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Abstract

The Low Power Wide Area Networks (LPWANs) represent a new trend in the evolution

of the wireless communication technologies that target static and mobile Internet of

Things (IoT) applications requiring energy efficiency, scalability and coverage. One of

the most successful technologies in the LPWAN is Long Range Wide Area Networking

(LoRaWAN).

LoRaWAN uses an adaptive data rate (ADR) mechanism at the network server (NS)

to meet the requirements of IoT-enabled applications. By controlling the spreading

factor (SF) and transmit power (TP), ADR seeks to provide end devices (EDs) with

the efficient resources for reliable and energy saving transmission. However, such

algorithm may have high convergence period because of the scalability of LoRaWAN

network and variable channel conditions. Thus we propose an ADR mechanism which

combines NS-managed ADR with ED-managed one aiming to reduce the convergence

period along with providing better performance indicators such as packet success rate

as well as less energy consumption.
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Chapter 1

Introduction

1.1 Technology Backgroud

LoRa, stands for Long Range, is a proprietary physical layer for LPWAN connectivity.

LoRa is based on Chirp Spread Spectrum modulation that allows long ranges of

transmission (up to 10km in rural areas) and is robust against multipath and fading

effects. Long Range Wide Area Network LoRaWAN [1] [6] is a an open standard

defining architecture and layers above the LoRa physical layer proposed by LORA

alliance group. LoRaWAN is a promising technology for the IoT devices providing

more effective and flexible solutions than other technologies like sigfox, weightless,

ingenu... toward meeting a wide range of IoT application requirements [2]. An

important characteristicy of LoRaWAN is that there is no need for compatibility with

other technologies. LoRaWAN is based on acknowledged transmissions, This give it

a huge plus guaranteeing successful packets reception with a high probability. As a

consequence, LoRaWAN intervene in many use case scenarios such as personal IoT

applications, smart metering, remote control, industrial and agriculture monitoring,

etc.

1.2 Research Problem

When dealing with IoT networks, low cost of transmission and high success rate

are the main criterion of the performance. Thus, especially LoRaWAN, where chirp
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spread spectrum (CSS) modulation is adopted, transmission parameters are crucial for

realizing the required performance. In current LoRaWAN deployments, an Adaptive

Data Rate (ADR) scheme that controls the uplink transmission parameters (spreading

factor, bandwidth, coding rate and transmission power) for static LoRa devices is

adopted. In ADR, static nodes can communicate by selecting the minimum spreading

factor that permits the correct reception by the intended Gateway; this scheme is shown

to be inefficient in terms of collision and air time [6]. This thesis work focuses on

implementing an intelligent power control and spreading factor allocation algorithm

that reduces interference and improves total network capacity for both static and

mobile devices.

1.3 Organization

The rest of the report is organized, as follows: a brief overview of the technology

in question in Section 2. Section 3 provides an overview of related work. Section 4

elaborates on the proposed schemes. Simulation Frame work is detailed in Section 5.

Section 6 presents the experimental results and an analysis of the proposed schemes.

Section 7 presents some concluding remarks.
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Chapter 2

LoRaWAN Description

2.1 Network Architecture

LoRaWAN network is composed of base stations (BS) and end devices (ED) as shown

in Figure 2.1. EDs are connected to and served by the BS, and the data flow is

between ED and BS thus no ED-ED traffic. It is important to notice that the uplink

traffic dominates in such networks. LoRaWAN networks are organized in a star-of-

stars topology for the purpose of bringing huge energy saving advantages. The BS

is connected to a centralized network server (NS) via backbone internet protocol (IP)

based link. NS is responsible for traffic management, collecting data from the gateway

(GW) and sending them to appropriate applications.

Figure 2.1: LoraWAN Network Architecture [11]
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This network is optimized specifically for energy-limited EDs by using an ALOHA-

based protocol, a random access MAC protocol in which end devices transmit without

doing any carrier sensing. The simplicity of ALOHA is thought to keep the design

of the transceiver simple and low cost, also end devices do not need to peer with

specific gateways. Thus LoRaWAN does not use the clear channel assessment

(CCA) mechanisms and relies exclusively on the ED duty cycle-based channel access

mechanism. LoRa network operates in license-free sub-gigahertz bands, mainly the

industrial, scientific and medical (ISM) band, aiming at reducing the cost to network

operators for not licensing new spectrum. As a consequence, the transmission from a

device should account for the imposed restrictions.

End Device Classes

LoraWAN is an acknowledged-based transmission technology, reliability is achieved

through the acknowledgment of frames in the downlink. For managing the ac-

knowledgment reception by the ED, the LoRaWAN specification defines three device

types: Class A, Class B, and Class C. The implementation of class A functionality is

obligatory, whilst classes B and C are optional. This description is referenced from

LoRaWAN specifications [3].

For the EDs of class A each uplink transmission is followed by the two receive

windows (RX1 and RX2) where acknowledgment can be transmitted on the downlink.

The devices of class B open, in addition to RX1 and RX2, special receive windows

at scheduled times, it is used by beacons transmitted by the gateway for time-

synchronization purposes. Finally, EDs of class C stay in receive mode all the time

unless they are transmitting.
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Figure 2.2: Frame encoding in LoRaWAN [5]

Thus, Class A has the lowest power consumption, Class B is adopted for

applications with additional downlink traffic needs and lastly Class C are always

listening devices.

2.2 LoRa Modulation

The modulation scheme in LoRaWAN is the Chirp Spread Spectrum (CSS) making

it work well with channel noise, multipath fading, and doppler effect, even at low

power [14]. In figure 2.3, an example of encoded LoRaWAN frame is shown. The

frame consists of up and down chirps, formed as follows: the first 6 chirps are the

preamble, the next 2 chirps represent the synchronization bits, and finally the payload.

2.3 Data Rate and Airtime

The resulting data rate depends on the used bandwidth and spreading factor. Lo-

RaWAN can use channels with a bandwidth of either 125 kHz, 250 kHz, or 500
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Figure 2.3: Frame encoding in LoRaWAN [13]

kHz, depending on the region. The spreading factor is chosen by the end device and

influences the time it takes to transmit a frame known as Time on Air (ToA). ToA is

computed as a sum of the time of the preamble plus the time of the Payload frame as

in [12], T f rame or ToA is shown in formula 2.1.

T f rame = Tpreamble + PLsys ∗ Tsys (2.1)

Tsys = 2S F/BW (2.2)

where PLsys is the payload size in bytes, and Tsys indicates symbol duration in ms.
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2.4 Transmission Parameters and ADR

The two main transmission parameters in LoRaWAN are Transmission Power (TP) and

Spreading factor (SF).

The TP is the power used by the LoRa End Device to transmit the packet and

it ranges between -4 and 20 dBm. The Higher its value, the higher the range of

transmission, however, the more energy consumption is needed by the transceiver.

In order to improve the spectral efficiency and increase the capacity of the network,

LoRa modulation features six orthogonal spreading factors defined as 2.3:

S F = log2(Rc/Rs) (2.3)

where Rc is the code rate and Rs is the symbol rate, resulting in the different data

rates. SF describes the length of a chip which is 2S F and divided by SF to give

the length of a code. Lower spreading factors provide higher bit rates resulting in a

shorter time on-air TOA (channel occupation time). Shorter TOA results in longer

battery life because the radio transceiver is active for a shorter period. In contrast, the

higher the SF, the higher the signal-to-noise ratio, the sensitivity, and range, but also

the ToA. Accordingly, there is a trade-off between SF and the communication range.

Orthogonality of SFs enables multiple spread signals to be transmitted at the same time

on the same frequency channel without degrading the communication performance and

trading the on-air time for the communication range. In essence, multiple spreading

factors provide a third degree of diversity after time and frequency.

Moreover, When two signals using the same spreading factor (SF) arrive at the

same time, with one signal stronger than the other by a certain threshold, the so-called

capture effect [6] causes the stronger signal to drown the weaker. Even when the

signals use different spreading factors, Inter-SF interference can be observed, because

the spreading codes are not perfectly orthogonal [8]. Here arise the proposal, ADR, an

Adaptive Data Rate algorithm for LoRaWAN. The ADR [10] algorithm manages the

allocation of SFs and TPs to EDs, aiming at fair collision probability and high Data

Extraction Rate (DER) based on distance from the gateway.

For static end devices, the ADR is managed by the network server, based on the
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history of the uplink packets received. This is referred to as Network-managed ADR or

Static ADR. In addition, an ED-managed ADR can be adopted on all Nodes provoking

a distributed learning over the whole network in order to optimize the transmission

parameters.
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Chapter 3

Related Works

The scalability and reliability of LoRa-based networks is an active research topic,

especially for smart city scenarios. In terms of scalability, the findings in [4] show

that a single LoRaWAN cell can serve millions of people. Only a few bytes of data are

sent per day by these devices. Despite this, just a small percentage of these devices

can be located far from the base station. The majority of the devices, particularly

those with a high upload traffic should be located in the vicinity of the base station.

This necessitates better data rate management by end nodes, i.e ADR. Thus, the

main question is how exactly the performance of a LoRaWAN network depends on

the resource allocation policy and how improvements in ADR can significantly affect

network performance.

The recent ADR Deployed in LORA is described by Semtech in [10]. This ADR is

managed by the network server, based on the history of the uplink packets received. It

is referred to as Network-managed ADR or Static ADR. The network server receive

ADR-Enabled uplinks from the ED. Following the next uplink, a MAC command to

change the data rate is sent down to the end device, as appropriate. The problem

is that downlink transmissions such as acknowledgements and ADR commands, are

expensive when compared with uplinks. A LoRaWAN network can support much

fewer downlink transmissions from a gateway to a node than uplink transmissions.

For this reason, adding a Self-managed ADR allowing each node to allocate optimal

resource is the best solution in terms of minimizing the downlink traffic in a LoRaWAN

network.
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Although LoRAWAN has been released in 2015, with the specifications of ADR

described above, Many studies have been conducted in order to solve the problems

of ADR scheme that controls the uplink transmission parameters in terms of the

convergence period, scalability, and packet success ratio. In particular, the literature

focused on the enhancement and convergence period reduction of a typical ADR [15]

[16], [17], [18], [19].

Authors in [19] propose simple algorithms for SF allocation in LoRaWAN

networks based each on Received Signal Strength Indicator (RSSI) and time on air

(ToA). The lowest available SF is given to EDs having the highest RSSI. On the other

hand, the time-on-air is equalized between different nodes in a way that the number of

nodes assigned to each SF is inversely proportional to its time on air. Such changes

make improvements over the ADR in [10].

In paper [18] authors propose an enhanced LoRaWAN ADR. The proposed

method is based on NS-managed ADR using called Gaussian ADR (G-ADR) and

aims to allocate the best SF and TP to EDs reducing the convergence period of the

acknowledged mode LoRaWAN. Based on their simulations, G-ADR scheme shows a

promising results in terms of convergence time.

In paper [16] they show that using distributed learning algorithms, such as Multi

Armed Bandit (MAB), is beneficial when all end-devices are intelligent and the

network status is dynamically changing. In their studied scenario, the scalability of

the network is improved as well as the reliability. Another paper [17] also studied the

performance of the same distributed learning solution for adapting the communication

parameters of devices to the environment for maximizing successful data transmission

probabilities.

Concerning LoRa implementations found in the literature, ADR schemes are

implemented and evaluated using different approaches such as mathematical models

and simulation, since large scale real-time network deployment would be prohibitively

expensive. Mainly, simulators such as LoRaSIM [6] and LoRaMAB [9], based on

Python with SimPy library, are sensible to conduct simulation-based studies to evaluate

the network design as well as protocol parameters for several LoRaWAN applications.
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3.1 LoRaSim Simulator

LoRaSim is the most popular simulator for LoRaWAN [6]. It is a discrete-event

simulator implemented with SimPy to build a radio propagation model based on the

log-distance path loss model [?]. In [6], authors investigate the capacity limits of LoRa

networks using some simulations done on LoRaSim, mainly by studying the collision

between packets. For this reason, and to parameterise the collision behaviour, the

following radio parameter settings are studied: spreading factor (SF), bandwidth (BW),

power and timing. Finally, the simulator reports the corresponding packet delivery

ratio and total energy consumption of the network. However, the main limitation

of this simulator is due to neglecting some realistic physical setting such as Inter-SF

interference and Capture effect. More importantly, no intelligent is introduced in either

part of the network under study.

3.2 LoRaMAB Simulator

Paper [15] extends the work of [16] and [17] and builds a simulation framework based

on MAB problem using a distributed learning algorithm called EXP3, which stands

for Exponential Weights for Exploration and Exploitation. The simulator is named

LoRaMAB and it shows its relevance against the fair centralized solution and basic

heuristics, without neglecting Inter-SF interference and Capture effect.

Each ED in this simulator is considered as an intelligent agent which aims at

minimizing the collision rate in a distributed manner by choosing the best radio

resources Ai = {si, ci, pi}, where ci, si and pi are the selected channel, spreading

factor and transmission power respectively. After choosing the action a(t) at time t,

device i receives the corresponding reward, denoted by r(t) {0,1}, where 1 stands for

a successful transmission (ACK) and 0 represents a lost packet (NACK). Each end

device follows a set of rules that steers its decision and allows it to make a balance

between (i) Exploiting the cumulative knowledge by choosing the most appropriate

resources {si, ci, pi} and transmitting on them, and (ii) Exploring other resources that

could be interesting to exploit.
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Chapter 4

Proposed Algorithm - GADR with

EXP3 Algorithm

4.1 Distributed Learning: EXP3 Algorithm

As mentioned in section 3.2, LoRaMAB simulator proposes a self-managed solution

by each ED using distributed learning algorithm EXP3 (Exponential Weights for

Exploration and Exploitation). It steers autonomously the decision of LoRa end-

devices towards the most suitable resources (e.g. spreading factors, sub-channels) with

the impact of the capture effect and inter-SF collision not being neglected.

This algorithm is considered to be state of the art in terms of optimization of

resource allocation relying on how good was the previous packet transmission(reward

based on ACK). But, here is a but, the study of the convergence period for static EDs

under variable conditions reveals that the proposed ADR in [9] suffers from a high

convergence period in the order of 20 kHours.

Therefore, to reduce the convergence period and to improve the ASTR (average

successful transmission ratio) as well as the energy consumption, we propose some

updates during the learning process causing a warm up in EXP3 algorithm. Our

proposal is mainly to enhance the role of the gateway in the learning process so that

it can, beside the intelligence at the end-devices, intervene and improve the resource

selection process. This is done with the aid of Gaussian filter-based ADR (G-ADR)

[18] as will be discussed in the following section.
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4.2 NS-managed ADR: G-ADR

In addition to the previously described EXP3 distributed algorithm implemented at

each node, we added Gaussian ADR Algorithm (G-ADR), described in [18], to be

deployed at the Network Server component helping in the resource allocation process.

Authors in [18] build their proposal relying on the evaluations revealed in [20] showing

that the signal strength received at the GW can be seen to have a Gaussian distribution.

Therefore, it is possible to use a Gaussian filter in order to estimate the value of the

SNR of the next transmission by smoothing the SNR every M packets being received at

the BS, then, computing the convenient SF and TP that are SNR-dependent parameters.

The G-ADR scheme is described in algorithm 2. It involves 2 main steps:

1. The network server tracks every M received packets from ED in order to compute

the mean and variance of their SNR.

2. The algorithm obtains SNRth which is the SNR threshold for a given receiver

sensitivity and current Data Rate according to table 4.1. Receiver sensitivity is

a measure of the minimum signal strength that a receiver can detect and process

successfully. It is expressed in dBm and is described as follows

S = −174 + 10log(BW) + NF + S NR (4.1)

where BW is the receiver bandwidth and NF is the receiver noise figure that

is fixed for a given hardware implementation. Then computes Nstep which

represents the number of executions required to reach the optimal parameters.

Notice that, GADR tends to decrease the SF-value, while ED-managed ADR is

responsible for increasing it. This will give GADR an energy saving advantage over

EXP3.
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Algorithm 1 Gaussian filter-based adaptive data rate (G-ADR) scheme
Data: T P = 10 − 14, S F = 7 − 12,M, S NRreq, devicemargin

Result: S FandT P
for i← 0 to M do

S NR = getS NR(i)
if S NR > LPF and S NR < HPF then

insertS NRintoS NRlist
end

end
S NRm = S um/S izeo f S NRlist

/* Server-Managed ADR */

S NRreq = demodulation f loor(currentdatarate)
devicemargin = 10
S NRmargin = (S NRm − S NRreq − devicemargin)
steps = int(S NRmargin/3)
while steps > 0andS F > S Fmin do

S F = S F − 1
steps = steps − 1

end
while steps > 0andT P > T Pmin do

T P = T P − 2
steps = steps − 1

end
while steps < 0andT P < T Pmax do

T P = T P + 2
steps = steps + 1

end
NS transmitsLinkADRReq

14



SF GW Sensitivity (Sg) [dBm] ED Sensitivity (Se) [dBm] SNR [dB]

12 −142.5 −137.0 −20
11 −140.0 −135.0 −17.5
10 −137.5 −133.0 −15
9 −135.0 −130.0 −12.5
8 −132.5 −127.0 −10
7 −130.0 −124.0 −7.5

Table 4.1: Sensitivity and required signal-to-noise ratio (SNR) of EDs and GW with
BW = 125-kHz [22] [6]

4.3 EXP3 with G-ADR Algorithm

To better understand how both algorithms are combined, algorithm ?? describes the

detailed operation of signaling or superposition between EXP3 with GADR. Our

benchmark was EXP3 algorithm which is ED-managed ADR. Simultaneously, NS-

managed ADR is added and it works to aid the learning process of optimizing the

transmission parameters.

Our main contribution is that each algorithm rely on a different interpretation to

take the decision of resource parameters to be used in the next packet transmission.

EXP3 searches probabilistically for the best parameters based just on the good

reception of a packet (reward based on ACK or NACK), while GADR sends a request

to the ED to update the transmission parameters based on the SNR values of every M

packet received from each node at the NS side]. When GADR sends this downlink

request to the ED, the ED will listen and deploy the updates on SF and TP accordingly.

However, in the meanwhile of NS tracking the M SNR values, ED will be trying to

optimize over the GADR previous decision using EXP3 and so on.
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Algorithm 2 EXP3 with G-ADR Algorithm
Data: T= SimTime, TP = 10-14, SF = 7-12, M, N tx = 0, wa(0) = 1, a ∈ A =

seto f actions,K = numbero f actions, γ = min (1,
q

k log(k)
(e−1)T )

Result: S F and T P
// Algorithm to be running on Each ED

initialization;
for t ← 1 to T do

Transmit Packet with configurable SF and TP
N tx + +

/* ED-Managed ADR */

Receive reward

ra(t) =

(
1 if ACK is received,
0 otherwise.

Update Prob and weight of each action according to the reward

wa(t + 1) = wa(t) exp(
γra(t)

K.pa(t)
)

pa(t + 1) = (1 − γ)
wa(t + 1)PK

a=1 wa(t + 1)
+
γ

K

draw strategy a ∈ A, according to the distribution pa(t)

/* NS-Managed ADR */

if N tx < M then
S NR = getS NR(i)
insertS NRintoS NRlist

else
Estimate S NRreq of the next packets
Optimize the configurable parameters S F & T P ; //SNR-dependent

parameters

NS transmit downlink packet ; //telling ED to update SF & TP

N tx = 0

end
end
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Chapter 5

Simulation Framework

In this project, we aim to study the performance of resource allocation mechanisms

in LoRaWAN network. Our simulation framework are done using the LoRa-MAB

simulator [9], build in Python with Simpy library.

5.1 Simulation Model

The modeled communication range is around 4.5 km composed of 1 Base Station (Sink

or Gateway) and 200-800 End devices (Nodes). All EDs are supposed to be Class A

devices. It is likely that, for a LoRaWAN Network, high number of nodes would have

to be supported within the given range. For this reason, we will study the performance

of the network with an increasing number of smart Nodes.

There exists 6 regions around the BS, each specifying the minimum SF that can

be used by the node when transmitting a packet to the BS, according to a sensitivity

matrix shown in table 4.1. More nodes are supposed to be located near to the Gateway,

so we specify a nodes matrix distribution = [0.1, 0.1, 0.3, 0.4, 0.05, 0.05] as supposed

in [9], see Fig. 5.1.
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Figure 5.1: Network Configuration

5.2 Duty Cycle Restriction and Packet Generation

Rate

The packet generation rate must satisfy the duty cycle restriction, 1% in Europe for

the ISM band [3] . Every ED transmits a 50 byte packet with an exponential inter

generation time of 16.7 minutes representing a realistic application [6] during 10 kHrs

of total simulation time.

5.3 Propagation Model

Our radio propagation model is based on the well known log-distance path loss model,

which is presented in [?]. This model describe the path loss as follows:

Lpl(d) = Lpl(d0) + 10γlog(d/d0) + Xσ (5.1)
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where Lpl(d0) is the mean path-loss at the reference distance d0, γ is the path loss

exponent, and Xσ is the normal distribution of shadowing, with zero mean and σ2

variance.

5.4 Simulation Parameters

The SF to be selected ranges from 7 to 12. As initial deployment, each node has SFset

= [SFmin, . . . , 12], SFmin is the minimum allowed SF depending on its corresponding

region (sensitivity). This is referred to as an initial SF allocation mechanism (I-SFA)

during the start-up of the running process, it is used also by authors in [18]. The

main goal is reducing the available choices of SF at each node and thus decreasing the

learning time. I-SFA is adopted in all the following experiments.

Also, Capture Effect and Inter-SF interference are taken into account in all

experiments.

As a result of the above model descriptions, Table 5.1 presents all the simulation

parameters adopted.

Parameter Value

Simulation time [Khrs] 10
lambda[packets/hour] 4

GW 1
Packet length [bytes] 50

Spreading Factor 7 to 12
Transmit power [dBm] 10 to 14

Frequency region EU-868
Channel bandwidth [kHz] 125

Propagation model log-distance
Path loss exponent 2.08
Coding Rate (CR) 4/5

Table 5.1: System Parameters
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Chapter 6

Experimental Evaluation

In this section, we demonstrate the power of this combination of algorithms by

presenting a comprehensive performance description of the proposed scheme EXP3-

GADR, which is examined in comparison to a simple network and EXP3-alone

scenarios. Simple mode is described to be an all non-intelligent nodes scenario,

by which all nodes select randomly the resources, keeping the acknowledged-based

transmission technology. For the sake of simplicity, simple mode is considered to

resemble the typical ADR described in [10].

The analysis is investigated in terms of packet successful transmission rate, energy

consumption, and convergence period in static EDs scenarios. And lastly, fairness

interpretation is done to illustrate the performance of different algorithms over the

whole network. Simulations are performed using LoRaMAB simulator.

6.1 Convergence Period Analysis

Convergence period is defined to be the time needed by the EDs in the network to reach

a steady average successful transmission rate. Fig 6.1 shows the network topology

view of 600 EDs and 1 BS, where EDs are colored according to the SF value selected

during transmission. In the initial network, most of the nodes were transmitting using

SF=12, this makes the BS reachable by all nodes, however, an increase in the inter-SF

collision and also the energy consumption will be inevitable. Thus, certainly, one can

notice the convenient SF selection mechanism achieved in the final topology where SF

percentages at convergence are more suitable as will be seen in the next sections.

20



(a)

(b)

Figure 6.1: (a) Initial network topology in case of static EDs with N = 600 (b) Final
network topology after applying EXP3-GADR in the case of static EDs with N = 600
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6.1.1 Static EDs Network

Figure 6.2 reveals a convergence time order of 2 khrs in the case of the proposed

Algorithm(EXP3 + GADR). This convergence time is roughly the same even when

increasing the number of nodes to 800 nodes. The convergence of EXP3 algorithm

alone is in order of 20 khrs, thus adding GADR is considered to owe an enhancement

up to 90% in the convergence period advantage. This improvement can be anticipated

in a way that the NS managed ADR implemented will assist the resource allocation

mechanism at the ED level where self-managed ADR takes place. Therefore, the

proposed algorithm shows a very important improvement in the convergence period. It

is a result of deploying, experimenting and comparing extensive simulation scenarios

in order to come up with such a result. Table 6.1 highlights the detailed convergence

periods of different EDs in khrs for static EDs.

Figure 6.2: Average successful transmission rate of static EDs during simulation time
under three different algorithms
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Number of EDs N EXP3 EXP3-GADR

200 11 2
400 14 3
600 13 4
800 19 6

Table 6.1: Convergence period in KHrs for static EDs (with total simulation time =

20Khrs days)

Figure 6.3: Average energy consumption rate of static EDs during simulation time
under the three different algorithms for an increasing number of Nodes

6.1.2 Mobile EDs Network

Taking mobility of the EDs into consideration, which is a possible use case of LoRa

devices, we will study the performance of the proposed algorithm under this scenario.

The motion model is implemented as in [18]. Each node chooses a speed between 0.5

and 1.5 m/s (higher speed is selected for the outdoor positioning [23]). In our case,

where we are running a simulation time order of khrs and in order not to make the

learning process dump and useless, we reduced the speed to a value between 0.05 and
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0.15 m/s. Also, to force the learning process not to start again during each movement

of an ED, we proposed a distant threshold set to 100 meters after which the node should

update its learning process, meaning the set of actions to be taken including the SF and

TP chosen, depending on its new current position with respect to the BS.

As for expectations in mobile network case, normally, the maximum average STR

shall be less, since the time during motion will not have enough for the node to choose

its best resources (as seen previously in 6.1.1, convergence is reached after 2 kHrs of

learning). Figure 6.4 shows our anticipation was correct, a decrease in the maximum

STR value is recorded compared to the static mode. We can notice a very slight

improvement of GADR over EXP3, but this improvement becomes more important

with a higher number of EDs (> 800), for N=800 nodes, an increase of 3% in the

average STR is recorded.

Figure 6.4: Average successful transmission rate of mobile EDs during simulation time
under the three different algorithms
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6.2 Average STR and Energy Analysis

In this study, the STR is defined as the number of uplink packets that are correctly

received in one of the available Gateways, i.e., the rate of successfully received packets,

while the average energy consumption is the energy consumed per successfully

transmitted packets by all EDs. The results are generated using a confidence interval

of 5 simulations with different seeds. The confidence intervals of average STR and

average energy for a different number of static EDs under 3 different scenarios are

presented in Figure 6.5. Results in the case of GADR along with EXP3 algorithm

show high STR values(0̃.85) with a decreasing trend when increasing the number of

EDs. EXP3-alone deployment has a high STR performance as well, but to attain such a

record it requires much more running time (high convergence discussed in section 6.1).

On the other hand, the simple ADR scenario (yellow plot) has the least performance

in terms of STR (0̃.6). This is due to high interference among the random SFs chosen

when packets are transmitted. The influence of intelligence (GADR-EXP3) achieves

an enhancement up to 20% in successful transmission rate (STR) with respect to an all

simple nodes scenario and 4-5% over EXP3-alone algorithm.

In addition, the lowest energy consumption is recorded for the case of both NS and

ED intelligence (EXP3-GADR) with a slight increase as the number of nodes increase.

however, the energy consumption in the EXP3-algorithm study is even more than that

of simple node scenario. The energy is reduced by 25% using our algorithm. A

0.05 Joules difference in the energy consumption is not negligible when working with

large-scale LoRaWAN devices which is energy-saving oriented. And as mentioned

before, this enhancement is referred to the working methodology of GADR where it

decrements SF in the mean while of probabilistic searching of SF done by EXP3. so

decreasing SF will result a less ToA and thus less energy ( Energy = ToA*TP , refer to

ToA in formula 2.1 ).

Summing up, Table 6.2 illustrates quantitatively the performance of the algorithms

showing that EXP3-GADR outperforms EXp3-alone algorithm and simple mode,

providing even better performance in case of the highly loaded system with an average

of Packet Success Rate of roughly 0.85 and energy consumption of 0.16 joules. Much

better STR values with even less energy consumption than previous situations make the
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combination of node-managed ADR and sever-manged ADR surpass previous results.

Thanks for the intelligence added to the EDs and BS.

(a)

(b)

Figure 6.5: (a) Confidence Interval of Average successful transmission rate (b)
Confidence Interval of Average Energy consumption
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Number of EDs N Simple Mode EXP3 EXP3-GADR

200 - 30.4% 34.7%
400 - 30.7% 33.8%
600 - 36.0% 38.5%
800 - 36.8% 39.0%

Table 6.2: ASTR improvements for static EDs
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6.3 Fairness of the algorithm

As LoRaWAN is based on Aloha, it is supposed to be a fair MAC protocol. However,

various effects such as Capture Effect and Node location introduce unfairness,

favouring transmissions from nodes closer to the gateway and by those using lower

spreading factors. To verify the impact of the fair data rate distribution, we compute

the fairness of proposed algorithm using Jain’s fairness index [21] as in the formula

6.1:

ζ = (
NX

i=1

DERi)2/(N ∗
NX

i=1

DER2
i ) (6.1)

where N is the Number of Nodes, and Data Extraction Rate (DER) is the ratio of the

number of packets that arrive at least at one gateway without corruption over the total

number of transmitted packets during a given period of time. Jain’s index [24] is a

quantitative fairness index lying between 0 and 1, where a higher index means higher

fairness. It is adopted in resource allocation scenarios. It does not consider individual

fairness but rather gives an intuitive view of fairness distribution of the algorithm under

study.

As the number of nodes increases, the Fairness index slightly decreases as seen in

plot 6.6. This stability with an increasing number of nodes in the network is caused

by the nodes distribution supposed initially in our network topology for which there

are not numerous nodes far away from the BS. Thus, unfairness introduced by Node

location almost vanishes and the distortion is proportional to all nodes.

Comparing the results for EXP3 and GADR with the case of simple node, one can

observe an improvement up to 7%. This is mainly because the distributed algorithm

EXP3 makes the learning process feasible for all nodes interactively with the situation

of the simulation environment (all nodes will learn the best available resources

simultaneously) reducing the capture effect and collision. A slight enhancement in the

index is recorded using GADR algorithm with a more constant value of the index as

well, this gives us an intuition that the DER in this scenario is constant even when

increasing the number of nodes. This fact can be related to GADR at BS that is

enhancing the SF and TP of each node while transmitting, based on the last M received

packets reception power and thus reducing the distortion fairly for all nodes.
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Figure 6.6: Fairness Index for the three different scenarios
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Chapter 7

Conclusion and Perpectives

In this paper, we considered LoRaWAN networks with static and mobile nodes

operating in the acknowledged mode under three different resource allocation al-

gorithms. We have developed a simulation model of an algorithm to be used for

resource allocation during data transmission in LoRaWAN networks. In contrast to

previous works, our model combines NS-managed ADR with self-managed one for

an optimal resource selection process. It shows important improvements based on the

performance evaluation metrics such as packet success ratio, energy consumption rate,

and fairness index.

For static EDs, the suggested method when compared to benchmark EXP3

algorithm, have reduced significantly the convergence duration by up to 90%, reduced

the energy consumption by up to 25%, and improved the successful transmission

rate by almost 8%. However, the improvements are shortened for mobile devices.

The scalability of the network was limited since the simulation times were relatively

high while in LoRa we expect thousands of end devices in the network. This

limits the generality of our approach. Working also on networks with nodes having

different priorities or packet size parameters would make insights for the reliability of

LoRawAN network to satisfy different QoS Requirements, which can further help in

improving the performance of the network.

To sum up, LoRaWAN has shown key success stories as network infrastructure

for low-power Internet of Thing devices. Nevertheless, the scalability and resource

allocation schemes determine if the ALOHA-based network can fit any use case.
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