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Summary

Facial prosthetic rehabilitation aims to provide a patient affected by severe patholo-
gies, or victim of accidents, with the restoration of their facial capability. Previous
to the actual medical procedure, the process involves showing the patient what
the result of rehabilitation would be. To achieve this goal, current techniques are
based on the creation of wax models and other similar artifacts. However, modern
advance in computer graphic techniques as well as machine learning suggests the
possibility of moving the process to a computerized domain, thus making the model
derivation faster and the model itself easily editable.

The ultimate goal of this thesis was to achieve an accurate 3D model of a human
face that could act as a replacement to the classic methods cited above and to be
able to tune it according to specific parameters. To achieve this goal different steps
were followed. A fundamental characteristic of the face reconstruction had to be
the accuracy in terms of resemblance of the original face. It was determined that
an accurate model could not be obtained starting from a single image, but a set of
images containing the person’s face from different angles were needed. To be able to
automatically modify the model in order to visualize the effects of rehabilitation, it
became necessary to detect 3D landmarks on the model. 3D landmarks are in fact
mandatory to perform the aesthetic measurements on which to base the tuning of
the model. Based on these measurement, the 3D reconstruction was automatically
edited to achieve an aesthetically pleasing result.

The 3D model reconstruction of the person’s face was achieved by improving
an already existing framework, based on deep learning techniques, which allowed
to derive a face model starting from a single image. Building on said network,
the reconstruction of an accurate model from multiple images was achieved. The
automatic detection of 3D landmarks on the model was developed proposing
an original implementation based on different state-of-the-art works. Another
framework was then developed to perform the needed measurements and to compare
them with established beauty canons, based on geometric pleasing characteristics of
the human face. Finally, the framework needed to tune the 3D model was developed
as well. The latter is designed to either take as input the result of the automatic
measurement or an input provided by the clinician to manually determine the
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adjustments to be performed on the model.
The present thesis’ work resulted in the accurate and robust reconstruction of

a 3D model starting from multiple images of the same subject. On this model
a fast and automated 3D landmark detection was performed, with an accuracy
comparable to manual landmarking. The 3D landmarks were then exploited to
perform aesthetic measurements on the model, to be then used to generate a
preview for the facial rehabilitation procedure.
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Chapter 1

3D Face Reconstruction

Nowadays, 3D facial models are being increasingly applied in a variety of different
fields, among which it is possible to find face recognition, animation, facial alignment,
and, most notably for the scope of this work, the medical field. Their application
is becoming preferable to images, mainly because they allow to overcome the
limitations of the 2D representation of the human face.

Classical methods to achieve a 3D human face representation involve the use
of 3D scanning devices, such as laser scanners or stereo-vision systems. Although
these systems provide high-quality scans, the machinery needed is expensive, and
the final result strongly depends on the condition in which the scans are captured,
with subjects needing to remain still for a fixed amount of time. Cheaper methods
also exist, such as RGB-D cameras, but the obtained results lack the accuracy
required in specific applications, such as the medical one.

For this reason, the interest in having a tool that allows retrieving an accurate
3D facial model reconstruction from an image, or a collection of images, is growing.
Morales et al. [1] reviewed the field of modern 3D face reconstructors from
unconstrained images, i.e., photos of people taken in a non-controlled environment
(also known as “in the wild”).

This chapter’s purpose is to review the state-of-the-art of 3D facial model
reconstruction and all the aspects related to this topic. Here, the most important
studies in the field will be reported, along with the different methodologies on
which they are based. A common factor characterizing most of the works is to be
based on the use of a statistical model for the face, also known as the 3D Morphable
Model (3DMM), along with the preprocessing aid provided by facial landmarks.

1



3D Face Reconstruction

1.1 3D Morphable Models
A 3D Morphable Model can be seen as a statistical tool useful to represent the
human face. A face is generally modeled as a shape vector representing its geometry
and an albedo vector representing its texture or color. The model is parameterized
since any new face can be expressed as a linear combination of the shape vector
weighted by the shape coefficients (or parameters). The same can be done for the
albedo vector, weighted by the albedo coefficients (or parameters). Also, the model
is statistical since the parameters have an associated probability, which purpose is
to exclude combinations that would generate a non-plausible face.

From the above description, it can be derived that a 3DMM offers two significant
strengths. The first one consists in expressing any new face as a linear combination
of existing faces. The second one consists in the fact that a new face is entirely
represented by its related set of shape and albedo coefficients, thus providing a sort
of face encoding.

What follows is an overview of the publicly available state-of-the-art 3DMMs,
each presenting its characteristic, to be chosen based on the intent in which they
are to be applied.

1.1.1 Overview of available 3DMM
3D Morphable Model (3DMM) Proposed by Blanz and Vetter in 1999, the
3DMM is the first morphable model ever introduced [2]. The novelty of their work
was to propose the representation of any 3D model of the face as a combination
of a shape vector and an albedo vector. In particular, starting from a large set of
adequately elaborated 3D facial scans, any new face would be expressed as a linear
combination of the vectors mentioned above obtained for the set. Their study used
200 head scans (50% males and 50% females) to build a model characterized by
an average face shape and a set of statistical shape and color coefficients. They
used Principal Component Analysis (PCA) [3] to reduce the dimensionality of the
problem, thus obtaining shape and color basis matrices. The matrices have an
associated covariance matrix, which relates the different 3D facial models (hence
the statistical property of the model).

By using the generic notation of [1], a new face can be expressed as:

xnew = x̄+
M−1Ø
i=1

(αi + ϕi)

Where xnew is the shape vector of the new face, x̄ is the shape vector of the average
shape:

x̄ = 1
M

MØ
i=1

xi
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αi are the coefficients, or shape parameters, and ϕi are the eigenvectors of the
shape covariance matrix, and M is the number of shapes in the training set. The
same expression can be written for the albedo as:

cnew = c̄+
M−1Ø
i=1

(βi + ψi)

Where this time c̄ is the average albedo of the mean shape, βi are the texture
coefficients and ψi are the eigenvectors of the covariance matrix for the albedo. As
stated before, the model is statistical and therefore the parameters α and β also
have an associated probability p(α) and p(β).

Figure 1.1: 3DMM prototype manipulation. In order to obtain the new faces, the deviation of a
prototype from the average face is added or subtracted. Some of the combinations are particular
cases, such as the one noted with *, called standard morph, which is the model obtained with
the prototype being halfway from the average face. The model noted with # is instead called
the anti-face since it is obtained by subtracting the differences from the average model. The S
represents the Shape, while T represents the texture [2].

The innovation introduced by Blanz and Vetter’s work also regarded the method
used for registration, i.e., finding dense correspondence between different 3D models.
First of all, they assigned a morphological meaning to each point of the model (i.e.,
a determined point corresponds to the nose-tip in every model). Then, they found
dense correspondence by flattening the 3D shape into a 2D UV map (i.e., a texture
map) by exploiting the Optical Flow Algorithm. Because of bijection, finding a
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dense correspondence between UV maps translates into finding the exact dense
correspondence between 3D models.

Figure 1.2: Morphological correspondence of the 3D models [4].

Although this method brought a large amount of innovation, it also presented
two significant drawbacks that later led the community to improve the proposed
solution. One of the drawbacks was the impossibility of representing a person’s
finer details, such as freckles or wrinkles, due to the intrinsic averaging method of
the 3DMM. The second drawback was linked to the fact that face shape variations
are not linear, and, as a consequence, they cannot be represented by a linear model.

Figure 1.3: UV maps belonging to different individuals. Each individual’s face shape is different,
but the geometry of their UV maps is the same, allowing to state that a dense correspondence
between the mappings corresponds to a dense correspondence between the 3D models [5]

Basel Face Model (BFM) In their work, Paysan et al. described the benefits
and potentialities of 3DMMs, highlighting at the same time the difficulty of building
them due to the lack of available high-quality 3D face scans. Therefore, their goal
was to build a 3DMM to be made publicly available, which they released as the
Basel Face Model [4].
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In doing so, they brought two significant improvements to the method of
Blanz and Vetter [2]. First of all, they used a higher quality face scanner (ABW-
3D) to perform face scans, which allowed them to obtain a more accurate and
detailed model. Secondly, they introduced a new registration method based on
the Optimal Step Nonrigid ICP algorithm (NICP) to perform registration, in
which manually selected landmarks helped guide convergence. With NICP, the
registration is performed directly on the 3D triangular meshes instead of finding
dense correspondence between UV maps, as Blanz and Vetter did. In order to
obtain the models, 200 individuals were scanned three times under a controlled
environment, and the scan with the most natural expression was chosen. The
individuals were primarily Europeans, 50% males and 50% females, and their age
spanned from 8 to 62 years.

Figure 1.4: Mean face shape and the first three principle components of the shape (left) and
texture (right) [4].

Large Scale Face Model (LSFM) The Large Scale Face Model [6] was
introduced by Booth and et al. in 2017, and it is the first publicly available 3DMM
built by considering a large variety of ages and ethnicities. Up to the introduction
of the LSFM, all the 3DMMs were derived from a small dataset of 3D scans, while
Booth et al. used scans coming from 9663 individuals. They also proposed a wholly
automated pipeline to build a 3DMM, consisting of automatic landmark detection,
registration, and subsequent model construction. The pipeline code, as well as the
built 3DMM, are made publicly available. The goal of the work was to overcome
the challenges raised by the use of such a large dataset while at the same time
assuring the convergence of the algorithm and considering the anatomical structure
of the face.

Clinical LSFM Worthy of mention is the first fully-automated large-scale
clinical 3DMM introduced by Knoops et al. in 2019 [7]. Noting the lack of a proper
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Figure 1.5: Automated pipeline for building a large scale 3DMM proposed by [6].

3DMM dedicated entirely to medical applications, they trained and validated a
3DMM to aid supervised learning for diagnostic, risk stratification, and treatment
simulation. They used a database composed of 10,000 3D face scans of both
healthy volunteers and orthognathic surgery patients. In particular, they trained
three 3DMMs: global, preoperative, and postoperative. The global model was
trained using both patient and healthy volunteer scans; the preoperative and the
postoperative were trained solely with patient scans.

Liverpool-York Head Model (LYHM) This work of Dai et al. [8, 9] is
the first one to introduce a model for the full human head, and it is also publicly
available. As Booth et al. [6], they propose an automatic training pipeline consisting
of landmark localization and pose normalization, followed by dense correspondence
establishment performed via Optical Flow and finally statistical modeling. In this
case, the Optical Flow method was preferred to the NICP, being well suited to be
used as a refinement step.

Combined 3DMM The contribution brought by Ploumpis et al. [10, 11]
consists of an innovative method to combine already existing 3DMMs. They
propose two novel registration methods: one to complete missing parts of one
model with another, and the other based on a Gaussian process framework to blend
different models’ covariance matrices. As an example, they propose the first Large
Scale complete Head Model, obtained by merging the results obtained by Booth
et al. with the LSFM and by Dai et al. with the LYHM. The resulting model is
comprehensive of the full human head and face, along with ears and eyes, part of
the tongue and teeth. Moreover, the eyes are parameterized to achieve different
eyes shapes, colors, and eye gaze. The ears are represented in great detail, and
they too are parameterized since they are believed to bring a strong contribution
when used for face identification purposes, one of the goals for which 3DMMs are
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Figure 1.6: Global Liverpool-York Head Model (LYHM). Compared with the BFM and LSFM,
it also includes the head shape. The reported shape model presents the mean face shape at its
center and first four principal modes of variation covering ±3 standard deviations of shape and
texture variation [9].

employed.

1.1.2 Validation for facial reconstructive surgery
A recent study by Fishman et al. [12] was aimed at validating the regional accuracy
of the 2017 Basel Face Model to be used for pre-operative planning in facial
reconstruction surgery. Their work is motivated by the fact that the availability
of pre-traumatic/pathologic 3D facial imaging is rare, but it can be an important
tool to guide craniofacial reconstruction. They note that although pre-existing
craniofacial data can be present for a subject, it cannot substitute the aid that
a complete 3D model of the face can provide. Given the widespread adoption
of smartphones, high-quality 2D facial photos of a subject are more likely to be
available. From them, and with the availability of 3DMMs, it is possible to estimate
the 3D model.

In their work, they used the Binghamton University 3D Facial Expression (BU-
3DFE) database, containing both 3D images and 3D scans of 100 subjects. They
used Scalismo (scalable image analysis and shape modeling) [13] to fit the 2D
images to the 2017 BFM and provided manual and precise landmarks along the
jawline to fit the chin portion better. The accuracy was measured by aligning the
3D modeled face with the 3D face scans and measuring the error by employing
per-vertex Euclidean distance from the model to the scan surface.

They concluded that the estimates of the cheek, chin, eyes, forehead and mouth
regions presented an error that can be considered marginal from a clinical point of
view, at the limits of facial perception. Nevertheless, they advise an accurate check
of the obtained reconstruction to be performed by a clinician since two standard
deviations were above the average. In conclusion, they validated the 2017 BFM to
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be used as a preview for clinical reconstructive procedures, marking the importance
of the clinician’s judgment.

1.2 Facial landmarks detection on images
The purpose of facial landmark detection is to be able to extract a set of facial
landmarks with the same precision as an expert would and while detecting facial
landmarks on an image is very trivial for a human being, the same cannot be
said for computer vision applications [14]. Deng et al. [15] summarized the main
challenges as Pose, Occlusion, Expression and Illumination.

Pose Large poses are defined as the positions that a face can assume in a picture
hiding some features involving landmarks. Frontal or almost frontal positions
are the ones where all the landmarks are visible, while profile or three-quarters
positions hide part of the features.

Occlusion Occlusion is another kind of hiding that occurs in pictures, not
related to the position: for example, sunglasses may occlude the eye region, or a
hand could be covering the mouth. By hiding salient facial features, they contribute
to the difficulties encountered by automatic facial landmarkers.

Expression Expression may deviate the expected position of some facial compo-
nents, such as the mouth, which assumes different shapes in a smiling or surprised
position. Since people’s pictures are often taken in a non-neutral position, robust-
ness to expression must be ensured by facial landmarking techniques.

Illumination Illumination also may contribute to hiding part of the face, and
therefore it may lead to alteration of the facial appearance.

Different methods have been proposed in the course of the years, which Johnston
et al. divided into three categories: generative, discriminative, and statistical
methods [14]. Generative methods use a deformable model to solve the problem,
discriminative methods use training to associate an image to the landmarks, and
statistical methods exploit both of the above. The best performances have been
achieved using CNNs, on which most of the recent works are based. The state-of-
the-art facial landmark detector used in the present thesis work is one of them.

It has to be noted that another major challenge in this field, as happened for
3DMMs, is the lack of adequately annotated images. Therefore, a considerable
effort has been made in order to make the so-called benchmarks available. The
most notable are: the 300-W test set, which contains 600 images annotated with 68
landmarks, divided into indoor and outdoor; the 300-VW, which serves more as a
tracking dataset and is composed of 114 videos, divided according to the challenge
that they offer for training purposes, from the easiest to the most difficult; the
Menpo benchmark [15], which is a large training set composed of 9000 faces all
annotated with 68 landmarks.
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An important distinction has to be made about 2D and 3D facial landmarks.
First of all, the landmarks are detected on an image. Therefore the problem is bi-
dimensional contrary to the one illustrated in chapter 2. Second of all, the difference
consists in whether the landmarks are referred to the visible face boundary (2D)
or to the invisible parts of the face (3D), which can be hidden, for example, by
different poses or lighting conditions [15]. An explanatory example is illustrated in
figure 1.7.

Figure 1.7: Difference between 2D (red) and 3D (green) face contour annotation [15].

The state-of-the-art facial detector used in this work is Bulat et al. facial
landmark framework, called Face Alignment Network (FAN). They achieve the
2D-FAN (i.e., the FAN dedicated to the extraction of 2D landmarks) by combining
four cascaded Hour-Glass networks with a final bottleneck block from [16], which
is hierarchical, parallel, and multi-scale. To compensate for the lack of large 3D
landmarks datasets, they also propose a 2D-to-3D FAN to predict 3D landmarks. It
works by taking as input both an image and its 2D landmarks previously extracted
by the 2D FAN, and computing the 2D projections of the 3D landmarks. They
tested their approach on most of the available benchmarks, obtaining extremely
satisfactory results compared with other landmark extraction methods.

1.3 3D model reconstruction methods
Morales et al. identified three main ways in which current researchers obtain 3D
facial models starting from images [1]. In particular, most of the works are focused
on achieving an accurate reconstruction starting from a single image since this task
is the one reckoned to be the most difficult to achieve. The principal methodologies
that they have found are: statistical model fitting, photometric stereo, and deep
learning. In particular, they have found that despite statistical model fitting being
the first method to be proposed and still employed for the scope, most of the recent
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research is focused on using deep learning techniques that proved to be fast and
reliable. The trend of publications in this field in the last decade can be observed
in figure 1.8.

Figure 1.8: Cumulative number of 3D-from-2D face reconstruction publications in the last decade
[1]. It can be noted how most of the recent works are directed towards the use of deep learning
techniques.

1.3.1 Statistical Model Fitting
State-of-the-art statistical models have been introduced in section 1.1. In this
section, the face reconstruction method based on statistical model fitting is presented
instead. In general, fitting a statistical model can be considered an inverse problem
compared to building one since it consists of finding a set of parameters that, when
applied to the 3DMM, give a 3D model that best describes the input image.

Morales et al. [1] identified three main approaches of statistical model fitting:
the optimization of a non-linear cost function, the linearization of the cost function,
and the use of a probabilistic approach.

The most used approach is the optimization of a non-linear cost function.
Among its benefits, it is possible to find the possibility of optimization of different
parameters at the same time, which can be embedded into a single function.
However, this method presents a substantial computational cost, as well as the
possibility of divergence or local minima stalling.

Blanz and Vetter, other than introducing the 3DMM, also introduced statistical
model fitting to reconstruct a 3D model starting from an image [2]. Their method
consisted of, first of all, initializing the morphable model by aligning the 3D average
head to the input image. Afterward, their automated fitting procedure morphed
the 3DMM to the image by minimizing the sum of the Euclidean Distance between
the rendered image obtained from the 3D model and the input image.
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Figure 1.9: Image distance computed as the difference between the input image and the image
with superimposed rendering of the reconstruction [17]. This method requires accurate texture
extraction, because the colors of the reconstructed model have to be faithful to the input image
ones, and also accurate alignment.

Minimization of the Euclidean Distance in all of the three color channels was
used as a principle from Piotraschke and Blanz [17], too. In their work, they also
analyze how to reconstruct a single 3D face model from different input images of
the same subjects, see figure 1.10. To do so, they first produce a 3D facial model
for each of the input images. Then, they render the 3D facial models in the same
position as the input images and compute the image difference between the input
image and the rendered one, figure 1.9. They analyzed different quality measures
to compute the image difference and their effectiveness as a tool for image ranking.
In particular, they considered the naive image distance, the Mahalanobis distance,
the Euclidean distance, and the Normal Distance, which they introduced as a new
computational method. Then, they ranked the 3D model reconstructions from best
to worst according to the result obtained from the different image differences. The
ranking was translated into weights used to perform a linear combination of the
single 3D face models, thus obtaining a final shape.

Other works exploited image errors different from the Euclidean distance to fit
the model, such as gradient correlation or dense feature-based errors. The work
of Sariyanidi et al. [18], for example, extracted the image identity feature from
both the input and the reconstructed 3D model, and used the result to force the
3D model to assume the same identity as the input image, thus obtaining a more
accurate reconstruction.

Works based on the linearization of the cost function focus on splitting the
problem into sub-problems: instead of optimizing several parameters simultaneously,
they optimize them separately. For example, the work of Aldrian and Smith [19]
estimate, in order, the projection parameters, the shape model parameters, and
the texture. The benefit of these methods consists mainly in them being simpler,
faster, and less computationally demanding. On the other hand, the produced
results are not very accurate and rely on highly non-realistic assumptions.
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Figure 1.10: Graphical explanation of Piotraschke’s method [17]. 3D facial models are recon-
structed starting from a collection of input images. The ones that present the largest image
distance are discarded. The quality of the reconstruction can be assessed also in terms of the
single segments, which are then reassembled back into a single face shape obtaining the final 3D
model reconstruction.

1.3.2 Photometric Stereo
The photometric stereo technique was first introduced by Woodham in 1980 [20].
This method proposes the estimation of surface normals starting from a collection of
images of an object, as shown in figure 1.11, and it is based on strong assumptions
both on the object and on the condition under which the images are taken. The
object is assumed to have a fixed texture, while the images are to be taken in a
controlled environment, where the direction of the light source is varied. At the
same time, the camera’s position, a factor known a priori, should instead remain
unvaried. Thanks to the combination of the factors mentioned above, it is possible
to extract information about the object shape from the images.

Given the assumptions on which photometric stereo techniques are based, it
naturally follows that they need to be re-elaborated to be employed in 3D facial
model reconstruction. In the last years, researchers proposed new solutions, even
though this method is the least preferred compared to fitting a 3DMM or using
deep learning techniques, most likely because the outcome results “noisy” given
that the number of images needed for it to succeed must be significant.

The method has been applied successfully to collections of images and single
images of a subject, despite the latter seemingly contradicting the essence of this
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Figure 1.11: Photometric stereo technique [21].

technique. If a single image is used, some additional knowledge is needed to obtain
a satisfactory result. Morales et al. [1] have identified three different ways in
which this kind of support is achieved, these being: the use of a pre-designed face
template, the “coarse” fitting of a 3DMM, to be later refined with information
coming from the photometric stereo techniqu0, and finally the training of a model
containing information about lighting and shape.

The most recent work employing a collection of photos comes from Roth et al.
[22]. Starting from a group of images, they perform 2D landmark alignment with
a pre-existing generic template mesh. Based on the information retrieved by the
landmarks, they deform the mesh accordingly and estimate the surface normals in
an iterative process.

Li et al. apply the photometric stereo technique to retrieve a 3D model from a
single image, instead [23]. Their pipeline consists of extracting 2D landmarks from
the image and using them to perform alignment with a 3DMM. Then, the 3DMM
is fit to the input image in an initialization step. The obtained coarse 3D model is
finally refined with the information extracted via the photometric stereo method.

1.3.3 Deep learning
While statistical model fitting and photometric stereo techniques require additional
information coming from a 3DMM template to reconstruct a 3D model from an
image, the concept behind deep learning techniques is to directly learn the mapping
between a 2D image and a 3D model of a face, embedding the recovered information
in the weights of the network. The usage of this method shows promising results,
and it is one that saw the most prominent growth in the last years [1].
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The major drawback of this technique is related to the fact that in order to
train a deep learning network, there is the need for large datasets, which are
lacking in this case. The required datasets would involve 2D images associated
with their corresponding 3D scans, and, ideally, they should be labeled in terms of
age, ethnicity, gender, pose, and other characteristics. Therefore, one of the aspects
differentiating the studies in this field is the way in which this issue is overcome. In
their review, Morales et al. [1] have identified that the two main methods applied
to solve the above-mentioned issue are the creation of synthetic datasets and the
usage of unsupervised learning techniques.

The idea behind building synthetic datasets is to use either 2D images or 3D
face scans to complement each other or a mix of the two. In the first case, 3DMMs
can be fit to 2D images, thus obtaining a dataset that will contain both 3D models
and the corresponding 2D image. 3D face models can be rendered into images,
obtaining the same result but with a reverse methodology. The complementary
method consists of exploiting the two above-mentioned, at the same time enriching
the dataset with the scarce but yet available 3D ground truth face scans. In any
case, the final result will be affected either by the limitations coming from the
fitting processes or by unnatural results.

With self-supervision techniques instead, the necessity of having labeled 3D-to-
2D information is set aside to favor a final layer of the network. The final layer
renders the 3D model obtained during the training process into an image which
distance from the input image is then minimized.

Either way, since both methods lack from ground truth 3D facial scans, they
both suffer from the same limitation consisting in the inability of reconstructing
finer details of the face. This happens because synthetic data, by definition, cannot
be detailed since it derives from a 3DMM. Self-supervised techniques, instead, learn
from 2D images, which indeed contain the wanted details. However, they are not
able to reconstruct such features since they lack related geometry information. This
issue could be solved by using information coming from shading on the image.

The work on which this thesis is based in order to achieve 3D facial model
reconstruction is the one of Deng et al. [24], consisting in a deep-learning-based
and self-supervised technique, improved from the different losses considered during
the training phase. Their study proposes a single-image reconstruction method
which is extended to a multiple-images reconstruction by adding a final layer to
the network. Their framework is illustrated in figure 1.12.

Most current methods are focused on overcoming the issue deriving from the lack
of 3D facial scans, and the most promising results have been found by Generative
Adversarial Networks (GANs). GANs are exploited to build new datasets very
similar to the one used for their training, and they do so by using a contest
technique: they are composed of two networks, the generator and the discriminator,
which compete with each other. One tries to generate data with the same statistical
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Figure 1.12: Deep3D framework proposed by Deng et al. [24]. (a) Starting from an input image,
they use the ResNet-50 [25] network (R-Net) to extract the coefficient needed for the BFM. The
C-Net (Confidence Network) is instead proposed by them to estimate the identity coefficient to
be later employed for reconstructing the model from different input images of the same subject.
(b) The pipeline used to train the R-Net involves, first of all, a pre-processing stage in which
landmark detection and skin estimation are performed. The R-Net is used to obtain an analytical
image generation, that is then rendered and superimposed to the input image to compute the
different proposed losses, which are the Image-level losses (photometric loss and landmark loss)
and the Perception-level loss, which estimates how much the identity of the reconstructed image
resembles the input one. (c) The training pipeline for multi-image 3D face reconstruction involves
the use of the C-Net to obtain an identity confidence for each of the input images, which is used
to retrieve a new identity coefficient to be used in the later stages.

distribution of the training dataset, while the other tries to discriminate whether
the data is authentic or synthetic.

Other than the kind of training set used for learning purposes, another important
factor diversifying modern deep learning techniques in this field is the kind of
learning framework used, i.e., how the network comes to learn its weights. Morales
et al. [1] identified the main difference between the analyzed studies in whether the
network is trained with a single pass, in an iterative way, or if it exploits GANs.

Networks using a single pass are based on plain Convolution Neural Networks
(CNNs) or residual CNNs, meaning that some layers are skipped and connected
to nonconsecutive ones. In this case, the networks are trained to extract different
parameters of the 3DMM (shape, texture, illumination). An increased complexity
characterizes these kinds of networks, but at the same time they offer very detailed
results.
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Other architectures are based on an encoder-decoder structure, where the encoder
is assigned the task of extracting salient features characterizing the face, and the
decoder reconstructs a possible model from the results obtained by the encoder.
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Chapter 2

Facial Landmarks Detection
on 3D Models

3D facial landmarks detection is an important pre-processing and post-processing
step in most computer vision applications involving 3D facial models. When
employed as a pre-processing step, 3D landmarking can be applied, for example,
in mesh registration, face alignment or face recognition. In post-processing steps,
instead, it can be exploited to apply deformations to 3D models.

In the medical field it is often necessary to perform measurements on a patient,
especially when plastic or reconstructive surgery is involved. Naturally, traditional
techniques require the subject to be present and remain still, in addition to the need
of the presence of experts in the fields in anthropometric measurements. All of the
issues mentioned above are solved with computerized 3D landmarking, which can
still happen manually via designed graphical interfaces or, better, automatically.

This chapter wants to serve the purpose of illustrating the definition of facial
landmarks, as well as the modern method used nowadays for computerized and
automated extraction of landmarks from a 3D facial model.

2.1 Facial Landmarks definition
As Romero notes in his work [26], literature in the domain of 3D landmark
localization refers to landmarks with different terms: anchor point, keypoint,
facial landmark, fiducial point, feature point. In the various fields in which they
are used, they assume slightly different meanings while referring at the same time
to the same concept, which definition is reported here as it is believed to be the
best representing the matter: “an anthropometric landmark is an anatomical point
used as a reference to take measurements from the human body”.

In the course of the years, different solutions were proposed to identify facial
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Figure 2.1: Facial landmarks on 3D face model from [27].

landmarks, with the one introduced in 1994 by Farkas [28] becoming the reference
in this field. However, said identification is limited to a 2D view, as noticed by
Katina et al. [27]. Their work proposes a new definition of facial landmarks based
on the characteristics of a three-dimensional surface, as the face is, which at the
same time is independent from the head position. This approach was also intended
to be multidisciplinary, taking into account a vast amount of aspects, from biology
to computer vision, as well as differential geometry. They also considered its
robustness in terms of ethnicity and the scanning method adopted.

Figure 2.2: Local surfaces and their associated face index (from -1 to 1) and the color coded 3D
face model, frontal view. The anatomical curves are represented by the black dots, while the blue
dots represent the superimposed landmarks [27].
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With the goal of clarifying the meaning of the facial landmarks used in this
work, along with presenting for each of them both a visual and textual reference,
here are reported the definitions provided by Katina et al. [27]. An essential aspect
of their work revolves around the geometric approach. First, they identified the
main facial curvature shapes, assigning a color to each of them and using them
to graphically divide the face into sections, as it can be observed in figure 2.2,
where the black dots represent the anatomical curves, which meaning is explained
in table 2.1. They serve as a reference for later identifying the landmarks. Within
each of the sections identified by the different curvatures, they located a landmark,
providing a new definition as reported in table 2.2 differing from the one proposed
by Farkas. The landmarks are illustrated superimposed on a 3D model in figure
2.1.

2.2 Landmarks detection methods
3D facial landmarks detection methods can be divided into two main macro-
categories, according to [29]: detectors based on purely geometrical information
and detectors based on machine learning techniques. Further differentiation can be
performed considering whether they are designed to work with neutral expressions
and frontal/near-frontal poses, which may present limitations due to the inability
of detecting landmarks with occlusions or missing facial zones [29], or with different
expressions and more extreme poses. In the following sections, some of the worth
mentioning state-of-the-art detectors in this field are described to provide an
overview of the different methods.

2.2.1 Detectors based on geometrical information
This category of detectors can be further differentiated into four subcategories,
according to the thorough analysis of El Rhazi et al. [30].

Curvature analysis Curvature analysis consists of the examination of peaks
and valleys on the different facial curvatures, similar to the approach proposed to
identify and define facial landmarks illustrated in the above section. One study
utilizing this technique is the one of Marcolin and Vezzetti [31], in which they use
geometrical descriptors and their derivatives to localize six landmarks. In general,
a descriptor is the result of a mathematical computation that encodes information
describing data. In this case, they differentiate between primary descriptors, derived
descriptors, and composed descriptors. The first ones are obtained by computing
Gaussian and principal curvatures, shape index, curvedness. Derived descriptors
are instead obtained by applying a set of standard mathematical functions, (such
as sine, cosine, inverse tangent) to standard descriptors. According to the applied
function, the behavior of the descriptor changes, and different behaviors can become
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Anatomical curves
Brow ridge Ridge points at the supra-orbital region of the forehead
Inferior
orbital

Rut points immediately below the lower eyelids

Lower/upper
eye lid

The superior and inferior edges of the palpebral fissure

Alar Ridge points on the lateral extension of the nasal cartilage
Philtrum
ridge

Ridge points immediately lateral to the mid-line philtrum

Labial seal Rut points where the upper and lower lips meet
Lower/upper
lip

Ridge points along the lower/upper lip

Ear rim Ridge points on the peripheral boundary of the ear cartilage,
constituting the helix and the ear lobe

Tragus Ridge points on the rim of the tragus, terminating with the
superior and inferior points of maximum curvature at the
margins of the tragus

Mandible Ridge points across the entire mandible (lower jaw)
Mid-line
nasal profile

Ridge points from the nasal root along the dorsum of the nose
and the columella

Mid-line
philtrum

Rut points between the columella and the upper lip

Mid-line
upper lip

The continuation of the philtrum curve to the closest point
on the labial seal curve

Mid-line
lower lip

The continuation of the mid-line upper lip curve to the closest
point on the lower lip curve

Mid-line
mentolabial

The continuation of the mid-line lower lip curve to the closest
point of the mentolabial sulcus (rut)

Mid-line chin The continuation of the mid-line mentolabial curve to the
closest point on the mandible curve

Table 2.1: Definition of anatomical curves provided by Katina et al. [27].

helpful to achieve automatic landmark detection. Finally, composed descriptors
are obtained by a combination of primary descriptors.

2D texture and 3D shape information combination Studies applying this
method need both a 3D model and a 2D image of the subject to which the model
is related, and a combination of the two is exploited to localize facial landmarks
accurately. A notable example of this technique is represented by the work of Guo
et al. [32] in which they locate 17 3D facial landmarks. Their method is organized
into two steps. They first localize the nose tip by performing sphere fitting and use
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Landmark definition
Sellion The point of maximal curvature of the mid-line nasal profile

curve at its nasal root end
Subnasale The point of maximal curvature on the mid-line curve at the

base of the nasal septum
Alare The point of maximal curvature along the alar curve
Alare crest The point of maximum curvature on the alar curve where

this meets the paranasal area
Chelion The point of maximum curvature at the lateral end of the

labial seal curve
Sublabiale The point of maximal curvature in the mid-line curve as it

passes through the mentolabial sulcus
Tragion The point of maximum curvature at the superior end of the

tragus curve
Otobasion
inferius

The final point at the preauricular end of the ear rim curve

Exocanthion The crossing of the lateral ends of the lower and upper eye
lid curves

Endocanthion The crossing of the medial ends of the lower and upper eye
lid curves

Nasion The point where the brow ridge curves meet the superior
extension of the mid-line nasal profile curve

Pronasale The crossing of the mid-line nasal profile and alar curves
Crista philtri The crossing of the upper lip and philtrum ridge curves
Labiale
superius

The crossing of the upper lip and mid-line philtrum curves

Stomion The crossing of the mid-line upper lip and labial seal curves
Labiale
inferius

The crossing of the lower lip and mid-line lower lip curves

Gnathion The crossing of the mid-line chin and mandible curves

Table 2.2: Landmarks definition [27]. In their original work, Katina et al. differentiated the
landmarks between the ones found on single anatomical curves and the one found at the intersection
of two anatomical curves. Here they are reported in a single table.

this information to perform pose normalization, after which they transform the 3D
shape and texture data into a 2D image. The image is then converted to gray-scale,
and dense correspondence between the newly obtained image and the 3D shape is
computed, thus obtaining a correspondence between the depth values (in their case,
they are related to the z-axis) and the gray values, as it can be observed in figure
2.4. PCA is performed on the data to extract six landmarks, and the remaining
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Figure 2.3: Example of primary descriptors and derived descriptors mapped on a serious face,
from Marcolin et al. [31]. It can be observed how, for example, by applying the arctan function
to the descriptor F the face results into different and distinguishable regions. The descriptor F is
a coefficient of the first fundamental form.

ten landmarks are identified heuristically. Their approach proved to be robust and
successfully applicable to different ethnicities.

Figure 2.4: The green square highlights the signature patch for the left lip corner in 2D space.
Subfigure (a) illustrates the z-coordinate values mapped into the 2D space. Subfigure (b) illustrates
the gray scale values mapped into the 2D space [32].

3D query and manual landmarking matching Studies based on this
approach use a designed graph on the 3D model, trained on manually detected
landmarks to find landmarks on new faces. One notable study in this field is
the one of Creusot et al. [33], which goal was to apply successful automatic 3D
landmarking in models affected by occlusion. Their framework is divided into a
graph-matching stage and a post-processing stage. The graph-matcher takes as
input the query graph and the model, and returns a list of probable candidates
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labels in the models, which are then post-processed to determine which is the most
plausible candidate as a landmark. The process is visually explained in figure 2.5.

Figure 2.5: Picture (a) shows the model with the computed automatic points. Picture (b) shows
the manually assigned landmarks on a model. The labeling process has the task to retrieve the
manually assigned landmarks on the input model [33].

Generic image descriptors Generic image descriptors are a type of visual
descriptors, which describe elementary characteristics of an image, a face in this
case, such as shape, color or texture [34]. A notable study employing this technique
is the one of Berretti et al. [35]. They utilize the Scale Invariant Feature Transform
(SIFT) with the aim of performing 3D facial expression recognition and to do so,
they locate six landmarks. In particular, they employ the SIFT to identify windows
around each facial feature (i.e., eyes, mouth, nose, etc.) within which they locate
landmarks.

2.2.2 Detectors based on trained statistical feature models
The principle behind trained statistical feature models is the same as 3DMMs,
but they are dedicated to representing facial expressions, poses, and, in this case,
landmarks. Works based on this approach aim to have the model learn the variation
that occurs between landmark positions and the corresponding variation of texture
and geometry around each landmark [29].

One study based on this approach is the one of Zhao et al. [36], in which they
propose a new statistical model, the 3D SFAM (Statistical Facial feAture Model),
which is trained to learn the variation of 3D facial landmarks that follow the global
and local variations of a face morphology, in terms of texture and geometry. They
also implement an occlusion detector and classifier that is able to provide related
information to the fitting algorithm. The latter’s task is to combine the data
coming from the statistical model and the occlusion detector to predict the position
of landmarks on the 3D model even if they are hidden. Their work proved to be
robust with respect to facial expressions and occlusions.
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Chapter 3

Facial enhancement

Facial enhancement is the process of bringing modifications to a 3D facial model
to make it conform to specific standards, either aesthetic or health-related. Digital
facial enhancement processes are applied in the computer vision field with or
without a medically driven goal. Studies in the medical field focus on applying
modifications on specific areas, such as the nasal area or the jaw area, and follow
constraints dictated by the surgical plausibility of a procedure.

A trend in the past years has been to provide clinicians with tools to apply
modification on a 3D facial model without automatically suggesting a possible
outcome based on the facial scan itself, that is instead the goal towards which
recent works are oriented. It is important to note that these tools do not aim to
replace a clinician’s judgment. Instead, they aim to provide guidance and ease
communication with the patient. On the other hand, studies in the computer vision
field focus on automatically modifying the model in a more general way, bringing it
to conform to certain beauty standards, or beauty canons. Anyway, either aesthetic
measurements are used as a tool to guide algorithms towards a correct result, or
artificial intelligence is employed.

This chapter aims to present an overview of the methods used nowadays to
achieve facial enhancement, both in the computer vision field and in the medical
field, where they are used to perform surgical planning. Since aesthetic metrics
work as a guide in most of the studies, as well as in this thesis work, a quick review
of their meaning is also reported. In the last section, finally, an overview of the
techniques used to achieve 3D model deformation is presented as well.

3.1 State-of-the-art facial enhancement methods
Facial enhancement can be performed both on 2D images and on 3D face models.
Photographs’ automatic enhancement has received a lot of attention in the past
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years. Different techniques, based also on the use of artificial intelligence, have been
adopted, which was made possible by a large amount of 2D images datasets available.
Enhancement performed on 3D models, instead, has gained more attention in the
last years, and they are the ones analyzed in this section, being part of the scope of
this thesis work. A 3D model of the face contains more information contrarily to a
2D representation and it allows to act simultaneously on the frontal and lateral side
of the face, by also showing the effect of the change of the former on the latter and
vice versa. Consequently, it represents a very promising tool in this field, despite
coming with some added issues and constraints. Not only the final result must be
aesthetically pleasing, but it must also be physically plausible, and the obtained
mesh must keep its resemblance to the original input 3D model [37].

Further differentiation of facial enhancement methods can be done considering
the field in which the enhancement is applied. Facial enhancement can be referred
both to generic attractiveness improvement, also known as beautification, or to
the actual surgical planning. In this section, studies following both views will be
analyzed separately, to highlight both the differences and the similarities occurring
in the various methods.

3.1.1 Facial enhancement in computer vision
Automatic facial enhancement is considered more as a beautification process in
the computer vision field, despite some of the studies having among their goals
that of being employed as providers of surgical previews [37]. As one would expect,
the concept of beauty cannot be collected into an algorithm, neither specific rules
exists for defining such concept. Despite this being true, recent anthropological
studies have demonstrated that beauty is not only in the eyes of the beholder,
but some criterion remain the same across different ethnicities, ages and genders
[38][39][40][41]. Factors that are reckoned to contribute to the objective definition
of beauty are the face symmetry, frontal proportion, given by Neoclassical Canons
and Golden Ratio, and profile angles. Computer vision research in this field showed
the goal of enhancing all, or part, of the above mentioned beauty canons.

The first work worth of mention is the one of Liao et al. [41]. Their work
is geometrically driven and unsupervised, aiming at enhancing the overall facial
attractiveness by acting on all of the above mentioned beauty canons: symmetry,
Neoclassical and Golden proportions, and angular profile. They justify the use of
a geometrical approach instead of a data-driven one with the fact that the latter
would need a proper and large dataset, i.e. a dataset of 3D face models categorized
as beautiful, of which there is a lack of.

After manually locating 57 landmarks on the 3D model, for each of the beauty
canons they follow a fixed set of steps:

1. Computation of the attractiveness score by means of measurements taken on
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the 3D model;

2. Computation of the new coordinates for some of the identified landmarks used
in the measurements;

3. Facial enhancement related to the beauty canon under analysis.
In order, they perform the analysis and subsequent enhancement of symmetry,

frontal face proportions (Neoclassical Canons and Golden Ratio) and angular
proportions.

Symmetry enhancement is performed by applying the symmetrization method
proposed by Mitra et al. [42], locating 6 point pairs and using them to define 6
local regions to which apply local symmetrization. As a final step they perform a
global symmetrization of the features. The procedure is illustrated in figure 3.1.

Figure 3.1: Liao et al. proposed frontal symmetrization method. [41]

The adjustments to the frontal proportions is performed by taking into consider-
ation different canons for males and females, according to what current literature in
the field suggests. The ratios in this case are referred to a couple of anchor points,
which remain unvaried in the fitting process, and a couple of destinations points
which coordinates are changed to reach the wanted beauty canon value. In their
work, Liao et al. did not consider historically fixed values for the above-mentioned
ratios, but they also took into account modern studies findings in order to make
the face more likely to meet modern aesthetics. In addition, they posed some
constraints to limit the amount of deformation.

Finally, they perform profile proportion enhancement. To do so, they consider a
study of Park et al. [43] in which a photogrammetric profile analysis is developed
to serve as a reference for clinicians in performing plastic surgery. In Park et al.’
study, 19 angular measures are used in order to determine if the profile is agreeable,
to which Liao et al. add an additional 3 measures to solve some of the issues arose
during the enhancement process.

The actual mesh deformation process is performed by employing Laplacian
deformation [44], which allows a differential representation of the mesh and therefore
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Figure 3.2: Liao et al. facial enhancement results [41].

the preservation of local geometry variations. The process of Laplacian deformation
will be explained in details in section 3.3 of this chapter.

A more recent study similar to Liao et al. is the one proposed by El Rhazi
et al. [37]. An important improvement brought by their work is the automatic
detection of landmarks on the 3D model, along with another technique to perform
mesh deformation. In their work, they first perform symmetrization, followed
by frontal proportion enhancement and facial profile enhancement. However, the
parameters considered to perform enhancement are different from the one used by
Liao et al. Symmetrization is performed by considering different pairs of landmarks;
Neoclassical proportions are considered in terms of vertical fifths and horizontal
thirds; to compute the overall golden ratio a subset of ratios is considered and,
finally, the angle values considered are the one proposed by Peck and Peck [45],
Holdway [46] and Larrabee et al. [47] which are the same used in this thesis work.

The method that they propose is iterative: the first step consist in the analysis
of the facial attractiveness which determines if the 3D face model is compliant
with the considered beauty canons or not. In case it is not, then the regions to be
adjusted are defined and 3D face editing is performed on them. The attractiveness
analysis is then repeated again and the process iterates until a satisfactory result
is obtained.

The method employed to perform 3D face editing is consists of the application
of Free Form Deformation based on the Bézier function [48][49], which will be
described in the last section of this chapter.

The work of Kim and Choi [50] is instead focused on the automatic enhancement
of symmetry on a scanned 3D face. To achieve so, they make use of a newly
developed 3D face descriptor based on facial features and surface curvatures.
Their process starts from the scanning of a 3D face and the automatic extraction
of the shape descriptor. This is then used to partition the face in regions in
which symmetric point-pairs are located. The point pairs are mapped into a
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transformation space and ideal symmetrization is applied with respect to the local
plane of symmetry. Finally, global symmetrization is applied. The full pipeline is
illustrated in figure 3.3.

Figure 3.3: Kim and Choi 3D face symmetrization pipeline [50].

3.1.2 Computer aided surgical planning
Computer aided surgical planning methods can be differentiated into two main
categories: the ones using beauty canons or other similar approaches to achieve a
suitable preview, and the ones that rely on machine learning. What follows is a
quick overview of both views.

In their study Laurentini et al. [51] note that computer assisted solutions
involving 3D models provide morphing tools to enhance the face attractiveness,
but how to morph the model and its final evaluation are ultimately left to the
clinician’s hand. As a consequence, the aim of their work was to propose a computer
system able to provide a suggestion on how to enhance a person attractiveness.
Being aware of the fact that automatically assessing attractiveness is not an easy
task, they avoid the classical methods used to do so and find a workaround to
the problem, which they already proposed in a previous work dedicated to the
same bi-dimensional problem. Their method consists of finding among a pool of
2D images of “beautiful” subjects (called prototypes) the one(s) best matching the
patient, and then they replace one of the patient’s feature (called target feature)
with the corresponding feature of the person found to best resemble the patient.

Their framework is organized into three main steps, after which they state there
will be an high probability of obtaining a more attractive face:

1. Identify the patient’s feature to be replaced (target feature) and remove it
from the patient’s 3D model and from the 3D models of the facial prototypes;

2. Find the subject, or subjects, among the prototypes that best resemble the
patient, without considering the target feature;
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3. Blend the target feature of the prototype(s) on the patient’s 3D model. They
propose two approaches to achieve blending: the first one uses the 3D target
feature of the prototype to morph the existing 3D feature of the patient,
illustrated in figure 3.4; the second one completely replaces the facial feature
of the patient with the one coming from the prototype.

Another important improvement brought by the study of Laurentini et al. is the
effort of building a 3D database of attractive faces, which there is a lack of. As a
first approach and for the work cited above, they selected the most attractive faces
from the available 3D database. In addition, they launched the “Faces for Science”
initiative in order to acquire high-resolution 3D face scans of attractive people.

Figure 3.4: Laurentini et al. [51] blending procedure using morphing. On the left it can be
observed the patient’s 3D model along with the target feature (green) coming from a prototype.
In the centrals section the morphing phase is illustrated. On the left the final result can be
observed

The work of Ponniah et al. [52] is focused on children born with facial asymmetry
and it is therefore focused on providing a symmetrization method as surgical
planning, based on the concept of Golden Ratio symmetry. They recover a virtual
model of the skull obtained from Computed Tomography (CT) scans and use
mathematical modeling and warping to simulate the result of surgery. Being the
quantity of tissue evaluation an information needed for the surgery, they also
propose the comparison of the original model with the morphed one to estimate it.

In their work, they provide a model for both hard and soft tissues and a warping
technique allowing to modify them. In particular, the warping is translated into a
slider to be operated from the observer, which will be the one judging the amount
of morphing to be provided. The result of the morphing can be used as a preview
of the final result of the surgery.

Another study based on the used of the Golden Ratio to provide a preview for
plastic surgery outcome is the one of Li et al. [53]. In their work they note that a
3D representation of the patient’s face is more closer to reality and it can display
the effect of deformation from different perspectives, which is considered to be
an important feature in surgical planning. However, they also note that applying
manual modifications to a 3D model is not an easy task and rarely surgeons are
trained to do so. Therefore, to make 3D preview more accessible, their goal was
to develop completely automated framework to provide realistic plastic surgery
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simulation, guided by Golden Ratio data.
To achieve so, they used a Golden Ratio mask developed based on the Eastern

concept of beauty. They align and overlap the mask to the 3D facial model of
the patient and automatically deform the model to fit the mask, thus obtaining
an aesthetic improvement completely and objectively guided by beauty canon
standards. The deformation of the mesh is performed via the Laplacian coordinate
deformation technique. The process is illustrated in figure 3.5.

Figure 3.5: On the left side it is possible to observe the matching of the Eastern golden ratio
mask to the 3D facial model. On the right the plastic designs automatically driven for the nasal
and lower jaw areas are illustrated [53].

The work of Knoops et al. [7] has already been presented in section 1.1.1 because
they introduced the first large-scale clinical 3D morphable model. Following the
development of the model, they also provide a framework to determine, based on
orthognathic shape features, whether the subject should undergo surgery. The also
analyze different techniques to automatically obtain an after-treatment preview of
the patient.

The classification algorithm’s outcome consists of a binary output determining
whether or not the patient should undergo orthognathic surgery. To train the
algorithm, Knoops et al. used all of the preoperative face scans and some of the
volunteers face scans. The automatic diagnosis presented a 95.5% sensitivity and
95.2% specificity. The rate of false negatives, i.e. patients labeled as healthy
subjects, was 12.5%, while the rate of false positives, i.e. healthy subjects labeled
as patients, was lower and equal to 1.7%.

To provide a suitable preview for the surgery outcome on a patient, they analyzed
different regression methods, finding ridge regression to be the best since it provided
the smallest difference between the simulation obtained with regression and the
actual post-operative 3D scan.

Finally, another study worthy of mention is the one of Horst et al. [54]. In their
work they developed a novel deep learning based algorithm to simulate the lower
face region, in order to predict the outcome of mandibular advancement surgery
in terms of soft-tissue profile. Their aim was also to compare the deep learning
technique with a pre-existing mass tensor model (MTM). They concluded that
the accuracy of the deep learning based technique was acceptable for the lower
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Figure 3.6: Knoops et al. comparison of the mean non-patient, preoperative, and postoperative
face in which the color maps illustrate deviations from the average volunteer face. The result is
consistent with indications for orthognatic surgery: in fact, orthognatic patients show upper jaw
underdevelopment (red) and lower jaw overdevelopment (blue).[7]

face region, lower lip region and chin region, but also reported the limitations of
the method, for example the difficulties of the algorithm in computing simulations
regarding asymmetric cases.

3.2 Aesthetic metrics and measurements
As it was possible to observe in the previous sections, one of the approach used to
assess beauty and suggest modifications is feature based, and it is derived from
the idea of ideal proportions or beauty canons [51]. In the following sections, a
quick overview of the above-mentioned canons is reported and, where present in
the current literature, data useful to evaluate them is reported as well. Aesthetic
measurements are performed, in general, by computing the distances and angles
between lines joining the landmarks in particular areas [51].

3.2.1 Symmetry
Different studies proved that symmetry can be used as a metric to evaluate human
attractiveness, also contributing on the perception of a subject’s health [55, 56, 57].

In particular, Perret et al. in 1999 [55] demonstrated that if symmetry does
not appear “synthetic”, e.g. obtained via plain image mirroring, which makes it
appear unnatural as shown in figure 3.7, it does contribute to the aesthetic of
the face. They designed three different experiments to prove so, in which they
performed symmetry enhancement on photographs of people presenting some kind
of asymmetry, by applying methods to make the final result appear as natural
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as possible. In the first experiment, they proposed to a pool of test subjects the
enhanced photographs only, without the original counterpart. The result confirmed
a preference towards the symmetrical faces, with most of the population declaring
that they were unaware of the image manipulation. In the second and third
experiment they proposed both the original and the enhanced photographs, asking
to express a preference between them, and again the more symmetric faces were
preferred, thus confirming their hypothesis.

(a) Original (b) Remapped (c) Left Mirrored (d) Right Mirrored

Figure 3.7: Perrett et al. [55] symmetry manipulation for facial images with natural skin textures.
It can be noted how the symmetrically enhanced (or symmetrically remapped) image appears
improved in terms of symmetry with respect to the original one, at the same time appearing
more natural with respect to symmetry achieved with mirroring.

Despite symmetry being a very simple concept which judgment is easy when
performed by the human eye, its application as a metric for the automatic assessment
of attractiveness on the human face is not straightforward. Different studies propose
different methods to do so.

Prokopakis et al. [57] propose not to judge symmetry as a 1:1 ratio of the
distance of point-pairs with respect to a center or an axis, but instead they argue
that the face can be judged as symmetrical if the ratio approaches the Golden
Ratio value Φ, which will be defined in the following section.

Wei et al. [58] designed an interactive framework for assessing facial symmetry
based on Augmented Reality (AR). They automatically extract ten landmarks from
the face and use them to perform a set of measurements to evaluate symmetry,
considering not only a vertical axis as a reference but also other parameters. Vertical
symmetry is evaluated by first finding the symmetry axis (midline) as the line going
across the base of the nose and the bottom of the mouth, and then considering the
eye distance to the midline and the horizontal and vertical midline deviation, to
take into account also deviations in degrees. As additional measurements, they also
consider the eye-mouth angle, ear-nose angle and mouth angle. The measurements
are illustrated in figure 3.8.

All of the reviewed works which apply symmetry measurements to propose 3D
facial attractiveness enhancement consider only symmetry measurements, using
a symmetry score to evaluate symmetry first and proposing a model deformation
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Figure 3.8: Wei et al. symmetry measurements [58]. (a) 10 facial landmarks. (b) Eye distance
to the midline. (c) Horizontal eye-level deviation. (d) Vertical midline devition. (e) Eye-mouth
diagonal. (f) Eye-mouth angle. (g) Ear-nose angle. (h) Mouth angle.

perform symmetrization. The work of Liao et al. [41] measures symmetry consid-
ering 6 point pairs and computing the distance with respect to a symmetry axis
(horizontal symmetry), identified as the vertical line going through the pronasale
and also taking into consideration the angle deviation (vertical symmetry). The
symmetry score is assigned to each point-pair, based on the introduction of the
symmetry coefficient of variation and the overall symmetry score is obtained as
a weighted linear combination of the horizontal and vertical symmetry. Their
work builds on the result obtained by Schimd et al. [59], which used four kind of
functions to evaluate symmetry on the human face, called FSM (Facial Symmetry
Measurements). The measurements are a function of the perpendicular distance
of a point-pair from the symmetry axis and of the horizontal angle, and they
are computed as 1. difference, 2. ratio, 3. natural logarithm of the ratio and 4.
adjusted difference. They proved that the FSM computed as difference had the
strongest relationship with facial attractiveness. As a consequence, the method
proposed by Liao et al. has been chosen as a reference in this thesis work.

El Rhazi et al. [37] perform symmetry measurements based on the distance of
their proposed point-pairs to the symmetry axis defined, also in this case, as the
vertical line going trough the pronasale. They assign a symmetry score to each
point pair and use the results to later apply appropriate deformations to the 3D
model, even though the metrics used for assigning the score remain unclear.
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3.2.2 Golden Ratio
The Golden Ratio, also known as Fibonacci Ratio, Phi (Φ) or divine ratio [60], is
found in nature and it is measured as follows:

Φ = a+ b

a
= a

b
= 1 +

√
5

2 ≈ 1.618

Figure 3.9: Line segments of the Golden Ratio. Credits: [61].

The Golden Ratio value has been used as a harmony indicator from many
historic figures, also applied to the human body and to the human race. The work
of Burusapat et al. [62] used the Golden Ratio to evaluate beauty in Miss Universe
and Miss Universe Thailand, and the metrics used are a comprehensive collection of
all of the ratios to be considered when assessing the facial beauty, and are reported
in figure 3.11 and figure 3.10. Their study has been used as the major reference
in this thesis, both because the provided measurements are expressed in terms of
ratios, and therefore applicable to the 3D measurements of this thesis, and because
of its completeness and clarity.

All of the above-mentioned ratios are referred to only one dimension, i.e. the
frontal one. However, as Marquardt states that the visual perception of the face is
two-dimensional [60] and therefore he evolved the single Golden Ratios metrics into
the bi-dimensional Golden Decagon mask, which can be observed in figure 3.12. A
Golden triangle is formed by an acute triangle with base 1 and sides of 1.618, or
by an obtuse triangle of base 1.618 and sides of 1. If superimposed, the triangles
form the Golden regular pentagon. If superimposed, inverted and duplicated, the
Golden regular pentagon itself forms the Golden Decagon [60]. The mask proposed
by Marquardt describes an idealized face shape. Since a human face is a biological
system, the mask cannot fit it perfectly. However, Marquardt found that the more
a face is found to be attractive, the more it will fit the mask. On the contrary, if a
face is considered unattractive it will fit the mask less.
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1. 2. 3. 4. 5.

6. 7. 8. 9. 10.

11.

Figure 3.10: Vertical Golden Ratios reported by [62]. The numbering on the head model are
referred to the landmarks of section 4.2.

1. 2. 3. 4. 5.

Figure 3.11: Horizontal Golden Ratios reported by [62]. The numbering on the head model are
referred to the landmarks of section 4.2.
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(a) (b) (c)

Figure 3.12: Golden Decagon mask [60].

3.2.3 Neoclassical Proportions

As for the Golden Ratio, also Neoclassical Proportions have been used for centuries
as a guidance to draw beautiful faces [59]. In a study from 1985, Farkas tested
the validity of nine neoclassical canons of facial proportions and compared them
with actual measurements of a North American Caucasian population, to establish
whether classical proportions were still valid [63]. In the course of the years, many
studies utilized the established canons to verify their validity in modern population,
one of them being the study which measurements have been used as a reference in
this thesis work [62].

The nine neoclassical canons revised by Farkas are divided into four vertical
canons, four horizontal canons and one regarding the nose inclination. Here, the
ones which can be measured with the 3D landmarks defined in section 4.2 are
illustrated in figure 3.13.

In particular, Farkas found that the ideal three-section facial profile canon
(Formula 2, figure 3.13a) was never respected, and all of the subjects in the study
presented a nose length smaller than the lower face and the forehead, with 95% of
the subject having the forehead larger than the nose length. For the orbitonasal
proportion canon (Formula 5, figure 3.13b), 40.8% of the subjects perfectly fit the
canon. The orbital proportion canon (Formula 6, figure 3.13c) was observed in
33% of the subject, while the majority (51.5%) showed an interocular distance
greater than the eye fissure length. The oral proportion canon (Formula 7, figure
3.13d) was fit by 20.4% of the subjects, with 60.2% showing a mouth with larger
than 1.5 times the nose width. Finally, the nasofacial proportion canon (Formula
8, figure 3.13e) was observed in 36.9% of the population, in 38.8% the nose width
was smaller than a quarter of the face width.
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(a) Formula 2
tr − n = n − sn = sn − gn

(b) Formula 5
en − en = al − al

(c) Formula 6
en − en = ex − en

(d) Formula 7
ch − ch = 11/2(al − al)

(e) Formula 8
ch − ch = 11/4(al − al)

Figure 3.13: Vertical (fig. 3.13a) and Horizontal (fig. 3.13b to fig. 3.13e) Neoclassical proportions
revisited by Farkas [63] and applicable to the landmarks of section 2.

3.2.4 Angular Profile

The angular profile analysis plays a major role in determining facial attractiveness
[41]. In this work, the contributes from Peck and Peck [45], Holdaway [46] and
Larrabee et al. [47] have been used to determine which measurements were to be
taken in order to evaluate the angular profile and suggest modifications in order to
obtain an enhancement, where necessary, to improve the profile harmony.

Another important and worthy of mention study in the field is the one of Park
et al. [43], used by Liao et al. [41] as a reference to enhance the facial profile.
In their study, they developed a balanced angular profile analysis to offer plastic
surgeons reference data to allow the creation of an attractive face.

Figure 3.14 shows the measurements performed on the reference 3D model,
which landmarks are referred to the one illustrated in section 4.2.
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Figure 3.14: Angular profile measurements [45, 46, 47].

3.3 3D model deformation

This section wants to serve the purpose of offering a quick overview of the defor-
mation methods adopted from the studies of section 3.1 to apply deformations to
the 3D facial meshes, as well as the one adopted in this thesis work. Free Form
Deformation has been a pioneer technique in the 3D mesh deformation field and it
is still used nowadays. It is a powerful tool which allows to apply deformation to
a mesh even without having information on how it is structured and connected,
based only on the coordinates of the vertices constituting the mesh. On the other
hand, Laplacian Deformation techniques do require a more in-depth knowledge on
the mesh geometry with the purpose of embedding said knowledge to ensure detail
preservation when the deformation is applied.
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3.3.1 Free Form Deformation
Free Form Deformation is a technique introduced by Sederberg and Parry in 1986 to
deform solid geometric models in a free-form manner [48]. Before the introduction
of FFD, deformations on 3D models were performed directly on the model itself,
as it would be done when sculpting a real object made of clay [64]. Contrary
to this process, FFD embeds the object, or objects, to be deformed in a lattice
structure which is the one being deformed and which deformation is translated
into deformations of the object, or objects, embedded in the lattice, as it can be
observed in figure 3.15, along with the algorithm followed to apply the deformation.

Sederberg and Parry suggested an algorithm composed of the three steps:

1. Impose a local coordinate system on a parallelpiped region: all the points
inside the lattice have to be expressed in terms of the new coordinate system
(s, t, u).

2. Impose a grid of control points on the parallelpiped, which lie on a lattice and
which location can be expressed in terms of (s, t, u) coordinates.

3. Apply the deformation. The deformation is specified by moving one, or more,
control points from their lattice positions according to a deformation function.
The new position of an arbitrary point inside is obtained by first expressing
its coordinates in terms of (s, t, u) and then evaluating its vector expression
according to the deformation function.

A more complete mathematical derivation of what explained above can be found
in the original paper [48].

(a) (s, t, u) coordinate system. (b) Lattice enclosing the models (c) Control points in Deformed Po-
sition

Figure 3.15: Sederberg and Parry Free Form Deformation [48]. Figure 3.15a shows the (s, t, u)
coordinate system; Figure 3.15b shows the control points as white dots, while the red lines join
together the neighboring control points. Figure 3.15c shows the deformed 3D model which reflects
the displacement of the control points.
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The deformations achievable using the method introduced by Sederberg and
Parry were limited due to the parallelpiped structure of the lattice. For this reason,
Coquillart introduced the Extended Free Form Deformation (EFFD) in 1990 [65],
using non-parallelepipedical 3D lattices and allowing the user to define the shape
lattice structure and, as a consequence, to obtain arbtirary deformation of the
enclosed 3D model. The EFFD technique algorithm consists of 4 steps:

1. Design of the EFFD lattice, which can be obtained either from a predefined
3D lattice or by welding together two 2D lattices;

2. Association of the lattice to the surface, or object, to be deformed;

3. “Freezing” of the lattice. Freezing the lattice consists of computing the new
coordinates referred to the lattice introduced coordinate system;

4. Deformation of the surface, or object. The deformation is performed by
displacing the control points of the frozen lattice.

(a) ”S“ lattice positioned on a
sphere

(b) Deformed lattice and deformed
surface

(c) ”S“ sculpted into a granit
sphere

Figure 3.16: Coquillart’s Extended Free Form Deformation [65]. It can be noted how the lattice
is not parallelepipedical anymore, thus allowing more complex deformations.

In the course of the years the FFD principle has evolved in different ways,
for example using different deformation functions. Yoshizawa et al. propose in
their study [49] a set of free-form shape deformation techniques including shape
deformations with multiple control points, and other features, which can be applied
to complex shapes, such as 3D models of faces. This method has been used in the
work of El Rhazi et al., aimed at applying deformations to a 3D facial model in
order to achieve an attractiveness enhancement [37].

An important characteristic of Yoshizawa et al. study consists in their proposed
method not requiring any mesh connectivity information, allowing it to be applied to
3D models expressed as point clouds and not as polygonal meshes, which difference
can be observed in figure 3.17. A point cloud is the set of vertices composing a
shape, while a polygonal mesh contains information on how to connect the vertices
to form the mesh faces. The process is better explained in section 4.2.1.
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(a) Point Cloud (b) Triangle mesh surface (c) Overlapped on model

Figure 3.17: Triangle mesh processing. Credit for the 3D bunny model: [66].

The contribution brought by Yoshizawa et al. consisted in developing new
advanced deformation techniques: constrained, directional and anisotropic free-
form shape deformation, achieved using real, virtual and auxiliary control points
[49], which effects can be observed in figure 3.18. Their application on complex
shapes, such as facial 3D models, is instead illustrated in figure 3.19.

(a) Constrained deformations (b) Directional deformations (c) Anisotropic deformations

Figure 3.18: Yoshizawa et al. advanced deformation techniques [49].

3.3.2 Laplacian Deformation
Laplacian Surface Editing was introduced by Sorkine et al. [44] in 2004 and its
main contribution consists of the ability of deforming a mesh and simultaneously
preserving its geometrical characteristics, which are an important feature in human
faces. In fact, this technique is preferred with respect to FFD both by Liao et al.
[41] and by Li et al. [53], since the human face contains a variety of geometric
details to which the human perception is extremely sensitive [41].

In their study, Sorkine et al. note that to preserve the local geometry, the
surfaces to be modeled need to be represented differently than describing points,
vertices or nodes with absolute Euclidean coordinates. According to them, the most
desirable way to describe a mesh should be with a representation that encodes the
geometric details, which can be achieved by describing the vertices in differential
coordinates. To this aim, they choose to represent each vertex with Laplacian
coordinates, which are obtained from the difference of a vertex position from the
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(a) (b)

Figure 3.19: Yoshizawa et al. deformation of complex shapes [49].

centroid of its neighbors. The particularity of Laplacian coordinates is that they
remain invariant under translation but not under scaling and rotation, which are
heavily used for mesh deformation. Two of the most important contributions
of their work are the development of a method to make Laplacian coordinates
invariant to rotation and isotropic scaling and the development of an interactive
detail-preserving surface editing technique.

The method that they propose to make Laplacian coordinates invariant to
translations and rotations consists of finding an optimal transformation for each
vertex to perform an implicit transformation of the differential coordinates.

The mesh editing process is instead organized into 4 steps:

1. Definition of the region of interest (ROI) for editing by means of a user-defined
loop of boundary edges.

2. Definition of the handle(s) inside the ROI. A handle is defined as a set
of vertices that can be displaced (moved, rotated and scaled) and which
displacement is propagated to the remaining shape.

3. Definition of the padding, defined as the set of stationary anchors. This step
is optional.

4. Deformation performed by handle(s) manipulation.

The process can be observed in picture 3.20.

3.3.3 As-Rigid-As-Possible Deformation
The As-Rigid-As-Possible deformation method has been introduced by Sorkine and
Alexa in 2007 [67]. It is based on the concept of applying a rigid transformation to
a 3D model, i.e. a transformation involving only rotations and translations without
scaling (enlargement or shrinkage) or shearing (structural straining). Despite
completely removing scaling and shearing is not possible in the context of interactive
shape modeling, their aim remains to minimize them as much as possible. By
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Figure 3.20: Sorkine et al. editing process [44]. On the left it is possible to observe the ROI
bounded by the belt of stationary anchors. The center figure shows the handle enclosed by the
yellow sphere, which allows translation, scaling and rotation of the ROI. On the right the final
deformed mesh is illustrated, where the upper lip of the represented dragon has been moved
upright.

applying this technique, they also ensure the preservation of geometric details
which naturally follows a rigid transformation.

In their work, Sorkine and Alexa note that the ARAP method is reduced to an
iterative implementation of a discrete Laplacian modeling framework [68], similar
to the one illustrated in the previous section, shown in figure 3.21.

Figure 3.21: Successive iterations of the ARAP method [67]. The red dots represent the static
vertices, while the yellow dots are referred to the handle vertices. The initial guess is equal to
what it is obtained with a naive Laplacian editing, while it can be observed how the distortion is
minimized with successive iterations.

The ARAP method is implemented in the Open3D Python library [69][70]. The
function minimizes the following energy function proposed by Sorkine and Alexa
to obtain an as-rigid-as-possible mesh deformation:Ø

i

Ø
j∈N (i)

wij∥(p′
i − p′

j) − Ri(pi − pj)∥2

Where Ri are the rotation matrices to be optimized, pi and p′
i are the vertices

before and after the optimization. N (i) are the set of neighbors of the i-th vertex
and wij are the cotangent weights.
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Chapter 4

3D Facial Reconstruction
Framework

The goal of the proposed 3D Facial Reconstruction Framework is to be able to offer
an explorable 3D model of a patient’s face representing a prosthetic rehabilitation
procedure preview, by providing as input one image (or, preferably, a collection
of images) of the patient. The framework wants to serve the purpose of easing
the communication between the patient and the clinician, and it is not meant to
replace the latter’s judgment. The framework’s pipeline is the following:

1. Reconstruction of a subject’s 3D facial model;
2. Extraction of landmarks on the 3D model;
3. Aesthetic measurements and evaluation;
4. 3D model deformation and preview display.

This chapter illustrates all the single steps followed to achieve this result. Section
4.1 contains a detailed explanation of the procedure used to reconstruct the 3D
model of the patient’s face. In section 4.2 the process carried out to find all of the
needed landmarks on the 3D model is explained, while their exploitation to perform
aesthetic measurements on the model is treated in section 4.3. Finally, section 3.3
is dedicated to the methods used to apply deformation to the models in order to
achieve a plausible preview of the prosthetic rehabilitation result. Despite this
work being aimed to aid clinicians in the orthodontic field, also metrics related to
plastic surgery are reported and treated, since this work is believed to be extensible
also to this field via minor modifications. To demonstrate the effectiveness of
the framework in the orthodontic field, the method was applied to four subjects
previously treated, which pre- and post-treatment photographs were available in
different studies.
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4.1 3D Modeling
The 3D Modeling goal is to reconstruct an explorable 3D model of a subject face
starting from an image, or a set of images, of said subject. Since in this work
the aim of the 3D model is to be used for orthodontic purposes, it follows that it
must be as accurate as possible. This characteristic is difficult to achieve basing
the modeling only on a single image of a subject. In fact, being a picture a 2D
representation, it implies that some of the subject’s features would be necessarily
hidden. Nowadays, having only one picture of a subject does not constitute a
problem, since modern technology grants the possibility of having pictures of a
subject taken from different angles at any time. These, however, could come in
poor quality, or can present different lightnings as well as occlusions, i.e. facial hair,
glasses. What follows is that it is indeed possible to obtain an accurate 3D model,
but the procedure to do so must be robust in terms of occlusions, lighting, positions,
expressions and so on. To this aim, this thesis work exploits a combination of
different studies [4][17][24][71].

The modeling is achieved following the work of Deng Y. et al. [24], which comes
with an official Python implementation based on Tensorflow. The strength of their
work consists of using an innovative CNN-based single-image face reconstruction
method that can be trained with weakly-supervised learning and without ground
truth 3D shapes. They provide a pretrained network (R-Net) which allows to
reconstruct a 3D face model starting from a single image. This goal is achieved
by using a 3DMM (3D Morphable Model), consisting of an average 3D face model
which can be modified by acting on a set of coefficients and on which it is possible
to apply a colored texture to represent the skin. The work of Deng Y. et al. [24]
uses a sub-version of the 2009 Basel Face Model [4], and excludes the ear and
neck regions in order to allow the R-Net to focus on the other facial features. The
average face shape is shown in figure 4.1.

The R-Net extracts the set of coefficients needed to morph the model, namely:

• α - identity coefficient

• β - expression coefficient

• δ - texture coefficient

It also determines the pose (p) and lighting (γ) from the input picture to be used
from the illumination model.

4.1.1 Single image reconstruction
To achieve the model reconstruction from a single image, there are some preliminary
steps that need to be performed. First of all, it is advisable to resize the input
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(a) Front view (b) Side view

Figure 4.1: Basel Face Model average face shape (reduced).

image to a size of less than 1000px per side in order to speed up the execution.
The size recommended by Deng Y. et al. [24] for the input image is 224px x 224
px. The framework also needs five 3D facial landmarks detected on, and aligned
to, the input image. These are, in order: the center of the right and left eye, nose
tip, right and left corners of the mouth. They play a paramount role in the quality
of the final result, and therefore need to be very accurate, as demonstrated in fig.
4.3 and 4.4.

In the present thesis work the state-of-the-art Bulat et al. face detector method
[71] has been used. The important characteristic that the detector offers consists
in the ability of accurately predicting facial landmarks positions even when they
are occluded in the input image. Moreover, it provides 3D landmarks versus 2D
landmarks, which is a feature allowed by its prediction ability. This is important
because, as mentioned before, the in-the-wild patient’s picture might contain heavy
occlusions hiding some of the landmarks. The detector finds a total of 68 landmarks,
shown in figure 4.2, among which only the above-mentioned five are needed. The
center of the eyes is found as the centroid of the six eyes points, for both eyes,
according to the formula:
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Cx =
qN=6

i=0 xp
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Cy =
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i=0 yp

N

Figure 4.2: 2D/3D landmark configuration of detectors performing landmarking on images.[15]

(a) dlib 2D (b) Bulat 2D (c) Bulat 3D

Figure 4.3: Importance of using a facial landmark detector working with large poses. It is possible
to observe the difference between a 2D and 3D face detector. The first one will outline the
landmarks visible on the picture, while a 3D face detector will predict the position of the ones not
present on the picture, thus giving better results. By observing 4.3a and 4.3b, it is also possible
to observe that quality of detection of the Bulat et al. method [71], which is able to support large
poses.

Once the preliminary steps are performed, the image and the text file containing
the five landmarks are fed to the framework. The R-Net extracts the sets of
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(a) dlib 2D (b) Bulat 3D

Figure 4.4: Impact of quality of landmark detection. In 4.4a the misalignment of the respective
detection brings to a strong misalignment of the rendered image. In extreme cases, it highly
impacts the model reconstruction. The reconstruction obtained in 4.4b is more faithful to the
input image.

coefficients mentioned previously, which are used obtain the final 3D face shape of
the subject. As mentioned above, the method illustrated above works only single
images of a subject, providing a very high quality model when aligned with the
original image, as shown in figure 4.5. The model is saved as an *.obj file and it
can be opened and explored via MeshLab [72].

Figure 4.5: Reconstruction from single image of different subjects. It can be noted how the
framework suits well different ethnicities.
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Figure 4.6: Reconstructions from single images. Upon visual inspection, it is possible to observe
how the models appear different one from the other when looked at from different angles. Pictures
with large poses, such as profile pictures, will give more information on features that would
otherwise be hidden. However, they imply the need of guessing about the other half of the face,
thus giving a less faithful reconstruction.

4.1.2 Multiple images reconstruction

As expected, reconstructing a model from a single image may lack in the precision
needed for this scope when explored from different angles, as shown in figure 4.6. To
achieve more accuracy it is necessary to combine information on the same subject
coming from different angles.

The work of Deng Y. et al. [24] also proposes a method to obtain a multi-
image reconstruction. What they suggest is the use of an additional network, the
Confidence-Net (C-Net), which should provide an identity confidence vector (cj)
to be used to weight the identity coefficients (αj) obtained for the subject when
provided with a set of M images. According to them, given a set of M input images
for the same subject, each of them is input to the R-Net, which in turn provides a
set of coefficients αj, βj, δj, pj, γj , with j = 0...M − 1, while the C-Net provides the
confidence coefficients cj. The identity coefficients are then combined as follows:
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αaggr = (
Ø

j

cj ⊙ αj) ⊘
Ø

j

cj

Where ⊙ and ⊘ represent the Hadamard product and division, respectively
[24]. This newly obtained αaggr coefficient would then be merged with the other
coefficients (β, δ) and used to obtain a new face shape as a result of the combination
of multiple single images. This implementation is not provided in the available
code, neither has been developed in this thesis work. The reason for this is that, as
noted in [24], the use of this method brings only slightly better results compared
to simply performing the average of the identity coefficients, which is therefore the
method that has been implemented.

The average identity coefficient method follows the one explained above, except
for the identity coefficient which is obtained as follows:

αaverage =
q

j α
j

M

A different method that can be used to obtain a single face shape from different
reconstructions of the same subject is to aggregate the single 3D models obtained
for each image. A way to obtain a coherent aggregation of the different face shapes
is the one proposed by Piotraschke et al. [17]. Their work suggests the use of a
weighted linear combination to combine different 3D reconstructions of the same
subject, according to the formula:

S =
M−1Ø
i=1

αi Si

With:
αi =

1 − (i · 1
M

)qM−1
c=0 1 − (c · 1

M
)

Where Si are the single face shapes, while αi is their weight assigned according to
the reconstruction ranking.

They suggest ranking the different face shapes from the most accurate to the
least accurate, according to a specified logic. In their work, they analyze different
methods to rank the reconstructions (Image Distance, Mahalanobis Distance,
Euclidean Distance and the Normal Distance, the latter being their proposed
innovative measurement method), none of which brings many benefits to Deng
Y. [24] reconstructions. This, as noted in [24], happens due to the fact that the
method of [17] relies on the surface normal discrepancy, while the R-Net always
produces a smooth, plausible face shape [24]. For this reason, a second multiple
face shape reconstruction method proposed in this thesis work, to be compared
with the average identity coefficient method, is a combination of both [17] and
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Figure 4.7: Reconstruction from multiple images using the identity coefficient averaging method.
The obtained model is rendered on top of the different original images, taking into consideration
the different lighting situations. It can be noted how it retains the properties of the frontal image,
at the same time improving the profile reconstruction.

[24]. In particular, the ranking method along with the weighted combination has
been retained from [17], while the ranking logic has been implemented by using
the image loss measurement proposed in [24]. In fact, to better train their network,
they measure different losses, among which the Photometric Loss (Lphoto) and
Identity loss (Lper) used here to evaluate the quality of the reconstruction.

The overall loss is measured as a weighted combination of the single ones, as:

Ltot = wphoto Lphoto + wper Lper

with: wphoto = 1.9, wper = 0.2.
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Ltot 0.6714 0.7068 0.7982 0.9114 1.2026

Figure 4.8: Example of ranking from best (i.e. lowest Ltot) to worst (i.e. highest Ltot). In the
weighted linear combination multiple image reconstruction methods, the reconstructions images
with lowest loss are assigned the highest weight.

Starting from a set of images of a subject, each of them is used to achieve the
corresponding 3D facial model. Ltot is computed for each of the models, and it
will serve as ranking parameter. The different models are then ordered starting
from the most accurate one, i.e. the one that presents the lowest loss, to the least
accurate one, as shown in figure 4.8. Afterward, the face shapes are combined
according to the weighted linear combination proposed above. The results obtained
by applying the weighted linear combination method on sets of images of different
subjects can be observed in figure 4.9

An example of comparison among the different techniques is illustrated in figure
4.10. Upon visual inspection, the best result is achieved with the weighted linear
combination reconstruction method. This result is most likely deriving from the
fact that with this method the less faithful reconstruction contribute less to the
final result, yet still influencing it. This way, no information is lost from any of the
input images.
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Figure 4.9: Reconstruction from multiple images using the weighted linear combination method.
The obtained model is rendered on top of the different original images, taking into consideration
the different lighting situations. It can be noted how it retains the properties of the frontal image,
at the same time improving the profile reconstruction.
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(a)

(b)

(c)

Figure 4.10: Comparison between (a) single image reconstructions, (b) identity coefficient
averaging, (c) weighted linear combination. Row (a) shows the reconstructions obtained from the
single images, rendered on top of their corresponding image. The result is the best one for the
original position, but as observed in figure 4.6 the faithfulness to the subject decreases when the
models is looked at from different angles. Rows (b) and (c) contain the renderings of the models
obtained with the different methods cited above, rendered on top of each input image. It can be
observed how, even with different poses, they remain faithful to the original image due to the
combination of information coming from the different poses. Upon visual inspection, the best
result seems to be achieved with the weighted linear combination method.

54



3D Facial Reconstruction Framework

4.1.3 Results on potential patients
Since the goal of the framework is to assist clinicians into showing a preview of
a treatment to a patient, the framework was tested on some subjects presenting
maxillofacial pathologies. The images of the patients were taken from different case
studies which also showed the result of the orthodontic treatment, in order to have
a reference to which confront the result proposed by the framework. The goal is to
obtain a final 3D explorable model similar to the subjects post-treatment.

Case 1

Case 1 regards a young adult male, Caucasian, shown in figure 4.11, with mandibular
prognathism [73], i.e., a protrusion of the mandible [74].

(a)

(b)

Figure 4.11: Subject before (a) and after (b) treatment [73].

The results obtained with the 3D modeling of both input images are shown
in figure 4.12. It can be observed how the reconstruction is faithful to the facial
features of the patient for the frontal side. On the contrary, for the profile side,
the reconstruction returns a 3D model that does not follow the patient’s features
belonging to the lower part of the face. This result is attributable to the fact
that both the 3D reconstruction network and the landmark detector work on
prediction, and they are trained on datasets of people which are not affected by
such pathologies. This causes the landmark detector not to be able to follow the
traits of the patients and, as a consequence, the 3D model is not perfectly aligned
to the input image. Suffering from said misalignment, the coefficient extracting
network is not able to return the appropriate coefficients, thus failing to properly
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Figure 4.12: 3D reconstruction from single images.

reconstruct the lower portion of the patient’s face. It has to be noted that the face
reconstruction network of Deng Y. [24] exploits the Bulat et al. landmark detector
internally, therefore the error due to the detector is found within the reconstruction
network itself. This issue could be solved in further implementations, by re-training
both networks on a more inclusive dataset of people showing facial features of a
potential patient.

Even though the obtained model is not entirely faithful to the subject, it still
retains most of the patient’s features and therefore can be used to show what will
the result of the procedure be. The final goal is in fact to further modify the 3D
model and adjust it to comply with specified standard facial angles, as it will be
explained in section 4.4.

The 3D model used in the following sections are obtained with the weighted
linear combination, and are shown in figure 4.13. The meshes are shown in figure
4.14 from the frontal and side view.

Figure 4.13: Subject reconstructions with weighted combination.
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Figure 4.14: Frontal and side view of the weighted linear combination reconstruction model.

Case 2

Case 2 involves a young adult female, Caucasian, affected by reverse overjet [73],
or underbite, i.e. "the projection of the lower teeth beyond the upper". The subject
before and after the treatment can be observed in figure 4.15.

(a)

(b)

Figure 4.15: Subject before (a) and after (b) treatment [73].

The subject’s two pre-treatment pictures available were used to obtain the 3D
face model, which single reconstructions can be observed figure 4.5 rendered on
top of the original image.

As for Case 1, and for the same reasons, also in this case the obtained recon-
struction is faithful to the frontal side of the face, while it does not represent well
the chin portion of the profile. It can be noted however how the reconstruction
resembles more what the expected result of the treatment will be, and therefore
it can be used as a mean to show the patient a preview of the procedure. More
considerations will follow in section 4.4.

Figure 4.17 shows the model obtained by weighted linear combination, which
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Figure 4.16: 3D reconstruction from single images.

Figure 4.17: Subject reconstructions with weighted combination.

is the one that will be used in the following sections. Figure 4.18 shows the 3D
meshes in detail, with and without skin texture applied.

Figure 4.18: Frontal and side view of the weighted linear combination reconstruction model.
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Case 3

Case 3 involves a young adult male, Asian, affected by "Class II molar relationship
with deep overbite and overjet" [75], figure 4.19.

(a)

(b)

Figure 4.19: Subject before (a) and after (b) treatment [73].

Figure 4.20: 3D reconstruction from single images.

Figure 4.20 shows the models obtained from the single image reconstruction of
the input images. It can be noted how, in this case, the face detector is able to
correctly detect the facial landmark both for the frontal side and for the profile

59



3D Facial Reconstruction Framework

side, thus making the 3D face reconstruction very accurate.
The obtained reconstructions are then combined by using the weighted linear

combination method, and the resulting model is the one that will be used in the
following sections. The result of the model rendered on top of the input images
can be observed in figure 4.21, while the meshes can be observed in detail in figure
4.22.

Figure 4.21: Subject reconstructions with weighted combination.

Figure 4.22: Frontal and side view of the weighted linear combination reconstruction model.
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Case 4

Case 4 involves a young female, Asian, with “skeletal Class II relationship with
maxillary protrusion, a backward-rotated mandible, a full Angle Class II molar
relationship, and severe deep overjet and overbite” [76]. The subject before and
after the treatment is shown in figure 4.23.

(a)

(b)

Figure 4.23: Subject before (a) and after (b) treatment [73].

Figure 4.24: 3D reconstruction from single images.

The result of the 3D model reconstruction of the single images can be observed
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in figure 4.24, for the frontal view and one of the side views. It can be observed
how, as for Case 3, despite the patient condition the network was able to correctly
extract the coefficients, thus obtaining a faithful representation for the subject.

Figure 4.25: Subject reconstructions with weighted combination.

Figure 4.26: Frontal and side view of the weighted linear combination reconstruction model.

As for the previous cases, also here the models are combined into a single one
with weighted linear combination, which will then be used in the following sections.
The result is shown in figure 4.25, while the meshes are shown in detail in figure
4.26.
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4.2 Automatic 3D Landmarks Detection
The detection of 3D landmarks on the face model is a key step to perform aesthetic
measurements on the 3D model. Its results must be precise, robust and reliable.
For this reason it is not easy to automate the process, and often human intervention
to adjust the estimated results, or fitting of already human-detected landmarks,
is needed [77]. The goal of the proposed implementation is to fully automate the
process, at the time making it as precise as possible.

To achieve this goal, the technique used in this thesis work is based solely on
geometric considerations on the human anatomy and it builds on the works of Liang
et al. [77] and El Rhazi [30]. The work of Liang et al. [77] starts with locating a set
of 17 landmarks by working with geometric considerations, and then they proceed
to improve the precision of the already found landmarks by finding additional others
using an optimization framework, namely the Deformable Registration algorithm.
The work of [30] is an extension of [77], where the geometric technique is used to
find additional landmarks, without having to resort to more complex minimization
algorithms.

This thesis was based on both contributions, where some of the proposed
considerations were revised and improved to achieve an increased accuracy. The
method was also adapted to the model used in this work, the same used by Deng
Y. et al. [24] being the face reconstruction based on their framework. As explained
in section 4.1, the used model is the BFM [4] with a reduced set of vertices (the
original BFM model contains in fact 53490 vertices, while in the present work only
35709 where used since the ear and neck regions are excluded). Nevertheless, the
proposed method can easily be extended to the full BFM since none of the detected
landmarks corresponds to the excluded sections, nor they are necessary to perform
the needed measurements in later steps.

With the proposed method it was therefore possible to extract 32 facial land-
marks, listed in table 4.1 and represented in figure 4.27. Also, considering that
the aim of the detected landmarks is not only for measurement purposes but also
to apply deformation to the model (see section 4.4), the proposed technique also
locates landmarks as specific vertices belonging to the 3D mesh.

The present work consists of a Python3 implementation of the above cited and
described works [77] and [30]. It relies on an extensive use of the NumPy library
[78][79], along with some Tensorflow functions [80].

A fundamental requirement for the success of the detection is for the 3D face
model to be normalized to face forward. Also, the origin of the face must lie on
the center of the head. For the present work, these requirements are automatically
satisfied by the model generated with the method presented in section 4.1. Table
4.1 and figure 4.27 summarize the 32 found facial landmarks, along with their
corresponding index and abbreviation.
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Index Landmark Index Landmark
1 Forehead fh 17 Pupil L pl
2 Nasale na 18 Exocanthion L exl
3 Sellion se 19 Upper Cheek extremity R ucr
4 Center of the eyes ec 20 Alare R alr
5 Pronasale prn 21 Alare L all
6 Subnasale sn 22 Upper Cheek extremity L ucl
7 Labiale superius ls 23 Lower Cheek extremity R ucr
8 Stomion sto 24 Chelion R chr
9 Labiale inferius li 25 Chelion L chl
10 Sublabiale sl 26 Lower Cheek extremity L lcl
11 Pogonion pg 27 Tragion tr
12 Gnathion gn 28 Subnasale angle sna
13 Exocanthion R exr 29 Menton me
14 Pupil R pr 30 Gnathion 2 gn2
15 Endocanthion R enr 31 Alare Curvature R alcr
16 Endocanthion L enl 32 Alare Curvature L alcl

Table 4.1: Facial landmarks. The indexing is the same used by [30], except for the last two
landmarks.

(a) Front view (b) Side view

Figure 4.27: 32 Facial landmarks detected on the BFM mean shape.
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4.2.1 3D model geometry
The reference coordinate system is referred to Cartesian coordinates. The width
of the face is defined on the x-axis, the height on the y-axis and the depth on the
z-axis. The used 3D model is composed of M = 35709 vertices, and each vertex is
expressed as a combination of (x,y,z) coordinates. The vertices are organized to
form a triangle mesh, i.e. a set of 3 vertices connected together forms a triangular
face. The total number of faces is N = 70789.

Figure 4.28: Triangle mesh (credits: [81]) with highlighted vertices (v1, v2, v3), edge formed v1
and v2 by and face formed by the joined vertices.

4.2.2 Data organization
In order to perform an efficient computation, all the data was organized into arrays
of vectors. What follows is a detailed description of how the data was organized to
achieve the efficiency and performance goal.

The vertices of the 3D model are stored in the V array, of shape (M, 3), with
M = 35709. Each entry of the array refers to a vertex (V m) and it corresponds a
vector of (x,y,z) coordinates.

V =



v0

...
vm

...
vM

 =



v0
x v0

y v0
z

... ... ...
vm

x vm
y vm

z
... ... ...
vM

x vM
y vM

z

 (4.1)

As mentioned before, the vertices are organized in a triangle mesh. The way in
which the vertices have to be connected to form a face is specified in the F array,
of shape of shape (N, 3), with N = 70789. Each entry of the F array corresponds
to a different face (fm) and it contains information on the vertices that form the
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face, expressed as the index for the V array (mn
(1,2,3)). This information is provided

in the material provided with the BFM model.

F =



f 0

...
fn

...
fN

 =



m0
1 m0

2 m0
3

... ... ...
mn

1 mn
2 mn

3
... ... ...
mN

1 mN
2 mN

3

 (4.2)

For example, the face f 3 is obtained joining the vertices with indices (m3
1,m

3
2,m

3
3),

that correspond therefore to the vertices coordinates:

f 3 = (m3
1,m

3
2,m

3
3) =


v

m3
1

x v
m3

1
y v

m3
1

z

v
m3

2
x v

m3
2

y v
m3

2
z

v
m3

3
x v

m3
3

y v
m3

3
z

 (4.3)

To ease the landmark detection and the model manipulation, the BFM model
can be divided into 4 sections, namely the nose (0), eyes (1), mouth (2) and rest (3)
section, shown in figure 4.29. The information on which vertex belongs to which
section is provided by the original BFM material, which therefore refers to the
whole amount of vertices while the present work and Deng et al. [24] use a subset
of the vertices. Therefore, the vertex/segment information was retrieved by the
material provided by Deng et al. [24] and imported into the indices array I, of
shape (M, 2). The second column contains a number from 0 to 3 that identifies the
segment and each entry of the array refers to the vertices of V . The indexing of V
and I has one-to-one correspondence. This combination is exploited to extract the
vertices from V that correspond to the different segments. The described step is
needed since the segments are not stored in order in the V array.

(0) (1) (2) (3)

Figure 4.29: BFM sections with the corresponding identifier.
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As it will be described in the following sections, the landmarks detection is
based on some considerations involving the normals to both the faces surfaces and
the vertices of the model, and also on the angular relationship among the normals.
Anyway, the vertices/faces relationship has to be known. In order to know the
relationship existing between a central vertex, vm, and up to 8 faces around the
central vertex (fm

(1...8)), the point identification array P is used, of shape (M, 8).
Each entry of the P is referred to a central vertex, and the entries represent the
indeices (nm) for the F array of the faces placed around the central vertex according
to the one-ring neighborhood rule. This information is also derived from the BFM
material. An example of one-ring neighborhood can be observed in figure 4.30.

P =


n0

1 n0
2 n0

3 n0
4 n0

5 n0
6 n0

7 n0
8

n1
1 n1

2 n1
3 n1

4 n1
5 n1

6 n1
7 n1

8
... ... ... ... ... ... ... ...
nM

1 nM
2 nM

3 nM
4 nM

5 nM
6 nM

7 nM
8

 (4.4)

Figure 4.30: Example of one-ring neighborhood in a triangle mesh (credits: [81]). In this case the
ring is composed of 6 faces while in the BFM it is composed of 8 faces.

Finally, in the course of the work it was necessary to find a set of sharp edges, S.
These are defined by Liang et al. [77] as “all the points on the edges with dihedral
angles larger than 30°”, where the definition of dihedral angles is “given a surface
normal vectors of two neighboring triangles, the angle between these two vectors is
a dihedral angle”.

The neighboring triangles, interpreted as those faces that share an edge, were
not defined in the BFM material. Therefore, a dedicated script was developed in
order to retrieve them. The algorithm scrolls through the F array and it finds the
faces that have an edge in common, i.e., a set of two vertices in common. It then
stores the relative faces indices (n1 and n2), that will serve to identify the normals
to those faces. It also stores which are the indices of common vertices (m1 and
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m2), in order to identify those vertices coordinates from V . How this information
will be used is illustrated in the following sections 4.2.4 and 4.2.5. The result of
the computation is stored into the Fadj array, of shape (A, 4). Where A = is the
number of adjacent faces.

Fadj =



n0
1 n0

2 m0
1 m0

2
... ... ... ...
na

1 na
2 ma

1 ma
2

... ... ... ...
nA

1 nA
2 mA

1 mA
2

 (4.5)

4.2.3 Normal to faces and vertices computation procedure
To compute the normal of each face, first the difference vectors e1 and e2 were
computed. Then, the cross product between the two was taken, thus obtaining the
array of normals to the faces Nfaces, which was then normalized into Nfaces,norm.
The process is explained as follows.

Starting from the F array, the coordinates of the vertices forming all the N faces
of the model were retrieved. Therefore, V1 contains the (vx, vy, vz) coordinates of all
the vertices that form the vertex 1 of the triangle face, V2 contains the (vx, vy, vz)
coordinates of all the vertices that form the vertex 2 of the triangle face and so on
for V3. As an explanatory example, if F has form:

F =



0 1 130
0 130 129

...
mn

1 mn
2 mn

3
... ... ...
mN

1 mN
2 mN

3


(4.6)

This means that the first face (f 0) will be composed by connecting the vertices 0, 1
and 130. The second face (f 1) is obtained by connecting the vertices 0, 130 and
129 and so on. In this case,

V1 =



v0
x v0

y v0
z

v0
x v0

y v0
z

...
v

mn
1

x v
mn

1
y v

mn
1

z

...
v

mN
1

x v
mN

1
y v

mN
1

z


V2 =



v1
x v1

y v1
z

v130
x v130

y v130
z

...
v

mn
2

x v
mn

2
y v

mn
2

z

...
v

mN
2

x v
mN

2
y v

mN
2

z


V3 =



v130
x v130

y v130
z

v129
x v129

y v129
z

...
v

mn
3

x v
mn

3
y v

mn
3

z

...
v

mN
3

x v
mN

3
y v

mN
3

z


(4.7)
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Then, the difference vectors are computed as:
e1 = V1 − V2 (4.8)
e2 = V2 − V3 (4.9)

Which are then used to compute the normals to each face.

N̂faces = e1 × e2 =



n̂f0
x n̂f0

y n̂f0
z

...
n̂fn

x n̂fn

y n̂fn

z
...

n̂fN

x n̂fN

y n̂fN

z


(4.10)

The resulting array is then normalized:

N̂faces,norm = N̂faces...N̂faces

...
2

(4.11)

To instead get the normal to each vertex, first the normals values are retrieved
from the N̂faces,norm array, according to the information contained in P . Then,
they are summed together to get the normal to the vertex. For example, if for the
generic center vertex vm

Pvm =
è
nm

1 nm
2 nm

3 nm
4 nm

5 nm
6 nm

7 nm
8

é
(4.12)

Then, from the N̂faces,norm array, the respective normal values are taken:

N̂vm =



n̂fnm
1

x n̂fnm
1

y n̂fnm
1

z

n̂fnm
2

x n̂fnm
2

y n̂fnm
2

z

n̂fnm
3

x n̂fnm
3

y n̂fnm
3

z
... ... ...

n̂fnm
8

x n̂fnm
8

y n̂fnm
8

z


(4.13)

To get the normal to the vertex vm, then the components belonging to the same
column are summed:

n̂fnm

x =
8Ø

k=0
n̂f

nm
k

x (4.14)

n̂fnm

y =
8Ø

k=0
n̂f

nm
k

y (4.15)

n̂fnm

z =
8Ø

k=0
n̂f

nm
k

z (4.16)

(4.17)
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Thus obtaining:
n̂vm =

è
n̂fnm

x n̂fnm

y n̂fnm

z

é
(4.18)

This operation is performed for each vertex, obtaining as a result an array of shape
(M, 3):

N̂vertices =



n̂v0
x n̂v0

y n̂v0
z

...
n̂vm

x n̂vm

y n̂vm

z
...

n̂vM

x n̂vM

y n̂vM

z


(4.19)

This array is then normalized by dividing it by its Euclidean norm, as it was done
for the N̂faces array.

N̂vertices,norm = N̂vertices...N̂vertices

...
2

(4.20)

4.2.4 Sharp edges computation
As stated before, the sharp edges set S is composed of those edges which corre-
sponding faces form an angle greater than 30°. The Fadj array’s first and second
column are used to index the Fnorm array to retrieve the normals to the faces which
are adjacent. Then, the angle between these normals is computed. If it results in
being greater than 30°, then the indices contained in the Fadj array’s third and
fourth column are stored into the Si array.

(a) θ > 30◦ (b) θ > 40◦

Figure 4.31: Vertices belonging to the sharp edges. It can be observed how in figure 4.31b the
eyes contour is more precise with respect to figure 4.31a.
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The Si array therefore contains a set of indices of the vertices belonging to the
sharp edges. While searching for the left and right exocanthions it was noted that
the search region had to be restricted to increase precision, therefore also the sharp
edges corresponding to an angle greater than 40° were used. Figure 4.31 shows the
sharp edges of the BFM average face shape.

Si, θ>30◦ = {ma
1,m

a
2 if θ > 30◦, θ = ∠(n̂fna

1 , n̂fna
2 )}

Si, θ>40◦ = {ma
1,m

a
2 if θ > 40◦, θ = ∠(n̂fna

1 , n̂fna
2 )}

4.2.5 Landmarks detection
As previously stated, every landmark has been detected based solely on geometric
considerations. Listed below is the explanation of the procedure followed to detect
each landmark, in the order in which they are found. The order is important,
since the only landmark which can be found without relying on others is the
pronasale, while all of the other landmarks are relative to each other. Pronasale
The method proposed by Liang et al. [77] finds the pronasale as the geometric
center of the vertices where the z-coordinate is maximum. Unlike this approach,
the one proposed in this thesis locates the pronasale (prn) as the single vertex
where the z-coordinate is maximum, among the 5 vertices of the nose section (Vnose)
that have maximum z-coordinate (Vnose|z,max). The proposed method works best
for the BFM model in use, since the amount of vertices is reduced with respect to
the models used in the cited work.

prn = {(x, y, z) | argmax
x,y,z

z, (x, y, z) ∈ Vnose} (4.21)

The maximum vertices are used not only to locate the pronasale, but also to define
the profile strip (Vps), defined as the set of vertices defining the face profile. The
profile strip vertices are found as the vertices which x-coordinate is between the
maximum and minimum x-coordinate of Vnose|z,max. The profile strip for the BFM
average face can be observed in figure 4.32.

Sellion The sellion (se) is found among the above defined Vps.This region is
further restricted to the points above the pronasale, i.e. where y > yprn. Among
these points, the sellion is the vertex where the y-coordinate is maximum among
the local minima for the z-coordinate.

Subnasale The subnasale (sn) is found among the sharp edge vertices (with
Si, θ>30◦ , shown in figure 4.31a) on the profile strip cited above for the sellion, as
the vertex where the y-coordinate is minimum. By accurately restricting the area
in which to search for the subnasale point, it was possible to get an high accuracy
of detection contrary to the technique proposed by Liang et al. [77], which relied
on Deformable Registration to adjust the position of the subnasale.
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(a) Front view (b) Side view

Figure 4.32: Vertices belonging to the profile strip (red) and vertices belonging to Vnose|z,max

(blue).

Alare (L/R) The left and right alares (all, alr) where found following the
method proposed in [77]. They belong to the set of vertices normals N̂vertices,
restricting the region to ysn < y < yprn, as the vertices where nx is maximum for
the left alare, and where nx is minimum for the right alare.

Alare curvature (L/R) As for the left and right alare, also the curvatures
(alcl, alcr) are found based on [77]. They belong to the set of sharp edges vertices
(with Si, θ>30◦ , shown in figure 4.31a), and are found after restricting the section
to ysn < y < yprn as the maximum value of the x coordinate for the left alare
curvature and the minimum value for the x coordinate for the right alare curvature.

Chelion (L/R) The chelions (chl, chr), too, are found among the mouth’s
sharp edges point (with Si, θ>30◦ , shown in figure 4.31a). They are found as the
vertices with maximum x-coordinate for the left chelion and the largest x-coordinate
for the right chelion.

Stomion The stomion (sto) is found following the technique proposed by El
Rhazi et al. [30]. It is located as the intersection between the line formed by the
chelions and the vertical line that goes across the pronasale. If the intersection point
is not a vertex belonging to Vmouth, the vertex with the least Euclidean distance to
said point is considered.

Exocanthion (L/R) To locate the exocanthion, for each eye, first the eye
section was isolated by taking the points belonging to the set of eyes vertices Veyes

delimited by the x-coordinates extremities of the eyes’ sharp edges vertices. In this
case, the faces which dihedral angle was greater than 40◦ were considered, in order
to get a better resolution and to exclude unwanted points. In fact, as shown in
figure 4.31b, it can be observed that by imposing this condition the precision of the
eye contour is increased as the vertices belonging to the eyes eyelid are excluded.
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Among the isolated vertices, the local minima for the z-coordinate was located.
This allowed to define the eye contour. The corner of each eye was then extracted
as the vertex belonging to the sharp edge vertices with the largest x-coordinate, for
the left eye, and with the smallest x-coordinate, for the right eye. The exocanthions
were then located as the vertices of the eye contour with the smallest Euclidean
distance from the eyes’ corners.

Endocanthion (L/R) The endocanthions was detected as the vertex with the
smallest y-coordinate among the sharp edge vertices with the largest x-coordinate,
for the left eye (enl), and with the smallest x-coordinate, for the right eye (enr).

Pupil (L/R) The pupil of the right eye (pr) was detected as the vertex with
largest z-coordinate in the region obtained by restricting the right eye region
between xexr < x < xenr along x, and between the maximum y-coordinate of the
eye contour and the minimum between the y-coordinates of the right endocanthion
and exocanthion. The pupil of the left eye (pl) was found by repeating the above
procedure adapted for the left eye.

Center of the eyes The center of the eyes (ec) was found as the intersection
between the horizontal line formed by joining the pupils and the vertical line of
the pronasale. Again, if the intersection point does not correspond to a vertex, the
ec is found as the vertex with lowest Euclidean distance to the intersection.

Menton This menton (me) actually belongs to the neck region, which is not
present on the used BFM model. Nevertheless, it was possible to locate it as
the vertex with the smallest y-coordinate of the profile strip. This lead to results
comparable with the one obtained in [30].

Gnathion To detect the gnathion (gn), the profile strip was restricted on the
y-axis to y < ysto. Also, the vertices with z > max (zchl, zchr) were considered. In
this region, the gnathion was found as the vertex with the minimum y-coordinate.

Sublabiale To locate the sublabiale (sl) the profile strip was restricted on the
y-axis to ygn < y < ysto. In this region, the sublabiale was located as the local
minima for the z-coordinate.

Pogonion The pogonion (pg) also belongs on the profile strip, to the area
restricted to ygn < y < ysl. Here, the pogonion is found as the vertex with
maximum z-coordinate.

Labiale superius The labiale superius (ls) is located on the lips contour,
defined as the z local maxima for the mouth region. This section is restricted to
the profile strip, for the x-coordinate, and to ysto < y < ysl for the y-coordinate.
Here the ls is detected as the vertex with smallest y-coordinate.

Labiale inferius The labiale inferius (li) is also located on the lips contour. This
section is restricted to the profile strip, for the x-coordinate, and to ysto < y < ysl

for the y-coordinate. Here the ls is detected as the vertex with largest y-coordinate.
Upper cheek (L/R) To locate the cheeks points a cut to the xy-plane according

to z > 0 was performed, where it should be remembered that the origin of the head
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is placed at coordinates O(0, 0, 0). The upper cheeks are located on the horizontal
line going through the pronasale. The left upper cheek (ucl) was found restricting
the region to x < xall as the vertex with the smallest z-coordinate. The right upper
cheek (ucr) was instead found restricting the region to x > alr as the vertex with
the smallest z-coordinate.

Lower cheek (L/R) The lower cheeks are located along the horizontal line
going through the stomion. The left lower cheek (lcl) was found restricting the
region to x < xchl as the vertex with the smallest z-coordinate. The right lower
cheek (lcr) was found restricting the region to x > xchr as the vertex with the
smallest z-coordinate.

Forehead The forehead (fh) landmark is found on the pronasale vertical line,
restricting the region to y > yse. Here, the forehead is found as the vertex with the
largest z-coordinate.

Nasale The nasale (na) is a difficult landmark to detect geometrically, as stated
from [77]. Nevertheless, the proposed method manages to locate it precisely by
using only geometric considerations. The nasale is therefore found among the local
maxima of the face strip, restricting the region to yse < y < yfh, as the vertex
closest to the sellion (i.e. whose Euclidean distance to the sellion is minimum).

Tragion The tragion (tr) is found by considering the head profile (as shown in
figure 4.27b), therefore the point of observation is the zy-plane. Here, the region is
restricted to the left side (x > xprn) and a cut is done along the zy-plane according
to where z < zexl. Then, the region is further restricted to ysn < y < yexl. In this
region, the local minima for the x-coordinate are computed and among them the
tragion is found as the vertex that presents the smallest z-coordinate.

Subnasale angle The subnasale angle (sna) is not a point belonging to the 3D
model, but it is one necessary to perform aesthetic measurements. Being external
to the model, it is not represented by any vertex of V . It is found as the intersection
between the line formed by the tragion and the subnasale, and the line formed by
the pronasale and the labiale superius, shown in figure 4.27b in purple.

Mentocervical angle (Ganthion 2) As for the subnasale angle, also the
mentocervical angle, or gnathion 2 (gn2), is not a point belonging to the head
model. As such, it is not found in the V array. It is found as the intersection
between the line going from the nasale to the pogonion and the one going from the
menton and tangent to the chin tip, shown in figure 4.27b in light blue.

4.2.6 Results
The 3D landmark detection framework has proven to be precise and robust on all
of the tested 3D models, both from generic people, figure 4.33, and for the test
cases presented in section 4.1, figure 4.34.

74



3D Facial Reconstruction Framework

Figure 4.33: 3D Landmark detection on models on healthy subjects.

Figure 4.34: 3D Landmark detection on models on “non-healthy” subjects.
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4.3 Aesthetic Measurements
Despite beauty being dependent on individual taste, current literature agrees on
the existence of fixed proportions which make a face pleasant, with some of them
being used by surgeons as well as dentists to guide their work [59][62][82]. The
used proportions are symmetry, Golden Ratios, Neoclassical proportions and also
profile angles, which can be evaluated via the so-called aesthetic measurements. In
order to do so, it is necessary to locate a set of well specified landmarks on the face,
for which the detection framework illustrated in section 4.2 has been developed.

The following sections describe the procedure followed to perform the measure-
ments on a 3D model, with a particular focus on angular measurements, being this
work focused on applications in the orthodontic field.

4.3.1 Symmetry measurements
The present work offers a method of performing measurements to evaluate a face’s
symmetry and suggestions on the landmarks coordinates’ displacement to achieve
model symmetry. The symmetry scoring is not proposed and it is postponed to
future implementations, as it was outside of this work’s scope. To evaluate symmetry,

Symmetry pair Indices
Description iR iL

Endocanthion enr, enl 15 16
Exocanthion exr, exl 13 18

Alare alr, all 20 21
Upper Cheek ucr, ucl 19 22
Lower Cheek lcr, lcl 23 26

Chelion chr, chl 24 25

Table 4.2: Symmetry pairs and their relative
indices

Figure 4.35: Symmetry landmarks

six landmarks pairs were considered on the frontal plane: the endocanthion pair,
exocanthion pair, alare pair, cheek superior pair, cheek inferior pair and chelion
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pair. The vertical axis going through the pronasale is considered as the symmetry
axis (x = xsym) [37].

A symmetry pair is evaluated considering two contributions, an horizontal one
and a vertical one. The horizontal symmetry takes into account the distance between
the symmetry axis and the x-coordinates of the landmarks pair. The vertical
symmetry is instead evaluated considering the angle αi formed by the line joining
the symmetry pair landmarks and the one perpendicular to the symmetry axis, as
shown in figure 4.36. The following equations formalize the above description, and
they are a personal elaboration of the ones proposed in [41] and [59]:

dRi = |xRi − xsym| dLi = |xLi − xsym| (4.22)

αi = tan−1
A

|yRi − yLi|
dR + dL

B
(4.23)

Where xRi and xLi represent the right and left coordinate of the i−th’s symmetry
pair. Ideally, for a pair of landmarks to be symmetric their distance from the

Figure 4.36: Symmetry diagram (personal elaboration of [41]) showing a pair of landmark
horizontally symmetric but vertically asymmetric.

symmetry axis should be the same and they should share an equal y-coordinate.
This translates into both of the following conditions to be verified at the same time:

(a) dRi = dLi (b) αi = 0 (4.24)

From the above equations the new (x, y) coordinates can be derived for each
landmark. The proposed symmetrization considers equating the distance of the
xRi and xLi coordinates from the xsym coordinate while at the same time zeroing
αi.

xRi,new = xsym + dRi + dLi

2 xLi,new = xsym − dRi + dLi

2 (4.25)
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yRi,new = yLi,new = max {yRi, yL, i} − max {yRi, yL, i} −min {yRi, yL, i}
2

(4.26)

An example of the symmetry analysis process is shown in figure 4.37.

Figure 4.37: Example of symmetry measurements in a subject considered to be conforming to
modern beauty standards.

4.3.2 Golden Ratios measurements
Despite conflicting opinions on whether the golden ratio (Φ = 1.618) should be
considered as a valid reference for the assessing of facial beauty, these measurements
are also computed for the sake of completeness. In fact, different works exploits
them to propose adjustments to the face in order to make it more attractive
[37][41][83][84].

To assess facial beauty in terms of Φ it is necessary to define which are the ratios
to be taken into account and also the range of values for which the measurements
are compliant with the ideal Golden Ratio value. In fact, it has to be considered
that modern standards of beauty differ from the ones related to the period in which
Φ was proposed as a beauty evaluation standard. A recent study investigated
how the Golden Ratio can be applied to modern beauty evaluation [62]. For its
completeness and for the fact that the research values are all expressed as ratios
instead of absolute numbers, this study was chosen as a reference to be applied to
the present thesis work.

Golden Ratio measurements can be divided into vertical (ΦV ) and horizontal
(ΦH), see also figure 3.10 and figure 3.11 for a visual reference. The measurements
performed in this work are reported in tables 4.3, 4.4 respectively and take into
consideration the ones proposed by Burusapat et al. [62] that are considered
statistically significant. The implemented system performs the measurements and
compares them both with the ideal value of the Golden Ratio and with the tabulated
values from [62]. Further evaluation, such as proposing coordinate displacement to

78



3D Facial Reconstruction Framework

fit the values, is not performed and it is postponed to future implementations since
it was not part of this work’s purpose. An example of the Golden Ratio analysis
process is shown in figure 4.38

Indices
Facial proportion Mean σ i1 i2 i3 i4

ec -gn:fh-ec 1.453 0.095 4 12 1 4
alr-gn:ec-alr 1.395 0.161 20 12 4 20
alr-ec:chr-alr 2.015 0.243 20 4 24 20
chr-gn:chr-alr 2.054 0.423 24 12 24 20
ec -chr:ec-alr 1.445 0.095 4 24 4 20
ec -gn:alr-gn 1.709 0.097 4 12 20 12

Table 4.3: Statistically significant Vertical Facial Golden Ratios [62]. The y-coordinate of the
listed landmarks was considered.

Indices
Facial proportion Mean σ i1 i2 i3 i4

ucr-ucl:exr-exl 1.297 0.059 19 22 13 18
exr-exl:chr-chl 1.939 0.155 13 18 24 25
chr-chl:alr-all 1.524 0.134 24 25 20 21
alr-all:enr-enl 1.068 0.092 20 21 15 16
chr-chl:enr-enl 1.750 0.187 24 25 15 16

Table 4.4: Statistically significant Horizontal Facial Golden Ratios [62]. The x-coordinate of the
listed landmarks was considered.

Figure 4.38: Example of Golden Ratio measurements in a subject considered to be conforming to
modern beauty standards.

For consistency purposes, when the landmarks belong to a symmetric pair the
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right side of the face is considered, except for the ocular region when the middle of
the eyes (ec) is considered instead. For each of the proposed facial proportions, the
vertical and horizontal ratios were computed as:

ΦV = |yi1 − yi2|
|yi3 − yi4|

ΦH = |xi1 − xi2|
|xi3 − xi4|

4.3.3 Neoclassical Proportions measurements

As for the Golden Ratio, also Neoclassical proportions have been used to suggest
facial beauty improvement [37][41], and are also used by dentists and surgeons for
surgical planning [63][82][85][86]. The work of Burusapat et al. [62] also analyzes
the role of Neoclassical proportions, finding three horizontal and three vertical
proportions with statistical significance, which are the ones used in the present
work.

The proposed Neoclassical Proportions measurements method does not present
many differences with respect to the Golden Ratio’s one. The system computes
the vertical and horizontal ratios described in tables 4.5 and 4.6, respectively, as
follows:

NPV = |yi1 − yi2|
|yi3 − yi4|

NPH = |xi1 − xi2|
|xi3 − xi4|

It then compares the measured value with the ideal one, computes their difference,
and it states whether the measurements falls into the range defined by the mean
value and one standard deviation (µ ± σ). As for the Golden Ratio, further
evaluations and displacement suggestions are not performed and are postponed to
future implementations. An example of the analysis output can be observed in
figure 4.39.

Indices
Description Facial proportion Mean σ Ideal i1 i2 i3 i4

Three section canon se-sn:fh-se 0.88 0.07 1 3 6 1 3
sn-gn:fh-se 0.91 0.07 1 6 12 1 3

Oral canon sto-lbi:lbs-sto 1.50 0.17 2 8 9 7 8

Table 4.5: Statistically significant Vertical Neoclassical Proportions [62].
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Indices
Description Facial proportion Mean σ Ideal i1 i2 i3 i4

Nasofacial canon ucr-exr:alr-all 0.67 0.15 1 19 13 20 21
Orbitonasal canon alr-all:enr-enl 1.07 0.09 1 20 21 15 16

Orbital canon exr-enr:enr-enl 1.07 0.12 1 13 15 15 16

Table 4.6: Statistically significant Horizontal Neoclassical Proportions [62].

Figure 4.39: Example of Neoclassical Proportions measurements in a subject considered to be
conforming to modern beauty standards.

4.3.4 Angular Profile measurements
The angular profile plays a major role in the face’s proportion and beauty. Being
this work aimed at showing to a patient the result of orthodontic procedures, these
measurements were considered the most important among all of the above. The
proposed system performs 11 angular measurements and it verifies their compliance
with the standard values proposed by [45][46][47]. The angles are summarized
in figure 3.14, reported in section 3.2.4, which meaning and standard value are
described more in detail in table 4.7.

The angles computation is performed on the left side of the face, considering the
coordinates only on the zy-plane. For each facial angle, a group of three vertices
is considered at a time (represented in figure 4.40 as points A, B and C). Point
C also serves the purpose of control point, i.e. it is the vertex to be displaced to
achieve a determined angle αtarget in case the measured angle does not fall into the
normal range. To compute the angle α, the vectors e1 and e2 are considered, which
have their origin in A.

e1 = B − A e2 = C − A (4.27)

α = arccos
A

e1 · e2

∥e1∥2 ∥e2∥2

B
(4.28)
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Indices
Facial angle Description Mean Min Max iA iB iC
Nasofrontal NFr ∠na− se− prn 122.5 115 130 2 3 5
Nasofacial NFa ∠na− pg − prn 35 30 40 2 11 5

Nasomental NMe ∠pg − prn− se 125 120 130 11 5 3
Nasal Na ∠se− tr − prn 23.3 20 27 3 27 5

Maxillary Mx ∠prn− tr − ls 14.1 12 17 5 27 7
Mandibular Mn ∠ls− tr − pg 17.1 14 20 7 27 11
Maxillofacial MF ∠ls− se− pg 5.9 2.5 9.5 7 3 11

Facial F ∠tr − sn− pg 102.5 96 106.5 27 6 11
Nasomaxillary NMa ∠tr − sn− prn 106.1 97 114.5 27 28 5

Holdaway H ∠se− pg − ls 10 7 14 3 11 7
Mentocervical MeC ∠pg − gn2 −me 87.5 80 95 11 30 29

Table 4.7: Mean values for the principal profile angles [45][46][47]. The angles are expressed in
degrees.

In case the computed α belongs to the normal range, no displacement for point
C is proposed. Otherwise, e2 is rotated of a quantity dα to reach the mean value
of α, here indicated as alphatarget.

dα = α− αtarget (4.29)

The rotation is performed by exploiting the rotation matrix R, as follows:

e′
2 = R · e′

2 =
A

cos dα − sin dα
sin dα cos dα

B
·
A
e2,z

e2,y

B
(4.30)

The new control point C ′ coordinate is therefore obtained as:

C ′ = e′
2 + A =

A
e′

2,z

e′
2,y

B
+
A
A2,z

A2,y

B
(4.31)

To proceed with further operations, the vectors are reordered to follow the (x, y, z)
order. According to which is the C coordinate to be modified, the corresponding
one is taken from C ′. For example, if C was to be displaced only along z, then
said component would be replaced by the z-component of C ′. An example of the
angular analysis output can be observed in figure 4.41. The analysis on the test
subjects and the corresponding result will be presented in section 4.4.
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Figure 4.40: Angles rotation.

Figure 4.41: Example of angular measurements of a healthy subject. It can be noted how in this
case only a minor adjustment to the Mx angle is suggested. The nasal angle are not taken into
consideration, since their modification is out of the scope of the present work.

The system might propose a rotation that is not optimally suitable for the
patient, since if the measured angle is not compliant with the normal range, then
the optimal value for the angle is assumed to be the minimum one. This is not
always true and it is up to the clinician to determine which is the optimal value
among the proposed range. Different angles rotations and their results will be
analyzed in section 4.4.

4.4 3D Model Deformation
The deformation of the 3D Model is the last, as well as the most important, step
of the framework. Since the main goal of the present thesis is to show the result of
orthodontic procedures, the model deformation was applied only to enhance the
lower section of facial profile, i.e. from the subnasale to the menton. To this aim,
the results obtained from the angular measurements and displacements suggestions
of section 4.3.4 are used. In particular, the angles on which to act are the Maxillary,
Mandibular, Facial and Holdaway angle, as shown in table 4.8.
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Facial Angle Control point Coordinate Static handles Dynamic handles
Mn pg y y > yls y < ysl

F pg z y > yls y < ysl

Mx ls y y > ysn ls
H ls z y > ysn ls

Table 4.8: Facial angles and corresponding handles and coordinates.

The deformation was implemented by exploiting the Open3D library for Python
[69], which offers an implementation of the “As-Rigid-As-Possible” (ARAP) method
[67] as a function to achieve deformation on a triangle mesh. In particular, the
Smoothed ARAP version was applied, in order to obtain a more harmonious result.
To apply this kind of mesh deformation it is necessary to specify a set of constraints
on the vertices of the mesh, which can be seen as two kinds: the static and handle
vertices. Static vertices are the ones that are not to be displaced, therefore their
initial position must remain the same before and after the deformation. The handle
vertices are instead the ones which initial and final position must vary. To achieve
deformation of a model section, it is sufficient to specify the new position for just
one dynamic handle, and the vertices that are not set to remain static will be
properly adjusted to follow the displaced one(s).

The method applied to achieve deformation is similar to the one used by
[41], which applies Laplacian Deformation method [44]. However, the Laplacian
Deformation method is the precursor of the ARAP method [67], being the case in
which only one iteration is performed. In the present work, the maximum iteration
value was set to 50 and found to be optimal, both in terms of final result and
computation time.

To perform adjustments to the profile angles, different steps are followed. First
of all, the angular measurements are performed on the zy-plane. The result of
the measurements is a list of angles variations dα, which are zero in case the
measurement is compliant with the standard illustrated in section 4.3.4, otherwise
they represent the corresponding angle rotation. The displacement of the control
points, listed as handles in table 4.8 is also returned by the previous analysis.

Among the angles that need fitting, the first displacement is performed on the
Mn/F couple. This is achieved by moving the vertices respecting the condition
y < ysl of a quantity specified by the result of the angular measurement. This way,
a new mesh is generated and the corresponding 3D landmarks are extracted to
repeat the measurements and establish if further deformation is necessary.

As stated in section 4.3.4, different angle rotations have been tested to determine
which is the one giving, in general, a better result. The system was tested on
subject taking into consideration as αtarget both the minimum and the mean value
for the angles listed in table 4.7. The result varied depending on the patient, which
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confirms that despite the system could propose automatic variations the judgment
of a clinician is always fundamental. It has been noted that satisfactory results are
obtained after one iteration. If further modifications are needed, the remaining pair
of angles (Mx/H) is fitted by using the labiale superius as handle and displacing it
of the quantity specified by the result of the new angular measurements.

4.4.1 Results

This section illustrates the results obtained from the mesh deformation on the test
subjects. The goal of this last section is to obtain a result as close as possible to the
one obtained from the treatment, in order to affirm that the proposed framework
would be able to show the result of a procedure on a potential patient.

Case 1

The angular measurements performed on the subject reconstructed model suggested
a variation of 3.72° for the maxillofacial angle and of -8.99° for the facial angle.
Also, a variation of 6.32° for the Holdaway angle was suggested. The result of the
angular analysis on the subject can be observed in figure 4.42.

Figure 4.42: Angular measurement on the subject before applying deformation. The suggested
variation is referred to dα = αmin.

As previously explained, the system works by first adjusting the couple Mn/F.
Two cases were analyzed for different values of αtarget. From figure 4.43 it is possible
to observe the preview of the displacement of the handle vertices for the Mn/F
angle couple. As expected, the displacement of y− and z−coordinates is larger
where αtarget is αmean, since this brings to a wider dα. Figure 4.44 shows the result
of the deformation. For a smaller angle variation, the result appears to be more
natural.
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(a) before (b) dα = αmean (b) dα = αmin

Figure 4.43: Preview of displacement with different values for dα.

(a) before (b) dα = αmean (b) dα = αmin

Figure 4.44: After displacement.
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However, as it can be observed in figure 4.45, in this case the solution that better
represents the final result on the subject is the one obtained with αtarget = αmean.
From the final result it is possible to affirm that in this case the framework would
have successfully proposed a potential outcome of the treatment.

(a) after (b) dα = αmean (b) dα = αmin

Figure 4.45: Comparison between subject after treatment and the model representing the preview
of the final result.
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Case 2

The 3D model obtained from the subject of case 2 did not fully resemble the input
picture in the lower part of the face. Nevertheless, by looking at the final outcome
of figure 4.47 it can be observed how the 3D model resembles the final outcome.
This suggests that the 3D reconstruction framework alone can be used as a first
tool to obtain a preview for a procedure, on which further adjustments can be
performed. In this case, in fact, the measurement resulted in a suggestion for the
displacement of the upper part of the mouth, corresponding to a −3.07◦ variation
for the Holdaway angle.

Figure 4.46: Angular measurement on the subject before applying deformation. The suggested
variation is referred to dα = αmin.

(a) before (b) after (b) dα = αmean (b) dα = αmin

Figure 4.47: Comparison between subject after treatment and the model representing the preview
of the final result.
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(a) before (b) dα = αmean (b) dα = αmin

Figure 4.48: Preview of displacement with different values for dα.

(a) before (b) dα = αmean (b) dα = αmin

Figure 4.49: After displacement.
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The Holdaway angle was automatically adjusted by performing a forward dis-
placement of the upper lip, which is the same treatment performed in the original
work on the patient [73]. The final model highly resembles the result obtained
by the procedure, as it can be observed in figure 4.47. As a consequence, also in
this case it is possible to affirm that the framework would have proposed a correct
preview of the treatment outcome.
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Case 3

The angular profile measurement performed on the subject of case 3 showed that
both the Mn/F and the Mx/H couples of angles were to be adjusted. As always, the
first adjustment is performed on the first of the two. The preview can be observed
in figure 4.51, while the result of the deformation is shown in figure 4.52. The
result obtained with αtarget = αmin appears to be more natural and aesthetically
pleasing in this case.

Figure 4.50: Angular measurement on the subject before applying deformation. The suggested
variation is referred to dα = αmin.

(a) before (b) dα = αmean (b) dα = αmin

Figure 4.52: After displacement.
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(a) before (b) dα = αmean (b) dα = αmin

Figure 4.51: Preview of displacement with different values for dα.

(a) before (b) dα = αmean (b) dα = αmin

Figure 4.53: After displacement.
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(a) before (b) after (b) dα = αmean (b) dα = αmin

Figure 4.54: Comparison between subject after treatment and the model representing the preview
of the final result.

The angular measurement were repeated on the newly obtained model, and the
result showed that the Mx/H couple still needed some adjustments, therefore the
upper lip was displaced accordingly. The result can be observed in figure 4.53.

Finally, the model is compared with the result of the treatment (figure 4.54) and
the proposed model is again resembling the result of the actual treatment outcome.
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3D Facial Reconstruction Framework

Case 4

In this last case, the 3D model reconstructed from the input images before treatment
was faithful to the subject’s facial features. The angular measurements are shown
in figure 4.55, and in this case they suggest a variation for the facial angle and for
the Holdway angle.

Figure 4.55: Angular measurement on the subject before applying deformation. The suggested
variation is referred to dα = αmin.

In figure 4.57 and figure 4.58 it is possible to observe the preview and result
of the displacement relative to the facial angle variation. Also in this case, as
expected, the result obtained with αtarget = αmin is more harmonious on the face
and also visually pleasing. In figure 4.56 it can be observed how said result better
resembles the actual profile obtained after the treatment. Again, the framework
proved to be effective in showing a preview of the treatment result on the patient.

(a) before (b) after (b) dα = αmean (b) dα = αmin

Figure 4.56: Comparison between subject after treatment and the model representing the preview
of the final result.
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(a) before (b) dα = αmean (b) dα = αmin

Figure 4.57: Preview of displacement with different values for dα.

(a) before (b) dα = αmean (b) dα = αmin

Figure 4.58: After displacement.
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Chapter 5

Conclusions and future work

The aim of this thesis consisted of achieving a complete framework which would
allow clinicians to show a three-dimensional preview of a prosthetic rehabilitation
procedure on a patient, starting from a collection of images of the latter.

To achieve this goal, a 3D Facial Reconstruction Framework was developed. A
3D facial model of the patient is first reconstructed starting from an image, or a
collection of images, of the patient. Landmarks are extracted from the obtained 3D
model, which are used to perform the aesthetic measurements needed to evaluate
the modifications to be applied to the model in order to simulate the result of the
procedure. Based on the result of the evaluation, the appropriate corrections are
applied to the 3D reconstruction, obtaining as a result an explorable 3D model
representing a plausible outcome for the procedure.

The above described pipeline is designed to be completely automatic. The user
provides the input in the form of patient images and obtains as output the 3D
model representing a likely result of the procedure. To assess its effectiveness
in the orthodontic field, for which the framework has been optimized, the latter
was tested on 4 subjects which results pre- and post- treatment were present in
publicly available studies. The obtained previews proved to be faithful to the actual
treatment outcome.

Despite the framework being optimized for a subset of orthodontic procedures,
its structure allows it to be further extended, also to other medical fields, such as
plastic surgery. In fact, the aesthetic measurements performed on the model are
related not only to the facial profile, but also take into account symmetry, golden
ratio and neoclassical proportions, which become more involved in the plastic
surgery field. A possible future development for the network would be to apply
proper deformations to the model to accommodate different surgery previews, e.g.
rhinoplasty.

It is important to note that the aim of the work was to provide a preview to
be shown to the patient and it was not meant to serve for surgical planning, for
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which faithfulness to the actual morphology of the patient is key. The 3D model
needed to be accurate, such as patients would recognize themselves, and also such
as their most important features were maintained, in order to apply deformation
which would lead to a likely outcome of the procedure. To improve the framework
towards an application in surgical planning, a validation in terms of the faithfulness
of the reconstruction method should be performed. In this case, actual 3D scans of
subjects would be needed for comparison purpose.

As previously stated, the proposed framework is designed to be automatic in
its entirety. As a consequence, the current implementation does not allow the
clinician to perform adjustments to the 3D preview, which could be needed in
some cases. As observed in the literature reviewed for this thesis, illustrated in
the previous sections, when designing a tool which involves three-dimensional
modifications it must be kept in mind that clinicians are usually not trained to
perform manipulations to a 3D model. Having considered this, the framework
design allows itself to be improved towards this goal with minor changes. It would
be possible, for example, to develop a GUI provided with sliding scales to which
translate internal parameters influencing the deformations, which would allow an
easy and intuitive mean to perform minor changes to the automatically proposed
solution.

Another aspect to be taken into consideration regards the reconstruction of the
initial 3D model of the patient. During the testing phase it emerged that the 3D
modeling section had difficulty in reconstructing patients with extreme variations
of the face. This issue could be solved either by using a different 3DMM, for
example a morphable model designed for clinical purposes, as the one illustrated
when reviewing the literature in the field. Another solution might be to give the
possibility to the user of manually selecting critical landmarks during the first
modeling procedure, or to re-train the 3D reconstruction network using a more
suitable and inclusive dataset.
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