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Abstract
The main goal of the thesis work is to verify some of the improvements

brought by an innovative digital system modelling approach, SystemC
Transaction Level Modelling, which is based on the abstraction of inter-
module communication from the architectural details of the functional
units and the communication protocols.

The parameter under verification is the simulation performance of the
behavioural model of a CAN controller peripheral device, described in
SystemC TLM1.0, with respect to a CAN controller described in VHDL.
In order to obtain a valid comparison of the simulation times it is needed
to have two devices with the same design complexity; therefore, the two
versions are similarly described, namely they have the same external
interfaces, they include the same type of sub-modules and their main
threads, managing the frame transmission, reception and processing, have
similar body structures.

Each of the two modules is tested by a functional testbench, performing
a determined amount of frame transmissions between two CAN nodes and
verifying the correctness of each transmission by collecting the processed
frames from the receiving node. Thus, the test applied on the TLM
device and on the VHDL benchmark are the same and they run on a
common server, in order to measure the simulation performance in terms
of the amount of real time corresponding to the same simulation time
interval.
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Introduction

The design flow adopted in the development of application specific electronic devices
involves, at the first stage, the functional description of HW architecture, which is
necessary for the HW tests and validations and the possible SW development. In
particular, if the device includes some software running on, or even an OS developed
on a custom architecture, also all the SW developing, debugging and validation
procedures have to be performed subsequently. For these reasons, the whole process
could be optimized if the architecture modelling latency is shrunk, or if there is
a way to develop SW and HW in parallel, with the SW running on an abstract
platform that functionally replicates the HW behaviour. In addition, with the
growing complexity and modularity of electronic systems, an efficient architecture
exploration among block layers is fundamental to go deep at different levels of
implementation, while considering that ASIC systems reach better performances by
integrating the SW to the specific HW. At the time, the most used languages for
ASICs are RTL description languages like VHDL and Verilog, allowing to design
electronic structures of any complexity at the deepest levels of detail, namely the
Register Transfer Level (RTL) and Gate Level. Nevertheless, even if they provide
a satisfying exploration, every system should be developed from scratch because
there is no reuse of the code, except for some basic modules, then the embedded
SW can be developed and simulated only after the compilation of the validated
HW architecture. Therefore, it is not possible to proceed with a preliminary high
level formal verification (e.g. application or architectural level tests); moreover,
there is no inter-module communication protocol by which the signals between
modules are controlled, it represents a boundary for any processor based system.
An innovative approach based on SystemC language is gaining momentum in the
HW design, intended to solve the practical problems shown above by: - providing
a platform for hardware dependent software development in early stages of design
flow, - allowing system level design exploration and verification, - creating system
level models for block level verification, - reusing the code between projects and
between various abstraction levels in the same project The aim of the presented
work is to demonstrate the improvements of the TLM modelling w.r.t. the RTL
one in terms of simulation performances, by creating an ASIC system (a CAN
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Introduction

controller device) in both languages and simulating them for the same amount of
time (simulation time) while assessing the computation time it takes to simulate
each model. Taking into account that the TLM model will be written in a mixed
code style, combining approximately-timed modules with cycle-accurate ones, we
expect the TLM version to have a clearly faster simulation than the RTL.
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Chapter 1

TLM paradigm, state of the
art and fields of application

1.1 Comparison between TLM approach and RTL
modelling, advantages and use cases

The complexity of System-on-Chip (SoC) systems is growing continuously at the
same pace of the scale of integration and, combined with the increasingly reduced
time to market, it is becoming a problem for system developers as well as SoC
architects because more resources and time are required to design new systems.
To overcome this critical issue, it is fundamental to grow the abstraction level for
integrated devices. In general, abstraction brings different vantages in the flow of
system design:

• the hierarchical structure allows to change between behavioural and structural
implementations of each module according to the kind of usage of the system,
such as simulation, validation or synthesis, without changing the top module
[1];

• heterogeneous designs, which see different kind of processors working in parallel,
can be abstracted and implemented more easily in their complexity [2] [3];

• also, software and hardware can be abstracted, leading to a parallel design
that overtakes the “software over hardware” limit [4] [3] [2] [5];

• the testbench can be abstracted, thus the test development and validation
delays can be reduced.

The new design methodology described above, which joins the system level
design on top of the RTL level, in turn on top of layout level, is achieved in this
thesis work by adopting the Transaction Level Modelling (TLM) paradigm on
SystemC language, it divides the intercommunication details from the architecture
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of functional and communication modules.

Until now hardware and software design world has been split about TLM and
the enhancements it brings: the skeptical think that SystemC behavioral models
are a Verilog/VHDL license-free version, gaining the same simulation performance,
while the opposite mindset sustains the same theory of this work, namely that TLM
simulates faster than RTL and is necessary to speed up the time to market, taking
in consideration that if the SystemC design is accurate enough it can be translated
into RTL thanks to appropriate compilers. In figure 1.1 is shown the comparison
between RTL, Cycle Accurate (CA) and TLM concerning design and simulation.
As you can see the TLM latency is decreased up to 10 times for modelling and
by 1000 times for simulation. The actual goal of this work is to verify that the
innovative description model reasonably leads to this performance improvement.

Figure 1.1: Efficiency of different modelling strategies.

Different TLM standards have been released since its creation for SystemC
language, but the main changes are seen from TLM1.0 to TLM2.0 [6] [7] [1], that
will be described in the current paragraph.
The TLM1.0 standard is based on 3 concepts: interfaces, blocking vs non-blocking
mechanism, unidirectional vs bidirectional transfers. Interfaces are the core of the
TLM1.0 standard cause they define the type of provided service, they inherit from
class sc_interface. Designing using interfaces comes from the already existing
C++ interface concept, fundamental for the object oriented programming, applied to
the TLM design. The OSCI TLM1.0 standard follows the use of the terms ”blocking”
and ”non-blocking” in a strict way: if a TLM interface is labelled ”non-blocking”,
it means that it contains only methods can never call wait(), while a ”blocking”
interface has methods which can contain different wait(), as summarised in table
1.1, making possible to suspend some processes running on a module inheriting
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the blocking interface. However, the two kind of methods are indistinguishable by
the signature, in fact it is necessary to go into the implementation details of each
method to recognise if it is blocking or unblocking.

OSCI Terminology Contains wait(.) Can be called from
Blocking Possibly only SC_THREAD

Non-Blocking No SC_THREAD or SC_METHOD

Table 1.1: SystemC blocking vs. non-blocking interfaces.

The concept of bidirectional and unidirectional transactions is implemented
since TLM1.0, they are the fundamental transfer for communication protocols of
any complexity. In general, a transaction (or transfer) is a method called by one
initiator module, possibly passing through a dedicated channel and implemented
by the target module; and this approach allows to adapt the transaction based
on the communication protocol and the application. Both unidirectional and
bidirectional interfaces are based on the sc_fifo interface and their methods can
be implemented by a channel or directly with sc_export.

Considering that, we can have 2 different kinds of unidirectional interfaces:

1. Blocking unidirectional interfaces, they are: tlm_blocking_get_if,
tlm_blocking_peek_if and tlm_blocking_put_if;

2. Non-Blocking unidirectional interfaces, they are: tlm_nonblocking_get_if,
tlm_nonblocking_peek_if and tlm_nonblocking_put_if. These may fail
and return a boolean value indicating whether they succeeded.

The bidirectional interface simply implements methods that can be seen as
a join between the unidirectional methods, and there is no bidirectional non-
blocking interface. In the following all interfaces implemented in channels or
exports (sc_export), and defined in the TLM1.0 standard, are defined:

• tlm_req_rsp_channel<REQ,RSP>, which extends the unidirectional interfaces
by implementing a FIFO for the initiator to target requests and a FIFO for
the target to the initiator responses;

• tlm_transport_channel<REQ,RSP>, which extends the unidirectional and
bidirectional interfaces by implementing FIFOs of size 1 to bound every
response to its request.

In figure 1.2 is shown the SystemC TLM modelling template for every sys-
tem design, which applies the abstraction concept to obtain multi-level system
architectures. It is composed of two interfaces, that are the convenience interface
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and the TLM interface. The former allows the user to use methods like read and
write at the application level (or user level), which in turns are implemented at
the protocol level by designers, while the latter has the function to protect the
transport methods, defined by the TLM standard library, from the protocol layer.

Figure 1.2: Standard SystemC TLM structure, representing the template for every
TLM design.

The general use of the structure sees the user employing, at the top layer, the
initiator ports of the master module, which uses the previously described interfaces
to generate transaction calls (unidirectional or bidirectional) which are implemented
at the transport layer and arrive at the slaves’ exports. All slaves implement their
own functions at the protocol layer consisting of requests and responses to the
master, used in turn by the user layer methods.

This structure is not compulsory for every design because there are distinct ways
to build SoCs with TLM, avoiding the use of some layers at all or using a mixed
structure to design the modules and connect them together. As a first example, the
master can forward bidirectional read and write transactions to the slave, which is
described at the abstraction level, using a bidirectional blocking interface (figure
1.3); but it is possible also to connect master and slave through a TLM channel,
describing the slaves with the at the abstract level (figure 1.4)) or implementing
them at the RTL level (figure 1.6). In the last case it is needed to have a transactor
in order to be compliant to the TLM architecture.
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If the master drives more than one slave through a bus-based connection, a
structure using the router like in figure 1.5 should be implemented, it is fundamental
for the mapping of each slave address to the master one, in order to decode every
transaction coming from the master and forward them to the involved slave. When
indeed an arbitration between parallel masters is needed, a structure like in figure
1.7 is necessary: the masters requests are stored in the request FIFO of the TLM
channels, the arbiter forwards them by priority and the responses are put back in
the response FIFO of the relative channels.

Figure 1.3: Master and slave pro-
duced as loosely-timed models, con-
nected with exports.

Figure 1.4: Master and slave produced as
loosely-timed models, connected by a transport
channel.

Figure 1.5: Master produced as loosely-timed
model, slave described at RTL and interfaced to
the architecture through a transactor.

Figure 1.6: Router insertion to
allow master drive multiple slaves
with a relative protocol.
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Figure 1.7: Arbiter insertion to allow multiple masters drive the same slave.

The next upgrade regarding the TLM standard is TLM2.0, which replaces the
TLM1.0 in many designs to overcome the problem of the increasingly high level of
abstraction of the computations on which the TLM1.0 becomes too slow in simula-
tion and verification. Moreover, TLM 1.0 does not allow the compatibility between
models created by different vendors and used in the same design; thus, if a system
would be composed by several interconnected subsystem designed in different ways
in TLM, it is not sure that they can interface among themselves due to different
design styles adopted using TLM1.0 standard. TLM 2.0 standard inherits the basic
libraries from TLM1.0 but, among all enhancements that will be described in the
following, solves this boundary defining an API which enables model interoper-
ability and providing several primitives to model arbitrary components and systems.

The SystemC TLM 2.0 has grown up from different solid bases:

• Possibility to implement loosely-timed and approximately-timed coding styles;
• Creating API to define SystemC TLM guidelines;
• Interoperability between models designed by different vendors;
• Unified interfaces and sockets for memory-mapped bus-based models design;
• Inter-module communication based on the generic payload object.

Moreover it provides:

• Direct-memory interface;
• Model synchronisation.

The API suggests data types for low level designs and introduces specific data
structures, allowing to model a memory-mapped bus structure template, except
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for specific protocols that cannot be inter-operable with the TLM structure.
SystemC TLM2.0 standard provides different implementations for each module in

a design by defining two coding styles that can be used in every level of abstraction in
the system. The first style creates loosely timed models, useful for SW development,
SW verification and performance analysis of the systems because they are fast
enough to execute more than 1000 MIPS. The other style creates approximately
timed models nearer to the real models, suitable for the architecture exploration
and synthesis, but the detailed description weighs on performances, which remain
under 1 MIPS.

In other terms, the former style defines what are called the software virtual
platforms and allow to model timers and interrupts, so that one or more operating
systems can run on the platform; it provides temporal decoupling by executing
all processes in zero simulation time and synchronising them every time amount
which reduces overhead. In this case, the determinism is guaranteed by two factors:
the dependency control performed by the scheduler, and the quantum value, the
maximum time each process of the design can run before the re-synchronisation
of the simulation. The quantum influences the simulation speed because the
synchronisation frequency is inversely related to its value.

Figure 1.8: Resume scheme of the TLM2.0 paradigm.

The approximately timed modelling style defines hardware virtual platforms
which tend to be complex, low level and cycle accurate; and it can be realised
that the temporal decoupling cannot be applied on this style cause the simulation
time advance every time any process generates some events. For this style the
transactions are performed in four timing points that correspond to the start and end
of request and response. These styles can be used together creating a hybrid system,
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in fact TLM2.0 allows interconnections between models implemented with different
styles and, if the models are described in both ways, the style implementation can
be switched before running the system. All use cases, coding styles and mechanisms
belonging to TLM2.0 standard are shown in figure 1.8.

The main change brought to the TLM2 standard with respect to TLM1 is the
transport mechanism and the structure adopted to accomplish that. As it can be
seen in figure 1.9 every transaction pass between two modules, it is started by the
initiator module and arrives at the target module and the components are free to
act both as initiator and target, this is the case of modules used for interconnecting
other initiators and targets (for instance a router, a channel or an arbiter).

As already mentioned, the transaction object passed in TLM2 is the generic
payload, which is created by an initiator before the starting of transaction; then the
transaction is performed passing the object from initiator to target through the
forward path, passing from all interconnect components, successively the target can
return back the transaction object following two alternative paths: the return path,
at the return of the transport methods called for the transaction, or the backward
path, if methods in opposite direction are made on purpose.

Figure 1.9: General scheme of TLM2.0 transaction of a generic payload object. From
top to bottom: A direct TLM transaction from initiator to target, a TLM transaction
made of forward path and return path, a TLM transaction made of forward path and
backward path.

Forward and backward paths supporting generic payload transactions traverse
the same modules and in particular the module interfaces for transport are no
more simply ports, indeed they are replaced by TLM sockets, which are composite
ports supporting the generic payload object as well as DMI and debug transport
interface. Going into detail, a socket is composed of a port and an export which

10
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must be bound together. There are different types of sockets: they are categorised
as initiator socket and target socket because an initiator socket should provide a
port to make possible methods calls through the forward path and an export to
receive the return object of the transaction, while the reverse structure is provided
by the target socket.

The TLM2 paradigm includes the TLM1 core interfaces and provides additional
interfaces that are: the blocking interface, the non-blocking interface, the DMI and
the debug transport interface.

The transport interface comprehends the blocking and the non-blocking transport
interface, the latter has a return value indicating if the slave involved in the
transaction has transmitted back the response through the return path.

The TLM2 blocking transport interface allows transactions invoking the b_transport
method which passes two arguments: the generic payload object, passed by refer-
ence, and a timing annotation, the delay the request takes to arrive at the slave
starting from the current simulation time; also, at the transaction end the timing
annotation is used to return from the blocking transport to indicate the additional
delay.

Elaborating on the generic payload details, it is a structure composed variables
which can be all used or only in part. They are:

• Command, that specifies if it is a read or a write transaction;
• data;
• address;
• byte enables;
• streaming width, defining the length of the streaming burst;
• response status, a variable indicating how the transaction has gone;
• DMI hint, set to 1 if Direct Memory is supported by the target module;
• extensions.

The sequence chart shown in figure 1.10 explains better a typical blocking
transport example, where it is possible that other transactions can be called by
different processes running on the initiator while the thread is blocked. You can see
in particular the case in which the initiator makes two consecutive calls: the first
is returned in zero time cause the target module did not have any wait in the used
method, while at the last transaction the target waited 40 ns of simulation time
before returning, also stopping the initiator thread involved in the transaction.
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As known, both loosely-timed and approximately-timed modelling styles support
temporal decoupling, it is implemented both by blocking and non-blocking transport
interfaces, using timing annotation provided by b_transport and nb_transport
methods. If the blocking transport interface is implemented when the initiator
and the target modules are modelled at the loosely-timed style (blocking inter-
face is suggested for loosely-timed modelling), their threads can run ahead of the
simulation time adding a local time offset and calling multiple transactions, until
a wait() is encountered in a b_transport method. Here all the initiator threads
re-synchronise with the simulation time and the local time offset is reset, as you
can see clearly in figure 1.11.

If indeed the approximately-timed modelling style is adopted, the non-blocking
transport interface should be used in order to exploit the transactions pipelining
and model every transaction step and detail; in fact the non-blocking interface can
split a transaction into different phases and annotate the time of each one of them,
moreover it is composed of forward and backward transactions between initiator
and target that are not required to be called one after the other, thus allowing
pipelining.

Figure 1.10: Simulation window using blocking transport interface.
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Figure 1.11: Simulation window using blocking transport interface with temporal
decoupling.

The non-blocking methods pass one additional argument with respect to the
blocking method, that is the transaction phase; it gives information about the
state of the considered transaction, which can be: BEGIN_REQ, END_REQ,
BEGIN_RESP, END_RESP.

In addition, the non-blocking methods returns an enumerated variable which can
assumes a value between: TLM_ACCEPTED, returned by the destination mod-
ule when it has received and accepted the transaction call; TLM_UPDATED,
returned by the destination module when it has received the transaction call, has
possibly modified the transaction object (generic payload) and has added a delay
on the timing annotation; TLM_COMPLETED, when the transaction object
has been modified by the destination module and the transaction is completed.

Due to the fact that at each transaction phase, the scheduler takes control from
the processes of the caller in order to proceed in simulation time, the non-blocking
transport mechanism is simulated slower than the blocking one.

Figure 1.12 shows a typical example of a non-blocking transport sequence, where
the difference with respect to the blocking one is highlighted on the number of
calls, while in figure 1.13 the temporal decoupling is applied through the timing
annotation variable.

13
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Figure 1.12: Simulation window using non-blocking transport interface.

Figure 1.13: Simulation window using blocking transport interface with temporal
decoupling.
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1.2 Overview on Controller Area Network: pro-
tocol and applications

1.2.1 CAN standard
Controller Area Network (CAN) protocol is a standard (ISO-11898-1:2015) that
manages a multi-cast, multi-master, serial communication system for field bus. It
was developed by Bosch to be used in the automotive industry because it allows the
connection between different ECUs by two wires and over time the characteristics of
CAN have spurred its use to many industry fields like medical, building automation
and manufacturing.

The key peculiarities which make CAN protocol a ductile standard for system
design are: the ability to detect and correct errors on different layers of the OSI
hierarchy, the immunity to electromagnetic noise and interference, the low cost
coming with relative high performance.

As previously mentioned, the CAN protocol respect the ISO/OSI architecture
and provide the communication service for the two bottom layers, that are data
link layer and physical layer. As it is shown in figure 1.14, also the application
level is considered in the CAN, intended as an interface with the specific protocol
used at the higher level.

Figure 1.14: CAN stack compliant to the OSI standard layer architecture.

CAN protocol is of type CSMA/CD+AMP, meaning that it is a multiple access
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carrier-sense with collision detection and arbitration on message priority. Giving
a better description of the protocol, every time a frame transmission is started
by a node, the first transmitted bit is sensed by all other nodes that detect the
start of frame and keep reading the bus without driving it, in order to receive
the frame and avoid collisions, in addition the protocol imposes the presence of
a timing interval between two transmissions, during which the bus must be idle
before sending a new frame, moreover every conflict of simultaneous transmissions
is resolved by the arbitration thanks to the message priority.

The synchronous bus communication is based on packet transfer, also called
frame transfer or message transfer; where each frame follows a standardised structure
divided in fields. In particular there are two frame formats: the standard CAN
frame and the extended CAN frame, where the last one is an improved version of
the former with the main difference of containing a 29-bit identifier that allows to
get 229 identifier values.

Figure 1.15: CAN frame structure in its standard format.

The standard CAN frame is composed as shown in figure1.15
• SOF bit, a recessive bit signalling the start of transmission of a new message;
• The standard identifier that has double purpose: storing the node ID value

and giving a priority to that node;
• Remote Transmission Request (RTR) bit, which is recessive if it is intended to

transmit data and it is dominant if data are requested from the node having
the same identifier of the frame;

• Identifier Extension (IDE) bit;
• a reserved bit r0;
• Data Length Code (DLC) field, contains the bytes of data to be transmitted;
• Data field, the core message occupying from 0 to 8 bytes
• Cycling Redundancy Check (CRC), a 15-bit checksum for error detection on

the preceding fields plus a delimiter recessive bit;
• ACK bit, transmitted by the node that receives the frame. It assumes a

recessive value if there are no errors in the transmission, otherwise it is
dominant;

• ACK delimiter bit, always dominant
• End Of Frame (EOF), a sequence of 7 dominant bits without stuffing, signalling

the end of transmission;
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• Inter Frame Space (IFS), same as EOF with the goal of giving enough pro-
cessing time to all CAN nodes.

Figure 1.16: CAN frame structure in its extended format.

As you can infer from figure 1.16, the extended format is similar to the standard
one, but it presents some changes: 18-bits of identifier extension are added after
IDE, the SRR takes the position of the standard frame RTR, the IDE assumes the
recessive value and there is an extra reserved bit r1 after r0.

Giving a look at the physical layer, data and clock are encoded together and
transmitted on a unique differential signal carried by the CAN bus line (a twisted
pair cables); in particular a specific technique is adopted to keep synchronized the
clock of each node of the network, avoiding sending the clock through a dedicated
signal: the bit stuffing. This consists in inserting some bits, during the frame
transmission, with the goal of having at least one commutation every 5 transmitted
bits to trigger the synchronization into all nodes. In this way a destuffing must be
performed during the frame reception in order to extract the frame information.
The only fields not subject to stuffing are EOF and IFS, helping the receivers to
detect a transmission ending.

The physical CAN bus is composed of CANH and CANL signals, they are at high
impedance if there is no node sending a dominant bit and they are short circuited in
the opposite case, implementing a wired-AND behaviour and avoiding any collision
between multiple transmissions. On the other side, it is not possible to detect on
the bus if more than one node is transmitting and each node must compare its
exiting bit with the read value from the bus at each clock cycle; therefore, the
arbitration can be applied by halting the transmission of all except one frame per
time. In fact, during the identifier transmission, each node that read a bus value
opposite to the last wrote bit stops transmitting cause there is another message
with higher priority on the CAN bus. Knowing that all nodes are in wired-AND,
the node with lower identifier value has higher priority on the bus and can continue
the transmission. The interfacing between the TTL logic and the physical bus is
performed by the CAN transceiver.

A special message format that goes outside the rules of CAN frame format, the
error frame, can be sent if a node notices an error in a message, also triggering the
other nodes to send an error frame through the bus.

17



TLM paradigm, state of the art and fields of application

The CAN wide use in industry is overall justified by its robustness, guaranteed
by five methods of error checking; in addition, fault confinement is implemented
in each controller by disabling the transmission when the errors upper limit is
exceeded. Error checking is implemented at the message level with CRC, ACK
and all bits that should have a constant value, such as SOF, EOF and delimiters;
error checking at the bit level are: firstly, the comparison between the transmitted
bit and the one read from bus, at last the checking of the bit-stuffing by verifying
that, during a transmission or a reception, after five consecutive bits carrying the
same value there is an opposite value on the bus.

The error detection procedure applied during transmission and reception is, as
mentioned, a Cyclic Redundancy Check on the message, in particular the CRC-16
polynomial implementation; it is simple to design in HW while provides a strong
guarantee for data reliability and integrity. The characteristics of CRC are single
bit error detection, double bit error detection and adjacent bit error detection,
therefore its use represents a great advantage with respect to other techniques as
parity bit check, which detects only single bit errors; moreover, it has a simpler
application than other algorithms as the Hamming code.

The generic algorithm calculates the CRC code dividing the considered data
by the polynomial and taking the rest for the transmission, while at the reception
an error check is performed, dividing the entire message (data + CRC) by the
polynomial and verifying that the result is zero. The XOR operation of the two
numbers is equivalent to dividing one for the other, because the division is performed
with Modulo-2 arithmetic.

Knowing how the division can be simplified in modulo-2, the HW design sees
only XOR gates and a shift register; in particular, the binary data is serially shifted
in the register and a XOR operation is performed at each position before shifting
where the polynomial contains a 1, while a simple shift is performed where a 0 is
present at the polynomial. For example, if the polynomial is 10000000000001012,
the HW implementation is the one in figure 1.17 . The LSB is always 1, so that
the bit exiting from the MSB is looped and XORed.
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Figure 1.17: Hardware CRC-16 generator.

In case of the CAN protocol, the CRC polynomial, also called CRC key, assumes
the binary value 1100010110011001, and the computation is performed as following:

• at the transmission, the data used for CRC computation is the frame fragment
before the CRC field, left shifted of 16 bits to have 16 zeroes as LSBs;

• at the reception, the CRC check is performed on the frame portion from SOF
to CRC included.

CAN is used in application where relative short data is needed to be transmitted
between all nodes of the network with high data reliability and where some nodes
have high priority to transmit over the majority, in order to send and request
messages and take control over the system.

1.2.2 CAN Flexible Data-Rate standard: an faster and
more secure communication

The main limitation of CAN protocol is the small size of data information contained
in a frame, which can reach a maximum of 8 bytes. CAN FD (Flexible Data-Rate)
protocol overtakes this boundary by extending to 64 bytes the upper limit of data
size, but this is not the only upgrade included in the protocol. FD stands for flexible
data rate, citing the feature of the CAN FD controller to choose between slower
and faster data rate. As well as the CAN protocol, also the CAN FD protocol
covers two different layers in the ISO/OSI architecture: the data link (DL) layer,
subdivided into Logical Link Control (LLC) sublayer and Medium Access Control
(MAC) sublayer, and the physical layer.

The LLC sublayer works on top of the MAC sublayer, it selects which of the
arriving messages to accept, other than forwarding the exiting messages to the
MAC sublayer, managing the recovery and rising overload warnings; while the MAC
sublayer works at the lower level and it generate the frames from the messages
provided by LLC sublayer, then it transmits the frames, manages the arbitration,
the acknowledgement and the error detection and notification.
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On the other way, the clock synchronization, the transmission/reception bit
timing and the related stuffing/destuffing.

CAN FD benefits from many enhancements with respect to CAN standard,
showed up as follows:

• the Identifier field has double purpose: other than addressing every node and
setting priority to the messages, it contains information about the messages
for classification and, accordingly, filtering at the receiving;

• the bit rate during arbitration is different than the one during data field
transmission, transmitting data with speed up to 5 Mb per sec;

• Extended Data Length (EDL) bit takes the position of r0 CAN bit; it is forced
to recessive to signal that a CAN FD message is transmitted on CAN bus;

• Bit Rate Switch (BRS) bit which, when recessive, signals that the bit rate at
data field is different from the one at the arbitration phase;

• the fault confinement is performed by error counters and the Error State
Indicator (ESI) in this way: there is a transmit counter and a receive counter,
relatively incrementing when there is a transmission fault or a reception fault;
every node has the ESI bit dominant indicating the error active state of the
node, but if one of the counters exceed 127, the node goes to the error passive
state and once a counter reaches the 255 value, the node switches to bus-off
state;

The features described are implemented on the CAN FD frame, which standard
format and extended format are shown in figures 1.18 and 1.19.

Figure 1.18: CAN FD frame structure in its standard format.

Figure 1.19: CAN FD frame structure in its extended format.
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At the present, both CAN and CAN FD standards are used in all fields of the
industry because they have their own advantages and electrical characteristics that
can be adopted on different systems. That is, if the application requirements (like
the bit rate, the number of nodes or the bus length) can be provided by CAN, it is
usually preferred for its simplicity with respect with the CAN FD because the nodes
are cheaper, vice versa the latter should be considered for better performances of
the network. In general, in a system which contains multiple networks connected
in an appropriate topology and interacting each other, different standards can be
adopted to manage the communications and some special nodes can act as interface
between them, as you can see in figure 1.20.

Figure 1.20: Typical embedded system inter-communication network.
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1.3 State of the art in literature
In the last decade many studies have been carried out on the applications and
improvements that the SystemC TLM brings with it in the field of SoC design, high
level synthesis (HLS), system level simulation and RTL simulation, with optimal
results in all sides.

The TLM effects on simulation performances has been demonstrated by Boukhechem
et al. [2] who, exploiting the interoperability provided by TLM, presented a TLM
co-simulation methodology to design, validate and verify an open-source Multi-
Processor SoC, thanks to the integration of two Instruction Set Simulators (ISS)
with DUT composed of the MPSoC hardware surrounded by the SystemC simu-
lation environment, as shown in figure 1.21; aiming to reach a fast and efficient
architecture exploration at high level.

On the other side, ISSs are interfaced by SystemC interface wrappers and
communicate with the DUT via abstract channels, as is shown in figure. The aim
of the work is to compare three HW implementations during software prototyping:
RTL modelling and TLM at instruction accurate level and cycle-accurate level; and
the results highlights how the design and validation times are reduced and there is
no significant overhead due to the wrappers.

Figure 1.21: Interface between the two Instruction Set Simulators and the Multi
Processor SoC platform.
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Other works have been used the TLM paradigm to evaluate the performances of
a Network on Chip (NoC) with different routing algorithms running on it. In this
case Escobar et al. [4] used TLM to early validate the network before integrating
it with other devices, thus saving time and effort resources; therefore, they used
the high level description which turned out to be also useful for HW/SW co-design
and fast simulation and proved to be the best choice for creating complex systems.

Different design and simulation tools were developed for academic and industrial
purposes, like QEMU-SystemC emulation framework exploited by Yeh’s working
team [8], connected with the involved SystemC virtual platform through TLM2.0
interface and capable to evaluate its performance, as well as other statistic parame-
ter, while an OS is running; showing the possibility to simulate the designs at the
instruction level with external tools through TLM.

As previously described, the main goal that brought TLM paradigm to be the
step forward for complex systems design flow is the modelling speed-up; and it has
been reached by Jerraya et al. [3], who meant to abstract hardware and software
interfaces of heterogeneous MPSoCs (Multi Processor SoCs with different kinds of
programmable processors) via the use of parallel programming models.

Since neither the general parallel programming that the software mapping tools
are efficient for heterogeneous MPSoCs, the HW and SW interfaces should be
abstracted as shown in figure for a concurrent developing.

An interesting result of the Jerraya team’s work is that the virtual architecture
model, when simulated, has a very precise timing estimation that allows hardware
exploration.

Anyway, today’s embedded systems often include the analog domain and, know-
ing that SystemC provides the Analog Mixed Signals system-level design extension,
connecting analog domain and digital TLM design allows modelling, simulating and
validating whole heterogeneous systems before even generating the RTL architecture
[9].

Figure 1.22: SoC abstraction views: (a) Classic view (b) Abstract HW-SW view (c)
Implementation view (d) Functional view.
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In order to give TLM design the same completeness of RTL design, it should
be allowed to perform all levels of tests and verifications on both hardware and
software. A first approach to fault tolerance requirements verification was at-
tempted by Da Silva et al.[10], who presented a SystemC TLM wrapping library
that can be used for the assertion of system properties, protocol compliance, or
fault injection; thanks to the fact that virtual platforms allow to access and modify
the internal state of the virtual prototypes, allowing to conduct fault injection
and fault tolerance assessment procedures. The working group succeeded to create
a generic framework that provides dynamic binary instrumentation to TLM2.0
models, able to insert wrappers into the transaction path which allows validating
third party TLM cores and modules.

Although TLM paradigm leads to all optimizations described, in any case RTL
implementation is needed to proceed toward the gate level synthesis, so if the code
cannot be synthesised into RTL it cannot be reused and the RTL model should be
described from scratch. As far as it is known, a manual approach could be adopted
in TLM to RTL synthesis, but this leads to time waste and error insertion; but
thanks to different research groups, TLM HLS (High Level Synthesis) is possible
by automated or semi-automated methodologies. A work carried out by Bombieri’s
team [11] applied the high-level synthesis (HLS) theory to TLM, adopting a protocol
synthesis procedure based on the extended finite state machine (EFSM) that starts
from TLM functionalities, creates a first cycle accurate implementation before
mapping the final design compliantly to the target bus protocol. The working
group has successfully implemented an automatic synthesis methodology, shown
also in figure 1.23, and they guarantee the correct mapping from TLM transactions
to RTL bus transfers, with an RTL interface compliant with the bus protocol.

Just as the TLM code reuse for RTL architecture synthesis reduces design time
of complex systems, also the validation effort could be shrunk in case TLM level
tests could be translated into RTL validation tests, because different RTL test can
be extracted instead of being written for the relative SoCs.

This was the aim of Chem et al. [12] that succeeded on automatically extracting
RTL tests from SystemC TLM specifications thanks to a transition-based coverage
metric. The methodology starts from the TLM specifications which are then
formalized so that TLM tests for the system can be generated; finally, transformation
rules are applied to transform TLM tests into RTL tests. Many enhancements
can be appreciated from this approach to RTL test generation, other than the
ones described yet: system level requirements, difficult to extract starting from
RTL level, are intrinsically contained in TLM tests, besides the RTL test can
be generated before the RTL model, allowing to be modified compliantly to the
low-level validation goals.
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Figure 1.23: Flow diagram of the TLM to RTL automatic synthesis algorithm.
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1.4 Introduction of the design to test and TLM
versioning

The main goal of the thesis work is to prove, over all enhancements exposed in
this section, the simulation speed-up of SystemC TLM models with respect to the
equivalent RTL model, whether this is a behavioural or structural implementation.

In specific, a CAN controller device is described in both hardware description
languages and, regarding the SystemC TLM language, the TLM1 version is chosen
rather than 2 because the features and the enhancements bring by the latest version,
as the capability of choosing the coding style or the module interoperability or
the generic payload usage, are not a discriminant for the simulation performance
gap, even if they contribute to increase more the simulation speed. In addition,
TLM1 enables the early design of custom bus-based designs and the bridge with
pure RTL modules (written in SystemC) is simpler than in the case of TLM2.
The specific interfaces towards the bus and the clock-triggered functions suggest
that a loosely-timed TLM2 model cannot be implemented in the full architecture,
thus all modules that have to work synchronously with the CAN bus should be
coded at cycle-accuracy. Tough, the master module driving all peripheral functions
can be implemented as an abstract module, that should give a speed boost to the
simulation performance. The use of sockets for intercommunication by generic
payload is not needed and the communication with exports and TLM channels
is sufficient, as well as the direct memory interface will not be exploited. For all
the reasons described above, the compilation overhead of the TLM2 library can be
avoided by including only the TLM1 standard.
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Chapter 2

Simulation of a real case
application: TLM design
against VHDL benchmark

In this chapter it will be described the development of a CAN controller, imple-
mented in SystemC by TLM1.0 standard; successively it will be introduced the
benchmark, corresponding in this case to a VHDL implementation of the CAN
controller specifically created to obtain the same behaviour and functionalities
of the TLM version. After that, the TLM architecture is compared with the
benchmark in terms of simulation performances, thanks to a simulation tool that
can simulate VHDL designs as well as SystemC ones.

2.1 The TLM CAN Controller
The CAN controller is designed to be a device implemented as a peripheral of a
microcontroller system, able to receive control signals and data from a logic part,
like a core processor, and to transmit back the received data from CAN bus. The
TLM structure follows the TLM1 design rules detailed in chapter 1; it is composed
by a master module, implemented as an abstract module and connected with three
slaves by means of a router, which implements address mapping of the slaves. Two
slaves are implemented as pure TLM modules, while the module which is interfaced
with the CAN bus (the transceiver driver) is designed at RTL; thus the transactor
is needed to act as a bridge to interconnect the RTL designed module to the TLM
structure.
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The slaves implemented in the controller are:
• the CRC codec, which encode the CRC for every frame to be transmitted and

checks the coherency between CRC and the remaining bits for each received
frame;

• the transceiver transactor, connected to a TLM channel as shown in figure 2.1,
that processes the TLM transactions and transforms them into RTL signals
and vice versa by running an EFSM;

• the CAN clock generator, naming the module providing the clock for the can
bus, that is the internal clock scaled in frequency and, If needed, resynchronised
during reception phases.

Figure 2.1: Diagram of the CAN controller modular architecture described with TLM.

The transactor is in turn connected to the cycle-accurate transceiver driver,
which runs processes triggered by the internal clock and the CAN clock in order to
correctly perform the protocol functionalities. At last, the stuff counter module is
directly connected to the transceiver driver and signals when the stuffing/unstuffing
should be performed during a frame transmission or a frame reception.

The management of frames coming from the uC core or from bus is possible
providing the master 2 FIFO registers, for temporary storing all fields of each frame.
Going into details, when a frame is sent from uC core to the controller, a signal is
raised, the frame is stored into a TX_FIFO waiting to be transmitted to bus; in
opposite direction, a frame read from bus is first checked for errors and, in case it
passes all checks, it is stored into a RX_FIFO before being sent to the uC core. If
a FIFO is full, the write is not performed, and a signal notifies the status to the
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core by a specific signal.

In order to better understand how the message coming from the input interfaces
are managed and transmitted as frames, we should go into details of the internal
architectures of each module starting from CAN_master.

This module contains different ports which are interfaced with the device which
sends the messages to the CAN controller. The input ports are: control_word, a
10-bit port which receives the bus clock prescaler (but could be used for different
controls in future developments); write_int, signalling that a message is ready at
the frame_in port and can be processed. The output ports are: read_int, rising
every time a message has been extracted from a received frame and it is ready at
frame_out, overload_int, signalling that the FIFO where message to be transmitted
is full, and the set of error flags.

There are four different threads running on CAN_master committed to write
and read messages to/from logic, but also to transmit and receive frames on the
CAN bus.

In particular, one thread reads the messages from frame_in port and stores
them in the TX_FIFO, other than signalling a possible overload of the FIFO;
the second thread reads the RX_FIFO and, if not empty, it writes the extracted
messages on frame_out port while rising the interrupt.

The pseudo-codes in the following represent the processes described above:

rece ive_uc ( ) {
OVERLOAD = 0
whi le loop

i f ( wr i te_int = 1)
read frame_in
i f TX_FIFO. f u l l = 1

OVERLOAD = 1
e l s e

push (TX_FIFO, frame_in )
end i f

end i f
end loop

}

transmit_uc ( ) {
read_int = 0
whi le loop

i f RX_FIFO. empty = 0
frame_out = read RX_FIFO
read_int = 1
delay quantum
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read_int = 0
end i f

end loop
}

The remaining two threads, instead, manage the frame transmission and re-
ception through the CAN network alternating the reception and the transmission
thanks to a Mutex (mutual exclusion) mechanism, outlined in figure 2.2 , meaning
that alternatively only one procedure between reception and transmission is exe-
cuted. This is made up by two Boolean variables, TRANSMIT and RECEIVE,
which are true one at a time and, other than synchronising the processes, they
signal whether a transmission or a reception are going to be pursued.

The body of receive_bus() thread is structured as follows: if no transmission
is being executed (TRANSMIT = FALSE) a read transaction is sent to the
transceiver transactor module know if a SOF bit has been detected on bus and, if
that happens, the master sends other read transactions to get the frame received
from CAN bus, subsequently the frame is sent to the CRC_codec module in order
to check for errors; then, if CRC check is passed, all frame’s fields are extracted
following the format rules (different between standard and extended format) and
then stored in the specific FIFO, ready to be sent to the processor.

Specularly, the thread transmit_bus() reads a new message from the relative
FIFO, packets the message into the frame format, so the CRC code can be created
and, if no reception is happening yet, the frame can be written to the transceiver
transactor in order to start the transmission. In the following, the arbitration
bit is read back from transceiver transactor module: if arbitration is won, the
transmission continues, otherwise the reception procedure starts, similarly to the
receive_bus() thread.

30



Simulation of a real case application: TLM design against VHDL benchmark

Figure 2.2: MuTex logic running on master module.

The peculiarity of the master module is its abstraction, indeed it simply sends
transactions to the slaves through the export and there is no implementation detail
of the methods governing the transmission or the reception that must follow the
CAN protocol.

The module called clock_generator is a slave implemented with TLM with the
purpose of modelling the clock signal synchronous to the CAN bus clock and thus
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to all nodes of the CAN network. The clock is generated from the internal clock,
but the clock period depends also by the prescaler value read at the control port;
moreover, the module is responsible of the CAN clock synchronisation every time
a transition is detected from CAN bus.

An important effort has been made to model the transceiver driver because, as
known, it is not described using TLM and it is implemented at the lower level of
RTL detail; due to this, the transceiver transactor is needed to connect the TLM
architecture with the driver. The transactor is connected to the master through a
TLM channel (as the TLM1 standard example shown in figure 1.7) thanks to the
proper TLM interface ports, on the other side it contains the input and output
ports allowing the connection with the transceiver driver’s signals.

The module inspects the incoming transactions and it manages the signals
provided to the driver through an FSM, which state diagram is shown in figure 2.3.
In particular, at the EXECUTE state the process reads a new request (if present)
other than switching some output signals in function of the type and address of the
request; while at the WAIT_RESPONSE state, the done signals coming from
the transceiver_driver are read because they signal if any transmission/reception
phase has finished, in this case a response can be transmitted back on the TLM
bus and other requests can be processed; at last, the WAIT status deals with failed
response writes.

Figure 2.3: State Diagram of the Transceiver_Transactor FSM.

In simultaneous with the transceiver transactor FSM, the process running on
the transceiver driver performs the CAN protocol at low level as follows:

• if start_TX signal is active, the serial transmission of TX_frame starts by
writing on CAN bus with arbitration; thus, at the end of arbitration the
relative flag is written on output port and then either there is a transmission
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proceeding or a frame reception;
• if there is no transmission and start_RX is active, meaning that a SOF has

been detected from bus previously, a frame is read serially from CAN bus and
sent to the transceiver through the output ports, in order to be handled by
the master;

• if there is no transmission nor reception running and sof_rx is active, the
CAN bus is read to check for a SOF bit, which result is sent back through
port;

The behaviour of the transceiver driver is described with the following pseudo-
code:

whi le loop
i f s ta r t_t ransmi s s i on = TRUE

read frame_TX
transmit_with_arb ( frame_TX , frame_RX)
wr i t e transmit_arb_f in i shed

i f arbitrat ion_won = TRUE
transmit_cont inue ( frame_TX)
wr i t e t r an sm i s s i on_f in i shed

e l s e
r e c e i v e ( frame_RX)
wr i t e r e c e p t i o n _ f i n i s h e d

end i f

e l s e i f polling_SOF = TRUE
receive_SOF
wr i t e SOF_flag

e l s e i f s t a r t_rec ep t i on = TRUE
r e c e i v e ( frame_RX)
wr i t e r e c e p t i o n _ f i n i s h e d

end i f
end loop

As known, the clock is integrated in the data signal and therefore the bit
stuffing technique must be implemented during transmission to guarantee the
correct resynchronisation of every node of the CAN. The module supporting the bit
stuffing/destuffing to the transceiver driver is the stuff counter; it is implemented
as a TLM slave that, during a frame transmission or a frame reception on the
transceiver driver, rises the stuff signal to notify that a stuff bit should be written
on bus (during a frame transmission) or a stuff bit is read from bus (during a frame
reception).
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2.2 Developing the benchmark: VHDL version
of CAN controller

The simulation performance comparison, that is meant to be carried out between
the TLM-developed device and the benchmark described with VHDL language,
is considered reliable only if the two models have identical functional behaviours
and their architectures are comparable; therefore, the benchmark should follow the
overall design structure of the TLM device.

Different open-source CAN controller devices are made available for academic or
development use, but unfortunately the structures and the functional behaviours
are by far different cause they have, for instance, higher complexity, different
processes managing the protocol and dissimilar data structures involved. For this
reason, it has been decided to create the benchmark from scratch, so that it can be
modelled in the most similar way to the considered device.

The configuration is pretty the same: the core module, having connections
with all other modules and running an EFSM to have a complete control on the
system, a transceiver driver, a CRC codec, a stuff counter and a clock genera-
tor; but in the case of an RTL description there is no abstraction level to be
implemented, so the modules are connected by low level signals or signal arrays,
moreover the Transceiver_Driver EFSM is collapsed into the main EFSM and the
ctrl_proc is not implemented in the benchmark. Nevertheless, the complexity of the
architecture is the same as the TLM version of the device, as will be described below.

The device’s main module is the Stream_processor that corresponds to the logic
unit of the architecture, this component contains an EFSM which manages both
the transmission and the reception of the CAN frames, in addition it manages the
interfacing with all other modules of the device thanks to discrete control and data
signals, it deals with packing the incoming messages to be transmitted and with
unpacking compliantly the read frames to extract the messages.

As mentioned, the main component of the Stream_processor is the EFSM
which includes two parallel interactive FSMs and they are developed such that
the transmission and reception are never simultaneously performed (the Mutex
mechanism), in accordance with the CAN protocol.
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The transmission status, which FSM is shown below in figure 2.5, corresponds
to PICK_FRAME when reset, to check if a new message to be transmitted is
present on TX_FIFO; in that case the CRC of the message is created and then,
if no reception from bus is active, the transmission starts in the same way of the
TLM implementation. Indeed, if the frame has been transmitted without obstacles,
the status returns to PICK_FRAME; if instead the node has lost arbitration,
the message extracted from the frame read on CAN bus is stored on RX_FIFO
and a re-transmission should be performed without reading new messages from
TX_FIFO; at last, also in case the transmission has been performed but there
have been some errors a re-transmission of the same message should be done.

On the other side, the reception status starts from the idle state (WAIT_RX)
and, only if there is no frame transmission, the status switches toWAITFOR_SOF
to check if a SOF bit is present on bus; then, if this is detected the reception
is started, otherwise the status goes back to WAIT_RX to check for the next
SOF bit. At the end of reception, the status goes to TRANSMIT_ACK where
communicates if there have been some errors; in case of errors in reception the
status switches to END_RX, otherwise the device receives the EOF and IFS
fields from bus, stores the received message in the RX_FIFO and returns to the
default status.

Figure 2.4: Block diagram of the VHDL benchmark.
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The thread FRAME_GEN is responsible for assembling the frame to be trans-
mitted after a new message is picked from TX_FIFO, in relation to the length and
the frame type, it also concatenates the CRC generated by the module CRC_Codec;
while the thread CRC_PROC generates the correct serial CRC data signal depend-
ing on the status of the EFSM, knowing that the CRC_Codec is used for CRC key
generation for a received frame from bus and for a frame to be transmitted.

As it can be seen from figure 2.4, unlike the TLM device, the VHDL benchmark
does not implement the transceiver driver module cause its functionalities are
integrated in the Stream_processor, in particular the parallel FSMs described above
drive the writing of each frames’ bits at CANbus_clock’s rising edge, based on the
arbitration status, the stuffing and the possible transmission errors, on the other
side they perform the bit reading at the falling edge and check for any errors and
incoming signals.

Figure 2.5: State diagram of the benchmark transmission FSM.
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The clock generator is a simple module, generating a clock signal for the CAN
bus from the internal clock of the architecture; it is implemented with a counter
that scales the period of the internal clock. In this case the scaling factor is taken
by the prescaling signal, moreover the counter can be re-synchronized when an
edge on the bus is detected.

The CRC_Codec module is realized with a shift register and XOR gates cause the
input data is received serially. The register is reset during the initialization phase,
then the CRC generation can be pursued on the incoming data by performing
sequential left-shifts and eventually modulo-2 subtractions, in function of the
application specific CRC key. As known, it is needed in both CRC code generation
and CRC check, allowing detection of single and double bit errors.

Figure 2.6: State diagram of the benchmark reception FSM.
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2.3 Simulations in comparison
Based on the evident similarity between the architecture of the two models, that
entails a valid performance analysis between simulations without affecting the final
comparison, it is necessary to make their testbenches equivalent, so it has been
chosen to include the same HW components, configure them equally and provide
the same test stimuli step by step.

Therefore, the test environment of both the DUT and the benchmark are
structured as follows: there are two CAN nodes exchanging frame transfers through
the CAN bus, then a FIFO is instantiated downstream the receiver node, in order
to store the read frames. The test first step is a global reset, afterwards the bus
clock synchronization is performed and subsequently a series of frames are sent to
the node 1 so they can be written on the bus and received by node 2. The test is
run for 100 ms in terms of simulation time, while the real time delay is measured
to evaluate the simulator performances.

The simulations have been run on the web application EDA Playground, which
allowed us to run VHDL simulation with "Aldec Riviera Pro 2020.4" and SystemC
simulation with "Accelera SystemC 2.2 compiler", which are tools mounted on the
same server, therefore a reliable performance comparison has been carried out.
Moreover, the VHDL benchmark has been simulated on ModelSim to trace the
signals of interest involved during the different phases of the frame transmission
and reception, essential for debugging.
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2.3.1 TLM design simulation
In this section, the outputs generated by the simulator terminal will be extracted
and analyzed in order to have a better comprehension of the device behaviour
during the test case. The TLM design has been generated thanks to an embedded
C++ compiler which includes SystemC 2.2 libraries and, in order to exploit the
necessary TLM paradigm software architecture, all TLM libraries from the OSCI
TLM1.0 standard release are compiled along with the design.

As follows is shown the printing from the internal modules of the DUT, other
than the testbench environment, that allows to see in detail the dataflow in both
the transmitter node and the receiver node during a frame transaction.
Fin i shed binding
Clock generator : Changing p r e s c a l e r va lue to 0 at 0 s
TB: S ta r t i ng i n i t i a l i z a t i o n
TB: I n i t i a l i z a t i o n f i n i s h e d
TB: S ta r t i ng CAN bus c l o ck synchron i za t i on
Clock generator : Changing p r e s c a l e r va lue to 40 at 10 ns
Clock generator : Changing p r e s c a l e r va lue to 40 at 10 ns
TB: Synchron izat ion f i n i s h e d
TB: r e s e t d i sab led , s imu la t i on s t a r t e d
TB: Sending to DUT a 5 byte message with RTR = 0 , IDE = 1 @ 3220 ns
CAN_master_1 : S ta r t i ng CRC encoding
crc_codec_1 : CRC = 59338 , frame = 132985843461361174721462272
CAN_master_1 : CRC done
TB: Sending to DUT a 2 byte message with RTR = 1 , IDE = 0 @ 3230 ns
TB: Sending to DUT a 3 byte message with RTR = 0 , IDE = 0 @ 3240 ns
CAN_master_1 : Sta r t t ransmi s s i on o f frame : ID = 13 , RTR = 0 , IDE = 1 ,

ID_EXT = 434 , DATA = 5210

In the first phase, all modules are instantiated and the signals are bound, then
the test environment starts the initialization: the DUT is reset, the selected baud
rate is sent to the nodes and the synchronization of the bus clock with all nodes
is performed. As it can be read, the simulation starts when reset is disabled and
the first message is sent to Node 1, which generate the corresponding frame and
launch the transmission to the bus. In particular, the master drives the CRC_codec
and the Transceiver_transactor modules to proceed with the Crc encoding and
subsequently with the coherent collision-less serial transmission on bus.
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TXRX: SOF detec ted at 6200 ns
CAN_master_2 : SOF detected , s t a r t r e c e i v i n g
TXRX: STARTING RECEIVING at 6300 ns
TXRX: Pre−frame read 1845549317 , i t i s expected a 5 byte long data

from node 434
TXRX Trans : Reading FrameH at 88280 ns
TXRX: Frame 126825183354722189637 r e c e i v e d at 170200 ns
TXRX Trans : Reading FrameL at 170280 ns
CAN_master_2 : Frame rece ived , s t a r t i n g CRC check
CAN_master_2 : Sending ACK at 170320 ns
Master : End r e c e i v i n g
TB: Received data form CAN master 58255736832

As it can be noticed from the output shown above, at 6,2ns, the Start Of Frame
bit is sensed from node 2, thus it receives the frame through the Transceiver_driver
and, when the last CRC bit is caught, the frame is sent back to the master, the
CRC_encoder performs the error check and then the acknowledge bit is written on
bus by Node 2.

The received payload, with the metadata extracted from frame SDU, is then
written on FIFO and read from testbench, as printed at the output.

You can observe from the following report that the simulation proceed with the
messages sent from the testbench to Node1 which continue transmitting on bus
without need of arbitration, cause it is the only master node on the CAN network
under test. The test ends after 100ms of simulation time without errors on bus
neither on the message contents, validating the design.

TXRX: Sending on bus ack = 0 at 171200 ns
TXRX: SOF detec ted at 202200 ns
CAN_master_2 : SOF detected , s t a r t r e c e i v i n g
TXRX: STARTING RECEIVING at 202300 ns
TXRX: ACK = 1 , t ransmi t t i ng EOF and IFS
TXRX: The bus i s IDLE again at 242200 ns
TXRX Trans : ERROR in t ransmi s s i on occurred
TB ERROR: TX e r r o r = 1 , RX e r r o r = 0 at 242240 ns
TXRX Trans : Reading a r b i t r a t i o n f l a g = 1 at 242280 ns
CAN_master_1 : a r b i t r a t i o n won
CAN_master_1 : ACK not rece ived , the frame w i l l be r e t ransmi t t ed
CAN_master_1 : End o f t ransmi s s i on
CAN_master_1 : Sta r t t ransmi s s i on o f frame : ID = 13 , RTR = 0 , IDE = 1 ,

ID_EXT = 434 , DATA = 5210
TXRX: Pre−frame read 369366142400 , i t i s expected a data r eques t

from node 27
TXRX: Frame 25768758720 r e c e i v e d at 288240 ns
TXRX Trans : Reading FrameH at 288280 ns
TXRX Trans : Reading FrameL at 288400 ns
TXRX: Sending on bus ack = 0 at 289200 ns
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TXRX: ACK = 1 , t ransmi t t i ng EOF and IFS
TXRX: The bus i s IDLE again at 482200 ns
TXRX Trans : Reading a r b i t r a t i o n f l a g = 1 at 482280 ns
CAN_master_1 : a r b i t r a t i o n won
CAN_master_1 : ACK not rece ived , the frame w i l l be r e t ransmi t t ed
CAN_master_1 : End o f t ransmi s s i on
CAN_master_1 : Sta r t t ransmi s s i on o f frame : ID = 13 , RTR = 0 , IDE = 1 ,

ID_EXT = 434 , DATA = 5210
TXRX: ACK = 1 , t ransmi t t i ng EOF and IFS
TXRX: The bus i s IDLE again at 722200 ns
TXRX Trans : Reading a r b i t r a t i o n f l a g = 1 at 722280 ns
CAN_master_1 : a r b i t r a t i o n won
CAN_master_1 : ACK not rece ived , the frame w i l l be r e t ransmi t t ed
CAN_master_1 : End o f t ransmi s s i on
CAN_master_1 : Sta r t t ransmi s s i on o f frame : ID = 13 , RTR = 0 , IDE = 1 ,

ID_EXT = 434 , DATA = 5210
TXRX: ACK = 1 , t ransmi t t i ng EOF and IFS
TXRX: The bus i s IDLE again at 962200 ns
TXRX Trans : Reading a r b i t r a t i o n f l a g = 1 at 962280 ns
CAN_master_1 : a r b i t r a t i o n won
CAN_master_1 : ACK not rece ived , the frame w i l l be r e t ransmi t t ed
CAN_master_1 : End o f t ransmi s s i on
CAN_master_1 : Sta r t t ransmi s s i on o f frame : ID = 13 , RTR = 0 , IDE = 1 ,

ID_EXT = 434 , DATA = 5210

TB: Stopping s imu la t i on at 100 ms
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2.3.2 VHDL design simulation

In this section will be shown the signal waves during simulation, displayed in
Modelsim graphical environment to debug and analyze the behaviour of the VHDL
benchmark; in order to have a top view of the internal signals and the input/output
interfaces of the device.

Figure 2.7 contains the first set of clock cycles when a message PDU is picked
from the TX_FIFO and the CRC code is generated in order to arrange the frame
to transmit; before starting the coding, the signal CRC_init resets the internal FFs
of the codec in order to read the new input serial data CRC_data, that is provided
together with the enable activation. At each cycle the partial result is present as
a binary value of Crc_computed and the algorithm runs until Crc_count reaches
the frame’s length, after which the enable is deactivated and the output keeps the
result value to be joined with the frame PDU.

Figure 2.7: CRC generation, from logic simulation of the benchmark.

The CRC computation delay depends on the frame length and format, specifically
the worst case is encountered when an extended CAN frame with an 8-byte payload
is transmitted, since it means that the CRC code is available after 119 clock
cycles. The delay, in terms of bus clock cycles, is function of the scaling between
the internal clock and the bus clock periods; for instance, during the performed
simulations the bus clock period is 40 times long the internal clock period, meaning
that the CRC is always generated in less than 3 bus clock ticks. Therefore, all
computations performed to obtain the appropriate frame can be done between two
consecutive CAN transactions on bus, which keep the bus idle for 14 cycles.

Once the Crc is ready, the device goes in WAIT_TX status for on bus cycle, in
order to check if a transmission is already ongoing on CAN bus, before starting the
transmission. As known, the transmission of the frame’s header is lead with the
arbitration mechanism and, as it can be verified on figure 2.8, the index tx_pointer
is used to write sequentially the frame bits, starting from SOF.
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Figure 2.8: Frame transmission (arbitration phase), from logic simulation of the
benchmark.

Bit write is executed in the rising edge of the bus clock, while bit read is executed
on the falling one, therefore the flag Arbitration_won is updated on the latter
one; while the control signal stuff_en is needed to block the index’s increase when
the stuffing bit has to be written on bus. The simulation does not encounter any
collision between transmitting nodes, thus the header transmission is completed
and the whole frame is sent from node 1.

Figure 2.9: Frame transmission (after arbitration) from logic simulation of the bench-
mark.
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As shown in figure 2.9, in the test case there is no conflict on bus, thus when
it’s turn to transmit the payload, the FSM switch to TRANSMIT_CONTINUE
state in order to turn off the dependence from arbitration_won signal. In the
same figure can be also appreciated how the stuffing affect the behaviour of the
internal signals, in particular way the value of tx_pointer. As expected, at the end
of transmission the transmitter node waits for the acknowledge and terminate the
frame transmission by holding the bus in idle state (transmitting recessive signal)
at least for 14 bus clock cycles.

Moving on the receiver (node 2) behaviour, considering the same frame trans-
mission, the concerned group of signals is reported in figure 2.10; it can be noticed
that initially the receiver sniffs the bus to sense SOF at the falling edge right after
it is sent from the transmitter (node 1), at the same time the Crc codec is keep
reset. The figure actually shows how at the second falling edge of bus_clk, the
node 2 detects the dominant bit on the bus thus its status changes, the Crc codec
is enabled to compute the frame during reception and rx_pointer, the index needed
to sequentially buffer the frame, starts incrementing.

Figure 2.10: Start of frame reception, from logic simulation of the benchmark.
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Figure 2.11: Frame reception phase from logic simulation of the benchmark.

The reception phase is split in two because the payload length is defined in
the header, which in turn should be correctly decoded based on the frame format
(standard or extended); hence firstly the extraction of the header fields is handled,
then, if no reception error occurs, the receiver switch to RECEIVE status to read
the frame PDU.

As it can be seen on figure 2.11, in the considered frame transmission the header
reception phase is 39 bits long, thus the frame is in the extended format; at this
point the DLC value is extrapolated and the reception continues. The destuffing
mechanism can be verified from an internal point of view: when the stuff_en flag is
raised, the index dies not increment in order to overwrite the stuffing bit, which is
neither considered in the Crc computation; indeed the Crc_en signal is not raised
during the destuffing.

When the transmitted frame’s PDU is received, the Crc field extracted from
this and the Crc computed by the codec during reception are compared and the
Crc_check flag is generated (figure 2.12), from which depends if an ACK or a
NACK is transmitted on bus. Moreover, if the Crc check fails or a reception error
occurred, node 2 transmits a NACK and the read frame is discarded. After the
ACK/NACK transmission, the reception is finished and also node 2 waits for the
EOF and IFS before transmitting or sniffing again the bus.
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Figure 2.12: End of frame reception from logic simulation of the benchmark.
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Chapter 3

Conclusions: Result analysis
and possible developments

A standalone CAN transceiver, exploitable as a peripheral module compatible with
a microcontroller based architecture, has been implemented in a high-level language
and compared with a low-level hardware description language.

The comparison results demonstrate a reasonable simulation performance en-
hancement although the optimization does not reach the most excellent outcome,
as discussed in section 1.1.

Indeed, the real time amount employed to run 100ms of VHDL simulation by
the "Aldec Riviera Pro 2020.4" simulator is 23sec, whereas the real time employed
to run 100ms of SystemC simulation is equal to 1.65sec (both values are an average
on 10 repeated simulations).From these results the time ratio results to be equal to
14, thus the latency is decreased by over 10 times; against the values of simulation
time improvement in the order of 100 times for cycle accurate models.

The dissimilarity has been analyzed and several design options are identified as
starting points for a different implementation that bring to further optimizations.
In particular, every process of the developed TLM modules has been implemented
as an SC_THREAD, meaning that the use of different wait() statements rather
slower the simulation because the dynamic sensitivity list is triggered in threads;
instead the use of SC_METHODs and static sensitivity lists lighten the real time
emulator job.

A further consideration to take into account is that the VHDL benchmark has
been developed with a behavioural implementation, that brings to a faster functional
simulation with respect to a structural implementation of each component.
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Considering as well that the standard used to develop the device is the TLM1.0,
an additional margin of improvement can be introduced by adopting the new
TLM2.0 standard which allows the use of the loosely timed modeling, known as the
coding stile used for fast simulations.

In conclusion, this comparison clearly reveals that the high level description
approach yields significant results and show the way forward to an innovative
hardware and software modeling methodology that influence the development
process of complex systems.
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