POLITECNICO DI TORINO

Master of Science Program in Electronic Engineering
Master’s Degree Thesis

Software-Defined Radio
Implementation of a LoRa Detector
and Transceiver

Supervisors (PoliTO)
Dr. Roberto Garello
Dr. Daniel Gaetano Riviello

M.Sc. Simone Scarafia
Supervisor (USP)
Dr. Cristiano Magalhaes Panazio
Student
Joao Pedro de Omena Simas

ACADEMIC YEAR 2020-2021

Abstract

The number of applications of low-power wide-area networks (LPWANE) has been
growing quite considerably in the past few years and so has the number of protocol
stacks. Despite this fact, there’s still no fully open [[PWAN] protocol stack available
to the public, which limits the flexibility and ease-of-integration of the existing
ones. The closest to being fully open is LoRa, however only its medium access
control (MAC) layer, know as LoRaWAN, is open and its physical and logical link
control layers, also known as LoRa PHY, are still only partially understood.

In this thesis, the essential missing aspects of LoRa PHY are not only reverse-
engineered, but also a new design of the transceiver and its sub-components is
proposed and implemented in a modular and flexible way using GNU Radio.

Finally, some examples of applications of both the transceiver and its compo-
nents, which are made to be run in a simple setup using cheap widely available
of-the-shelf hardware, are given to show how the library can be used and extended.

Contents

[List of Figures|

[List of Tables|

[List of Acronyms|

[3.1.2 Physical Layer - Packet Structuref
[3.1.3 Logic Link Control Layer Structurel
[3.2 Findings
[3.2.1 Experimental Setup|.
[3.2.2 General Transmitter Structurel
[3.2.3 Physical Layer - Packet Structurel.
[3.2.4 Logic Link Control Layer Structurel

4 Recelver Structurel
[4.1 Frequency Estimator|
[4.2 Correlation Synchronizer|
4.3 Symbol Decision|o
.4 Frame Decoder / Receiver Controller|

[> Transceiver Implementation|

[6 Hardware Implementation and Example Applications|
[6.1 Hardware Setup|.
[6.2 Example Applications|]o
[6.2.1 LoRa Detector: Another Application of the Chirp Detector]| .
[6.2.2 Multi-Parameter, Multi-Channel Receivery
6.2.3 Variable Parameter Transmitter
[6.2.4 Multi-Parameter, Multi-Channel Transceiver|

[r__Conclusion|

Bibliography|

[A Code Listings|
[A.1 Chirp Detector|

[A.2 Frequency Estimator| o0
[A.2.1 Stochastic Gradient Descent (frequencyTracker class)

[A.4 Synchronizer|.
[A.5 Symbol Detector]
[A.5.1 Minimum Squares|.
[A.5.2 Multiple Detection|
[A.6 Gray Encoder|
(A7 Deinterleaver] oo

A.9 Frame Decoder / Receiver Controller|
A T0ONibbles To Bytes,

A 11 Randomizer]
A 12 CRC-T6l o

[A.17 Gray Decoder|
[A.18 Symbol Modulator|
[A.19 Append Prefix|.o
[A.20 Frequency Modulator|00
[A.21 Append Silence|o

42
42
43
43
45
47
48

50

51

List of Figures

2.1 Physical bit rate in function of spreading factor (SF) and bandwidth |
(BW) for some of the possible values| 13
[4.1 Spectrogram of he input signal composed of a sequence of LoRa |
frames with [SE|= 7, CRC on, and payloads of a single byte containing |
powers of 2 (1,2, ... 128).| 26
[4.2 Output signal of the stochastic gradient descent frequency tracker |
given the described test signal at its input.| 27
[4.3 Output signal of thelDE[1peak frequency tracker given the described |
test signal at its input.| 29
[4.4 Output signals of the correlator when receiving the end of the pream- |
ble a LoRa trame with Sk = 7, CRC on, and payload of a single byte |
containing a power of 2 (1,2, ..., 128)[. 30
[4.5 Synchronized signal, as generated by the synchronizer when its input |
1s the previously shown test signal.| 31
[4.6 Illustration of the offset estimation procedure with a single upchirp |
(as sync word) and downchirp.|. oo oL 32
[4.7 Synchronized frequency samples of a received LoRa symbol together |
with the samples of the symbol detected by the minimum squares |
decider block when given the former as an input.| 34
[>.1 Flowgraph ot the receiver in GNU Radio companion.| 38
5.2 Flowgraph of the transmitter in GNU Radio companion.| 40
[6.1 Block diagram of employed hardware setup.| 42
(6.2 Flowgraph ot the LoRa multi-channel multi{5E| detector.| 44
(6.3 Flowgraph ot the Multi-Parameter, Multi-Channel Receiver.| 46
[6.4 Flowgraph of the Variable Parameter Iransmitter.|. 47
[6.5 Flowgraph an example of the tull Multi-Parameter, Multi-Channel |
Transceiver] 49
[A.1 Flowgraph of the DF'1'Peak block in GNU Radio companion.| 57

List of Tables

[2.1 Comparison of selected Characteristics of LoRa, NB-IoT and Sigfox.| 10
2.2 Physical bit rate values (in kbit /s) for selected combinations of band- |
| width (BW)) and spreading factor (SE) (R, = BW -2=°" . SF)| .. 13
(3.1 General Structure of the LoRa logic link control (LLC) frame| . . . 16
[3.2 Proposed General Structure of the LoRa[LLCl frame| 20

List of Acronyms

BPSK Binary phase shift keying

BW Bandwidth

Cr Code rate

CRC Cyclic redundancy check
CSS Chirp spread spectrum

DBPSK Differential binary phase shift keying
DFT Discrete Fourier transform

DTFT Discrete-time Fourier transform

GF(2) Galois Field of order 2

HN High Nibble

IETF Internet Engineering Task Force

IoT Internet of things

IP Internet Protocol

IC Integrated circuit

ISM Industrial, scientific and medical radio nand

LFSR Linear-feedback shift register
LLC Logic link control

LN Low nibble

LPWAN Low-power wide-area network

LSB Least-significant bit

MAC
MSB
NLMS
OSI
QPSK
RAM

Medium access control
Most-significant bit
Normalized least mean squares
Open Systems Interconnection
Quadrature phase shift keying

Random-access memory

RFTDMA Random frequency time-division multiple access

SDR
SF
TCP

Software defined radio
Spreading factor

Transmission control protocol

Chapter 1

Introduction

Low-power wide-area networks, commonly referred to as [LPWANE, are networks
whose main characteristics are having large coverage areas, low-power consumption
(many times involving battery operated devices) and low data rates. The number
of applications of this kind of technology has been growing in the past few years,
especially with the rise in interest on Internet of Things applications, many times
related to the implementation of wireless sensor networks.

Despite this big interest in this field and the growing number of applications
of LPWANE, it still lacks a completely open protocol stack. The closest to this
available at the moment is LoRa, better said the LoRa protocol stack, however
only its upper layer, i.e. the medium access control layer, is open.

The LoRa Protocol stack, usually referred simply as LoRa, is usually subdivided
in two parts: LoRa PHY, which, contrary to what the name implies, encompasses
not only the physical layer aspects of this protocol stack, but also the logical link
control sublayer of the data link layer, using a more conventional Open Systems
Interconnection ([(OSI) model nomenclature; and LoRaWAN, which comprises the
medium access control sublayer of the data link layer.

While LoRaWAN is open and publicly available [I], LoRa PHY is not. Some
attempts have been made to reverse-engineer it and or propose designs for its
demodulator [2], [3], but some details still have remained not fully understood
which has prevented the implementation of a fully working free and open-source
LoRa PHY transceiver.

The main objective of this thesis is to continue the previous work on reverse-
engineering the missing details of LoRa’s lower layers and implementing a fully free
and open-source software-defined transceiver, with the goal of allowing for further
research and development to be done on this protocol stack by the scientific com-
munity. Also, this implementation is made to be modular, to give more flexibility
and ease the implementation of custom solutions in the lower levels to users of this
technology.

Finally, four example applications of the developed receiver and transmitter are

7

Introduction

given, both in terms of hardware and extra software. The first one to illustrate
how individual blocks can be used to implement simpler applications, which do
not require the full transmitter/receiver, in the form of a detector that can detect
frames being transmitted and work out which spreading factor and which channel
was used to transmit it and derive statistics from it, in order to analyze the traffic
in the network. And the last three to illustrate how the developed receiver and
transmitter blocks can be used to implement more complex systems, that extend
its functionality using GNU Radio’s stock blocks.

Chapter 2

LPWANSs and the LoRa
Protocol Stack

In order to illustrate the context within which the LoRa protocol stack is situated
in the framework of [LPWANE, a brief description on some key topics is given in
this section.

2.1 Low-Power Wide-Area Networks

Given that there’s no standard defining what exactly classifies as a Low-Power
Wide-Area Network, commonly referred to as a[LPWAN] it is not simply a Network
that covers a wide area and employs low-power devices. One attempt to define it,
given the current applications that identify themselves as[LPWANE, is the RFC8375
[4] published by the Internet Engineering Task Force (IETE]). It sums up the their
main characteristics as:

Most technologies in this space aim for a similar goal of supporting large
numbers of very low-cost, low-throughput devices with very low power
consumption, so that even battery-powered devices can be deployed for
years. [LPWAN] devices also tend to be constrained in their use of band-
width, for example, with limited frequencies being allowed to be used
within limited duty cycles (usually expressed as a percentage of time per
hour that the device is allowed to transmit). As the name implies, cover-
age of large areas is also a common goal. So, by and large, the different
technologies aim for deployment in very similar circumstances.

Also, some important structural similarities between all the existing [LPWAN]
"technologies", name given to protocol stacks combined with network topologies,
are pointed out, mainly them being organized in terms of:

9

[LPWANs and the LoRa Protocol Stack

e End devices that communicate with Radio Gateways via a wireless link;

e Radio Gateway that connects to end devices using the [LPWAN] protocol
and to a network gateway using [TCP}/IPL

e Network Gateway that connects the radio gateway to the internet (i.e. to

an Application server);

e Authentication Server that handles authentication, the joining of new de-
vices to the network and the assignment of encryption keys. This might be
implemented in the same hardware as the Network Gateway.

Some of the most widely used [LPWAN] technologies include LoRa (i.e. Lo-
RaWAN + LoRa PHY), Sigfox and NB-IoT. Below is a brief comparison table of
these three technologies, in terms of their uplink communication characteristics, in

the physical, [LLC| and [MAC] layers:

Table 2.1: Comparison of selected Characteristics of LoRa, NB-IoT and Sigfox.

LoRaWAN -+ LoRa PHY

Band

Modulation

Coding

Bandwidth

Physical Bit Rate
Multiplexing

Channel Access Mechanism

Industrial, scientific and medical radio nand (I5M))

(see section

Parity Bit (code rate (Ci) = 4/5) (See section

125, 250 or 500 kHz [5]

0.37 - 27.4 kbit/s (See section

Different{SF] Chirp Interference Resistance (See section }
Deterministic Time Slots [I]

NB-IoT (Random Access Channel, Single Subcarrier)

Channel Access Mechanism

Band Same as LTE
Modulation SC-FDMA (BPSK/[QPSK)) [0]
Coding Turbocode (Cd = 1/3)
Bandwidth 3.75 or 15 kHz [6]
Physical Bit Rate 3.75, 7.5, 15 or 30 kbit/s [6]
Multiplexing Subcarrier hopping [7]
Channel Access Mechanism | 4-way handshake [7]
Sigfox
Band IS M
Modulation Differential binary phase shift keying (DBPSK)) [8]
Coding None or Convolutional-(1,5,7) (Cil = 1/3) [§]
Bandwidth 0.1 kHz or 0.6 kHz [§]
Physical Bit Rate 0.1 kbit/s or 0.6 kbit/s []
Multiplexing 8]

Deterministic Time Slots [9]

10

[LPWANs and the LoRa Protocol Stack

As it can be seen, although each of the three can be classified as [LPWAN] tech-
nologies, they do so while following very distinct design paradigms.

Sigfox takes a minimalistic approach, employing one of the simplest modulations
possible, making the hardware equally simple, but ending up sacrificing bit rate.

NB-IoT is designed around the constraint of implementing an internet of things
(IoT) /[LPWAN] oriented protocol stack, while re-using as much as possible all the
existing LTE standards. This allows for existing components, software, and, more
importantly, infrastructure built for LTE to be re-used for NB-IoT. This constraint,
however, makes it so NB-IoT inherits much of the complexity of the LTE protocol
stack that is arguably unnecessary in this context.

Finally, LoRaWAN is built with the main goal of being a flexible LPWAN] pro-
tocol stack that takes advantage of the benefits of the LoRa chirp spread spec-
trum (CSS)) modulation. This gives it all the flexibility that Sigfox lacks, while,
because it is designed basically specifically for applications, not having
the complexity that comes with NB-IoT, and on top of that carries all the benefits
the modulation has over conventional ones.

2.2 LoRaWAN

According to LoRaWAN’s specification [I], LoRaWAN is a [MAC] layer protocol
made to run on top of the LoRa PHY physical layer, with the main goal of running
networks of battery-powered end-devices, which should run continuously for a long
time.

In terms of network topology, usually LoRaWAN network follows a "star-of-
stars" topology with the usual organization described in the previous section on
[LPWANE where multiple gateways connect to a network server and the end
devices connect to one or more gateways.

It is also important to note that LoRaWAN is designed to operate reliably on[ISM]
bands which are to be shared with other devices using a variety of other protocols.
To cope with this issue, in addition to the LoRa modulation, it uses some
[MACHayer techniques, such as transmitting the message multiple times, hopping
between channels in a pseudo-random fashion and changing spreading factors, and
consequently bit rates, in order to improve transmission robustness if needed.

Finally an important aspect of LoRaWAN;, is that it up uplink-focused, i.e. it
gives special importance to messages between the end-devices and the gateways
and most of the [MAC behavior is triggered by these. The main reflection of this
fact is that in the most common form of operation (communication between A-
class devices and gateways), downlink communication is only allowed in time slots
located at fixed delays after the transmission of an uplink message.

11

[LPWANs and the LoRa Protocol Stack

2.3 LoRa Chirp Spread Spectrum Modulation

ThelCSS| (Chirp Spread Spectrum) modulation used by LoRa PHY consists in using
as symbols linear chirps, that is signals with the form:

CL‘Z(t> _ AejﬂﬂmOd(t_Tgm’TS)Q,i e {0, - Nsym};t € {O,Ts[(2_1>
Where:

e T is the symbol period

e 3 is a parameter which determines the speed of growth of the instantaneous
frequency of that signal, which will be referred in the rest of this thesis as the
chirp rate.

e mod(a, b) is the real number remainder function defined as:

mod(a,b) = min{r € R",3q € Z,a = qb+r} (2.2)

e Ngym The total number of symbols in the [C55 modulation. The parameters
used my the LoRa PHY modulation are:

— Bandwidth, the mean bandwidth of the signal, which relates with Tg
and 3 as:

BWegs = BT (2.3)

This can be set to a set of predefined values, described in [I0], however
the LoRaWAN specification only uses 125kHz and optionally 250kHz for
uplink messages and 500kHz for downlink messages.

— Spreading Factor It is not only the number of bits each symbol en-
codes, i.e Ny = 25F but is also constrained to relate to the previously
mentioned parameters, such that:

25 = BWegsT, (2.4)
To illustrate the effects of these parameters, below a table and a graph with

the resulting physical bit rates with some of the possible parameter combinations,
mainly the ones used in LoRaWAN, are shown below:

12

[LPWANs and the LoRa Protocol Stack

Table 2.2: Physical bit rate values (in kbit/s) for selected combinations of band-
width (BW]) and spreading factor ([SE) (R, = BW - 2757 . SF).

SF
BW(kHz) 7 8 9 10 11 12
125 6.84 3.91 22 122 067 0.37
250 | 13.67 7.81 439 244 1.34 0.73
500 | 27.34 15.63 8.79 4.88 2.69 1.46
102 1
— BW=125kHz
— BW =250 kHz
BW =500 kHz
% 10"
E
3
%10“
o
107 : ‘ ‘ ‘ :
7 8 9 10 11 12

Spreading Factor

Figure 2.1: Physical bit rate in function of spreading factor (SE]) and bandwidth
(BW]) for some of the possible values.

13

Chapter 3

Reverse Engineering The LoRa
PHY

3.1 Previous Works

3.1.1 General Transmitter Structure

In [2], [3] similar structures for the LoRa receiver are proposed. Given those and the
information provided in [I0], we can summarize those structures as being composed
of the following blocks connected sequentially:

e Linear Encoder

Takes the bits and encodes them with a (CR + 4)/4 code, except for the data
bits, which are always encoded with a 8/4 code.

e Interleaver

An usual diagonal interleaver, that turns the sequence (CR + 4)-bit code words
into a sequence of [SEFbit length words, with the exception of the header bits,
which are interleaved with a 8-bit to (SEl- 2)-bit interleaver EI

L As mentioned above, the header bits are interleaved in a different manner than the payload
bits. Actually, as mentioned in [3], it is the header bits plus the number of payload bits to complete
8 symbols, the 5 header code words plus SF - 7 payload code words with 4 - CR zeros added to
most-significant bits (MSBk) to extend them to also have 8 bits, therefore resulting in 8*(SF -
2) bits. They are then interleaved with a SF - 2 interleaver and the resulting symbol numbers
are multiplied by 4, resulting in eight symbols in the {0;4;8;...;2%F — 4} range. This makes the
header bits have more robustness against noise.

14

Reverse Engineering The LoRa PHY

e Randomizer / Data Whitening
Takes a sequence of pseudo-random numbers with the same bit-length as the
output of the Interleaver, referred in [2] and [3] as a whitening sequence, and
exclusive-ors it with the said output.

e Gray Decoder
An usual gray decoder that turns the [SEFbit (or (SE|- 2) if inside the header)
words into symbol numbers.

e Modulator

A modulator that generates the chirps corresponding to each symbol number.

e Append Preamble
Adds a fixed preamble the beginning of the resulting signal.

3.1.2 Physical Layer - Packet Structure

The LoRa PHY packet is composed of a preamble, followed by LoRa PHY’s logical
link control layer frame, modulated in [CSS|
1. Preamble
The preamble is composed by:
e A sequence of consecutive up chirps, which can be of length 6 to 65535,
as mentioned in [10];
e Two symbols, referred as a sync word, used for network identification;

e Two and a quarter down chirps;

3.1.3 Logic Link Control Layer Structure

1. Coding

Both [2] and [3] cite that the linear encoding used in LoRa PHY is some form
of Hamming encoding and in [3] explicitly describe it for CR = 4, as the usual
form of Hamming(7, 4), mainly a code with generator matrix:

10100010
01100110
000011T1O0
11111111

With a permutation with the following permutation applied to the coded word:

(50124367
15

Reverse Engineering The LoRa PHY

Represented in one-line notation.

. Randomizer

Also referred as a whitening block, the randomizer is partially reverse-engineered
in both [2] and [3] in a direct approach by assuming randomization is done by
exclusive "or’ing" a fixed arbitrary sequence with the output of the interleaver.
These sequences then were then extracted by sending all-zeros payload mes-
sages and looking at the resulting de-interleaved symbols, that should be the
same as the whitening sequence. Note that, in this way, they depend on the
modulation parameters (SE, CR and if lowDataRate is used). These sequences
can be found in [I1].

. Frame Structure

In [3] the following header structure is proposed:

Table 3.1: General Structure of the LoRa [LLC frame.

Starting Bit | Function

0 | Payload Length (1 byte)
8 | CR (3 bits)

11 Present (1 bit)

12 | Header Checksum [HNI (4 bits)

16 | Header Checksum (4 bits)

20 | Payload (0 to 255 bytes)

20 + 8*(Payload Length) | Payload "CRC" (2 bytes) (optional)

Where [HN] (bits 4 to 7) indicates the high nibble and [LN] the low nibble (bits
1 to 3) of a byte.

Each part of the Frame is described in detail in the following sections.

(a) Payload Length
The length of the payload in bytes.
(b) CR
The CR parameter of the LoRa PHY modulation as described in the

Semtech documentation [12], which is not the code rate, but the difference
between the code length and the code rank, this second being always 4.

(c) Present

Single bit that indicates if the payload "CRC" is present or not. If it is
']’ the it is present, if it is 0’ it is not.

16

Reverse Engineering The LoRa PHY

(d) Header Checksum

A checksum calculated from the first 12 bits of the header. Its presence is
mentioned in [3], but its exact structure is not mentioned, only that its 5
least-significant bits (LSBE) are non-zero.

(e) Payload "CRC"

The cyclic redundancy check (CRC]) sum of the payload. It’s mentioned
in [2] and [3], but its exact structure was not known.

3.2 Findings

3.2.1 Experimental Setup

To do the following analysis, a combination of the data provided in gr-lora-samples
and data captured with a simple experimental setup was used.

This setup consisted in a board based on the Atmega328P micro-controller con-
nected to a module based on the SX1278 [Cl which, among some other features, is
a LoRa transceiver, and a RTL-SDR USB software defined radio receiver connected
to a PC. The first was programmed to transmit signals with the desired parameters
and then they were received and recorded using the RTL-SDR and a simple flow-
graph in GNU Radio, to be subsequently decoded using a piece of software written
on MATLAB/Octave developed for this project [13].

3.2.2 General Transmitter Structure

After reverse engineering the whole protocol, process whose details will be described
on following sections, the new revised structure below is proposed.

e Randomizer / Data Whitening

A randomizer which adds (modulo-2 addition, i.e. exclusive or) a pseudo
random sequence of bytes generated by a linear-feedback shift register (LEFSRI)
which is independent from the modulation parameters. Note that this sequence
is only added to the payload bytes and not to the header nor the payload
"CRC" (refer to the section on the structure of the frame header for
more details).

e Linear Encoder
The exact same as described in section [3.1.1] but in the following section on
coding a new, and more intuitive, description of the codes used is given.

e Gray Decoder

The exact same as described in section B.1.1l

17

Reverse Engineering The LoRa PHY

e Interleaver

The exact same as described in section B. 1.1l

e Modulator

The exact same as described in section B.1.11

e Append Preamble

The same as described in section[3.1.1] with the exception of a slight change on
the size of the section of downchirp (see following section on packet structure

(3.2.3)) for more detail).

3.2.3 Physical Layer - Packet Structure

As previously mentioned in the section on previous works , the packet is com-
posed by the [LLC payload preceded by a preamble. The structure described there
seems to be correct, with a slight correction: the down chirps where found to be
slightly shorter than two and a quarter. A length of 2 + 1/4 - 2°5F symbols was de-
termined empirically. The need for this change arose by observations during testing
of the proposed receiver structure (see section , as there was a systematic time
offset in synchronization. Also, while using the receiver implemented in [11], that is
based on the description from [3], for large frames (with payloads with length close
or equal to 255 bytes) with a known input and looking at how the received symbol
numbers drift monotonically from the expected ones, we can see that there’s some
inaccuracy in the synchronization, further giving evidence to this hypothesis.

As a side-note, this detail is probably the reason why the whitening/randomizer

was not reverse engineered on previous papers. For more details on this look in the
section on the randomizer (3.2.4.2]).

3.2.4 Logic Link Control Layer Structure

1. Coding

By applying the bit permutations to the to the generator matrices of the codes
proposed in [2] and [3] and implemented in [I1], in order to not need the extra
bit-permutation step new generator matrices were obtained. Also the nibbles
of the coded word were inverted, to get a canonical code, which also resulted in
a more intuitive structure of the randomizer (see section giving more
evidence that this is indeed the intended bit ordering. For each of the possible
CR values, the obtained generator matrices are listed below:

18

Reverse Engineering The LoRa PHY

eCR=1
10001
01001
00101
00011
Which is a simple parity bit code.
e CR =2
100010
010011
001011
000101
e CR=3
1000101
0100111
0010110
0001011
e CR =14
10001011
01001110
00101101
00010111

Note that all the obtained linear codes are canonical and, with the exception
of the first code, which is a simply a parity bit, the three others are all derived
from Hamming(7,4). For CR = 3, the code is a canonical version of it, whereas
for CR = 2 the code is a reduced version this code obtained by removing the
last bit, which results in a canonical (6,4) code and the last one (CR = 4) is a
form of the extended Hamming(8,4) code obtained by adding an extra parity
bit to the form of Hamming(7,4) used for CR = 3.

2. Randomizer

By taking the whitening sequences obtained in [3], used in [I1], passing them
through the decoder and then grouping the obtained bits in a 8xN column
bit matrix and then running Berkelamp-Massey’s algorithm E| to the first 100
bytes, it can be seen that the sequence can be generated by an degree-8 [LESR]
with the following polynomial:

2Berkelamp-Massey’s algorithm is an algorithm that finds the shortest LSFR that encodes a
given sequence in GF(2). This approach is equivalent to solving the linear system that arises from

the LSFR structure for a number of data points (b;4n = Zi]\!ol bi—1_ray for i € {0,...,. M —1})
using Gaussian elimination in GF(2).

19

Reverse Engineering The LoRa PHY

Pla)=2"+2*+ 2" +2° + 27 (3.1)

The state of this [LESR] is modulo-2 added to each the data bytes to act as a
randomizer.

Furthermore, it’s worth noticing that the sequences provided by Robyns in
[11] diverge from those generated by this LFSR after a certain position, but
this is probably due to a symbol rate offset or an imprecision on the alignment
that caused the last symbols of the message not to be aligned when using the
receiver used in [IT]. This conclusion was reached because the symbol numbers
at the end of a 255-byte length frame slowly drift from the ones obtained in
this work.

It has to be pointed out that the whitening sequences proposed in [3] do work.
Even with this problem, as the symbol number offsets caused by the time drift
due to the inaccuracy in synchronization are deterministic and therefore can
be compensated in the de-randomization process by changing the whitening
sequence, like it was done, unknowingly, in [3].

. Frame Structure

By analyzing the structure of the header, and given the previous description
given in [3], the structure of the frame was found to be:

Table 3.2: Proposed General Structure of the LoRa [LLC| frame.

Starting Bit | Function
0 | Payload Length [HNI (4 bits)
4 | Payload Length [LN] (4 bits)
8 | CR (3 bits)
11 | CRC Present (1 bit)
12 | Header Checksum [HN] (4 bits)
16 | Header Checksum [LN] (4 bits)
20 | Payload (0 to 255 bytes)
20 + 8*(Payload Length) | Payload "CRC" (2 bytes) (optional)
20 + 8*(Payload Length + 2) | Padding Nibbles

3The payload "CRC" was found to not be in the usual ordering and not to be an usual CRC
sum. Check its section for more details.

4These padding nibbles are added so the encoding of the payload plus the payload nibbles
plus the CRC, if present, plus these extra nibbles are a multiple of SF and therefore give rise,
after the interleaver, to a whole number of symbols. How exactly this numbers are generated in
real hardware is not clear, but they seem to make no difference as, while testing the implemented

20

Reverse Engineering The LoRa PHY

Where [HN] (bits 4 to 7) indicates the high nibble and [LN] the low nibble (bits
1 to 3) of a byte.

Note that the nibbles might seem to be inverted to that described in [3] and
in section [3.1.3.3] This is due to the change in the description of the coding.

Each part of the Frame is described in detail in the following sections.

(a) Payload Length
The length of the payload in bytes. Note that the two nibbles are in a
"little endian-like" ordering with the upper nibble coming first and then
the lower nibble.

(b) CR
The CR parameter of the LoRa PHY modulation as described in the
Semtech documentation [12], which is not the code rate, but the difference

between the code length and the code rank, this second always being equal
to 4.

(c) CRC Present
Single bit that indicates if the payload "CRC" is present or not. If it is
"1’, then it is present, if it is ’0’ it is not.

(d) Header Checksum

A checksum calculated from the first 12 bits of the header. The same
"little endian-like" ordering used in the payload length was assumed. As
described in Robyn’s work [3], 3 of the bits of the checksum are always
0, which in the assumed ordering are the last 3 bits (5 to 7). After doing
some analysis it was found that the checksum can be calculated as:

c=Gh (3.2)

Where ¢ is the bit column vector representation of the checksum and h
the one of the first 12 bits of the header and G a matrix in Mgy12(GF(2)),
where denotes the order-2 Galois field. And G is equal to:

DO = OO O

SO O, OO o
O OO O, OO
O OO, OOOo
OO OO O~ = O
DO DD O = OO
OO OO === O
N eNeNaelSel =)
DO DO~ O =
(=N elelelNel S e
OO OO OO
O OO OO =

transmitter, they were set to zero, which is not what usually what happens in the commercial
transmitters, and still functioned normally.

21

Reverse Engineering The LoRa PHY

i. Reverse-Engineering Methodology

In order to reverse engineer this checksum, initially the reasonable
assumption that the bits of the header checksum is a linear function
(in modulo-2 arithmetic) of the data bits of the header was made.
Then by decoding the headers of frames from captured waveform files,
putting them as rows of a matrix and then applying the Gauss-Jordan
elimination algorithm in modulo-2 arithmetic. In this way, if we start
with a matrix with 12 linearly independent rows (in the canonical
linear space in [GF(2)!?) we get a matrix M, such that:

M= (I GT)

Where I is an 12x12 identity matrix.

(e) Payload "CRC"

The payload "CRC" was found to be calculated by taking the polynomial
in relative to the payload data in little endian ordering and taking
the remainder of its division with the polynomial 2° + % + 2 + 216
and then taking the corresponding bit string and storing it in big endian
ordering. Note that this division is equivalent to computing the CRC sum
of the data starting from the second byte (in little endian order) with the
above mentioned polynomial and using as initial value of the algorithm
the first byte.

i. Reverse-Engineering Methodology

Initially, given what was already known, it was assumed that the CRC
sum was really a CRC sum and had a degree-16 polynomial. In order
to reverse engineer the payload CRC, using the before mentioned test
setup, frames whose payload was the powers of two, i.e. only one "1’
byte and all the others ’0’, with length 1 up to 7 were transmitted and
captured and decoded. For the sake of simplicity all byte orderings
referred in the rest of this description are big endian. When observing
the data, it can be seen that when only the last 2 bytes are non-zero,
the CRC is the same as those 2 last bytes, but with the two bytes in
opposite ordering. Given this, three things were inferred:

e That the byte ordering of the CRC was the the opposite of the one
of the data.

e That the checksum was not a direct CRC sum, but the direct re-
mainder of the polynomial division of the data without multiplying
its polynomial by x", where n is the order of the CRC.

e That the data is used in this calculation is in little endian order,
because the CRC sum was the same as the data but inverted when
only two non-zero bytes are transmitted.

22

Reverse Engineering The LoRa PHY

Given those three, if the last bytes of the payload are zero, the check-
sum is equivalent to an usual CRC sum of the data in little endian
mode and ignoring those last two bits. Therefore, it was possible to
use the open source tool CRC RevEng [14] to find the polynomial, if
this checksum was indeed a CRC. This program tests a collection of
know used CRC polynomials and checks if any are consistent with the
given data + CRC’s. By running it with payload data, the program
yielded the polynomial 0x1021 and indicated that the data was indeed
taken in little endian ordering. For further testing, with all power-of-
two-length payloads it was verified that this CRC coincided with the
one calculated by the commercial transceiver for payload lengths 1 up
to 7 bytes.

23

Chapter 4

Recelver Structure

As the transmitter structure was already described on section to illustrate the
structure of the frame, in this section, an structure for the receiver is now proposed
to fill in the missing elements needed to effectively implement a receiver that are
not present in the transmitter, namely synchronization, demodulation and decision.

In order to structure the analysis of the Receiver, the system was divided into 4
main blocks:

e Frequency Estimator
e Correlation Synchronizer
e Symbol Decision

e Frame Decoder

4.1 Frequency Estimator

The goal of this block is to estimate the instantaneous frequency of the signal, given
some known chirp rate, or equivalently an symbol factor and al[CSS/bandwidth. This
can be formally defined as finding some wy, €] — 7; 7], such that minimizes:

J(wy) = E[Z%_N|xi+k — cos (WﬁiQ) ejw’“i|2] (4.1)

Or, equivalently, that maximizes:

7777

(4.2)
for some N € N, where x; is the received signal.

24

Receiver Structure

Note that cos(m(i?) = 0.5(e™ + =™} is used instead of e~™" as the LoRa
signal uses not only up-chirps, but also down-chirps, these second for synchro-
nization, as described in the section about the modulation, and by using the sum
of a down- and upchirp, when multiplied by this reference signal, the signal vector
will present a peak on it’s spectrum at it’s middle frequency when either chirp is
present.

To estimate this value two approaches are proposed.

1. Stochastic Gradient Descent

If it is assumed there’s no interfering signal other than Gaussian noise, this
problem can be approximated with a simpler optimization problem using only
one sample, i.e. to minimize the cost function:

J(w;) = Bl|zip1e % —wiz]?]),w e C (4.3)
And using f = —%7(:”) as the instantaneous angular frequency estimate. The

solution of this problem can be easily estimated using stochastic gradient de-
scent, i.e. a order-1 adaptive filter. For the reverse-engineering done in this
work, an order-1 normalized least mean squares (NLMJS) filter was used, whose
coeflicient-update function reduces to:

e_]Qﬂ-B

T) peR (4.4)

Wiy = wi(1 — 1) + pu(

i
Which, is equivalent to passing the signal i T
low pass filter.

through a single pole IIR

Also, to avoid division-by zero errors, the alternative equation:

Wiy = wi(1 — p) + p- sign(e Pzt ;) u € RY (4.5)

can be used.

An example of output of this block when receiving a signal together with the
spectrogram of the input can be seen below:

25

Figure 4.1: Spectrogram of he input signal composed of a sequence of LoRa frames
with = 7, CRC on, and payloads of a single byte containing powers of 2 (1, 2,
.., 128).

26

Receiver Structure

Instantaneous Frequecy Estimate

0.4 h

TR

Normalized Frequency
o
o n
T T
L L

<
[N
T
|

0.4 F 4

L L L L L L
0 20000 40000 60000 80000 100000 120000 140000
Sample

Figure 4.2: Output signal of the stochastic gradient descent frequency tracker given
the described test signal at its input.

2. [DFT] Peak

The previous method presents some problems as if multiple local maxima are
present in the short-time spectrum, e.g. if there’s an interfering signal, the
frequency estimate will converge to an intermediate solution that minimizes
the square error of the simplified cost function and not the global maximum
that optimizes the original function.

If the magnitude squared of discrete-time Fourier transform (DTET]) of the
signal windowed by a (2N + 1)-sample rectangular window around each sample
is seen as a the probability density of the instantaneous frequency process, the
original problem can be interpreting as finding its mode, whereas the simplified
process converges to its mean, therefore only working if the interfering signal’s
mean is equal to its mode, as it happens for a signal with Gaussian interference.

To cope with this problem, we can use the use the following estimator for the
frequency:

fr = N~ argmax,(|DFT|(z;yrcos(mB(i — %)2))1'6{0,...,N—1}](n)|2) (4.6)

Which is equivalent to computing the original cost function at N points and
taking the point that maximizes it.

27

Receiver Structure

Additionally, to compute the cost function at more frequency points, the order
of the discrete Fourier transform (DET]) can be increased while applying a
small rectangular window to the signal, i.e.

. . N —1
fe = N rargmax,(|DFT|(z;4rwicos(nB(i — 5))ieqo,..n—13)(n)[%)
(4.7)
Where:
1 if i <N
w; = 1 M - (4.8)
0 if |i| > Ny

Where N, < N'.

This method presents some issues in terms of computational cost, however it
has much better performance in terms of resistance to interference from signals
with different symbol factors, as multiplying the signal by cos(m3i?), spreads
the spectrum of the interfering signals and collapses the desired signal to a
single (or two, in case of the modulation at the transition of two symbols)
peak.

To address the performance issues, the fk estimator can be computed at a
lower rate than the input signal, i.e.

N —1
2

fr = N Yargmaz, (|DFT[(2i4srcos(mS(i—)*)icto...v-13](n)[*),6 € N
(4.9)

As with the previous method, an example of output of this block when receiv-
ing the beginning of the same test signal is given below:

28

Receiver Structure

Instantaneous Frequecy Estimate

0.4 B

02 4

Normalized Frequency
o
T
L

0.2 h

L L L
0 10000 20000 30000 40000
Sample

Figure 4.3: Output signal of the [DET] peak frequency tracker given the described
test signal at its input.

29

Receiver Structure

4.2 Correlation Synchronizer

This stage is split into two sections: the calculation of the correlation and the actual
synchronization/alignment.

1. Correlator

The correlation is calculated by taking the most recent npreamble Samples of
the instantaneous frequency estimated generated by the frequency estimator,
where npreample is the size of the fixed part of the preamble, i.e. the sync
word plus the downchirps and computing its normalized correlation with the
expected preamble, i.e.:

T Pi

_ _Libi (4.10)
IEAllvaAl

C;

Then this value and the first sample of the input vector are passed on to the
next stage.

Below an example of the outputs of this block when receiving the end of the
preamble of a LoRa PHY Frame is given below:

Frequency Signal Correlation

— Correlation
— Normalized Instantaneous Frequency

0.5 [

Ll "y = =B

0.5

1 1 1 1 1 |
0 1000 2000 3000 4000 5000
Sample

Figure 4.4: Output signals of the correlator when receiving the end of the preamble
a LoRa frame with SE| = 7, CRC on, and payload of a single byte containing a
power of 2 (1, 2, ..., 128).

30

Receiver Structure

2. Synchronizer

This block takes the two values generated by the correlator and looks for a
local maximum, given two thresholds. When the correlation is higher then
the first threshold, it starts trying to find the local maximum and when the
correlation gets lower than the second threshold, it stops this detection and
outputs the signal starting from the point of maximum correlation between
these two instants, already grouped in vectors of size 1y, i.e. the number of
samples in a symbol.

Below the resulting output when the previously-shown output of the correlator
is input to the synchronizer can be seen:

Aligned Signal

0.4 h

J

-0.2 - q

0.4 F 4

L L L L L
0 20000 40000 60000 80000 100000 120000
Frequency

Figure 4.5: Synchronized signal, as generated by the synchronizer when its input
is the previously shown test signal.

3. Time-Frequency Shift Compensation

In this step, two parameters are estimated and compensated for by adding an
offset to the instantaneous frequency signal: the frequency offset, i.e the mean
frequency of the signal and the fractional time offset, i.e the remaining, non
integer time offset of the signal after synchronization.

Initially, the two sync-word symbols and the two downchirps are demodulated
using a method similar to that described in the section on the multiple detec-
tion approach (section , item [2) for symbol detection, with the difference
that the sync word samples get subtracted by the expected sync word and the

31

Receiver Structure

downchirps get demodulated considering downchirp symbols. Also, two ob-
tained new sync word symbols are demodulated together generating a single
offset value and the same is done for the two downchirps.

With these two values in hand, their average scaled by ﬁ gives an estimate

of the frequency offset and their difference scaled by m gives an estimate
of the fractional time shift. i.e.

o SYMuypchirps + SYMdownchirps

8= (4.11)
2N gym
SYMupchirps — SYMdownchirps
5, =Y phpwny downchirp (4.12)
sym
f A
SYMupchirp

Nsym

[PSR

-
(o TSP Sy,
-

Nsym

Figure 4.6: Illustration of the offset estimation procedure with a single upchirp (as
sync word) and downchirp.

Finally, the calculated frequency offset is subtracted from the frequency esti-
mates signal, and, to avoid complex fractional resampling operations, the time
offset is compensated by adding an extra equivalent offset, i.e.

Ofteq = 30t (4.13)
Oftotal = Of + Oft.eq (4.14)
fi,compensated - fz - 6f,total (415)

Where [is the chirp rate relative to the current modulation parameters.

32

Receiver Structure

This relies the local linearity of the frequency-time waveform which allows the
time offset to be compensated by shifting in frequency.

4.3 Symbol Decision

In a similar manner to the frequency estimator, two methods of symbol demodula-
tion were proposed, one based on the mean instantaneous frequency of the symbol
being detected and one based on the mode.

1. Minimum Squares Approach

This method is based on the one described in [3], but uses the previously
mentioned frequency estimation techniques. In this method, the symbol is
determined by computing the inner product of the symbol frequency samples
with each of the expected symbols and taking the one that maximizes this
result. Because the symbols are rotations of each other, this can be done by
computing the circular correlation of the symbol with the 0-th symbol, i.e the
time-frequency representation of the base up-chirp, which reduces its compu-
tational complexity of this calculation from O(ngym?) t0 O(ngym 10g(Nsym)),
where ngy,, is the number of frequency samples per symbol, if a DF'T based
approach is employed.

The main advantage of this approach is that it is insensitive to both frequency
offsets and frequency scaling, as the instantaneous frequency vector of the base
up-chirp has zero mean.

Below, an example of the vector used as input to the symbol decision block
together with the samples of the decided symbol can be seen.

33

Receiver Structure

Received and ideal symbol samples for nsy =96,SF =7

— Symbol Samples
— Detected Symbol Samples

Normalized Instantaneous Frequency
o

o

o o

T T

I

o

a
T

0.1 I I I I I]
0 200 400 600 800 1000 1200

Sample
Figure 4.7: Synchronized frequency samples of a received LoRa symbol together

with the samples of the symbol detected by the minimum squares decider block
when given the former as an input.

34

Receiver Structure

2. Multiple Detection Approach

The previous method assumes the interfering signal has zero mean frequency
within the observation window, which is not necessarily true when using the
[DETHbased approach for frequency estimation, as the behavior of the estimate
in the transition is not very predictable, as in this region there are two spectral
peaks, with magnitudes close two each other, therefore, in this region, the
maximum will alternate between them. To cope with this problem, a new
method is proposed, that makes a decision for each of the points of the symbol
and takes the most frequent one, using the following estimator:

si:mod([(ﬁ—ﬁ<i—nsyg_l)) ;H,zsf“) (4.16)

Where the brackets represent nearest integer rounding and ﬁ is the vector of
frequencies estimated for the current symbol.

The main issue with this method is that it requires time-frequency alignment,
like the procedure described in [3] to be done beforehand.

Also, to improve performance, only the middle half samples of the frequency

waveform are used, i.e. samples at instants i € {®= . =t — 11 This also

helps avoid interference from neighboring symbols at the edges of the symbol
due to time shifts.

4.4 Frame Decoder / Receiver Controller

This section implements the inverse of the steps described in section [3.2.2] reads
the frame header and performs the CRC check if needed. It executes the following
operations, in order:

e Gray Encoding
e Deinterleaving
e Decoding

e Randomization

e "CRC" Calculation

35

Chapter 5

Transceiver Implementation

5.1 GNU Radio

For the implementation of the receiver, GNU Radio was used. It is an free and
open-source software development toolkit used for the development of signal pro-
cessing blocks that can be connected in a flowgraph. This custom blocks can be
written in C+-+ or Python and the flowgraphs can be either created using the GNU
Radio Companion graphical interface and then exported to the above-mentioned
languages or directly written in those. All the GNU Radio based Code developed
for this project can be found at [15] and the most important sections, mainly the
work() functions of each block, can be found at their respective appendix.

5.2 Implementation

5.2.1 Receiver

In order to keep the design modular, not only so it can be more easily modified
and but also to take advantage of the multi-threading capabilities GNU Radio
provides, as each block runs in a separate thread, each of the sections described in
the previous section have been implemented in separate blocks.

In addition to these, two extra blocks were added:

e A Receiver Controller that, in order to control the flow of data and pass
some necessary information between the blocks, controls some aspects of all
other blocks using message ports, which are a asynchronous way of passing
information between blocks that GNU Radio provides.

e A Chirp Detector that using an approach similar to that described in the
[DEFTHbased symbol decision, takes the [DFT] of the signal multiplied by the
the linear chirp relative to the selected set of modulation parameters (BW¢sg,

36

Transceiver Implementation

[SF] and consequently the chirp rate) computes the chirp-windowed [DET] and
computes the ratio between the energy in the maximum bin and the mean
energy on the remaining bins and checks whether this value is higher to some
set threshold. Then it uses this information to only allow the flow of data
downstream in the flowgraph when this detection happens, in order to avoid
unnecessary calculations and consequently unnecessary power consumption.

Finally, all these blocks were connected together in a hierarchical flowgraph to
create a receiver block. An image of the flowgraph of the receiver is show below:

37

Transceiver Implementation

‘uoraedurod orpey (|N¥) Ul I0AI9I) Jo [deI8mor :1°G o3I

No2D Heqe 0:anosox
Auts ped A621 Herwoukiod
910U NowBUEIPLolAed HoqeT

Auls ped

30521 H10qEeY

asie4 soreueIeaM
Auis ped b oY

Lus
910U

nouomatp oqet
Auis ped

noeIep Hoael N
Auspeq M€ W omwopued | ———————] RofelIrel o TRl TTUeell o T el

seakgoLsoIqaIN

Se- e WEES'PTY JONjeA
[EPE—— g suswe LB
s ol Lias : siaeuen

oneopojurep ey T ruonewep
on sondwy [Jar -41| o ezsioquiAs b - oo - |~ 8us0
p w009 :doysaa .
o samorute e L 1
L35 [le— E S - ey
R aexyerhousnbayy

38

‘Gunu.z,[)doRdwny onjen
xoidwo2s(queasd :py fiapten T asies onien
oravion sdinpdnu zp1 e PaAbaYRIRYEIRGMOTAIOND, PY areyerenol :p1 e
olqeueA R Iastan) ajpweied asjpweieq
1:9miep - o
paziewoNoIaweasd p1 exorasn soun | [Aduns asodun TS Lionien "
e1qepen odw) Jodw -_..u—.g.u Ma P .
PO | i suondo

Transceiver Implementation

5.2.2 Transmitter

The transmitter follows the same design approach as the receiver, that is, of fol-
lowing the proposed structure and trying to be as modular as possible. Also, in
addition to what was previously described two blocks had to be added:

e A Transmitter Controller that controls all other blocks, by setting the
required parameters, according to parameters given to the transmitter and
depending on which part of packet is being transmitted. This block, differently
to the controller in the receiver, mainly uses tags to control the blocks to
keep the implementation cleaner (tags are another mechanism of asynchronous
message passing on GNU Radio that embeds itself into existing data streams
instead of requiring an extra output in the block). Also, this block (together
with the other blocks) supports dynamically setting all modulation parameters
(SH, CR, BWL payload size), by sending a special tag to it.

e The Append Silence block. This is needed, because of how GNU Radio
works and how most stock sink blocks are implemented, a continuous stream
of data is required at the output of the receiver, so this block is controlled by
the transmitter controller and generates silence samples (i.e. of value zero)
whenever the rest of the blocks are not outputting any packets and outputs
that data when it is available.

An image of the flowgraph of the receiver is show below:

39

Transceiver Implementation

ssuajispuaddy

‘uoruedwiod opey (NY) Ul Iojjrusuer) o) Jo ydeismorq

0

8 isdayyodnN
JpBE 9T :92z1S|0quAS

84S

dd

eyo1aiq17 :edw)

Jodwy

+"quIEaId1R6 RYOTAIN] 1aNjeA
fouanbaiaiquieasd :py
a|qepen

Adwnu :3s0duiy
Joduy

AWBE9T i
84S i
8 :SUAN
PoWIoquiAs l el ooeahein
<!
0 :onjep 8 :anjep
J8quinNpIomouAs jeqen | | SHIRINU :19qeT
Joquinnpionous py [| SRdnu sp1
J9jpwesed aovOMEIEd]
JEp— anup :anjep 0T :anjep T “.a=_§
areyeieqmol :iaqen | | uesaidoud seqe | | 2zspeoiked eqen i)
S1eyeIRaMO] 1PI as214YD :PI szispeoiAed :py R

APBE 9T :92SI0qUAS

sje4 193e1R3RPMOT
any| :3uasaIdo)
01 :ezispeo)Aed

J13]j013U0D 93 WS URIL

T

84S

176 2In3r

0 :3n040x
2621t leouhjod
91J¥d

s9|qqINoLsaIkg >

ui :1age]
@21nos ped

@zjwopues

APBE 9T :3NjeA
221510qWiAs :p1
a|qeuen

9 :anjen
450 :PI

a1qemen

ASZT :onen

Mg H19qe

Mg P

Js3pweled

g :anjep Wg :anjen

45 :12qe7 @1es dwes :aqe

4S:P1 ajes dwes :pj
Jopweled Jejpweled

[ei0j2.q17] :A10633€)
#2018 JaIH :suondQ a3eI2USD
uoyIAd :ebenbueq Indino
df zioyany
XL Yo7 19p3L

suondo

40

Transceiver Implementation

In addition to the blocks themselves, another change was introduced. As it is
not trivial in GNU Radio to instantiate multiple instances of the receiver and use
them with a single sink, a mechanism to update the parameters of the transmitter
via tags sent through its input was implemented, so a single block can be used

and receive data with different modulation parameters to be controlled by external
blocks.

41

Chapter 6

Hardware Implementation and
Example Applications

6.1 Hardware Setup

The target hardware chosen was a Raspberry Pi 3A+ as the computer to run GNU
Radio on, together with a RTL2832U based USB software defined radio (SDRI)
(commonly referred as an RTL-SDR) to work as a receiver and a HackRF One
transceiver to work as a transmitter. The main drivers behind this choice
were the relative low cost and wide availability of these devices. Below a simple
diagram depicting this setup is shown:

usB
GNU Radio | — | ———[HackrF |
owgrap
<+ RTL SDR
bes

Raspberry Pi

I TCP

Remote
Machine

Figure 6.1: Block diagram of employed hardware setup.

42

Hardware Implementation and Example Applications

6.2 Example Applications

To showcase how the developed library can be used, not only to implement the
functionality of a simple transceiver, but also how it can be employed in more
complex applications that take advantage of the flexibility built into the blocks.

6.2.1 LoRa Detector: Another Application of the Chirp De-
tector

With some simple modifications, the before-mentioned Chirp Detector (in section
can be also used for detecting the presence of different [SH signals in multi-
ple channels. This is especially useful, as it allows for obtaining useful statistics
about the local channel /network without all the computational resources required
by multiple receivers running in parallel. This was done by making its data output
optional and adding a message output port that, whenever it detects a transmis-
sion, is used to send out a message containing the parameters of the block (SE]
BW and sample rate) and the normalized center frequency of the band where the
detection happened. In this way, by running multiple of these detectors in parallel,
while keeping the sample rate high enough so multiple channels can be observed
simultaneously, and sending the messages they generate to a block that receives and
interprets these messages, one can easily do statistics on channel usage for each
and band. In order to demonstrate this, a simple block that takes these messages
and counts the detected transmissions on each channeldSF| pair was developed. An
image of the entire flowgraph developed for this application is shown below:

43

Hardware Implementation and Example Applications

Options

Variable
Title: Not titled yet I1d: samp_rate
Author: jp Value: 1M
Output L Python

Generate Options: No GUI
Run Options: Prompt for Exit

Sync: Unknown PPS
Number Channels: 1
Sample Rate (sps): 1M

ChO: DC Offset Mode: 2
ChoO: 1Q Balance Mode: 0
ChO: Gain Mode: False
ChO: RF Gain (dB): 30
ChO: IF Gain (dB): 20
Cho: BB Gain (dB): 20

RTL-SDR Source

ChO: Frequency (Hz): 433M
Cho: Frequency Correction (ppm): 0

Variable

Variable
Id: OSF
Value: 8

Id: center_freq
Value: 433M

ChirpDetector

samp_rate: 1M
bw: 125k

SF: 7

DFTSize: None
threshold: 300
timeout: 5
DFTDecim: 8

ChirpDetector

samp_rate: 1M
bw: 125k

SF: 8

DFTSize: None
threshold: 300
timeout: 5
DFTDecim: 8

Variable
Id: BW Variable mport
Value: 125k 1d: threshold mport: numpy
Value: 300
Variable
Id: detectionDecim
| Value: 8
‘
. |: Message Debug

ChirpDetectol
samp_rate: 1M
bw: 125k

SF: 9

DFTSize: None
threshold: 300
timeout: 5
DFTDecim: 8

r

DetectionCount
Bw: 125k
Nchannels: 5
ChannelWidth: 200k

ChirpDetector

samp_rate: 1M
bw: 125k

SF: 10
DFTSize: None
threshold: 300
timeout: 5
DFTDecim: 8

ChirpDetector

samp_rate: 1M
bw: 125k

SF: 11
DFTSize: None
threshold: 300
timeout: 5
DFTDecim: 8

i

ChirpDetectol
samp_rate: 1M
bw: 125k

SF: 12
DFTSize: None
threshold: 300
timeout: 5
DFTDecim: 8

r

Socket PDU
AN Type: TCP Server
Noe - | Host:
A Port: 1202
j‘ ! MTU: 10k

Figure 6.2: Flowgraph of the LoRa multi-channel multi{SE| detector.

44

Hardware Implementation and Example Applications

Also, it is worth pointing out that this extra information that is output by the
chirp detectors could be used in future implementations for controlling the center
frequency of a filter to which the input signal is fed to, making it possible to
select the channel in which data is being transmitting with a certain and BW
and forward it to an appropriate receiver, thus allowing for the implementation an
efficient multi-channel receiver system.

6.2.2 Multi-Parameter, Multi-Channel Receiver

In this example application, five receivers are run in parallel, each with a differ-
ent spreading factor and with a sample rate of 1 MS/s. In this way, any signal
transmitted in any channel within an 1IMHz band with any spreading factor can be
received.

In addition, in order to allow simple integration with other applications, a[TCPI
interface is also added. In this particular setup, one can run the receiver at a ded-
icated Raspberry Pi 3A+ and receive the data via [TCP|in any network connected
device.

45

Hardware Implementation and Example Applications

Ontions Variable -

Title: Not titled yet d: samp,rate Variable Import Import

Author: jp 1M Variable Id: OSF Import: numpy Impor

Output Language: Python e ey Value: 8 m—

Generate Options: No GUI Value: 433M °

Run Options: Prompt for Exit Variable Vari mEor /Py

: ariable
1d: BW) =
Value: 125k A threshold Variable S Variable
Vakie 300 1d: syncwordNumber 1d: decimation 1d: detectionDecim
Value: 0 Value: 16 Value: 8

RTL-SDR Source
Sync: Unknown PPS

Number Channels: 1 LoRa Rx Tagged Stream to PDU
Sample Rate (sps): 1M Length tag name: payloadsize N

Cho: Frequency (Hz): 433M SF: 12 -~
| GO G CLOG (i decimation: 16 o
Cho: DC Offset Mode: 0 detectionDecim: 8 b Socket PDU
Cho: 1Q Balance Mode: 0 detectorThreshold: 400
ChO: Gain Mode: False ignoreLowDataRateRequired: True } -
Cho: RF Gain (dB): 30 lowDataRate: False N
Cho: IF Gain (dB): 0 samp_rate: 1M Y,

.
Cho: BB Gain (dB): 0 syncwordNumber: 0 a N

Tagged Stream to PDU
Length tag name: payloadsize

BW: 125k

SF: 11 N
decimation: 16 j
detectionDecim: 8 j

detectorThreshold: 400
ignoreLowDataRateRequired: True -
lowDataRate: False N
samp_rate: 1M)
syncwordNumber: 0

. .
\ \

Tagged Stream to PDU

Length tag name: payloadsize
SF: 10 . A
decimation: 16 u N K
detectionDecim: 8 N
detectorThreshols 00 j
ignoreLowDataRateRequired: True
lowDataRate: False
samp_rate: 1M
syncwordNumber: 0

LoRa Rx

. .
. . \
LoRa Rx Tagged Stream to PDU _
BW: 125k Length tag name: payloadsize
SF:9 <
u . Y
decimation: 16

detectionDecim: 8
detectorThreshold: 400
ignoreLowDataRateRequired: True
lowDataRate: False

samp_rate: 1M

syncwordNumber: 0

LoRa Rx
BW: 125k
SF: 8
decimation: 16
detectionDecim: 8
detectorThreshold: 400
ignoreLowDataRateRequired: True
lowDataRate: False
samp_rate: 1M
syncwordNumber: 0

Message Debug

LoRa Rx
BW: 125k
SF:7 L
decimation: 16 2] .
detectionDecim: 8 m .

detectorThreshold: 400
ignoreLowDataRateRequired: True
lowDataRate: False

samp_rate: 1M m
syncwordNumber: 0

Figure 6.3: Flowgraph of the Multi-Parameter, Multi-Channel Receiver.

46

Hardware Implementation and Example Applications

6.2.3 Variable Parameter Transmitter

In order to make the transmitter block able to have its parameters changed during
runtime, an interface based on GNU Radio’s tag propagation mechanism was im-
plemented. This allows for metadata containing modulation and band parameters
to be optionally propagated together with the data stream in order to change the
parameters when needed.

In addition, an interface to translate a packet with a special format E| to GNU
Radio tags, extract the band information, if present, and generate a message to
control a GNU Radio Signal source, in order to select the band, was also added, to
allow the transmitter to be controlled by external devices via network.

Options Variable VELEDD
Title: Not titled yet 1ds samp_rate Import e ariable Variable Variable Variable Variable
Author: jp Value: 8M Import: numpy 1 re.qu:;w’cemer d : 1d: sync [CESF 1d: nUpchirps
Output L Python AL HeEEL] Value: 8 Value: 0 Value: 8 Valleis
Generate Options: No GUI -
Run Options: Prompt for Exit
Parameter
Id: BW Variable Variable
- Label: BW 1d: OSF 1d: symbolSize
Variable Value: 125k Value: 64 Value: 16.384k
1d: nFrames
Value: 2
Socket PDU LORARIX

BW: 125k
@wa osmocom Sink

CRCPresent: True Device Arguments: so...hackrf
Sync: Unknown PPS

Number Channels: 1

Sample Rate (sps): 8M

Cho: Frequency (Hz): 433M H
Cho: Frequency Correction (ppm): 0
.0 Cho: RF Gain (dB): 13

Cho: IF Gain (dB): 15

Cho: BB Gain (dB): 0

Type: TCP Server
Host:

Port: 1201

MTU: 10k

m

SF: 8
lowDataRate: False I
nUpchirps: 5

payloadsSize: 8
samp_rate: 8M

Signal Source
Sample Rate: 8M
Waveform: Cosine
* [| Frequency: 0
Amplitude: 1
Offset: 0
Initial Phase (Radians): 0

Figure 6.4: Flowgraph of the Variable Parameter Transmitter.

Tt consists of the struct: struct loraPDUHeader {int8 t hasHeader; int8 t SF; uint8 t CR;
bool payload CRCPresent; bool lowDataRate; float BW; uint8 t syncWordNum; float fOffset; };
followed by the actual payload data to be transmitted via the LoRa transmitter. The hasHeader
field is always 0x01 if a header with configuration is present, therefore if one is not present, the
user should sent a single byte before the payload data with any value other than 0x01.

47

Hardware Implementation and Example Applications

6.2.4 Multi-Parameter, Multi-Channel Transceiver

By joining the two previously mentioned flowgraphs, a full transceiver that can
both receive and transmit with multiple modulation parameters and channels, con-
trolled by a [TCP] interface was implemented. The idea behind this is that it could
potentially be used for implementing fully functional LoRaWAN nodes and even
gateways, with the physical and logical link control layers, i.e. LoRa PHY, running
in a remote device, and the [MAC layer protocols running in the local sender device.
However, it is worth noting that, in its current state, this application cannot be
run stably in the Raspberry Pi 3A+, due to [RAM] speed and size limitations, but
it is very likely that with some extra optimization effort it could be made to run
successfully in this device.

48

Hardware Implementation and Example Applications

JOATOOSURIT, [PUURYD-IINN ‘IojowrIRJ-1INIA [[1J oY) Jo ojdurexs ue yderSmo[:G'9 oIngrq

il 0 4oquInNpIomOUAS
10 dwes.

00b :PloyseIYLIOIRI0P
8 wppaquo>Ip.
ot :uopewrsep

L
A521 M8
xy eyo1

0 oquInNpIomOUAS

z15peofed
Nad 03 weans pades 5 00b “PloyseILIOIRIOP
8 wp>aquon>ep.
ot :uopewrsep

6nqaq obessop

2 oz15peojfed toweubeIBUST
J0jeiousnIoPERHNAdEYOT

xy eyol

0 4oquInNpiomOUAS
WI93es duies.
asje :o3eyeIeamol

S715peo)ked ‘oweu Be3 ybuoY

00v PlousaIyLIoIRIOP
Nad 03 weans pasbey

8 wppaguodep.

o1 :uopewr>ep
o715pe0)ed ‘oweubeIBUST
J0jeiousnIBPERHNAdEYOT

xy eyol

oov

sz15pe0)ed ‘oweubeIBUSY
J0jesousnIOPEOHNAdEYOT

xy eyor
0:(suerpey) oseud ferur I . - -
09840 F ' . PRI

i il) : sy mavyeinguet
0:Aousnbasy [Tt ~ R 104 :93eyeIRaMO|

auIs0) ruLiojonem yereqmMoT10uB|

o oreu oues | !
aaunos (euss H

azispeojked =
101019U9DI9PEIHNAAEHOT
0 a0quInNpIom>uAS
0T 1w (i Wi rores dues
2021 :M0d 35ie4 930 ueIeaMOl 0:9pow @dueiea b1 04>
= — Al o-epoW 93105 01>
sonas 4oL sedhL e v e s 0'(widd) uon>1103 Aouanbosa 0y [1]
‘Sdd umouun uAS nad 39108 o 8 wpequonselep WEED (zH) Aousnbess 0w
0=1pey isownbay 931A0a 91 suopewrsop WL i(sds) 030y opdures,
Auls wosowso szispeolfed rowreuBeIBUY [s 1 isiouuey> JoqunN
Joje19uBDIIPLIHNALHOT 2 ma Sdd umounun 2uks
xu wor 0-1u ssuswnBay e31a0a
31105 yas-1LY

ooy sonien
plousaa 1
lqepen 143 103 0wosg rsuondo uny

0 :onten

wpaguomaRp i] PO cuorasan odun | [Adwny sasodun
siqeuen aonon ! iodu prT

49

Chapter 7
Conclusion

This thesis aimed to continue on previous research on reverse-engineering the lower
layers of LoRa, commonly referred as LoRa PHY, propose an structure for its
transceiver and implement this structure, using the GNU Radio platform, to be
used with widely-available software-defined radios.

To what concerns the reverse-engineering of LoRa PHY, all the missing details were
revealed, together with the methodology used to find them, building a full picture
to how this part of this protocol stack works.

For the transceiver structure, new demodulation and synchronization methods were
proposed, which potentially bring better interference resistance performance in re-
lation to previously proposed methods.

To what concerns the actual implementation of the transceiver, not only the feasi-
bility of the proposed methods were tested with real hardware, but also a completely
free and open-source LoRa PHY transceiver implementation was made available to
serve as base to further research and development on this protocol stack. Also, an
example of hardware implementation was proposed and tested, showing how this
implementation of the transceiver can be used, extended and integrated using the
capabilities of the GNU Radio library.

As a final remark, some technical details and challenges still remain to be solved
by future research, mainly to optimize the transceiver’s algorithms and code for it
to be able to run even simpler hardware, increasing its range of applications and
to implement features left out of this project, such as support for LoRa’s implicit
mode.

50

Bibliography

[1] “Lorawan™ 1.1 specification,” Lora Alliance, Standard, Oct.
2017. [Online]. Available: https://lora-alliance.org/resource hub/
lorawan-specification-v1-1/

[2] M. Knight and B. Seeber, “Decoding lora: Realizing a modern lpwan with
sdr,” Proceedings of the GNU Radio Conference, vol. 1, no. 1, 2016. [Online|.
Available: https://pubs.gnuradio.org/index.php/grcon /article/view /8

[3] P. Robyns, P. Quax, W. Lamotte, and W. Thenaers, “A multi-channel soft-
ware decoder for the lora modulation scheme,” in Proceedings of the 3rd Inter-
national Conference on Internet of Things, Big Data and Security, - 2018, p.

nil.
[4] “Low-power wide area network (LPWAN) overview,” Tech. Rep., May 2018.
[5] “Lorawan™ 1.1 regional parameters,” Lora Alliance, Standard,

Oct. 2017. |[Online|. Available: https://lora-alliance.org/resource hub/
lorawan-regional-parameters-v1-1ra/

6] J. Schlienz and D. Raddino, “Narrowband internet of things
whitepaper,” White Paper, RohdeédSchwarz, pp. 1-42, 2016.
[Online]. Available: https://www.rohde-schwarz.com /hk /applications/
narrowband-internet-of-things-white-paper 230854-314242.html

[7] S. Martiradonna, G. Piro, and G. Boggia, “On the evaluation of the nb-iot ran-
dom access procedure in monitoring infrastructures,” Sensors, vol. 19, no. 14,
p. 3237, 2019.

[8] SIGFOX, “Sigfox connected objects: Radio specifications,” Feb. 2020. [Online].
Available: https://build.sigfox.com /sigfox-device-radio-specifications

[9] ——, “Sigfox device cookbook - communication configuration,” Nov. 2018.
[Online|. Available: https://build.sigfox.com /sigfox-device-cookbook

[10] J. C. Liando, A. Gamage, A. W. Tengourtius, and M. Li, “Known and unknown
facts of lora: Experiences from a large-scale measurement study,” ACM Trans.
Sen. Netw., vol. 15, no. 2, Feb. 2019.

[11] W. L. Pieter Robyns, Peter Quax and W. Thenaers, “gr-lora: An efficient lora
decoder for gnu radio,” Sep. 2017.

[12] Semtech, “An1200.22 lora modulation basics,” 2015.

[13] J. P. de Omena Simas, “lorasim-matlab: A matlab/octave-based lora

51

https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/
https://pubs.gnuradio.org/index.php/grcon/article/view/8
https://lora-alliance.org/resource_hub/lorawan-regional-parameters-v1-1ra/
https://lora-alliance.org/resource_hub/lorawan-regional-parameters-v1-1ra/
https://www.rohde-schwarz.com/hk/applications/narrowband-internet-of-things-white-paper_230854-314242.html
https://www.rohde-schwarz.com/hk/applications/narrowband-internet-of-things-white-paper_230854-314242.html
https://build.sigfox.com/sigfox-device-radio-specifications
https://build.sigfox.com/sigfox-device-cookbook

Bibliography

phy simulator,” 2020. [Online|]. Available: |https://gitlab.com/jpsimas/
lorasim-matlab.git

[14] G. Cook, “Crc reveng: arbitrary-precision crc calculator and algorithm finder,”
2019. [Online|. Available: https://reveng.sourceforge.io/

[15] J. P. de Omena Simas, “Librelora: A gnuradio based lora phy
receiver and transmitter implementation,” 2020. [Online|. Available: https:
/ /gitlab.com /jpsimas/librelora.git

52

https://gitlab.com/jpsimas/lorasim-matlab.git
https://gitlab.com/jpsimas/lorasim-matlab.git
https://reveng.sourceforge.io/
https://gitlab.com/jpsimas/librelora.git
https://gitlab.com/jpsimas/librelora.git

Appendix A

Code Listings

A.1 Chirp Detector

This block is implemented as a flowgraph written using Python due to limitations
in GNU Radio’s grc file format. Below is the main part of its code plus those from
all the custom blocks used in it.

class ChirpDetector (gr.hier_block2):
def __init__(self, samp_rate, BW=125e3, SF=7, DFTSize=Nomne, threshold=200,
timeout=5, DFTDecim=1):
gr.hier_block2.__init__(
self, "ChirpDetector",
gr.io_signature(l, 1, gr.sizeof_gr_complex*1),
gr.io_signature(l, 1, gr.sizeof_gr_complex*1),
)
if (DFTSize == Nomne):
self .DFTSize = DFTSize = int((1 << SF)*(samp_rate/BW))

self .message_port_register_hier_in("reset")
self .message_port_register_hier_out("detectOut")

X E N R R R R R R R S R R SR ST EE]
Parameters

X TR TR TR E RS EETEEE T EEE L L
self .samp_rate = samp_rate

self .BW = BW

self .DFTSize = DFTSize

self .SF = SF

self .threshold = threshold

self.timeout = timeout

RARRARERRBRRBRREARB AR R RB R BB BB R R R R AR R R

Variables

RERRARBRBRARBRRR AR B R AR R AR R AR R H

self .windowSize = windowSize = DFTSize

self.chirpRate = chirpRate = ((BW/samp_rate) **2)*(2**(-SF))

self.chirpWindow = chirpWindow = numpy.real(LibreLoRa.getChirpWindow(
DFTSize, windowSize ,0, numpy.sqrt(l/chirpRate)))*numpy.sqrt(DFTSize/
windowSize)

R EEEEEFE R R E R R R R R EEEEEEFEEEEEEEEEEEEEEEEEEEE T
Blocks

53

Code Listings

I E TR ET TR S T EEEETT ST ETEEETEETEE
self .fft_vxx_0 = fft.fft_vcc(DFTSize, True, numpy.ones(DFTSize), False, 1)

self.blocks_stream_to_vector_0 = blocks.stream_to_vector(gr.
stzeof_gr_complex*1, DFTSize)
self .blocks_stream_to_vector_O0 = LibreLoRa.streamToHistoryVector_cc(

DFTSize, DFTSize*DFTDecim) ;

self.blocks_multiply_const_vxx_0 = blocks.multiply_const_vcc(chirpWindow)

self .blocks_complex_to_mag_squared_0 = blocks.complex_to_mag_squared(
DFTSize)

self .blocks_complex_to_mag_squared_O.set_min_output_buffer (int (timeout*
samp_rate/DFTSize))

self .LibreLoRa_ToneDetector_0 = LibreLoRa.ToneDetector (DFTSize)

self .LibreLoRa_PowerDetector_0 = LibreLoRa.PowerDetector(samp_rate,
threshold, timeout, DFTSize*DFTDecim, pmt.to_pmt ((SF, BW, samp_rate)))

self .LibreLoRa_PowerDetector_0O.set_min_output_buffer (int (numpy.ceil (
timeout*samp_rate)))

I F TR F R F RN R E E EEF EE R X EEE ¥

Connections

I F TR R FEEF R TR E TS EETEE]

self .msg_connect ((self.LibreLoRa_PowerDetector_0, ’detectOut’), (self, ?
detectOut’))

self .msg_connect ((self, ’reset’), (self.LibrelLoRa_PowerDetector_0, ’reset’
))

self.connect ((self.LibreLoRa_PowerDetector_0, 0), (self, 0))

self.connect ((self.LibreLoRa_ToneDetector_0, 0), (self.
LibreLoRa_PowerDetector_0, 1))

self.connect ((self.blocks_complex_to_mag_squared_0, 0), (self.
LibreLoRa_ToneDetector_0, 0))

self.connect ((self.blocks_multiply_const_vxx_0, 0), (self.fft_vxx_0, 0))

self.connect ((self.blocks_stream_to_vector_0, 0), (self.
blocks_multiply_const_vxx_0, 0))

self.connect ((self.fft_vxx_0, 0), (self.blocks_complex_to_mag_squared_O,
0))

self.connect ((self, 0), (self.LibreLoRa_PowerDetector_0, 0))

self.connect ((self, 0), (self.blocks_stream_to_vector_0, 0))

A.1.1 Tone Detector

int

ToneDetector_impl::work (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const float *dftIn = (const float *) input_items [0];
gr_complex *out = (gr_complex *) output_items[0];

for(auto i = 0; i < noutput_items; i++) {
const float* vect = dftIn + i*xDFTSize;
float totalPower;
volk_32f _accumulator_s32f (& totalPower , vect, DFTSize);
uint32_t maxInd;
volk_32f_index_max_32u(&maxInd, vect, DFTSize);

add_item_tag (0, nitems_written(0) + i, tagKey, pmt::from_float(fmod(float(
maxInd) /DFTSize + 0.5f, 1.0f) - 0.5f));

// out[i] = wect[mazInd]/totalPower;
out[i] = (DFTSize - 1)*vect[maxInd]/(totalPower - vect[maxInd]);

54

Code Listings

return noutput_items;

}

A.1.2 Power Detector

int

PowerDetector_impl::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const gr_complex *in = (const gr_complex *) input_items[0];
const float *powerln (const float *) input_items[1];
gr_complex *out;
if (output_items.size() > 0)

out = (gr_complex *) output_items[0];

size_t 1i;
const size_t nOutput = ((noutput_items + decimation - 1)/decimation)*
decimation;
switch(state) {
case detection:
for(i = 0; i < (noutput_items + decimation - 1)/decimation; i++) {
if (powerIn[i] > threshold) {
state = started;
samplesToRead = maxSamplesToRead;
// time = clock();

std::vector<gr::tag_t> tags;

auto nr = nitems_read(1);
get_tags_in_range(tags, 1, nr + i, nr + i + 1);
if (tags.size() != 0)
message_port_pub(detectOutPort, pmt::make_tuple(message, tagsl[0].
value));
else

message_port_pub(detectOutPort, message);
#ifndef NDEBUG
std::cout << "PowerDetector: started" << std::endl;
#endif
break;
}
}

consume (0, i*decimation);
consume (1, i);

return O;

case started:

if (output_items.size() > 0) {
//propagate tags
auto nr = this->nitems_read(0);
std::vector<gr::tag_t> tags;
this->get_tags_in_range(tags, O, nr + i, nr + nOutput);
for (auto tag : tags) {

this->add_item_tag(0, this->nitems_written(0) + tag.offset - nr, tag.
key, tag.value);

¥

}

for(i = 0; i < nOutput; i++) {

55

Code Listings

samplesToRead --;
if (output_items.size() > 0) {

out[i] = in[il;
¥
//if(clock () > time + timeout) {
if (samplesToRead == 0) {
state = waiting;
break;
¥
}
// consume (0, ((noutput_items + decimation - 1)/decimation)*decimation);
// consume (1, (noutput_items + decimation - 1)/decimation);

consume (0, 1i);

consume (1, i/decimation);

if (output_items.size() > 0)
// return ((noutput_items + decimation - 1)/decimation)*decimation;
return i;

else
return O;

case waiting:

for(i = 0; i < ((noutput_items + decimation - 1)/decimation)*decimation; i
++) {
if (powerIn[i] < threshold) {
state = detection;

#ifndef NDEBUG
std::cout << "PowerDetector: stopped,(timeout)" << std::endl;
#endif
break;
}
}

consume (0, i*decimation);
consume (1, 1i);
return O;

return O;

}

A.2 Frequency Estimator

A.2.1 Stochastic Gradient Descent (frequencyTracker class)

template<typename T>

int

frequencyTracker_impl<T>::work (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

{
const gr_complex *in = (const gr_complex *) input_items[0];
T *out = (T *) output_items[0];

for(int i = 0; i < noutput_items; i++) {
for(int j = 0; j < decimation; j++) {
w *= wStep;

w = (1 - mu)*w + mux(in[i*decimation + j + 1]/(in[i*decimation + j] + 1le-6f)

)

56

Code Listings

out [i] = calcFreq(w);
}

// Tell runtime system how many input items we consumed on
// each input stream.
// this->consume_each (noutput_items*decimation);

// Tell runtime system how many output items we produced.
return noutput_items;

template <>

float frequencyTracker_impl<float>::calcFreq(gr_complex w) {
return std::arg(w)/(2*M_PI);

}

A.2.2 DFTPeak

The DFTPeak Block was developed using a GNU Radio flowgraph that mixes both
stock and custom blocks.

Options Parameter Parameter | | Parameter - :
Title: Not titled yet Id: samp_rate 1d: BW I1d: SF Variable Variable
. i - g Id: OSF Id: symbolSize
Author: jp Label: samp_rate Label: BW LB SR VEEs - y. -
Output Language: Python Value: 1M Value: 125k Manue alue: alue: .
Generate Options: QT GUI

Parameter Import Import
Id: decimation Import: numpy Import: LibreLoRa
Value: 1

streamToHistoryVector
Nvect: 1.024k
Decimation: 1

Pad Source
Label: in

- FFTMax
Variable 7| pftsize: 1.024k 7
Id: DFTSize Window: chirpWindow

Value: 1.024k

Variable
Id: windowSize
Value: 256

Variable
Id: chirpWindow
Value: numpy.real(LibreLoR...

Pad Sink
Label: out

= Multiply Const
Constant: 1

Figure A.1: Flowgraph of the DF'TPeak block in GNU Radio companion.

57

Code Listings

The work functions of the used custom blocks can be found below:

1. streamToHistoryVector

template<typename T>

int

streamToHistoryVector_impl<T>::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const T *in = (comst T *) input_items[0];
T *out = (T *) output_items[0];

// Do <tsignal processing+>
for(size_t i = 0; i < noutput_items; i++) {
// for(size_t j = 0; j < nVect; j++)
// out[nVect*s + 5] = dn[i + j];
memcpy (out + nVect*i, in + i*decimation, nVect*sizeof (gr_complex));

}

// Tell runtime system how many output <items we produced.
return noutput_items;

2. FFTMax

int

FFTMax_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const gr_complex *in = (const gr_complex *) input_items[0];
uint32_t *out = (uint32_t *) output_items [0];

for(auto i = 0; i < noutput_items; i++) {
if (enabled) {
volk_32fc_x2_mu1tiply_32fc(fftIn, in + i*size, fftWindow, windowSize);
// memepy (fftIn, in + i%size, size*sizeof(gr_complez));
fft_execute(fftPlan);
volk_32fc_index_max_32u(out + i, fftOut, size);
} else
out [i] = 0;
}

// Tell runtime system how many output items we produced.
return noutput_items;

3. Remainder

int

Remainder_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

{
const float *in = (const float *) input_items[0];
float *out = (float *) output_items[0];
for(auto i = 0; i < noutput_items; i++)

out[i] = std::remainder (in[i], divisor);

// Tell runtime system how many output items we produced.

58

Code Listings

return noutput_items;

}

A.3 Correlator

template <>

int

Correlation_impl<float>::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

{
const float *in = (const float *) input_items[0];
float *corr_out = (float *) output_items[0];
float *data_out = (float *) output_items[1];

// Do <tsignal processing+>

#ifndef NDEBUG
///std::cout << "Correlation: work called. noutput_items: " << noutput_items
<< std::endl;
#endif

if (enabled) {
float corr;
float sumSq;
float sum;
const float* samples = in;

volk_32f_x2_dot_prod_32f (&corr, samples, symbol.data(), symbol.size());
volk_32f_x2_dot_prod_32f (&sumSq, samples, samples, symbol.size());
volk_32f_accumulator_s32f (&sum, samples, symbol.size());

corr_out [0] = corr/sqrt(sumSq - sum*sum/symbol.size());
// data_out [0] = samples[0];

for(size_t k = 1; k < noutput_items; k++) {
sumSq -= samples [0]*samples [0];
sum -= samples [0];

samples++;

sumSq += samples[symbol.size() - 1]*samples[symbol.size() - 1];
sum += samples[symbol.size() - 1];

volk_32f_x2_dot_prod_32f (&corr, samples, symbol.data(), symbol.size());

corr_out [k] = corr/sqrt(sumSq - sum*sum/symbol.size());
// data_out[k] = samples[0];
}
} else {

for(auto k = 0; k < noutput_items; k++)
corr_out [k] = 0;

}

for(auto k = 0; k < noutput_items; k++)
data_out[k] = in[k];

// Tell runtime system how many output items we produced.
return noutput_items;

59

Code Listings

A.4 Synchronizer

template<typename T>

int

correlationSync_impl<T>::general_work (int noutput_items,
gr_vector_int &ninput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

{
const T *data_in = (const T *) input_items[0];
const T *corr = (const T *) input_items[1];
T* data_out = (T*) output_items[0];

// bool#* syncd_out = (bool*) output_items[1];

#ifndef NDEBUG
// std::cout << "correlationSync: work called: noutput_items = " <<
noutput_items << std::endl;
#endif

// *syncd_out = false;
// Do <tsignal processing+>

if (!syncd) {
bool foundFirstPt = false;

float corrMaxNorm = O0;

corrMax = 0;

size_t maxPos = 0;

for(size_t i = 0; i < 2*symbolSize; i++) {

if (foundFirstPt) {
if (norm(corr[i]) <= corrStop) {

corrMax = conj<T>(corrMax)/std::abs(corrMax);

foundFirstPt = false;

this->consume_each (maxPos);

syncd = true;

preambleConsumed = false;

preambleSamplesToConsume = preambleSize;
#ifndef NDEBUG

std::cout << "correlationSync:, sync’d" << std::endl;
#endif

// *symncd_out = true;

// produce (1, 1);

// return WORK_CALLED_PRODUCE;

this->message_port_pub(syncPort, pmt::PMT_NIL);
#ifndef NDEBUG

std::cout << "correlationSync:yproducedysyncd signal" << std:

#endif
return O;
} else if (norm(corr[i]) > corrMaxNorm) {
if (i < symbolSize) {
// if(i < ninput_items[0] - symbolSize) {

corrMaxNorm = norm(corr[il);
maxPos = i;

} else
break;

}

} else if (norm(corr[i]) >= corrMin) {
if (i < symbolSize) {

60

:endl;

Code Listings

// if(i < ninput_items[0] - symbolSize) {

foundFirstPt = true;
corrMax = corrl[il;
corrMaxNorm = norm(corr[il]);
} else
break;
¥
}Y//for

this->consume_each(symbolSize) ;
// this->consume_each (ninput_items[0] - symbolSize);

return O;

A.5 Symbol Detector

A.5.1 Minimum Squares

template <>

int

symbolDemod_impl<float>::general_work (int noutput_items,
gr_vector_int &ninput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

const float *dataln = (const float *) input_items[0];
uint16_t *dataOut = (uintl6_t *) output_items [0];

#ifndef NDEBUG

std::cout << "demodulating," << noutput_items << "usymbols , SF, ="

std::endl;
#endif
if (started) {
// Do <+signal processing+>
for(size_t i = 0; i < noutput_items; i++) {
//size_t i = 0;
float corrMax = 0;
size_t jMax = 0;
for(size_t j = 0; j < /*symbolSize+/(1 << SF); j++) {
float corrJ;

<< SF <<

volk_32f_x2_dot_prod_32f (&corrJ, dataln + ixsymbolSize, upchirps.data

() + j*(symbolSize >> SF), symbolSize);

//volk_32f_z2_dot_prod_32f(8corrJ, dataln + t*symbolSize,
float>(j, SF, symbolSize).data(), symbolSize);

if (corrJ >= corrMax) {
corrMax = corrlJ;
jMax = j;
}
}

getSymbol <

// float err = jMaz - (symbolSize >> SF)*std::round(float(jMaz)/(

symbolSize >> SF));
// offset += 0.1%err;

// datalut[i] = wintl16_t(std::round((jMaz /*- std::round(offset)*/)*(1

<< SF)/float (symbolSize)))uinti6_t (1 << SF);

61

Code Listings

dataOut [i] = jMax;
#ifndef NDEBUG
std::cout << "demodulated,symbol:_ " << std::dec << dataOut[i] << ", SFy,=
u" << SF << std::endl;
#endif
}

// Tell runtime system how many input items we consumed on
// each input stream.
consume_each (noutput_items);

// Tell runtime system how many output items we produced.
return noutput_items;

//consume_each (1) ;

//return 1;

A.5.2 Multiple Detection

int

symbolDemodNew_impl::work (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const float *dataln = (const float *) input_items[0];
uintl16_t *dataOut = (uintl16_t *) output_items[0];

// Do <tsignal processing+>
for(size_t i = 0; i < noutput_items; i++) {

// size_t minErr = (1 << 8F);
// size_t minSym = 0

// for(size_t sym = 0; sym < (1 << SF); sym++) {

//gr_complez mean 0;
for (auto& x : count)
x = 0;
for(size_t j = startingIndex; j < startingIndex + windowSize; j++){

// mean += std::polar<float>(1.0, 2*M_PI*0SF#*(datalIn[i*symbolSize + j]
- twolUpchirps[jl));;
// intl16_t decision = 2%(1 << SF) - intl16_t(std::round(symbolSize*(std
::abs(dataln[i*symbolSize + j] - twoUpchirps[j + sym*0SF]))))/}
intl16_t (2x(1 << §F));

float decisionf = std::round(float(l << SF)*0SF*(dataln[i*symbolSize +
j1 - twoUpchirps[jl));

int16_t decision = (int32_t(decisionf)%int32_t (1 << SF) + int32_t (1 <<
SF))%int32_t (1 << SF);

count .at (decision) ++;

}

// datalut[i] = uinti16_t (round ((1 << SF)*std::arg(mean)/(2.0*M_PI)))/
uintl16_t (1 << SF);
size_t maxK = 0;
size_t maxCount = O0;
for(auto k = 0; k < count.size(); k++)
if (count [k] > maxCount){
maxK = k;

62

Code Listings

maxCount = count [k];

}

dataOut [i] = maxK;
// #ifndef NDEBUG

// std::cout << "err: " << mazK << std::endl;
// #endif

// if (mazK < minErr){

// minSym = sym;

// minErr = mazk;

// }

/7 }

// datalOut[i] = minSym;
#ifndef NDEBUG
std::cout << "symbolDemodNew: ,demodulatedsymbol: " << std::dec << datalut
[i] << ", SFu=_" << SF << std::emndl;

// std::cout << "symbolDemodNew: counts: ";
// for(autol = : count)
// std::cout << g << ", ",
#endif
}

// Tell runtime system how many output items we produced.
return noutput_items;

}

A.6 Gray Encoder

int

grayEncode_impl::work (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const uintl6_t *in = (const uintl16_t *) input_items[0];
uint16_t *out = (uintl6_t *) output_items[0];

#ifndef NDEBUG
std::cout << "grayEncode:_ workycalled:gynoutput_itemsy=_" << noutput_items <<
std::endl;
#endif

// Do <+signal processing+>
for(size_t i = 0; i < noutput_items; i++)
out[i] = (in[i] ~ (in[i] >> 1)) & ((1 << SF) - 1);

// Tell runtime system how many input items we consumed on
// each input stream.

//consume_each (noutput_items);

// Tell runtime system how many output items we produced.
return noutput_items;

63

Code Listings

A.7 Deinterleaver

int

deinterleave_impl::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const uintl6_t *in = (const uintl6_t *) input_items[0];
uint8_t *out = (uint8_t *) output_items[0];

#ifndef NDEBUG
//std::cout << "deinterleave: work called: mnoutput_items = " <<
noutput_<items << std::endl;
#endif

const size_t blocksToProduce = (noutput_items + SF - 1)/SF;

#ifndef NDEBUG
if (blocksToProduce != 0) {
std::cout << "deinterleave: producing:," << blocksToProduce << " blocks ("
<< "nouput_items_ =" << noutput_items << ", SF,=," << SF << ")" <<
std::endl;

// Do <+signal processing+>

}
#endif

for(size_t k
out [k] = 0;

0; k < SF; k++)

for(size_t i = 0; i < blocksToProduce; i++){

#ifndef NDEBUG
std::cout << "deinterleave:_ deinterleaving symbols: ";
for(size_t j = 0; j < codelength; j++)
std::cout << std::hex << in[i*codelength + j] << " ";
std::cout << std::endl;

#endif
for(size_t j = 0; j < codelength; j++)
for(size_t k = 0; k < SF; k++)
out [i*SF + (j + k)%SF] |= (in[i*codeLlength + j]l >> k & 0x01) << j;
}

// Tell runtime system how many input items we consumed on
// each input stream.

// consume_each (noutput_items);

consume_each (codeLength*blocksToProduce) ;

// Tell runtime system how many output items we produced.

// return mnoutput_items;
return SFx*blocksToProduce;

64

Code Listings

A.8 Decoder

int

decode_impl::work (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const uint8_t *in = (const uint8_t *) input_items [0];
uint8_t *out = (uint8_t *) output_items[0];

#ifndef NDEBUG
std::cout << "decode:pwork,called: noutput_items, =" << noutput_items << std
::endl;
#endif

// Do <tsignal processing+>

for(size_t i = 0; i < noutput_items; i++) {
uint8_t syndrome = calculatePairity(in[i], pairityMatrix) ~ in[i];
out[i] = (in[i] ~ cosetLeader [syndromel]) & O0xOf;

#ifndef NDEBUG
std::cout << std::hex << "decoded:yin:_ " << unsigned(in[i]) << ",gout: "<<
std::hex << unsigned(out[i]) << ", CR,=4" << CR << std::endl;
#endif

}

// Tell runtime system how many input items we consumed on
// each input stream.
// consume_each (noutput_items);

// Tell runtime system how many output items we produced.
return noutput_items;

A.9 Frame Decoder / Receiver Controller

void
receiverController_impl::forecast (int noutput_items, gr_vector_int &
ninput_items_required)
{
// minput_items_required [0] = started? (gotHeader? nibblesToRead : SFcurrent
A H
// ninput_items_required[1] = started? 0 : 1;
switch(currentState) {
case waitingForSync:
//no samples are really needed, but this avoinds work being called when it
1S nmot mnecessary
ninput_items_required[0] = 1;//SFcurrent;//0;
// ninput_items_required[1] = 1;
break;
case readingHeader:
ninput_items_required [0] = SFcurrent;
// ninput_items_required[1] = 0;
break;
case sendingPayload:
ninput_items_required[0] = payloadNibblesToRead + extraNibblesToConsume +
(payloadCRCPresent? 2*payloadCRCSize : 0);
// mninput_items_required[1] = 0;
break;

65

Code Listings

int

receiverController_impl::general_work(int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const uint8_t *nibblesIn = (const uint8_t *) input_items [0];
// const bool *syncdIn = (const bool *) input_items/[1];
uint8_t *nibblesOut = (uint8_t *) output_items [0];

#ifndef NDEBUG
std::cout << "receiverController: workjcalled: noutput_items =" <<
noutput_items << std::endl;
#endif

int produced = 0;
size_t payloadNibblesToProduce = 0;
// Do <tsignal processing+>
switch(currentState) {
case waitingForSync:

// if(¥syncdIn)

// startRz ();

// consume (1, 1);
consume_each (1) ;
break;

case readingHeader:
//consume (1, 1);
readHeader (nibblesIn, nibblesOut);
//consume (0, SFcurrent);

//produced = SFcurrent - 5;

consume (0O, 5);

produced = 0;

if (theaderCheckSumValid || CR == 0 || CR > 4) {
stopRx () ;

} else {

#ifndef NDEBUG
std::cout << std::dec;
std::cout << "Got_ Valid_ Header" << ":,";
std::cout << "length:_" << unsigned(payloadLength) << ", ";
std::cout << "CR:_," << umnsigned(CR) << ", ,";
std::cout << "CRC," << (payloadCRCPresent? "Present" : "Not_ Present") <<
std::endl;
#endif

message_port_pub(lfsrStatePort, pmt::from_long(0xff));
message_port_pub(payloadLengthPort, pmt::from_long(payloadLength));

// send header info as a loraFrameParams tag

pmt::pmt_t message = pmt::make_tuple(pmt::from_long(SF),
pmt::from_long(CR),
pmt::from_bool (payloadCRCPresent),
pmt::from_bool (lowDataRate)) ;

add_item_tag (0, nitems_written(0), pmt::intern("loraFrameParams"),

message) ;
// send payloadlength as a separate tag

66

Code Listings

add_item_tag (0, nitems_written(0), pmt::intern("payloadSize"), pmt::
from_long(payloadLength));

// if(2*payloadlength <= (SFcurrent - 5))
// stopRz ();
// else {
payloadNibblesToRead = 2*payloadlength;// - (SFcurrent - 5);
size_t nibblesToRead = payloadNibblesToRead + 2*(payloadCRCPresent?
payloadCRCSize : 0);
// eztraNibblesToConsume = SF*ceil (nibblesToRead/float (SF)) -
nibblesToRead;
//eztralibblesToConsume = (SF - nibblesToRead/SF)JSF;

setSFcurrent (lowDataRate? (SF - 2) : SF);
//setSFcurrent (SF);
if (nibblesToRead > (SF - 7))
extraNibblesToConsume = (SFcurrent - (nibblesToRead - (SF - 7))%
SFcurrent)’SFcurrent;

#ifndef NDEBUG

std::cout << "nibbles_ topread:_ " << nibblesToRead << ", SF_,=_," << SF <<
std::endl;
std::cout << "extrapynibbles:_ " << extraNibblesToConsume << ", SF_ =" <<

SF << std::endl;
#endif

currentState = sendingPayload;
// synchronizer->setNOutputItemsToProduce ((eztralNibblesToConsume +
nibblesToRead) *(CR + 4)/SF);
if (nibblesToRead + extraNibblesToConsume > (SF - 7))
message_port_pub(synchronizerSetNPort, pmt::from_long ((
extraNibblesToConsume + nibblesToRead - (SF - 7))*(CR + 4)/
SFcurrent));
// message_port_pub (synchronizerResetPort, pmt::PMT_NIL);
// randomizer->reset();
/7 }
}
break;
case sendingPayload:

//message_port_pub(lfsrStatePort, pmt::from_long (0zff));
for(size_t i = 0; i < payloadNibblesToRead; i++) {
nibblesOut[i] = nibblesIn[i];

#ifndef NDEBUG
std::cout << "receiverController: produced_ data nibble:" << std::hex <<
unsigned (nibblesOut [i]) << std::endl;
#endif

}
produced = payloadNibblesToRead;
if (payloadCRCPresent) {
uint16_t CRC = nibbles2bytes<uintl6_t>(*((uint32_t*) (nibblesIn +
payloadNibblesToRead)));
#ifndef NDEBUG
std::cout << "receiverController:,read CRC:," << unsigned (CRC) << std::
endl;
#endif

message_port_pub(crcPort, pmt::from_long(CRC));

67

Code Listings

}

#ifndef NDEBUG
for(size_t i = 0 ; i < extraNibblesToConsume; i++)
std::cout << "receiverController: extragynibble:" << std::hex << unsigned
(nibblesIn[payloadNibblesToRead + (payloadCRCPresent? 2*
payloadCRCSize : 0) + i]) << std::emndl;

#endif
consume (0, payloadNibblesToRead + extraNibblesToConsume + (
payloadCRCPresent? 2*payloadCRCSize : 0));
stopRx () ;
break;
default:
}

// Tell runtime system how many output items we produced.
return produced;

}

A.10 Nibbles To Bytes

int

NibblesToBytes_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const uint8_t *in = (const uint8_t *) input_items[0];
uint8_t *out = (uint8_t *) output_items [0];

// Do <+signal processing+>
for(size_t i = 0; i < noutput_items; i++)
out[i] = (in[2*i + 1] << 4)|in[2*i];

// Tell runtime system how many output items we produced.
return noutput_items;

}

A.11 Randomizer

int

randomize_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const uint8_t *in = (const uint8_t *) input_items [0];
uint8_t *out = (uint8_t *) output_items[0];

//check for payloadSize tags
std::vector<gr::tag_t> tags;
get_tags_in_range(tags, O, nitems_read(0), nitems_read(0) + 1, pmt::intern("
payloadSize"));
if (tags.size () !'= 0) {
size_t payloadSizeNew = pmt::to_long(tags[0].value);
if (payloadSizeNew <= 255) {
setPayloadSize (payloadSizeNew);
#ifndef NDEBUG

68

Code Listings

std::cout << "randomize: setypayloadSize_ to: " << payloadSize << std::
endl;
#endif
} else {

setPayloadSize (1) ;
#ifndef NDEBUG

std::cout << "randomize:,gotyinvalidypayloadSize._ setypayloadSize toyl.

<< payloadSize << std::endl;

#endif
}
}
for(size_t i = 0; i < noutput_items; i++) {
out[i] = in[i] -~ 1fsrState;

#ifndef NDEBUG
std::cout << "randomize:,in,=_," << std::hex << unsigned(in[i]) << ", outy=

u" << unsigned(out[i]) << ", state,=_," << unsigned(lfsrState) << std::
endl;
#endif
lfsrState = (lfsrState << 1) | pairity(lfsrState&0xB8);
byteCount++;
//reset state at the end of each frame
if (byteCount == payloadSize) {
#ifndef NDEBUG
// std::cout << "randomize: end of payload." << std::endl;
#endif
byteCount = 0;
lfsrState = lfsrInitialState;
}
}

return noutput_items;

}

A.12 CRC-16

int

CRC16_impl::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const uint8_t *in = (const uint8_t *) input_items[0];
// uintl6_t *out;

// if(output_items.size() > 0)

// out = (uintl6_t *) output_items[0];

// #ifndef NDEBUG
// std::cout << std::dec << "CRC16: work called, noutput_items = " <<
noutput_items << ", payloadSize = " << payloadSize << std::endl;

// #endif

//check for payloadSize tags
std::vector<gr::tag_t> tags;
get_tags_in_range(tags, O, nitems_read(0), nitems_read(0) + 1, pmt::intern("
payloadSize"));
if (tags.size() !'= 0) {
size_t payloadSizeNew = pmt::to_long(tags[0].value);

69

Code Listings

if (payloadSizeNew <= 255) {
setPayloadSize (payloadSizeNew) ;
} else {
setPayloadSize (1) ;
#ifndef NDEBUG
std::cout << "CRC16:,got_invalidypayloadSize." << payloadSize << std::

endl;
#endif
}
}
if (payloadSize == 0){
consume_each (noutput_items) ;
return O;
}
for(size_t j = 0; j < noutput_items; j++) {

// const wint8_t* 4inJ = 4in + j*payloadSize;

// uwint32_t crc = 0z0000;
// for(size_t i = 0; i < payloadSize; i++) {
crc <<= 8;
// crc = polDivRem(crc-uintl6_t(inJ[i]), polynomial);
crc = polDivRem(crc~uint16_t(in[jl), polynomial);
/7 }
byteCount++;
// if(output_items.size() > 0)
// out[j] = crc-zorlut;

if (byteCount == payloadSize) {
message_port_pub(crcOutPort, pmt::from_long(crc~xorQOut));

#ifndef NDEBUG
std::cout << std::hex << "CRC16:calculated CRC:," << /*unsigned (out[j])
*/unsigned (crc~xorOut) << std::endl;
#endif

byteCount = 0;
crc = 0x0000;
}
}
// Tell runtime system how many input items we consumed on
// each input stream.
// consume_each (payloadSize*noutput_items);
consume_each (noutput_items);

// payloadSize = 0;
// Tell runtime system how many output items we produced.
return noutput_items;

A.13 Bytes To Nibbles

int

BytesToNibbles_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const uint8_t *in = (const uint8_t *) input_items [0];
uint8_t *out = (uint8_t *) output_items[0];

70

Code Listings

for(size_t i = 0; i < noutput_items/2; i++){
out [2*%i] = in[i]&0xO0f;
out [2*%i + 1] = (in[i] >> 4)&0x0f;

#ifndef NDEBUG

std::cout << "BytesToNibbles:_ iny=_" << unsigned(in[i]) << ", outy=y"

<<

unsigned (out [2%¥i]) << ", " << unsigned(out[2*i + 1]) << std::endl;

#endif
}

// Tell runtime system how many output items we produced.
return noutput_items;

}

A.14 Transmitter Controller

int

TransmitterController_impl::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const uint8_t *in = (const uint8_t *) input_items [0];
uint8_t *out = (uint8_t *) output_items[0];

std::vector<gr::tag_t> tags;
switch(currentState) {

case sendingHeader:
//check for payloadSize tags

get_tags_in_range(tags, O, nitems_read(0), nitems_read(0) + 1, pmt::intern

("payloadSize"));
if (tags.size() != 0) {
size_t payloadSizeNew = pmt::to_long(tags[0].value);
if (payloadSizeNew <= 255) {
setPayloadSize (payloadSizeNew) ;
#ifndef NDEBUG
std::cout << "TransmitterController: set payloadSizeyto: " <<
payloadSize << std::endl;
#endif
} else {
setPayloadSize (1);
#ifndef NDEBUG

std::cout << "TransmitterController: gotyinvalid,payloadSize. sety

payloadSizeytoyl." << payloadSize << std::endl;
#endif
}
}

//check for loraFrameParams tag

get_tags_in_range(tags, O, nitems_read(0), nitems_read(0) + 1, pmt::intern

("loraFrameParams"));

if (tags.size() != 0) {
pmt::pmt_t message = tags[0].value;
SF = pmt::to_long(pmt::tuple_ref (message, 0));
CR = pmt::to_long(pmt::tuple_ref (message, 1));
CRCPresent = pmt::to_bool(pmt::tuple_ref (message, 2));
lowDataRate = pmt::to_bool(pmt::tuple_ref (message, 3));
float BW = pmt::to_float(pmt::tuple_ref (message, 4));
symbolSize = std::round(float (1l << SF)/BW);
//syncWord still not <implemented

71

Code Listings

calculateConstants () ;

}

#ifndef NDEBUG
std::cout << "TransmitterController: sending header." << std::endl;
#endif

setSFCurrent (SF-2) ;
setCRCurrent (4) ;

sendParamsTag (true);
message_port_pub(transmissionStartPort, pmt::PMT_NIL);

//output header
memcpy (out, headerNibbles, 5*sizeof (uint8_t));

if (nNibbles > (SF - 7)) {
memcpy (out + 5, in, (SF - 7)*sizeof (uint8_t));

currentState = sendingPayload;
consume_each(SF - 7);
} else {

memcpy (out + 5, in, 2*payloadSizex*sizeof (uint8_t));

if (CRCPresent) {
uint32_t crcNibbles = bytes2nibbles<uint32_t, uintl6_t>(crc);
memcpy (out + 5 + 2*payloadSize, &crcNibbles, 2*xCRCSizex*sizeof (uint8_t)
)
¥

memset (out + 5 + nNibbles, O, nNibblesTotal - nNibbles);
consume_each (2xpayloadSize) ;

//send end of frame tag
static const pmt::pmt_t tagKey = pmt::intern("loraEndOfFrame");
add_item_tag (0, nitems_written(0) + (SF - 2) - 1, tagKey, pmt::PMT_NIL);

}
#ifndef NDEBUG
// std::cout << "TransmitterController: produced nibbles: " << std::endl;
// for(auto i = 0; % < (SF - 2); i++)
// std::cout << std::hex << unsigned(out[i]) << " ";

// std::cout << std::endl;
#endif

return (SF - 2);
case sendingPayload:

#ifndef NDEBUG
std::cout << "TransmitterController:, sending_ payload." << std::endl;

#endif

setSFCurrent (lowDataRate? (SF - 2) : SF);
setCRCurrent (CR) ;

sendParamsTag () ;

//output payload
memcpy (out, in, (2*payloadSize - (SF - 7))xsizeof (uint8_t));

#ifndef NDEBUG

std::cout << "TransmitterController: sentgpayload." << std::endl;
#endif

72

Code Listings

#ifndef

#endif

#ifndef

#endif

#ifndef

#endif

if (CRCPresent) {
//caculate crc
// wintl6_t crc = calculateCRCFromNibbles (in);
uint32_t crcNibbles = bytes2nibbles<uint32_t, uintl6_t>(crc);

memcpy (out + (2*payloadSize - (SF - 7)), &crcNibbles, 2*CRCSizex*sizeof (
uint8_t));

}
NDEBUG
std::cout << "TransmitterController: sent_ crc." << std::endl;

std::cout << (nNibblesTotal - ((2*payloadSize - (SF - 7)) + 2x(CRCPresent
? CRCSize : 0))) << std::endl;

memset (out + (2*payloadSize - (SF - 7)) + 2*(CRCPresent ? CRCSize : 0), O,
(nNibblesTotal - ((2*payloadSize - (SF - 7)) + 2*x(CRCPresent 7
CRCSize : 0)))*sizeof (uint8_t));

NDEBUG

std::cout << "TransmitterController: sent_ extragnibbles." << std::endl;
NDEBUG

// std::cout << "TransmitterController: produced nibbles: " << std::endl;
// for(auto 4 = 0; % < nlNibblesTotal - (SF - 7); i++)

// std::cout << std::hex << wunsigned(out[i]) << " ";

// std::cout << std::endl;

//send end of frame tag

static const pmt::pmt_t tagKey = pmt::intern("loraEndOfFrame");

add_item_tag (0, nitems_written(0) + nNibblesTotal - (SF - 7) - 1, tagKey,
pmt:: PMT_NIL) ;

currentState = sendingHeader;
// Tell runtime system how many input items we consumed on
// each input stream.

consume_each (2*payloadSize - (SF - 7));

// Tell runtime system how many output items we produced.
return nNibblesTotal - (SF - 7);

return O;

}

A.15 Encoder

int

Encode_impl::work(int noutput_items,

gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

{
const uint8_t *in = (comnst uint8_t *) input_items[0];
uint8_t *out = (uint8_t *) output_items[0];
#ifndef NDEBUG

std::cout << "Encode:gencoding: " << std::dec << noutput_items << "_items"

<< ", CRyu=y" << CR << std::emndl;

73

Code Listings

#endif
static const pmt::pmt_t tagKey = pmt::intern("loraParams");
for(size_t i = 0; i < noutput_items; i++) {

std::vector<gr::tag_t> tags;

auto nr = nitems_read(0);
get_tags_in_range(tags, O, nr + i, nr + i + 1, tagKey);
if (tags.size() != 0) {

pmt::pmt_t message = tags[0].value;
size_t CRnew = pmt::to_long(pmt::tuple_ref (message, 1));
setCR (CRnew) ;

#ifndef NDEBUG

std::cout << "Encode:_ " << "changed, CRyto:, " << CR << " (tag)." << std::
endl;
#endif
}
out[i] = calculatePairity(in[i], pairityMatrix);

#ifndef NDEBUG
std::cout << std::hex << "Encode: in:_ " << unsigned(in[i]) << ", out:,"<<
std::hex << unsigned(out[i]) << ", CR,=_" << CR << std::endl;
#endif
}

// Tell runtime system how many output items we produced.
return noutput_items;

}

A.16 Interleaver

int

Interleave_impl::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const uint8_t *in = (comnst uint8_t *) input_items[0];
uint16_t *out = (uintl6_t *) output_items [0];

set_relative_rate (codelLength, SF);

size_t codelLengthInitial = codelLength;
size_t SFInitial = SF;

const size_t blocksToProduce = (noutput_items + codelength - 1)/codelength;

#ifndef NDEBUG
// std::cout << "Interleave: blocksToProduce = " << blocksToProduce << std::
endl ;
#endif

for(size_t k = 0; k < codeLength; k++)
out[k] = 0;

size_t 1i;
for(i = 0; i < blocksToProduce; i++) {

74

Code Listings

#ifndef

#endif

#ifndef

#endif

#ifndef

#endif

if (! changedParams || i != 0) {

//read loraParam tag if present
std::vector<gr::tag_t> tags;
auto nr = nitems_read(0);
static const pmt::pmt_t tagKey = pmt::intern("loraParams");
get_tags_in_range(tags, O, nr + ixSF, nr + i*SF + 1, tagKey);
if (tags.size() != 0) {
// add_item_tag (0, nitems_written(0) + i*codelength, tagKey, tags[0].
value);

pmt ::pmt_t message = tags[0].value;

size_t SFnew = pmt::to_long(pmt::tuple_ref (message, 0));
setSF (SFnew) ;

size_t CRnew = pmt::to_long(pmt::tuple_ref (message, 1));
setCR (CRnew) ;

changedParams = true;
break;
¥
} else {
changedParams = false;

set_relative_rate (codelength, SF);
codeLengthInitial = codelLength;
SFInitial = SF;

NDEBUG
std::cout << "Interleave:_ updatedyparameters." << std::endl;

}

NDEBUG
std::cout << "Interleave:_ propagating, Tags.ynBlocks:, " << blocksToProduce
<< std::endl;

//propagate tags in the beggining of blocks
std::vector<gr::tag_t> tags;
auto nr = nitems_read(0);
get_tags_in_range(tags, O, nr + i*SF, nr + i*SF + 1);
for (auto tag : tags)
add_item_tag (0, nitems_written(0) + ixcodelength, tag.key, tag.value);

//propagate tags in the end of blocks
tags.clear ();
get_tags_in_range(tags, O, nr + i*SF + SF - 1, nr + i*8F + SF - 1 + 1);
for (auto tag : tags)
add_item_tag (0, nitems_written(0) + i*codelLength + codelength - 1, tag.
key, tag.value);

NDEBUG
std::cout << "Interleave:ginterleaving, symbols:,";
for(size_t j = 0; j < SF; j++)
std::cout << std::hex << unsigned(in[ix*SF + jl) << ",";
std::cout << ", SFy=4" << SF << ", CRy=y" << codelength - 4 << ", nBlocks:
u" << blocksToProduce << std::endl;

for(size_t j = 0; j < SF; j++)
for(size_t k = 0; k < codelength; k++)
out [i*codeLength + k] |= (in[i*SF + (j + k)%SF] >> k & 0x01) << j;

75

Code Listings

#ifndef NDEBUG
// std::cout << "Interleave: interleaved symbols:
// for(size_t k = 0; k < codelength; k++)
// std::cout << std::hex << unsigned(out[i*codelength + kJ) << " ";
// std::cout << std::endl;

".
s

#endif
}

// Tell runtime system how many input items we consumed on
// each input stream.

// consume_each (noutput_items);

consume_each (SFInitialx*i);

// Tell runtime system how many output items we produced.
// return mnoutput_items;
return codelengthInitialx*i;

A.17 Gray Decoder

int

GrayDecode_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const uintl16_t *in = (const uintl16_t *) input_items[0];
uintl6_t #*out = (uintl6_t *) output_items[0];

// Do <tsignal processing+>
for(size_t i = 0; i < noutput_items; i++) {

std::vector<gr::tag_t> tags;

auto nr = nitems_read(0);

static const pmt::pmt_t tagKey = pmt::intern("loraParams");
get_tags_in_range(tags, O, nr + i, nr + i + 1, tagKey);

if (tags.size() != 0) {

pmt ::pmt_t message = tags[0].value;
size_t SFnew = pmt::to_long(pmt::tuple_ref (message, 0));
setNBits (SFnew) ;

}

out [i] = grayDecode(in[il, nBits);

#ifndef NDEBUG
std::cout << "GrayDecode:_ in: " << std::hex << in[i] << ", out: " << out[i
] << ", nBits,=_" << nBits << std::endl;
#endif
}

// Tell runtime system how many output items we produced.
return noutput_items;

}

76

Code Listings

A.18 Symbol Modulator

int

SymbolMod_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const uintl16_t *in = (const uintl16_t *) input_items[0];
float *out = (float *) output_items[0];

#ifndef NDEBUG
std::cout << "SymbolMod:_ modulating," << noutput_items/symbolSize << "
symbols , ;SF =" << SF << std::endl;
#endif

for(auto i = 0; i < noutput_items/symbolSize; i++){
//propagate end0fFrame Tag
std::vector<gr::tag_t> tags;

auto nr = nitems_read(0);
get_tags_in_range(tags, O, nr + i, nr + i + 1, pmt::intern("loraEndOfFrame
"))

for (auto tag : tags)
add_item_tag (0, nitems_written(0) + i*symbolSize + symbolSize - 1, tag.
key, tag.value);

static const pmt::pmt_t tagKey = pmt::intern("loraParams");
get_tags_in_range(tags, O, nr + i, nr + i + 1, tagKey);
if(tags.size() != 0) {

pmt::pmt_t message = tags[0].value;
size_t SFNew = pmt::to_long(pmt::tuple_ref (message, 0));
const bool isBeginning = pmt::to_bool(pmt::tuple_ref (message, 2));
if (isBeginning) {
setSF (SFNew + 2);
}
setSFCurrent (SFNew) ;

size_t symbolSizeNew = pmt::to_long(pmt::tuple_ref (message, 3));
setSymbolSize (symbolSize);

add_item_tag (0, nitems_written(0) + i*symbolSize, tagKey, message);

}

const std::vector<float> symi = getSymbol<float>(in[i]*(1 << (SF -
SFCurrent)), SF, symbolSize);
memcpy (out + i*symbolSize, symi.data(), symbolSizex*sizeof (float));

#ifndef NDEBUG
std::cout << "SymbolMod: modulatedsymbol:_ " << std::dec << in[i] << ", SF
u=u" << SFCurrent << std::endl;
#endif
}

// Tell runtime system how many output items we produced.
return (noutput_items/symbolSize)*symbolSize;

}

7

Code Listings

A.19 Append Prefix

int

AppendPrefix_impl::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

{

const float *in = (const float *) input_items[0];

float *out = (float *) output_items[0];

size_t nFrames = 0;

size_t produced = 0;

size_t 1i;

for(i = 0; i < noutput_items; i++) {
//propagate tags
auto nr = this->nitems_read(0);
this->get_tags_in_range(tags, O, nr + i, nr + i + 1);
for(auto tag : tags) {

this->add_item_tag(0, this->nitems_written(0) + i + nFrames*prefix.size
(), tag.key, tag.value);
}
tags.clear ();
static const pmt::pmt_t tagKey = pmt::intern("loraParams");
this->get_tags_in_range(tags, O, nr + i, nr + i + 1, tagKey);
if (tags.size() !'= 0) {
#ifndef NDEBUG
// std::cout << "AppendPrefiz: got tag. tags.size() = " << tags.size()
<< std::endl;
#endif

const bool isBeginning = pmt::to_bool(pmt::tuple_ref (tags[0].value, 2));
if (isBeginning) {
const size_t SFNew = pmt::to_long(pmt::tuple_ref (tags[0].value, 0)) +
23
if (SFNew != SF) {
SF = SFNew;
calculatePrefix () ;
this->set_max_noutput_items (prefix.size());
this->set_min_output_buffer (this->max_noutput_items() + prefix.size
(ODMH
}

memcpy (out + i + nFrames*prefix.size(), prefix.data(), prefix.size()*
sizeof (float));

// this->add_item_tag (0, this->nitems_written(0) + i + nFrames#*prefic.
size(), tagKey, tags[0].value);

nFrames++;
produced += prefix.size();
#ifndef NDEBUG
std::cout << "AppendPrefix: prefix inserted." << std::endl;
#endif
}
}

out[i + nFrames*prefix.size()] = in[i];

78

Code Listings

produced++;

if (produced >= noutput_items) {
#ifndef NDEBUG
// std::cout << "AppendPrefiz: sent everything. < = " << 4 << std::endl;
#endif
break;
}
}

#ifndef NDEBUG
// std::cout << "AppendPrefiz: work ended. i = " << 4 << ", noutput_items =
" << noutput_items <<

" "

produced = << produced << std::endl;
#endif
// Do <tsignal processing+>
// Tell runtime system how many input items we consumed on
// each input stream.
// gr::block::consume_each (noutput_items);
gr::block::consume_each(i + 1);

// Tell runtime system how many output items we produced.
// return nFrames*prefixz.size() + noutput_items;
return produced;

}

A.20 Frequency Modulator

int

FrequencyMod_impl::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

const float *freqIn = (const float *) input_items[0];
gr_complex *out = (gr_complex *) output_items[0];

for(auto i = 0; i < noutput_items; i++){
w *= std::polar<float>(1.0f, 2xM_PIxfreqIn[i]);
out[i] = w;

// Tell runtime system how many output items we produced.
return noutput_items;

}

A.21 Append Silence

int

AppendSilence_impl::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

{
const gr_complex *in = (const gr_complex *) input_items[0];
gr_complex *out = (gr_complex *) output_items[0];
size_t nSamplesUsed = O0;

if (!transmittingFrame) {
memset (out, O, noutput_items*sizeof (gr_complex));

79

Code Listings

} else
for(auto i = 0; i < noutput_items; i++) {
if (transmittingFrame) {
out[i] = in[il;

nSamplesUsed++;

//check is next sample has end0fFrame tag
std::vector<gr::tag_t> tags;

auto nr = nitems_read(0);

static const pmt::pmt_t tagKey = pmt::intern("loraEndOfFrame");
get_tags_in_range(tags, O, nr + i, nr + i + 1, tagKey);

if(tags.size() != 0) {
#ifndef NDEBUG
std::cout << "AppendSilence:gotyendyof frame." << std::endl;
#endif
transmittingFrame = false;
}
} else {
out[i] = 0;

}
}

// Tell runtime system how many input items we consumed on
// each input stream.
consume_each (nSamplesUsed);

// Tell runtime system how many output items we produced.
return noutput_items;

80

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	LPWANs and the LoRa Protocol Stack
	Low-Power Wide-Area Networks
	LoRaWAN
	LoRa Chirp Spread Spectrum Modulation

	Reverse Engineering The LoRa PHY
	Previous Works
	General Transmitter Structure
	Physical Layer - Packet Structure
	Logic Link Control Layer Structure

	Findings
	Experimental Setup
	General Transmitter Structure
	 Physical Layer - Packet Structure
	Logic Link Control Layer Structure

	Receiver Structure
	Frequency Estimator
	Correlation Synchronizer
	Symbol Decision
	Frame Decoder / Receiver Controller

	Transceiver Implementation
	GNU Radio
	Implementation
	Receiver
	Transmitter

	Hardware Implementation and Example Applications
	Hardware Setup
	Example Applications
	LoRa Detector: Another Application of the Chirp Detector
	Multi-Parameter, Multi-Channel Receiver
	Variable Parameter Transmitter
	Multi-Parameter, Multi-Channel Transceiver

	Conclusion
	Bibliography
	Code Listings
	Chirp Detector
	Tone Detector
	Power Detector

	Frequency Estimator
	Stochastic Gradient Descent (frequencyTracker class)
	DFTPeak

	Correlator
	Synchronizer
	Symbol Detector
	Minimum Squares
	Multiple Detection

	Gray Encoder
	Deinterleaver
	Decoder
	Frame Decoder / Receiver Controller
	Nibbles To Bytes
	Randomizer
	CRC-16
	Bytes To Nibbles
	Transmitter Controller
	Encoder
	Interleaver
	Gray Decoder
	Symbol Modulator
	Append Prefix
	Frequency Modulator
	Append Silence

