
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Enhancing programs for delay test of
microprocessors through fault

propagation analysis

Supervisors

Prof. Riccardo Cantoro

Prof. Matteo Sonza Reorda

Dott. Sandro Sartoni

Candidate

Francesco Garau

Academic Year 2020-2021

Saruman! Il tuo bastone è rotto!

ii

Summary

The presented thesis work is centered on the topic of functional test of microproces-
sors. Functional test, in particular using Software Test Library (STL), is becoming
a standard solution for the online test of safety-critical systems, for instance in
the automotive domain. Commercial tools provide scan test patterns, however
frequently they are not able to reach the given target fault coverage. Nevertheless,
the development of high-quality test programs is considerably more challenging
than using commercial tools, therefore new solutions are required to improve the
fault coverage guaranteed by a STL.
The proposed work focuses on the analysis of the propagation of the faults through
the paths of the device under test and tries to propose valid solutions to improve
the fault coverage of the tests.
First, the thesis describes an approach that identifies the set of sequential cells
that captures fault effects before being masked during the propagation towards
observable points. In order to reach the target fault coverage, a subset of sequential
cells is selected using two different set coverage algorithms, assuming that they can
be observed resorting to suitable solutions (for example, existing infrastructures,
MISR). Subsequently, the work tries to analyze the execution of the test programs.
Particularly, starting from the execution trace of the test program, the source code
of the program and a fault dictionary, this approach tries to identify the pieces of
source code that generate the hard-to-test faults. The goal of this analysis is to
give support to the test engineer indicating which parts of the source code should
be modified in order to detect those faults and, consequently, allows improving the
STLs. The test of this methodology is not the main goal of this thesis, but it is a
starting point for a future work.
For the experimental part, the PULPino RISCV architecture has been chosen.

iii

Acknowledgements

Sono grato di aver avuto l’opportunità di poter collaborare con i miei supervisori
Riccardo Cantoro, Sandro Sartoni e Matteo Sonza Reorda, e li ringrazio per l’aiuto
e il supporto che mi hanno dato durante i mesi della tesi, facendomi sentire parte
di un gruppo serio e coeso.
Voglio ringraziare gli amici e tutti coloro che in questi due anni di laurea magistrale,
e in generale negli ultimi anni, mi hanno aiutato, ascoltato e apprezzato, rendendo
il mio percorso più semplice e meno insidioso. In particolare, ci tengo a ringraziare
tutti i miei amici arburesi: il gruppo "Le-Plaza". Non posso dimenticare i miei
amici gutturesi, con i quali ho condiviso più di un decennio di vacanze estive. Nello
specifico, vorrei dedicare questo risultato ad Alice, Andrea, Elena e Francesca.
Meriti di questo traguardo spettano ovviamente a tutti quei colleghi che mi hanno
aiutato, sopportato e con cui mi sono confrontato in questi due anni intensissimi, in
particolare Alessandro, Claudio, Martina e Veronica. Ringrazio caldamente i miei
conquilini torinesi, coloro i quali sono diventati la mia seconda famiglia durante
questi due anni: Claudia, Federica, Giacomo, Lorenzo e Marika.
Dulcis in fundo, dedico la laurea a coloro che hanno materialmente permesso che
io potessi intraprendere questo percorso, grazie ai propri sacrifici e al loro affetto.
Ringrazio con tutto il cuore i miei genitori Adriana e Fernando per il supporto
costante e per l’opportunità di proseguire i miei studi prima a Cagliari e poi a
Torino. Spero di aver ripagato i vostri sacrifici con quest’ultimo traguardo acca-
demico. Oltre ai miei genitori, non posso non ringraziare mio fratello Giacomo e la
sua fidanzata Eleonora, per l’aiuto che mi hanno dato in questi due anni a Torino
(e per avermi sopportato, scarrozzato di qua e di là e tante altre cose) ma anche
nei 3 precedenti a Cagliari durante la mia laurea triennale.
Infine, vorrei concedere un piccolo tributo a me stesso. Nonostante alcuni pe-
riodi difficili, difficoltà e talvolta sconforto, non ho mai mollato e sono arrivato
all’obiettivo che mi ero preposto.
Questo è solo il punto di arrivo della carriera universitaria. Che sia il punto di
partenza per un nuovo percorso e per nuove soddisfazioni.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Testing methodologies and technologies 4
2.1 Fundamentals of testing . 4

2.1.1 Stuck-at fault model . 5
2.1.2 Delay fault models . 6

2.2 Automatic Test Pattern Generation 11
2.2.1 ATPG architecture . 11

2.3 Scan techniques . 15
2.3.1 Full scan . 15

2.4 Functional testing . 16

3 Context of work 18
3.1 Background works on STL analysis for delay test coverage improvement 19
3.2 Commercial tool features . 20
3.3 PULPino . 21

4 Hybrid methodology to improve fault coverage of STLs 24
4.1 Introduction . 24
4.2 Methodology description . 25

4.2.1 Identification of faults steps in details 25
4.2.2 Evaluation of faults and selection of wires 32

5 Analysis of the execution trace of test programs 36
5.1 Creation of a test program collection 36
5.2 Retrieve information from the DB 37

5.2.1 Find blocks of source code editable to cover a fault 38

vii

5.2.2 Find which faults should be coverable modifying specific
pieces of source code . 39

5.2.3 Find blocks of source code editable to cover a fault and find
which part of source code may be able to cover that fault . . 40

5.3 Statistical analysis of the execution trace 41

6 Experimental results 42
6.1 Case study and experimental setup 42

6.1.1 Hybrid methodology’s STLs and setup 42
6.2 Hybrid methodology’s results . 43

6.2.1 Greedy algorithm’s results 43
6.2.2 Variable flip-flop selection algorithm’s result 45

6.3 Results of the analysis of the execution trace of test programs . . . 49

7 Conclusions and related work 52

Bibliography 54

viii

List of Tables

4.1 Sequential .csv file output . 26
4.2 Combinational .txt file output . 27

6.1 Experimental results on SAFs with variable flip-flop selection 47
6.2 Experimental results on TDFs with variable flip-flop selection . . . 48

ix

List of Figures

2.1 Evolution of manufactoring and testing cost per transistor 5
2.2 Stuck-at example . 6
2.3 Stuck-at bad input vector . 7
2.4 Huffman scheme . 8
2.5 Transition Delay fault example . 9
2.6 Path Delay fault example . 10
2.7 Relationship between the whole set of delay faults and testable delay

faults . 11
2.8 ATPG system architecture schema 12
2.9 ATPG fault test loop . 14
2.10 Scan chain in Test Mode . 16

3.1 Pulpino RISCY core [22] . 23

4.1 Flow of the proposed approach . 25
4.2 Methodology steps in details . 35

5.1 Example of document instruction inserted into the MongoDB collection 37
5.2 Example of stored fault information 39

6.1 STLs information table . 43
6.2 Undetected stuck-at faults recovered with greedy algorithm 44
6.3 Undetected transition-delay faults recovered with greedy algorithm 46
6.4 Example of percentage of instruction divided per categories 49
6.5 Example of percentage of faults divided per categories 50
6.6 Example of average number of intervals divided per categories . . . 51

x

Listings

3.1 Example of fault dictionary parsed with a python script 20
3.2 Example of execution tracer . 21
3.3 Example of disassembly file . 21
4.1 Retrieve combinational faults function 27
4.2 Retrieve sequential faults function 28
4.3 Find undetected faults on sequential 28
4.4 DUT paths file . 28
4.5 Find undetected faults on sequential function 29
4.6 Output of function 4.5 . 29
4.7 Bind undetected to the corresponding endpoint function 30
4.8 Output of function 4.7 . 30
4.9 Tcl script . 31
4.10 Output of function 4.9 . 31
4.11 Bind faults to specific wires function 32
4.12 Output of function 4.11 . 32
5.1 Example of fault dictionary for the selection of suitable blocks of

code to be used for the improvement of test programs 40

xi

Chapter 1

Introduction

The aim of the proposed thesis work is to find and develop new solutions for delay
testing of SoCs and microprocessors, and, in particular, the work is centered on
the topic of functional testing.
Functional test, in particular using Software Test Libraries (STL), is becoming
a standard solution for the online test of safety-critical systems, for instance in
the automotive domain. Commercial tools provide different solutions, like scan
test patterns, however they are frequently not able to reach the given target
fault coverage. Nevertheless, the development of high-quality test programs is
considerably more challenging than using commercial tools.
Since commercial solutions (ATPG and scan patterns) and STLs that companies
provide are able to test and cover a large but not sufficient amount of faults, it is
necessary to develop new methodologies to reach higher fault coverage, especially
in those domains in which reliability and security are fundamental.
The proposed work focuses on the analysis of the propagation of the faults through
the paths of the device under test and tries to propose valid solutions to improve
the fault coverage of the tests. The propagation of faults to primary outputs is one
of the most difficult challenges that a test engineer must face. In fact, a notable
amount of faulty signals propagate through the integrated circuit of the device
under test but stop at an internal gate and can not be observed by the user.
The methodologies developed and presented in the next chapters fit in a dynamic
and evolving context in which are inserted several works. Specifically, various studies
investigate the possibility to improve test programs, mainly related to stuck-at
faults. Other works propose the usage of post-silicon debug solutions, demonstrating
the effectiveness of these ones. All these studies achieved satisfying results but
they do not consider delay faults and the ones that propose the exploitation of
post-silicon methodologies work on the whole core, often requiring a considerable
area overhead of the circuit. The study [1] moves the first steps in the development
of a methodical strategy for the improvement of the existing STL quality, focusing

1

Introduction

on the transition delay faults. This work is the starting point of this thesis, which
can be considered its natural following step.
In this thesis two approaches are described. First, a hybrid methodology for the
improvement of the fault coverage is proposed: this solution has been defined as
hybrid since at first it requires a software computation and afterwards it uses a
hardware infrastructure to perform the task. Starting from a list of hard-to-test
faults individuated by a simulation analysis performed with STL means, the software
defines a list of internal signals that should be monitored in order to observe the
propagation of these faults. Subsequently, the selected signals must be physically
observed with hardware means (for instance, with MISR) in order to detect the
faults. For this methodology, the thesis focuses mainly on the development of two
algorithms for the selection of the wires that should be monitored.
In the second part of the work, a methodology for the analysis of the test programs
(STLs) execution trace is described. The aim of this section is to create a software
infrastructure that can be exploited by the test engineer to store useful information
about the test programs (for instance, executed instructions and CPU execution
time, set of faults tested), consequently analyse the weaknesses of the programs
in order to improve them. Finally, it provides some basic functions for editing
the programs. To achieve this goal, a python software has been developed. It
provides some functionalities as the insertion into a database of the execution trace
information, statistical analysis of the faults and the manipulation of the STLs (for
instance, giving the possibility to insert assembly instructions into the source code,
according to different strategies). The latter feature is still being developed since
it requires several tests, mainly concerning the strategies for the insertion of new
instructions into the source code.
The results produced by the first methodology are satisfying and promising since
they show the possibility to recover 100% of the hard-to-test faults. The first
algorithm, defined as greedy since it performs a fixed selection of the wires, has been
proved to be inefficient since it requires a notable and almost unfeasible amount
of wires to be observed and, sometimes, it can achieve 100% of coverage. On the
other hand, the second algorithm, which performs a variable selection of wires,
shows the possibility to monitor a smaller number of wires and it reaches 100% of
coverage almost in every case.
The test of the second methodology, in particular the manipulation of the STLs,
was not the main goal of this part of the thesis, therefore any results have not
been produced. Nevertheless, in the sub-chapter 6.3 some graphs concerning the
analysis of the execution trace of the test programs are presented.
The chapters 2 and 3 show the state of art of testing methodology and the context
in which this thesis is inserted. Afterwards, in the chapters 4 and 5 the two
methodologies developed in the thesis work are presented, and in the chapter 6 the
achieved results are described. Eventually, the reader will find the conclusions and

2

Introduction

a picture of the potential related works in the chapter 7.

3

Chapter 2

Testing methodologies and
technologies

This chapter will focus on testing methodologies.
Across the years, many testing technologies have been developed in order to find
suitable solutions for different necessities. In particular, it is possible to split them
according to the part of the circuit they are made to test: combinational and
sequential.
In the first category can be found the automatic test pattern generation (ATPG)
tools and in the second one the (scan patterns) and the functional testing.

2.1 Fundamentals of testing
In general, Testing is the process that aims to find faults and misbehaviour in
a product. In particular, testing a microprocessor consists in applying a set of
stimuli to the integrated circuit in order to excite physical defects and make them
observable at one of the IC’s output ports.
Testing is a crucial phase in the lifecycle of a product and it is very important
for all those application in which safety and reliabilty are indispensable, as in the
automotive domain.
During the 90s, the manufactoring cost per transistor has dropped rapidly. On the
other hand, testing cost remained fairly steady over the years (figure 2.1). This
trend pushes to the necessity of developing new strategies in order to minimize
costs but, at the same time, maximize results and guarantee high quality standards.
Physical faults may depend on many different causes and are often difficult to deal
with, therefore it is impossible and unfeasible to take each of them into account.
The general solution is to use logical faults. These ones model a physical defect (or
a set of defects), which is consequently called fault model.

4

Testing methodologies and technologies

Figure 2.1: Evolution of manufactoring and testing cost per transistor

The most common classes are the stuck-at and the delay fault models.

2.1.1 Stuck-at fault model
Stuck-at fault (SAF) is a particular fault model used for post manufactoring test.
The model assumes that individual signals or pins of the circuit are stuck at a
logical signal: ’1’, ’0’. The former one is called stuck-at zero whilst the second one
stuck-at one.
Figure 2.2 shows a simple example of stuck-at fault. In particular, the E wire is
affected by a stack-at one fault. In the case of healthy circuit, the output would be
the following:

1. wire A and B are the inputs of a NAND port. 1 NAND 1 = 0, therefore E =
0;

2. wire C and D are the inputs of an OR port. 0 OR 0 = 0, therefore F = 0;

3. wire E and F are the inputs of an OR port. 0 OR 0 = 0, therefore the output
is 0

With the stuck-at one fault on the E wire the outputs become:

5

Testing methodologies and technologies

1. E = 1 because of the fault;

2. wire C and D are the inputs of an OR port. 0 OR 0 = 0, therefore F = 0;

3. wire E and F are the inputs of an OR port. 1 OR 0 = 1, therefore the output
is 1

Figure 2.2: Stuck-at example

In order to make the fault observable it is needed an input vector that is capable
to excite the fault.
Figure 2.3 shows an example of inefficient input vector. In this case, A NAND B =
1 because B=0 so it is impossible to observe the stuck-at one fault on the E wire
because we could not determine if the value is correct or if it depends on a fault.

2.1.2 Delay fault models
Delay fault (DF) classes aim to model temporal defects in an integrated circuit.
Even though the circuit performs its operation correctly, it may be too slow to
propagates signals through paths and gates. Consequently, the circuit outputs
could show incorrect logical values. DF testing aims to determine whether the
circuit works correctly at speed (its specified speed) or not [2].

6

Testing methodologies and technologies

Figure 2.3: Stuck-at bad input vector

Therefore, DFM models failures caused by temporary changes in the circuit charac-
teristics.
According to the Huffman scheme (figure 2.4), a generic sequential circuit can
be model with two parts: the combinational logic (it only depends on input and
corresponding outputs) and a section able to store logic values, for instance a set
of flip-flops.
The maximum operating frequency, and consequently the operating speed of the
circuit, depends on the time needed by the combinational circuit to produce stable
output values. If the combinational logic produces correct outputs but not within
a specific time, the flip-flops will sample incorrect values: this situation lead to
delay faults.
The most used delay fault models are the Transition delay (TDF) and the Path
delay (PDF).

Transition Delay Fault Model

The Transition delay fault model, also called Gate Delay, models defects as a delay
of a single gate to pass from the logical value 0 to 1 or viceversa. The former case
is called slow-to-rise, the latter slow-to-fall.
In comparison to SAFs, testing a transition delay fault requires a pair of input

7

Testing methodologies and technologies

Figure 2.4: Huffman scheme

vectors instead of one.
The first vector must force the output value of the gate to 0 or 1. The second one
must force the gate to execute the transition to 1 or 0 (depending on the initial
value) and propagate the transition up to the block outputs.
As said before, the input vectors should be applied at the maximum operating speed
of the circuit.
In figure 2.5, it is shown a transition delay fault example, in particular a slow-to-fall
case. The input A presents a delay in the transition from 1 to 0 and the fault is
observable in the outputs Y and Z.
In order to be observable, a suitable pair of vector is needed. For example, giving
as input of wire B two consecutive 0s, the output of the NAND port would have
been 1 in any case, making the transition fault on wire A undetectable.
The same applies for the E wire and the main output Z.
When choosing the test vectors, it is also important to consider compensating
effects.
In fact, it is common to choose combinations of values that lead to reconvergence
when propagating the faulty transition, which inevitably becomes undetectable .

8

Testing methodologies and technologies

Figure 2.5: Transition Delay fault example

Path Delay Fault Model

The Path delay fault model models a distributed delay effect through a given path
of the integrated circuit passing from value 0 to 1 or viceversa (as TDF, 0->1 is
called slow-to-rise and 1->0 slow-to-fall). Therefore, this fault class focuses on
defects of multiple gates interconnected (from an input or FF output to a main
output or an input of another element of the circuit) instead of a single node
(TDF).
The number of faults that can be generated with PDF model is proportional to
the size of the circuit, in particular is equal to 2m, with m the number of paths of
the IC. Consequently, as the circuit under test grows, a very large set of pattern
should be generated in order to reach a satisfying coverage, making this solution
not always applicable and feasible.
In order to limit the number of testing vectors, it is common to rank paths according
to their length, usually taking into account the sum of delays of the gates that
compose the path, and generate the pairs only for the longest ones.
For instance, taking in consideration the simple circuit in figure 2.6, it is possible
to notice that the slow-to-fall transition that affects the A wire is propagated to
the input C of the second AND port and it is observable on the main output Z.
Also in this case, it is fundamental the choice of a suitable input vector in order to
avoid recovergence.

Limitations of delay fault models

As mentioned before, delay testing requires a pair of vectors in order to test a
circuit.
Moreover, in the case of path delay faults, the number of faults is double the number
of path, therefore reaching a satisfying coverage could be not quickly affordable. In

9

Testing methodologies and technologies

Figure 2.6: Path Delay fault example

addition, not all the paths can be tested.
Untestable faults can be divided in two categories: structurally and functionally
untestable faults:

• structurally untestable: no pair of input vectors applied to the inputs of a
combinational logic block is able to propagate the fault on the outputs of the
combinational block;

• functionally untestable: no sequence of stimuli applied to the inputs of the
circuit is able to propagate the fault on the outputs of the circuit. In this case,
the fault is structurally testable but the input sequence is not able to produce
a pair of vectors on the input of the combinational block able to excite the
fault and propagate it to the circuit outputs.

The percentage of untestable delay faults may be significant. In particular, func-
tionally untestable may be considerably more than structurally untestable ones.
Figure 2.7 shows the relationship between the whole set of delay faults and testable
delay faults. In the next chapters, the reader will find a brief overview of the main
testing methodologies and a description of the context in which this work operates.

10

Testing methodologies and technologies

Figure 2.7: Relationship between the whole set of delay faults and testable delay
faults

2.2 Automatic Test Pattern Generation
ATPG is a technology used for the generation of test pattern for circuits.
Real circuits are often very large, therefore it is impossible and unfeasible the
manual generation of patterns. Hence the need to design and develop an automatic
solution to perform this task.
At the same time, ATPG tools can successfully deal with combinational circuits
but are inefficient with sequential ones. Therefore, in order to test large circuits
different solution are needed.bu

2.2.1 ATPG architecture
As shown in figure 2.8, ATPG system architecture is composed of two main
operational blocks (Fault Manager and Test Pattern Generator) that require
specific information about the circuit (circuit description) in order to generate
the fault list and the test vectors. Moreover, the tools give information about the
simulation and the obtained results (fault coverage and untested faults).

Fault Manager

The Fault Manager block is in charge to perform the following tasks:

• generate the fault list;

• identify untestable faults;

11

Testing methodologies and technologies

CIRCUIT
DESCRIPTION

FAULT

LIST

TEST
VECTORS

FAULT
MANAGER

TEST PATTERN
GENERATOR

FAULT

COVERAGE

UNTESTED
FAULTS

Figure 2.8: ATPG system architecture schema

• perform fault collapsing

Starting from the circuit description (for instance, Verilog or VHDL file that
describes the circuit), the Fault Manager is able to generate the fault list: it
produces a list of fault that can affect the circuit and that should be tested.
The second step is identify untestable faults. These one are defects that cannot
be tested due to physical characteristics of the circuit. Hence the need to exclude
them so that the overall number of faults to be tested can be reduced.
The third step aims to reduce once more the number of faults performing the fault
list collapsing. This operation is based on the assumption that multiple faults can
be equivalent, therefore it is unnecessary to test all of them.
Collapsing can be done in some ways [3], for example:

• equivalence collapsing: two or more faults produce the same behaviour for
all input patterns. The whole set of faults can be represented by any single
fault of the set;

• dominance collapsing: a fault A is called dominant to B if all tests of B
detect A. Due to this, A can be removed from the fault set;

• functional collapsing: two faults are functionally equivalent if it is impos-
sible to distinguish them at the primary outputs (PO) with any input vector.

12

Testing methodologies and technologies

They produce the same faulty functions

Test Pattern Generator

The Test Pattern Generator block is composed by an ATPG module and a Fault
Simulation module. These modules perform the core steps of the test simulation of
the circuit, which follows the next process:

1. fault manager steps (2.2.1, Fault Manager)

2. generation of first test vector step and fault simulation

3. test vector generation and fault simulation

After the steps performed by the Fault Manager module, the tool executes a first
fault simulation. The starting point of this test are vectors that could be categorized
in two possible ways:

• vectors developed by designers for Design Verification 1;

• vectors generated with random approaches

Starting from this vectors, the tool performs a first fault simulation in order to
identify detected faults and eliminate them from the fault list (Fault Dropping).
Point 3 is performed by the ATPG module and it is the most time consuming
step. As shown in the figure 2.9, the tool selects a fault from the list of undetected
faults (this step can be performed according to different strategies and these can
heavily impact the cost of the whole process), generates a test set for that fault
and eventually launches the Fault Simulator to perform a Fault Dropping. The
loop stops when the undetected fault list is empty or when the available resources
(CPU time, memory) are exhausted. At the beginning of the ATPG steps, all the
faults in the fault list are labelled as untested. As the process continues, each fault
of the list receives a new label according to the result:

• untestable: the ATPG proved that the fault cannot be tested. The fault is
removed from the fault list used by the fault simulator and the ATPG;

• tested: a test vector has been generated for the fault. This is removed from
the fault list;

1Design Verification Test is a testing program performed to verify that the products respect
all the design specifications, interface standards, diagnostic commands and Original Equipment
Manufacture requirements [4]

13

Testing methodologies and technologies

TARGET FAULT

TEST SET
GENERATION

FAULT

DROPPING

FINISHED? NO

YES

Figure 2.9: ATPG fault test loop

• aborted: the ATPG reached a threshold and could not prove the testability
or the untestability. The fault is removed from the list of the ATPG but it
remains in the Fault Simulator list in order to be tested later.

14

Testing methodologies and technologies

2.3 Scan techniques

ATPG methodology is inadequate when dealing with sequential circuit testing.
In fact, this approach requires a remarkable amount of time and memory to gener-
ate the tests, therefore the reduction in time and memory to perform this task is
strongly necessary. Furthermore, a solution for reduce the number of cycles needed
to apply the tests to the circuit should be developed. [5].
Nowadays, ATPG tools for sequential circuit testing requires excessive CPU time
and the obtained fault coverage is usually unsatisfactory.
A common solution for these concerns are the scan methodologies.
In order to apply scan techniques, the IC is designed to have two different config-
urations: functional mode and test mode. The first one is the configuration that
allow the circuit to perform its functional operations, the second one is a specific
configuration designed to make testing easier. This solution is strongly bound to
the design for test (DFT) 2 approach.
During the Test Mode, scan techniques transform the sequential circuit in a combi-
national one in order to make the memory elements observable and controllable as
for primary inputs and primary outputs: they are so called pseudo-primary outputs.
Between the different scan methodologies, Full scan is the simpler and it will be
analyzed in the next subsection.

2.3.1 Full scan

As shown in the figure 2.10, during the Test mode, in a Full-scan design all the
flip-flop of the integrated circuit are connected in a scan chain and they form a
shift register. This configuration allow observing the internal nodes of the chip
without the use of sequential testing techniques. Furthermore, the circuit design
has also a special pin (N/T) used to switch between the Normal/Functional mode
and the Test mode.
In Test Mode, it is possible to load any pattern in the memory elements via
Scan-In signal (controllability) and any flip-flop can be read via Scan-out signal
(observability). With this solution, it is not necessary the generation of sequential
patterns, therefore ATPG tools are commonly used to generate test vectors for the
combinational part of the circuit.
For each pattern generated by the ATPG, the test will be applied in the following
way:

2DFT is an approach that reduces the difficulty and the time needed for testing a circuit. In
order to do that, the circuit is designed including testability features

15

Testing methodologies and technologies

D Q

Q

D Q

Q

D Q

Q

D Q

Q

PRIMARY
INPUTS

PRIMARY
OUTPUTS

SCAN-IN

SCAN-OUT

SCAN
CHAIN

Figure 2.10: Scan chain in Test Mode

1. activate test mode and upload the PPI (pseudo-primary inputs) values (Scan-
In);

2. apply the PI (primary inputs) values;

3. deactivate test mode and apply one clock to the circuit;

4. observe PO (primary outputs) values;

5. activate test mode and download the PPO (pseudo-primary outputs) values
(Scan-Out) and check if the test passed

This approach is easy to implement, requires a minimal overhead and especially
allow testing sequential circuit as combinational ones.

2.4 Functional testing
Functional testing is a testing methodology opposed to the usage of the DFT. In
fact, this approach aims to test the functionality of the system applying suitable

16

Testing methodologies and technologies

stimuli to the functional inputs and observing the functional outputs, without
resorting to any specific test design infrastructure of the DUT 3. Functional tests are
developed taking into account the functional information of the module therefore
it aims to test the functions rather than the faults. This solution is widely adopted
and is becoming a standard for end-of-manufactoring test and in-field/on-line test.
It is chiefly developed as Software-Based Self-Test [6] [7]: the DUT is forced to
run a Software Test Library (STL), for example test programs, and the results
produced by the execution are downloaded from the memory and compared to the
expected outputs in order to detect faults.
Currently, companies exploit functional testing to test defects in the field not
covered by other kinds of test, therefore STLs is considered a Functional Safety
(FuSa) solution4 [8] [9] [10]. SBST solution has several advantages, for example:

• STLs can be schedule in order to not interfere with the device normal operation:
this avoids service interruptions

• do not require additional hardware

However the STLs development process is extremely difficult since faults should be
propagated through the whole circuit only using the instructions of the instruction
set architecture [11].

3Device Under Test
4In the automotive domain, ISO 26262 is the Functional Safety standard. It focuses on the

safety aspects that should be developed in an automotive electronic system

17

Chapter 3

Context of work

This chapter describes the state of the art of the test of integrated circuits. In the
last decade, several works [1] [12] [13] [14] investigated the possibility to improve
test programs in order to achieve higher fault coverage.
[12] starting from verification-oriented programs1 presents an approach that focuses
on the generation of test patterns for online testing, with improvements on the fault
coverage of stuck-at faults on a RISCV core. [13] and [14] propose an approach
that exploits HLDDs2 for modeling microprocessors and faults, and generates the
final test program starting from a previously prepared code template. These works
show how the quality of the test programs can be improved, even though they
refer to the stuck-at fault model only. Other works [15] [16] [17] [18] analyse the
post-silicon debug topic in order to find suitable solutions to improve the fault
coverage. These works demonstrate the effectiveness of post-silicon solutions but
they work on the whole core.
[1] defines the first steps for the development of a systematic methodology to
improve the quality of existing STLs, aiming to increase the transition delay faults’
observability. This work is the base of the studies proposed in the thesis work, since
it has been developed by the DAUIN (Dipartimento di Automatica e Informatica)
of Politecnico di Torino. A more detailed description of this work will be proposed
in the section 3.1. Eventually, in the following sections the main features of the
commercial tools and the PULPino core used in the work thesis will be presented.

1Programs that aim to verify that the device is compliant to the design specifications
2High-Level Decision Diagrams

18

Context of work

3.1 Background works on STL analysis for delay
test coverage improvement

As previously mentioned, paper [1] proposes a new approach for improving delay
test coverage, starting from the analysis of existing STLs. One of the most common
approaches used for the test of integrated circuits is based on Desing-for-Testability
(DfT) solutions. These are based on mature and well-tested technologies, but
they require area overhead and significant timing that could degrade performances.
Furthermore, these solutions are often not able to deal with functionally untestable
faults (section 2.1.2). Fuctional testing allows avoiding these problems and com-
monly companies provide STLs for test their products. Since the development
of the test programs requires a remarkable amount of effort and moreover they
should able to forward fault effects to primary outputs (POs), the work proposes
a process flow in order to improve transition-delay faults coverage starting from
STLs developed for stuck-at faults (TDFs and SAFs have similarities. For example,
detecting a slow-to-rise TDF means detecting a stuck-at zero). To do that, it
starts from a set of internal observation points (where faults can be propagated
but eventually stopped, not reaching primary outputs) and tries to understand if it
is possible to modify any piece of code of the STL in order to propagate the fault.
Since the main goal is to find a methodology that allows propagating those fault
effects that stopped before reaching the primary outputs, the work proposes to
define two different groups of internal observation points (IOPs):

• User Accessible Registers (UARs): registers directly accessible by the user
through available instruction;

• Hidden Registers (HRs): registers not directly accessible by the user (i.e.
pipeline registers)

In this thesis, a hybrid approach is proposed. Starting from hard-to-test faults,
the work aims to re-use the existing debug infrastructure of the core for testing
purposes and aims to select specific internal signals in order to test the picked
faults. Therefore, this solution combines SBST and post-silicon approaches, leading
to satisfying results in terms of fault coverage. Eventually, the work proposes a
study of the execution trace of the STLs in order to summarize and gather any
useful information needed to develop strategies for the improvement of the test
programs. This part is strictly linked to [1] and it could be considered the following
step.

19

Context of work

3.2 Commercial tool features
For the thesis work, commercial simulation tools like ZO1X [19] and ModelSim
[20] has been exploited to perform simulations of microprocessors and retrieve the
fault information needed for the development of the methodologies described in
the chapters 4 and 5.
As shown in the chapter 2, starting from the circuit description and a list of fault,
they are able to inject the faults into the circuit, determine which of them can be
tested (and which can not) and give information about the fault coverage.

With particular options, Z01X tool can be set in order to produce a fault dictio-
nary that gives the possibility to retrieve useful data about each fault: observation
time, register involved, detected/not detected/not observed. From this output,
with the usage of a simple parser (for the thesis work, Python language was chosen),
it is possible to manipulate the data according to the specific necessities. For
example, as shown by the sample file in listing 3.1, it is possible to build a json
file that summarize for each fault the information about first and last observation
time and the register involved. In this case, only the undetected faults have been
inserted into the dictionary.

Listing 3.1: Example of fault dictionary parsed with a python script
1 {
2 "R r i s cv_core . ex_stage_i_alu_i . U1718 . A1 " : [
3 [
4 "36238 ns " ,
5 "38758 ns " ,
6 " r i s cv_core . id_stage_i_reg i s t e r s_ i .mem_31"
7] ,
8 [
9 "36318 ns " ,

10 "42438 ns " ,
11 " r i s cv_core . id_stage_i_reg i s t e r s_ i .mem_30"
12] ,
13 . . .
14] ,
15 "R r i s cv_core . ex_stage_i_alu_i . U2102 . A1 " : [
16 [
17 "36238 ns " ,
18 "38758 ns " ,
19 " r i s cv_core . id_stage_i_reg i s t e r s_ i .mem_31"
20] ,
21 [
22 "36318 ns " ,
23 "42438 ns " ,
24 " r i s cv_core . id_stage_i_reg i s t e r s_ i .mem_30"
25] ,
26 . . .

20

Context of work

27] ,
28 . . .
29 }

ModelSim tool can be used to run STL simulation into the circuit. The execution
of this task generates two files that has been used for the analysis described in the
chapter 5. In particular, it produces an execution tracer of the program (example
in listing 3.2: it stores information about the execution time, number of cycles,
program counter, opcode and the mnemonic instruction) and an elf file that has
been used to disassembly the executable and create an output file that links each
executed instruction with the specific line of the source file, as shown in the example
3.3. To perform this operation, the command-line function riscv32-unknown-
elf-objdump -Sld ELF_FILENAME.elf > OUTPUT_FILENAME.txt.

Listing 3.2: Example of execution tracer
1 Time Cycles PC I n s t r Mnemonic
2 18880000 455 00000080 0350606 f j a l x0 , 26676
3 18960000 457 000068b4 30501073 csrrw x0 , x0 , 0x305
4 19000000 458 000068b8 00000093 addi x1 , x0 , 0
5 19040000 459 000068 bc 00008113 addi x2 , x1 , 0
6 19080000 460 000068 c0 00008193 addi x3 , x1 , 0
7 19120000 461 000068 c4 00008213 addi x4 , x1 , 0
8 19160000 462 000068 c8 00008293 addi x5 , x1 , 0
9 19200000 463 000068 cc 00008313 addi x6 , x1 , 0

10 19240000 464 000068d0 00008393 addi x7 , x1 , 0

Listing 3.3: Example of disassembly file
1 . . .
2 / . . / s imple . S :77
3 190 : f 3 f 290e3 bne t0 , t6 , b0 <f a i l >
4 / . . / s imple . S :78
5 194 : f f f 0 0 2 9 3 l i t0 ,−1
6 / . . / s imple . S :79
7 198 : f 1 f 3 1 c e 3 bne t1 , t6 , b0 <f a i l >
8 / . . / s imple . S :80
9 19 c : f f f 0 0 3 1 3 l i t1 ,−1

10 / . . / s imple . S :81
11 1a0 : f 1 f 398e3 bne t2 , t6 , b0 <f a i l >
12 . . .

3.3 PULPino
The methodologies presented in the thesis work have been tested and validated on
PULPino [21].

21

Context of work

PULPino is a single-core microcontroller system developed by ETH Zurich and
Università di Bologna. It is a 32-bit RISCV-based cores: it is configurable to use
either the RISCY or the zero-riscy core.
The first one is the core that has been used in this thesis and it has the following
characteristics, as described in [21]:

• in-order;

• single-issue;

• 4 pipeline stages;

• full support for RV32I3, RV32C4, RV32M5 instructions sets

• can be configured for RV32F6 instruction set

It can implement several ISA7 extensions and has been designed in order to increase
energy efficiency.
The second one, not used in this thesis context, has the following characteristics
[21]:

• in-order;

• single-issue;

• 2 pipeline stages;

• full support for RV32I, RV32C;

• can be configured for RV32M and RV32E8

This core has been developed for those domains that require ultra-low-power and
ultra-low-area constraints.

3base integer instruction set
4compressed instruction set
5multiplication instruction set extension
6single-precision floating point instruction set extension
7instruction set architecture
8reduced number of registers extension

22

Context of work

Figure 3.1: Pulpino RISCY core [22]

23

Chapter 4

Hybrid methodology to
improve fault coverage of
STLs

4.1 Introduction

As mentioned in the section 2.4, functional testing is a widely adopted solution
to implement online test for safety-critical systems. In particular, Software-Based
Self-Test (SBST) with STLs libraries is the most used approach thanks to its
reliability and flexibility but, since the development of STLs is very expensive
and requires a considerable manual effort, it is not convenient to focus on the
development of new test code.
Hence the need to develop new solutions to improve the quality of the existing
STLs, in order to provide higher fault coverage. In the article [1], new strategies
for the improvement of test programs are proposed. Specifically, two groups of
excited but not observed (NO) faults are identified:

1. faults that reach user-visible registers;

2. faults that reach hidden registers

[1] proposes solutions to cover the faults of the first group, but the ones that belong
to the second are still considered hard-to-test faults and new solution must be
elaborate.
The methodology proposed in this chapter presents an approach that allows ob-
serving the effects of the hard-to-test faults.

24

Hybrid methodology to improve fault coverage of STLs

4.2 Methodology description
As mentioned in section 3.1, this work proposes an approach that mixes hardware
and software solutions in order to observe those faults that have been previously
defined as hard-to-test. In particular, as shown in the figure 4.1, the solution is
composed by three fundamental steps:

1. identification of hard-to-test faults: a fault simulation analysis through
SBST means is performed in order to individuate the hard-to-test faults.
Moreover a set of internal signals where the faults propagate is defined;

2. evaluation of faults: the faults that have been individuated are evaluated
in order to determine how many of them can be detected with the minimum
resources. This operation is carried out by a previously created algorithm;

3. integration with post-silicon mechanisms: this steps aims to support
the test engineer on the development of the STLs, suggesting the signals to
be observed in order to keep hardware means at a bare minimum

IDENTIFICATION
HARD-TO-TEST

FAULTS

EVALUATION OF

FAULTS

INTEGRATION WITH

POST-SILICON

MECHANISMS

Figure 4.1: Flow of the proposed approach

For the experimental purposes, commercial tools and an already available set
of STLs were used, devised for stuck-at faults (SAF) and transition-delay faults
(TDF).

4.2.1 Identification of faults steps in details
The goal of the proposed solution is to analyse an STL run and identify a set
of flip-flops where the effects of the undetected faults propagate. The figure 4.2
shows in details each step of the approach. In the following subsections, each of
them will be analyzed, also taking into account the specific implementation. Data
manipulation was developed in Python.

Sequential and Combinational simulations (steps 1 and 2)

The first two step of the process consist in two simulations, that could be runned
using commercial tools:

25

Hybrid methodology to improve fault coverage of STLs

• sequential simulation: test simulation performed on the whole DUT. From
this, only the undetected faults were extracted;

• combinational simulation: test simulation performed on the combinational
logic of the DUT only, using the same fault set of the previous simulation

The sequential simulation generates a .csv file in the form shown in the table 4.1. To
each detected fault is assigned a progressive number and a specific name composed
by **default**, a number that identifies the fault (e.g. _12812_) and a final
optional part (in the example in the table 4.1 can be found stf or str that stand
respectively for "slow-to-fall" and "slow-to-rise", since they refer to transition-delay
faults).

Fault number Fault name
0 **default**_12991_stf
1 **default**_12820_stf
2 **default**_17535_str
3 **default**_17502_str
4 **default**_17503_str
5 **default**_17505_str
6 **default**_16853_str
7 **default**_16855_str
8 **default**_16856_str
9 **default**_16858_str
... ...

Table 4.1: Sequential .csv file output

The combinational simulation generates a .txt file that contains the list of all the
faults that can be tested in the combinational logic of the DUT. As shown in the
table 4.2, each line of the file gives information about the specific fault:

• type of fault, in the example table stf or str since they refer to transition-delay
faults;

• information about the detection of the fault during the test simulation. For
example, a fault can be NC (not covered), DR or DS (detected) or can have
another status;

• the name of the fault that corresponds to the names of the file produced by
the sequential simulation

26

Hybrid methodology to improve fault coverage of STLs

Fault type Status Fault name
stf NC **default**_11297
str DR **default**_16837
stf DR **default**_16836
str NC **default**_11297
stf NC **default**_11296
str DR **default**_16798
str DS **default**_16722
...

Table 4.2: Combinational .txt file output

Retrieve combinational detected faults and derive undetected on sequen-
tial (steps 3 and 4)

The third step aims to select the faults detected during the combinational simulation
(third step) in order to find the ones that were not detected in the sequential
simulation (fourth step).
To perform these operation, some Python functions were developed. Selection of
detected faults on the combinational simulation is performed through the function
4.1: it opens the .txt file that contains the list of combinational faults and selects
the detected only (marked as DS or DR). Then it returns a list of faults.

Listing 4.1: Retrieve combinational faults function
1 de f retr ieve_comb_faults (f i le_name) :
2 comb_faults_l i s t = []
3 with open (f i le_name) as comb_fi le :
4 f i l e _ l i n e s = comb_fi le . r e a d l i n e s ()
5 f o r l i n e in f i l e _ l i n e s :
6 fau l t_type = l i n e . s p l i t () [0]
7 detec ted = l i n e . s p l i t () [1]
8 fault_name = l i n e . s p l i t () [2]
9 i f de tec ted == ’DS ’ or detec ted == ’DR’ :

10 f a u l t = fault_name + "_" + faul t_type
11 comb_faults_l i s t . append (f a u l t)
12

13 re turn comb_faults_l i s t

To find the faults detected on the combinational test simulation but not on the
sequential one, first it is necessary to run the function 4.2 and then the function
4.3. The first one takes all the faults contained in the .csv file and inserts them
into a python list (only the fault name is retrieved), the latter finds the undetected
and inserts them into a list, that will be used for point 7.

27

Hybrid methodology to improve fault coverage of STLs

Listing 4.2: Retrieve sequential faults function
1 de f r e t r i e v e_seq_ fau l t s (f i le_name) :
2

3 s e q _ f a u l t s _ l i s t = []
4

5 with open (f i le_name) as s e q _ f i l e :
6 reader = csv . r eader (s e q _ f i l e)
7 f o r row in reader :
8 s e q _ f a u l t s _ l i s t . append (row [1])
9

10 re turn s e q _ f a u l t s _ l i s t

Listing 4.3: Find undetected faults on sequential
1 de f find_undetected_on_seq (s eq_ fau l t s_ l i s t , comb_faults_l i s t) :
2

3 unde tec t ed_l i s t = []
4

5 f o r comb_fault in comb_faults_l i s t :
6 i f comb_fault not in s e q _ f a u l t s _ l i s t :
7 undet ec t ed_l i s t . append (comb_fault)
8

9 re turn unde tec t ed_l i s t

Bind the faults to the path endpoints and retrieve endpoint list (steps
5 and 6)

The steps 5 and 6 are performed in parallel.
Step 5 aims to link each fault to the corresponding path endpoint. In order to do
that, the function 4.5 uses a text file that contains the list of paths of the DUT as
shown by 4.4 and parses it to retrieve the needed information. Each path has a
name that corresponds to the fault name (the fault takes its name from the path)
and contains the list of signals of which it is made of. The function 4.5 for each
path takes the last signal, which is the endpoint of the path, and links it to te
corresponding fault. It returns a list of dictionaries, as shown in the example 4.6.

Listing 4.4: DUT paths file
1 $path {
2 $name "∗∗ d e f a u l t ∗∗_1" ;
3 $ t r a n s i t i o n {
4 " U21688/A2" ^ ; // (NOR2_X1)
5 " U12981/A1" v ; // (NAND2_X1)
6 " U21763/A1" ^ ; // (NOR2_X1)
7 . . .
8 " U21732/B1" ^ ; // (OAI22_X1)
9 " U12947/A" v ; // (AOI21_X1)

28

Hybrid methodology to improve fault coverage of STLs

10 " U15748/B1" ^ ; // (OAI22_X1)
11 }
12 }
13 $path {
14 $name "∗∗ d e f a u l t ∗∗_2" ;
15 $ t r a n s i t i o n {
16 " U21688/A2" ^ ; // (NOR2_X1)
17 " U12981/A1" v ; // (NAND2_X1)
18 . . .
19 " U21732/B1" ^ ; // (OAI22_X1)
20 " U12947/A" v ; // (AOI21_X1)
21 " U16089/B1" ^ ; // (OAI22_X1)
22 }
23 }
24 . . .

Listing 4.5: Find undetected faults on sequential function
1 de f bind_endpoints_fault (f i l e_path) :
2 pa th s_ l i s t = []
3 with open (f i l e_path) as pa t h s _ f i l e :
4 f i l e _ l i n e s = p a t h s _ f i l e . r e a d l i n e s ()
5 index = −1
6 f o r l i n e in f i l e _ l i n e s :
7 index += 1
8 i f " $path " in l i n e :
9 i_index = index + 4

10 name = f i l e _ l i n e s [index + 3] . s p l i t () [1] . r e p l a c e (’ " ’ , ’ ’)
11 i_index += 1
12

13 whi le " } " not in f i l e _ l i n e s [i_index] :
14 i_index += 1
15

16 pa th s_ l i s t . append ({ "name" : name ,
17 " endpoint " : f i l e _ l i n e s [i_index − 1] .

s p l i t () [0] . r e p l a c e (’ " ’ , ’ ’) . s p l i t (’ / ’) [0]
18 })
19 re turn pa th s_ l i s t

Listing 4.6: Output of function 4.5
1 { ’name ’ : ’∗∗ d e f a u l t ∗∗_1 ’ , ’ endpoint ’ : ’ U15748 ’ }
2 { ’name ’ : ’∗∗ d e f a u l t ∗∗_2 ’ , ’ endpoint ’ : ’ U16089 ’ }
3 { ’name ’ : ’∗∗ d e f a u l t ∗∗_3 ’ , ’ endpoint ’ : ’ U15748 ’ }
4 { ’name ’ : ’∗∗ d e f a u l t ∗∗_4 ’ , ’ endpoint ’ : ’ U16089 ’ }
5 { ’name ’ : ’∗∗ d e f a u l t ∗∗_5 ’ , ’ endpoint ’ : ’ U15748 ’ }
6 { ’name ’ : ’∗∗ d e f a u l t ∗∗_6 ’ , ’ endpoint ’ : ’ U16089 ’ }
7 { ’name ’ : ’∗∗ d e f a u l t ∗∗_7 ’ , ’ endpoint ’ : ’ U16071 ’ }
8 . . .

29

Hybrid methodology to improve fault coverage of STLs

The sixth step exploit the same mechanism in order to retrieve a list containing all
the endpoints. It will be used in the step 8.

Bind selected faults to endpoints (step 7)

In the step 7, the tool binds each undetected faults selected in the fourth step to
the corresponding endpoint (retrieved during step 5). The operation is performed
by the function 4.7 and produces the output shown in 4.8. Basically the function
adds information to the output of 4.5, specifying the type of the fault (for example,
stf or str).

Listing 4.7: Bind undetected to the corresponding endpoint function
1 de f find_undetected_and_bind_to_endpoint (paths_l i s t , unde t e c t ed_l i s t)

:
2 undetected_fau l t s_paths_l i s t = []
3 f o r path in pa th s_ l i s t :
4 i f path [’name ’] + " _str " in unde t e c t ed_l i s t :
5 path_tmp = d i c t (path)
6 path_tmp [’name ’] += ’ _str ’
7 undetec ted_fau l t s_paths_l i s t . append (path_tmp)
8 i f path [’name ’] + " _stf " in unde t ec t ed_l i s t :
9 path_tmp = d i c t (path)

10 path_tmp [’name ’] += ’ _stf ’
11 undetected_fau l t s_paths_l i s t . append (path_tmp)
12

13 re turn undetec ted_fau l t s_paths_l i s t

Listing 4.8: Output of function 4.7
1 { ’name ’ : ’∗∗ d e f a u l t ∗∗_11628_str ’ , ’ endpoint ’ : ’ U18176 ’ }
2 { ’name ’ : ’∗∗ d e f a u l t ∗∗_11630_str ’ , ’ endpoint ’ : ’ U18176 ’ }
3 { ’name ’ : ’∗∗ d e f a u l t ∗∗_11632_str ’ , ’ endpoint ’ : ’ U18164 ’ }
4 { ’name ’ : ’∗∗ d e f a u l t ∗∗_11633_str ’ , ’ endpoint ’ : ’ U18164 ’ }
5 { ’name ’ : ’∗∗ d e f a u l t ∗∗_11635_str ’ , ’ endpoint ’ : ’ U18173 ’ }
6 { ’name ’ : ’∗∗ d e f a u l t ∗∗_11636_str ’ , ’ endpoint ’ : ’ U18173 ’ }
7 { ’name ’ : ’∗∗ d e f a u l t ∗∗_11637_str ’ , ’ endpoint ’ : ’ U18170 ’ }
8 . . .

Retrieve wires associated to each endpoint (step 8)

This step were performed through the ModelSim commercial tool and its custom
language tcl. The developed script, shown in the listing 4.9, starting from the list
of endpoints previously generated, links each endpoint to the outputs wires of the
flip-flops: these are the wires that should be observed to detect the undetected
faults. The output of the function is shown by 4.10: for each endpoint is specified
a set of corresponding wires.

30

Hybrid methodology to improve fault coverage of STLs

Listing 4.9: Tcl script
1 s e t search_path [l i s t . / . . / . . / . . / a s i c / synopsys / bin . / . . / . . / . . / a s i c /

t e c h l i b / [getenv "SYNOPSYS"]]
2 s e t s y n t h e t i c _ l i b r a r y dw_foundation.s ldb
3 s e t t a r g e t _ l i b r a r y NangateOpenCel lLibrary_fast .db
4 s e t l i n k _ l i b r a r y [l i s t $ t a rg e t_ l i b ra ry $ syn the t i c_ l i b r a ry]
5

6 # Next, read synthe s i z ed core and e l abo ra t e i t
7 analyze −f v e r i l o g . . /syn_out/ r i scv_core_top.v
8 e l abo ra t e r i s cv_core
9

10 # Now we have to a s s o c i a t e path enpo int s to the r e l a t i v e f l i p f l o p
o u t p u t . . .

11

12 s e t e n d p o i n t s _ f i l e [open "
undetected_fau l t s_paths_endpo ints_f i l e_20 . txt " r]

13 s e t f i l ename " t e s t 2 0 . t x t "
14 s e t f i l e I d [open $ f i l ename "w"]
15 f c o n f i g u r e $ endpo in t s_ f i l e −buf fe r ing l i n e
16 ge t s $ endpo in t s_ f i l e data
17 whi le { $data != " " } {
18 r e d i r e c t −var iable va l { get_nets −of_object [get_pins − f i l t e r {

@pin_direct ion == out} −of_object [g e t _ c e l l s −of_object [get_pins
− f i l t e r { @pin_direct ion == in } −of_object [get_net −of_object [
get_pins − f i l t e r { @pin_direct ion == out} −of_object Combinational /
$data]] −leaf]]] }

19 s e t complete_l ine [format {%s :%s } $data $va l]
20 puts $ f i l e I d $complete_l ine
21 ge t s $ endpo in t s_ f i l e data
22 }
23

24 c l o s e $ endpo in t s_ f i l e
25 c l o s e $ f i l e I d
26 qu i t

Listing 4.10: Output of function 4.9
1 U18176 : { cs_registers_i_PCCR_q [7] n7673}
2 U18176 : { cs_registers_i_PCCR_q [7] n7673}
3 U18164 : { cs_registers_i_PCCR_q [6] n7672}
4 U18164 : { cs_registers_i_PCCR_q [6] n7672}
5 U18173 : { cs_registers_i_PCCR_q [5] n7671}
6 U18173 : { cs_registers_i_PCCR_q [5] n7671}
7 U18170 : { cs_registers_i_PCCR_q [3] n7669}
8 U18170 : { cs_registers_i_PCCR_q [3] n7669}
9 U18167 : { cs_registers_i_PCCR_q [2] n7668}

10 U18167 : { cs_registers_i_PCCR_q [2] n7668}
11 . . .

31

Hybrid methodology to improve fault coverage of STLs

Bind undetected faults to wires (step 9)

The function 4.11 aims to link the wires computed by function 4.9 with the list of
undetected faults produced by the function 4.7. The function writes into a python
dictionary a collection of wires with associated every faults that they propagate.
In this way each wire can be ranked in order to select the best set to achieve the
required coverage.
In 4.12 can be found an output example of the function 4.11: for each key of the
dictionary (fault name) is specified a set of of faults.

Listing 4.11: Bind faults to specific wires function
1 wire_fau l t s_d ic t = {}
2 with open (endpo in t s_wi re s_f i l e) as f :
3 l i n e s = f . r e a d l i n e s ()
4 f o r l i n e in l i n e s :
5 i f l i n e != " \n " :
6 wire s = l i n e . s p l i t (’ { ’) [1] . r e p l a c e (’ } ’ , ’ ’) . s p l i t ()
7 f o r wire in wi r e s :
8 i f wire != " . . . " :
9 f o r u in undetected_fau l t s_paths_l i s t :

10 i f u [’ endpoint ’] == l i n e . s p l i t (’ { ’) [0] .
r e p l a c e (’ : ’ , ’ ’) :

11 i f u [’name ’] not in wi re_fau l t s_d ic t .
va lue s () :

12 i f wire not in wi re_fau l t s_d ic t . keys
() :

13 wire_fau l t s_d ic t [wire] = s e t ()
14 wire_fau l t s_d ic t [wire] . add (u [’name ’])

Listing 4.12: Output of function 4.11
1 {
2 ’ cs_registers_i_PCCR_q [7] ’ : { ’∗∗ d e f a u l t ∗∗_11630_str ’ , ’∗∗ d e f a u l t

∗∗_11628_str ’ , ’ ∗ ∗ d e f a u l t ∗∗_11660_str ’ } , ’ n7673 ’ : { ’∗∗ d e f a u l t ∗∗
_11630_str ’ , ’∗∗ d e f a u l t ∗∗_11628_str ’ , ’∗∗ d e f a u l t ∗∗_11660_str ’ } , ’
cs_registers_i_PCCR_q [6] ’ : { ’∗∗ d e f a u l t ∗∗_11633_str ’ , ’∗∗ d e f a u l t ∗∗
_11632_str ’ , ’ ∗ ∗ d e f a u l t ∗∗_11661_str ’ } ,

3 . . .
4 }

4.2.2 Evaluation of faults and selection of wires
After the steps described in the section 4.2.1, it is necessary to identify a set of
wires to be observed during the STL run in order to improve the fault coverage
of the test. In the work thesis, two different algorithms were used to reach the
goal, as shown by algorithms 1 and 2. The first algorithm (pseudo-code 1) at each

32

Hybrid methodology to improve fault coverage of STLs

iteration selects the flip-flops which increase the fault coverage the most. Basically,
to perform this operation, each time the algorithm takes the biggest remaining
set of faults and removes it from the list of set available for the following iteration
(during the first iteration it takes the biggest one). This solution is based on the
assumption that a non-programmable hardware infrastructure, for example a MISR,
can monitor a fixed number of flip-flops (selected at design time).
Being "greedy", this is not the best algorithm (more optimized solutions can be
found) but it gives a valid picture of the potentialities of this methodology.

input: A pair (D, Cmin) where
D is a list of triplets (Fi,Pi,Ti) where

Fi is a fault
Pi is a flip-flop where a Fi is captured
Ti is the time when Fi is captured in Pi

Cmin is a target coverage of recoverable faults
output: A set of flip-flops to observe
S := empty list of flip-flops;
while coverage < Cmin or D is not empty do

Pmax ← flip-flop with most distinct faults in D;
add Pmax to S;
remove all elements with Pmax from D;

end
Algorithm 1: Greedy algorithm

The second algorithm (pseudo-code 2) presents a different way to extract the needed
wires. This algorithm is devise to cover two scenarios: a programmable hardware
infrastructure can monitor a number of flip-flops or can monitor a number of them
for some clock cycles. It produces a list of configurations, each one composed by a
list of flip-flops and the time to reconfigure the hardware infrastructure: in order
to cover the first of the two scenarios mentioned above, the user can omit the
information about time. The algorithm, starting from a fault dictionary ordered
by time, fills a configuration with flip-flops removing the faults observed by them
and keeping track of the insertion time. It performs this operations until there is
space in the trace buffer. Since it adopts a first-come first-served (FCFS) policy, it
discards other faults captured at the same time of the last fill. When a new time is
encountered, the algorithm saves the configuration and starts filling another one
until it reaches the target fault coverage or the end of the dictionary. This solution
is more complex than the first one but reflects the behaviour of post-silicon debug
circuitry and provides more efficient and satisfying results.

33

Hybrid methodology to improve fault coverage of STLs

input: A quadruplet (D, Lmax, Tmax, Cmin) where
D is a list of triplets (Fi,Pi,Ti) where

Fi is a fault
Pi is a flip-flop where a Fi is captured
Ti is the time when Fi is captured in Pi

Lmax is the max number of flip-flops to select
Tmax is the max observation time
Cmin is a target coverage of recoverable faults

output: A list of pairs (Sj , Tj) where Sj is a set of
flip-flops to select at time Tj

S := empty list of flip-flops;
R := empty list of (set of flip-flops, time) ;
U ← all untested faults in D;
order D by time;
while coverage < Cmin or D is not empty do

(Pnext, Fnext, Tnext) ← extract first el. from D;
if Fnext in U then

if (Length(S) < Lmax or Pnext in S) and Tnext − Tflush < Tmax

then
remove Fnext from U ;
if Pnext not in S then

add Pnext to S;
end
Tadd ← Tnext;

else
if Tnext > Tadd then

add (S, Tflush) to R;
remove Fnext from U ;
clean S and add Pnext;
Tadd ← Tnext;
Tflush ← Tnext;

end
end

end
end
return R

Algorithm 2: Variable flip-flop selection algorithm

34

Hybrid methodology to improve fault coverage of STLs

SEQUENTIAL
SIMULATION

COMBINATIONAL
SIMULATION

RETRIEVE
UNDETECTED

ON SEQUENTIAL

BIND FAULTS
TO PATH

ENDPOINTS

RETRIEVE

ENDPOINT LIST

BIND FAULTS
TO ENDPOINTS

RETRIEVE WIRES
ASSOCIATED TO
EACH ENDPOINT

BIND FAULTS

TO WIRES

RETRIEVE
DETECTED

FAULTS

COMBINATIONAL
FAULT LIST

SEQUENTIAL
FAULT LIST

LIST OF
UNDETECTED

FAULTS ON

SEQUENTIAL

LIST OF PATHS

WIRES TO

BE OBSERVED

1 2

3

4

5 6

7

8

9

Figure 4.2: Methodology steps in details

35

Chapter 5

Analysis of the execution
trace of test programs

This chapter describes the methodology developed for the analysis of the execution
trace of the test programs.
In the context of this work, a python-based software has been built with the aim
of create well-structured solution able to store all the useful information about
the test program, fault associated to the program and able to propose preliminar
approaches for improving the STL’s quality. The test of these solutions is not the
main goal of this part of the thesis, but it is the starting point of future works.
MongoDB [23] has been chosen as database for the storage of all the information.

5.1 Creation of a test program collection
Starting from the execution trace of the test program and the disassembly file
described in the section 3.2, the software gives the possibility to create a MongoDB
collection that stores all the information regarding the execution of the program.
In particular, for each executed instruction, as shown by the example in figure 5.1,
it creates a document with the following data:

• id: automatic id assigned by Mongo to the document;

• time: time instant (in ns) in which the instruction was executed;

• opcode: operation code of the instruction;

• instruction: mnemonic of the executed instruction;

• output_register : register written by the instruction;

36

Analysis of the execution trace of test programs

• input_registers: list of registers read by the instruction;

• PC : value of the program counter;

• source_file: name of the file of the test program that contains the executed
instruction;

• source_line: number of the line of the source_file corresponding to the
instruction;

• source_instruction: mnemonic of the instruction indicated by the source_file
and the source_line (it may be different from instruction due to operations
performed by the compiler);

Figure 5.1: Example of document instruction inserted into the MongoDB collec-
tion

This operation is made through a python function that parses the two input files
(tracer and disassembly file) and merges all the information, eventually storing
them into the Mongo database.

5.2 Retrieve information from the DB
Starting from the collection inserted into the database and the fault dictionaries
described in the chapter 3.2, it is possible to retrieve some information according
to the necessities:

• find blocks of source code editable to cover a fault;

• find which faults should be coverable modifying specific pieces of source code;

• find blocks of source code editable to cover a fault and find which part of
source code may be able to cover that fault;

37

Analysis of the execution trace of test programs

This three features are interconnected and will be explained in the following
subsections.

5.2.1 Find blocks of source code editable to cover a fault
In order to perform this task, the software takes as inputs a fault dictionary (in
the format shown by the listing 3.1) and the test program collection previously
inserted into the database. For each observation interval of each fault of the fault
dictionary, the function find the piece of source code that may be edited in order
to improve the test program and consequently cover the associated fault.
In particular, for each interval it search a time interval in which it is possible to
operate and finds the instructions linked to the interval boundaries:

• start time: execution time of the first instruction executed after the first
observation time specified by the interval (of the given fault of the fault
dictionary);

• end time: execution time of the first instruction executed after the last
observation time specified by the interval (of the given fault of the fault
dictionary) and that writes the same register;

The choice of the time range is based on the assumption that the fault can be
caught from the first detection time (it is chosen the first executed instruction
after this time) until the register written by the instruction that causes the fault is
overwritten by another instruction (it is chosen the first executed instruction after
the end time and that writes that register).
For each selected time, it retrieves the information of the associated instructions, fills
a list of intervals associated to the fault and creates a document to be inserted into
the Mongo database. As shown by figure 5.2, each documents stores the information
of the fault, that corresponds to the fault name specified in the dictionary, and a
list of intervals. As mentioned before, each interval contains the following data:

• end_tracer_instruction: instruction specified by the execution trace, executed
at time end time;

• end_source_instruction: instruction of the source file that corresponds to
end_tracer_instruction;

• end_source_file: source file that contains the end_source_instruction;

• end_source_line: line of the source file that contains the end_source_instruction;

• end_time: int value of end time in ns;

38

Analysis of the execution trace of test programs

• start_tracer_instruction: instruction specified by the execution trace, executed
at time start time;

• start_source_instruction: instruction of the source file that corresponds to
start_tracer_instruction;

• start_source_file: source file that contains the start_source_instruction;

• start_source_line: line of the source file that contains the start_source_instruction;

• start_time: int value of start time in ns;

• detected_time: first time of detection that corresponds to the first time
specified by the interval in the fault dictionary.

Figure 5.2: Example of stored fault information

This approach considers every fault as coverable. After the selection, the function
stores the collection into the database and also saves it as json file.
In the next section, it is proposed a solution for the selection of specific faults that
can be covered.

5.2.2 Find which faults should be coverable modifying spe-
cific pieces of source code

In the section 5.2.1 a simple approach for the selection of blocks of code to be
modified has been proposed. Starting from these blocks, the software exposes a

39

Analysis of the execution trace of test programs

function that, for each fault, selects only those intervals that may be edited in order
to cover the given fault. The criteria used to perform the task can be summarized
as follows:

• if the instruction executed after the detection time of the fault is executed
within 40 ns (clock of the microprocessor) from the detection time, the interval
will be picked;

• otherwise the interval is discarded

This selection is based on the assumption that, if the time of the next instruction
after the detection time of the fault is within the clock time of the microprocessor,
we are sure that the fault has been observed at the last cycle of the multi-cycle
instruction (e.g. div) therefore it is possible to access the produced value inserting
a suitable instruction (e.g. sw) immediately after that.

5.2.3 Find blocks of source code editable to cover a fault
and find which part of source code may be able to
cover that fault

This approach is an extension of the one described in the subsection 5.2.1 because
it proposes a strategy for the improvement of the test program. In particular,
starting from a fault dictionary in the format of the example in listing 5.1, the
software searches for blocks of code to be edited in order to cover each fault (with
the same process described in the subsection 5.2.1) and proposes blocks of code
that can be used to edit the source file.
Listing 5.1: Example of fault dictionary for the selection of suitable blocks of
code to be used for the improvement of test programs

1 {
2 "F r i s cv_core . ex_stage_i_alu_i . int_div_div_i . AReg_DP_reg_12_ .QN" : [
3 "53638000" ,
4 [
5 "94− r i s cv_core . ex_stage_i_alu_i . int_div_div_i . n468 "
6] ,
7 [
8 "1 [’ 55278000 , G31 ’] "
9]

10] ,
11 . . .
12 }

This approach tries to find a way to improve the STL for the transition-delay fault
detection using pieces of code that are able to cover stuck-at faults. The solution
is based on the assumption that TDFs and SAFs have similarities, as described

40

Analysis of the execution trace of test programs

in the chapter 3.1. As shown in the example, for each transition-delay fault the
dictionary gives information about the detection time (in ps), the wire in which the
fault has been detected and the time and the test program that was able to detect
the corresponding stuck-at fault. Starting from this information, the function finds
the pieces of code to be edited and proposes blocks that can be used to modify
them. Eventually, the result is saved into a json file.

5.3 Statistical analysis of the execution trace
In addition to the functionalities described in the sections 5.1 and 5.2, the software
allows the user to produce statistics about the execution trace of the test programs.
In particular, according to three different categories (DIV, MUL, ALU)1, it allows
the generation of statistics about:

• type of the instructions used in the test program;

• type of undetected faults;

• average number of observation intervals per fault

The aim of this feature is to analyze the STL in order to study its characteristics,
find weaknesses of the test programs and consequently find new strategies for its
improvement.
The python library numpy has been used to produce the results in the form of pie
and bar charts.

1DIV: division instructions, MUL: multiplication instructions, ALU: all the other type of
instructions (e.g. add, shift-register, or, xor, jump)

41

Chapter 6

Experimental results

This chapter covers the experimental results of the methodologies presented in 4
and 5. The chapter is organized as follows: in section 6.1 it is given an overview
of the case study, taking into account the experimental setup used to perform
the tests. Then in the sections 6.2 and 6.3 the experimental results of the hybrid
methodology and the statistic results of the analysis of the execution trace of test
programs are presented.

6.1 Case study and experimental setup
The methodologies described in the chapters 4 and 5 have been validated on
PULPino (chapter 3.3). The DUT accounts for:

• 51,001 NAND2-equivalent gates;

• 187,857 stuck-at (SAF) and transition-delay faults (TDF);

• 1,207 flip-flops of hidden registers

6.1.1 Hybrid methodology’s STLs and setup
For the first methodology, five previously developed STLs have been used: in the
section 6.2 they are referenced as STL1 to STL5. These software libraries were
developed for SAF detecting, therefore they show similar stuck-at coverage. On
the other hand, they do not provide high TDFs coverage. Figure 6.1 presents a
table that summarizes information about the STLs used for the test. In particular,
the following characteristics are highlighted:

• Duration: test duration in clock cycles;

42

Experimental results

• Size: memory footprint of the test;

• Detected faults: number of SAFs and TDFs detected by the test;

• Recoverable faults: number of SAFs and TDFs recoverable with the pro-
posed solution;

• Fault coverage: fault coverage of SAFs and TDFs;

• Recoverable fault coverage: recoverable fault coverage of SAFs and TDFs;

Figure 6.1: STLs information table

The fault simulations described in the sub-chapter 4.2.1 have been executed using
the commercial tool Synopsis Z01X [19], which is widely adopted for FuSa. To
perform the simulations, a Linux server with Intel Xeon CPU E5-2680 v3 (clock
frequency up to 3.3 GHz) has been used and the task took no longer than 5
hours: in order to reduce the required time and the size of the fault dictionaries,
the combinational simulation has been performed dropping each fault after 50
detections. Python post-processing required few seconds to analyse the fault
dictionaries.

6.2 Hybrid methodology’s results

6.2.1 Greedy algorithm’s results
Figures 6.2 and 6.3, for each STL, show respectively the percentage of recovered
stuck-at faults and transition-delay faults given the percentage of observed flip-flops:

• x-axis: observed flip-flops;

• y-axis: recovered faults percentage

The SAF results can be summarized as follows:

• recovering 50% of undetected faults requires to observe:

43

Experimental results

– STL2 and STL3: 10% of flip-flops;
– STL3 and STL4: 18% of flip-flops;
– STL1: about 22% of flip-flops;

• recovering 75% of undetected faults requires to observe:

– STL2 and STL3, STL5: 29% of flip-flops;
– STL4: 38% of flip-flops;
– STL1: 44% of flip-flops;

• recovering 100% of undetected faults requires to observe:

– STL2 and STL3, STL5: 58% of flip-flops;
– STL4: 68% of flip-flops;
– STL1: 80% of flip-flops;

Recovering all the faults with the STL1 requires 80% of the flip-flops: it means
that it is needed to observe 960 FF. This is the worst scenario.

Figure 6.2: Undetected stuck-at faults recovered with greedy algorithm

44

Experimental results

Since the STLs have been developed to deal with stuck-at faults, the TDFs
results, as shown in figure 6.3, are pretty different from the SAF results. They can
be summarized as follows:

• recovering 50% of undetected faults requires to observe:

– STL1: 28% of flip-flops;
– STL3: 8.5% of flip-flops;
– STL4: 12% of flip-flops;
– STL5: 15% of flip-flops;

• recovering 75% of undetected faults requires to observe:

– STL1: 50% of flip-flops;
– STL3: 17% of flip-flops;
– STL4 and STL5: about 30% of flip-flops;

• recovering 100% of undetected faults requires to observe a similar percentage
of FF as SAF case.

In this case, STL2 shows a different behaviour. In fact, with 2.24% of flip-flops it
is possible to recover about 80% of faults. However, to reach the 100% of covered
is required 63.40% of FF. The worst scenario is very similar to SAF’s: 78% of FF
are required to reach 100% of coverage.

6.2.2 Variable flip-flop selection algorithm’s result
Tables 6.1 and 6.2 show the results of the algorithm 2, respectively for SAFs and
TDFs. They report the results about recoverable faults with reference to:

• Slots: number of cycles during which the configuration has been kept (inf.
means that there is no fixed amount of clock cycles, therefore the configuration
is kept until is necessary);

• Bits: trace buffer width in bits

First, it is evident that both SAFs and TDFs results show similar patterns. Es-
pecially, the results show that larger trace buffer guarantee higher fault coverage,
in both cases: with 128 bits trace buffer, it is possible to recover 100% of faults
in every case, except for STL3. Since the debug circuit size must be considered,
128 bits trace buffer might be too large therefore it is needed to look at the results
achieved with smaller buffer size. In particular, 16 bits allow recovering more than
90% of SAFs and with 32 bits we can recover more than 90% of TDFs (except for

45

Experimental results

Figure 6.3: Undetected transition-delay faults recovered with greedy algorithm

STL3).
On the other hand, considering the time slots it is possible to notice an opposite
trend than the one shown by the trace buffer. In fact, the fault coverage drops
with higher time slots: short time slots force to more configurations therefore it is
possible to observe a larger number of faults during the test procedure.
For the STL3 program, the algorithm was not able to reach 100% of faults in any
case. The reason why this happened can be found on the test program structure:
it provides a large amount of faults to be observed at the same time. This means
that is necessary to observe a large number of flip-flops at the same time, so that,
if this number is larger than the trace buffer, some faults are inevitably discarded.

The methodology presented in this section will be submitted as paper proposal
to theme relevant conferences and journals.

46

Experimental results

Table 6.1: Experimental results on SAFs with variable flip-flop selection
Program #Configurations Recovered stuck-at faults Recovered stuck-at fault coverage %

Bits
Slots 16 32 64 128 inf. 16 32 64 128 inf. 16 32 64 128 inf.

STL1

4 464 452 444 438 429 3,793 3,783 3,781 3,785 3,756 82.80 82.58 82.54 82.62 81.99
8 302 281 270 258 250 4,291 4,278 4,300 4,279 4,260 93.67 93.39 93.87 93.41 92.99
16 198 171 155 145 131 4,476 4,484 4,481 4,464 4,399 97.71 97.88 97.82 97.45 96.03
32 148 118 98 85 66 4,523 4,516 4,524 4,496 4,506 98.73 98.58 98.76 98.14 98.36
64 126 92 71 56 32 4,581 4,568 4,531 4,536 4,541 100.00 99.72 98.91 99.02 99.13
128 117 84 58 43 15 4,581 4,581 4,572 4,572 4,557 100.00 100.00 99.80 99.80 99.48

STL2

4 370 362 352 350 334 2,600 2,600 2,600 2,601 2,592 91.48 91.48 91.48 91.52 91.20
8 236 223 211 203 185 2,794 2,793 2,791 2,790 2,793 98.31 98.28 98.21 98.17 98.28
16 150 138 127 116 93 2,795 2,793 2,793 2,793 2,790 98.35 98.28 98.28 98.28 98.17
32 106 97 85 75 46 2,841 2,841 2,841 2,841 2,841 99.96 99.96 99.96 99.96 99.96
64 90 75 62 53 23 2,842 2,802 2,842 2,842 2,842 100.00 98.59 100.00 100.00 100.00
128 83 67 54 44 11 2,842 2,842 2,842 2,842 2,842 100.00 100.00 100.00 100.00 100.00

STL3

4 244 243 243 242 242 1,753 1,753 1,753 1,749 1,749 75.33 75.33 75.33 75.16 75.16
8 155 154 154 153 153 2,111 2,115 2,115 2,111 2,111 90.72 90.89 90.89 90.72 90.72
16 86 82 81 81 81 2,236 2,212 2,213 2,213 2,223 96.09 95.06 95.10 95.10 95.53
32 50 44 42 42 42 2,296 2,302 2,302 2,302 2,295 98.67 98.93 98.93 98.93 98.62
64 31 24 22 21 20 2,315 2,314 2,309 2,309 2,315 99.48 99.44 99.23 99.23 99.48
128 24 16 12 12 9 2,298 2,297 2,297 2,297 2,295 98.75 98.71 98.71 98.71 98.62

STL4

4 476 461 451 440 417 3,598 3,598 3,603 3,603 3,601 85.40 85.40 85.52 85.52 85.47
8 319 300 284 267 238 3,983 3,983 3,983 3,978 3,969 94.54 94.54 94.54 94.42 94.21
16 213 189 169 154 123 4,103 4,106 4,106 4,103 4,114 97.39 97.46 97.46 97.39 97.65
32 164 140 117 102 59 4,212 4,061 4,061 4,061 4,165 99.98 96.39 96.39 96.39 98.86
64 140 115 92 78 29 4,213 4,213 4,213 4,213 4,187 100.00 100.00 100.00 100.00 99.38
128 131 105 82 67 14 4,213 4,213 4,213 4,213 4,213 100.00 100.00 100.00 100.00 100.00

STL5

4 461 445 427 415 385 2,995 2,995 2,995 2,994 2,993 87.78 87.78 87.78 87.75 87.72
8 322 299 277 257 219 3,278 3,278 3,278 3,278 3,276 96.07 96.07 96.07 96.07 96.01
16 240 212 186 167 116 3,376 3,376 3,376 3,376 3,379 98.94 98.94 98.94 98.94 99.03
32 190 158 136 113 58 3,411 3,411 3,411 3,411 3,410 99.97 99.97 99.97 99.97 99.94
64 168 138 116 92 29 3,412 3,412 3,412 3,412 3,411 100.00 100.00 100.00 100.00 99.97
128 162 130 107 82 14 3,412 3,412 3,412 3,412 3,412 100.00 100.00 100.00 100.00 100.00

47

Experimental results

Table 6.2: Experimental results on TDFs with variable flip-flop selection

Program #Configurations Recovered transition delay faults Recovered transition delay fault coverage %

Bits
Slots 16 32 64 128 inf. 16 32 64 128 inf. 16 32 64 128 inf.

STL1

4 551 531 515 510 503 4,547 4,514 4,517 4,515 4,531 59.29 58.86 58.90 58.87 59.08
8 359 328 311 298 288 5,473 5,434 5,427 5,383 5,384 71.37 70.86 70.77 70.19 70.20
16 249 221 197 179 164 6,377 6,338 6,336 6,285 6,346 83.15 82.64 82.62 81.95 82.75
32 198 159 133 112 90 7,259 7,175 7,195 7,176 7,099 94.65 93.56 93.82 93.57 92.57
64 173 123 90 65 40 7,591 7,538 7,534 7,495 7,453 98.98 98.29 98.24 97.73 97.18
128 166 112 75 48 16 7,669 7,669 7,609 7,589 7,503 100.00 100.00 99.22 98.96 97.84

STL2

4 936 890 865 847 835 21,877 21,652 21,492 21,163 21,137 69.81 69.09 68.58 67.53 67.45
8 619 553 498 471 451 26,567 26,341 26,117 26,090 25,938 84.78 84.05 83.34 83.25 82.77
16 477 395 323 278 234 29,976 29,912 29,837 29,595 29,362 95.65 95.45 95.21 94.44 93.69
32 400 304 217 165 88 31,048 31,058 30,994 30,971 30,993 99.07 99.11 98.90 98.83 98.90
64 378 277 191 132 30 31,272 31,215 31,182 31,177 31,197 99.79 99.61 99.50 99.49 99.55
128 377 273 186 123 13 31,338 31,338 31,336 31,248 31,266 100.00 100.00 99.99 99.71 99.77

STL3

4 161 160 160 159 158 1,652 1,652 1,652 1,648 1,648 52.26 52.26 52.26 52.14 52.14
8 104 102 102 101 100 2,050 2,049 2,049 2,043 2,043 64.85 64.82 64.82 64.63 64.63
16 64 61 60 60 58 2,477 2,456 2,456 2,456 2,440 78.36 77.70 77.70 77.70 77.19
32 44 38 38 37 35 2,797 2,801 2,805 2,805 2,793 88.48 88.61 88.74 88.74 88.36
64 30 22 20 19 18 3,069 2,986 2,988 2,988 3,021 97.09 94.46 94.53 94.53 95.57
128 28 16 12 9 8 3,134 3,148 3,139 3,095 3,099 99.15 99.59 99.30 97.91 98.04

STL4

4 587 560 536 507 466 3,614 3,607 3,598 3,599 3,573 72.18 72.04 71.86 71.88 71.36
8 418 386 358 320 258 4,188 4,180 4,164 4,151 4,088 83.64 83.48 83.16 82.90 81.65
16 331 289 249 214 136 4,616 4,603 4,581 4,561 4,441 92.19 91.93 91.49 91.09 88.70
32 286 238 201 155 67 4,816 4,813 4,810 4,864 4,722 96.19 96.13 96.07 97.14 94.31
64 266 220 176 133 29 5,004 5,005 4,955 4,954 4,927 99.94 99.96 98.96 98.94 98.40
128 262 216 171 126 13 5,007 5,007 5,004 5,004 4,979 100.00 100.00 99.94 99.94 99.44

STL5

4 669 643 598 570 504 3,380 3,375 3,378 3,378 3,362 94.89 94.75 94.83 94.83 94.39
8 457 421 365 330 246 3,514 3,497 3,506 3,507 3,489 98.65 98.18 98.43 98.46 97.95
16 366 319 262 224 114 3,556 3,554 3,554 3,550 3,548 99.83 99.78 99.78 99.66 99.61
32 328 277 219 180 53 3,562 3,530 3,530 3,530 3,528 100.00 99.10 99.10 99.10 99.05
64 322 269 204 162 24 3,562 3,562 3,562 3,562 3,558 100.00 100.00 100.00 100.00 99.89
128 319 265 202 158 11 3,562 3,562 3,562 3,560 3,562 100.00 100.00 100.00 99.94 100.00

48

Experimental results

6.3 Results of the analysis of the execution trace
of test programs

The test of the solutions proposed in the section 5.2 was not the main goal of the
thesis, since they are the starting point for future works.
However, as shown by the figures 6.4, 6.5 and 6.6, some sample statistics about a
test program have been produced.
Going into details, figure 6.4 reports a pie chart that shows the percentage of the
instruction categories of which the test program is made, according to the division
mentioned in the section 5.3.
As shown by the picture, 99.15% of the executed instructions are related to the
ALU unit, while the other 1% regards DIV and MUL operations, respectively 0.13%
and 0.72%.

Figure 6.4: Example of percentage of instruction divided per categories

On the other hand, as shown by figure 6.5, most of the faults are linked to DIV
instructions. In fact, it is possible to notice that, for the test program that have
been analyzed, the faults related to DIV unit cover 81.18% of total, while ALU
faults are 18.82% and no faults affect the MUL unit.

49

Experimental results

This is an interesting result since it highlights the criticality of division operations
and the difficulty to observe and detect the faults that affects this unit. In fact, the
majority of the DIV faults affects the unit during an internal stage of the division.
This means that, in order to actually observe and detect the fault, it is needed
to stop the dividing operation to observe the intermediate signal that causes the
misbehaviour: this operation can not be performed, therefore a different strategy
must be investigated.
However, as shown by figure 6.6, on average DIV faults can be observed in a larger
number of intervals (about 27 for DIV and 3 for ALU). This characteristic can be
highly useful for the test engineer since if the fault can be observed in multiple
intervals, there are better chances to find a block of code to be edited in order to
allow the fault detection. The test program manipulation, for example with the

Figure 6.5: Example of percentage of faults divided per categories

insertion of new assembly instructions, might be a possible approach to bypass
some of the obstacles previously mentioned.
Moreover, during the last weeks of the thesis period, several tests of this methodology
have been conducted. In particular, the source code editing has been tested for
the detection of faults that do not refer to the DIV unit and some promising
results have been produced. Since this methodology should be improved and tested

50

Experimental results

Figure 6.6: Example of average number of intervals divided per categories

with different test programs and since simulations require on average one day to
complete, the results have not been reported in this work.

51

Chapter 7

Conclusions and related
work

The thesis work proposed a systematic approach for the detection of hard-to-test
and not observed faults in pipelined processors, and the development of structured
software for the analysis of the execution trace of test programs in order to improve
the fault coverage of STLs.
The methodology described in the chapter 4 assumes that testing is made with the
usage of STLs and, starting from a set of recoverable faults (identified through
fault simulation performed by commercial tools), it exploits specific algorithms in
order to produce a configuration schedule for already available monitoring features
(for example, trace buffers). In the sub-chapter 6.2 satisfying and promising
experimental results are shown. In particular, it has been shown that a greedy
algorithm does not allow recovering efficiently the hard-to-test faults, since it needs
to monitor a massive amount of flip-flops and, sometimes, it can not reach 100%
of coverage. On the other hand, an algorithm that performs a variable selection
of flip-flops is able to recover 100% of SAF and TDF in almost every case and
during a single STL run, using 128 bits trace buffer and a suitable number of
configurations. If the size of the trace buffer is not affordable, results show that 32
bits trace buffer achieves satisfying fault coverage and it can be the best trade-off
buffer size - coverage. Moreover, with multiple STL runs it is possible to achieve
100% of coverage in every case using smaller trace buffers.
The second part of the thesis aims to develop a systematic approach for studying
the execution trace of the test programs and proposes some preliminar solutions
for the improvement of the STLs. In particular, storing the information about the
trace into a database has been proved to be highly useful for the workflow, since
it allows scaling the software and add features avoiding the repetition of previous
step.

52

Conclusions and related work

The generation of statistic is particularly interesting since it shows the weaknesses
of the STL and it can help the test engineer in the development of programs. In
fact, for example, as shown in the subsection 6.3, most of the hard-to-test faults (in
the example about 81%) are linked to division instructions and, at the same time,
these faults can be observed in 27 intervals on average: this aspect can be pretty
interesting since the programmer has the possibility to find an interval in which
it is possible to operate and eventually detect the fault (one "working" interval is
enough).
Moreover, the approaches proposed for the improvement of the test programs are a
solid base for future work. First of all, the solutions proposed need to be tested in
order to validate the effectiveness of the methodology, since it was not the main
goal of this part of the work. Subsequently, according to the results, new solutions
can be developed or the proposed ones can be improved.

53

Bibliography

[1] R. Cantoro et al. «Self-Test Libraries Analysis for Pipelined Processors Tran-
sition Fault Coverage Improvement». In: IEEE 27th International Symposium
on On-Line Testing and Robust System Design (IOLTS) (2021) (cit. on pp. 1,
18, 19, 24).

[2] N. K. Jha and S. Gupta. Testing of Digital Systems. Cambridge University
Press, 2012, pp. 382–444 (cit. on p. 6).

[3] Wikipedia - Fault model. url: https://en.wikipedia.org/wiki/Fault_
model (cit. on p. 12).

[4] Wikipedia - Engineering validation test. url: https://en.wikipedia.org/
wiki/Engineering_validation_test (cit. on p. 13).

[5] N. K. Jha and S. Gupta. Testing of Digital Systems. Cambridge University
Press, 2012, pp. 266–313 (cit. on p. 15).

[6] M. Psarakis et al. «Systematic software-based self-test for pipelined proces-
sors». In: ACM/IEEE Design Automatic Conference (DAC) (2006) (cit. on
p. 17).

[7] ——. «Microprocessor Software-Based Self-Testing». In: IEEE Design and
Test of Computers (2010) (cit. on p. 17).

[8] Hitex. Microcontroller self-test libraries. url: https://www.hitex.com/
tools-components/software-components/selftest-libraries-safety-
libs/pro-sil-safetlib/ (cit. on p. 17).

[9] ARM. Enabling Our Partnership to Bring Safer Solutions to the Market
Faster. url: https://developer.arm.com/technologies/functional-
safety (cit. on p. 17).

[10] Microchip Technology Inc. 16-bit CPU Self-Test Library User’s Guide. 2012.
url: http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf
(cit. on p. 17).

[11] J. Perez Acle et al. «Observability Solutions for In-Field Functional Test of
Processor-Based Systems». In: Microprocessors and Micros. (2016) (cit. on
p. 17).

54

https://en.wikipedia.org/wiki/Fault_model
https://en.wikipedia.org/wiki/Fault_model
https://en.wikipedia.org/wiki/Engineering_validation_test
https://en.wikipedia.org/wiki/Engineering_validation_test
https://www.hitex.com/tools-components/software-components/selftest-libraries-safety-libs/pro-sil-safetlib/
https://www.hitex.com/tools-components/software-components/selftest-libraries-safety-libs/pro-sil-safetlib/
https://www.hitex.com/tools-components/software-components/selftest-libraries-safety-libs/pro-sil-safetlib/
https://developer.arm.com/technologies/functional-safety
https://developer.arm.com/technologies/functional-safety
http://ww1.microchip.com/downloads/en/DeviceDoc/52076a.pdf

BIBLIOGRAPHY

[12] A. Ruospo et al. «On-line Testing for Autonomous Systems driven by RISC-V
Processor Design Verification». In: IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) (2019)
(cit. on p. 18).

[13] A. Jasnetski et al. «On automatic software-based self-test program generation
based on high-level decision diagrams». In: IEEE LATS (2016) (cit. on p. 18).

[14] —–. «Automated software-based self-test generation for microprocessors». In:
International Conference MIXDES (2017) (cit. on p. 18).

[15] B. Kumar et al. «A methodology to capture fine-grained internal visibility
during multisession silicon debug». In: IEEE Transactions on VLSI Systems
(2020) (cit. on p. 18).

[16] J.-S. Yang et al. «Improved trace buffer observation via selective data capture
using 2-d compaction for post-silicon debug». In: IEEE Transactions on VLSI
Systems (2013) (cit. on p. 18).

[17] H. Oh et al. «An on-chip error detection method to reduce the postsilicon
debug time». In: IEEE Transactions on Computers (2017) (cit. on p. 18).

[18] S. Chandran et al. «“Managing trace summaries to minimize stalls during
postsilicon validation». In: IEEE Transactions on VLSI Systems (2017) (cit.
on p. 18).

[19] Z01X Functional Safety Assurance. url: https://www.synopsys.com/
verification/simulation/z01x-functional-safety.html (cit. on pp. 20,
43).

[20] ModelSim. url: https://en.wikipedia.org/wiki/ModelSim (cit. on p. 20).
[21] ETH Zurich and Università di Bologna. PULPino microcontroller system.

url: https://github.com/pulp-platform/pulpino (cit. on pp. 21, 22).
[22] Andreas Traber; Florian Zaruba; Sven Stucki; Antonio Pullini; Germain

Haugou; Eric Flamand Frank K. Gürkaynak; Luca Benini. PULPino: A small
single-core RISC-V SoC. url: https://riscv.org/wp-content/uploads/
2016/01/Wed1315-PULP-riscv3_noanim.pdf (cit. on p. 23).

[23] MongoDB. url: https://www.mongodb.com/it-it (cit. on p. 36).

55

https://www.synopsys.com/verification/simulation/z01x-functional-safety.html
https://www.synopsys.com/verification/simulation/z01x-functional-safety.html
https://en.wikipedia.org/wiki/ModelSim
https://github.com/pulp-platform/pulpino
https://riscv.org/wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf
https://riscv.org/wp-content/uploads/2016/01/Wed1315-PULP-riscv3_noanim.pdf
https://www.mongodb.com/it-it

	List of Tables
	List of Figures
	Introduction
	Testing methodologies and technologies
	Fundamentals of testing
	Stuck-at fault model
	Delay fault models

	Automatic Test Pattern Generation
	ATPG architecture

	Scan techniques
	Full scan

	Functional testing

	Context of work
	Background works on STL analysis for delay test coverage improvement
	Commercial tool features
	PULPino

	Hybrid methodology to improve fault coverage of STLs
	Introduction
	Methodology description
	Identification of faults steps in details
	Evaluation of faults and selection of wires

	Analysis of the execution trace of test programs
	Creation of a test program collection
	Retrieve information from the DB
	Find blocks of source code editable to cover a fault
	Find which faults should be coverable modifying specific pieces of source code
	Find blocks of source code editable to cover a fault and find which part of source code may be able to cover that fault

	Statistical analysis of the execution trace

	Experimental results
	Case study and experimental setup
	Hybrid methodology's STLs and setup

	Hybrid methodology's results
	Greedy algorithm's results
	Variable flip-flop selection algorithm's result

	Results of the analysis of the execution trace of test programs

	Conclusions and related work
	Bibliography

