering and

science that involves mathematically modeled systems may benefit from state es-

timation techniques. A mobile robot cannot directly measure its position from the

environment, but it must exploit sensor data carrying partial information about

the target quantity. Moreover, all the measurements coming from sensors are af-

fected by noise so state estimation algorithms often use a probabilistic approach

to solve the problem. Instead of providing a deterministic output, probabilistic

algorithms return the most likely state of the system at a given time instant as a

probability distribution over a space of possible hypothesis, based on the available

noisy measurements [13]. In this way it is possible to represent the ambiguity of

the estimates due to the measurements uncertainty and use this information for

the estimation itself.

Not being directly measurable, the estimate of the system state is inferred from

sensor data and it is often called belief to distinguish it from the true state of the

system. The belief is represented by a probability distribution conditioned on the

available data. We define the belief for a state variable xt as:

bel(xt) = p( xt | z1→t, u1→t ) (4.1)

which is a posterior probability distribution of xt at time t conditioned on all the

past measurements z1→t and all the past controls u1→t. It is often useful to define
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the posterior probability before including the last measurement zt:

bel(xt) = p( xt | z1→t−1, u1→t ) (4.2)

bel(xt) is also called prediction since it predicts the state at time t based on the pre-

vious belief and current control, while bel(xt), being computed form the prediction

and current measurement, is called update. In the next paragraph we introduce

the most general algorithm for the calculation of beliefs, the Bayes filter, which is

at the base of many state estimation algorithms used in practice, like the Kalman

filter.

4.1.1 The Bayes filter

The Bayes filter is a recursive algorithm used to estimate the belief bel(xt) at

time t from the belief bel(xt−1) at time t − 1. Taking as input the control and

measurement at time t and the belief bel(xt−1), it outputs the current belief bel(xt).

The algorithm consists of two steps: prediction step and measurement update step.

Prediction In the prediction step the Bayes filter predicts the belief bel(xt)

at time t by integrating the product between the prior probability distribution

assigned to xt−1 and the probability that the control input ut produces xt from

xt−1.

bel(xt) =
∫
p( xt | ut, xt−1 ) · bel(xt−1) dx (4.3)

In other words, the belief bel(xt) represents the estimated probability that the

system is in the state xt at time t immediately after the input ut has been applied.

This belief is then computed by combining the probability that the system moves

from the previous state xt−1 to the current state xt with the probability that the

system actually was in the state xt−1 , i.e. bel(xt−1). The probability p(xt |ut, xt−1 )

is given by the mathematical model of the system that must then be known with
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accuracy. To obtain the probability distribution of the state this operation must

be done for all the possible states, which, in mathematical terms, results in an

integration over the domain of x.

Measurement update In the update step the Bayes filter obtains the belief

over the state xt by multiplying the prediction bel(xt) by the probability of the

measurement zt conditioned to the hypothetical state xt.

bel(xt) = ν · p( zt | xt ) · bel(xt) (4.4)

The idea is to correct the prediction exploiting the measurement information. The

probability p(zt |xt ) is given by the measurement model and tells us how likely it is

to observe the measurement zt when the system is in state xt. If the sensor reading

is close to the one expected from the measurement model, such probability will

increase and the update step will confirm the validity of the prediction. If instead

the sensor reading is distant from the expected measurement, the correction will

decrease the probability to be in the predicted state. According to the Bayes rule,

equation (4.1) can be written as:

bel(xt) = p( xt | zt, ut ) = p( zt | xt, ut )p( xt | ut )
p( zt | ut ) = p( zt | xt )p( xt | ut )

p( zt ) (4.5)

since zt does not depend on ut. Equation (4.4) is obtained from equation (4.5) by

recalling that bel(xt) = p( xt | ut ) and denoting 1
p( zt ) as ν.

These two steps are executed recursively at each time instant starting from an

initial condition, so an initial belief bel(x0) is required. If the state at time t = 0

(i.e. x0) is precisely known, the belief bel(x0) should assign 1 to the probability of

the known value of x0 and zero probability anywhere else. If the initial value of

x0 is completely unknown, the initial belief should be a uniform distribution over

the domain of the state at time t = 0. If instead x0 is partially known, a proper
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non-uniform probability distribution should be assigned to the initial belief. The

following pseudo-code reports the general Bayes filter algorithm.

Bayes_filter( bel(xt−1) , ut , zt )
for all xt do
bel(xt) =

∫
p( xt | ut, xt−1 ) · bel(xt−1) dx

bel(xt) = ν · p( zt | xt ) · bel(xt)
end for
return bel(xt)

The Bayes filter stated here can only be applied on simple estimation problems.

For non-finite state spaces both the prediction integration and the update multi-

plication require a closed form to be computed. The following section introduces a

widely used state estimation algorithm, the Kalman filter. Being a very important

part of this work, we cover both linear and nonlinear Kalman filter algorithms.

4.1.2 The Kalman filter

The Kalman filter is one of the most important estimation algorithms, commonly

used for tracking, localization, navigation, control systems and more. Based on

uncertain measurements, the Kalman filter provides estimates of mean and co-

variance of hidden variables (the state of the system) and future prediction of

them based on past estimates and on the knowledge of the system dynamics. Like

all the estimators belonging to the family of Gaussian filters, the Kalman filter is

based on the idea that beliefs are represented by multivariate normal distributions,

characterized by the following probability density function:

p(x) = det(2πΣ)− 1
2 · e−

1
2 (x−µ)T Σ−1(x−µ) (4.6)

This pdf over the state x is characterized by the mean µ and the covariance Σ.

The mean vector µ has the same dimension of the state x while the covariance Σ

is a quadratic, symmetric and positive-semidefinite matrix with dimension equal
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to the square of the dimension of x. Gaussian probability density functions are

unimodal since they are characterized by a single maximum, hence Gaussian esti-

mators are suitable for all those problems in which there exist a single hypothesis

around the true state with a little margin of uncertainty, like many tracking prob-

lems in robotics.

The Kalman filter works by propagating the mean and covariance of the state

through time, and if both the system dynamics and measurement model are linear

functions, the produced output will always be Gaussian distributed. The Kalman

filter does not work for nonlinear systems, for which extended versions of the algo-

rithm are required (see later). Like the Bayes filter, the Kalman filter is a recursive

algorithm composed by two main steps: the prediction step, in which the mean

and covariance of the next state are predicted based on the past state and sys-

tem model, and the update step, in which the predicted mean and covariance are

corrected with the measurements.

Prediction The prediction step is composed by two equations used to extrapolate

the mean and covariance of the state vector from the previous state and the system

dynamics. The system dynamics is the law that links the future variables with the

current ones, and it varies for different systems. However, we can write it in the

following general form:

x̂n+1,n = Fx̂n,n + Gun + wn (4.7)

where x̂n+1,n is the predicted state vector at time n+1, x̂n,n is the estimated state

vector at time n, un is the control input vector at time n, wn is the process noise

at time n (not measurable), F is the state transition matrix and G is the input

transition matrix. The process noise wn is a white Gaussian noise with covariance

matrix Q = E{wnwT
n}. This equation is called state extrapolation equation
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and performs the prediction for the mean. The prediction of the covariance matrix

is instead performed by the so called covariance extrapolation equation:

Pn+1,n = FPn,nFT + Q (4.8)

where Pn+1,n is the predicted covariance matrix at time n + 1 and Pn,n is the

estimated covariance matrix at time n.

After the prediction step, the obtained mean and covariance will be updated

with the measurements. It is then required a measurement model:

zn = Hxn + vn (4.9)

where zn is the measurement vector at time n, xn is the true system state at time

n (unknown), vn is the random noise vector at time n and H is the observation

matrix. The measurement noise vn is a white Gaussian noise with covariance

matrix Rn = E{vnvTn}. Many times the measured values are not the desired

system variables, then a linear transformationH is needed to transform the system

state into the measurements. If instead it is possible to directly measure the system

variables, H will be the identity matrix.

Update Once the measurements are available, the predicted state mean is up-

dated with the state update equation:

x̂n,n = x̂n,n−1 + Kn(zn −Hx̂n,n−1) (4.10)

where x̂n,n−1 is the predicted state vector at time n and Kn is the Kalman gain

at time n and indicates how much weight is assigned to the measurements against

the predictions. In the same way also the covariance matrix is updated through

the covariance update equation:

Pn,n = (I−KnH)Pn,n−1(I−KnH)T + KnRnKT
n (4.11)

56



Sensor fusion

where Pn,n−1 is the predicted covariance matrix at time n. As anticipated, the

Kalman gain indicates the weights assigned to the measurements in the update

step, and it is derived at each filter cycle based on the estimate covariance and

measurement covariance:

Kn = Pn,n−1HT (HPn,n−1HT + Rn)−1 (4.12)

The Kalman filter needs to be properly initialized, i.e. we need to set the initial

state of the system and its covariance matrix P0,0 which must be estimated based

on our confidence in the initial state. If we perfectly know the initial state, then

P0,0 = 0, if we have no idea about the initial state, then P0,0 =∞ · I.

Let us clarify the concept with an example. Consider figure 4.1 as a reference:

we want to estimate the position of the robot on a two-dimensional plane. Assume

Figure 4.1. Example of a 2D pose estimation
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the robot is equipped with sensors able to measure velocity, acceleration and head-

ing as well as its absolute position (from GPS for example), all noisy measurements

with a certain level of uncertainty. At start the robot is placed in a known position

with respect to the map that we are able to measure, then the Kalman filter is

initialized with our initial belief of it. The robot starts moving and the sensors

report the respective quantities. As shown in the figure, at time n the robot belief

is characterized by position, velocity, acceleration and heading estimated at the

previous step. A prediction is then computed for time n + 1 based on this values

and on the kinematic model with the state extrapolation equation and covariance

extrapolation equation, represented with the blue dot and blue Gaussian distribu-

tions. Once the absolute position measurements are available (red dot and red

Gaussian distributions), this prediction is updated with the state update equation

and covariance update equation weighting the two contributions based on their

level of uncertainty. The weights are computed at each time step based on the

covariance of measurements and previous estimate and correspond to the Kalman

gain. This sequence prediction → update is then repeated cyclically at each time

instant. The Kalman filter algorithm for linear systems is summarized in figure

4.2. At each cycle the output of the filter will be the mean-covariance pair of the

state. The mean is the result of a weighted average between the prediction and the

measurements while the resulting covariance is significantly reduced with respect

to the starting ones.

The algorithm just described is extremely important for many state estimation

algorithm implemented in real systems. However, as already mentioned above, it

only works for linear systems and therefore it does not achieve good performance

in real applications, which mostly involve nonlinear systems. Being at the core

of the fusion process of this project, in the following paragraph the two most

popular nonlinear Kalman filter algorithms are explained: the extended KF and

58



Sensor fusion

Figure 4.2. Kalman filter algorithm

the unscented KF.

Extended Kalman filter

As the name suggests, the extended Kalman filter is an extension of the previous

algorithm used to estimate the state of a nonlinear system. The idea is to linearize

the system around a nominal trajectory. The nominal trajectory is a guess of the

future states, like for example the path that an autonomous vehicle is supposed to

follow in the future, but many times it is not straightforward to determine it and so

the estimated state itself is used as nominal trajectory. After the linearization the

filter estimates the next state of the linearized system, which is used as the nominal

trajectory around which the system will be linearized for the next step. This is

repeated at each filter cycle. Consider the following general nonlinear system and
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measurement model:

xn+1 = f n(xn,un,wn) (4.13)

zn = hn(xn, vn) (4.14)

where wn ∼ N(0,Q) and vn ∼ N(0,R). By expanding the nonlinear functions

f (·) and h(·) in Taylor series around the nominal state x∗n = x̂n,n, the nominal

input u∗n = un (since we assume to exactly know the control input) and noise

w∗n = 0, v∗n = 0, we get:

xn+1 = f n(x̂n,n,un,0) + ∂f n
∂x

∣∣∣∣
x̂n,n

(xn − x̂n,n) + ∂f n
∂w

∣∣∣∣
x̂n,n

wn =

= f n(x̂n,n,un,0) + Fn(xn − x̂n,n) + Lnwn =

= Fnxn + [f n(x̂n,n,un,0)− Fnx̂n,n] + Lnwn (4.15)

zn = hn(x̂n,n,0) + ∂hn

∂x

∣∣∣∣
x̂n,n

(xn − x̂n,n) + ∂hn

∂v

∣∣∣∣
x̂n,n

vn =

.... = hn(x̂n,n,0) + Hn(xn − x̂n,n) + Mnvn

.... = Hnxn + [hn(x̂n,n,0)−Hnx̂n,n] + Mnvn (4.16)

We have obtained a linear state space representation and a linear model, so also

in this case we can estimate the state of the system using the standard Kalman

filter equations. The EKF algorithm is reported in figure 4.3. The Extended

Kalman filter is a great solution to apply the KF estimator on nonlinear systems,

and it has been one of the most used nonlinear estimators in the past years.

However, this algorithm may lead to unreliable estimates if the system is strongly

nonlinear. The EKF relies on the propagation of both the mean and covariance of

the system state according to the first-order linearization of the nonlinear model,

which may introduce large errors on the predicted mean and covariance depending

on the nonlinear system, causing sometimes poor performance or even divergence
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Figure 4.3. Extended Kalman filter algorithm

of the filter. In such cases it is required a more accurate estimation of the mean

and covariance of the state when propagating through a nonlinear model. The

Unscented Kalman filter is a nonlinear extension of the Kalman filter which reduces

the linearization error of the EKF.

Unscented Kalman filter

The idea of the Unscented Kalman filter is to select a minimal set of possible system

states whose mean and covariance truly represent the mean and covariance of the

current state. When propagated through the nonlinear system, the mean and

covariance of these carefully selected states accurately represent the true posterior

mean and covariance for any nonlinear model. At the core of the UKF there is the

Unscented Transformation, a method for the computation of mean and covariance
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of a random variable (like the variables representing the state) after a nonlinear

transformation. Consider a vector x with known mean x and covariance matrix

P and take a set of deterministic vectors called sigma points whose ensemble

mean and covariance are exactly x and P. After applying the nonlinear function

y = f (x) to each deterministic vector, the ensemble mean and covariance of the

obtained vectors will be a good estimate of the true mean and covariance of y. Let

us see the process a little more in detail: suppose we have a m×1 state vector that

has to be transformed by a nonlinear function y = f (x). Take 2m sigma points

as follows:

x(i) = x + x̃(i) i = 1, ..., 2m

x̃(i) = (
√
mP)Ti i = 1, ...,m

x̃(i) = −(
√
mP)Ti i = m+ 1, ..., 2m

where (
√
mP)i is the ith row of

√
mP. Transform the sigma points by applying

the nonlinear function:

y(i) = f (x(i)) i = 1, ..., 2m

The approximated mean and covariance of y are given by:

yut = 1
2m

2m∑
i=1

y(i) (4.17)

Put = 1
2m

2m∑
i=1

(y(i) − yut)(y(i) − yut)T (4.18)

In [14] it is shown that yut and Put respectively match the true value y and P

to the third order of Taylor expansion for any nonlinearity, while the EKF lin-

earization only up to the first order. The UKF uses the Unscented transformation

to propagate the mean and covariance of the state in both the prediction step

and measurement step. The UKF algorithm is summarized in figure 4.4, with the

assumption of both process and measurement noises to be additive.
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Figure 4.4. Unscented Kalman filter algorithm

4.2 Conclusions

Both the Extended Kalman filter and the Unscented Kalman filter are powerful al-

gorithms able to estimate the state of a system from the knowledge of its dynamics

and from noisy measurements, with the assumption that the state variables can

be accurately represented by a multivariate Gaussian distribution. For strongly

nonlinear systems the UKF can obtain greater performance with respect to the
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EKF, being able to approximate any nonlinear model up to the third order of the

Taylor expansion, against the first order of the extended version. The price for

this improvement is that the unscented version generally requires more computa-

tional power. However, the EKF requires the computation of Jacobians (partial

derivative matrices), which are numerically difficult to compute in case of systems

not given in analytical form. For the specific application of localizing a robot on

a 2D plane, we implemented and tested the system when using both algorithms

and compared the respective performance. The obtained results are reported and

discussed in the next chapter.
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Chapter 5

Project development

As introduced in section 1.4, this work is part of a bigger project on autonomous

mobile robots in collaboration with InnoTech Systems L.L.C and California State

University of Los Angeles. As the name suggests, autonomous mobile robots are

such because they are able to move in the environment and to complete assigned

tasks in autonomy without any human interaction. Therefore, a crucial charac-

teristic that any AMR must have is the ability to localize itself in the map in

which it operates. As we saw at the beginning of the thesis, the robot localization

problem and relative solution depend on several aspects, like the tasks the robot

is suppose to execute, the environment in which it operates, the available budget

etc., hence the localization system must be designed accordingly. As anticipated

in the previous chapter, the robot localization is a state estimation problem where

the state of the system is represented by the position and orientation of the robot

with respect to a reference point (in general the origin of the map). This estima-

tion is necessary since both position and orientation cannot be measured directly,

but must be inferred from sensors data. Moreover, there exists no single sensor

from which position and orientation can be accurately estimated, mainly due to
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the uncertainty affecting the measurements and to the type of sensor whose per-

formance depends on the surrounding environment. Therefore, multiple sensors

are always required for the robot localization and the quality of the solution not

only depends on the sensors themselves, but also on the way they are combined,

on how the data is fused to provide position and orientation information. Given

its complexity, the localization system is often composed by subsystems which are

then combined by one or multiple fusion nodes to provide the required output. For

example, if the robot is supposed to move both indoors and outdoors, the localiza-

tion system is usually design to work according to this distinction, as some sensors

and techniques are better suited for specific environments than others. Then, the

two subsystems are combined to provide a seamless service.

The focus of this project is on the design, development and testing of the local-

ization system in outdoor environment. The next section covers the development

of the system and the reasons behind its design. Then, we quickly describe the

robot we have built to test the localization and the used hardware. Finally, the

results of testing and validation of the system are reported, with comments and

conclusions.

5.1 Outdoor Localization System

As largely discussed in chapter 2, GNSS technology is currently the most used

positioning system in outdoor environments for many different fields. Being a

passive system from the user point of view, a small, cheap and energy efficient

receiver is enough to obtain good quality position estimates, with few meters of

error under good conditions. The state-of-the-art technology is nowadays able to

reach a level of accuracy below the centimeter, opening its usage to an even wider

set of applications, like mobile robotics, precision agriculture or land surveying,
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where high precision in positioning estimation is mandatory. Moreover, GNSS

provides a continuous service at global level, allowing any user on almost every

place on the Earth to localize itself with very little effort. Nevertheless, this

promising technology is not enough to solve the localization problem by itself for

an autonomous mobile robot. To understand why, let us recall that a successful

localization means finding the robot position and orientation with respect to a

reference frame, continuously in time, with an estimation error always below a

given threshold, which varies depending on the final application. For example, it

may go from 1 meter in case of food delivery robots to 1 centimeter in case of seed

sowing robots. At the time of writing, these requirements cannot be guaranteed

by the global navigation satellite system for the following three main reasons:

1. A single receiver is not able to compute the orientation of the vehicle on which

it is mounted.

2. The accuracy of the position estimates is not continuously guaranteed since

it strongly depends on the dynamism of the environment, like weather condi-

tions, buildings or general obstacles around the receiver antenna.

3. The continuity of the service itself cannot be guaranteed. If the sky visibility

is strongly obstructed, like when crossing a tunnel or moving indoors, the

GNSS signal may get completely lost.

As anticipated in section 1.4, in our system the GNSS receiver represents the main

source of information for localization purposes, but additional sensors are employed

to compensate for the above weaknesses. These sensors have been selected based on

the needs and hardware characteristics of the robot. For now we only need to know

that the localization system has been designed for differential drive wheeled robots.

Additional information on the hardware are provided in the next section. Other

than the GNSS receiver, the robot is equipped with an IMU device for inertial
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measurements, a wheel encoder for each wheel and a stereo camera for recognition

and tracking of augmented-reality tags. The system has been designed to also

work in partial configurations, even if some of these sensors are not available. Two

subsystems can be identified: the position estimation and orientation estimation

process.

5.1.1 Position

Estimating the position on a two-dimensional plane means finding the x and y

coordinates representing the displacement of the robot with respect to the origin

of the map. In the following paragraphs we explain how each sensor contributes

to the estimation of the robot’s pose.

GNSS When using a global positioning system the receiver’s position is esti-

mated in terms of latitude, longitude and altitude, which identify a point on the

Earth’s surface. When localizing the robot on a 2D map, a local reference system

is more appropriate than a global frame, then the geodetic coordinates need to be

converted into local ones. As seen in section 2.3, this conversion consists in a two

steps mapping: from the ellipsoidal coordinate system to the ENU one, passing

through the ECEF frame. If performed with enough numerical precision, this geo-

metric conversion does not cause any loss of accuracy, but the local approximation

of the Earth’s surface to a two-dimensional plane introduces an error. However, if

the robot does not move too far from the origin, the introduced error is negligible

for our purposes. Quantitatively, for a distance of about 1000m from the origin,

the error due to the approximation is in the order of µm. The converted x and y

represent absolute measurements of the position in the local frame.

Wheel encoders Wheel encoders - or rotary encoders - are electro-mechanical

devices exploiting optical, magnetic or mechanical sensors to detect changes in
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the rotational position of the motor shaft. By knowing the wheel’s diameter and

measuring the rotational rate of each motor, the linear and angular velocity of

the robot can be derived through mathematical equations. These devices are

widely used in mobile robotics to derive odometry information as explained in

section 1.2.2. As we will see later, a much more accurate and reliable estimation

of angular velocity is obtained from the IMU, then in our system wheel encoders

are only used to estimate the linear velocity of the robot.

IMU As seen in chapter 3, IMUs provide absolute or relative orientation of the

device in the environment, without the need of an external reference, and measure

linear acceleration in the three orthogonal axes. Both information are used for

odometry: orientation is fundamental in a 2D or 3D environment to understand

in which direction the robot moves, while acceleration data improve the precision

of the estimated covered distance as show in equation (1.1) and (1.2).

5.1.2 Orientation

The orientation of a coordinate frame must be defined with respect to another

coordinate frame and expresses the rotation between them. There exist different

ways to parametrize orientation: Euler angles, rotation matrices, quaternions ...

all of them carrying the same information. Euler angles are usually not used to

express the orientation of a free object in space, like the robot, due to the possible

gimbal lock problem. Quaternions are commonly used in navigation problems

since they are stable, efficient and with a compact representation. In the following

paragraphs we explain how each sensor contributes to the estimation of the robot’s

orientation.

IMU The Inertial Measurement Unit mounted on the robot represents the main

source of orientation data. This device can be configured to provide either an
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absolute or a relative information based on the type of sensors used for the estima-

tion. Relative orientation exploits the accelerometer and gyroscope, while absolute

orientation requires the magnetometer in addition to the other inertial sensors. In

optimal condition of no magnetic interference, the use of magnetometer allows

to correct for the drift introduced by the inertial sensors and the IMU is able to

provide a reliable orientation by itself. However, as we will see later, the robot

used for the system validation has been built in such a way that magnetic interfer-

ence cannot be excluded, due to the material of the chassis and to the electronic

components mounted close to the sensors. For this reason, we decided to con-

figure the IMU to provide a relative orientation, and to exploit external absolute

measurements from GNSS and stereo camera to correct the eventual drift.

GNSS Other than position information, the GNSS measurements can also be

used to estimate the robot’s orientation. If specific conditions are met, the derived

heading can be used as an absolute reference information to correct the drift in

the IMU estimation. This technique is characterized by a delay in the estimation

since the heading is computed from past GNSS measurements. Nevertheless, when

specific constraints on GNSS accuracy, trajectory and speed of the robot are met,

the obtained orientation is accurate enough to be used as an absolute reference

information.

The localization system has been designed to get information also from artificial

landmarks. The robot requires a 2D or 3D camera to be able to recognize them in

the environment. Our robot is equipped with a stereo camera, a type of camera

characterized by two lenses with a different image sensor for each lens. Thanks

to this a stereo camera is able to simulate the binocular vision and to capture

three-dimensional images, which can be used for many different purposes. In our

robot this sensor is used as the main source of information for the docking and
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obstacle avoidance algorithm, but it is a great source of data also for the localiza-

tion problem. The relative position and orientation of the robot with respect to

the augmented-reality tag can be derived with high precision thanks to computer

vision techniques applied to the three-dimensional image. The absolute position

and orientation can then be computed by knowing the location of the tag with

respect to the map, which is then stored in the robot for each AR tag. Thanks to

the high accuracy of the location information estimated with this technique, the

obtained position and orientation are used to reset the state of the robot.

5.1.3 Sensor fusion

In this section we see how all the information derived from the sensors reported

before are combined to solve the localization problem. Figure 5.1 depicts the

scheme of the fusion algorithm. The pose measured from GNSS, orientation and

acceleration from IMU and velocity from encoders represent the measurements of

the state variables and are given as input to the Kalman filter. Exploiting the robot

motion model in a 2D plane, the algorithm predicts the next state starting form the

previous one and update the prediction when the measurements are available. Each

time an AR tag is captured from the stereo camera, a reference pose and a reference

orientation are computed by an external algorithm. A reference orientation is also

computed from past GNSS measurements each time the required conditions are

met, as previously described. Given the high precision of the location estimation

from AR tag, and the stringent constraints we set to derive the robot heading from

GNSS, we consider these reference informations accurate enough to reset the state

of the system in the Kalman filter accordingly. Summarizing, the fusion algorithm

combines absolute GNSS measurements with orientation, acceleration and velocity

from inertial sensors and encoders to continuously estimate the state of the robot.

Moreover, external algorithm are used to obtained accurate reference pose and
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heading information to correct eventual drift in the estimation.

Figure 5.1. Data fusion scheme

5.1.4 Development framework

The outdoor localization system has been developed to work on the Robot Operat-

ing System [15]. ROS is an open-source meta-operating system running on Unix-

based platforms. It provides hardware abstraction, implementation of commonly-

used functionalities, low-level device control, message passing between processes,

package management, tools and libraries to write, build and run code across mul-

tiple machines [16]. ROS implements a peer-to-peer network of processes, called

nodes, coupled using the ROS communication infrastructure. The executables
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written to work in ROS can be grouped into packages and stacks which can be

easily shared and distributed. Different ways of communication between nodes

are possible: synchronous communication over services, asynchronous streaming

of data over topics and storage of data on a parameter server. ROS is language

independent, even if the majority of the open-source code and libraries is written

in C++ and Python. ROS is a software development kit for robotic applications,

with the main aim of supporting code reuse in robotic research and development.

Thanks to this, I have been able to develop the localization system integrating

open-source packages and libraries with code written by me in C++. Moreover,

ROS is a powerful framework to test the robotic system in simulation before de-

veloping ad implementing it in hardware. Our outdoor localization system is a set

of nodes, each performing its own task, communicating together through topics.

The software drivers reading from sensors, the processes to elaborate the mea-

surements and the sensor fusion algorithm are all executable nodes exchanging

messages between them, composing the localization system software.

The fusion node used in the system is provided by the robot_localization package

[17], containing nonlinear state estimators for robot in 3D space. It provides both

the Extended Kalman filter and Unscented Kalman filter estimator. This package

allows the fusion of an arbitrary number of sensor data with highly customizable

configurations. Regarding the detection of the augmented-reality tags in the map,

in our project we used the ar_track_alvar package [18]. It contains tools to

generate AR tags with different size, resolution and data encoding, and provides

the software to identify and track the AR tag seen by a 2D or 3D camera.

A very important tool for the development of our localization system has been

the Gazebo software [19]. Gazebo is a powerful software able to accurately and

efficiently simulate robotic systems in complex indoor and outdoor environments.

Thanks to the gazebo_ros_pkgs package, which creates the interface between ROS
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and the Gazebo simulator, we have been able to test the system in a simulated

environment before testing it in real scenarios.

5.2 Robot hardware

As described in the introductory chapter, the outdoor localization system has been

designed taking into account the tasks the robot is supposed to accomplish. The

aim of the project of InnoTech System is to develop a fully autonomous robot

able to carry general objects and to provide delivery services, both in indoors and

outdoors. For this purpose the company has designed a wheeled differential drive

robot big enough to be able to carry food and small packages, and to be equipped

with all the sensors and hardware needed by the different systems (figure 5.2).

At the time of writing this platform is still under development, hence during this

work we have built a four wheels robot for the purpose of testing and validate the

localization system and the docking system, developed in a parallel project. The

robot is composed by a base and two upper layers. The base houses the motors,

the batteries, the on-board computer and the GNSS receiver module to keep the

center of mass as low as possible. The second layer houses the motor drivers,

the microcontrollers, the inertial measurement unit and the ultrasonic sensors.

The stereo camera and the GNSS antenna have been mounted on the third layer,

which is at 70 centimeters from the ground. This height is required to maximize

the performance of the stereo camera for both the docking and obstacle avoidance

system, other than improving the reception of the GNSS signals. All the sensors

and microcontrollers are connected to the on-board computer, an Nvidia Jetson

Nano running Ubuntu as operating system, in which the software is executed on

the ROS environment. The following paragraphs describe the specific hardware

used by the outdoor localization system.
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Figure 5.2. Mobile robot designed and developed by InnoTech System

Nvidia Jetson Nano

The Nvidia Jetson Nano [20] is a powerful but small computer with a high energy

efficiency, perfect for those applications requiring good graphical and computa-

tional capabilities at low power consumption, like mobile robotics. It is powered

by a 128-core Maxwell GPU, a quad-core ARM CPU with 4GB of RAM memory,

able to satisfy small and power-efficient AI systems, requiring from 5 to 10W. In

our robot this on-board computer is the "brain" of the system, in charge of pro-

cessing all the data coming from sensors and run the software required to complete

the assigned tasks. The connection scheme is reported in figure 5.3. The GNSS
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Figure 5.3. Jetson Nano connection scheme

receiver, IMU and stereo camera are connected to the Nano via USB port to con-

tinuously send the recorded measurements required by the localization system and

docking algorithm. The two microcontrollers are used to read the data from wheel

encoders and ultrasonic sensors and send it to the computer, and to control the

motors according to the controls coming from the Nano.

GNSS modules

The applications in which our robot can be used require a high localization ac-

curacy also in outdoor environments and the GNSS module must then be chosen

accordingly. The performance of the outdoor localization system strongly depends

on the quality and precision of the geodetic measurements. For our purposes

we chose the Ardusimple simpleRTK2B board [21], based on the u-blox ZED-F9
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module [22], which is a low power, multi band GNSS board supporting RTK tech-

nology to reach sub-centimeter position accuracy. The simpleRTK2B supports the

following operating modes:

• Standalone: in this mode the board is able to reach 1m position accuracy in

few seconds, without range limitations.

• Base-Rover : use a simpleRTK2B board as base station to send RTK correc-

tions to one or multiple rovers to achieve < 1cm accuracy with a maximum

range of 35km. In this mode each user must be equipped with its own sim-

pleRTK2B module.

• Standalone with RTK/SSR corrections: allows to reach < 4cm accuracy in

standalone over large continental areas, receiving RTK-like corrections from

a network of base stations.

We used the base-rover setup, configuring the second simpleRTK2B module as

base station to send the RTK corrections through a dedicated radio link. For

our application, where the robot operates in limited outdoor environments like

university campus, the RTK covered area of 35km from the base is more than

enough. The drawback of the radio communication is that a line-of-sight between

base and rover is needed. In many different scenarios this condition is difficult

to satisfy, hence another communication channel should be used. If an internet

connection is available for both base and rover, the RTK corrections can also be

distributed through an IP network thanks to the NTRIP protocol.

Inertial Measurement Unit

The Adafruit 9-DOF Absolute Orientation IMU has been chosen as the inertial

measurements unit to be mounted on the robot. Based on the Bosch BNO055

System in Package [23], it integrates MEMS triaxial accelerometer, gyroscope and
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magnetometer to provide inertial measurements and orientation data. Thanks to

an ARM CORTEX-M0 based processor, absolute or relative orientation is obtained

through a sensor fusion algorithm that combines all the data from the sensors. The

BNO055 outputs the absolute or relative orientation as Euler vector of quaternions,

the angular velocity vector, the acceleration vector, the magnetic field vector and

the temperature.

Stereo camera

The stereo camera mounted on the robot is the ZED2 cam by Stereolabs [24]. It

combines AI and 3D perception to detect and track objects with spatial context.

The ZED2 is the first stereo camera that uses neural networks to reproduce the

binocular human vision. In our robot this AI powered sensor is the main source of

data for the docking and obstacle avoidance algorithm but it is also exploited by

the localization system to track augmented-reality tags with high precision and to

derive position and orientation information.

Rotary encoders

The rotary encoders used to measure the angular velocity of the motor shafts are

based on the Hall effect, which allows to detect the presence and magnitude of

a magnetic field. By sensing the variation of the magnetic field generated by a

permanent magnet attached to the motor shaft, the Hall encoder measures the

rotational rate with high precision, from which the linear velocity of our robot is

derived.

Figure 5.4 reports the robot we have built during the project to test the devel-

oped systems.
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Figure 5.4. Mobile robot employed for the system validation

5.3 Testing

The robot described in the previous section has been specifically built in order to

test the developed system under real working conditions. The real tests have been

an important part of this project, allowing us to validate what has been developed

and tested in simulation. In this way we have been able to understand the real

performance and the weaknesses of the outdoor localization. Other than validate

the proper functioning of the whole system, the aim of the tests is to demonstrate

the benefits introduced by the multi sensor fusion approach: uncertainty reduction,

reliability improvement and extension of temporal and spatial coverage in the final
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estimate. Moreover, the experiments are also used to compare the performance

between the Extended and Unscented Kalman filter as fusion node. Ideally, the

best way to validate the localization system would be to compare the estimated

position and orientation against the actual values at each time instant, but since

in the real world it is almost impossible to know the ground truth of a moving

robot as a function of time, the system has been tested by comparing the estimates

against checkpoints on the map, known a priori. Consider a checkpoint A with

coordinates (xA, yA, θA). Driving the robot in the exact position of A, assume that

the estimated pose and orientation are (x̂A, ŷA, θ̂A). The estimation errors will be

∆x =
√
|xA − x̂A|2 + |yA − ŷA|2 for position, and ∆θ = |θA − θ̂A| for the heading.

The procedure followed during the tests is the following:

1. The robot starts its operation in the map origin pointing toward the x axis

(xA = 0, yA = 0, θ = 0).

2. Then it is driven following the predefined path, and it is stopped on each

checkpoint for some seconds.

3. Meanwhile, all the sensors data is collected in a log file.

4. The test ends when the robot is driven back to the starting position.

The robot must be placed on the checkpoints with very high precision to obtain a

meaningful comparison. The tests have been performed on the university campus

to reproduce a realistic outdoor environment, moving the robot for several minutes

to simulate a real use case. By collecting all the real time data in a log file, we have

been able to evaluate the performance of the localization system in post processing,

testing the following different configurations on the same data:

- Exploiting only wheel encoders for odometry.

- Exploiting wheel encoders and IMU for odometry.
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- Introducing GNSS measurements in the previous configuration.

The stereo camera is used to derive the absolute position and orientation of the

robot from the augmented-reality tags, and to reset the state of the system ac-

cordingly.

Considering a realistic application of the robot, e.g. to deliver food in complete

autonomy to arbitrary points on the University campus, a meaningful test should

be long enough in both covered distance and time to properly simulate a real

operation. For this reason, the results presented below refers to a test consisting

of around 10 minutes of continuous operation for a total of 150 meters covered

by the robot. Figure 5.5 shows the outdoor environment with the map origin and

Figure 5.5. Checkpoints on the outdoor map - red axes: map origin and check-
point 5 - blue icon: checkpoint 1 and 3 - green icon: checkpoint 2 and 4

the checkpoints used to test the accuracy of the system. Starting from the origin,

the robot was driven through checkpoint 1(3), checkpoint 2(4) and the map origin
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(checkpoint 5), twice in the same test. As anticipated before, the accuracy of the

system is measured as the error in the estimated pose and heading of the robot -

∆x and ∆θ - computed as the difference between the output of the localization

system and the truth coordinates of checkpoints on the map. Considering the

configurations of the system listed before, I will compare their performance by

plotting the obtained errors for each checkpoints for both pose and heading when

using the Extended Kalman filter. After that I will compare the performance

between the Unscented Kalman filter and Extended Kalman filter algorithm for

the second and third configuration of the system.

EKF based localization system

Figure 5.6 plots the error in the estimated pose on the five checkpoints for the

three configurations mentioned before. Starting from the first configuration where

Figure 5.6. Extended Kalman filter pose estimation error

only wheel encoders are used, as expected the poor accuracy of the measurements

from these sensors causes poor performance in the position estimation of the robot.
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Being a dead reckoning approach, the constant and random errors on the measure-

ments sum over time, causing an increasing estimation error. It is evident how the

use of wheel encoders alone is not enough to obtain a valid estimation of the robot

pose. Very large errors characterize the estimation immediately after the starting

operation of the robot, making this configuration unsuitable for the localization.

In this scenario the main source of error is the very low accuracy in the angular

velocity. Even if the robot moves straight, the measured angular velocity is not

zero but it tends to have a small positive value which causes the system to think

the robot is slightly turning on its left when in reality it is not. This error comes

from a not perfect balance of the robot, which causes the front right wheel to

spin a little faster than the others. Improving the built quality of the robot would

also improve the estimation accuracy from wheel encoders, but it is impossible to

completely remove this kind of problems and the error on the estimation is only a

matter of operational time. Unpredictable problems may always characterize the

robot operation ruining the final estimation, like for instance:

- a not planar ground, which may cause the robot to lean on three wheels only,

with the fourth one spinning faster than the others

- something stuck on a wheel, blocking it and making it slip on ground

Nevertheless, even if encoders alone are not enough for our purpose, they can help

in the overall estimation when combined with other sensors, as we show in the

following.

Considering now the second configuration where the IMU is used in addition to

encoders, the obtained results are far better than before. The angular velocity is

now taken from the gyroscope of the IMU, which provides a more accurate mea-

surement with respect to wheel encoders. However, still being a dead reckoning

approach, all the unavoidable small errors on the measurements coming from both
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encoders and IMU end up in an increasing estimation error when integrated over

time. For the operational time and covered distance of our test, the estimated pose

reaches more than 1.2 meters of error, which is no more acceptable for the type of

outdoor environment in which the robot is supposed to move. This configuration

can be a valid solution only in the case of a short operation when the robot has

no GNSS signal.

Moving to the third and last configuration, we obtain the greatest accuracy. The

GNSS measurements, being absolute and very accurate, make the filter always

correct the possible estimation errors from other sensors. With respect to before

now the estimation error does not increase over time but stays always below 0.7m

during the test. As already discussed, the great accuracy of the GNSS in RTK

mode would be enough to estimate the pose of the robot, but since the continuity

of the signal is not guaranteed, the multiple sensor fusion algorithm is required

to keep the error low during the whole operation of the robot. Despite the short

operational time, even during our test the GNSS service was not constant, but

lower accuracy peaks were experienced at certain time instants. In the first two

checkpoints we experienced a lower estimation accuracy since the GNSS started

working in RTK mode only after some minutes from the beginning of the test.

Moreover, we placed checkpoint 1 very close to a tall building to partially ob-

struct the sky visibility in that region and to make the GNSS work in sub-optimal

conditions. Nevertheless, thanks to the fusion algorithm the estimated position

remained accurate, avoiding discrete jumps of the robot pose due to low quality

GNSS measurements. The set of pictures in figure 5.7 shows the estimated position

of the robot coming from the localization system and the GNSS measurement at

the same time, for consecutive instants around checkpoint 1. As we can see, when
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Figure 5.7. GNSS failure test: the robot is represented by the axes with
orange box - Checkpoint 1 is CP1 - GNSS measured position is the red
dot, with the purple cloud representing its variance - the robot trajectory
is the green set of points.

the robot moves closer to checkpoint 1 (beside the building) the GNSS measure-

ments lose accuracy and the given position moves of some meters with respect to

the true position. However, the estimated position coming from the fusion node

remains close to checkpoint 1, the true position of the robot. This is thanks to

the Kalman filter algorithm which, as explained before, weights the contribution

of each sensor based on the variance characterizing the measurements, and then

the robot pose is estimated trusting more the data coming from IMU and wheel
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encoders.

Moving now on the heading information, from figure 5.8 we can see how the es-

timation error is the same for both configurations and increases with time and

distance. This is due to the fact that the robot’s heading is uniquely derived from

the same sensor - the IMU - for both systems, and the small errors accumulate

over time causing a drift in the orientation. An important difference between the

two configurations is evident in correspondence of checkpoint 5, before which the

orientation from IMU has been corrected by the reference orientation computed

from GNSS measurements. This method allows to have an absolute reference in-

formation of the robot heading and so to correct possible errors on its estimation.

Without the reference orientation estimation techniques described in section 5.1.2,

Figure 5.8. Extended Kalman filter heading estimation error

the error in the robot’s heading would continuously increase along time as shown

in the plot for the IMU + encoders configuration. This result demonstrates the im-

portance of the fusion of GNSS measurements or landmark data in the orientation

estimate, and in general the need to periodically have an accurate and absolute
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heading information to avoid divergence in the estimated values during the robot

operation.

Extended vs Unscented Kalman filter

Figure 5.9 plots the estimation errors for the five checkpoints obtained with the

EKF and with the UKF algorithm. Both algorithms obtain very good results,

Figure 5.9. Comparison between Extended Kalman filter and Unscented Kalman
filter pose estimation errors

especially for checkpoint 3, 4 and 5, corresponding to the RTK operation mode

of the GNSS. Apart from the first checkpoint, the results obtained by the two

algorithms are very similar and then they can be considered as equivalent in terms

of performance. This is not true in general, since the EKF may lead to unreliable

estimates if the system is strongly nonlinear, while the UKF, through a determin-

istic sampling approach, is able to accurately model any nonlinearity. The reason

behind the obtained result is that the motion on the two-dimensional plane of our

robot is greatly approximated by the linearization of the Extended Kalman filter

algorithm, and the peculiarity of the Unscented version do not add any advantage
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in terms of estimation accuracy. The same concept is valid for the heading esti-

mation, where both EKF and UKF obtained the exact same results.

For what concerns landmarks localization, the position and orientation data

derived from the three-dimensional image of an AR tag are not fused in the Kalman

filter with the other measurements, but they are rather used to reset the state of

the filter. This design choice is justified by the high precision in the estimated

absolute position and orientation of the robot from the tag. Considering the

optimal conditions during the test discussed above, with GNSS operating in RTK

mode, the average estimation error in the output of the fusion algorithm was

around 20cm for position and 7° for heading. The accuracy in the data derived

from AR tags with the ZED2 camera mounted on our robot is instead around 5 to

10 cm and 3° respectively, lower then the average error in the output of the filter.

Therefore, resetting the state with these reference values will lower the estimation

error in the robot localization.

5.4 Conclusions

In this work we presented our solution to the problem of mobile robot localization

in outdoor environments. We went through the development and implementation

of the localization system and we presented the outcomes of the real tests used to

validate our work. The results just presented in the previous sections demonstrate

the improvements in the estimation accuracy obtained from a multiple sensor

fusion approach. Combining the measurements from GNSS, IMU, encoders and

stereo camera through an algorithm based on nonlinear Kalman filtering, we have

been able to obtain position and orientation estimates accurate enough to allow

a mobile robot to localize itself in outdoors, getting closer to the final aim of a

completely autonomous navigation. Localizing the robot in outdoor environments
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only solves half of the problem. An autonomous mobile robot must be able to

localize itself regardless the type of environment in which it operates, accurately

and continuously in time. InnoTech Systems has developed a localization system

to satisfy these requirements in indoors, while in this document we described our

solution for outdoors. Future steps in the project could regard the integration of

the two systems to guarantee a seamless localization while moving from outdoor

to indoor and vice versa.
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