#
A\
\\ 1859 s

Politecnico di torino

Department of Control and Computer Engineering
Master’'s Degree Thesis
AY 2020/21

Desigh and Development of a
Ground Segment Software for
Microsatellite Operations

Supervisors Candidate
Luca Sterpone Simone Gallo
Biagio Cotugno

A nonna Nenq,
che ha sempre creduto in me

Abstract

In recent years outer space is increasingly becoming more accessible, as the costs
necessary to launch objects in low orbit or even beyond is significantly lower than
ever before. One of the factors that contributed to this trend is the development of
microsatellites and particularly CubeSats.

CubeSats are becoming more and more prevalent in the space industry as they can
be used for primary missions thanks to the improvement of technology which allows
for the implementation of many functionalities in smaller volumes, but most signifi-
cantly they can act as support satellites for bigger missions resulting in relatively easy
to carry and deploy. One of the main examples is the Double Asteroid Redirection
Test (DART) mission that will demonstrate the kinetic effects of crashing an impactor
spacecraft on the surface of an asteroid for planetary defence purposes. The DART
spacecraft will also carry a secondary spacecraft called LICIACube, a 6U (unit) satel-
lite that will separate from the main spacecraft 10 days before the impact to acquire
images of the collision and ejecta plume as it fly-bys past the asteroid. Despite be-
ing relatively small concerning regular satellites the ground segment required to send
commands and receive telemetry for the CubeSats is the same.

The scope of this master’s thesis is to develop a ground segment software for Ar-
gotec's Mission Control Center (MCC). Although Argotec already uses a main mission
control software, it has been decided to implement a tailored software devoted to
telemetry retrieval and display to include new functionalities not present in the main
MCS. A preliminary study of the telemetry structure and network architecture of the
company have been conducted by the author of this thesis together with the Flight
Control Team (FCT) of Argotec. Then the software requirements have been identi-
fied taking into account possible use cases of the MCS and the possibility of working
seamlessly with other company's software like the Mission Planning Tool (MPT). Sub-
sequently, a security study has been carried out to guarantee user authentication
and data access policies depending on the user clearance. In the end, an extensive
campaign of system validation tests has been performed. The project definition, the
analysis of requirements, the system development and testing are here presented,
together with a final assessment for future improvements. Furthermore, in this docu-
ment, the Ground Segment Software will also be referred to as Margot (Multionalysis
And Real-time Ground Operations Tool).

List of Figures

11
21
22
23
24
25
26

31

41

42
43
4.4
45
4.6
4.7
51

52
53
54
55
5.6
6.

OpenMCT example display
Current Ground system architecture L.
SLE Architecture Model
TCDISPIay . . o
Example of CubeSatsystems
Simplified spacecraftsystem oo o
Mission Control Center Scheme and Data-Flow between the front-room
andthe back-room L
Requirements Table
Proposed Ground system architecture
Topic Structure Scheme
Simple thread pool implementation
Complete thread pool architecture for the Incoming Task Consumer
Data Provider configuration file format
Margot display developed by Argotec L.
Database RelationalModel
GDSsetup
NATO Phonetic Alphabet
Operations trainigsetup
Network usage during Operations training
Network usage during Operations training using logarithmic scale
Performanceresults

3D-Visualisation of Flying Satellites - StepBy Step

List of Tables

j—

A oW N

Client implementation trade-off o L.
High-Level System Requirements
High-Level Data Requirements

High-Level Network and Security Requirements

5 Database DesCription 33
6 Example procedure for the change of the On-Board Time 41
Listings
1 Telementry JSSONformat 23
2 Requestmessagesstructure o 23
3 Exampleof DHMOutput 25
4 Dictionary JSONstructure 28
5 Valuesfirstobject field structure L 29

Summary

1 Introduction

2 State Of the Art
21 Some Context: WhatisaCubesat.
22 Some Context: Mission ControlCenter.
2.3 Some Context: The Flight Control Team,
24 ProduCt SCeNnario.o
241 LCIACUDbE . . .
242 ArgoMOON

3 Requirements
31 SystemRequirements
32 DataRequirements

3.3 Network Security Requirements

4 Design
41 How the system communicates
4.2 Subsystem Decomposition.
421 MargotServer
422 DataProvider
423 MargotClients
43 Persistent Data management o
431 RelationalModel
44 Access Controland Security Lo o
441 SeCUNty

442 AccessControl

5 Software validation
Bl TestSetup
BIl GDSTests
512 OperationsTraininNg
B2 TestResults.

10
12
13
13

16
17
18

19
21
21
26
28
31
31
33
33
34

521 Network . ..

522 Performance

6 Further Work

7 Conclusions

1. Introduction

At the current state, Argotec uses a Mission Control Software (MCS) to connect to the NASA Deep
Space Network.

The amount of operations performed during real-time communications could strain the system
robustness and usability. For this reason, the necessity to relieve the system from some of its duties
was an important manner to resolve. In order to do that, functional areas have been identified

inside the MCS. In fact, during a communication window, the MCS needs to:
. Receive data (such as telemetries);
« Send commands;
« Visualize display monitors;
« Send data to the MCS clients used by other Operations Team engineers.

The first two can't be substituted as they're validated and certified to work with the NASA network
and the last point does not add much impact on performance. For these reasons, the necessity to
delegate the visualization of telemetry and plots to another application has been identified. Be-
sides, the necessity to have a tool that can be used by other company's clients inhibiting telecom-
mands management, controlling at the same time what data is visualized and for how much time,
is compliant with the first necessity and can be both implemented together in a single project.

To accomplish these objectives the need to retrieve data from MCS and visualize it employing a
graphic framework arises. For either of the two macro operations a product analysis has been

performed to identify the possible solutions:

Retrieving Data must be custom implemented as there is no market-ready solution and MCS

doesn't have a native function of this kind;
Visualize Data : for this task, there are many solutions, either with pros and cons:

« Custom-made solution using graphical libraries like QT, Tkinter or OpenGL for desktop
implementations or CSS for web implementations. This solution is highly customizable
and certainly has the potential to accomplish all requirements, but it is more complex to

implement and optimize in the short terms.

« Matlab is a proprietary multi-paradigm programming language and numeric comput-
ing environment developed by MathWorks. It supports developing Graphical User Inter-
face (GUI) applications. GUIs can be generated either programmatically or using visual
design environments such as GUIDE and App Designer. Moreover, MATLAB has tightly in-
tegrated graph plotting features [11].

The main disadvantage of this solution is its proprietary commercial license which could

heavily impact the project budget and limit the on number of licenses that can be used.

OpenMCT is a next-generation mission control framework for the visualization of data
on desktop and mobile devices. It is developed at NASA's Ames Research Center and is
being used by NASA for data analysis of spacecraft missions, as well as planning and
operations [13].

OpenMCT allows to have a good starting point in terms of functionalities with less code
written than previous solutions, also the graphical interface is modern and reflects the
company's views as can be seen in figure 1.I. One of the most important advantages of
this solution is that the code is completely open-source and so fully customizable. The
framework also permits the implementation of new features and in-house functionalities
by the development of new plug-ins. The main disadvantage is represented by the ne-

cessity of following NASA's original development workflow which results are really tricky.

After a trade-off study, OpenMCT has been selected as the right solution for this project (Table

0.

[]
+

® 3 ars Woothor Display Lay: % Charies

c ./ demo.herok 1e/{3744144-8842-4b7a-bdde-4abbf21315d9?view=layout e ME 2009 (#] 2 =

2018-06-07 00:00:00.000

Source: https://github.com/nasa/openmct/blob/master/README.md

Figure 1.1: OpenMCT example display

https://github.com/nasa/openmct/blob/master/README.md

Customization

‘ Custom-made

High customization ca-
pabilities, the choice
of the programming
language can influence
how the features are

implemented

‘ Matlab
High customization ca-

pabilities

OpenMCT
Limited customization
capabilities out of the
box, new functions are
implemented through

plugins

Plotting

Features

Plotting features de-
pend on the kind of
implementation and/or
framework used. In
general, there is high

plotting capability

High Plotting capability
following Matlab lan-
guage potential but it
is not easy to set up
and the possibility to
navigate inside a graph

is limited

High plotting capability
with easy implementa-
tion.

Functionality of navigat-
ing through time inside

the graph is built-in.

Implementation

Really long, every as-

Fast implementation of

Really fast implementa-

Time pect of the program | plots, for the user in- | tion, the graphical inter-
must be developed, | terface the implemen- | face and plots are ready
also the concurrency | tation time is longer to be connected to a
policies and resource data provider.
management should be
defined.

Platform Depending on the plat- | Needs a valid MatLab li- | Runs on a browser, po-

Independence form, either way need | cense on each machine | tentially can run on ev-

a platform dedicated

compiler/interpreter.

ery machine (even mo-

bile devices).

Table 1: Client implementation trade-off

2. State Of the Art

Software J

1z
& ot

Ground segment
L 1

R

Figure 2.1: Current Ground system architecture

Before the completion of this master's thesis, the ground segment architecture was composed

mainly by three components:

The Ground Segment facility represented by JPL/NASA's Deep Space Network (DSN). It is a world-
wide network of American spacecraft communication ground segment facilities, located in
Goldstone (United States, California), Madrid (Spain), and Canberra (Australia). The anten-
nas at all three DSN complexes communicate directly with the Deep Space Operations Cen-
ter (DSOC) located at the JPL facilities in Pasadena, California. The DSN supports NASA's and
other selected partner's interplanetary spacecraft missions as well as some selected Earth-
orbiting missions. It can also performs radio and radar astronomy observations for the ex-
ploration of the Solar System and the universe.

All DSN antennas are steerable, high gain, parabolic reflector antennas and provide a two-

way communications link [3].

Flight Operation Software (FOS) is the main interface that the operations team has when com-
municating with the satellite. FOS is based on Satellite Control and Operation System 2000
(SC0S-2000) and is interfaced with the DSN by means of the Internet Space Link Extension
(SLE). The SLE identifies a set of Transfer Services that enables missions to send forward space
link data units to a spacecraft and to receive return space link data units from a spacecraft

[18]. The SLE standard specifies:
« the operations necessary to provide the Transfer Service;
« the parameter data associated with each operation;
« the behaviors that result from the invocation of each operation;

« the relationship between, and the valid sequence of, the operations and resulting be-

haviors.

Higher Layers

A
Internet SLE
Protocol Layer 8 [N -

Authentication Layer (AL)

TML Association
Control Interface

Data Encoding Layer (DEL)

TML Listener Interface

Transport Mapping Layer (TML)

N e e e o o o o o o o o Em Em mm o mm = o o o = =

- e o o o oEm omm o o o o o R I e e e B T I R R e e]

Transmission Control Protocol (TCP)

Internet Protocol (IP)

Figure 2.2: SLE Architecture Model

The Internet SLE Protocol is specified by a layered architecture model in which the interfaces
between the layers are defined using abstract service primitives, roughly following the con-
cepts in the OSI Basic Reference Model [9]. As can be seen in figure 2.2, the SLE protocol can

be further decomposed into the following sub-layers:

« The Authentication Layer (AL) is responsible for generating and analyzing the creden-
tials specified in the Recommended Standards for SLE transfer services. For this purpose,
this Recommended Standard specifies use of the simple authentication scheme using
public-key and attribute certificate frameworks, and the Secure Hash Function (SHA-

256);

« The Data Encoding Layer (DEL) is responsible for the encoding of the SLE protocol data
units received from higher layers and the decoding of the protocol data units received

from the peer application;

« The Transport Mapping Layer (TML) handles the interface to the Transmission Control

Protocol (TCP).

Using the SLE protocol, the FOS can receive Telemetry (TM) from DSN and send Telecom-
mands (TC) using the transport layer. In order to decode receiving packets and encode out-
going commands, the FOS relies on the Management Information Base (MIB) database which,
based on the CCSDS standards, specifies:

- type and sub-type of each packet;

« name of each telemetry and command items;

« the packet each item belongs to;

. position inside the packet (bit/byte offset);

« format of each item;

« polynomial coefficients of the function used to derive the engineering value from a raw

value;

« other information depending on the mission scenario.

The MIB is also used by Display Terminals (DP) to visualize data to the user.
Furthermore, during real-time operations, the FOS stores the communication session data in

a database which can be accessed later in order to generate replays.

TC Histony: RTE £ TC History Repart =

= H = i

2013-255T09:44554324 ~ 2013-162T15:13:50.345 RELEASE BRIEF FILTER DISABLED

Name | Description |Sequence| Domain| Release Time Execution Time s/p/c[6/B[ILST| Source FC TC[R GT0 A 5§ 1122 CC
S2KTCEE7 TC(3,3) RTE 2013-255T09:44:54,324 2013-255T09:44:54.406 E E E SR MS walmesd GL G1 __ =
S2KTCRE? Tc(3,3) FTE 2013-168T09:25:56.902 2013-189T08:25:55.843 E E E SR MS valmesd A7 Ol GICSCICICH
S2KTCRET Te(3, 3 RTE 2013-169T09:25:54.308 2013-189709:28:54.433 E E E SR MS walmesd 45 61 SI8888 S
S2KTCEET TCE3,3) RTE 2013-169T09:26:52.111 2013-189709:26:52.274 E E E SR MS valmesd A5 Gl EEES S8
SIKTC124 Real Parameters RTE 2013-168T00: 22: 36,203 2013-165T06:22:36.340 E E E MS walmesd A4 01 EIESS
S2KTC124 Real Parameters RTE 2613-163T09:22:34.785 2013-158T09:22:34.865 E E E HS walmesd A3 ol EISSCHN
S2KTC124 Real Parameters RTE 2013-168T09:22:33.800 2013-159708:22:33.841 E E E WS walmesd A2 61§88
S2KTCL24 Real Parameters RTE 2613-168T09:22:32.633 2013-168708:22:32.753 E E E WS walmesd Al 61 SISSSI
SIKTC124 Real Parameters RTE 2013-168T09: 22: 20,578 2013-165706:22:20.782 E E E MS walmesd A0 01 ERSSSL
SIKTCL24 Real Parameters RTE 2013-168T09: 22: 28,140 2013-165700:22:28.260 E E E ME walmes4 OF 01 ENSSS
SKTC124 Real Parameters RTE 2013-168T09:22:26.950 2013-159708:22:27.042 E E E WS valmesd 9 61 SISSSI
S2KTCL24 Real Parameters RTE 2013-168T09:20:27.225 2013-158709:20:27.466 E E E WS walmesd 9D 61 SISSSE
S2KTCaE? TC(3.3) FTE 2013-168T09:12:15.372 2013-1687T09:12:16.372 E O E SR MS walmesd b3
S2KTCaE? TC(3,3) RTE 2013-168T09:12:15.346 2013-168T09:12:15.346 E O E SR MS valmesd
S2KTCA0T TC(3,3) FTE 2013-168T08:12:14.331 2013-1667T0¢:12:14.331 E O E SR MS valmesd
S2KTCA07 TC(3,3) FTE 2013-168T09:12:05.418 2013-166T0¢:12:05.410 E E E SR MS valmesd
S2KTCaE? TC(3,3) FTE 2013-162715:14:19.085 2613-152715:14:19.085 E E E SR 1S valmesd
S2KTCaE? TC(3,3) RTE 2013-162T15:14:07.824 2013-162T15:14:07.824 EE E SR MS valmesd
S2KTCEET TC(3,3) FTE 2013-162T15:14:06.795 2013-162T15:14:06.878 E E E SR MS valmesd
S2KTCA07 TC(3,3) RTE 2613-162T15:14:05.760 2613-162T15:14:65.6849 E E E SR MS valmesd
S2KTCA0T TC(3,3) FTE 2013-162T15:14:04.740 2013-162715:14:04.825 E E E SR MS valmesd
S2KTCaE? TC(3,3) RTE 2013-162T15:14:03.714 2013-162T15:14:083.797 E E E SR MS valmesd
S2KTCaE? TC(3.3) FTE 2013-162T15:14:02.685 2013-162T15:14:02.812 E E E SR MS walmesd
S2KTCA07 TC(3,3) RTE 2613-162T15:14:01.668 2613-162T15:14:61.781 E E E SR MS valmesd
S2KTCA0T TC(3,3) FTE 2013-162715:14:00.632 2013-1627T15:14:00.716 E E E SR MS valmesd
S2KTCaE? TC(3,3) RTE 2013-162T15:13:59.607 2013-162T15:13:59.729 E E E SR MS walmesd
S2KTCaE? TC(3.3) FTE 2013-162T15:13:53.581 2013-162T15:13:58.705 E E E SR MS walmesd
S2KTCA07 TC(3,3) FTE 2013-162T15:13:57.558 2013-162T15:13:57.678 E E E SR MS valmesd
S2KTCA0T TC(3,3) FTE 2013-162715:13:56.523 2013-162715:13:56.565 E E E SR MS valmesd
S2KTCa0? TC(3.3) FTE 2013-162715:13:55.491 2013-162715:13:55.535 E E E SR 1S valmesd
S2KTCaE? TC(3.3) FTE 2013-162T15:13:54.462 2013-162T15:13:54.585 E E E SR MS walmesd
S2KTCaE? TC(3,3) RTE 2013-162T15:13:53.434 2013-162T15:13:53.557 E E E SR MS walmesd
S2KTCA0T TC(3,3) FTE 2013-162715:13:52.407 2013-162715:13:52.528 E E E SR MS valmesd
S2KTCA07 TC(3,3) RTE 2613-162T15:13:51.378 2613-162715:13:51.461 E E E SR MS valmesd
S2KTCOR7 TC(3,3) FTE 2013-162T15:13:50.345 2013-162715:13:58.426 E E E SR MS valmesd 8B 0l EISSSISHmNSN

-
Domain: Type: (m]y] Sub-Type: (my) APID: 1 1 Mnemanic O |Aunly\ |Delault“:|
Sequence] ! Ack []]! Waorkstation: (R} |LccaIWS| [Manual Stacks

Source: https://www.esa.int/Enabling_Support/Operations/Ground_Systems_Engineering/SC0S-2000

Figure 2.3: TC Display

Display Terminals are devices (usually PCs or laptops) where the user can monitor everything
he/she needs to check the status of the spacecraft. They can include graphics, plots, tables,

indicators, warning labels or numeric dump data and can emit sounds in case values are

https://www.esa.int/Enabling_Support/Operations/Ground_Systems_Engineering/SCOS-2000

exceeding limits indicated in the MIB.

Display Terminals are usually used by all components of the Flight Operations Team in the
Front Room as well as in the Back Room and they are really useful as they allow the opera-
tor to perceive really fast if the behavior of the spacecraft is nominal or there is something
odd which has to be verified. These displays can also show non real-time data allowing the

possibility to replay previous communication sessions and test sessions for troubleshooting.

2.1. Some Context: What is a Cubesat

CubesSat is a type of nanosatellites composed by multiple cubic modules of 10 cm x 10 cm x 10 cm
in size and can have a mass of 1.33 kilograms per unit. Typical configurations are 1U, 3U, 6U, and
12U (figure 2.4). It's miniaturization allows reducing the costs of development and deployment as
they are often suitable for launch in multiples, using the excess capacity of larger launch vehicles.
These characteristics allowed many scientific organizations, universities and countries to send to

space their first ever satellite.

l:
A =
SH SE
P EB CE

6U

U 2U 3U
1kg

133 kg 2,66 kg,

12U...

Source: https://tinyurl.com/5mé4fcdde

Source: https://tinyurl.com/2p8je9c2

Figure 2.4: Example of CubeSat systems

Despite being smaller with respect to typical satellites, a CubeSat shares the same subsystem of

typical larger satellites:

Structure which consists of the frame. It is usually made of aluminum alloys.
CubeSats structures do not have all the same strength concerns as larger satellites do, as
they can provide on the benefit of the deployer supporting them structurally during launch.

Still, some CubeSats will undergo vibration and structural analyses.

Computing CubeSats often feature multiple computers handling different tasks in parallel includ-
ing the attitude control (orientation), power management, payload operation and primary
control tasks. For very Low Earth Orbit (LEO) in which atmospheric reentry would occur in
just days or weeks, radiation can largely be ignored, and standard grade electronics may be

used. Consumer electronic devices can survive LEO radiation for that time as the chance of a

https://tinyurl.com/2p8je9c2
https://tinyurl.com/5m4fc44e

single event upset (SEU) is very low. Spacecraft orbiting in LEOs, lasting months or years, are
subjected to radiation effects and risks and only certified or flight hardware designed and
tested for radiation environment are selected. Missions beyond LEO or which would remain

in LEO for many years must use radiation-hardened devices.

Attitude Control is necessary in order to maintain or change the orientation to a desired value.
Systems that perform attitude determination and control include reaction wheels, magne-
torquers, thrusters, star trackers, Sun sensors etc. Combination of these systems are typically

seen in order to take each method's advantages and mitigate their shortcomings.

Propulsion The biggest challenge with CubeSat propulsion is preventing risk to the launch vehicle
and its primary payload while still providing significant capability. Components and methods
that are commonly used in lager satellites are disallowed or limited. These restriction pose
great challenges for CubeSat propulsion systems. Most used technologies for propulsion are

cold gas, chemical propulsion, electric propulsion and solar sails.

Power CubeSats use solar cells to convert solar power to electricity that is stored in recharge-
able lithium-ion batteries (mainly) that provide the CubeSat with the required power during
eclipses as well as during peak load times. CubeSats have a limited surface area on their
external walls for solar cells assembly and has to be effectively shared with other parts, such

as antennas, optical sensors, camera lens, propulsion systems and access ports.

Telecommunications are a challenge on CubeSat because of tumbling and low power range.
Many of them use an omnidirectional monopole or dipole antennas. For more demand-
ing needs, high gain antennas are available but their deployment and pointing systems are
significantly more complex. For LEO Ultra-High Frequency (UHF) ad S-band frequencies are
used instead, to venture farther in the Solar System, larger antenna compatible with the Deep

Space Network (X-band and Ka-band) are required.

Thermal management is really important as different components possess different acceptable
temperature ranges as they're heated by radiative heat emitted by the Sun directly and re-
flected off Earth, as well as heat generated by the spacecraft's components. Components
used to ensure the temperature requirements are met in CubeSats include multi-layer insu-

lation and heater for the battery.

Payload is the object or the entity which is being carried by the CubeSat. Depending on the nature
of the flight or mission, the payload may include cameras and several types of sensors. Most
CubeSats carry one or two scientific instruments as their primary payload. There could be

secondary payloads used in order to achieve secondary objectives of a mission.

CubesSat form a cost-effective independent means of getting a payload to orbit. The cost varies
depending of the complexity of the project from few thousands to millions dollars. For these rea-
sons, CubeSats are a viable option for some schools and universities as well as small businesses

to develop a microsatellite for commercial purposes.

2.2. Some Context: Mission Control Center

The Mission Control Center (MCC) is part of the ground segment that consists of all ground-based
elements of a spacecraft system used by operators and support personnel. The primary elements

of a ground segment are:
« Ground stations which provide radio interfaces with the spacecraft.
« Mission Control Center from which spacecrafts are managed.
« Ground Networks which connect ground elements to one another.
« Remote Terminals used by support personnel.

« Spacecraft integration and test facilities which involve the overall testing of a complete sys-

tem composed of many subsystem components or elements.

« Launch facilities which are used for launching (or retrieving) spacecrafts.

P e i

P -

______________ »

g
)

Ground station

S
-y

I Control center

I&T facility Ee Ee
| Moo E,r_e_-l_aflpflf . Remote terminals
A Ground segment

Source: https://tinyurl.com/yahjaef3

Figure 2.5: Simplified spacecraft system

In particular, the program described here will be used within the Mission Control Center (MCC).
Sometimes called Flight Control Center or Operations Center, the MCC is a facility that manages

space flights, usually from the point of launch until the end of the mission. A staff of flight controllers

https://tinyurl.com/yahjaef3

and other personnel monitor all aspects of the mission using telemetry, and send commands to
the spacecraft using ground stations (the operations team).

Personnel supporting the mission from an MCC can include representatives of the attitude control
system, power, propulsion, thermal, attitude dynamics, orbital operations and other subsystem

disciplines. The main activities performed by the MCC are:
« Monitoring and control of the spacecraft subsystems and payloads.
» Spacecraft performance analysis and reporting.
« Planning, scheduling, and executions of the procedure.
« Delivery of mission data product.

Therefore, mission operations contain different activities, linked by each other and often executed
by different actors during the mission. It is possible to divide different phases of the operation

procedures of a spacecraft:

Mission Operation Preparation comprises all measures related to management, development,
test integration, validation, organization, training, certification, and documentation of the
ground segment of a space project. The result of successful mission operations preparation
is a ready-for-launch ground segment. [19]

Space missions are characterized by being different from each other, often what is designed
and developed for one mission can be completely useless for another. As a result, the defi-

nition of a general rule for the duration of the operations preparation is nearly impossible.

Mission Operation Execution After the preparation, the test and launch of the spacecraft, the mis-
sion operations will be mainly focused on the flight operation involving the space segment.
Satellites are usually designed to be as much autonomous as possible. One of the major
drivers to involve human Flight Control Teams in the operations is the handling of unexpected
situations (called anomalies or contingencies) in the ground or in the space segment. It is
very important to have a reliable tools in order to analyze the telemetry and recognize dan-
gerous scenarios for the good success of the mission. Here, humans need to be involved
to handle the sometimes very complex situations and to put together either troubleshooting

plans to identify the root cause of the problem, or to resolve the issue via corrective actions.

2.3. Some Context: The Flight Control Team

The operations team, also called Flight Control Team (FCT), is the staff of flight controllers working
in the Mission Control Center. Each controller is an expert in a specific area and constantly com-

municates with additional experts in the Back Room. The preparation for the operations of a space

10

project requires the organization and assignation of roles and responsibilities as can be seen in

figure 2.6. The Argotec's mission project structure is here presented:

Satelite SEEEEEEEE { DSN]

h 4
Front Room

1l

!

D
dinl

Y

v
m
o
=]
.
sl
=]
&
E]

A

h 4

Figure 2.6: Mission Control Center Scheme and Data-Flow between the front-room and the
back-room

Program Manager (PM) is responsible for the organization and overall management of the project.
PM is the contact point to the customer and appoints the Flight Director (FD) and System En-
gineer (SE).

Spacecraft Operation Manager (SOM) is responsible for the preparation and the execution of the
mission operations. The SOM develops the operations concepts, formulates technical low-
level requirements resulting from that concept, and supervises the FCT during operations.
In case of contingencies, the SOM will gather all recommendations of FCT and then decide
appropriate actions to be taken. It has also the authority on issuing critical commands to the

spacecraft. The SOM interfaces with NASA JPL/DSN and also with the backroom support.

System Engineer (SYS) is responsible for ground system engineering and defines the technical
support concept of a mission's ground segment. It supervises the development of new com-
ponents and adaption of existing ones also is responsible for the technical implementation

of the ground segment.

Mission Planner (PLAN) is responsible for defining the mission plan, collecting inputs from other
actors, and coordinating the scheduling of activities. An essential part of the PLAN is to ensure
there is a communication pass available when activities are planned that require either data

downloading, commanding uplink, and/or ranging information.

Spacecraft Controller (SPACON) isin charge of executing the relevant timeline (e.g. sending com-
mands to the S/C following specific Operational Procedure, and verifying the overall health
status of the spacecraft; reports to the SOM in case of anomalies etc.). Under the SOM au-
thorization the SPACON can issue critical commands.

In case of contingencies, the SPACON need to re-schedule, in coordination with the Naviga-
tion Team and the dedicated Subsystem Engineer, the activities and is the first responder for

anomaly handling.

Navigation (NAV) is in charge of the spacecraft trajectory and orbit determination for all mission
phases. This information is required for both planning purposes and for real-time mission
contingencies. The NAV monitors the on-board navigation system. The NAV is responsible
for determining the position of the spacecraft. The NAV also analyzes the flight parameters
e.g. ranging, attitude and orbital data coming from the ADCS sensors. The NAV keeps an

overview of station visibility and sun pointing for power purposes.

Ground Controller (GC) is responsible for the support to ground operations and for the configu-
ration of the control center hardware and software. The GC is the primary point of contact
for any hardware or software related troubleshooting.

The GC position is responsible for the coordination of communication sessions between the
MCC and the Deep Space Network via the Jet Propulsion Laboratory (JPL). The GC monitors
the reliability of the commmunication link and is responsible for network configuration in the

Argotec Mission Control Center.

2.4. Product Scenario

The space business environment is a challenging place for software developers, here the errors
must be reduced at its minimum and the ability of properly work in real time scenarios with satel-
lites, especially when the mission involves the Low Earth Orbit, is essential.

The Ground Segment Software must be able to help monitor the satellite telemetry during a real
time communication window. It is important that the information available is optimized and easy
to access by the user which must also be able to inspect historical data, of the same communi-
cation window, in case of needed analysis or contingency.

MARGOT is being developed with the possibility of changing missions profile very easily. For this
master's thesis the scenarios considered are the ArgoMoon and the LICIACube missions which are

Argotec's upcoming operation campaigns.

12

Release

® Didymos
i DART

- ot

N
N
‘Q' Orbital
% Maneuvers

. i - Scientific
‘Didymoon Operations

Oy

|

(a) Infographic of the LICIACube Mission (b) Infographic of ArgoMoon Mission

2.4.1. LICIACube

Following the scenario presented in the Abstract, after a successful deployment from DART (planned
to occur on 16 September 2022), LICIA will turn on all its subsystems, to perform in-orbit testing
and check the status pf the subsystems, calibrate the equipment necessary to fulfill the mission
objectives and reconstruct the satellite attitude. DART impact on Dimorphos will occur approxi-
mately 10 days after the LICIACube deployment, following a series of orbit and attitude maneuvers.
Along these days, and during the Close Apporach phase to the asteroid, the satellite(LICIACube)
will shoot photo of the impact area and the plume ejection. After this phase, LICIA will continue its
path for a total of about 6 months in which it will be able to communicate with Earth and exchange

scientific data and telemetries.

2.4.2. ArgoMoon

In an effort of increasing the scientific and explorative capability of the Space Launch System (SLS),
the National Aeronautics and Space Administration (NASA) Headquarter Exploration Systems Di-
rectorate has directed the SLS Program to accommodate Secondary Payloads.

The SLS is a heavy-lift launch vehicle designed to place Exploration elements into Low Earth Orbit,
to be transferred to higher orbits, and to evolve in capability to accommodate more complex and
demanding missions.

The ArgoMoon mission has been selected as the first European Mission promoting the develop-
ment of a CubeSat able to operate in deep space. Its photography will be used to support the
NASA and payload communities in providing information regarding the status of the secondary
payload deployment. The photographs of the SLS also provide for the NASA community the op-
portunity to visually inspect the condition of the second stage as it completes the final phase of its
mission. In addition, the ArgoMoon project will be an important demonstrator for new nano/small
technologies to be used in deep space for at least 6 months of lifetime.

Therefore, after the mission phase, the satellite will perform a series of autonomous maneuvers

with thechemical thruster before being injected in a geocentric orbit to test the Al algorithms and

13

to acquire photos of the Moon and the Earth. The satellite disposal will be performed into e helio-

centric orbit, as illustrated in figure 2.7b.

3. Requirements

There are many ways to describe what a requirement is, below are listed the two most used defi-

nitions:

“The software requirements specification is the basis for software development, it de-
scribes the functional and non-functional requirements and includes a set of use cases

that describe user interactions that the software must provided."[4]

"A functional requirement defines a function of system or its component where a

function is described as a specification of behavior between inputs and outputs."[6]

System
Requirements

Data Requirements

Network and _
| Security | Requirements
Requirements

{ ¢) 1

[General] [Architecture] [Operations] [Security }
| REQ-4310 |
| REQ-1110 | | REQ-2110 | | REQ-3110 |
| REQ-4311 |
REQ-1111 REQ-2121 REQ-3120
| REQ-4312 |
| REQ-1120 | | REQ-2130 | | REQ-3130 |
| REQ-4320 |
| REQ-1130 | | REQ-2140 |
| REQ-4321 |
REQ-2150
| REQ-4322 |
| REQ-2160 |
| REQ-4323 |
| REQ-3240 |
| REQ-4330 |
REQ-2210 REQ-3310
| REQ-4331 |
==
| REQ-4332 |
| REQ-2310 |
| REQ-2320 |

| REQ-2330 |

Figure 3.1: Requirements Table

A level of obligation a requirement has to met, to ensure a functional software is classified, can

be set by several keywords

Shall - The requirement is essential and must be implemented

Should - The requirement is a recommendation. Without its implementation the system can be

less efficient.

Can - The requirement is a possibility.

The search for these requirements involved Argotec's FCT, considering the purposes of the mis-

sions in which Argomoon and LICIACube will be operated. However, the main requirements have

been developed in order to meet the possible requirements of other future missions.

3.1. System Requirements

Requirement Description

REQ-T0 Purpose: Margot shall display to several users telemetry and other
information in a personalized and secured way through a server con-
nected to the main Argotec's Mission Control Software

REQ-1 Margot shall later permit to review the data.

REQ-T120 Audience: Margot should be used by Argotec and other possible
companies depending on stipulated contracts.

REQ-2110 There shall be three main components:

« A Data Provider
» A Server
« A Margot Client

REQ-2121 The data provider (DP) shall send the telemetry through a commu-
nication channel based on TCP

REQ-2130 The Server shall be responsible for receiving data from DP, store it
and send it to the clients

REQ-2140 The Client shall be devoted to data visualization in tabular and
graphical representations

REQ-2150 The DP shall be able to retrieve all telemetry available from the
spacecraft

REQ-2160 The Client shall be connected to the Server in order to retrieve real-
time and non real-time telemetry

REQ-3110 The DP shall connect to the server which has to be already running.
When the connection has been established the provider starts to
send the telemetry until the session is finished or the operator stops

the program

REQ-3120 At startup the Server shall read its configuration file, open a connec-

tion with the database and listening for clients connection requests

REQ-3130 During a telemetry flow, the Server will relay immediately the data

coming from the DP to the clients

REQ-3240 The Client shall retrieve data from the server following user requests

REQ-3310 The Client shall be able to visualize and retrieve data after the com-

munication has ended

Table 2: High-Level System Requirements

3.2. Data Requirements

Data requirements describe how data is managed by the system, indicating sources and desti-

nations as well as how data is stored on memory.

Requirement Description

REQ-2170 The Server shall be connected to the database in order to store data

REQ-3221 The Server, during a telemetry flow from the DP, shall relay the data

towards the clients and at the same time store them in the database

REQ-3222 The data shall be stored indicating the telemetry, the value, the cor-

responding time and the communication session associated

REQ-3232 The Client can request for historical data. After the request the Server
shall retrieve them from the database and send them to the corre-

sponding client

REQ-3330 When the connection with a client is closed, the Server shall not send

anymore real-time and historical data

Table 3: High-Level Data Requirements

3.3. Network Security Requirements

This section describes how the system network shall be based on and what are the security re-

quirements needed in order to avoid unauthorized access to data or to the Arotec's network from

outside.

REQ-1130 The Data Provider shall isolate the ground segment from incoming
unauthorized incoming commands from the Server

REQ-2210 The DP shall connect to the Server by means of a TCP connection,
only one connection shall be allowed

REQ-2230 The Client shall connect to Server by means of a TCP connection,
each Client shall open its own tcp session and there is no limit to
the number of connection allowed

REQ-2310 The DP shall be located in the company's Ground Segment Network

REQ-2320 The Server shall be located in a demilitarized zone (DMZ) in order to
linsten for new client connections

REQ-2330 The clients shall be located inside the company network physically
or by means of a Virtual Private Network (VPN) algorithm

REQ-4310 The DP shall be allowed to establish a secure connection with the
Server

REQ-4311 The Ground Segment Network shall not be accessible from outside
(no incoming connections)

REQ-4312 The DP shall be authenticated by the server by means of a secure
certificate

REQ-4320 The Client shall authenticate in order to receive data

REQ-4321 Each Client shall connect to the server with unique credentials

REQ-4322 The Client shall receive only data authorized by means of policies

REQ-4323 The Server shall respond to clients non-real time requests only if
they're compliant with data policies

REQ-4330 The Server shall accept only authorized users

REQ-4331 The Server operator shall be able to manage data policies

REQ-4332 The Server shall send each telemetry only to authorized Clients

Table 4: High-Level Network and Security Requirements

4. Design

‘Software Design is the process by which an agent creates a specification of a software artifact
intended to accomplish goals, using a set of primitive components and subject to constraints”
[15]

Together with Argotec’s FCT team a big work has been carried out in analyzing the current ground
software state of the art and developing a new architecture that better fits our needs. In this sec-
tion, the current software architecture is described, and a new design is proposed by defining the

data structure and management, security strategies and implementation details.

ToTTTTTTTTTTTmmmmmmmmmmmm T n Mission Control Center [
A I-. "

i i Display
Flight Operations software Terminal

t _1

Margot Clients

1z
& o

Ground segment
facility

Figure 4.1: Proposed Ground system architecture

The state of the art of the system presented earlier in chapter 2 allows to correctly visualize
telemetry through Display Terminals and send telecommands using FOS.

In this section the project design is explained.

4.1. How the system communicates

As can be seen in figure 4.1, the system is composed of a distributed architecture, this means that
the communication medium plays a fundamental role in the system composition, robustness and
security, as described in later sections.

The choice for implementing communications between system components laid on the Message
Queue Telemetry Transport (MQTT) protocol.

MQTT is a Client Server publish/subscribe messaging transport protocol. It is lightweight, open,

19

simple, and designed to be easy to implement. These characteristics make itideal for use in many
situations, including constrained environments such as for communication in Machine to Machine
(M2M) and Internet of Things (1oT) contexts where a small code footprint is required and/or network
bandwidth is at a premium [12].

The protocol runs over TCP/IP. Its features include:

« use of the publish/subscribe message pattern which provides one-to-many message distri-

bution and decoupling of applications.
« A messaging transport that is agnostic to the content of the payload.
« Three qualities of service for message delivery:

— "At most once’, where messages are delivered according to the best efforts of the oper-
ating environment. Message loss can occur.

— "At least once’, where messages are assured to arrive but duplicates can occur.

~ "Exactly once’, where messages are assured to arrive exactly once.
« A small transport overhead and protocol exchanges minimized to reduce network traffic.
« A mechanism to notify interested parties when an abnormal disconnection occurs.
MQTT defines two types of network entities:

« A message broker, constituting of a server that receives all messages from the clients and

then routes the messages to the appropriate destination clients.

« An MQTT client, representing any device that runs an MQTT library and connects to an MQTT

broker over the network.

Information is organized in a hierarchy of topics. Topics are treated as a hierarchy, using a slash
(/) as a separator. This allows sensible arrangement of common themes to be created, much in
the same way as a file system.

For example, the mission ArgoMoon (here indicated as AGM) multiple telemetries can be published

depending on their subsystem:
AGM/OBC/VTM

Which represents the topic where the on-board computer voltage telemetry will be published. Two

wildcards are available:

« + that can be used as a wildcard for a single level of hierarchy. It can be placed multiple
times for different levels.

For example

20

AGM/+/VTM
could be used to get voltages from all subsystems.
« # that can be used as a wildcard for all remaining levels of hierarchy.
AGM/OBC/#
could be used to get all telemetry related to the on-board computer.

When a publisher has a new item of data to distribute, it sends a control message with the
data to the connected broker. The broker then distributes the information to any clients that have
subscribed to that topic. The publisher does not need to have any information about the number
or locations of subscribers, and subscribers, in turn, do not have to be configured with any data
about the publishers.

As a standard functionality, the broker doesn't store messages, in fact, if there is a publication on
a topic on which there are no current clients subscribed the message is discarded. A possible
solution to this is suing retained messages where the broker can store for a short period of time
messages of a specific topic but it is not a functionality exploited in this project as data are stored
in a dedicated memory location.

The open source nature of the MQTT protocol has permitted the creation of many libraries for
almost all languages and development of ready-to-use brokers which only need to properly con-
figured. For this project the Eclipse Mosquitto broker have been chosen, an open source (EPL/EDL

licensed) message broker developed by the Eclipse Foundation and sponsored by Cedalo.

4.2. Subsystem Decomposition

As can be seen in figure 4.1 the new proposed architecture is composed by three main compo-

nents:
» Margot Server
« Data Provider

» Margot Clients

4.2.1. Margot Server
The Margot Server represents the core of the project and is composed by two functional elements:

« A MQTT broker, placed on a server machine, which is responsible for authenticating the Data
Provider and Margot Clients, receiving data from DP and send it to MCs subscribed to the cor-

responding topic. As stated before, the server doesn't normally manage retained messages

2]

and delegate data storage to the DHM.

Topics are organized in a hierarchical way, as can be seen in figure 4.2. Spacecraft telemetry
is divided in topics representing its subsystems. Report data such as events, anomalies, and
other packets received on request are under the report head topic. Also, history head topic
is used to handle historical data requests from Margot Clients. When a client requests his-
torical data it publishes the message indicating the telemetry needed and the timespan in
unix time inside the sub section called by its client ID repeated twice. The response, if present,
is published under the corresponding subsection, indicated by the client ID, using the same
topic structure used for the spacecraft telemetry.

To give an example, if a client having id equal to SystemEngineer requests the on-board com-

puter voltage historical data for the ArgoMoon mission it will publish the request on
AGM/history/SystemEngineer/SystemEngineer

and the response will be published on
AGM/history/SystemEngineer/ OBC/VTM

This kind of organization permits handling different requests at the same time without over-

lapping but it is less efficient because of possible repeated data over different topics.

Telemenv o

] Mission/ Report/ Event

Low Anomaly

Medium Anomaly

clientlD/ bl) T ——» Telemetry Data

Figure 4.2: Topic Structure Scheme

« A Data and History requests Manager (DHM) runs alongside the MQTT server. It is responsible

for data saving and historical data requests. The DHM manage a database containing all

22

telemetry as well as report data. When the application startups it loads the mission profile
(e.g. ArgoMoon or LICIACube) for that communication session and will keep it until the end of

the comm window. DHM is composed by two agents:

~ The first one is the Incoming Messages Manager (IMM). It checks if packets are formally
correct and if they contain all information required depending on the type of request.
If all checks are passed the task is inserted in a queue waiting to be processed by the
second agent.

Messages are in the form of a JSON file. Telemetry and event data use the following

format:
1 |{
2 "id": <topic.subtopic>,
3 "timestamp": <unix time in milliseconds>,
4 "value": <data (number or string)>,
5 "TYPE": O
6 |}

Listing 1: Telementry JSON format

where id indicates what telemetry is contained in the message, and it corresponds to the
topic with slashed (/) substituted by dots (.). TYPE field is used to distinguish between
incoming data (0) and historical data requests (1). Meanwhile, request messages use a

slightly different structure:

14

2 "id": <history.cliendID.CliendID>,

3 "start": <start time requested in unix time in milliseconds>,
4 "end": <end time requested in unix time in milliseconds>,

5 "TYPE": 1

6 |}

Listing 2: Request messages structure

Where start and end fields delimit the timespan required for the historical data.

~ The second agent is the Incoming Tasks Consumer (ITC). It manages all tasks inserted
in the queue filled by IMM. The ITC uses a server-like implementation in order to respond
to task execution requests. It is composed by a main thread used to retrieve new tasks
and worker threads that will actually compute the assignment.
All tasks need to access the database, either to data storing or for data retrieving, when
requested from a client and send data over an IP network. Database access is made ef-

ficient thanks to the Database Management System (DBMS) but still data are stored on

23

a secondary memory which is intrinsically slower. Therefore, it is important to optimize
tasks execution, memory access, and parallelize network usage in order to have faster
response time and avoid too many tasks waiting time.

The main thread works on a loop system which extracts data from the queue and insert
it to a dedicated thread pool as in figure 4.3.

The necessity of having an ordered and optimized tasks execution has led to the imple-
mentation of a thread pool. The thread pool permits achieving concurrency in a com-
puter program and also maintaining multiple threads waiting for tasks to be allocated
for concurrent execution by the supervising program. By maintaining a pool of threads,
the program increases performance and avoids latency in execution due to frequent

creation and destruction of threads for short-lived tasks [18]. As can be seen in figure

Completed
task

........ -— CUNPEER

Figure 4.3: Simple thread pool implementation

4.3, the main thread will try to assign a task to the first available thread and, if none is
available, it has to wait. With this kind of implementation the main thread must wait a
long time before the task can be assigned to an available worker making the system less
efficient.

To overcome this type of problematic a more efficient structure have been implemented
[14]. The new architecture is composed by a series of queues, one for each thread in the
thread pool. When a new task arrives it is assigned to the first available queue. The task
will travel down the queue until it is assigned to a thread. The task assignment is per-
formed by a Task Stealer (TS) which work is demanded to evenly distribute tasks over
different queues. What it does is take a task from a queue and assign it to a possibly
different thread than the one connected to the original queue. This kind of operation is
performed for example when a queue is empty and its thread is not working, and another
thread has waiting tasks in its queue, in this case the TS will take a task from the other
queue and assigns it to the unloaded thread. There are on the market official frameworks
like Windows Thread Pool, PPL for Windows or Apple Grand Central Dispatch for Unix Sys-

tems but they are platform dependent. Instead, the solution presented here is based on

24

10

11
12
13

14

15

16

17

18

C++17 standard and can work everywhere. This implementation can be 100 times bet-
ter than a single queue thread pool [14], and results only 16% slower than Apple Central

Dispatch framework which exploits kernel libraries.

2021_11_11_16_19: Delivery complete for token: 39884
2021_11_11_16_19: Delivery complete for token: 39885
2021_11_11_16_19: Delivery complete for token: 39886
2021_11_11_16_19: Delivery complete for token: 39887
2021_11_11_16_19: Delivery complete for token: 39888
2021 _11_11_16_19: Delivery complete for token: 39889

2021_11_11_16_19:Querying
SELECT time,value from tm_session, schedule where tm_session.Sid = schedule.
<~ Sid AND tm_session.Tid = 1358 AND +tm_session.Sid = 41 AND tm_session.
— time BETWEEN 1636647271399 AND 1636647601399 ORDER BY time;
2021_11_11_16_19:Querying
SELECT time,value from tm_session, schedule where tm_session.Sid = schedule.
<~ S8id AND tm_session.Tid = 1360 AND tm_session.Sid = 41 AND tm_session.
< time BETWEEN 1636647271399 AND 1636647601399 ORDER BY time;
2021_11_11_16_19: Delivery complete for token: 39890
2021_11_11_16_19: Delivery complete for token: 39891
2021_11_11_16_19:Querying
SELECT time,value from tm_session, schedule where tm_session.Sid = schedule.
<~ Sid AND tm_session.Tid = 1358 AND +tm_session.Sid = 41 AND tm_session.
<~ time BETWEEN 1636643973906 AND 1636647603906 ORDER BY time;
2021_11_11_16_19:Querying
SELECT time,value from tm_session, schedule where tm_session.Sid = schedule.
<~ S8id AND tm_session.Tid = 1360 AND +tm_session.Sid = 41 AND tm_session.
<~ time BETWEEN 1636643973906 AND 1636647603906 ORDER BY time;
2021_11_11_16_19: Delivery complete for token: 39892

2021_11_11_16_19: Delivery complete for token: 39893

Listing 3: Example of DHM Output

The ITC, with this optimization strategies, is able to manage thousands requests for his-
torical data during a communication session in few seconds while still storing new in-
coming data. In listing 3 can be seen an example the number of requests, reaching
almost forty thousands, served by the DHM after an hour of communication session with

the front room and back room clients connected together.

25

Scheduler

Thread

Figure 4.4: Complete thread pool architecture for the Incoming Task Consumer

4.2.2. Data Provider

The Data Provider is a TCL (pronounced "Tickle") framework used to retrieve data from FOS. Tool
Command Language is a powerful, open source, cross-platform dynamic programming language,
suitable for a very wide range of uses, including web and desktop applications, networking, ad-
ministration, testing and many more [17].

DP is mainly composed by two working sequences (i.e. two scripts) each one running on a single

thread environment:

« A Housekeeping Provider (HP) which listens for a Housekeeping message containing all the
spacecraft telemetry. The frequency of this type of message combined with the need to have
data as soon as possible, has raised the necessity to have a dedicated working sequence.

When a new housekeeping message arrives the HP will read all telemetry and send it one by

26

one to the Margot Server.
The script is optimized to send data before a new packet arrives from the spacecraft consid-

ering a max data rate of 1 pck/s.

« An Asynchronous Packet Provider (APP) which listens for asynchronous messages like events,
anomalies, and solicited messages (i.e. messages receives after an explicit request from the
ground station). Because of the asynchronous nature of messages, the APP creates a series
of interrupts serving a specific packet. In case one or more interrupts are fired in a short
period of time an automatic schedule mechanism managed by the TCL interpreter inserts

messages in an execution queue.

The two working sequences described earlier share some common areas as their functionalities
are similar. The scripts at startup use a configuration file which indicates what type of data to

acquire and how to use it using this notation:

AD213 :AGM.ADCS . ADCSVoltageAD213 <:raw|eval | "function >

SELECTION/TRANSFORMATION

Figure 4.5: Data Provider configuration file format

TM ID represents the FOS telemetry code and it is used to subscribe to the correct telemetry.

TOPIC represents the topic where the telemetry will be published. The dot is used as separator
character instead of the slash (/) because, as described before, inside the MQTT package
the topic field uses dots for a better compatibility with Margot Client software, but messages

are still published on slashed separated topics.

SELECTION/TRANSFORMATION field is optional and is used in order to modify standard acquisition
and sending flow of telemetry. This is due to the fact that each telemetry packet has two

fields for data value:

RAW which is an integer value coming directly from a sensor or representing a state value.

ENG which represents a transformation of the raw value. In case of sensor or general numeric
values it applies a polynomial transformation, for example a value of 3400 on the Solar
Panel Temperature is then transformed to 35.6 degree Celsius.

Instead, if state values are considered, it is composed by a string taken from a lookup
table, for example the value 3 on the Operational Mode of the spacecraft is translated in

the "Communication Mode" string.

It is important to notice that not always the ENG value is present as the RAW value is the only

available field in the packet.

27

Having described the transformation that can be applied directly by FOS before the acquisi-

tion, field states are described:

. row/eval indicates that the value to be taken from the package is the RAW value and if
the ENG value is present it is ignored. Raw and eval keywords have the same effect but

they are used for logical separation.

« ‘function’indicates the path to an external function used to transform the raw value be-
fore sending it out. It used when a synthetic value is required and/or a polynomial trans-
formation is not enough.

A good example is represented by the "download image telemetry” where the script cal-
culate the percentage of completion starting from the number of total packets compos-

ing the image and the number of the most recent packet arrived.

4.2.3. Margot Clients

A Margot Client (MC) is an application running on end terminals used to visualize telemetry by
means of a browser. All subsystems and code implementation described before works together
in order to provide a robust, reliable and fast way to retrieve data from the spacecraft and allow
the user to efficiently analyze data. The standardization of incoming messages permits developing
different clients which are used for various use cases. For example, a Margot Client is integrated
inside the Mission Planning Tool (MPT) where few important telemetries are visualized to keep track
of the correct execution of the planned communication windows timeline.

What has been developed in this thesis is a complete framework which permits to visualize all
telemetries and construct displays similar to what can be seen in figure 1.1.

The MC is a web application, running on browser, based on the OpenMCT project developed by
NASA [13]. OpenMCT permits to implement new functionalities via a plugin system where every-
one can develop its own for the most various scenarios. For this project two plugins have been

implemented:

« The first one configures OpenMCT by telling which are the telemetries. The plugin, at startup,
loads a configuration file written in JSON format called dictionary where telemetry informa-

tion is stored. An example of what a dictionary can contains can be seen here:

1 |{

2 "name": "LICIACube",
3 "key": "LCC",

4 "measurements": [

5 {

28

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

"name": "Battery State of Charge",
"key": "LCC.POWER.soc",
"values": [
{
"key": "value",
"name": "Value",
"units": "%",
"format": "float",
"hints": {
"y": 1,
"range": 1
}
1,
{
"key": "utc",
"source": "timestamp",
"name": "Timestamp",
"format": "utc",
"hints": {
"x": 1,
"domain": 1
}
}
]
}
]
Y

Listing 4: Dictionary JSON structure

As can be seen the dictionary is formatted as a JSON object containing on the inside all in-
formation about the spacecraft, starting from the name and its identification key. The mea-
surement field contains a vector where telemetries are listed. Each telemetry is identified by
its name and key, which in this implementation also represents the relative topic with slashes

substituted by dots. The Values field describes the telemetry format:

The first object is the value object and describe the telemetry data characteristics like the
format and the unit. The other information are used to properly setup OpenMCT. In the

case of an enumerating telemetry, this field will also contain the conversion lookup table.

114

29

2 "key": "value",

3 "name": "Operational Mode",

4 "format": "enum",

5 "enumerations": [

6 {

7 "yvalue": O,

8 "string": "SUN POINT MODE"
9 1,

10 {

11 "value": 1,

12 "string": "COMMUNICATION MODE"
13 }

14]

15 |}

Listing 5: Values first object field structure

The second object defines the time format to use in order to position data in the correct
timespan. The format field indicates what time of time is being used and in this imple-
mentation the standard configuration has been used by setting the Coordinated Univer-

sal Time (UTC).

The information contained in the dictionary file could be also used to hide telemetries to cer-
tain users following security measurements, but this aspect will be discussed in the Access

Control and Security section.

zzzzz ADCS COMMAND STATUS o
0cs oo reseoTsTarus |[ERER

“
PS——
s =

uuuuu

EPS S Status

LCL Switch Status

Figure 4.6: Margot display developed by Argotec

« The second plugin is demanded to data reception and requests. At startup the program

connects to Margot Server and maintains the connection using ping messages. When the

30

user wants to visualize a telemetry it will subscribe to the corresponding topic, defined in the
dictionary as described before, and at the same time sends a request to the DHM for historical
data in order to retrieve old data depending on the time span visualized on graph. The plugin
will request data also in case the user decides to manually move across the timeline.

If a display containing multiple telemetry like in figure 4.6 is opened the plugin will perform

the same operations describe before for each one of them.

4.3. Persistent Data management

As stated before, the Data and History requests Manager is responsible for data consistency by
saving all incoming telemetry into a database managed by a DBMS. Formerly a DBMS is defined
as a "software system that enables users to define, create, maintain and control access to the
database” [2]. The DBMS chosen for this project is MySQL, an open-source Relational DBMS, called
like that because it is based on a relational model.

The objective of having a database for this application is the necessity of retrieving data really fast
and under some specific condition of time or location (in this case considered as the subsystems

of the spacecraft).

4.3.1. Relational Model

N

N TM_Session l (S— w

+Sid int(11) —
+Tid: int(11) +Tid: int(11)
Schedule +Time bigint(11) N +STid: int(11)

+Value: varchar(1000) +name: varchar(200)
+Sid: int(11) +description: varchar(200)
+StartTime: timestamp +format: varchar(10)
+EndTime: timestamp
+Active: tinyint(1) N

+SCid: varchar(10)

_ Y,

(Spacecraft]

+8SCid: varchar(10)
+description: varchar(10)

+STid: int(11)
+SCid: varchar(10)
+Name: varchar(200)
+description: varchar(200)

Figure 4.7: Database Relational Model

The relational model of the Spacecraft is very straightforward. The structure has been optimized in
order to easily access telemetry based on the corresponding communication session or the be-
longing subsystem. The system is thought to be used as a single database for all missions leaving
to proper querying the capability of filtering data using the spacecraft identification code (table 5).

Since Margot is being developed as a spacecraft telemetry viewer, referring also to figure 4.7, each

31

mission is represented by an entry inside the Spacecraft table. Each system is then decomposed

in subsystems stored in the SubSystem table and finally the telemetry is saved inside Telemetry

table.

To keep track of each communication session the Schedule table is used containing for, for each

entry, the associated mission code. The Active field indicates which session is in communication,

and more generrally what session is used to store incoming data, or is scheduled to be next. This

field is really important as it is used by the DHM to associate incoming telemetry to the correct

communication session.

To store telemetry corresponding to a communication session, a many-to-many (N-to-N) relac-

tionship between Telemetry and Schedule tables is hecessary resulting in a new table indicated

here as TM_session and used by DHM to memorize data coming from Margot Server.

Table Item Description ‘
SCid Spacecraft (mission) identification
Spacecraft
code
Description Very brief description of the mission
STid Subsystem identification code
SCid Spacecraft (mission) identification
SubSystem
code
Name Name of the subsystem
description description of thr subsystem
Tid Telemetry identification code
STid Subsystem identification code associ-
Telemetry ated with the telemetry
Name Name of the telemetry
description description of the telemetry
format C-like telemetry format
Sid Communication session identification
code
TM_Session
Tid Telemetry identification code
Time timestamp associated with telemetry
data
Value value associated with telemetry data
Sid Communication session identification
code
Schedule StartTime Communication session start time

32

EndTime Communication session end time

Active Active session flag

SCid Spacecraft (mission) identification

code associated with the communi-

cation session

Table 5: Database Description

4.4. Access Control and Security

As reported in the requirements, Margot will be used by a multitude of people coming from different
areas, projects, and companies. This characteristic of the project led to the development of an
access control system and the adoption of some security measures. Despite the Access Control
(AC) is part of the information security field, its importance in this project demands a separate

section.

4.4.1. Security

‘Computer security is the protection of computer systems and networks from informa-
tion disclosure, theft or damage to their hardware, software, or electronic data, as well

as from the disruption or misdirection of the services they provide."[10]

Margot is a web application where its components communicate using an IP network which is
intrinsically not secure. The user authentication is performed using a specific plugin which is de-
scribed later. The importance of having security measures is due to the fact that Margot's clients

are allowed to connect from three different logical locations:
« From the Mission Control Center network where the Data Provider is located.
« From Argotec's network.
« From outside Argotec's network.

The first two are protected using specific network policies inside Argotec's firewalls that control the
traffic looking for possible malicious irruptions. The third is connected using a secure connection
tunneling based on the IPsec protocol [1] which provides packet encryption and authentication
between two hosts over the internet protocol. It is also used by the DSN to send data to the Mis-
sion Control Center in the first place. In order to accomplish such functionalities the protocol is

composed of these main protocols:

33

« Authentication Header (AH) which is used for authenticating data origin of IP datagrams,

checking data integrity, and provide protection against replay attacks.

« Encapsulating Security Payload (ESP) provide authentication of data origin for IP datagrams,

data confidentiality and a limited flow confidentiality.

« Internet Security Association and Key Management Protocol (ISAKMP) which provides a frame-
work for key exchange services using pre-shared keys, Kerberized Internet Negotiation of Keys
(KINK), IPSECKEY DSN records, or Internet Key Exchange (IKE), and authentication services. The

purpose of this framework is to provide a Security Association (SA) for key signing.

With these security measures Margot is able to operate with secured authentications and data

confidentiality inside Argotec's network but also outside.

4.4.2. Access Control

The AC is used for the user authentication service. Each agent that wants to authenticate to the

Margot Server has to provide a backhoe of credential string formed by:

« ClientID
« Username
« Password

Having a combination of three credential fields permits to have a much more secure and strong
authentication.

The authentication is performed by Margot Server using Mosquitto Dynamic Security Plugin (DSP)
[5]. It permits user authentication using the triplet described before. Also, multiple users can be
placed into a group in case they need to have the same access. DSP allows also to disable users
without permanently removing the credential. Access control lists are configured by defining roles,
which are containers of multiples ACLs and can be assigned to clients and/or groups.

ACLs are the feature which allows access to topics to be controlled. Checks are made on different

events as they happen:

« publishClientSend occurs when a device sends a PUBLISH message to the broker (i.e. is the

device allowed to publish to this topic). By default, it is set to deny.

» publishClientReceive occurs when a device is due to receive a PUBLISH message from the
broker (i.e. it has a valid subscription and a matching message has been published to the

broker). By default, it set to allow.

« subscribe occurs in response to a client sending a SUBSCRIBE message. By default, it set to

deny.

34

« unsubscribe occurs in response to a device sending an UNSUBSCRIBE packet. By default, it set

to allow.

Each ACL has a topic and a priority, and can be set to allow or deny. The publishClientSend and
publishClientReceive types map directly to the events of the same name. The topic can contain
wildcards, so allowing send access to AGM/OBC/# will allow devices to publish to all topics in the
AGM/OBC/# hierarchy, including AGM/OBC. The subscribe and unsubscribe events have two ACL

types each: subscribeliteral, subscribePattern, unsubscribeliteral, and unsubscribePattern.

« *Literal ACL types make a literal comparison between the topic filter provided for the ACL
and the topic filter provided during subscribing or unsubscribing. This means that setting
a subscribeliteral ACL with topic filter to # to deny would prevent matching devices from

subscribing the # topic filter only, but still allow them to subscribe to AGM/#, for example.

« *Pattern ACL types allow or deny access based on a wildcard comparison of the ACL topic
filter and the topic provided during subscribing or unsubscribing. This means that setting a
subscibePattern ACL with topic filter # to deny would prevent matching devices from sub-

scribing to any topic at all.

There is some overlap between publishClientRecevive and subscribe. Usually, subscribe is suffi-
cient, however they can be combined to allow subscriptions to a wildcard topic like AGM/#, but
deny access for devices to receive messages on a specific topic within that hierarchy like AG-

M/OBC.

35

5. Software validation

“Verification and Validation processes are used to determine whether the development
products of a given activity conform to the requirements of that activity and whether
the product satisfies its intended use and user needs. The scope of software valida-
tion processes encompasses systems, software, and hardware, and it includes their
interfaces. This standard applies to systems, software, and hardware being developed,

maintained, or reused."[8]

Performing a software validation is essential as it allows taking confidence with the new devel-
oped system, understand its limits, and more importantly verify that it can be used in an actual
space mission. There are mainly two aspects of Margot that are critical. The first one is related to
the system information reliability: Margot will be used during real-time communication sessions
with a satellite, and each minute, in which the CubeSat is in communication mode, must be used
in the more efficient way. For this reason, Margot shall provide real data without modifications of
any kind that can cause false positive contingency situations. Therefore, it is necessary that data
visualized by Margot is comparable to the one provided by the MCS.

The second aspect is also related to reliability: Margot must perform its work without stalling or
stopping at all. For the same reason explained earlier, Margot is mostly used by users having a
fundamental role in mission operations, so it is important for these figures to have constant ac-
cess to the most recent telemetries to prevent missing crucial events or problematics that can
compromise the good outcome of the communication session or the entire mission. With these
objectives in mind, Margot has been tested and validated by Argotec's Flight Control Team ex-

ploiting the testing and training campaign for the two LICIACube and ArgoMoon missions.

5.1. Test Setup

For test setup is intended all operations needed to be performed on the environment, in this case
Argotec's Mission Control Center, in order to simulate the working environment as much as pos-
sible. Two different setups have been taken in account, Ground Data System (GDS) tests and
Operations Training tests, used depending on the mission preparation schedule, as can be seen
in figures 5.1 and 5.3 where Argotec's Mission Control Center is simplified for a better readability
but for reference it is considered the same structure as in figure 4.1.

During each of the tests, Margot is used to display the arriving telemetry and, at the end, during
debriefing, feedbacks are collected from the people involved in the testing, in order to resolve bugs
and implement useful functions (i.e. addiction of telemetries or development of new displays).

For all tests Margot Server runs on a Windows 10 machine, with a 6-core Ryzen 5 3600X at 3.79Ghz

36

with 16 GB of RAM.

5.1.1. GDS Tests

1
3
{3
4]

Figure 5.1: GDS setup

Ground Data System are tests required from the Mission Interface Manager assigned to the
mission, where the MCC is requested to be directly connected to the DSN Operation Center and
the dedicated Antennaq, via the MCS. This test is required by NASA to ensure that the connection
between the MCC and each of the antennas that will be used during real-time operations is work-
ing fine, telemetry successfully flows to the MCC, the MCC is able to send telecommands and the
dedicated antenna for the test is able to irradiate the telecommands to the space. The test must
be repeated for each of the antennas of the DSN and its good outcome is essential for the opti-
mal approach at the mission startup. This kind of test is defined End-To-End (E2E) as the network
infrastructure involved start from the antenna's uplink/downlink path and arrives to the Argotec's
MCC.

The GDS is also useful to test the main MCS, including the FOS, and detect possible bugs that can
compromise the communication sessions so that the FCT can work to a solution before actual
real-time operations.

In particular, the test is performed between Argotec's Mission Operations Center (MOC) and NASA's
Network Operations Center (NOC) by means of a real-time Voice over Intenet Protocol (VoIP) com-
munication session called LOOP. The loop is established between the project's MCC (in this case,
the Argotec's MCC) and the Station Conferencing and Monitoring Arrangement (SCAMA) and fol-
lows specific rules, mostly military-style, which help to reduce most communication ambiguity by
defining calling procedures, voice check protocols, alphanumeric and numeric spelling rules (i.e.
using the NATO phonetic alphabet like in figure 5.2).

During the GDS tests, the following tests have been performed on Margot using a single client

equipped with a 4-core Intel i5-1135G7 at 2.42Ghz with 8 GB of RAM connected to Margot Server:

» System reliability over time.

37

« System resources usage, in particular primary memory, and CPU.

« System network activity and band occupancy.

« Real-time delay between MCS and Margot displays

A/ B/ C D E
Alpha | Bravo | Charlie | Delta Echo
FI G| H]| I
Foxtrot | Golf Hotel India Juliet
K| L M N O
Kilo Lima Mike |November| Oscar
P Q R|S|T
Papa |Quebec| Romeo | Sierra | Tango
U V. W X|Y
Uniform| Victor |Whiskey| X-ray | Yankee
Z
Zulu

Source: https://tinyurl.com/dmsc633u

Figure 5.2: NATO Phonetic Alphabet

5.1.2. Operations Training

Satellite
Radio Simulator

e o

Figure 5.3: Operations trainig setup

T T T T T Mission Control Center

Operations training consists of all those activities that aim at performing better, just like an athlete

has to train to increase its performance, the FCT needs to train to improve its productivity and

efficiency as a team. The training has the objective to prepare the FCT to real communication

sessions in various aspects:

Voice Loop Protocol . Following the same protocol used during GDS tests, but this time it is used

for internal communications. With the assistance of a dedicated software that permits to

establish a main communication channel, called master loop, it is defined where all impor-

tant information are communicated along with a series of secondary loops for private com-

munications between components of the FCT. For example, if a private loop assigned to the

Ground Controllers to the mission is present (i.e, the GC Ioop),everyone in the front or in the

38

https://tinyurl.com/dmsc633u

back rooms who wants to speak with the Ground Controller privately can enter this loop.
The purpose of doing Operations Training using the voice loop protocol consists of becoming
more confident with it and increase the efficiency using fast, concise and useful exchange of

information.

Understanding the spacecraft behavior People working in the FCT usually differ to the ones who
developed the spacecraft. The FCT needs to take confidence with the spacecraft, to under-
stand how it behaves not only by reading the documentation but also by actually using it. The
main difficulty resides in the impossibility of using the real spacecraft for security and logistic
reasons (i.e. it could be already mounted on-board the launcher or the training campaign is
performed after the launch event). To overcome this problematic Argotec's FCT is equipped
with a Hardware in the Loop (HIL) system, called FlatSat, that is an exact replica of the flying
spacecraft. They share the same hardware as well the same software version, unless the test
is focused on a new software update. In that last case the new software release is tested to
understand if the new version do what it is expected to (i.e. if a corrective patch does resolve

the problems and doesn't add new ones) before being uploaded onto the real spacecraft.

Understanding ground software limitations and finding new bugs As for the GDS tests, operations
training is an opportunity to gain experience with the MCS through different mission scenar-
ios, to discover problems with the software functionalities, and trying new solutions that could

prevent those to appear.

Verification and Validation of Procedures Each operation performed on the spacecraft, like shoot-
ing and downloading a photograph, usually can't be performed by just clicking a button but
instead a series of telecommands and checks on the telemetry must be followed, as can be
seen in table 6. A good comparison is the checklist that military pilots have to follow when
starting up a fighter jet. Before it can be used in the actual mission, a procedure must be
developed, tested and validated. Testing a procedure on the FlatSat permits to perform a
debug campaign, prepare the team to predict what is considered a nominal behavior of the
satellite, and being more efficient at recognizing incorrect behavior.

Moreover, trying a procedure is helpful in understanding the time needed for its completion
and give the possibility to became faster maintaining at the same time high reliability of the

operation performed.

Using this setup, the tests performed on Margot are the same as the ones performed during GDS
tests, with the main difference represented here by the increasing number of Margot Clients con-
nected. In fact, during this test, Margot client is used by front room and back room engineers

counting in total up to 25 people connected at the same time.

39

Event Description

PURPOSE
To change the On-Board
Time (CUC Time)

Required Action

Expected Results

REQUIRED CONFIGURATION
Radio in TX/RX Mode
Uplink and Downlink comms

estrablished

SPECIAL OPERATIONAL CON-
STRAINTS
S/C not in Safe Mode

REQUIRED INPUT/INTERFACES
The following parameters are
required to execture this pro-
cedure:

« Coadrse Time

« Fine Time

Preliminary Checks

2]

Call up display(s)

22

RADIO Demodulator Lock

Verify telemetry:
TMOOI1
RADIO_DEMOD_MODE=LOCK

Telemetry confirms
s/C is correctly

locked

23

Radio in TX/RX mode

Verify telemetry:
TMO10
RADIO_MODE=TX+RX

Telemetry confirms
s/C ready to trans-

mit and receive

24

S/C not in Safe Mode

Verify telemetry:

TMAQ0

OBC_MODE not in
SAFE_MODE

Confirmation S/C

not in Safe Mode

40

25 Verify Coomms are enabled | Send Telecommand Telemetry TMFC2
TCOO1 in the Telemetry
"Are you Alive test’ Flow Panel con-
firms connection is
Verify Telemetry: working nominally
"Are-you-alive connection
test report” TMFC2
2.6 Verify current On-Board Time | Check the clock on the main | Indication of the
screen of MCS, or, in alter- | current On-Board
native, the "Generated Time" | Time
field in the incoming Teleme-
try Packets
3 Changing the On-Board
Time
3.1 Set a new On-Board Time Send Telecommand: A change in the
TCO067 clock on top of
"CUC_SET_TIME" the main screen
With Input: of MCS, and in the
COARSE_TIME=timestamp ‘Generated Time'
field of the in-
coming Telemetry
Packets
3.2 Send TT-command to verify | Send Telecommand Execution of TT-TC
execution wrt new OBT TCOO01 at the correct time
"Are you Alive test"
With Input:
timestamp
4 Final Status:

Change of the On-Boad
Time

Ground Link ON

END OF PROCEDURE

Table 6: Example procedure for the change of the On-Board Time

41

5.2. Test Results

During GDS and Operations Training information about the system have been collected in order
to measure the system performance.
The first analysis is referred to the network usage of Margot Server while the second one is focused

on analysing the performance on the machine in terms of resource utilization.

5.2.1. Network

Network bandwidth is a precious resource and it is fundamental that the its usage remains low
so that the communication medium is not saturated and excessive response lag from the DHM is

avoided. The downlink, representing incoming data on the machine where the server is hosted,

1200,00
1000,00
800,00

600,00

kB/s

400,00

200,00

6:47:00

= Down Rate (kB/s) === Up Rate (KB/s)

Figure 5.4: Network usage during Operations training

is mainly used by the connection with the Data Provider and requests by Margot Clients. Mean-
while, uplink, representing server outgoing data, is used to send real-time data and historical data
responses to Margot Clients. In figures 5.4 and 5.5 the uplink and downlink data utilization is mea-
sured during a training for space operations where it is evident the division between three distinct
communication windows. The test has been carried out during a training session with 15 clients
connected.

For the downlink the mean communication bandwidth is 88 KB/s instead for the uplink is 300 KB/s
that, for modern network, are really low values. These results demonstrate that the system is re-
ally scalable in terms of network utilization and it can support the connection of far more clients
than the ones needed for a space operation’'s session. It can be also noted that, between two
communication windows, there is still some bandwidth being occupied which is due to ping mes-

sages and ping responses between the server and the clients used to maintain the connection

42

opened when there is no data to be sent or received. Regarding the network utilization through
time, for the downlink the bandwidth remain more or less constant with some variations depend-
ing on the spacecraft message frequency. Meanwhile, the uplink has some spikes in the data rate
which are particularly evident and they are also present between a communication window and
another. Those spikes represent historical data requests which require more bandwidth utilization
but the tests demonstrate that they never exceeded 117 MB/s confirming the network efficiency of
the system. Looking at the figure 5.5 is particularly evident the proportional relationship between
the amount of data received by the spacecraft and the one sent out to the clients. For this training

session the total amount of data received by the server is 435.7 MB, while for the uplink it is 1.5 GB.

1000,00

100,00

kB/s

10,00

= Down Rate (kB/s) === Up Rate (KB/s)

Figure 5.5: Network usage during Operations training using logarithmic scale

5.2.2. Performance

The second analysis is relative to the performances that the server and clients have on their ma-
chines through time. The test has been carried out using a half dozen clients connected to a server
while receiving telemetry. The kind of data collected for either the server and the client are the CPU
usage, the memory occupation, and the I/O activity which in this case is associated with network
activity.

In figure 5.6a can be seen the results for the server. The CPU usage reaches almost zero percent-
age with some little spikes in correspondence to historical data requests, but it never exceeds 15
percent of the available computational power. For what concern the memory usage there is a
proportional growth in correlation with historical data requests retrieved by the DHM. Although the
bytes reserved by the DHM are not deallocated, it has been demonstrated that the memory utiliza-
tion does not reach critical values during a nominal communication window and this phenomenon

doesn't slow down the sever machine by never introducing disk swap operations. Regarding the

43

I/O a pattern is noticeable representing constant data coming from the spacecraft at regular time
intervals and, as also mentioned before, the spikes represent historical data requests from Margot

Clients. In figure 5.6b can be seen the resource utilization of one Margot Client. The CPU usage

CPUUsage

CPU Usage

1 ' ol |
oo W 1 i A 7.02%
Friete Bytes Private Bytes
G 197.1MB
10 1/0
1k
il h .
| i
I 1 H “ l :l MMMM'
R 21 MB
(a) Margot Server (b) Margot Client

Figure 5.6: Performance results

always remains below 20 percent where the spikes are connected to the arrival of incoming data.
This result demonstrates that Margot can be used on a vast range of machines with less com-
putational capabilities. For what concern the memory utilization, through all the communication
session the amount of bytes occupied never exceed 200 MB, even during historical data requests,
avoiding possible RAM exceeding causing disk swap situations. Finally, considering the I/O activity,
the amount of data received is proportional to the information coming from the spacecraft and
the number of requests made by the user, but it remains below the maximum throughput of a

classic wi-fi connections considering 2.4 GHz and 5 GHz frequencies.

44

6. Further Work

[Data Input]

position/
orientation
in scene

Keypress/

Mouse Click SetNextFrameTime() \

depending on time mode » |

and amount of time that

has passed)

Objects
glutSwapBuffers()

(Viewport \

glutMainLoop

y ' place camera| _ /
’ with (V 3
gluLookAt vertices,
- (...) shapes, gTRotate
colours, glTranslate

= i <\

\&

Source: https://tinyurl.com/5xn8nfde

Figure 6.1: 3D-Visualisation of Flying Satellites - Step By Step

During these months of development, Margot has improved FCT's productivity during spacecraft
operations, demonstrating that it can give a solid contribution in data monitoring and analysis.
It has become a fundamental tool during training by allowing the FCT to develop displays capa-
ble of showing in real time the behavior of the spacecraft simulator and easily "zapping’ between
telemetries really fast.

But there is still a lot to do and improve. A good starting point, which came out from the test and
validation phase, is the optimization of the amount of resources locked by the server. The objective
is to keep the mean value of the private bytes (referring to the figure 5.6a) as constant as possible.
The DHM source code has already been analysed in order to find when the program should release
data. The outcome of this analysis is that the Microsoft SQL connector retains data inside the SQL
cursor, but it is not yet clear how to dispose of its resources so further effort must be carried out.
Standard telemetries, taken from the MIB, are not always enough and there are some synthetic
data that can be provided. A good example is the download percentage of images coming the
spacecraft payload or unit/time conversions of the on-board time. Testing Margot during oper-
ations training allow receiving a lot of feedback from colleagues. From these sessions, the ne-
cessity of having a dedicated section where telecommands can be visualized came out as well
as the possible integration of Margot together with Argotec's Mission Planning Tool. The MPT can
manage the communication schedule saved in the database and update it accordingly during

the mission. Also, the MPT can benefit from some real time telemetries like the battery current and

45

https://tinyurl.com/5xn8nfde

voltages which can be used to precisely calculate communication windows duration before the
battery need recharging, or the spacecraft operating mode telemetry to quickly know when it is
in communication mode. Furthermore, Argotec's FCT is evaluating the introduction of a real-time
rendering of the spacecraft in space following attitude and orbital attitude telemetries [7]. The
objective is to use a graphical engine (like OpenGL, Unreal Engine or Unity) that runs in a loop (fig-
ure 6.1) and constantly update the spacecraft model inside the environment represented in this
case by the solar system. This functionality not only allows to have a better understanding of the
spacecraft orbit and attitude but also allows, with the introduction of virtual cameras, to simulate
and predict cameras framing that, for the scenarios considered here, LICIACube and ArgoMoon,
are represented by the payloads. The implmentation can be integrated with a predictive model to
be used when the spacecraft is not in communication and, by calculating the accumulated errors
between two communication sessions, helping Argotec's team fine-tuning the system parameters

for better predictions.

46

7. Conclusions

With this thesis work, a web-based ground segment software has been developed to support Ar-
gotec's ground operations, taking the ArgoMoon and LICIACube missions as case studies. The
requirements identified as fundamental have all been achieved by allowing the user to display
and analyse telemetry in real time and non-real time scenarios. The software can store data into
a dedicated database and can retrieve this information when requested, also it can withstand
work loads coming from dozens of clients at the same time. To validate the project objectives
Margot elements were tested, and the results analysed through test with hardware in the loop.
The remaining requirements and future developments will help to implement other features in the
framework.

It should be noted that this work can be used not only for the missions reported in this thesis, but
also for future activities. Using external files, such as configurations file described in the previous
chapters, will allow the initialization of Margot without changing the source code. At the time of
writing, the LICIACube mission is on its journey to Dimorphos, the opportunity of testing Margot on

a real-time communication is closer every day.

47

References

[1] Steven Bellovin. Guidelines for Specifying the Use of IPsec Version 2. RFC 5406. Feb. 2009. DOI: 10.

17487 /RFC5406. URL: https://rfc-editor.org/rfc/rfc5406.txt.

[2] Carolyn E. Connolly Thomas M.; Begg. Database Systems — A Practical Approach to Design Implemen-

tation and Management (6th ed.) Pearson, 2014.
[3] “Deep Space Network”. In: https://it.wikipedia.org/wiki/Deep_ Space_Network (2021).

[4] U. Erikson. “Functional vs Non Functional Requirements”. In: https://www.analyticsvidhya.com/blog/2020/05/artstor;

analytics-data-science/ (2021).

[5] Eclipse Foundation. “Dynamic Security Plugin”. In: https://mosquitto.org/documentation /dynamic-security/

(2021).

[6] Vandermolen R Fulton R. Airborne Electronic Hardware Design Assurance: A Practitioner’s Guide to

RTCA/DO-254. CRC Press, 2017.

[7] Lena Firnstall. “3D-Visualisation of Flying Satellites — Design, Implementation and Surprising Use Cases

- FDSSO”. In: 2021.

[8] “IEEE Standard for System and Software Verification and Validation”. In: IEEE Std 1012-2012 (Revision

of IEEE Std 1012-2004) (2012), pp. 1-223. DOI: 10.1109/IEEESTD.2012.6204026.

[9] ISO, ed. Information Technology—Open Systems Interconnection—Basic Reference Model: The Basic
Model. 2nd ed. International Standard. Vol. ISO/IEC 7498-1:1994. 1994.

[10] Schatz - Daniel - Bashroush - Rabih - Wall - Julie. Towards a More Representative Definition of Cyber-

security. Journal of Digital Forensics Security and Law, 2017.
[11] “MATLAB?”. In: https://en.wikipedia.org/wiki/MATLAB (2021).

[12] “MQTT Version 5.0 OASIS Standard”. In: https://docs.oasis-open.org/mqtt/mqtt/v5.0/0s/mqtt-v5.0-

os.html (2021).
[13] NASA. OpenMCT. GitHub Repository.

[14] Sean Parent. “Better Code Concurrency”. In: https://vorbrodt.blog/2019/02/26 /better-code-concurrency/.
Ed. by NDC London. 2017.

[15] Paul Ralph and Yair Wand. “A Proposal for a Formal Definition of the Design Concept”. In: Design
Requirements Engineering: A Ten-Year Perspective. Ed. by Kalle Lyytinen et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 103-136. ISBN: 978-3-540-92966-6.

[16] CCSDS - Consultative Committee for Space Data System. Space Link Extention - Internet Protocol for

Transfer Services.

[17] “TCL Developer Xchange”. In: https://www.tcl.tk/ (2021).

48

https://doi.org/10.17487/RFC5406
https://doi.org/10.17487/RFC5406
https://rfc-editor.org/rfc/rfc5406.txt
https://doi.org/10.1109/IEEESTD.2012.6204026

[18] “Thread Pool”. In: https://en.wikipedia.org/wiki/Thread_pool (2021).

[19] Michael Schmidhuber homas Uhlig Florian Sellmaier. Spacecraft Operations. Springer, 2015. ISBN: 978-

3709118023.

49

	Introduction
	State Of the Art
	Some Context: What is a Cubesat
	Some Context: Mission Control Center
	Some Context: The Flight Control Team
	Product Scenario
	LICIACube
	ArgoMoon

	Requirements
	System Requirements
	Data Requirements
	Network Security Requirements

	Design
	How the system communicates
	Subsystem Decomposition
	Margot Server
	Data Provider
	Margot Clients

	Persistent Data management
	Relational Model

	Access Control and Security
	Security
	Access Control

	Software validation
	Test Setup
	GDS Tests
	Operations Training

	Test Results
	Network
	Performance

	Further Work
	Conclusions

