
Politecnico di Torino

Master of Science in Electronic Engineering

Embedded Systems

FPGA IMPLEMENTATION OF AN IMAGES

CLASSIFIER

Supervisor
Prof. Maurizio Martina
Company Tutor Altran Italia
Ing. Alessandro Bruscia

Candidate
Giulio Naggi

December 2021

Abstract

Artificial intelligence is one of the main topic in nowadays scientific researches and

it is starting to be appealing also for industrial productions. Due to the increase

of interest of the industries, Xilinx, one of the major hardware supply companies,

decided to create a development flow that allows to accelerate the production of

artificial intelligence based systems. This thesis is centered on the study of the tool

that allows to use the Xilinx new development flow, called Vitis AI. An overview

on the tool functioning and its main component will be provided together with a

project example whose main purpose is exploring the practical usage of the tool. In

addition to that, the project has been extended to include the design of a hardware

accelerator that allows to increase the performances of the developed application by

transforming a software function into a hardware component.

Contents

List of Figures . III

List of Tables . V

1 Introduction 1

1.1 The basis of Artificial Intelligence . 1

1.2 The importance of FPGA programming 4

2 Vitis AI overview 7

2.1 The hardware core . 7

2.1.1 DPU architecture . 8

2.1.2 DPU configuration . 9

2.1.3 DPU integration . 12

2.2 The tools . 13

2.2.1 Vitis AI Quantizer . 14

2.2.2 Vitis AI Compiler . 15

2.2.3 Vitis AI Optimizer . 17

2.2.4 Vitis AI Profiler . 17

3 The image classifier 20

3.1 The AI model . 21

3.2 The application code . 27

3.3 The board preparation . 32

3.3.1 Hardware platform generation 33

3.3.2 Software platfrom generation 38

3.3.3 Vitis platform generation . 42

3.3.4 Application creation . 43

3.4 The ZCU102 connection . 46

3.5 The profiling process . 48

3.6 The kernel development . 51

I

CONTENTS

3.7 The update of the application code 61

4 Conclusions 64

A Vitis AI flow scripts 66

A.1 Test script . 66

A.2 TFRecord creation script . 69

A.3 Dataset Utility functions script . 74

A.4 Finetuning and quantization script 78

A.5 Compilation script . 81

B Application code 84

C Vitis DPU configuration file 88

D Pyopencl host application code 93

Bibliography 94

II

List of Figures

1.1 Model of a biological neuron [1] . 2

1.2 Model of an artificial neuron . 3

1.3 Organization of a neural network [7] 4

1.4 Supervised learning [1] . 5

1.5 Internal diagram of an FPGA [6] . 6

1.6 Example of an half adder implemented with a LUT. 6

2.1 DPU architecture [11] . 8

2.2 DSP additional resources [11] . 9

2.3 Configuration window inside the VIVADO software [11] 11

2.4 DPU IP with all its interfaces [11] . 13

2.5 Vitis AI environment inside an Ubuntu terminal 14

2.6 Vitis AI Quantizer [14] . 15

2.7 Vitis AI Compiler [14] . 16

2.8 XIR structure [14] . 17

2.9 Vitis AI Profiler [14] . 18

3.1 Zynq UltraScale+ MPSoC [17] . 20

3.2 Terminal output during the test procedure 23

3.3 Terminal view at the end of the quantization process 24

3.4 Terminal output after the fast finetuning method 25

3.5 View of the terminal during the QAT 26

3.6 Example of the whole pre-processing procedure on an image: the

image is firstly read and then pre-processed 28

3.7 Diagram of a Vitis Platform development and usage 32

3.8 Zynq UltraScale+ MPSoC Block Automation effects 33

3.9 Block Diagram after the Run Connection Automation was run 35

III

LIST OF FIGURES

3.10 Vivado menu for managing the communication interfaces between PS

and PL . 36

3.11 Block Diagram at the end of the development process 36

3.12 View of the PetaLinux terminal showing the DTG menu 39

3.13 View of the PetaLinux terminal showing the user packages menu . . . 40

3.14 View of the PetaLinux terminal showing the Image Features menu . . 41

3.15 View of the PetaLinux terminal showing the Kernel bootargs menu . . 42

3.16 Tree representation of the platform output folder 43

3.17 View of the Vitis IDE hardware linker 45

3.18 View on the v++ option dialog box 46

3.19 Vitis Analyzer view of the summary created at the end of the building

process . 47

3.20 Directory tree of the folder loaded on the board 48

3.21 Outcome of the python application when the execution is finished . . 48

3.22 Vitis Analyzer views of the data collected during the straight forward

profiling procedure . 49

3.23 Vitis Analyzer views of the data collected during the straight forward

profiling procedure with an application that uses two different DPU

cores . 50

3.24 Vitis Analyzer view of the data collected during the profiling of the

application with the python decorator applied to the functions 51

3.25 Schema of the component which converts the input integer ranging

from 0 to 255 into the output floating-point ranging from -1 to 1 . . . 55

3.26 Schema of the AXI4 master interface provided by Capgemini engi-

neering . 56

3.27 High level schema of the kernel logic 58

3.28 View of the Addressing and Memory tab of the Vivado software during

the IP packaging procedure . 59

3.29 Vitis Analyzer view of the summary created at the end of the building

process of the project that includes the custom RTL kernel 60

3.30 View of the terminal that shows the error that is encountered during

the execution of the pyopencl code 63

IV

List of Tables

3.1 MASATI dataset [4] . 22

3.2 opencv-python library methods used in the pre-processing 29

3.3 XIR and VART libraries methods used in the managing of the DPU

execution . 31

3.4 Memport and SP Tag values for the slave interfaces 37

3.5 v++ compiler requirements for the RTL kernel developing 52

3.6 Registers inserted in the Addressing and Memory panel with their

name, offset and size . 59

3.7 Pyopencl methods used during the development of the RTL kernel

host application . 62

V

1

INTRODUCTION

1.1 The basis of Artificial Intelligence

Artificial intelligence (AI) is a scientific field that has been evolving since 19311, but

in the last decades the studies on this topic have exponentially intensified. With

the arrival of machines with a higher computational power, it has been possible to

exploit more efficiently the potential of this kind of technology that can be applied

to many different fields of use, allowing to increment the operational capability of

algorithms.

In order to better understand the concept of artificial intelligence, it is a good

choice to start from one of its definitions. According to the European Commission,

AI “refers to systems that display intelligent behavior by analysing their environment

and taking actions - with some degree of autonomy - to achieve specific goals”[2].

The emphasis is put on the concept of “intelligent behavior”, but there is not a real

explanation on how a machine can achieve the complex task of being intelligent. It

is therefore necessary to go a little bit deeper, analyzing at first the functioning of

the human brain, which can be considered reference model for AI development, and

then how it has been translated into something that can be executed by a machine.

The human brain is a very complex structure composed by billions of highly

specialized cells known as neurons. Each neuron is made of three components: the

body of the cell, called soma, and two types of filaments, called dendrites and axons

(figure 1.1). The soma is the core of the cell, it is in charge of processing the stimuli

received through the dendrites, which acts as inputs, generating new stimuli that are

sent to nearby neurons through the axons, which can be considered the outputs. It is

very important to inspect how the output is created: if the value of the input stimuli

1year in which Kurt Gödel built the foundations of Theoretical Computer Science and A.I. [10]

1

Introduction

Figure 1.1: Model of a biological neuron [1]

is higher than a given threshold the output pulse is generated with full strength,

otherwise the output pulse is null (i.e. the neuron results as it is not active). This

particular kind of response is also known as all-or-none response.

From a mathematical point of view, the behavior of the neuron can be synthesized

as follow:

neuron output =

1 when
P

x[n] · w[n] + b ≥ 0

0 otherwise
(1.1)

where the summation takes into account every input of the neuron to which is added

the bias value (b), that in this case can be considered as the activation threshold of

the neuron itself.

The mathematical equation 1.1 can be easily implemented in software or in

hardware with a sequence of simpler operations. The operator that can perform

this task is called perceptron, or artificial neuron, and it is the essential block of

artificial intelligence. In particular the perceptron requires three steps to obtained

the wanted behavior:

1. a weighted sum of all the inputs of the artificial neuron (which requires a

multiplication for evaluating the weight of each input and then a sum);

2. the addition of the bias value to the result of the previous step;

3. the application of a non-linear function to the result of the bias addition to

emulate the activation behavior of the biological neuron.

A schematic representation of the perceptron steps is shown in figure 1.2

Since a single perceptron models a biological neuron, it is necessary to inter-

connect many different of them in order to emulate the human brain. This kind of

2

Introduction

Figure 1.2: Model of an artificial neuron

structure is known as neural network and can be seen as a directed graph, where

the nodes are the artificial neurons and the edges indicates which perceptrons are

connected together. This graphs are usually organized in layers, that can be of three

main types:

• Input layer: it corresponds to the set of perceptrons that takes the data from

the external world, there is only one input layer in each neural network;

• Output layer: it indicates the group of artificial neurons whose output is

directly given to the external world, thus representing the output of the whole

neural network. Once again there is only one output layer for each neural

network;

• Hidden layer: set of perceptrons that takes as input the values elaborated by

the input layer, or by another hidden layer, and gives their own output either

to another hidden layer or to the output layer. There could be more than one

hidden layer in each neural network.

The structure that has just been introduced is very versatile since can be used

with slightly modifications (such as the reorganization of hidden layers or the change

of the interconnections between layers) for many different type of applications. This

particular characteristic is given by the architecture of the artificial neuron: as it

has been seen in the equation 1.1, the output of each perceptron depends on the

values of the weights associated to each input and on the bias value, therefore if

those numbers are changed the behavior of the whole artificial neuron is different.

The process of tuning the values of each perceptron parameters in a neural network

is called training and it can be done in an automatic way thanks to the introduction

of machine learning.

3

Introduction

Figure 1.3: Organization of a neural network [7]

In order to clarify the training procedure it is useful to make an example. Assum-

ing to have an image classifier (which is an AI that is able to recognize the subject of

an image giving as output the probability that it belongs to one of the classes that

the artificial intelligence knows), it is necessary to provide a large amount of data

that has been previously labelled, i.e. it already contains the information about

the right class the image should belong to. This set of data is then fed as input

to the neural network that starts to make some predictions according to its actual

parameter. The output is used to calculate a loss value by evaluating the difference

between the actual guess and the expected output (which is indicated in the label),

obtaining a number that indicates how far the prediction is from the correct result.

The loss value is then used to modify the weight of the perceptrons inputs inside the

neural network by using an algorithm that, starting from the outputs, tracks every

artificial neuron that contributed to the wrong result and adjusts its parameters

subtracting the loss value. This training system is known as supervised learning.

1.2 The importance of FPGA programming

The training process has been one of the key point that allowed to exploit the power

and the potentiality of artificial intelligence thanks to the possibility of obtaining

a customized neural network that could fulfill the requirements of many different

applications. The opportunity of achieving a wide customization with a relatively

4

Introduction

Figure 1.4: Supervised learning [1]

low cost granted to the AI a prominence role in industries that are now starting to

intensely use it.

For some applications the artificial intelligence that can satisfy the required spec-

ifications can be very complex in terms of number of perceptrons, interconnections

and layers. In this cases it can be very complicated to design a project to be run

in software, i.e. that can be computed by a processor, without downgrading the

performances. To solve the problem a good idea could be to move from a software

implementation into a hardware one. With hardware the performances, in terms

of timing, are usually increased, but the design of a hardware component could be

very expensive for what concerns design time and costs. What is usually done to

allow a faster and less expensive production is using an FPGA (Field Programmable

Gate Array), which is a particular logic device that can be programmed in order to

perform any custom logic function (as long as there is enough space to map it). An

FPGA is composed by two main blocks: the Logic Element (LE), or Configurable

Logic Block (CLB), and the switching block (figure 1.5). The former is composed by

a Look-Up Table (LUT) and by a register. The LUT can be considered as a small

memory where the stored data represents the output of the logic function which is

addressed by the input of the function itself, thus allowing to create any combina-

tional circuit (an example of a half adder is visible at figure 1.6). The register is

added to the LE in order to be able to create sequential circuit by storing the purely

combinational circuit provided by the LUT. The switching block is an element made

of some transistors that are driven by 1-bit RAMs. In this way it is possible to con-

figure how the various LEs are interconnected by simply writing a 0 or a 1 in the

RAM memories. In fact, when a 1 is stored, the corresponding transistors acts like

a closed switch enabling the interconnection, while if a 0 is stored the transistor can

be considered as an open circuit.

5

Introduction

Figure 1.5: Internal diagram of an FPGA [6]

The potential of FPGA has been exploited also in the artificial intelligence field.

Xilinx, one of the leading companies for what concerns FPGA production, designed a

highly specialized hardware component that is able to perform in the most optimized

way possible the most common operations required in neural networks. Since the

component is general purpose, i.e. it is able to run many different AI models with-

out changing its architecture, a compiler is necessary to transform the operations

required by the software model into instructions that can be run by the component

itself. In the next chapters an overview of the development flow necessary to ex-

ploit the Xilinx component is provided, as well as the step necessary to increase the

performances of the obtained application.

Figure 1.6: Example of an half adder implemented with a LUT.

6

2

VITIS AI OVERVIEW

With the expansion of the artificial intelligence field, Xilinx decided to design an

easy development flow that allows to accelerate the inference, i.e. the process of

using and deploying an already trained neural network, of AI on its own hardware

platforms. The main idea behind the flow is the hardware acceleration, which is a

technique that can be used to increase the performances of a system by moving a

function from a software implementation into a hardware one. In order to apply

this approach to a neural network, Xilinx created a specialized hardware core that

is capable of performing in an optimized way most of the common operations of

convolutional neural network. Due to its high specialization, the hardware core can

only execute instruction coming from an exclusive instruction set. For this reason

it was necessary to create some tools that, combined with each others, allow to

transform an input neural network into the series of instructions that emulate its

behavior. In addition to these two elements, a run-time application was needed to

manage the communication of the hardware core with the software environment.

To simplify the task of creating such application, Xilinx developed some libraries,

available in two different coding languages. The combination of all these components

forms a development environment, which takes the name of Vitis AI, to which the

possibility to use pre-trained artificial intelligence models to further accelerate the

creation of a new application by avoiding to perform the training of the neural

network was added.

2.1 The hardware core

The hardware core of the development environment is called Deep learning Pro-

cessing Unit (shortened with the acronym DPU). It is a programmable engine that

7

Vitis AI overview

is optimized for convolutional neural networks, which are particular AI networks

that are well suited for tasks such as object detection and recognition since they

allow to reduce the number of interconnections between perceptrons. It can be im-

plemented in the programmable logic (PL), i.e. the hardware environment that is

generated inside the FPGA, of different Xilinx boards and it is provided with some

user-configurable options. The possibility to configure some parameters of its archi-

tecture allows to fulfill the performance requirements of many different applications

reducing as much as possible the space occupied inside the FPGA, thus reducing

the cost.

2.1.1 DPU architecture

Figure 2.1: DPU architecture [11]

The detailed hardware architecture of a DPU, in particular the DPUCZDX8G

which is the one optimized for the Zynq Ultrascale+ MPSoCs1, is visible at figure

2.1. It is composed by four main components:

• Instruction scheduler: it is the module that is in charge of managing the

execution of the instructions, which belong to a specialized set that can be

1type of FPGA present on the ZCU102, board that has been used for this project

8

Vitis AI overview

Figure 2.2: DSP additional resources [11]

used to execute in the most optimized way possible all the common operations

needed in convolutional neural networks. The instructions are read from an

off-chip memory and, after the decoding process, are scheduled to be run by

one of the processing engine that form the computing engine;

• On-Chip buffer controller: component that handles the operations per-

formed on the on-chip memory. This memory has been added to increase the

performances of the whole DPU by storing the input data, the intermediate

results and the outputs, thus avoiding to wait for the communication with the

off-chip memory;

• Computing engine: it is the execution core of the DPU. It is composed by

an array of processing engines (PE) which are designed with a deep pipelined

architecture to increase the throughput as much as possible.

• AXI interfaces: communication interfaces that are necessary to exchange

data through the bus with the off-chip memory and the processor, which will

run an application that controls the execution of the DPU.

In order to further improve the performances, a DSP (Digital Signal Processing)

Double Data Rate (DDR) technique is used. This addition increases the number of

used resources, as can be seen in figure 2.2, and needs an additional clock.

2.1.2 DPU configuration

As it was said, the DPU is a configurable core whose configuration options allows

the user to setup different parameters that can manage the usage of resources such

9

Vitis AI overview

as DSP slices,LUT, block RAM and UltraRAM. The main possible options are:

• Number of cores: a single DPU instance can include internally up to 4

different cores. The more the number of the cores the more efficient the im-

plementation is, but the amount of used resources is consequently increased.

• Architecture: the DPU IP can be implemented with different types of archi-

tecture that differ one from the other in the level of parallelism. The available

designs are the following: B512, B800, B1024, B1152, B1600, B2304, B3136

and B4096. The numeric value that is used in the names indicates the number

of operations that can be performed per clock cycle and it is directly corre-

lated with the level of parallelism. In particular, the higher the parallelism, the

higher the number of executable operations (as a consequence also the number

of necessary resources increase with the increment of the performances).

• RAM usage: the on-chip memory that is used to increase the performances

is a RAM memory that stores weights, bias and intermediate results. When

instantiating the DPU module, it is possible to choose the amount of RAM

that will be reserved by selecting between the High RAM usage and the Low

RAM usage options.

• Channel augmentation: technique that exploits the fact that in some mod-

els the number of input channels is lower than the channel input parallelism

of the architecture. When this condition is verified, the performances can be

increased by enabling this option at the cost of extra resources usage.

• Depth-wise Convolution: with standard convolution each input channel

needs to perform some operations with one specific kernel and then all the

results of all the channels are combined to obtain the final result. By enabling

the depth-wise convolution, the convolution operation is split in two part: the

depth-wise one and the point-wise one. The former allows to process all the

input channels in parallel, while the second performs a convolution with a 1x1

kernel combining the results of the previous step to obtain the final value. This

kind of approach allows to increase the performances since the parallelism of

the depth-wise convolution is half of the pixel parallelism, thus more than one

activation map is evaluated per clock cycle.

10

Vitis AI overview

• Average Pool: the average pool is the operation in which a matrix is reduced

in size by making an average of its element. The starting matrix is divided

into smaller squares (the supported sizes of the squares goes from 2x2 to 8x8)

and the average value is calculated by summing all the elements of the smaller

matrix that are then divided by the number of summed elements. This kind

of operation allows to reduce the size of the input data, thus increasing the

performances.

• ReLU type: the ReLU (Rectified Linear Unit) is the operation that trans-

forms the negative values into zeros by keeping unchanged the positive ones.

It is possible to choose between: ReLU. ReLU6 and LeakyReLU.

• Softmax: the softmax is a logistic regression function that allows to transform

any obtained value into a probability in range 0 ÷ 1. By enabling this option

the hardware to perform this operation is added, thus avoiding to use the

processor to perform this task.

By combining the above features it is possible to customize the DPU imple-

mentation reaching the best trade-off between resources and performances for each

application. Once the configuration process is completed, it is necessary to save the

enabled options in order to let the compiler to correctly select the instructions that

will be executed. This step is automatically performed after the synthesis of the

DPU and all the data is stored in a configuration file, called arch.json, that will be

later given to the tools that compose the Vitis AI environment.

Figure 2.3: Configuration window inside the VIVADO software [11]

11

Vitis AI overview

2.1.3 DPU integration

Now that the structure and the functionalities provided by the DPU core have been

explained, it is important to understand how it is possible to integrate it inside a

project. Vitis AI gives two possible solutions. The first one consists in creating a

project with VIVADO (which is the Xilinx software that allows to create a hardware

system that can then be synthesized and loaded into the FPGA), while the second

option is using the Vitis IDE (which is a comprehensive tool that can be used to

create an application that can include both a software and a hardware part).

In both the cases, it is important to take into account that the DPU needs to

communicate with the processing system (PS), i.e. the software environment that

runs on the processor, to receive the control signals, the instructions to be executed

and to exchange data. To perform such a task, some communication interfaces must

be added and a communication protocol must be selected. In the case of the DPU,

the adopted protocol is the AXI (Advanced eXtensible Interface): a burst-based

protocol that divides the communication in five different and independent channels

(the read address, the read data, the write address, the write data and the write

response) each one characterized by a handshake procedure. For what concerns the

interfaces, the ones present in the architecture are the following:

• an AXI4-lite2 slave used to receive the control data and the base addresses

at which the instructions are stored in the memory. All the received data is

stored inside some internal register so that it will be available at run-time;

• an AXI4 master to access the instruction memory according to the formerly

received base addresses and read the instructions that must be performed;

• two AXI4 masters that allows to read the data that must be processed during

execution. The presence of two different interfaces allows to read larger data,

thus exploiting as much as possible the DPU parallelism;

• an optional AXI4 master that is automatically inserted if the softmax option

has been enabled during the configuration process to handle the softmax data.

In addition to the communication interfaces, there are some other signals that

must be taken into account when integrating the DPU: some interrupt signals, two

2variation of the standard AXI that simplifies the communication protocol for easier commu-
nications

12

Vitis AI overview

clocks and two resets. The number of interrupt signals depends on the number

of cores inside the DPU, in fact each core has its own interrupt signal. For what

concerns the two clocks, one of them is necessary to manage the communication pro-

tocol, while the other one is used for the internal logic and it must have a frequency

that is twice the one of the other clock. The two resets follows the same structure

of the clocks: one is used to handle the communication, while the other one is used

by the internal logic.

Figure 2.4: DPU IP with all its interfaces [11]

2.2 The tools

Vitis AI development environment makes available different tools that, when com-

bined together, allow to create the sequence of instruction that model the input

neural network. Before analyzing each one of the main tools, it is worth mentioning

that Xilinx developer included inside the development environment additional fea-

ture to increase the flexibility and the usability of it. As an example, it is possible

to train a new AI model written with the mainstream frameworks in the context of

artificial intelligence implementation (such as TensorFlow, Caffe or PyTorch), which

allows to start a project from its very basis. In the next sections all the main tools

usage is explained in order to understand which is the flow that must be followed

during the design. In order to be able to use the available tools it is necessary to

underline that all the Vitis AI suite is available as a docker image, i.e. a standard

unit of software that packages up code and all its dependencies so that applications

can run easily and reliably in different computing environments [3], which can be

installed only on a Linux-based operating system.

13

Vitis AI overview

Figure 2.5: Vitis AI environment inside an Ubuntu terminal

2.2.1 Vitis AI Quantizer

Artificial intelligence models usually stores all the weights and biases of their neural

networks with a 32-bit floating-point representation, thus the inference of these type

of models is very computing intensive and it requires a high memory bandwidth if

a low-latency and high-throughput is desired. When designing the DPU, Xilinx

developer discovered that by substituting the 32-bit fixed-point numbers with 8-bit

integer values brings to an important boost in the performances with the cost of a

little degradation in the performances. With this idea on mind, the Vitis AI quan-

tizer was created. Its main goal is the automatic conversion of all the parameters of

an input artificial intelligence trained model into 8-bit integer constants and, as out-

put, it produces a new model file which results to be less heavy in terms of memory

space (thanks to the previous conversion).

Vitis AI quantizer provides three different methods that can be used to correctly

quantize the input neural network:

• Post training quantization: this method is the less expensive in terms of

running time, which depends also on the complexity of the model. In order

to process the input model correctly, it requires only a small set of unlabeled

images to analyze the distribution of activation.

• Quantization aware training: with some networks, such as MobileNet, the

14

Vitis AI overview

Figure 2.6: Vitis AI Quantizer [14]

previous method brings to a large accuracy loss. In this case it is possible to

run the quantization aware training that requires a much higher running time

(from minutes to hours), because it performs also part of the training process

taking into account that the result will be quantized (thus it brings to different

results with respect to a normal training procedure). In order to be able to

use this method, the original training dataset must be provided.

• Fast finetuning: quantization algorithm have been evolving and the last

ones are able to perform complex operations in a much efficient way. It is the

case of the fast finetuning that allows to achieve a better quantization result

with a slightly slower run time, but still requiring a small set of unlabeled

data.

For all the methodologies listed above, the quantizer should run several iteration

of inference to improve the accuracy of the quantized model, which, one the entire

process is over, will be transformed into a DPU deployable model.

2.2.2 Vitis AI Compiler

Once the input model has been transformed into a deployable one, it must be mapped

to a sequence of the highly optimized instructions that the DPU is able to execute.

This operation is performed by the Vitis AI compiler in three subsequent steps: the

parsing, the optimization and the code generation. Before going more into details,

it is fundamental to introduce the intermediate representation that is used by the

compiler, known as XIR (Xilinx Intermediate Representation).

XIR is a graph-based representation of the AI algorithms which is designed for

simplifying the compilation and the deployment of the DPU on the FPGA. It is

15

Vitis AI overview

Figure 2.7: Vitis AI Compiler [14]

composed by four main libraries:

• Graph: it is the core component of XIR. It is formed by the OPs as vertexes

and the relation between producer-consumer as the edges;

• OP: it correspond to the operator library, it defines a set of operator that are

used to cover the most popular deep learning frameworks and all the built-in

DPU operators. With the introduction of this library the differences within the

mainstream frameworks are removed and a unified representation is provided;

• Tensor: unlike other frameworks tensor definition, in XIR it is only a descrip-

tion of the data block it represent and carries the information about the data

type and the shape (no real data is associated to a tensor);

• Subgraph: it is the library that provides a tree-like hierarchy which divides

the set of OPs into several sets which do not overlap.

When compiling a quantized model, the first step that the compiler performs

is the parsing of the topology of the input model. The data retrieved during the

parsing procedure is used to create the XIR graph of the input model on which

different modifications are made. First of all there is an optimization phase, where

some computation nodes are fused or the scheduling is modified according to the

DPU parallelism or according to the data reuse. In this way it is possible to increase

the performances without changing the behavior of the algorithm. The optimized

graph is then divided in subgraphs according to the DPU capability of executing

the operations and additional architecture-aware (i.e. dependent on the DPU archi-

tecture, which must then be known by the compiler) optimization are performed.

The last step is the generation of the instruction stream for the DPU. This process

16

Vitis AI overview

is performed only on the subgraph that contains all the operations that can be ex-

ecuted by the DPU itself, while all the other subgraphs are mapped on instructions

that will be executed by the processor. As a final step, the whole graph is serialized

in a xmodel file that will be used during the execution of the application (exploiting

one of the XIR properties, which is the possibility to move flawlessly from the file

format, the xmodel file, to the in-memory format, the XIR graph and vice versa).

Figure 2.8: XIR structure [14]

2.2.3 Vitis AI Optimizer

Xilinx developers included the possibility to increase the performances of an ap-

plication by modifying directly the initial neural network. This kind of operation

is performed by a tool called Vitis AI optimizer, with a procedure called pruning.

It consists in removing all the redundant connections of the neural network, thus

reducing the overall number of operations involved. This type of optimization does

not exclude the ones performed during quantization and compilation, thus it is a

good choice to run the optimizer before the compiler and the quantizer. This tool

is available only under a license.

2.2.4 Vitis AI Profiler

Before an application under development can be considered successfully concluded,

it is necessary to verify if all the starting requirements have been met. In some cases

17

Vitis AI overview

it can be very complex to complete this procedure, thus Xilinx inserted inside its

development environment a set of tools that allows to facilitate this task. The whole

set takes the name of Vitis AI profiler and it allows to easily gather performances

information while the application is being executed and then to visualize them in a

clear way.

The Vitis AI Profiler is an application level tool based on the VART (Vitis

AI RunTime) library, which provides unified high-level run-time APIs to submit

and collect asynchronously data to and from accelerators. In addition to the data

coming from the accelerators, the profiler gathers also all the information about the

performances of the CPU, where all the operations that can not be run by the DPU

are executed. After having collected all the necessary data, it is necessary to display

it in an user-friendly way. For this reason, all the retrieved information are stored

inside one or more csv files that can than be read by the Vitis Analyzer software

which provides a GUI to display them.

Figure 2.9: Vitis AI Profiler [14]

In order to correctly run the Vitis AI Profiler an operative system is necessary.

In Xilinx applications the OS is usually created by using the PetaLinux Tool, an

embedded Linux SDK (Software Development Kit) targeting FPGA-based systems.

The generation of the operating system is performed through the Yocto SDK, which

is integrated in the PetaLinux tool. With this kind of creation process it is very

easy to modify the Linux version, creating a deep customized Linux distribution.

One of the requirements that must be met to be able to run the Vitis AI Profiler is

the enabling of some options inside the PetaLinux menu. In particular, inside the

kernel configuration (accessible with the command petalinux-config -c kernel inside

a PetaLinux project) the following must be on:

• General architecture-dependent options −→ Kprobes

• Kernel hacking −→ Tracers

18

Vitis AI overview

• Kernel hacking −→ Tracers −→ Kernel Function Tracer

• Kernel hacking −→ Tracers −→ Enable kprobes-based dynamic events

• Kernel hacking −→ Tracers −→ Enable uprobes-based dynamic events

After having build the PetaLinux project and loaded the operating system inside the

board, it is possible to start the profiling by inserting an option when the execution

of the operation code is issued. In order to clarify the correct usage of the tool, the

following are the two possibilities (the tool is available only for C++ and Python

coded applications):

• C++ : vaitrace <path to the executable C++ file>

• Python : python3 -m vaitrace py <path to the Python code>

19

3

THE IMAGE CLASSIFIER

As it has been seen in the previous chapter, Vitis AI development environment

introduces many different interesting features when dealing with artificial intelligence

based projects. Since one of the most critical processes is putting into practice what

the theory describes, it was necessary to create an example project that exploits as

much as possible all the most important features of the Xilinx environment.

The project described in this thesis work implements a simple image classifier

that receives as inputs some images stored in the memory of the running device,

which is a ZCU102 board made available by Capgemini engineering. The ZCU102

is a general purpose evaluation board that mounts a Zynq UltraScale+ MPSoC

(MultiProcessor System on Chip), which is a device that combines a 64-bit ARM

processor, the processing system (PS) seen in the previous chapter, with an FPGA,

the programmable logic (PL) cited in the previous chapter.

Figure 3.1: Zynq UltraScale+ MPSoC [17]

In addition to that, the board includes features such as a high speed DDR4

SODIMM, a multi-gigabit per second serial transceivers, a variety of peripherals

and many others that can be seen in the board user guide [16].

20

The image classifier

In this chapter all the steps that were followed to reach the completion of the

project are explained in details in order to allow to replicate the obtained results.

Before starting the analysis of the project, it is important to notice that all the

choices was made in order to enhance the possibility to use one or more tool features

rather than developing a complex or optimized application.

3.1 The AI model

When dealing with an artificial intelligence based project, the first step is usually

the development of an AI model capable of solving the requested problem. In the

specific case of the project designed during this thesis work, there were not any

problem to be solved, thus the AI model was chosen among the ones that were not

very complex and already available.

Capgemini engineering provided the model of an image classifier based on the

MobileNetV2 architecture, which is a neural network designed to efficiently run on

mobile devices, and it was written with the TensorFlow2 framework (the corre-

sponding programming language is python). The artificial intelligence was already

trained on the MASATI (MAritime SATellite Imaginery) dataset, which provides

several satellite images of marine environments. In particular there are seven pos-

sible classes inside the MASATI dataset, each one provided with a large number of

images that can be used during the training process, as it is visible in table 3.1.

All the images of the dataset are labeled with the correct category they belongs

to through the name of the image, which is formed by an initial letter and a four

digit number. The letter indicates in a unambiguous way the class, while the num-

ber is used to differentiate the images one over the other. The provided artificial

intelligence model was trained only with the last three classes of the dataset, thus

the neural network is able to categorize the input images only between land, sea or

coast.

Before proceeding with the development flow seen in the previous chapter, an

initial evaluation of the model efficiency was made. In order to perform this task, a

Python script was created implementing an algorithm that at first loads the trained

model through the TensorFlow2 APIs, then feeds the artificial intelligence with all

the images inside an input folder. To increase the robustness of the test all the

images are loaded into some lists and shuffled. In addition to that, the script takes

21

The image classifier

Class Description # of
samples

Example image

Ship Ship inside a portion of sea
without coast

1027

Detail Zoom on a ship, showing
some of its details

1789

Multi Multiple ships on water 304

Coast &
ship

Ship inside a portion of sea
near a shore

1037

Sea Portion of water with no
land

1022

Coast Section of a coast (both
water and land are present)

1132

Land Portion of land with no
water

1078

Table 3.1: MASATI dataset [4]

the model output and compare it against the label of the input image to verify

the correctness and the precision of the model itself. The comparison is made by

checking if the first letter of the AI output is equal to the letter indicated in the

22

The image classifier

name of the image (since for the three class used the letter in the name can be a l,

indicating land, a c, standing for coast, or a w, indicating water). For each image,

the algorithm displays on the terminal the input image path, the AI guess (with

its probability value) and the overall accuracy of the model. These information are

colored according to the correctness of the guess, a green print indicates the correct

guess while a red one indicates an error. At the end of the test procedure, the given

Figure 3.2: Terminal output during the test procedure

model showed a very high accuracy since the percentage of rightly classified images

is 0.994784. Since the provided model proved to be quite reliable, it was possible to

perform all the steps that brings to the deployment of the application.

Basing on the tutorial made available by Xilinx, in particular the one targeting

the TensorFlow2 development flow [13], that was used as starting point to design

this thesis project, a good practice is using TFrecords when performing operations

that involves large quantity of data in a TensorFlow2 environment. A TFrecord is

a simple format for storing a sequence of binary records which allows to reduce the

amount of space occupied by the data (without losing information), to increase the

speed of I/O operations (can be read in parallel) and allows to read different data

files from a single source. In order to follow the indications of the tutorial, the input

data was converted into different TFrecords by modifying the script provided in the

tutorial itself. Before launching the real conversion process, that is performed with

the TensorFlow2 APIs, it is necessary to prepare the data. All the images inside the

input directory are divided into the three categories, thanks to the name labelling

23

The image classifier

system of the dataset, shuffled and then inserted into two different lists. The first

list contains all the images that will be used during the testing procedure, while

the second all the data that is necessary to train in a reliable way the model. The

number of images inside the first list is much smaller than the one in the second

list and it corresponds to the 20% of the total images, since the training procedure

requires a big amount of data to tune the neural network parameters. At the end of

the TFrecords creation, three files was created (test 0.tfrecord, train 0.tfrecord and

train 1.tfrecord) which includes all the 3066 images of the dataset. The number of

total images is given by the necessity of having the same amount of images in each

class in order to correctly train an AI model monitoring its accuracy. For this reason

the script that creates the TFrecords takes the class with the lowest amount of data

and adapt the other classes to this number (it truncates the exceeding images).

Once all the data was available, the quantization process was the first operation

that had to be performed on the model that was provided by Capgemini engineering.

Looking at the quantization script provided by the Xilinx tutorial, the process is

performed by loading the trained model (also known as float model) and using the

quantize model method present in the Vitis AI APIs for the TensorFlow2 framework.

As a first try, the script available on the tutorial was used by simply changing the

input model, but some problem arose. When evaluating the output model of the

quantization process, the accuracy dropped significantly from the starting 0.994784

to 0.315152 which, of course, is not acceptable. After a long troubleshooting, the

Figure 3.3: Terminal view at the end of the quantization process

24

The image classifier

cause of the problem was found in the architecture that was chosen for the model.

As it has been said in the previous chapter, there are some AI architectures that

are not well suited for the quantization process and one of them is the MobileNet

family. To correctly use this type of architecture it is necessary to substitute the

quantization with the fine tuning procedure, which partially trains again the floating

model taking into account that the internal parameters (weights and biases) will be

expressed with 8 bit integer values. Inside the Vitis AI development environment,

the finetuning technique is supported with two different methods: the fast fine-

tuning and the quantization aware training (QAT). The former is an automatic

procedure that is enabled with an option of the quantize model APIs (in particular

the include fast ft and the fast ft epochs, which must be set to True and to an integer

number respectively) that modify the quantization process adding the tuning of the

inner parameters, while the second method requires the following steps:

• Instantiate the quantizer with the quantize strategy option set to 8bit tqt ;

• Generate a quantization aware model through the get qat model method of

the quantizer class (the function requires two arguments that are init quant,

which must be set to True, and the calibration dataset, portion of the data

that can be used as a test during the tuning);

• Compile and train the model that has just been created.

Figure 3.4: Terminal output after the fast finetuning method

25

The image classifier

For the sake of simplicity, the first method was used and it led to a result that was

better than the previous one, but still not acceptable since the accuracy was around

0.327273.

As a last attempt, the quantization aware training technique was used and the final

outcome was the one that was expected from the theory: 0.973574, a little bit lower

than the original one, but still very good, thus it was possible to proceed with the

next, and final step, which was the compilation.

Figure 3.5: View of the terminal during the QAT

According to the theory explained in the previous chapter, the compilation pro-

cess requires all the information about the configuration options used to implement

the DPU inside the project. In order to keep the project a little bit simpler, all the

default options was selected. Given that, the compilation process was performed us-

ing the compilation script available on the tutorial, changing only the source model

that was the one coming from the quantization step. The final result of the whole

development flow is the .xmodel file containing the DPU instructions that will be

loaded inside the ZCU102 memory in order to run it on the board.

In order to replicate the flow it is sufficient to start Vitis AI, activate the Ten-

sorFlow2 environment (with the command conda activate vitis-ai-tensorflow2) and

then execute all the scripts, visible in appendix A, in the correct order by issuing

them through the python3 command (the general syntax of the command is the

following:

26

The image classifier

python3 -u <path_of_script> <script_parameters>

3.2 The application code

The .xmodel file that was generated with the steps described in the previous section

is one of the main component to accelerate the AI inference, but, given that it must

run on a board that mounts an operating system, it needs a software application

that handles the communication between the processing system and the hardware

core. In addition to that, the small firmware should load the DPU instructions,

prepare the data that will be fed to the DPU and read the results coming from the

DPU. In order to facilitate the design of such algorithm, Xilinx inserted inside the

Vitis AI development environment some libraries which are available in two coding

languages: C++ and Python. For sake of simplicity the programming language

chosen to design the firmware was Python, due to the fact that it is the same

language used in the Xilinx tutorials.

Before describing the application code, it is important to see which are the part

that compose it at a higher level. There are three main parts that are run in

sequence:

• Input preparation: images are stored in memory as multidimensional arrays

(usually in three dimensions: height, width and color channels) were each

element of the arrays correspond to a pixel (usually with a value in range 0 to

255). The AI models that work on images expect as well a multidimensional

array of integer as input, but the value of each integer must be in range 0

to 1 or in range -1 to 1 (it depends on the choice made during the training

of the model itself). A linear transformation that converts the integer value

from the image domain (0 to 255) to the AI one (either 0 to 1 or -1 to 1) is

needed and it is known as pre-processing. Together with the pre-processing,

some methods to retrieve the initial image must be added (it can come from

a communication channel with a camera or read directly from memory, for

example);

• DPU handling: since the Vitis AI flow is based on the hardware acceleration,

it is necessary to introduce some piece of code that will manage the execution

of the hardware (by setting some registers inside the DPU is possible to control

27

The image classifier

its execution). In addition to that, there must be some synchronization process

to allow the software code to wait the DPU to finish the data processing;

• Output registration: once the DPU has finished its execution, the output

data should be read back in order to be used inside the rest of the system.

Figure 3.6: Example of the whole pre-processing procedure on an image: the image
is firstly read and then pre-processed

The application code developed for this project implements all the steps above,

taking the images to be pre-processed directly from the device memory and using

the output of the AI model only for verifying the correctness of the guesses.

Starting from the pre-processing procedure, two possible methods were available

during the design. The first one consists in pre-processing all the images at once,

saving them into the memory and then pass the converted data to the DPU, while

the second options is perform the pre-processing on a single image and send it

directly to the DPU, starting then again for the next image. The last method was

the one used, so that it could have been possible to exploit the presence of two

DPU cores and performing the pre-processing while the other core is running. After

saying that, the input data preparation was handled with the following steps:

1. Image read: the image is read and stored in memory as a multidimensional

matrix using the opencv-python library with the imread method. The path of

the image must be given as argument;

28

The image classifier

2. Image preparation: images can be stored in memory with different structures,

thus it is necessary to reshape the input image into the structure that is ex-

pected by the DPU. In this particular case the reading function orders the

image channels in the BGR standard (Blue channel first, Green channel sec-

ond and Red channel last) while the used AI model requires the RGB stan-

dard. The channel shifting is done through the cv2.cvtColor function, where

the second parameter indicates the type of conversion (for this project it is

cv2.COLOR BGR2RGB). In addition it is necessary to match the size of the

height and the width of the image, thus the cv2.resize function is used.

3. Pre-processing: the model provided by Capgemini engineering is able to pro-

cess images whose pixel value is in range -1 to 1. The transformation is per-

formed with the simple linear function visible in equation 3.1, which can be

directly implemented in software.

pixelout =
pixelin
127.5

− 1 (3.1)

For what concerns the DPU managing the Vitis AI libraries APIs were deeply

used, in particular the VART, for run-time operations, and the XIR, for the manag-

ing of the compiled graph expressed in the Xilinx representation (see section 2.2.2).

The first library introduces a software object associated with a DPU core, which is

Synopsys Description

cv2.imread(image path) Returns the multidimensional array
containing only the pixels values (all the
decoding due to the image formatting is
performed during the image opening)

cv2.cvtColor(image,conversion mode) Returns the multidimensional array of
the image pixels with the color chan-
nels reordered according to the conver-
sion mode value

cv2.resize(image,(h,w)) Returns the multidimensional array of
the image pixels resized according to
the new height and width indicated by
h and w respectively

Table 3.2: opencv-python library methods used in the pre-processing

29

The image classifier

called runner, that includes the main functions that can be used for the DPU execu-

tion. In order to correctly create this runner, it is necessary to pass as argument the

XIR subgraph that must be executed, thus it must be extracted from the .xmodel

file generated during compilation using the second library available. In addition to

that, there is a second parameter that is used to indicate the mode in which the

DPU should be run; the value that is usually associated to it is run and is passed

as a string.

Once all the basic objects have been created, the DPU execution can be started

with the runner execute async method, which asks as parameters an input array,

where the data must already be present, and an output array, where the processed

data will be stored. If the operating system has to wait for the end of the DPU data

processing, there is another method of the runner class that allows to perform such

operation. This functions, called wait, works in a similarly way to the Unix waitpid

function: it receives as a parameter the id of the running job, which is the return

value of the execute async method, and waits until the process associated to the

given id has finished all its operations. Table 3.3 lists all the methods used inside

the code with a little description that should clarify their functionalities.

As a last step, the output must be retrieved and, in the specific case of this

application, compared against the real class of the input image. Differently from

how pre-processing is performed, the post-processing (i.e. the operations performed

on the AI model output) is not performed on a single image at a time, but to all the

images at once. For this reason, after the wait function described above ends, the

index of the output array which contains the higher value, i.e. the class that was

considered as most probable for the given input image, is stored inside a list. Once

all the images have passed through the DPU processing, the list containing all the

classes is iterated and each index is associated to the correspondent class name. At

the same time, the input images are scanned in the same order they were scanned

during the pre-processing operation to obtain the first letter of the name and check

if it matches the first letter of the AI output class. If a match is found a correct

counter is incremented, otherwise a wrong counter is increased. Those two values

are used as output of the whole application that will indicate the number of correct

guesses, the number of wrong guesses and the accuracy, i.e. correct guesses divided

by the number of total images).

30

The image classifier

Synopsys Description

XIR

xir.Graph.deserialize(xmodel path) Returns the XIR model object starting
from the .xmodel file

mg.get root subgraph() Returns the root subgraph of the origi-
nal XIR graph (mg is the output of the
previous function)

rs.is leaf Checks if the root subgraph of the XIR
graph is the leaf, i.e. no subgraphs are
present under it (rs is the object re-
turned by the previous method)

rs.topsort child subgraph() Returns a list of all the subgraphs in
the XIR graph, sorted from root to bot-
tom

cs.has attr(attribute) Checks if a child subgraph has the given
attribute (cs is an iterable object that
scans all the child subgraphs in the list
obtained with the previous function)

cs.get attr(attribute) Returns the value of the requested at-
tribute

VART

vart.Runner.create runner(sg,’run’) Function that returns the runner ob-
ject. Sg is the subgraph that must be
executed by the DPU.

dpu.execute async(in,out) Command to start the execution of the
DPU. In is the input array already
filled with data, while out is the output
array that will be filled by the DPU.
The returned value is the id of the just
started job (dpu is the runner object
returned by the previous function)

dpu.wait(job id) Functions that synchronize the OS with
the DPU execution by waiting the end
of the job indicated as parameter (dpu
is the runner object)

Table 3.3: XIR and VART libraries methods used in the managing of the DPU
execution

31

The image classifier

3.3 The board preparation

Before being able to finally deploy the whole application on the ZCU102, one last

step is necessary. At this moment in time, all the software components were added

to the project, but the implementation of the hardware core, the DPU, is needed.

According to what has been said in section 2.1.3, there are two possible methods to

include the DPU inside the board FPGA. During the development of this project,

the Vitis approach was adopted, thus the concept of platform must be introduced.

An embedded platform is the starting point of any Vitis designs since applications

are built on top of it. It is composed by two main elements: a hardware platform

and a software platform. The former is the static part of the hardware development,

thus it does not correspond to what will be inserted inside the FPGA, and is used

to describe all the resources that will be available during the acceleration of some

functions. An example of the possible resources are input and output interfaces,

clocks, AXI buses and interrupts. For what concerns the software platform, it

specifies the environment that runs the software used to control the acceleration

kernels, thus it corresponds to a kind of operating system. Usually, on Xilinx systems

a Linux domain with the Xilinx Run-time (XRT) enabled is chosen.

During the development of the project described in this thesis work, a custom

platform for the ZCU102 board was generated following one of the official tutorials

provided by Xilinx [15] with slightly modifications since it targets a ZCU104 board.

Figure 3.7: Diagram of a Vitis Platform development and usage

32

The image classifier

3.3.1 Hardware platform generation

The first step is the creation of the hardware platform that can be performed by

generating the .xsa (Xilinx Support Archive) file exporting a VIVADO project as

a platform. This project should be filled with all the resources available that can

be useful during the development of an acceleration RTL (Register Transfer Level)

component able to communicate with the rest of the system. When opening the

VIVADO software and creating a new project, the project wizards open up and the

following configurations were selected:

• Type of project: RTL project, with both the check-box flagged (Do not

specify sources at this time and Project is an extensible Vitis Platform);

• Board page: select the ZCU102 from the board list (in the specific case of

this project). Indicating the correct board at this moment is important since

it allows to automate part of the process as it will be seen.

Once the project was set up, it was necessary to include all the following components

inside the Block Design (that can be added by selecting the Create Block Design,

under Project Manager → IP INTEGRATOR):

• Zynq Ultrascale+ MPSoC: it allows to insert both the PS and the PL

inside the platform. After having included it, the Run Block Automation

link was used to customize the IP according to the board presets, i.e. the

default configurations of the given board (for this reason it is important to

correctly select the board from the project wizard). Before proceeding with the

block automation, all the check-boxes had to be flagged. Once the automation

process ends, the IP will have additional signals with respect to the one freshly

inserted.

(a) Before Block Automation (b) After Block Automation

Figure 3.8: Zynq UltraScale+ MPSoC Block Automation effects

33

The image classifier

• Clocking wizard: elements that allows to insert different clocks inside the

platform by double clicking the clocking wizard IP (after it has been added to

the Block Design) and selecting the Output Clocks tab. From here it is possible

to enable up to eight clocks, customizing the name, the output frequency, the

phase and the duty cycle. Following the tutorial, three clocks were added:

– clk out1 with a 100 MHz frequency;

– clk out2 with a 200 MHz frequency;

– clk out3 with a 400 MHz frequency.

At the bottom of the same tab, the Reset Type was set to Active Low by

checking the corresponding radio box. The 100 MHz clock is intended to be

used by the AXI lite interface, while the other two clocks corresponds to the

ones for the DPU (the values can be modified to increase the performances if

needed).

• Processor System Resets: it is the block that provides mechanisms to

manage the reset conditions for the whole system. In the design one Processor

Reset System was inserted for each clock.

The first basic elements were added, thus it was possible to connect them. This pro-

cedure is once again done automatically by clicking the Run Connection Automation

link, that opens up a window where it is possible to configure the process. For this

project the following options were specified:

• All Automation checkbox flagged;

• Under the clk in1 of the clk wiz 0, the /zynq ultra ps e 0/pl clk0 option was

selected from the dropdown box;

• The slowest sync clk under the proc sys reset 0 was set to /clk wiz 0/clk out1 ;

• The slowest sync clk under the proc sys reset 1 was set to /clk wiz 0/clk out2 ;

• The slowest sync clk under the proc sys reset 2 was set to /clk wiz 0/clk out3 ;

• On every proc sys reset instance, under ext reset in the Board Part Interface

was set to Custom and the /zynq ultra ps e 0/pl resetn0 option was selected

for the Select Manual Source.

34

The image classifier

Once all the settings above were selected, the connection automation was run and

after that all the dcm locked signal of every proc sys reset instance was manually

connected to the locked signal of the clk wiz 0.

Now that all the clocks were inserted, it was necessary to activate them. To perform

Figure 3.9: Block Diagram after the Run Connection Automation was run

such a task, the Platform Tab was selected and all the clocks under clk wiz 0 were

enabled by flagging the corresponding checkbox. In addition to that, the clk out2

was selected as the default one, checking the Is Default property, and all the ID

were changed to 0, 1 and 2 to allow the Vitis IDE to automatically use them while

building the application.

The next step is the insertion of all the interrupt handling system which includes the

settings of some parameter inside the processor, i.e. the Zynq UltraScale+ MPSoC,

as well as the addition of an AXI Interrupt Controller. For the first passage, it was

necessary to enable the AXI HPM0 LPD option and disable the AXI HPM0 FPD

and the AXI HPM1 FPD options that could be find by double clicking the MPSoC

instance, in the PS-PL Configuration property expanding the PS-PL interface entry

before and the Master Interface item after. This operation allows to reserve the

first AXI interface to controlling purposes (it was set to have a 32 bit bus-width

to avoid the automatic addition of unnecessary logic inside the PL) while the other

two interfaces were disabled to avoid any automatic connection that could be made

accidentally and reserving the interfaces for the DPU connection. To proceed with

the interrupt system addition, it was necessary to include inside the Diagram Block

35

The image classifier

the AXI Interrupt Controller, to which the Interrupt Output Connection parameter

was set to Single (the property can be reached by double clicking the instance

of the element). For a last time inside the design of the hardware platform, the

added element needed to be connected to the rest of the system. Once again this

step was automatically performed through the Run Connection Automation link,

where the All Automation was enabled and the Clock Source for Slave Interface and

the Clock Source for Master Interface were set to /clk wiz 0/clk out2. To finally

conclude the whole design, it was necessary to enable the interrupt signals for the

platform ,by enabling the intr options that could be find under the Interrupt tab

of the Platform Setup panel, and enable the AXI interfaces. This last step was

Figure 3.10: Vivado menu for managing the communication interfaces between PS
and PL

Figure 3.11: Block Diagram at the end of the development process

36

The image classifier

performed in the AXI Port tab inside the Platform Setup section where the masters

from M01 AXI to M07 AXI of the ps8 0 axi periph were enabled as well as all the

interfaces of the zynq ultra ps e 0 except for the S AXI LPD. In the tab there is the

possibility to specify some values for the Memport and the SP Tag property of every

interface (the former option determines the type of the interface, while the second

gives tag that can be used while building to identify the interface), which was done

for all the slave interfaces with the parameters visible in table 3.4, all the masters

were left with the default options. Now that the whole hardware platform was

AXI interface Memport SP Tag

S AXI HPC0 FPD S AXI HP HPC0

S AXI HPC1 FPD S AXI HP HPC1

S AXI HP0 FPD S AXI HP HP0

S AXI HP1 FPD S AXI HP HP1

S AXI HP2 FPD S AXI HP HP2

S AXI HP3 FPD S AXI HP HP3

Table 3.4: Memport and SP Tag values for the slave interfaces

completely designed, it was possible to export the .xsa file. The Block Diagram is

firstly validated to check the presence of possible errors (a critical warning relative

to the missing connection of the interrupt raised, but it was okay to ignore it since

the signal will be connected during the building of the application inside the Vitis

IDE) and the wrapped with the Create HDL Wrapper function of Vivado. As a last

step before exporting, the design was pre-synthesized by clicking the Generate Block

Design link and selecting Global in the Synthesis Option. At the end of all these

procedure, the .xsa file was exported through the Export Hardware Platform wizard

that opens up when the user clicks the Export Platform button under the Export

item of the File toolbox menu. The wizard requires different information in order

to complete the export procedure: Platform Type, which was set to Hardware and

Hardware Emulation, Platform State, that was selected to Pre-Synthesis with the

Include Bitstream option enabled, and finally some details on the platform (such as

name, vendor, board, version and description).

37

The image classifier

3.3.2 Software platfrom generation

Now that the hardware platform file was finally available, it was possible to proceed

with the generation of the custom Linux-based operating system that fit the hard-

ware that had just been generated. All the operations performed to achieve the final

Linux distribution were made possible thanks to the PetaLinux tool, that allows to

easily insert packages and functionalities to a default Linux-based OS which fits the

needs of a Xilinx application. In order to further simplify the customization process,

when a new PetaLinux project is created it is possible to specify a .xsa file that will

be parsed to automatically modify some parts of the Linux distribution so that it

will fit the hardware platform. From a practical point of view, the creation and the

specification of the hardware platform is done with the following commands inside

the Linux host terminal:

1. source <petalinux_tool_installation_dir>/settings.sh (activates the PetaLinux

environment)

2. petalinux-create --type project --template zynqMP --name <project_name>

3. cd <project_name>

4. petalinux-config --get-hw-description=<path_to_xsa_file>

The last commands opens up a menu, where the MACHINE NAME, that can be

found under DTG settings, must be changed in order to match the target board. In

the case of this project, the name that had to be inserted was zcu102-rev1.0. As it has

been said, the PetaLinux tool allows to enable different types of available packages,

but to be able to do so they must be added to the user-rootsconfig file located in the

/project-spec/meta-user/conf/ path inside the project folder. Following the tutorial

all the packages below were added:

• Xilinx Run-Time support packages:

– CONFIG xrt

• Easy system managment packages:

– CONFIG dnf

– CONFIG e2fsprogs-resizefs

38

The image classifier

Figure 3.12: View of the PetaLinux terminal showing the DTG menu

– CONFIG parted

– CONFIG resize-part

• Vitis AI dependencies support package:

– CONFIG packagegroup-petalinux-vitisai

• Natively building Vitis AI application packages (Optional):

– CONFIG packagegroup-petalinux-self-hosted

– CONFIG cmake

– CONFIG packagegroup-petalinux-vitisai-dev

– CONFIG xrt-dev

– CONFIG opencl-clhpp-dev

– CONFIG opencl-headers-dev

– CONFIG packagegroup-petalinux-opencv

– CONFIG packagegroup-petalinux-opencv-dev

– CONFIG packagegroup-petalinux-python-modules

• Packages for running Vitis AI demo application with GUI (Optional):

– CONFIG mesa-megadriver

39

The image classifier

– CONFIG packagegroup-petalinux-x11

– CONFIG packagegroup-petalinux-v4lutils

– CONFIG packagegroup-petalinux-matchbox

At this point, the PetaLinux tool gives the possibility to choose which package should

be enabled from the menu accessible with the command petalinux-config -c rootfs,

under the User Packages entry.

In this moment, the operating system is being developed, thus it is necessary to set

Figure 3.13: View of the PetaLinux terminal showing the user packages menu

up also some methods to connect the host system with the board to exchange data.

One of the easiest way is to exploit the presence of a LAN connector on the ZCU102

board and use the ssh protocol to communicate, for this reason the OpenSSH plugin

was enabled replacing the original Dropbear (which is activate by default). In order

to do so, the ssh-server-dropbear from the Image Features entry (still in the rootfs

menu) was disabled and the ssh-server-openssh from the same menu was enabled.

In addition, also the package-core-ssh-dropbear had to be be deactivated from the

Filesystem Packages → misc menu, while the openssh, the openssh-sftp-server, the

openssh-sshd and the openssh-scp had to be be enabled from the Filesystem Packages

→ console → network → openssh menu. Another feature which is recommended

inside the tutorial and can still be found in the rootfs menu is the installation of

the management package that allows to install and upgrade packages on the fly that

can be achieved by enabling the package-management and the debug tweaks options

40

The image classifier

under the Image Features entry of the menu.

At this point in time, the rootfs was fully customized, thus it was possible to move

to the kernel menu where it is a good practice to disable the CPU IDLE in order to

facilitate the debug. The menu can be accessed with the petalinux-config -c kernel

command and under the CPU Power Management entry is possible to disable the

CPU idle PM support, under the CPU idle sub-menu, and the CPU Frequency

scaling option, under the CPU Frequency scaling sub-menu. The last configuration

that was performed before being able to build the operating system is the addition

of the EXT4 format support for the root file system. The relative menu is opened

with the petalinux-config command and under Image Packaging Configuration is

possible to select as Root File System Type the EXT4 value and add the ext4 value

to the list namedRoot filesystem formats, if it is not already present. Lastly, to

Figure 3.14: View of the PetaLinux terminal showing the Image Features menu

let Linux know which root file system should be used it is necessary to modify

the User Set Kernel Bootargs to earlycon console=ttyPS0,115200 clk ignore unused

root=/dev/mmcblk0p2 rw rootwait cma=512M after having disabled the generate

boot args automatically options (both the parameters can be found under DTG

settings → Kernel Bootargs.

Now that the whole configuration is completed it was possible to build the entire

operating system by issuing the petalinux-build command and, once the build is

over, the petalinux-build –sdk command to create a system root self-installer.

41

The image classifier

Figure 3.15: View of the PetaLinux terminal showing the Kernel bootargs menu

3.3.3 Vitis platform generation

At this point, all the elements of a platform are ready to be packed into a file that

can then be used in any Vitis application. Before opening the Vitis IDE where

the platform can be created, it is necessary to install the sdk that was generated

with the last command issued during the PetaLinux procedure in order to have all

the needed components available. When the Vitis IDE is launched, a new platform

project had to be created by clicking the Platform Project button under File →
New and in the platform wizard page the following options had to be inserted:

• Name of the platform;

• XSA file generated during the hardware platform procedure;

• Operating system had to be selected to Linux;

• psu cortexa53 with a 64-bit architecture as processor;

• The Generate boot components disabled.

Since no boot component was automatically generated, they had to be specified

in the Platform Settings view under the Setup software settings. In particular the

following files or directory had to be selected for the linux in psu cortexa53 domain:

• BIF file: set to Generate BIF ;

42

The image classifier

• Boot Components Directory: set to a folder where the zynqmp fsbl.elf, the

pmufw.elf, the u-boot-dtb.elf and the system.dtb files must be copied from the

/images/linux sub-directory of the directory where the PetaLinux project was

built.

• FAT32 Partition Directory: set to a folder where the boot.scr and the sys-

tem.dtb files must be copied from the /images/linux sub-directory of the di-

rectory where the PetaLinux project was built.

With this parameters correctly set, the platform is ready to be built and it will be

possible to use it for any Vitis application. The output is composed by a folder that

includes an hardware sub-folder, named hw, a software sub-folder, named sw, and a

file with extension .xpfm. For sake of simplicity it is a good choice to create a folder

where to store all the petalinux created files that will be useful during the Vitis

application generation as it will be seen in the following section (all these files are

stored inside the /images/linux sub-directory of the directory where the PetaLinux

project was built). In addition to that, it could also be useful to save the sysroot of

the Linux distribution.

Figure 3.16: Tree representation of the platform output folder

3.3.4 Application creation

Once the Vitis platform is ready it was possible to finally create a Vitis project,

whose main objective is the generation of an image that can be flashed on a SD card

and loaded inside the ZCU102 in order to start the operating system and to configure

43

The image classifier

at boot the FPGA. As it was seen at the beginning of this chapter, the platform that

had just been created is used to provide all the static hardware component as well

as the operating system, thus the hardware accelerators, i.e. the logic that will be

implemented inside the FPGA and used by a software application at run-time, have

still to be added and this step is performed inside the Vitis IDE. All the accelerators,

that are usually called RTL kernels inside the Vitis suite, comes in files with the .xo

(Xilinx Object) extension, therefore a .xo file containing the DPU had to be created

in order to load it into Vitis.

Fortunately, this procedure is totally automated since Xilinx set up a project

(named DPU-TRD and included inside the Vitis AI github folder) where the only

configurations that must be modified are the ones that allows to customize the

DPU (see chapter 2.1.2) and the ones that allows to specify how the DPU should

be connected to the rest of the system. For the former it is sufficient to edit the

dpu conf.vh file that can be found inside the prj/Vitis folder of the DPU-TRD

directory. The configuration file, whose default version is visible in appendix C, will

be parsed during the build of the DPU and all the define command issued inside

determine one different parameter for the DPU that will be synthesized. For what

concerns the DPU interconnection, there is once again a file that must be edited to

set up all the parameters. It can be find in the prj/Vitis/config file directory and it

is named prj config. Inside this file all the argument of the v++ compiler, which can

be seen as the Vitis synthesizer, are stored, thus changing values inside will change

the outcome of the synthesis.

For what concerns this particular project, none of the two files were modified and

the generation of the whole kernel was done with the following command: make

binary container1/dpu.xo DEVICE=zcu102 c (where the parameter after the device

tag is the name of the platform and the argument after the make indicates the output

folder).

At this point, the development of the application was the last thing to be done

in order to finally deploy the entire system on the ZCU102 board. A new project

from the Vitis IDE was created, but this time the Application Project button was

clicked instead of the Platform Project of the previous section. Once again a wizard

opens up requiring some additional information that were the following:

• Project name;

• The target platform, which in this case is the one created before;

44

The image classifier

• The software Domain, which was set to linux on psu cortexa53 ;

• The Sys root path, which is the folder that was copied inside the platform

final directory;

• Empty application, to avoid any template to load.

When the IDE loads all the resources of the project, it is possible to import all

the .xo files needed for acceleration purposes by right clicking the src folder and

selection the Import Sources entry.In addition, there is the possibility to include

any software code that manages the execution of the RTL kernels. In the specific

case of this project, the DPU .xo file generated with the Xilinx scripts was added,

but no python code was loaded inside the Vitis IDE since it was directly loaded on

the device through the ssh protocol that had been configured during the PetaLinux

customization. Now that the dpu kernel is available, it must be added to the project

by selecting the hw link.prj file in the explorer on the left of the IDE. A setting page

opens, where there is a section called Hardware Functions with some icon buttons.

The icon showing a blue circle and a white thunderbolt is the button that allows to

select a RTL kernel and add it to the system. In this project, the DPU was added

Figure 3.17: View of the Vitis IDE hardware linker

and the compute units number was changed to two to include two hardware cores.

Finally the configuration file containing all the v++ arguments needs to be linked to

Vitis, operation that can be performed selecting the Edit v++ options entry in the

context menu of the binary container on top of the added hardware function. For

the case of the DPU, all the needed parameters were stored inside the file seen at the

45

The image classifier

beginning of this section, thus the data inserted was: –config <path to config file>.

The final build can be run now and when it ends the SD image will be generated.

During the build, a bug was reported since the packaging phase (which is one of the

main phases that are run to synthesize the entire system) failed due to a wrong pa-

rameter that is set automatically by Vitis. To bypass this issue, the v++ command

was issued directly inside a Linux terminal with the command:

v++ --package --config package.cfg ../../dpu_preproc_system_hw_link/Hardware/dpu.

xclbin -o dpu.xclbin

where the package.cfg file has the last line commented (it was the source of the

problem due to a wrong concatenation of directory path strings). At the end of

Figure 3.18: View on the v++ option dialog box

the process, the image was correctly generated and report file containing all the

information is produced. From figure 3.19 it is possible to notice that both the DPU

cores were correctly inserted and connected to the PS, thus it was possible to flash

the obtained image file inside the SD card through the usage of the Balena etcher

software. Once the flash process is finished it is possible to load the SD on the board

and connect to it with the host computer.

3.4 The ZCU102 connection

As it was said during the creation of the operating system, one of the most used

ways to connect to the ZCU102 board is the ssh protocol, which requires the IP

address of the target (in this case the board). To retrieve it it is possible to use the

UART micro-usb interface of the board which can be used to communicate with a

software like Putty. To establish a connection with the board through the Putty

software, the following command was used inside an Ubuntu terminal:

46

The image classifier

Figure 3.19: Vitis Analyzer view of the summary created at the end of the building
process

sudo putty -serial /dev/ttyUSB0 -sercfg 115200,8,n,1,N

The /dev/ttyUSB0 indicates the driver of the USB to which the board is connected,

while the values that follow the -sercfg argument are the parameters for the connec-

tion. In particular:

• 115200 determines the Baud Rate

• 8 indicates the number of data bits for each frame

• n specifies that no parity bit is used

• 1 indicates the number of stop bits

• N determines that no CRC (Cyclic Redundancy Checking) is used

Once the connection is established, a putty window opens up and the command

ifconfig is used to retrieve the IP address of the board. From now on, all the com-

munications with the boards are possible with the ssh protocol with the username

root and the password root. During the entire flow of this project, the ssh protocol

was used both to enter inside the board operating system and launch all the appli-

cations that must be run on the ZCU102, but also to load the data from the host

to the board memory through the scp command.

47

The image classifier

At this point of the development flow, it was necessary to check the correctness

of what was designed so far. After turning on the ZCU102 and discovering the board

IP, a folder with the directory tree in figure 3.20 was loaded into the memory of the

board with the scp command. It contains the python application, the compiled AI

model and some test images. Entering inside the operating system was then possible

Figure 3.20: Directory tree of the folder loaded on the board

to run the python application and the obtained result was the one visible in figure

3.21. As it is possible to see, the final result was in line with the expected one, with a

effective accuracy that is lower than the one evaluated after the model quantization

(which was 0.973574). Since the final result was considered as reasonable, it was

Figure 3.21: Outcome of the python application when the execution is finished

possible to continue with the profiling that will be explained in the next chapter.

3.5 The profiling process

From a behavioral point of view the application was demonstrated to work correctly,

but, in order to simulate all the processes that needs to be done on a real project, an

additional step was performed. It consists in the profiling procedure that is useful

to check the performances of all the software and hardware components in order to

detect the bottlenecks to increase their speed, if necessary. By default, the command

seen in section 2.2.4 automatically saves the data relative to the DPU, the VART

library and the XIR library. All the other functions inside the software application

48

The image classifier

are not tracked, but it is possible to include them inside the profile procedure by

adding the decorator vai tracepoint to each function.

Different profiling were made in order to test the decorator functionality, but

also to verify the real behavior of the system when increasing the number of the

executing cores.

In the first attempt, the profiling command was issued on the code that handles

(a) List of the tracked functions with all the relative information

(b) Timeline of the execution

Figure 3.22: Vitis Analyzer views of the data collected during the straight forward
profiling procedure

the execution with a single DPU core and the results are reported in figure 3.22 that

displays the Vitis Analyzer GUI that allows to visualize in a clearer way the data. In

particular, from the figure 3.22a it is possible to notice a list of functions with some

relative data. The information that were considered as the most important inside

this project were: the Compute Unit, that indicates were the function is executed,

the number of runs and the time taken for executing each run, the Max Time was

taken into account to consider the worst case scenario. The last two information

were also useful to calculate the impact of the function on the whole application:

multiplying the number of runs by the time taken from each run it was possible

to obtain the total time needed to completely execute the given function, thus it

allowed to evaluate the impact on the execution of the entire system. For what

49

The image classifier

concerns the timeline shown in figure 3.22b, it reports how functions are executed

in time and it allows to verify that the behavior is the expected one since the DPU

completed a task every few milliseconds, thus each time a single image was pre-

processed.

In a second attempt, a test on the differences when running two DPU cores was

carried on. The application code was slightly modified in order to commit all the

images in a even position in the list of all the images to the first core, while all the

others where issued to the second core. In addition the wait function was called

only after the first odd figure was dispatched and it was set to wait the end of the

core that manages the even figures (which should allow to reduce the time since

the DPU execution should overlap with the pre-processing of the following image).

From figure 3.23a it is possible to notice that the number of runs that the DPU had

to handle in figure 3.22a is split into two different cores and the same behavior is

confirmed in figure 3.23b, even tough the final execution time seems to be higher

than the previous one.

(a) List of the tracked functions with all the relative information

(b) Timeline of the execution

Figure 3.23: Vitis Analyzer views of the data collected during the straight forward
profiling procedure with an application that uses two different DPU cores

The final attempt aimed to add custom functions inside the profiling report by using

the python decorator. Since the process that is expected to be more time consuming

is the image pre-processing, it was chosen to track it to see which are the most

50

The image classifier

critical parts. Unfortunately the decorator can be applied only on functions and

not on instructions, thus the pre-processing function was split into several different

functions that included a single instruction in order to be able to profile each single

instruction. For this reason the code was updated with additional functions, each

one of them decorated with the vai tracepoint decorator. The results obtained are

visible in figure 3.24, where only the profiling view is reported since the timeline

is the same as figure 3.23b. Analyzing the obtained data, it is possible to notice

Figure 3.24: Vitis Analyzer view of the data collected during the profiling of the
application with the python decorator applied to the functions

that the pre-processing procedure takes up to 78% of the total execution time as

it was expected. In particular the most time consuming function is the openImage

which decodes the input image to transform it into the pixels multidimensional array.

At this point of the development flow, all the information needed to choose which

software function must be accelerated to increase the performances are available.

In a project that has no demonstration purposes as this one, the most logic choice

would be to implement in hardware the decoding of the image since it takes up to

21.95 ms for each image. Since the aim of this project is not the development of a

hardware core, it was chosen to accelerate the rearrangeImage which appeared to

be the second slowest function in terms of average execution time and it was very

easily implemented in hardware since it only converts the pixel integer value, which

is in range 0 to 255, into a floating value in range -1 to 1.

3.6 The kernel development

Before proceeding whit the creation of the RTL kernel that substitutes the rear-

rangeImage function, it is necessary to introduce some requirements that must be

met in order to correctly connect the developed kernel with a Vitis application and,

51

The image classifier

more in general, to a Xilinx board. Those requirements comes from two different

reasons: the first one is that the v++ compiler must be able to recognize and cor-

rectly connect the RTL kernel to the rest of the system, while the second is that

XRT is the library which usually manages the kernel, thus it is necessary to be

compliant to its communication protocol.

For what concerns the v++ compiler requirements, they are listed in table (3.5)

end principally specify the signals that may or may not be used while designing the

kernel and the relative names that can be used.

Port or Interface Description

Clock At least one clock must be inserted in the kernel.
It can have any name, but it must be packaged
with a bus interface.

Reset It is an optional port, but if it is present it must
be associated with a Clock signal through the AS-
SOCIATED RESET property. There are not any
restrictions on the name.

interrupt It is an optional port, but when it is present must
be named exactly as shown on the left (it is case
sensitive).

s axi control Mandatory port that is necessary for the control
data. It may not be present when the kernel is not
controlled by a software application. When it is
present must have the same name as shown on the
left (case sensitive).

AXI4 Memory Mapped
Interfaces (m axi)

It is an optional interface which must have 64 bit
addresses and it will be used to access the global
memory. Must not use neither the Wrap nor the
Fixed burst types of the AXI protocol and no sub-
size (narrow) bursts can be used too.

AXI4 Stream (axis) Optional interface that may be used to transfer
data between kernels or between host application
and kernel. It must be used as a mono-directional
interface.

Table 3.5: v++ compiler requirements for the RTL kernel developing

Additionally, if the kernel is not user-managed but it needs to interact with

XRT, there are some mapped registers that must be added inside the kernel that

52

The image classifier

will be used by XRT to store some useful data during the execution. There are

two main protocols that can be used when dealing with XRT managed kernels:

the ap ctrl chain and the ap ctrl hs. The former exploits a pipelined like execution

feeding the kernel with new data at each clock cycle, while the latter forces the host

application to wait for the end of the kernel execution before providing new data to

it. In both the cases, the kernel is started through an API call.

The list of all the reserved addresses with the correspondent register structure is the

following:

• Address 0x0: Control register

Bit Name Description

0 ap start Its value is 1 when the kernel can start pro-

cessing data. It should be cleared when the

ap done is being asserted.

1 ap done Asserted when the kernel finishes the execu-

tion. When the value is read it must be cleared

and set to 0.

2 ap idle Its value is 1 when the kernel its waiting for

the execution to start.

3 ap ready Asserted by the kernel when it can receive new

data.

4 ap continue Asserted by the XRT in order to keep the ker-

nel running.

7 auto restart When its value is 1, the kernel automatically

restarts a new execution.

5:31 Reserved Reserved

• Address 0x4: Global Interrupt Enable Register

53

The image classifier

Bit Name Description

0 Global Interrupt

Enable

When its value is 1 and the IP Interrupt enable

bit has value 1, the interrupt is enabled.

1:31 Reserved Reserved

• Address 0x8: IP Interrupt Enable Register

Bit Name Description

0 Interrupt Enable When its value is 1 and the Global Interrupt

enable bit has value 1, the interrupt is enabled.

1:31 Reserved Reserved

• Address 0xC: IP Interrupt Status

Bit Name Description

0 Interrupt Status Its value is toggled on write.

1:31 Reserved Reserved

All the addresses after 0xC are reserved to registers that stores the values of the

kernel arguments. There are two different types of arguments: the scalar ones and

the pointer ones. The former consists in a simple value expressed on 32 bits, passed

through the AXI4-lite interface and directly stored into the registers, while the

latter consists in a base address, passed again through the AXI4-interface but in

two different bursts since it is on 64 bits, that will be used by the kernel to access

the global memory. It is in charge to the kernel developer to decide the number of

arguments, thus the number of registers that must be inserted.

Now that the requirements have been specified it is possible to detail how the

RTL kernel was developed. The first element that was created is the component that

transforms the input integer value into the output transformed float value. Taking

as an example the width of the DPU data bus, which was on 128 bits, the same

54

The image classifier

width was chosen for the component that must then be able to compute more than

one value at each execution. In particular, the number of inputs and outputs that

must be processed each cycle is four, value that comes from the division between the

data bus width and the number of bits needed in the floating point representation,

which is 32. In order to keep the things easy, also the input integers are considered as

represented on 32 bits (which is usually the standard size in different programming

languages) even if only the lowest 8 bits were used since they are sufficient to store all

the values from 0 to 255. The solution that was adopted to obtain a fast result was

the creation of a Look-Up Table with 256 entries, were each address is considered

the input value and the stored data corresponds to the converted floating-point.

As an example, the entry addressed with the 0 index will store the binary value

0xBF800000 that correspond to the decimal -1 (which is the correct result of the

equation 3.1). With this type of solution, the LUT can be accessed by different

values at each time outputting all the needed results, with the drawback of a larger

amount of FPGA resources used to store the whole table. In addition, a validation

signal is used in order to avoid to compute data when it is not necessary and an

output validation signal is used to tell to the rest of the system that the value on

the output bus is correct and can be used. Once the component was fully developed

Figure 3.25: Schema of the component which converts the input integer ranging
from 0 to 255 into the output floating-point ranging from -1 to 1

and tested (the validation procedure was done with a testbench that loads all the

possible values since the range of possible data is very small) the AXI4-lite slave

interface that meet the ap ctrl hs requirements was created. The whole design of

this component was based on the translation into VHDL of the code posted in the

Xilinx tutorial [12], which was written in Verilog. The last component that had

to be added was the master interface, but before performing this operation it was

necessary to decide how the data should be passed to the kernel in order to create the

55

The image classifier

appropriate number of masters. Since the developed kernel was very simple, it was

chosen to use two arguments: a scalar one that indicates the total number of pixels

that must be processed and a pointer one that is used to receive the base address of

the location of the pixel multidimensional array inside the global memory in order

to retrieve the data. In order to accelerate the design process, the AXI master was

provided by Capgemini Engineering and it had only to be slightly modified to fit

the needs of the kernel. A high level schematic of the provided interface is visible in

figure 3.26. Now that all the components were available, they had to be connected

Figure 3.26: Schema of the AXI4 master interface provided by Capgemini engineer-
ing

one with each other and some additional logic had to be added to manage the correct

execution of the kernel. In particular the following elements were included in the

design:

• Rising edge detector: it is used to detect when the start signal goes high,

allowing to start the first memory reading and resetting the counter;

• Counter: element used to keep track of the execution advancement. It allows

to check when the kernel has finished to process the data, i.e. when the

counter value is equal to the scalar argument divided by 4 (because 4 pixels

are processed every time), and to calculate the memory offset needed to both

read and write the memory. For this last operation, the value of the counter

must be shifted left by four bits since at each read/write operation 16 bytes

are read/written.

56

The image classifier

• Register chain: used to delay the address and the signal that indicates the

end of the image in order to have the correct values when performing the write

operation. There is a 4 clock cycle delay due to the time taken by the AXI4

master to read the data (3 clock cycles) plus the time taken by the image

preprocessor to compute the output value (1 clock cycle).

In addition to these elements, some sparse logic was also necessary. Particularly

important are the logics that manage the start of the reading and of the writing

operation. The reading should start whenever the rising edge of the ap start signal

is detected as well as when the write operation is started (in this way write and

reading are performed simultaneously and are synchronized to the slower operation,

which is the writing, avoiding timing problems) and there are still pixels to be

processed. For what concerns the write operation, it should be started whenever

the data coming from the image preprocessor is valid, the master write interface is

free, the kernel should be run (ap start asserted) and the image is not ended.

As it was seen in section 3.3.4, the kernel has to be packaged into a .xo file in

order to be included inside a Vitis project. Therefore, after testing with Vivado that

the kernel was working as expected, it was packaged still using the Vivado software.

The procedure that was followed is the one described below:

1. A Vivado blank project was created, specifying on the project wizard the

name, the location, the type of project (which was RTL) and the target board

(ZCU102 in this case). No sources were included when requested since this

operation was done later.

2. From the source view, the plus button was clicked to add new design sources

to the project.

3. From the Tools menu, the Create and Package New IP was clicked in order

to start the wizard that guides the user through the packaging process. When

required the Package your current project option was selected. A Package IP

tab opens up and it includes many different sub-menus that must be filled with

the correct information. In the Identification sub-menu all the information

about the vendor and the IP can be inserted (optional but recommended). The

two most important tabs are the Compatibility and the Ports and interfaces

ones. The former allows the user to specify the type of execution protocol

inside the Vitis application (such as user managed, ap ctrl chain or ap ctrl hs),

57

The image classifier

Figure 3.27: High level schema of the kernel logic

while the latter let the user to associate the clock to the AXI interface (which

was one of the requirements for the v++ compiler). In this project, the Control

protocol option in the Compatibility tab was set to ap ctrl hs while the ACLK

signal was associated to the m00 axi and to the s axi control interface (the

association was performed by right clicking on the interface name, select the

Associate Clocks option and specifying ACLK in the dialog box that opens

up). Another important sub-menu inside the Package IP tab is the Addressing

and Memory where the inner registers of the kernel must be inserted. In order

to add a register the reg0 instance must be right clicked and the Add Reg entry

selected. The required information for each register are Name, Offset and Size

58

The image classifier

(in bits). For this project, all the inserted data is visible in table 3.6 After

Name Offset Size

CTRL 0x000 32

GIER 0x004 32

IP IER 0x008 32

IP ISR 0x00C 32

image length 0x010 32

image 0x018 64

Table 3.6: Registers inserted in the Addressing and Memory panel with their name,
offset and size

the addition of all the registers, a very important step is to associate each

pointer argument register with its corresponding master interface. In this case

there was only one register that had to be connected and in order to do so

was sufficient to right click the register (the image one), select Add Register

Parameter and add the ASSOCIATED BUSIF parameter. In the Vivado GUI

an additional table with a line appeared under the image register and from

there it was possible to set the Value to m00 axi.

Figure 3.28: View of the Addressing and Memory tab of the Vivado software during
the IP packaging procedure

4. At this point of the flow, the kernel should be ready to be packaged. To perform

this operation it was necessary to click on the Review and Package tab and

59

The image classifier

click on the Package IP button. A message showed up in the console at the

bottom of Vivado, indicating that the procedure was completed correctly.

Now that also the designed RTL kernel is fully packaged, it was possible to insert

it inside the Vitis application and create the image that should be flashed on the SD

card of the ZCU102. The procedure followed to create the Vitis project and to build

it is the same seen in section 3.3.4, with the only difference that also the RTL kernel

that had just been created had to be added among the hardware functions in the

hw link.prj configuration window. Immediately after the build process finished, the

link report was checked to verify if the RTL kernel was correctly inserted. As can

be seen in figure 3.29, the kernel seemed to be correctly inserted inside the system

and also the connection with the AXI interface appeared to be correct, but no

estimation of the utilized resources was indicated, which was not a normal behavior.

To eliminate any doubt, the Vivado suite (which is the engine called by the Vitis

Figure 3.29: Vitis Analyzer view of the summary created at the end of the building
process of the project that includes the custom RTL kernel

v++ compiler to perform the synthesis) was used to control the report and from

60

The image classifier

there everything seemed to be correctly synthesized. For this reason the process was

considered concluded and the new image was flashed inside the SD to load it into

the ZCU102.

3.7 The update of the application code

The very last step before being able to test the accelerated system was the upgrade

of the code explained in section 3.2 in order to include the managing of the custom

RTL kernel execution. This kind of operation is performed with the OpenCL library,

which has an equivalent Python version called pyopencl. The OpenCL library defines

an execution model which is based on two distinct execution units: the kernels and

the host program. The former corresponds to where the computation occurs and

are run inside a precise environment, defined as context, which includes different

resources:

• Devices: a collection of compute units;

• Kernel objects: the encapsulation of a kernel function declared inside a

program and the argument value needed and used during execution;

• Program objects: the encapsulation of a program source (or binary), a

reference to the associated context, the number of kernels objects currently

attached, the list of devices for which the program was built and the latest

successfully built program executable;

• Memory objects: reference to a counted region of Global Memory.

The host program is the part of the execution in charge of creating and manage

the entire context. There are some OpenCL APIs that allow the host program to

communicate with the kernels to enqueue execution commands, manage memory

objects and synchronize the host with the kernel.

This is the basic functionality of the OpenCL library which must be applied to

the custom RTL kernel. In order to easily test if the kernel was working correctly,

before uploading the previous application a new one was created with the aim of

managing only the RTL kernel. The main command used inside this code are the

ones defined in table 3.7.

61

The image classifier

Synopsys Description

cl.get platforms() Returns a list with all the OpenCL plat-
forms available on the running board.

platform.get devices() Returns a list of the devices present in-
side the given platform (where platform
is the first element of the list returned
by the previous command).

cl.Context(devices) Creates an OpenCL context and at-
taches to it all the devices present in the
devices argument, which corresponds to
a list.

cl.Program(context,devices,binaries) Creates an OpenCL program object to
which all the arguments are attached.
The binaries files correspond to the
.xclbin file (i.e. the file that is loaded
on the FPGA) that must be read inside
the Python application.

program.build() Builds the program object returned by
the previous command

cl.CommandQueue(context) Creates and attaches a command queue
to the specified context.

cl.Buffer(context,mem flags,hostbuf) Creates a memory object related to the
context specified as argument. The
mem flags argument is used to specify
some additional properties of the mem-
ory object, while the hostbuf parameter
is used to link to the buffer a memory
structure of the host program.

program.kernel name(kernel args) Starts the execution of the kernel with
the specified arguments.

Table 3.7: Pyopencl methods used during the development of the RTL kernel host
application

62

The image classifier

The execution of this piece of code inside the ZCU102, arose an error with the

source of the kernel, but it was not possible to understand which was the source. To

eliminate any doubt, the c++ code provided by Xilinx as demo was used, but once

again a problem arose (different from the one due to pyopencl) and it was again

not possible to identify the cause. The Python code that was developed is visible in

appendix D.

Figure 3.30: View of the terminal that shows the error that is encountered during
the execution of the pyopencl code

63

4

CONCLUSIONS

Even if some unresolved problems arose at the end of the development of this thesis

project, it can be considered a success if the initial objective is considered. For

what concerns the validation of the Vitis AI tools, everything was proved to be

perfectly functioning since the AI model provided by Capgemini engineering was

fully accelerated inside the ZCU102 FPGA. There is a lot of space for improvement

in two different scopes:

• A deeper DPU customization: The DPU was kept in its default version

during the whole project, but, as it has been seen, it is possible to change many

different parameters. An interesting test could be to deeply exploit this high

customization and tracking all the relative performance results. In addition to

that, the ZCU102 makes available a very large FPGA with plenty of space and

resources, but in different real projects there may be some constraints in terms

of costs (thus the ZCU102 FPGA is too expensive) or physical space available

(for which the ZCU102 FPGA may be too large). It could be interesting to try

to fit the DPU and all the Vitis AI development flow inside a smaller FPGA.

• Hardware acceleration: the last development process was the one that

brought to the unresolved errors. One of the possible improvements is to

make the hardware acceleration work and combine it with the Vitis AI flow as

intended. The resolution of these problems could allow to further increase the

performances of the project in many different ways since any software function

can be turned into a hardware one.

64

Appendices

65

A

VITIS AI FLOW SCRIPTS

A.1 Test script

-*- coding: utf-8 -*-

2 """

Created on Fri Apr 9 18:53:02 2021

4 Modified on Tue Dec 2 2021

6 @author: emack

modified by: gnaggi

8 """

import numpy as np

10 from PIL import Image

import os

12 import timeit

import tensorflow.keras as K

14 import argparse

import random

16 from tensorflow_model_optimization.quantization.keras import vitis_quantize

18 os.environ [’TF_CPP_MIN_LOG_LEVEL’] = ’3’

20 CLASSES = [’coast’, ’land’, ’water’]

22 def printProgressBar (iteration, total, print_color, prefix = ’’, suffix = ’’,

decimals = 1, length = 100, fill = ’#’, printEnd = "\r"):

percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(

total)))

24 filledLength = int(length * iteration // total)

bar = fill * filledLength + ’-’ * (length - filledLength)

66

Vitis AI flow scripts

26 print(f"\033[1;{print_color};48m {prefix} |{bar}| {percent}% ETA: {suffix} \n

\033[00m", end = printEnd)

28 def startTest(model_path,data_path):

load model

30 MODEL_ROOT_DIR = model_path

DATA_ROOT_DIR = data_path

32 print(’loading the model’)

tStart = timeit.default_timer()

34 model = K.models.load_model(os.path.join(MODEL_ROOT_DIR))

36 tElapsed = timeit.default_timer()-tStart

print(’model loaded in %f [s].’ % tElapsed)

38

40 # testing the images

print(’testing input images’)

42 test_cnt = 0

tStart = timeit.default_timer()

44 total_accuracy = 0

total_correct = 0

46

imageList = os.listdir(DATA_ROOT_DIR)

48 random.shuffle(imageList)

50 for test_filename in imageList:

test_cnt+=1

52

54 test_image_blob = Image.open(os.path.join(DATA_ROOT_DIR,test_filename)).

convert(’RGB’)

56 test_image_blob_res = test_image_blob.resize((224,224), Image.BILINEAR)

test_image_blob_res = np.asarray(test_image_blob_res, dtype=’float32’)

58

test_input_tensor = test_image_blob_res/127.5

60 test_input_tensor -= 1

62

[test_output_class] = model.predict(test_input_tensor[np.newaxis,:])

64

67

Vitis AI flow scripts

total_accuracy += np.max(test_output_class)

66 if CLASSES[np.argmax(test_output_class)][:1] == test_filename[:1] :

total_correct += 1

68

70 if CLASSES[np.argmax(test_output_class)][:1] == test_filename[:1] :

print_color = 32

72 else:

print_color = 31

74

eta = (timeit.default_timer() - tStart) * (len(imageList) / test_cnt - 1)

76 hours, rem = divmod(eta, 3600)

minutes, seconds = divmod(rem, 60)

78 eta ="{:0>2}:{:0>2}:{:02.0f}".format(int(hours),int(minutes),seconds)

printProgressBar(test_cnt, len(imageList), print_color, length = 50,

suffix = eta)

80 print(f"\033[1;{print_color};48m input: %s \n output class: %s %f\n

accuracy: %f \n\033[00m "%(os.path.join(DATA_ROOT_DIR,test_filename),

CLASSES[np.argmax(test_output_class)], np.max(test_output_class),

total_correct/test_cnt))

82

tElapsed = timeit.default_timer() - tStart

84 print(’testing done in %f [s] per image ’%(tElapsed / test_cnt))

print(’model uncertainty %f ’% (total_accuracy / test_cnt))

86 print(’model accuracy %f ’% (total_correct / test_cnt))

88 def main():

ap = argparse.ArgumentParser()

90 ap.add_argument(’-m’, ’--model_path’, type=str, default=’./model/quantized/

quantized_model_jpg.h5’, help=’Full path of floating-point model. Default

is ./model/quantized/quantized_model_jpg.h5’)

ap.add_argument(’-d’, ’--data_path’, type=str, default=’./dataset/data/jpg/’,

help=’Path of the images directory. Default is ./dataset/data/jpg/’)

92 args = ap.parse_args()

94 print(’\n------------------------------------’)

print (’Command line options:’)

96 print (’ --model_path : ’, args.model_path)

print (’ --data_path : ’, args.data_path)

98 print(’------------------------------------\n’)

68

Vitis AI flow scripts

startTest(args.model_path,args.data_path)

100

102 if __name__ == "__main__":

main()

A.2 TFRecord creation script

’’’

2 Copyright 2020 Xilinx Inc.

Licensed under the Apache License, Version 2.0 (the "License");

4 you may not use this file except in compliance with the License.

You may obtain a copy of the License at

6 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

8 distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

10 See the License for the specific language governing permissions and

limitations under the License.

12

Author: Mark Harvey

14 Modified by: gnaggi

’’’

16

18 import os

import argparse

20 import zipfile

import random

22 import shutil

import math

24 from tqdm import tqdm

26 # Silence TensorFlow messages

os.environ[’TF_CPP_MIN_LOG_LEVEL’]=’3’

28 import tensorflow as tf

30

DIVIDER = ’---’

32

69

Vitis AI flow scripts

34 def _bytes_feature(value):

’’’Returns a bytes_list from a string / byte’’’

36 if isinstance(value, type(tf.constant(0))):

value = value.numpy() # BytesList won’t unpack a string from an

EagerTensor.

38 return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

40

def _float_feature(value):

42 ’’’Returns a float_list from a float / double’’’

return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))

44

46 def _int64_feature(value):

’’’ Returns an int64_list from a bool / enum / int / uint ’’’

48 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

50

def _calc_num_shards(img_list, img_shard):

52 ’’’ calculate number of shards’’’

last_shard = len(img_list) % img_shard

54 if last_shard != 0:

num_shards = (len(img_list) // img_shard) + 1

56 else:

num_shards = (len(img_list) // img_shard)

58 return last_shard, num_shards

60

62 def write_tfrec(tfrec_filename, image_dir, img_list, image_type):

’’’ write TFRecord file ’’’

64

with tf.io.TFRecordWriter(tfrec_filename) as writer:

66

for img in img_list:

68

class_name = img[:1]

70 if class_name == ’c’:

label = 0

72 elif class_name == ’l’:

label = 1

70

Vitis AI flow scripts

74 else:

label = 2

76 filePath = os.path.join(image_dir, img)

78 # read the JPEG source file into a tf.string

image = tf.io.read_file(filePath)

80

get the shape of the image from the JPEG file header

82 if image_type == "png":

image_shape = tf.image.decode_png(image).shape

84 elif image_type == "jpg":

image_shape = tf.io.extract_jpeg_shape(image, output_type=tf.

dtypes.int32)

86

features dictionary

88 feature_dict = {

’label’ : _int64_feature(label),

90 ’height’: _int64_feature(image_shape[0]),

’width’ : _int64_feature(image_shape[1]),

92 ’chans’ : _int64_feature(image_shape[2]),

’image’ : _bytes_feature(image)

94 }

96 # Create Features object

features = tf.train.Features(feature = feature_dict)

98

create Example object

100 tf_example = tf.train.Example(features=features)

102 # serialize Example object into TFRecord file

writer.write(tf_example.SerializeToString())

104

return

106

108

110 def make_tfrec(dataset_dir,tfrec_dir,img_shard, image_type):

make a list of all images

112 imageList = os.listdir(os.path.join(dataset_dir,’’))

71

Vitis AI flow scripts

114

make lists of images according to their class

116 coastImages=[]

landImages=[]

118 waterImages=[]

for img in imageList:

120 class_name = img[:1]

if class_name == ’c’:

122 coastImages.append(img)

elif class_name == ’l’:

124 landImages.append(img)

else:

126 waterImages.append(img)

128 # define train/test split as 80:20

lenghts = [len(coastImages), len(landImages), len(waterImages)]

130 split = int(min(lenghts) * 0.2)

equilizer = min(lenghts)

132

random.shuffle(landImages)

134 random.shuffle(coastImages)

random.shuffle(waterImages)

136

landImages = landImages[:equilizer]

138 coastImages = coastImages[:equilizer]

waterImages = waterImages[:equilizer]

140

assert(len(coastImages)==len(landImages)==len(waterImages)), ’Number of

images in each class do not match’

142

144

testImages = coastImages[:split] + waterImages[:split] + landImages[:split]

146 trainImages = coastImages[split:] + waterImages[split:] + landImages[split:]

148 print(’Train images: ’,len(trainImages))

print(’Test images: ’,len(testImages))

150

’’’ Test TFRecords ’’’

152 print(’Creating test TFRecord files...’)

72

Vitis AI flow scripts

154 # how many TFRecord files?

last_shard, num_shards = _calc_num_shards(testImages, img_shard)

156 print (num_shards,’TFRecord files will be created.’)

158 if (last_shard>0):

print (’Last TFRecord file will have’,last_shard,’images.’)

160

create TFRecord files (shards)

162 start = 0

for i in tqdm(range(num_shards)):

164 tfrec_filename = ’test_’+str(i)+’.tfrecord’

write_path = os.path.join(tfrec_dir, tfrec_filename)

166 if (i == num_shards-1):

write_tfrec(write_path, dataset_dir+’’, testImages[start:],image_type)

168 else:

end = start + img_shard

170 write_tfrec(write_path, dataset_dir+’’, testImages[start:end],

image_type)

start = end

172

’’’ Training TFRecords ’’’

174 print(’Creating training TFRecord files...’)

176 # how many TFRecord files?

last_shard, num_shards = _calc_num_shards(trainImages, img_shard)

178 print (num_shards,’TFRecord files will be created.’)

if (last_shard>0):

180 print (’Last TFRecord file will have’,last_shard,’images.’)

182 # create TFRecord files (shards)

start = 0

184 for i in tqdm(range(num_shards)):

tfrec_filename = ’train_’+str(i)+’.tfrecord’

186 write_path = os.path.join(tfrec_dir, tfrec_filename)

if (i == num_shards-1):

188 write_tfrec(write_path, dataset_dir+’’, trainImages[start:],image_type

)

else:

190 end = start + img_shard

write_tfrec(write_path, dataset_dir+’’, trainImages[start:end],

image_type)

73

Vitis AI flow scripts

192 start = end

194 print(’\nDATASET PREPARATION COMPLETED’)

print(DIVIDER,’\n’)

196

return

198

200

def run_main():

202

construct the argument parser and parse the arguments

204 ap = argparse.ArgumentParser()

ap.add_argument(’-d’, ’--dataset_dir’, type=str, default=’dataset’, help=’

path to dataset images’)

206 ap.add_argument(’-t’, ’--tfrec_dir’, type=str, default=’tfrecords’, help=’

path to TFRecord files’)

ap.add_argument(’-s’, ’--img_shard’, type=int, default=1000, help=’Number of

images per shard. Default is 1000’)

208 ap.add_argument(’-i’, ’--img_type’, type=str, default=’jpg’, help=’Type of

image codification (jpg or png). Default is jpg’)

args = ap.parse_args()

210

print(’\n’+DIVIDER)

212 print(’DATASET PREPARATION STARTED..’)

print(’Command line options:’)

214 print (’ --dataset_dir : ’,args.dataset_dir)

print (’ --tfrec_dir : ’,args.tfrec_dir)

216 print (’ --img_shard : ’,args.img_shard)

print (’ --img_type : ’,args.img_type)

218

make_tfrec(args.dataset_dir,args.tfrec_dir,args.img_shard, args.img_type)

220

if __name__ == ’__main__’:

222 run_main()

A.3 Dataset Utility functions script

’’’

2 Copyright 2020 Xilinx Inc.

Licensed under the Apache License, Version 2.0 (the "License");

74

Vitis AI flow scripts

4 you may not use this file except in compliance with the License.

You may obtain a copy of the License at

6 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

8 distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

10 See the License for the specific language governing permissions and

limitations under the License.

12 ’’’

14 ’’’

Utility functions for tf.data pipeline

16 ’’’

18 ’’’

Author: Mark Harvey, Xilinx Inc

20 ’’’

import os

22 import sys

import cv2

24

Silence TensorFlow messages

26 os.environ[’TF_CPP_MIN_LOG_LEVEL’]=’3’

28 import tensorflow as tf

30

def parser(data_record):

32 ’’’ TFRecord parser ’’’

34 feature_dict = {

’label’ : tf.io.FixedLenFeature([], tf.int64),

36 ’height’: tf.io.FixedLenFeature([], tf.int64),

’width’ : tf.io.FixedLenFeature([], tf.int64),

38 ’chans’ : tf.io.FixedLenFeature([], tf.int64),

’image’ : tf.io.FixedLenFeature([], tf.string)

40 }

sample = tf.io.parse_single_example(data_record, feature_dict)

42 label = tf.cast(sample[’label’], tf.int32)

44 h = tf.cast(sample[’height’], tf.int32)

75

Vitis AI flow scripts

w = tf.cast(sample[’width’], tf.int32)

46 c = tf.cast(sample[’chans’], tf.int32)

image = tf.io.decode_image(sample[’image’], channels=3)

48 image = tf.reshape(image,[h,w,3])

50 return image, label

52

def resize_crop(x,y,h,w):

54 ’’’

Image resize & random crop

56 Args: Image and label

Returns: augmented image and unchanged label

58 ’’’

rh = int(h *1.2)

60 rw = int(w *1.2)

x = tf.image.resize(x, (rh,rw), method=’bicubic’)

62 x = tf.image.random_crop(x, [h, w, 3], seed=42)

return x,y

64

66 def augment(x,y):

’’’

68 Image augmentation

Args: Image and label

70 Returns: augmented image and unchanged label

’’’

72 x = tf.image.random_flip_left_right(x, seed=42)

x = tf.image.random_brightness(x, 0.1, seed=42)

74 x = tf.image.random_contrast(x, 0.9, 1.1, seed=42)

x = tf.image.random_saturation(x, 0.9, 1.1, seed=42)

76 return x, y

78

def normalize(x,y):

80 ’’’

Image normalization

82 Args: Image and label

Returns: normalized image and unchanged label

84 ’’’

Convert to floating-point & scale to range -1.0 -> 1.0

76

Vitis AI flow scripts

86 x = tf.cast(x, tf.float32) * (1 / 127.5) - 1

return x, y

88

90

def input_fn_trn(tfrec_dir,batchsize,height,width):

92 ’’’

Dataset creation and augmentation for training

94 ’’’

tfrecord_files = tf.data.Dataset.list_files(’{}/train_*.tfrecord’.format(

tfrec_dir), shuffle=True)

96 dataset = tf.data.TFRecordDataset(tfrecord_files)

dataset = dataset.map(parser, num_parallel_calls=tf.data.experimental.

AUTOTUNE)

98 dataset = dataset.map(lambda x,y: resize_crop(x,y,h=height,w=width),

num_parallel_calls=tf.data.experimental.AUTOTUNE)

dataset = dataset.batch(batchsize, drop_remainder=False)

100 dataset = dataset.map(augment, num_parallel_calls=tf.data.experimental.

AUTOTUNE)

dataset = dataset.map(normalize, num_parallel_calls=tf.data.experimental.

AUTOTUNE)

102 dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

dataset = dataset.repeat()

104 return dataset

106

def input_fn_test(tfrec_dir,batchsize,height,width):

108 ’’’

Dataset creation and augmentation for test

110 ’’’

tfrecord_files = tf.data.Dataset.list_files(’{}/test_*.tfrecord’.format(

tfrec_dir), shuffle=False)

112 dataset = tf.data.TFRecordDataset(tfrecord_files)

dataset = dataset.map(parser, num_parallel_calls=tf.data.experimental.

AUTOTUNE)

114 dataset = dataset.map(lambda x,y: resize_crop(x,y,h=height,w=width),

num_parallel_calls=tf.data.experimental.AUTOTUNE)

dataset = dataset.batch(batchsize, drop_remainder=False)

116 dataset = dataset.map(normalize, num_parallel_calls=tf.data.experimental.

AUTOTUNE)

dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

77

Vitis AI flow scripts

118 return dataset

120

def _parse_function(filename,label):

122 image_string = tf.io.read_file(filename)

image_decoded = tf.image.decode_png(image_string,channels=3)

124 image = tf.cast(image_decoded,tf.float32)

return image,label

126

128 def input_fn_quant(tfrec_dir,batchsize,height,width):

’’’

130 Dataset creation and augmentation for quantization

The TFRecord file(s) must have > 1000 images

132 ’’’

134 tfrecord_files = tf.data.Dataset.list_files(’{}/test_0.tfrecord’.format(

tfrec_dir), shuffle=False)

dataset = tf.data.TFRecordDataset(tfrecord_files)

136 dataset = dataset.map(parser, num_parallel_calls=tf.data.experimental.

AUTOTUNE)

dataset = dataset.map(lambda x,y: resize_crop(x,y,h=height,w=width),

num_parallel_calls=tf.data.experimental.AUTOTUNE)

138 dataset = dataset.batch(batchsize, drop_remainder=False)

dataset = dataset.map(normalize, num_parallel_calls=tf.data.experimental.

AUTOTUNE)

140 dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)

return dataset

A.4 Finetuning and quantization script

import argparse

2 import os

import sys

4

os.environ[’TF_CPP_MIN_LOG_LEVEL’]=’3’

6

import tensorflow as tf

8 from tensorflow.keras.optimizers import Adam

from tensorflow_model_optimization.quantization.keras import vitis_quantize

10 from tensorflow.keras.callbacks import ModelCheckpoint,LearningRateScheduler #

78

Vitis AI flow scripts

TensorBoard

12 from dataset_utils import input_fn_trn, input_fn_test

14 DIVIDER = ’---\n’

16 def fine_tuning_model(float_model, batchsize, tfrec_dir, chkpt_dir,

fine_tuned_model,learnrate,epoch):

18 def step_decay(epoch):

"""

20 Learning rate scheduler used by callback

Reduces learning rate depending on number of epochs

22 """

lr = learnrate

24 if epoch > 200:

lr /= 100

26 elif epoch > 10:

lr /= 10

28 return lr

30 print("Loading model")

model = tf.keras.models.load_model(float_model)

32 print("Model correctly loaded\n")

print(DIVIDER)

34

height = model.input_shape[1]

36 width = model.input_shape[2]

38 test_dataset = input_fn_test(tfrec_dir,batchsize,height,width)

train_dataset = input_fn_trn(tfrec_dir,batchsize,height,width)

40

#Training Call backs

42

chkpt_call = ModelCheckpoint(filepath=os.path.join(chkpt_dir,’ft_model.h5’),

44 monitor=’accuracy’,

verbose=1,

46 save_best_only=True)

48 lr_scheduler_call = LearningRateScheduler(schedule=step_decay,

verbose=1)

79

Vitis AI flow scripts

50

callbacks_list = [chkpt_call, lr_scheduler_call] #tb_call

52

’’’

54 End Training callbacks

’’’

56

quantizer = vitis_quantize.VitisQuantizer(model,quantize_strategy=’8bit_tqt’)

58 model = quantizer.get_qat_model(init_quant=True,calib_dataset = test_dataset)

60 model.compile(

optimizer = Adam(learning_rate=learnrate),

62 loss=’sparse_categorical_crossentropy’,

metrics=[’accuracy’])

64

model.fit(train_dataset,

66 epochs=epoch,

steps_per_epoch=17500//batchsize,

68 #validation_data=test_dataset,

#validation_steps=None,

70 callbacks=callbacks_list,

verbose=1)

72

print("Start model post-evaluation")

74 model.evaluate(test_dataset)

76 deployable_model = quantizer.get_deploy_model(model)

deployable_model.save(fine_tuned_model)

78

def main():

80

construct the argument parser and parse the arguments

82 ap = argparse.ArgumentParser()

ap.add_argument(’-f’, ’--float_model’, type=str, default=’float_model/f_model

.h5’, help=’Full path of floating-point model. Default is float_model/

f_model.h5’)

84 ap.add_argument(’-ft’, ’--fine_tuned_model’, type=str, default=’

fine_tuned_model/ft_model.h5’, help=’Full path of quantized model.

Default is quant_model/q_model.h5’)

ap.add_argument(’-b’, ’--batchsize’, type=int, default=50, help=’Batchsize

for quantization. Default is 50’)

80

Vitis AI flow scripts

86 ap.add_argument(’-tfdir’, ’--tfrec_dir’,type=str, default=’tfrecords’, help=’

Full path to folder containing TFRecord files. Default is tfrecords’)

ap.add_argument(’-c’, ’--chkpt_dir’, type=str, default=’fine_tuning’, help=’

Full path to folder where to save fine tuning checkpoints. Default is

fine_tuning’)

88 ap.add_argument(’-lr’,’--learnrate’, type=float, default=0.001, help=’

optimizer learning rate. Must be floating-point value. Default is 0.0001’

)

ap.add_argument(’-e’, ’--epochs’, type=int, default=100, help=’number of

training epochs. Must be an integer. Default is 100.’)

90 args = ap.parse_args()

92 print(’\n------------------------------------’)

print(’TensorFlow version : ’,tf.__version__)

94 print(sys.version)

print(’------------------------------------’)

96 print (’Command line options:’)

print (’ --float_model : ’, args.float_model)

98 print (’ --fine_tuned_model : ’, args.fine_tuned_model)

print (’ --batchsize : ’, args.batchsize)

100 print (’ --tfrec_dir : ’, args.tfrec_dir)

print (’ --chkpt_dir : ’, args.chkpt_dir)

102 print (’ --learnrate : ’,args.learnrate)

print (’ --epochs : ’,args.epochs)

104 print(’------------------------------------\n’)

106

fine_tuning_model(args.float_model, args.batchsize, args.tfrec_dir, args.

chkpt_dir,args.fine_tuned_model,args.learnrate,args.epochs)

108

110 if __name__ == "__main__":

main()

A.5 Compilation script

#!/bin/sh

2

Copyright 2020 Xilinx Inc.

4 #

Licensed under the Apache License, Version 2.0 (the "License");

81

Vitis AI flow scripts

6 # you may not use this file except in compliance with the License.

You may obtain a copy of the License at

8 #

http://www.apache.org/licenses/LICENSE-2.0

10 #

Unless required by applicable law or agreed to in writing, software

12 # distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

14 # See the License for the specific language governing permissions and

limitations under the License.

16

Author: Mark Harvey, Xilinx Inc

18

if [$1 = zcu102]; then

20 ARCH=/opt/vitis_ai/compiler/arch/DPUCZDX8G/ZCU102/arch.json

echo "---"

22 echo "COMPILING MODEL FOR ZCU102.."

echo "---"

24 elif [$1 = u50]; then

ARCH=/opt/vitis_ai/compiler/arch/DPUCAHX8H/U50/arch.json

26 echo "---"

echo "COMPILING MODEL FOR ALVEO U50.."

28 echo "---"

else

30 echo "Target not found. Valid choices are: zcu102, u50 ..exiting"

exit 0

32 fi

34 if [$2 = ""]; then

echo "Model not found. Specify the quantized model to be compiled"

36 exit 0

fi

38

if [$3 = ""]; then

40 echo "Ouput directory not found. Specify the directory where to save the

compiled model"

exit 0

42 fi

44 if [$4 = ""]; then

echo "Model name not found. Specify the name of the model, it will be used

82

Vitis AI flow scripts

as name of the compiled model"

46 exit 0

fi

48

MODEL=$2

50 OUTPUT=$3

NAME=$4

52

compile() {

54 vai_c_tensorflow2 \

--model $MODEL \

56 --arch $ARCH \

--output_dir $OUTPUT \

58 --net_name $NAME

}

60

62 compile #2>&1 | tee compile.log

64

echo "---"

66 echo "MODEL COMPILED"

echo "---"

83

B

APPLICATION CODE

import cv2

2 import numpy as np

import vart

4 import os

import xir

6 import sys

import argparse

8

from vaitrace_py import vai_tracepoint

10 import math

12

divider = "------------------------"

14

@vai_tracepoint

16 def imagePreprocessing(img_path):

image = openImage(img_path)

18 image = convertImage(image)

image = resizeImage(image)

20 image = rearrangeImage(image)

return image

22

@vai_tracepoint

24 def openImage(img_path):

image = cv2.imread(img_path)

26 return image

28 @vai_tracepoint

def convertImage(image):

30 img = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)

84

Application code

return img

32

@vai_tracepoint

34 def resizeImage(image):

img = cv2.resize(image,(224,224))

36 return img

38 @vai_tracepoint

def rearrangeImage(image):

40 img = image / 127.5 - 1

return img

42

44 def app(image_dir,model):

test_images = os.listdir(image_dir)

46 total_run = len(test_images)

48 global out_q

out_q = [None]*total_run

50

model_graph = xir.Graph.deserialize(model)

52

assert model_graph is not None, "Graph should not be None."

54 root_subgraph = model_graph.get_root_subgraph()

assert root_subgraph is not None, "Failed to get root subgraph of input

Graph"

56 if root_subgraph.is_leaf:

subgraphs = []

58 child_subgraphs = root_subgraph.toposort_child_subgraph()

assert (child_subgraphs is not None and len(child_subgraphs)) > 0

60 subgraphs = [

cs

62 for cs in child_subgraphs

if cs.has_attr(’device’) and cs.get_attr(’device’).upper() == "DPU

"

64]

66 dpu_runner = [None]*2

dpu_runner[0] = vart.Runner.create_runner(subgraphs[0],"run")

68 dpu_runner[1] = vart.Runner.create_runner(subgraphs[0],"run")

85

Application code

70 dpu_job_id = [None]*2

72 input_tensors = [None]*2

output_tensors = [None]*2

74 input_ndim = [None]*2

output_ndim = [None]*2

76 batchsize = [None]*2

input_data = [None]*2

78 output_data = [None]*2

80 for img in range(total_run):

path = os.path.join(image_dir,test_images[img])

82 image = imagePreprocessing(path)

84 input_tensors[img%2] = dpu_runner[img%2].get_input_tensors();

output_tensors[img%2] = dpu_runner[img%2].get_output_tensors();

86 input_ndim[img%2] = tuple(input_tensors[img%2][0].dims)

output_ndim[img%2] = tuple(output_tensors[img%2][0].dims)

88

batchsize = input_ndim[img%2][0]

90

input_data[img%2] = np.empty(input_ndim[img%2],dtype=np.float32,

order=’C’)

92 input_data[img%2][0,...] = image.reshape(input_ndim[img%2][1:])

output_data[img%2] = np.empty(output_ndim[img%2], dtype=np.float32

, order=’C’)

94

dpu_job_id[img%2] = dpu_runner[img%2].execute_async(input_data[img

%2],output_data[img%2])

96

if img % 2 == 0 and img != 0:

98 dpu_runner[1].wait(dpu_job_id[1])

else:

100 dpu_runner[0].wait(dpu_job_id[0])

102 out_q[img] = np.argmax((output_data[img%2][0]))

104

#Post processing

106 classes = [’coast’, ’land’, ’water’]

correct = 0

86

Application code

108 wrong = 0

print(’Post-processing’,len(out_q),’images..’)

110 for i in range(len(out_q)):

prediction = classes[out_q[i]]

112 ground_truth = test_images[i][:1]

if (ground_truth==prediction[:1]):

114 correct += 1

else:

116 wrong += 1

accuracy = correct/len(out_q)

118 print(’Correct:%d, Wrong:%d, Accuracy:%.4f’ %(correct,wrong,accuracy))

print (divider)

120

122 def main():

construct the argument parser and parse the arguments

124 ap = argparse.ArgumentParser()

ap.add_argument(’-d’, ’--image_dir’, type=str, default=’images’, help=’

Path to folder of images. Default is images’)

126 ap.add_argument(’-m’, ’--model’, type=str, default=’masati.xmodel’, help=’

Path of xmodel. Default is masati.xmodel’)

128 args = ap.parse_args()

130 print(divider)

print (’Command line options:’)

132 print (’ --image_dir : ’, args.image_dir)

print (’ --model : ’, args.model)

134

app(args.image_dir,args.model)

136

if __name__ == ’__main__’:

138 main()

87

C

VITIS DPU CONFIGURATION FILE

//Setting the arch of DPU, For more details, Please read the PG338

2

4 /*====== Architecture Options ======*/

// |--|

6 // | Support 8 DPU size

// | It relates to model. if change, must update model

8 // +--+

// | ‘define B512

10 // +--+

// | ‘define B800

12 // +--+

// | ‘define B1024

14 // +--+

// | ‘define B1152

16 // +--+

// | ‘define B1600

18 // +--+

// | ‘define B2304

20 // +--+

// | ‘define B3136

22 // +--+

// | ‘define B4096

24 // |--|

26 ‘define B4096

28 // |--|

// | If the FPGA has Uram. You can define URAM_EN parameter

30 // | if change, Don’t need update model

88

Vitis DPU configuration file

// +--+

32 // | for zcu104 : ‘define URAM_ENABLE

// +--+

34 // | for zcu102 : ‘define URAM_DISABLE

// |--|

36

‘define URAM_DISABLE

38

//config URAM

40 ‘ifdef URAM_ENABLE

‘define def_UBANK_IMG_N 5

42 ‘define def_UBANK_WGT_N 17

‘define def_UBANK_BIAS 1

44 ‘elsif URAM_DISABLE

‘define def_UBANK_IMG_N 0

46 ‘define def_UBANK_WGT_N 0

‘define def_UBANK_BIAS 0

48 ‘endif

50 // |--|

// | You can use DRAM if FPGA has extra LUTs

52 // | if change, Don’t need update model

// +--+

54 // | Enable DRAM : ‘define DRAM_ENABLE

// +--+

56 // | Disable DRAM : ‘define DRAM_DISABLE

// |--|

58

‘define DRAM_DISABLE

60

//config DRAM

62 ‘ifdef DRAM_ENABLE

‘define def_DBANK_IMG_N 1

64 ‘define def_DBANK_WGT_N 1

‘define def_DBANK_BIAS 1

66 ‘elsif DRAM_DISABLE

‘define def_DBANK_IMG_N 0

68 ‘define def_DBANK_WGT_N 0

‘define def_DBANK_BIAS 0

70 ‘endif

89

Vitis DPU configuration file

72 // |--|

// | RAM Usage Configuration

74 // | It relates to model. if change, must update model

// +--+

76 // | RAM Usage High : ‘define RAM_USAGE_HIGH

// +--+

78 // | RAM Usage Low : ‘define RAM_USAGE_LOW

// |--|

80

‘define RAM_USAGE_LOW

82

// |--|

84 // | Channel Augmentation Configuration

// | It relates to model. if change, must update model

86 // +--+

// | Enable : ‘define CHANNEL_AUGMENTATION_ENABLE

88 // +--+

// | Disable : ‘define CHANNEL_AUGMENTATION_DISABLE

90 // |--|

92 ‘define CHANNEL_AUGMENTATION_ENABLE

94 // |--|

// | DepthWiseConv Configuration

96 // | It relates to model. if change, must update model

// +--+

98 // | Enable : ‘define DWCV_ENABLE

// +--+

100 // | Disable : ‘define DWCV_DISABLE

// |--|

102

‘define DWCV_ENABLE

104

// |--|

106 // | Pool Average Configuration

// | It relates to model. if change, must update model

108 // +--+

// | Enable : ‘define POOL_AVG_ENABLE

110 // +--+

// | Disable : ‘define POOL_AVG_DISABLE

112 // |--|

90

Vitis DPU configuration file

114 ‘define POOL_AVG_ENABLE

116 // |--|

// | support multiplication of two feature maps

118 // | It relates to model. if change, must update model

// +--+

120 // | Enable : ‘define ELEW_MULT_ENABLE

// +--+

122 // | Disable : ‘define ELEW_MULT_DISABLE

// |--|

124

‘define ELEW_MULT_DISABLE

126

// +--+

128 // | RELU Type Configuration

// | It relates to model. if change, must update model

130 // +--+

// | ‘define RELU_RELU6

132 // +--+

// | ‘define RELU_LEAKYRELU_RELU6

134 // |--|

136 ‘define RELU_LEAKYRELU_RELU6

138 // |--|

// | DSP48 Usage Configuration

140 // | Use dsp replace of lut in conv operate

// | if change, Don’t need update model

142 // +--+

// | ‘define DSP48_USAGE_HIGH

144 // +--+

// | ‘define DSP48_USAGE_LOW

146 // |--|

148 ‘define DSP48_USAGE_HIGH

150 // |--|

// | Power Configuration

152 // | if change, Don’t need update model

// +--+

91

Vitis DPU configuration file

154 // | ‘define LOWPOWER_ENABLE

// +--+

156 // | ‘define LOWPOWER_DISABLE

// |--|

158

‘define LOWPOWER_DISABLE

160

// |--|

162 // | DEVICE Configuration

// | if change, Don’t need update model

164 // +--+

// | ‘define MPSOC

166 // +--+

// | ‘define ZYNQ7000

168 // |--|

170 ‘define MPSOC

92

D

PYOPENCL HOST APPLICATION CODE

import pyopencl as cl

2 from pyopencl import array

import numpy as np

4

if __name__ == "__main__":

6

input_data = np.zeros(256,np.intc)

8 for i in range(256):

input_data[i] = i

10

Step #1. Obtain an OpenCL platform.

12 platform = cl.get_platforms()[0]

14 ## Step #2. Obtain a device id for at least one device (accelerator).

device = platform.get_devices()[0]

16

Step #3. Create a context for the selected device.

18 context = cl.Context([device])

20 ## Step #4. Create the accelerator program from source code.

Step #5. Build the program.

22 ## Step #6. Create one or more kernels from the program functions.

xclbin = open("/media/sd-mmcblk0p1/dpu.xclbin","rb",buffering=0).read()

24 program = cl.Program(context, [device], [xclbin]).build()

26 ## Step #7. Create a command queue for the target device.

queue = cl.CommandQueue(context)

28

Step #8. Allocate device memory and move input data from the host to the

device memory.

93

Pyopencl host application code

30 mem_flags = cl.mem_flags

input_buf = cl.Buffer(context, mem_flags.READ_WRITE | mem_flags.COPY_HOST_PTR

, hostbuf=input_data)

32

Step #9. Associate the arguments to the kernel with kernel object.

34 ## Step #10. Deploy the kernel for device execution.

program.img_preprocessor(queue, input_data.shape, None, cl.cltypes.uint(64),

input_buf)

36

print(input_data)

94

BIBLIOGRAPHY

[1] Maurizio Capra et al. “Hardware and Software Optimizations for Accelerating

Deep Neural Networks: Survey of Current Trends, Challenges, and the Road

Ahead”. In: IEEE Access 8 (2020), pp. 225134–225180. doi: 10.1109/ACCESS.

2020.3039858.

[2] European Commission. A definition of AI: Main Capabilities and Disciplines.

2021. url: https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=

60419 (visited on 10/15/2021).

[3] Docker. Use containers to Build, Share and Run your applications. 2021.

url: https://www.docker.com/resources/what-container (visited on

11/15/2021).

[4] Antonio-Javier Gallego, Antonio Pertusa, and Pablo Gil. “Automatic Ship

Classification from Optical Aerial Images with Convolutional Neural Net-

works”. In: Remote Sensing 10.4 (2018). issn: 2072-4292. doi: 10 . 3390 /

rs10040511.

[5] gewuek. Vitis AI Custom Platform Development. June 5, 2020. url: https:

//github.com/gewuek/vitis_ai_custom_platform_flow.

[6] David H. K. Hoe. FPGA research. 2021. url: https://evergreen.loyola.

edu/dhhoe/www/HoeResearchFPGA.htm (visited on 10/28/2021).

[7] IBM. Neural Networks. 2021. url: https://www.ibm.com/cloud/learn/

neural-networks#toc-neural-net-u3voPJVU (visited on 10/20/2021).

[8] Keras. Creating TFRecords. Feb. 27, 2021. url: https://keras.io/examples/

keras_recipes/creating_tfrecords/.

[9] Khronos. The OpenCL™ Specification. Version 3.0.10. Nov. 19, 2021. url:

https://www.khronos.org/registry/OpenCL/specs/3.0- unified/

pdf/OpenCL_API.pdf.

95

https://doi.org/10.1109/ACCESS.2020.3039858
https://doi.org/10.1109/ACCESS.2020.3039858
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=60419
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=60419
https://www.docker.com/resources/what-container
https://doi.org/10.3390/rs10040511
https://doi.org/10.3390/rs10040511
https://github.com/gewuek/vitis_ai_custom_platform_flow
https://github.com/gewuek/vitis_ai_custom_platform_flow
https://evergreen.loyola.edu/dhhoe/www/HoeResearchFPGA.htm
https://evergreen.loyola.edu/dhhoe/www/HoeResearchFPGA.htm
https://www.ibm.com/cloud/learn/neural-networks#toc-neural-net-u3voPJVU
https://www.ibm.com/cloud/learn/neural-networks#toc-neural-net-u3voPJVU
https://keras.io/examples/keras_recipes/creating_tfrecords/
https://keras.io/examples/keras_recipes/creating_tfrecords/
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf

BIBLIOGRAPHY

[10] Dusko Lukac, Miljana Milic, and Jelena Nikolic. “From Artificial Intelligence

to Augmented Age An Overview”. In: 2018 Zooming Innovation in Consumer

Technologies Conference (ZINC). 2018, pp. 100–103. doi: 10.1109/ZINC.

2018.8448793.

[11] Xilinx. DPUCZDX8G for Zynq Ultrascale+ MPSoCs. Version 3.3. July 22,

2021. 62 pp. url: https://www.xilinx.com/support/documentation/ip_

documentation/dpu/v3_3/pg338-dpu.pdf.

[12] Xilinx. Getting Started with RTL Kernels. Nov. 19, 2021. url: https://

github.com/Xilinx/Vitis-Tutorials/tree/2021.2/Hardware_Acceleration/

Feature_Tutorials/01-rtl_kernel_workflow.

[13] Xilinx. TensorFlow2 and Vitis AI design flow. Version 1.4. Oct. 20, 2021. url:

https://github.com/Xilinx/Vitis-AI-Tutorials/tree/master/Design_

Tutorials/08-tf2_flow.

[14] Xilinx. Vitis AI user guide. Version 1.4. July 22, 2021. 154 pp. url: https:

//www.xilinx.com/support/documentation/sw_manuals/vitis_ai/1_4/

ug1414-vitis-ai.pdf.

[15] Xilinx. Vitis Custom Embedded Platform Creation Example on ZCU104. Nov. 15,

2021. url: https://github.com/Xilinx/Vitis-Tutorials/blob/2021.2/

Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/README.

md.

[16] Xilinx. ZCU102 Evaluation Board. Version 1.6. June 12, 2019. 125 pp. url:

https://www.xilinx.com/support/documentation/boards_and_kits/

zcu102/ug1182-zcu102-eval-bd.pdf.

[17] Xilinx. Zynq UltraScale+ MPSoC. 2021. url: https://www.xilinx.com/

products/silicon-devices/soc/zynq-ultrascale-mpsoc.html (visited

on 11/18/2021).

96

https://doi.org/10.1109/ZINC.2018.8448793
https://doi.org/10.1109/ZINC.2018.8448793
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_3/pg338-dpu.pdf
https://github.com/Xilinx/Vitis-Tutorials/tree/2021.2/Hardware_Acceleration/Feature_Tutorials/01-rtl_kernel_workflow
https://github.com/Xilinx/Vitis-Tutorials/tree/2021.2/Hardware_Acceleration/Feature_Tutorials/01-rtl_kernel_workflow
https://github.com/Xilinx/Vitis-Tutorials/tree/2021.2/Hardware_Acceleration/Feature_Tutorials/01-rtl_kernel_workflow
https://github.com/Xilinx/Vitis-AI-Tutorials/tree/master/Design_Tutorials/08-tf2_flow
https://github.com/Xilinx/Vitis-AI-Tutorials/tree/master/Design_Tutorials/08-tf2_flow
https://www.xilinx.com/support/documentation/sw_manuals/vitis_ai/1_4/ug1414-vitis-ai.pdf
https://www.xilinx.com/support/documentation/sw_manuals/vitis_ai/1_4/ug1414-vitis-ai.pdf
https://www.xilinx.com/support/documentation/sw_manuals/vitis_ai/1_4/ug1414-vitis-ai.pdf
https://github.com/Xilinx/Vitis-Tutorials/blob/2021.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/README.md
https://github.com/Xilinx/Vitis-Tutorials/blob/2021.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/README.md
https://github.com/Xilinx/Vitis-Tutorials/blob/2021.2/Vitis_Platform_Creation/Introduction/02-Edge-AI-ZCU104/README.md
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/ug1182-zcu102-eval-bd.pdf
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

	List of Figures
	List of Tables
	Introduction
	The basis of Artificial Intelligence
	The importance of FPGA programming

	Vitis AI overview
	The hardware core
	DPU architecture
	DPU configuration
	DPU integration

	The tools
	Vitis AI Quantizer
	Vitis AI Compiler
	Vitis AI Optimizer
	Vitis AI Profiler

	The image classifier
	The AI model
	The application code
	The board preparation
	Hardware platform generation
	Software platfrom generation
	Vitis platform generation
	Application creation

	The ZCU102 connection
	The profiling process
	The kernel development
	The update of the application code

	Conclusions
	Vitis AI flow scripts
	Test script
	TFRecord creation script
	Dataset Utility functions script
	Finetuning and quantization script
	Compilation script

	Application code
	Vitis DPU configuration file
	Pyopencl host application code
	Bibliography

