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Abstract

Technological evolution has brought considerable progress in the field of automation
by introducing and developing systems that have become essential for operations
in the industrial field. The development of autonomous systems has allowed the
facilitation of human work by allowing collaboration with it but also a replacement
to carry out the heaviest tasks.

The purpose of this thesis is to develop a sensory system for an Autonomous
Mobile Robot (AMR) capable of moving in an industrial environment sharing
space with human operators. To do this, a complex and robust system has been
developed consisting of a set of sensors suitable for to the environment in which
the robot should move. Exploiting the perceptions of the onboard sensors it has
been possible to obtain an autonomous navigation system.

For the choice and connection of the sensors, the state of the art of the most
used navigation systems has been studied taking into account a set of fundamental
aspects, as well as some problems that could have limited the navigation system.
It consists of the Scout Mini platform made up of four Mecanum wheels enriched
by a larger structure used for maintenance purposes in an industrial environment.
The latter limits the range of vision and therefore the omnidirectional movement
allowed by the type of wheels used. In addition, the choice of sensors also takes
into account the errors introduced by these types of wheels that are subject to
vibration and slippage.

The system, developed using ROS (Robot Operating System), has been simu-
lated and experimentally implemented by choosing an appropriate position of the
sensors chosen, an architecture that allows the reduction of computational cost and
using some algorithms to fuse and filter data from sensors.
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Chapter 1

Introduction

In recent years, the use of autonomous systems within an industry has increased
significantly. They are represented by systems that facilitate the transport of goods,
products, and tools useful to operators. In fact, through their use, people’s work is
facilitated by supporting them in some operations or even by replacing their work.
In particular, there are different kinds of autonomous systems and they are mainly
divided into Autonomous Guided Vehicle (AGV) or Autonomous Mobile Robot
(AMR).
The formers have long been used to transport goods within an industry but have
limitations as they can perform simple repetitive instructions and requires an
invasive modification of the environment where they are moved so it is very difficult
to apply changes. They are guided by cables installed in the environment in which
they move or by magnetic strips and sensors located outside the vehicle itself.
Instead, the latter represents an evolution of AGVs in terms of functionality and
flexibility.
An autonomous mobile robot is a system capable of navigating in an unknown and
unpredictable environment that through the use of sensors that are mounted on it,
it can sense the surrounding environment and locate itself inside it.
The flexibility of the AMRs constitutes a fundamental requirement within an
Industry 4.0 where there may be frequent changes or modification of the production
line and therefore it may be necessary to quickly adapt the devices used within them.

The resulting system of this thesis should be used for maintenance purposes
moving in an industry 4.0 like the one where the thesis work took place: the
Competence Industry Manufacturing 4.0.
Industries 4.0 are made up of a set of emerging technologies interconnected with
each other that lead to the development of the manufacturing system in all its forms.
They represent an industrial evolution consisting of automated and interconnected
industrial systems.

1



Introduction

The goal of the thesis is to create a robot capable of moving autonomously in
an environment acquiring information through sensors mounted on it. Therefore,
suitable sensors, for this type of application, have been studied, chosen, and applied
to the used robot. Sensors are of great importance because they represent the
means through which the surrounding environment is perceived and the way to
obtain robust and safe navigation.

Furthermore, navigation algorithms have been chosen and implemented to al-
low the robot to avoid obstacles and plan the best path to reach an endpoint in a
map.
The robot used is an omnidirectional mobile robot with four Mecanum wheels.
Wheels of this kind guarantee wide large freedom in terms of movement but they
can give some errors in the implementation of the model due to the slippage. To
overcome this problem some solutions and fusion from multiple sensors have been
studied and implemented in the system.
On top of the robot, there is mounted a base used as a landing base for a drone
and as an instrument for supporting operations inside an industry as shown in
Figure 1.1. This represents a constraint and a limit as regards the robot’s viewing
range.
For this reason, the thesis is focused on the study of the best placement of the
sensor system in the robot, to have different degrees of freedom, and to avoid a
limitation in the performance of the sensors and of the robot used.
Finally, the solution has been implemented in reality using and testing different
solutions of increasing complexity.

The thesis is developed using ROS (Robot Operating System) that thanks to
its modularity, allows modification and interaction with the system in a simple way.
ROS, being a distributed system, made it possible to connect various hardware
components in a way to reduce the computational cost deriving from the data
acquisition of the multiple sensors used. Many cutting edge boards and sensors
have been used for the hardware components: Nvidia Jetson Nano, Nvidia Nx
Xavier, LiDAR 2D, and depth cameras.

Once that the appropriate placement of the whole set of sensors in the robot
has been chosen, the system has been simulated through Gazebo and RViz where
the same environment of CIM 4.0 has been created.
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Figure 1.1: System consisting of the
robot and the maintenance system with
initial configuration without sensors

1.1 Organization of the work
The thesis is structured as follows:

• The second chapter describes the state of the art of robotics focusing on the
study of the wheels. The robot used in the thesis is equipped with Mecanum
wheels. This chapter describes the differences between conventional and
Mecanum wheels, focusing on the kinematic of these last ones.

• In the third chapter, there is a description of all the different sensors used for
autonomous navigation. After that, some algorithms used for sensor fusion
are explored.

• The fourth chapter explains the main differences between Path planning
Algorithms distinguishing the global and the local ones.

3
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• The fifth chapter describes the autonomous navigation of the robot, the
simulation environment, tests done in that environment, it describes how the
map is built, and how the robot recognize object during its movement.

• The sixth describes all the hardware used for this kind of application and
there are considerations about the chosen of a certain kind of sensors, how
they are implemented in the system and also some results obtained making
experimental tests.

• The seventh chapter describes the performance of the system created, the
limits, and how these can be improved and overcome for future developments.

4



Chapter 2

State of the art

The invention of robots has very ancient cultural roots. Men have always tried to
create something that replicates their actions. The term robot was coined in 1920
by the Czech playwright Karel Čapek in the play "Rossum’s Universal Robots".
It derives from the term Slav robota which means executive labor [1]. In the
beginning, the term was used to denote something similar to humans and therefore
made mainly of organic material. In the following years, and in particular in 1940
with the Russian Isaac Asimov there is a different conception of the robot which is
used to indicate something mainly mechanical and devoid of feelings.

2.1 Robotics interaction
Nowadays, robots are a key element in some industries. They can be of different
types and they are used in various industrial, military, land, underwater, and even
in environments difficult to reach for humans.
Robots operating within an industry can interact with operators by assisting them
in their operations and thus supporting them. However, they can also replace them
in jobs that require more effort or repetitive action.
The interaction between these two actors is called Human-Machine Interaction
(HMI) and it can be of different types depending on the actions performed, the
space in which it occurs, and the type of interaction.
In particular, there are three types of categories in which HMI can be classified [2]:

• Human-Robot Coexistence: they share the same workspace performing
tasks with different aims.

• Human-Robot Cooperation: represents a higher level than the previous
one where humans and robots perform the same tasks acting simultaneously

5
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in terms of space and time. In this category, robots can differentiate humans
from generic objects.

• Human–Robot Collaboration: perform complex tasks where an active
interaction of humans can be physical and so with an explicit contact or
contactless if physical contact is no present.

2.2 Robotic Structures
The robots are distinguished according to their structure and their use in two main
types:

• manipulator robots: they consist of a fixed base. Their structure consists
of a sequence of links that are connected through a certain number of joints
as in Figure 2.1.

• mobile robots: they consist of a mobile base that moves freely in the space
and they are often used in applications that require autonomy. A further
subdivision is made in wheeled, that is, they consist of a rigid mobile base
and a system of wheels in motion with respect to the ground, or legged, that
is, made up of many rigid bodies linked together through joints whose ends
called feet periodically come into contact with the ground to carry out the
movement. The latter, very often mimic living organisms.

Figure 2.1: Example manipulator robot
[1]

6
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2.2.1 Conventional Wheeled mobile Robots
There are three different types of conventional wheels for these types of robots
(Figure 2.2) [1]:

• fixed wheel: the wheel is attached to the chassis and this allows a constant
orientation of the chassis. The wheel can rotate around an axis that is in the
center of it.

• stereable wheel: consists of two rotation axes of which the first is similar to
the fixed one, while the second has a vertical direction and goes through the
center of the wheel. This allows for a change of orientation with respect to
the chassis.

• caster wheel: consisting of two rotation axes like the previous wheel but with
the difference that the vertical one is displaced by a certain offset with respect
to the center of the wheel. This mechanism allows the wheel to move quickly
and to align with the movement of the chassis.

Figure 2.2: Conventional wheels [1]

Depending on the individual wheels used or by combining two or more wheels of
those listed above, different kinematic structures are obtained. In particular, a
differential drive vehicle consists mainly of two fixed wheels which are controlled
separately so that the angular velocity can be easily set and one or smaller caster
wheels to keep the robot balanced, acting as passive wheels.
A similar vehicle is provided using the synchro-drive kinematic arrangement. It
consists of three aligned steerable wheels that move in a synchronized manner by
two motors of which the first controls the rotation around the horizontal axis, while
the second the vertical one, influencing the orientation, as in Figure 2.3.
Another type of vehicle is the tricycle consisting of three wheels of which the first
two fixed are mounted in the rear and are driven by an engine that controls the
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traction and a steerable in the front that guides the orientation.
A car-like instead consists of two fixed wheels at the rear and two steerable at the
front as in Figure 2.4.
A robot is omnidirectional if it can move in any Cartesian direction.

Figure 2.3: Synchro-drive vehicle [1]

Figure 2.4: Car-like vehicle [1]

Usually, this last kind of robot is made up by four Mecanum wheels which allow
movement in all directions as in Figure 2.5 without the needing of a conventional
steering system.

2.2.2 Mecanum Wheeled mobile Robots
This type of wheels was invented in 1973 by the Swedish engineer Bengt Ilon and
for this reason, besides being called Mecanum, they are also called Swedish wheel
[3].
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Figure 2.5: Mecanum wheel [1]

Compared to conventional wheels, they allow movement even in directions parallel
to their axes and can control every degree of freedom autonomously providing
movement and orientation in all directions.
Indeed, conventional wheeled vehicles such as cars are subject to non-holonomic
constraints which prevent movement perpendicular to their driving direction. This
is why, for example, to park, you need to do more maneuvers as the only movement
allowed is back and forth but not sideways.
Hence, vehicles consisting of an omnidirectional wheel and therefore holonomic
constraint have many more advantages in terms of movement than conventional
ones.
In addition to the Mecanum wheels, there are two other types of wheels that move
in a directional way. All of them are characterized by great flexibility that allows
traction in one direction and passive motion in another. The other two types are
the universal and ball wheels. The firsts are made by rollers located in the external
part of the wheel, free to rotate in the direction parallel to the axis of the wheels,
and they are mounted perpendicular to the axis of rotation. Instead, ball wheels
use a structure that transmits power to the rollers and due to the friction, they can
rotate in all directions. All three of these types together constitute the so-called
special wheels.
Mecanum wheels are similar to the universals except for the fact that they consist
of a series of rollers inclined at 45 ° with respect to the plane of the wheel. Their
configuration allows having a force in the rotational direction of the wheels and a
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normal one to it. Usually, four of these wheels are used whose forces due to the
direction and speed of each wheel are added into a single resulting vector that
allows translation and movement in any direction. The rollers are placed so that
the resulting wheel is circular as depicted accurately in Figure 2.6 . The shape of
the roller can be obtained by cutting a cylinder from an inclined plane of 45 ° [3].

Figure 2.6: Internal wheel decomposi-
tion [3]

So the shape of wheel should have the following equation:

1
2x

2 + y2 −R2 = 0 (2.1)

where R, is the outer radius of the wheel. The number of rollers, according to
Figure 2.7 is obtained as:

n = 2π
φ

(2.2)

with:

φ = 2arcsin Lγ
2Rsinγ (2.3)

where Lγ is the length of the rollers:

Lγ = 2R
sinφ2
sinγ

(2.4)

the size of the wheels considering γ=45° is given by :

Lr = 2
√

2Rsinπ
n

(2.5)
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lw = 2Rsinπ
n

(2.6)

Figure 2.7: Internal wheel decomposi-
tion [3]

The result is a wheel that with little friction can move along any trajectory. It
also has 3 DOFs divided into wheel rotation, roller rotation, and rotation slip on
the vertical axis. The speed of the wheels can be divided into passive directions
perpendicular to the axis of the roller and active that is along the axis of the roller
in contact with the ground. This type of wheel allows and helps in case of difficult
maneuvers in tight environments.
Considering a xsOsys frame attached to the robot chassis as in Figure 2.8, the
following speed equations represent the forward kinematics of the robot:

vxvy
ωz

 = R

4

 1 1 1 1
1 −1 −1 1

− 1
l1+l2

1
l1+l2 −

1
l1+l2

1
l1+l2



ω1
ω2
ω3
ω4

 (2.7)

R is the radius of the wheels, ω the angular velocity and l1 and l2 the distance
between the wheel axis and the center of the body. If the robot speed is set, using
the inverse of the speed, and so the inverse kinematics, the angular speed of each
wheel can be computed as:
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ω1
ω2
ω3
ω4

 = 1
R


1 1 −(l1 + l2)
1 −1 (l1 + l2)
1 −1 −(l1 + l2)
1 1 (l1 + l2)


vxvy
ωz

 (2.8)

The longitudinal velocity is represented by:

vx(t) = (w1 + w2 + w3 + w4)R4 (2.9)

The lateral one is:
vy(t) = (w1 − w2 − w3 + w4)R4 (2.10)

Finally, the angular velocity is:

ωz(t) = (−w1 + w2 − w3 + w4) R

4(lx + ly)
(2.11)

A limitation of this type of wheel is due to the fact that they are subject to slippage

Figure 2.8: Model of four wheeled
robot [3]

and therefore with the same number of rotations of the wheels lateral distances
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that are different from the longitudinal ones are covered, and this difference can
vary even in defence of the type of ground with which they interact. Slippage is
caused by the fact that although each wheel has only one roller contact, sometimes
two roller points are in contact with the ground, and due to the angular position of
rollers and curved surface, a point contact or a tiny area of contact exist between
ground and roller that cause slippage.
Furthermore, when the robot proceeds at high speed another problem is given
from vibration. So, main problems are given from rollers and are noticed when the
frontal or back wheel rotates in opposite direction [4].
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Chapter 3

Sensors

The autonomous mobile robots move in the environment by acquiring data from
the sensors that provide them the perception of the environment in which they
move.
They represent a very important element and they can be mounted on the robot
or in the environment in which they move.

Usually, for autonomous mobile robots the sensors are mounted directly on the
robot itself ensuring easy adaptation even if the environment or industrial space in
which they move should change. In fact, this represents a primary difference with
AGVs because usually for the latter, the sensors are mounted in the environment
and this constitutes a great limitation in the event that a change in the environment
in which they move should be made.
So an AMR has a flexibility that allows it to navigate unpredictable environments,
build a model of the environment and locate itself within it.

Each sensor usually has its own limits. The depth cameras can have difficul-
ties in in an environment where it is difficult to see the depth, as well as the
LiDARs, have limits in case they should encounter glass along the path because
they cannot detect it and furthermore in outdooor application the result could also
be influenced by atmospheric factors like rain, snow, and fog.
Therefore, to develop an autonomous driving system, sensors should be selected
based on their use, the environment in which they should move and on the types
of obstacles to be seen. Not a single sensor is usually employed but often more
sensors are used together so that the limit of one is compensated by the usefulness
of the other and vice versa.
In this way it is possible to develop a completely autonomous robot capable of
moving freely in various spaces, correctly avoiding obstacles, and recognizing or
collaborating with the humans encountered along the way.
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Sensors are classified according to their use and are mainly divided into two cate-
gories [1]:

• Proprioceptive sensors: measure and evaluate the internal state of the
robot giving information about position and velocities.

• Exteroceptive sensors: provide the knowledge of the surrounding environ-
ment. The goal of this typology is that specify the features that characterize
the interaction of the robot with the surrounding environments so that inten-
sify the capability of the Robot to be autonomously guided. Typical ones are
represented by proximity, range, and vision sensors.

Coupling more sensors belonging to the same or different categories, it is possible to
enhance their actions. In particular, by installing both typologies of proprioceptive
and exteroceptive sensors, the capability of the robot can be considerably increased,
guaranteeing the use of the robot not only for indoor but also for outdoor application.

3.1 Exteroceptive Sensors
They are represented by sensors that detect objects in the environment and give a
measurement of the distance from the robot along a direction. They are classified
in:

• Distance sensors: they give an estimation of the distance of the robot
along a direction and they are also known as range sensors.

• Proximity sensors: they are a simplified version of the first sensor above
cited that reveals the presence of an object in the proximity of the robot
without physical contact.

• Vision sensors: they are characterized by the acquisition of images and
geometric or qualitative information on the environment in which the robots
operate through a device like a camera. This is capable of measuring the
intensity of the light reflected by an object or an obstacle through the use
of pixels, which are photosensitive elements that transform the energy of
light into electrical energy. The most used devices used based on this effect
are CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide
Semiconductor) sensors. The main difference between them is given by the
pixels of the CMOS sensors which, not being integrated systems, measure
the throughput and therefore the pixels do not affect the neighboring ones,
avoiding the blooming effect that affects the CCD sensors [1].
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3.1.1 Sonar Sensors
They are the most known belonging to the class of range sensors and give an
estimation of the distance from an object through the measure of the propagation
of the sound. The acronym stands for Sound Navigation and Ranging and are
widely used in robotics especially in underwater and mobile applications. They
provide a very cheap solution to provide obstacles detection. Many times, several
of these are installed to increase the ability to see obstacles in multiple directions.
They are electrical devices that emit ultrasonic sound waves at higher frequencies
(more than 20 kHz) than normal hearing, and through their echoes they measure
the distance from an object. The distance from an object is obtained by measuring
the travel time in which the acoustic wave covers the distance sensor-object-sensor
also called time-to-flight and calculated as [1]:

d0 = cstv
2 (3.1)

where d0 is the object range, tv is the time-of-flight and cs is sound speed.

The main component of a sonar measurement system is composed of a trans-
ducer that emits the impulse and circuitry for the excitation of its and the detection
of the reflected signal.
It is common to use a single sensor used as transmitter and receiver and in this
case, there is a certain latency time depending also on the mechanical inertia of
the transducer. In Figure 3.1 there is an example of a unique transducer used
for transmission and reception of echo. A transducer can convert acoustic energy
into electric ones and vice versa. Common transducer are divided in piezoeletrics
transducer and electrostatic transducer. Both of them can operate as transmitters
and receivers.
However, the piezoelectrics, whose properties derive from the fact that they exploit
the properties of crystal material, have low efficiency because, being of the resonant
type, they have mechanical inertia that limits the minimum detectable range; this
problem is solved using two different transducers for transmitting and receiving.
Instead, the electrostatic ones, working as capacitors, can operate at different
frequencies, have low mechanical inertia, large bandwidth, and great sensitivity.
Despite this, they require a bias voltage which complicates the electronic control
[1].
Although ultrasonic sensors are widely used for their low cost, high reliability,
lightweight, and low power consumption, they have some limitations that prevented
their use in some robotic applications. The main problems are related to angular
and radial resolution, and hence on the maximum range that can be achieved. They
are unable to determine the relative angle of an obstacle.
Furthermore, obstacles with large acute angles could cause the waves to bounce in
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Figure 3.1: Sonar sensor working prin-
ciple [1]

a different or even opposite direction to the real one, and therefore they will not
see any obstacles. In addition, walls that appear very smooth with steep corners or
glass surfaces give false measurements with this type of sensor. For many of the
problems above, a good solution can be to use several sonar sensors and do a sort
of cross-checking to distinguish false measurements from true one [5].

Other problems are related to the frequency. In fact, the radiation amplitude
decreases as the frequency increases, obtaining a better angular and radial resolu-
tion, but excessively high frequencies lead to absorption phenomena on the part of
the surface that generates the echo. Some of these problems can be overcome by
using different transducers for emission and reception.

3.1.2 Camera
A camera is a much more complex system than devices based on photosensitive
sensors and consists of many more elements such as a shutter, a lens responsible
for focusing the light reflected by the object, and analog preprocessing electronics.
The system using the camera can have a single camera or more than one. If several
cameras are used to observe the same object, obstacle, or environment, it is possible
to obtain information on the depth by estimating their distance from the vision
system. In this case, we speak of 3D vision or stereo vision, allowing to observe
the same scene from different angles. However, three-dimensional vision can also
be obtained with a single camera and obtaining images from different positions by
estimating the depth through geometric characteristics.

An example of a stereo camera widely used in robotic applications is the Mi-
crosoft Kinect, which represents a cutting-edge and low-cost vision sensor. It was
mainly invented for video games and consists of a horizontal bar mounted on a
motorized pivot [6]. Furthermore, it is made up of several hardware (Figure 3.2)
whose fundamental elements are represented by an RGB camera coupled with a
depth sensor which constitutes an infrared projector combined with a CMOS sensor
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that captures video in 3D and acquires images with 640X480 resolution, and also
four- microphone arrays that provide facial and voice recognition capability as well
as capture the three-dimensional motion of the entire body [7]. However, despite

Figure 3.2: Microsoft Kinect sensor [7]

its wide use in robotic applications, it has limits of accuracy and reliability. In fact,
for optimal functioning, it is necessary that the object or the person to identify
is exactly in front of the sensor and at a certain distance (should be 1.8 meters
between user and Kinect, while for many people at least 2.5 meters of distance
from the sensor), because if used in narrow or crowded environments, it cannot
distinguish and map images well. Another limitation is given by light, therefore it
is advisable to use it in environments with ample artificial light as sunlight worsens
the quality of the information acquired.

A very good sensor based on camera is the Intel® RealSense™ depth camera
D435i which combines the robust depth-sensing capabilities of the D435 with
the addition of an inertial measurement unit (IMU). It is described in the sixth
chapter dedicated to the hardware used for the implementation of the autonomous
navigation system.

3.1.3 Laser Sensors
Laser sensors are often the preferred ones, thanks to their better characteristics:
infrared rays can be used unobtrusively, they focus to give narrow beams and they
do not disperse from refraction.
They can be of two types, according to the way of obtaining the measurement of
the distance from the sensor [1]:

• time-of-flight: the distance measurement is obtained by multiplying the time
it takes for the pulse of light to go from the source to the target and then
to the detector at the speed of light. The limitations of this sensor are on
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accuracy and are not technological but on cost: they are based on the minimum
observation time, the minimum observable distance, and the temporal accuracy
of the receiver.

• triangulation laser: the triangulation principle is based on trigonometric
properties of triangles such as the cosine theorem. The method used is to find
two angles and one side of the triangle and finally find the missing sides. The
laser beam emitted by a photodiode is projected onto an observed surface.
When this is reflected, it is focused on a CCD sensor. The position of the
focused beam reflected at the receiver creates a signal proportional to the
distance of the transmitter from the object. Once the position and orientation
of the CCD sensor with respect to the photodiode have been obtained, through
a calibration procedure it is possible to obtain the distance from the object
through geometric calculations. Limits on accuracy are given by surfaces that
do not favor reflection and are subject to color changes.

LiDAR sensor

The most used laser sensors in robotic applications are laser distance sensors called
LiDAR. The term means Light Detection and Ranging and works as a distance
measuring device by measuring distance through a series of points and using a
contactless measurement process avoiding the need to apply any mechanical on the
measured target. Compared to vision sensors, they have the advantage of being
able to work indoors or outdoors in different atmospheric conditions, being less
sensitive to interference from light.
According to the operating principle, they are distinguished in [8]:

• 1D sensor: they are used to process only one dimension (distance) linearly
and they are directed toward a certain target.

• 2D sensor: they are used to provide an indication of distance and angle and
usually the beam is moved or rotated on one level.

• 3D sensor: they are pivoted and in this way, information is provided on all
three axes.

The fundamental pieces of a LiDAR sensor are represented by the sender and the
receiver, together with their high temporal resolution. The laser beam must be
directed towards the object without interference in its path; only a small part of
the reflected light, which depends on the properties of the objects or surfaces hit,
usually reaches the LiDAR sensor receiver. The LiDAR sensor is used to measure
the distance, it calculates the shortest distance from the object guaranteeing a great
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advantage, because it prevents deflections, but at the same time a disadvantage in
the case of glass surfaces causing interference in the measured value.

3.2 Proprioceptive sensor
Compared to exteroceptive sensors that directly measure the environment in which
the robot moves, proprioceptive sensors measure the internal state of the robot.
Various categories belong to this type, including the position and speed sensors
among which the most important are given by the encoders or the attitude sensors
such as Inertial measurements units (IMU) and accelerometers.

3.2.1 Encoder
An encoder is an electro-mechanical device used to obtain information on speed,
direction, and position. It is used to convert the position or motion of a mechanical
part into analog or digital signals. There are usually two types of encoders: linear
and rotary. The former measure motion along a linear path, while the latter relates
to rotational motion. Both of these two types use magnetic principles.
In particular, in the linear ones there is a magnetic sensor that passes on a magnetic
scale detecting the magnetic changes that are proportional to the speed and to
the measured displacement of the sensor. On the other hand, in magnetic rotary
encoders, the sensor passes on a rotating disk of alternating regions detecting
the small changes in the magnetic field due to the Hall effect or the magnetic
resistive effect. As for the electronic rotary encoders, they are controlled through
the rotation of a shaft connected to the encoder circuit. A further division of
encoders is given by the incremental and absolute types [9].
Absolute encoders consist of a rotating disk made of circles, called tracks, each
one having a sequence of transparent and opaque sectors. A beam of light is
emitted in correspondence of each of them and it is intercepted by photodiodes or
photoreceivers, which transform the light pulses into electrical pulses and are finally
transmitted by the output electronics. Furthermore, they maintain their position
even if the power is removed and the initial position does not have to be sought
every time they are switched on. To encode the position, simple binary encoding is
not used because it could incur problems in case of instantaneous and simultaneous
variations. The Gray coding is used instead, which represents a variant of the
binary code, as it has the particularity that only a single bit changes its state
during the transition between two consecutive codes.
Incremental encoders are similar to absolute ones, because they always consist of
an optical disc with two tracks whose transparent and opaque sectors, but this
time they are arranged in quadrature. The direction of rotation is determined
thanks to the 90-degree phase shift of the two traces, and the displacement is
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measured by counting the pulses; a third trace is often used to define the position
of absolute zero, and therefore as a reference system for the angular position.
Compared to the absolute ones where the angular position is directly memorized
in the optical disc, the incremental ones estimate the absolute position through
suitable electronic circuits and therefore the information is available on volatile
memories, making them subject to some possible disturbances. Furthermore, by
using external circuitry it is also possible to obtain the speed.
Finally, the incremental ones are more used than the absolute ones because they
have a lower cost and are simpler [1].

3.2.2 Inertial Measurement Unit

An inertial measurement unit (IMU) has been commonly used in robotic applications
since ancient times. The first use dates back to 1930, where it was used only in
some applications due to its size, consumption, and high costs. Later, when it
became more compact, it was used extensively in many fields. It is mainly a device
used to determine the movement then relative position, speed, and acceleration
of a mobile system. Initially, this device consisted of an accelerometer to measure
inertial acceleration and a gyroscope to estimate angular rotations. In particular,
the accelerometer measures the rate of change of speed of an object in meters
per second (m/s2) or in gravity (g), and therefore the linear acceleration, and it
accumulates drift and noise errors. Instead, the gyroscope has the advantage of
being fast in measurements and capable of tracking fast movements, and it is used
to measure angular velocity in degrees per second (◦/s) or Revolution Per Second.
However, it accumulates errors when used for a long time [10]. Using both sensors
gives this device six degrees of freedom corresponding to the x, y, and z axes. Both
provide angle measurements and have the advantage of being error-free when near
ferromagnetic materials are used. Later, the magnetometer was also introduced to
estimate the magnetic direction, giving a device of this type 9 degrees of freedom.
The magnetometer provides yaw angle rotation measurements and is useful in the
case of dynamic orientation calculations. Usually, a suitable device is chosen based
on the applications to be run. The aspects to be taken into account are the size
of the device, the accuracy of the data that can be improved through the use of
appropriate filters useful for calibrating the data coming from accelerometers and
gyroscopes, the degree of response rate and the degree of freedom.
In navigation systems, GPS was frequently used and therefore the IMU provides
an advantageous substitute for GPS where it is not possible to use it, such as in
internal navigation environments, tunnels or in case of electronic interference. In
addition, many navigation applications use the IMU to obtain information about
orientation and encoders for position [11].
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3.3 Sensor fusion
Many robotic applications use different sensors to improve the accuracy, robustness,
and efficiency of the system, but on the other hand, the use of more sensors leads to
the construction of more complex hardware and software to fuse the data obtained
from multiple sensors.

Using a single sensor could lead to the accumulation of errors and noise over
time. Instead, the use of different sensors is useful to have different results and
cover a much wider range of measurements, reducing the set of uncertain interpre-
tations of the model.

However, to have greater clarity of the results coming from different sensors,
to cancel out the noise and uncertainty, and to have better accuracy, reliability,
and resolution, some fusion algorithms must be applied.

The most used algorithms for sensor fusion are the Kalman Filter (KF), Ex-
tended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Particle Filter
(PF) that are divided according to deal with linear and non-linear models. These
algorithms are a set of mathematical equations to estimate the state of a process.
The state estimation methods are used to ensure the state of a continuously chang-
ing system. State estimation phase is often used in data fusion algorithms, whose
purpose is to acquire a global target state from observations [12].

3.3.1 Kalman Filter
The Kalman Filter is widely used in different fields due to its computational skills,
its simple form, and its great performance when the uncertainty is not very high.
It is used to estimate and improve the unknown state of a system and it is known
as the easiest one to be applied to linear systems.

It processes the state of the previous time steps with the current measurement to
calculate the estimate of the current state. Kalman filter state equations are a
linear representation of wk, uk−1 and vk [13]:

xk = Axk−1 +Buk−1 + wk (3.2)

Observation equation is a representation of xk and vk:

zk = Hxk + vk (3.3)

where xk is the state vector, zk is the observation, A is the status transition matrix,
H is the observation matrix,wk is the system noise vector,uk−1 the system control
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vector and vk is the observation noise vector. The process and measurement noise
vectors that are represented by wk and vk are assumed to be positive definite,
symmetric, and zero-mean Gaussian white noise vector, satisfying:

E(w) = 0, cov(w) = E(wwT ) = Q (3.4)

E(v) = 0, cov(v) = E(vvT ) = R,E(wvT ) = 0 (3.5)

the states that are obtained at k − 1 and k are the prior state estimation x̂− and
the posterior one. The prior and posterior estimation errors and the covariances of
prior and posterior states are :

ek
− = xk − x̂k−, ek = xk − x̂k (3.6)

Pk
− = E[ek−ek

−T ], Pk = E[ekekT ] (3.7)

The goal is to calculate the a posteriori state estimate x̂k as a linear combination of
an a priori estimate x̂k− and a weighted difference between an actual measurement
zk and a measurement prediction Hx̂k− [14]:

x̂k = x̂k
− +Kk(zk −Hx̂k−) (3.8)

Hence, prediction equations are:

x̂k
− = A ˆxk−1 +Buk−1 (3.9)

Pk
− = APk−1A

T +Q (3.10)

Instead, the updated equations are represented by:

Kk = P−
k H

T

HP−
k H

T +RÍ (3.11)

Pk = (I −KkH)P−
k (3.12)

where Kk is the Kalman gain matrix, x̂k is the optimum state filter vector, Pk is
the process covariance matrix and I is the identity matrix.
It must be underlined that the Kalman Filter can be used only for applications
that are linear with Gaussian noise.
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3.3.2 Extended Kalman Filter (EKF)
The Extended Kalman Filter is applied to nonlinear systems. This algorithm is
based on the nonlinear first-order Taylor expansion around the state of the estimates
and subsequently transforms the nonlinear system into linear. Furthermore, the
result will be close to the exact result only if the observation and state equations
become linear and continuous.

Moreover, the covariance matrix of system status and observation noise remains
unchanged in the EKF, but if they have not been accurately estimated, the error
will cause the filter to diverge.
A non-linear system can be represented by [13]:

xk = f(xk−1, wk−1) (3.13)

yk = h(xk, vk) (3.14)

where xk represents the n-dimension state vector and yk is the m-dimension obser-
vation vector , wk−1 and vk are the process and measurement noise. The transition
matrix f and the observation matrix h are non-linear function.
The prediction equations are given by:

A = df

dx
|x = x̂k−1, x

−
k = f(x̂k−1) (3.15)

P−
k = APkA

T +Q (3.16)

where A represent the state matrix.
The update equations are:

H = dh

dx
|x = x̂−

k−1 (3.17)

Kk = Pk
−HT

HPk
−HT +R

(3.18)

x̂k = x̂−
k +Kk(yk − h(x̂−

k )) (3.19)

Pk = (I −KkH)P−
k (3.20)

where H, K, and Pk represent, respectively, the measurement equation, the Kalman
gain matrix, and the process covariance matrix.
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However, there are a series of problems with this filter that are given from the
fact that the EKF assumes that status and observation noise are independent in
white noise processing but the characteristic of noise could be different. Another
problem is that there could be a change in process noise after a first-order Taylor
series expansion leading to the wrong assumption for noise that is inconsistent with
reality.

3.3.3 Unscented Kalman Filter (UKF)
The Unscented Kalman Filter is considered an improvement concerning the EKF
in terms of performance and complexity. It is simpler because it uses the sampling
strategy instead of the random ones, avoiding divergence errors.
Moreover, it approximates the weighted density distribution of non-linear function.
The result will be better accuracy and convergence.

In this kind of filter, the sampling points are called Sigma-points and are in
a small number. The most used sampling strategy is the 2n+1 symmetric-sigma.
The idea of Unscented Transform is: assuming that the sampling mean is indicated
with x and the covariance with Px, we must select a set of points (Sigma point
set) and apply the non-linear transformation to each Sigma sampling point. Then,
it is possible to obtain the non linear transformed set of points y and Py which
represent statistics point of Sigma after the transform [13].
Filter steps are:

• initialize state error covariance matrix and state vector;

• select sigma sampling points according to the state vector and error covariance,
and calculate the weighted values;

• calculate mean and covariance through the equation of states updating time
through the taken sampling point;

• finish measurement update through a nonlinear observation equation by the
selected sampling points;

• update Kalman Filter coefficients;

The selected sigma points are described as in the following:

x0 = x̂k, xi = x̂k + (
ñ

(n+ ∆)P )k, xi+n = x̂k − (
ñ

(n+ ∆)P )k, i = 1, ..., n, (3.21)

Wm
0 = ∆

(∆ + n) ,W
m
i = 1

2(∆ + n) , i = 1, ...,2n, (3.22)
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W c
0 = Wm

0 + (1− α2 + β),W c
i = 1

2(∆ + n) , i = 1, ...,2n, (3.23)

∆ = α2(k + n)− n, (3.24)

where ∆ is the scaling constant, α is the spread of selected sigma point, k is
the second scaling constant and is widely considered as zero, β represents status
variables, Wm

i and W c
i are respectively, the weighted sample mean and covariance.

Time update is defined as:
Ôi = f(xi), (3.25)

x̂k+1/k =
Ø

Wm
i Ôi (3.26)

Pk+1/k =
Ø

W c
i (Ôi − x̂k+1/k)(Ôi − x̂k+1/k)T , (3.27)

in which Ô is referred to the function of non-linear system, x̂k+1/k is the prior state
estimation. Instead, the measurement updates of UKF:

Zi = h(Ôi), (3.28)

ẑk+1/k =
Ø

Wm
i Zi (3.29)

Pzz =
Ø

W c
i (Zi − Ẑk+1/k)(Zi − Ẑk+1/k)T , (3.30)

Pxz =
Ø

W c
i (Ôi − x̂k+1/k)(Ôi − ẑk+1/k)T , (3.31)

Filter update:
Kk+1 = PxzP

−1
zz , (3.32)

x̂k+1 = x̂k+1/k +Kk(yk+1 − ẑk+1/k) (3.33)

Pk+1/k+1 = Pk+1/k −Kk+1PzzK
T
k+1, (3.34)

K is the Kalman gain and x̂k+1 is posterior state estimation.
This last filter avoids the calculation of Jacobian and Hessian matrices, so, it is
better and simpler but slower than EKF using 2n+ 1 points.
In conclusion, the Kalman filter is limited because more applications, in reality,
are non-linear and it requires a Gaussian white noise.
The EKF has the limitations that the estimated value is close to the true one only
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if system state and observation equations are continuous and linear; in addition,
since the accumulating error is accumulated it could diverge if noise covariance
matrices are not good enough.
Finally, the UKF is similar to the EKF in terms of calculation, but avoids the
divergence phenomenon and it is more accurate and provides a faster convergence
[13], [15]. Figure 3.3 sketches the differences between the two most used filters to
fuse data from sensors for non-linear applications.

Figure 3.3: Differences between EKF and UKF

3.3.4 Particle Filters
It is a very efficient predictive tool used for systems that are non-Gaussian and to
represent uncertainty in stochastic processes capable to fuse measurements from
different sources.
The disadvantages of this type of filter come from the number of particles or samples,
since an accurate estimate is obtained only with a large number of particles.
Particle filters are of Bayesian type and the localization approaches using them are
also called Monte Carlo Localization (MCL).
The discrete state-space model is [15]:

Pt+1 = g(xt, ut, wt) (3.35)

yt = f(xt) + et (3.36)
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where xt is the state vector, ut and Y = (yi)ti=1 are input and measurement vector,
respectively. The filtering density p(xt|Yt) and the non-linear posterior prediction
density p(xt+1|Yt) are founded as:

xt+1|Yt =
Ú
Rn
p(xt+1|xt)p(xt|Yt)dxt (3.37)

p(xt|Yt) = p(yt|xt)p(xt|Yt−1)
p(yt|Yt1) (3.38)

The weight and location assigned to particle represents the density with an estima-
tion of p(xt|Yt) with a large set of weighted ψ(i)

t samples (X(i)
i )

N

(i=1) and the sum of
all weight is equal to one. The location and weight of each particle are updated at
each measurement and they can be used to solve the Bayesian equation performing
the re-sampling to avoid divergence. To calculate the PF the following steps are
performed:

• generate N samples (X(i)
i )

N

(i=1) from p(x0)

• compute and normalize weights ψ(i)
t

• generate predictions

• increment t and recompute weights

The minimum mean square estimate is chosen to estimate t as:

x̂t|t = E(xt) =
Ú
Rn
xtp(xt|Yt)dxt ≈

NØ
i=1
ψ

(i)
t X

(i)
t (3.39)

Moreover, the particle filter is very useful because the noise can be considered even
to be non-Gaussian, it is simple and acts in a good way in presence of large noise.
Drawbacks are given by the fact that it is computationally expensive compared to
the previous filters with a complexity that increases with the size of the vectors.
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Chapter 4

Path planning Algorithms

Navigation is one of the most important topics in mobile robotics. Over the years,
several algorithms have been developed to provide autonomous and safe navigation
in the environment in which a robot moves.

Furthermore, besides autonomous navigation, another problem of great importance
is given by the ability of a robot to avoid or interact with the dynamic or static
obstacles it encounters in its path.
For this reason, global and local navigation algorithms are distinguished.
The first refers to navigation for the robot in a known environment where it moves
by selecting the path capable of avoiding obstacles.
For this type of navigation, the robot can move easily knowing its initial position
on the map, the final position to be reached, and the obstacles along its path.
Instead, by local navigation, we mean the ability to move in an unknown environ-
ment through the information acquired by the sensors with which it is equipped
that allow to avoid obstacles and therefore collision with them.

One of the first methods used for the global path planning, and so for the navigation
in a priori known environment, computing off-line the shortest path to go from an
initial point to another, is the Dijkstra algorithm [16].
Succesively, other algorithms were developed as the A* algorithm [17] and the D*
algorithm [17]. The last one is an evolution of the A* algorithm.

The most used methods that provide autonomous robot navigation in an en-
vironment with obstacles, providing a local navigation system and having the
advantage of constantly replanning the path every time the robot meets obstacles,
can be distinguished in directional and velocity space-based approaches.
The first ones give a direction to the robot and they are divided into Potential
Field Method (PFM) [18], Virtual Force Field [19], Vector Field Histogram (VHF)
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[20] and VHF+ [21].
The second ones give the robot the ability to manage with rotational and transla-
tional velocity controls; the most used is the Dynamic Window Approach (DWA)
[22].

Some of the fundamental algorithms used for global and local navigation are
described in the following sections.

4.1 Global path methods
The global planner calculates the shortest path to reach a target position from the
starting position.
To calculate the route, it needs to know totally or partially the environment in
which the robot moves. Therefore, route calculation takes place off-line only if map
knowledge is available and tends to fail if the area is unknown.

The algorithms for the search and planning of the global path guarantee a good
solution if applied in both internal and external environments, providing an optimal
path capable of going from a starting point to an endpoint avoiding collision with
obstacles in the path.

One of the most used algorithms is the Dijkstra [16]. It is used for its sim-
plicity, calculation speed, and good performance obtained in the experiments in
which it is applied.

Other algorithms developed later and widely used for the global path planner
are A* and D*. Both minimize their cost function and easily and quickly re-plan
the path to reach the final position.

4.1.1 Dijkstra’s algorithm
This algorithm, developed by the computer scientist Edsger W. Dijkstra in 1956
and published in 1959 [23], is now present in many variations and used to find the
shortest path between nodes in a graph with weighted edges.

A weighted graph is composed of vertices and edges that have a value or weight
associated with them. The weight indicates the cost to move from one vertex to the
other. The algorithm is divided into some steps to find the shortest path between
any couple of vertices, building a set of nodes that have a minimum distance from
the source.
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The graph contains vertices, or nodes indicated with v or u, and weighted edges
that represent the connection between nodes; an edge is denoted as (u,v) and w(u,v)
indicated as the weight.

The following elements have to be initialized:

• Q, which represents a queue of all nodes; and at the end of the algorithm it
will be empty,

• S, which is initially an empty set, which will contain the marked nodes that
have been already visited; at the end of the algorithm it will contain all nodes
of the graph,

• dist, which is an array of distances that goes from the source node s to the
other ones in the graph. At the beginning, dist(s)=0 and all the other ones
indicated with v are initialized as dist(v)=∞. This is set at the starting point
so that the distance from each node will be recalculated while the algorithm
proceeds and ended when the shortest path is found.

After that, the algorithm proceeds as follows:

1. if Q is not empty, pop the node v that is not present in S, from Q with the
smallest dist(v). At the first run of the algorithm, the node s will be chosen.
Subsequently the one with the smallest dist will be selected,

2. the node v has to be added to S to marke that it has been visited,

3. update dist value of adjacent nodes of the current node v in a way that for
each new node u:

• if dist(v) + weight(u, v) < dist(u) update dist(u) to the new minimal
distance value because a new ones has been found

• otherwise dist(u) is not updated.

In the end, when the algorithm has visited all nodes in the graph, the smallest
distance to each node has been found with dist containing the shortest path from
the source s [16]. The pseudocode for Dijkstra’s algorithm is described in 1. Despite
performing an excellent solution to find the shortest path between two vertices,
Dijkstra’s algorithm could be slow due to the calculation of unnecessary paths,
with a sort of "blind" search. For this reason, this algorithm has been modified to
speed up the calculation.

Figure 4.1 shows an example of a weighted graph marked with edge costs to
which can be applied Dijkstra’s algorithm [24]. In the first step, vertex A is the
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Algorithm 1 Dijkstra’s algorithm
1: function Dijkstra(Graph,source:)
2: dist[source] ← 0
3: for each vertex v in Graph do
4: if v /= source: then
5: dist[v]← infinity
6: end if
7: add v to Q
8: end for
9: while Q is not empty: do

10: v ← vertex in Q with min dist[v]
11: remove vfrom Q
12: for each neighbour u of v: do
13: alt ← dist[v] + length(v,u)
14: if alt < dist[u]: then
15: dist[u]← alt
16: end if
17: end for
18: end while
19: return dist[]
20: end function
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first node examined, because it has minimal distance zero to the source, and all the
others distances between any two vertices are set to infinite. So, A is moved from
the queue Q to set S. Then, the distance between A and its neighbors B, C, D is
updated to 2, 5, 1. Subsequently, the other nodes that have a minimum distance
from the source are analyzed by repeating the procedure that has been done for
vertex A. Finally, when the set Q is empty, and therefore all the nodes have been
visited, the final shortest path is found.

Figure 4.1: Example of weighted graph
[24]

4.1.2 A* Algorithm
This algorithm represents an evolution compared to Dijkstra’s algorithm because
it achieves better performance through the addition of heuristics for the path search.

The algorithm was published in 1968 by Peter Hart, Nils Nilsson, and Bertram
Raphael of the Stanford Research Institute [25].

It is widely used for its simplicity and quick solution. It is formulated in terms of
weighted graphs: starting from a node of a graph, it finds and follows a path to
the node with the lowest known cost keeping a priority queue of alternate paths
along the way. When it traverses the graph and encountered a segment of the path
with a cost lower than what it is going through, it changes immediately and the
process continues until the goal is reached.

So, A* works using the best-first search and finds a least-cost path from an
initial node to the final ones and uses the distance-plus-cost heuristic function to
choose the order in which the cheapest nodes are searched in the tree.
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The distance-plus-cost heuristic function, usually denoted with f(x), is:

f(x) = g(x) + h(x) (4.1)

It is composed of the sum of the path-cost function which represents the cost from
the starting node to the current node and denoted with g(x) plus an admissible
heuristic estimate of the distance to the goal denoted with h(x). This last function
must be an admissible heuristic, and for a kind of application like routing, h(x)
represents the straight-line distance, i.e. , the smallest distance between two points
or nodes.

Moreover, h is monotone or constant if for every edge x,y of the graph the following
condition is satisfied:

h(x) ≤ d(x, y) + h(y) (4.2)

where d is the length of the edge. In this case, the algorithm becomes faster and
powerful and there is no need to explore nodes more than once. Hence, A* is
equivalent to Dijkstra’s algorithm with the reduced cost:

dÍ(x, y) := d(x, y)− h(x) + h(y) (4.3)

Moreover, the time complexity of this algorithm depends on the heuristic. In the
worst case, it could be an exponential expansion of nodes in the length of the
solution, in the best case it has a polynomial trend when the search space is a tree,
there is a single goal state, and the heuristic function h meets:

|h(x)− h∗(x)| = O(logh∗(x)) (4.4)

in which h* is the optimal heuristic that represents the exact cost to get from x
to the goal. So the error of h will not grow faster than the logarithm of h* that
returns the true distance [17]. Figure 4.2 shows an example of how to find a path
from the start node to a goal node. In particular, the empty circles represent the
nodes that have to be explored, whereas the filled circles represent the ones in the
closed set. The green nodes represent the closest to the final goal.

4.1.3 D* Algorithm
This algorithm comes in three different versions and the name stands for Dynamic
A because it behaves like the classic A* algorithm with the exception that the arc
costs may change as the algorithm is executed.

The original D* algorithm, which is an informed incremental search algorithm, was
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Figure 4.2: Illustration of the A* search
algorithm

introduced by Anthony Stents in 1994 [26].

Although there are multiple versions of the same algorithm, they all solve path
planning problems based on the same configurations, where a robot can navigate,
given a final goal in unknown terrain, by finding the shortest path to reach the
final coordinates starting from the initial ones.

Any new information acquired by the robot is added to the map and a new
shorter route is rescheduled, if necessary, by repeating the process until it reaches
the final coordinates. The re-planning of the route in the case of new obstacles
takes place in a very fast and more efficient than A* algorithm.

Like the algorithms previously described, this algorithm contains a series of nodes
that need to be calculated. These are denoted as OPEN list and can be marked
as NEW if it has never been placed in the list, OPEN if it is currently in the list,
CLOSED if it is no longer in the list, RAISE to indicate that the cost has increased
since the last time in the list and LOWER in the opposite case.

The algorithm works iteratively. In particular, it takes a node from the OPEN list,
evaluates it, propagates it, and then placed it in the list. This propagation process
is called expansion and is different from the A* which runs the path from start to
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finish. The D* starts directly from the goal node and goes backward. However, the
D* requires a procedure that is computationally heavy, because it finds the path
not only for the goal but also for all the nodes far from the target. Each processed
node has a back pointer which refers to the next node representing the target. The
algorithm ends when the next node to expand is the initial one and the path to
the goal can be found by following the back pointers.

When there is an impediment along the way, all points are replaced in the OPEN
list and marked as RAISE. However, before increasing the cost, the algorithm sees
if it can reduce the cost of the node and if it cannot be done, the RAISE status
is propagated to all the descendants who have the back pointers. After these are
evaluated, they form a wave. When the RAISED node can be reduced, the back
pointer is updated and the LOWER state is passed to its neighbors. Thus, some
points are no longer affected by the waves and the algorithm works with points
that are affected by the change in cost.

When none of the points can find a path through the neighbors, the fact of
propagating their cost increases, and an alternative path can only be found outside
the channel. In this way, LOWER waves develop which expand as unattainably
marked points with new path information [17].

4.2 Local motion planning
As described above, the algorithms used for global path planning fail when the
robot finds itself moving in an unknown environment that changes frequently.

So, for this purpose it is useful to use local motion planning. In this way, the
robot, using some Obstacle Avoidance algorithm, acquires information from on-
board sensors, and re-plans the path in real-time, avoiding the collision with the
unpredictable obstacles that it encounters in its path while moving.

Obstacle Avoidance problem can be described as in [22]. In particular, it is
denoted with A the robot moving in a workspace W with the configuration denoted
as CS, with qt the configuration at time t and with A(qt) Ô W the space occupied
by the robot. Furthermore, in the robot, there is a sensor that identify a set of
obstacles 0(qt) Ô W measuring a portion of space S(qt) Ô W .
Moreover, u(qt) is a control vector during the time δt.
So, the robot describes a trajectory qt+δt=f(u, qt, δt) with δt ≥0.
Denoting with Qt,T the set of configuration of trajectory from qt with δt Ô [0, T ]
where T is the sampling period, the Obstacle Avoidance Problem establishes that,
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using qtarget as the final configuration, the objective is to compute a motion control
ui such that the trajectory generated avoid collision with obstacles A(Qti , t) ∩
O(qti) = 0 and it makes the vehicle reach final target F (qti , qtarget) < F (qti+T , qtarget)
as depicted in Figure 4.3, which shows a robot that avoids obstacles, acquiring
information by sensors.

Figure 4.3: Obstacle avoidance Prob-
lem [22]

4.2.1 Potential Field Method (PFM)
This approach models the robot as a particle in space where it moves under the
influence and combination of attractive and repulsive fields. This approach is
widely used for its short computational time and its simplicity.
The obstacles and the final position to be reached are represented by charged
surfaces that generate a force on the robot, which moves away from the obstacles
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that generate a negative potential, and goes towards the final position to be reached
that generates an attractive potential. The potential field is represented as an
energy field and therefore, its gradient is a force [21].

Denoting with Fatt the attractive forces generated by the final target, it can
be determined as:

Fatt(qi) = Kattnqtarget (4.5)

Instead, the repulsive forces Frep of the obstacles, can be expressed as:

Frep(qi) =


Krep

q
j

( 1
d(qti ,pj) −

1
d0

)npj, if d(qti , pj) < d0

0, otherwise
(4.6)

where d0 is the distance of obstacles pj, qti represents the vehicle configuration,
nqtarget and npj are the unitary vectors pointing from qti to the target and each
obstacles pj . This equation depends on the current robot configuration. The gener-
alized potentials, that depend also on instantaneous robot velocity and accelerations,
are found as:

Frep(qi) =


Krep

q
j

( a ˙qti

(2ad(qti ,pj)− ˙qti
2)npj · n ˙qti

, if q̇ti > 0

0, otherwise
(4.7)

where a is the maximum acceleration, q̇ti is the current robot velocity and n ˙qti
is

the unitary vector pointing in direction of robot velocity [22].
Finally, the sum of the two forces, above found, give the resulting force to compute
and control the trajectory of the robot at every time t as depicted in Figure 4.4.

Figure 4.4: Potential Field Method [22]
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4.2.2 Vector Field Histogram (VHF)
This algorithm divides the resolution of the problem into two steps where the first
one calculates a range of motion directions and the second one chooses one of the
computed directions.
First, the space is divided into sectors and a polar histogram H is constructed
around the robot to represent the obstacles around it.
The function hk(qti) is used to map the obstacle distribution in sector k on the
corresponding component of the histogram [22]:

hk(qti) =
Ú

Ωk
P (p)n

A
1− d(qti)

dmax

Bm
dp (4.8)

that is proportional to the probability function P (p) that represents a point occupied
by an obstacle, and to the distance from the obstacle. So, if the distance from the
obstacle increase, the density value will be lower.
At the end, the histogram has peaks that represent directions where there is a high
density of obstacles and valleys that are directions with low density.
Therefore, the robot should move in the set of candidate directions represented
by adjacent sectors with a density lower than a given threshold and closest to the
target direction called selected valley.
Subsequently, the right direction along which the target is must be chosen taking
into account the selected area and the size of the valley. There are three possible
cases: in the first one the target is in the selected valley and in this case ksol = ktarget;
in the second one the target is not in the selected valley and the number of sectors
of the valley is greater than m, and in this case the solution is ksol = ki + m

2 where
ki is the sector of the valley that is closer to ktarget. The last case is similar to the
second one, but the number of sectors of the valley is lower or equal to m. In this
last case the solution is ksol = ki+kj

2 where ki and kj are the extreme sectors of the
selected area.
The final result is a sector ksol with bisector Θsol, and the velocity vsol is inversely
proportional to the distance to the closest obstacle with the control denoted with
ui = (vsol,Θsol). Figure 4.5 shows an example of the robot motion direction (Θsol)
and the obstacle occupancy distribution.

4.2.3 Dinamic Window Approach (DWA)
The DWA solves the problem of navigation in two steps, as a function of the robot’s
velocity space. With this algorithm, the robot can navigate at high speed avoiding
collisions with obstacles.
The following subset of the control space U is computed considering a motion
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Figure 4.5: Robot and obstacle occu-
pancy distribution in Vector Field His-
togram [22]

control composed of translational and rotational velocity (v,w) [22]:

U = {(v, w) Ô R2 \v Ô [−vmax, vmax] ∧ w Ô [−wmax, wmax]} (4.9)

The candidate set of control is denoted with UR. It contains the controls that are
within the maximum velocities of the robot; it generates safe trajectories UA and it
can be reached within a short period given the vehicle acceleration UD. The set UA
contains the admissible controls. These can be deleted before collision through the
maximum deceleration (av, aw):

UA = {(v, w) Ô U|v ≤
ñ

(2dobsav) ∧ w ≤
ñ

(2θobsaw)} (4.10)

in which dobs is the distance to the obstacle and θobs is the orientation.
UD is the set that contains controls that can be reached in a short period:

UD = {(v, w) Ô ;U \v Ô [v0 − avT, v0 + avT ] ∧ w Ô [w0 − awT,w0 + awT ]} (4.11)

Hence, the resulting subset of control is represented by (Figure 4.6):

UR = U ∩ UA ∩ UD (4.12)

The final step is the selection of the control ui Ô UR maximizing an objective
function:

G(u) = α1·Goal(u) + α2·Clearance(u) + α3·V elocity(u) (4.13)

40



Path planning Algorithms

where there is a combination of Goal(u) that facilitates velocities towards the goal,
Clearance(u) that facilitates velocities far from obstacles, and Velocity (u) that
favors high speeds. The solution is given by the ui that maximizes this function.
The DWA uses information of robot dynamics, hence, it works well at high speed
or with the vehicle with slow dynamic capabilities.

Figure 4.6: DWA: subset of control UR:
U used to contain controls within the
maximum velocities, UA admissible con-
trols, UD contains controls reachable in
a short period of time [22]
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Chapter 5

Autonomous Navigation

This chapter will describe how the autonomous mobile system has been developed
at CIM 4.0, which is the ultimate goal of this thesis.

Firstly, it is important to remember what is autonomous navigation. The term
autonomy refers to the ability to navigate in an unfamiliar, unstructured, and
unpredictable environment by acquiring information regarding the affected environ-
ment through the use of sensors. Often, it is advisable to use more sensors to have
a good perception of the environment and to make sure that the errors coming
from them are reduced through a wider range of measurements.

This chapter will illustrate also which sensors are chosen, the reason for their
choice and how they are positioned to implement this autonomous navigation sys-
tem. Compared to the most used autonomous driving robots, a suitable typology
of sensors has been chosen for this system to overcome the problems caused by the
type of wheels and to have an omnidirectional vision and trend. In this way, the
robot will be able to interact with the environment in which it moves, by extracting
robust information about the objects present and will be able to plan its motion
avoiding obstacles.

The problem of autonomous navigation answers some fundamental questions in
mobile robotics, as later described. These can be summarized in the knowledge
of the position of the robot in a certain moment, where it is going, and how it
can reach the final predetermined position [27]. To do this, it is necessary to
have a model of the environment that must be perceived and analyzed by sensors
also called map-building, find its position within this environment denoted as
localization and finally plan and execute the movement adopting path planning
techniques. Thus, to navigate without human intervention, the robot needs a map,
location knowledge, sensors, and navigation algorithms.
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To build the map of the environment, in this thesis an algorithm of Simulta-
neous Localization and Mapping (SLAM) has been used and adapted to
the considered system. Through it, the robot builds the map of the environment
by moving over unknown spaces and at the same time estimates its current location.

Once the knowledge of the map, with which the robot must interact, is acquired,
autonomous navigation can occur. In particular, the robot will be able to start
from an initial point, once its position and orientation in space are known, and
reach the final goal using the route planning techniques adopted.

To do this, the ROS (Robot Operating System) is used and in particular
the navigation stack as described below. Furthermore, RViz is used to send basic
commands and see the behavior in real-time, for example during the construction
of the map. First of all the system is implemented and simulated on Gazebo and
then the same is experimentally implemented using the configurations described
below.

5.1 Introduction to ROS
ROS (Robot Operating System) is an open-source robot meta-operating system.
It is mainly used for developing Robot applications. The main difference with an
operating system is given by the fact that it can be used for different combinations
of hardware implementation and it runs on an existing operating system. It is
composed of processes that use a virtualization layer between applications and
distributed computing resources. Then, it can be considered as software that
connects different software components and applications. ROS, such depicted in
Figure 5.1 connects Sensor, App and control a Robot with a hardware abstraction
and develops application based on existing operating system [28]. It is not a
programming language, it is not only a library because it contains a lot of tools
and a build system. Furthermore, it is not an integrated development environment
[29].

5.1.1 Goal and philosophy of ROS
ROS is open-source and has a lot of features, as listed hereafter [30]:

• Peer-to-peer: systems that use ROS are made of processes that run on
different hosts connected at runtime in a peer-to-peer topology. So, it has
a sort of mechanism that allows processes to find each other at runtime.
Individual processes communicate over defined API.
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Figure 5.1: Meta operating system [28]

• Multi-lingual: it can support a lot of programming languages, so it can be
defined as neutral because different languages can be combined and mixed as
desired. It supports mainly Python, C++, Octave, and LISP.

• Tools-based: a design can be used where small tools perform different tasks.

• Thin: ROS can re-use code from different open-source projects and can
update source code from external repositories, etc.

• Free, Open-Source and Distributed processes: it is distributed under
BSD Licence and passes information using inter-process communication. It is
composed of processes where each one is executed independently and exchanges
data systematically.

• Organized in packages: if different processes have the same purpose they
are managed as a package.

5.1.2 Main components
It is composed of a lot of components where the mainly used for developing
applications, exchanging information, and implementing communication for the
system, are given by:

• Node: it is a process that provides a specific task and belongs to a package
and has easy reusability;
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• Master: it is used to launch and initialize a ROS application. Without its
use, it is impossible to enable communications. The command roscore can be
used to launch a Master node ;

• Messages: they are data used by a node to exchange information. They are
variables such as integer, floating-point or boolean and can be used as a nested
structure that contains other messages like an array structure;

• Topic: it is used by a node to communicate and exchange asynchronous
information. It is a channel, and messages are data inside it. Nodes can
publish or subscribe to a topic. The publisher node registers its information
and topic and sends the message to subscriber that are interested in that topic.
These communications, that permit a transfer of data, is unidirectional, and
are ever connected to send or receive data. For this purpose, they are useful
for sensors data that have to publish messages periodically. Usually is used
one publisher and n subscribers. An example is reported in Figure 5.2 [28].

Figure 5.2: Example of communication between publisher and subscriber
[28]

• Package: it represents a basic unit where the ROS application is developed.

• Graph: ROS can permit to visualize ROS graph to see the relationship
between nodes, topics, and other main components.

• Service: it is used for bidirectional synchronous communication between
nodes. Based on request and response, it is used for one-time communications.
So, when the communications are finished, the connection is disconnected.
It is divided into Service Server that receives a request and transmits the
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response as an output, and the Service Client that requests service to the
server and receives a response as an input. Request and response are in form
of messages like in Figure 5.3 [28].

Figure 5.3: Example of server communication [28]

• Catkin Workspace: it represents the position where the developed code
and executable nodes are located. It is the build system for Ros because it
allows to build and organize packages, gives the possibility to reuse code, build
nodes, create a workspace, and generate messages. Here, there is package.xml
that gives information about the package like name, license, version, and
CMakeLists.txt that contains information on how to build packages.

• Launch file: it is used for launching multiple nodes and it is written in XML.

• Parameters: it is useful to manipulate data and have a message communica-
tion.

Table 5.1 highlights the main differences between Server and Topic.

5.2 RViz
RViz is a 3D visualization tool for ROS that helps users to know what a robot is
doing and how it moves and interact with the surrounding environment.

It provides a very useful GUI that allows the possibility to interact with the
robot and to choose what parameters and information would be visualized as shown
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Topic Service
Description Continuous exchanging Processing a request

of data but blocks call
Features Unidirectional Bi-directional
Example Sensor data request or

and robot state compute something
Communication Asynchronous Synchronous

Table 5.1: Main differences between Server and Topic

in Figure 5.4. The panel on the left allows selecting data that is possible to display
from various topics; the central part of the screen allows to see different data in 3D.
It is mainly used to see how the environment is perceived, the behavior of data
from sensors like Kinect, Intel Realsense (Figure 5.5), Laser Distance Sensor data,
and how a robot interact with obstacles.

It can be used both in Gazebo for simulation but also to do tests in real-life
displaying ROS messages and topics giving the possibility to visually control the
system. It allows the user to send a command to the robot, set its position, see
how it plans its route to reach a final goal, and visualize how a map is built in
real-time while the robot moves.

Figure 5.4: RViz Graphical User Interface
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Figure 5.5: RViz visualization of image from camera. The white points
are the results viewed by LiDAR

5.3 Gazebo
Gazebo is a useful ROS tool that provides a 3D robotic simulator environment. It
offers realistic simulation using 3D models of robots, sensors, and the environment.
It provides a Graphical User Interface (GUI) that is used to delete, add or modify
3D models, as depicted in Figure 5.6. In particular, through its use, it is possible
to test algorithms and create both complex indoor and outdoor environments. The
main features are [31]:

• Dynamic simulation: access multiple high performances physics engines in-
cluding ODE, Bullet and Simbody;

• Advanced 3D graphics: using OGRE, this tools often used in games, provides
a realistic rendering of the environment as high-quality lighting, shadows, and
textures;

• Sensors and noise: it can provide data that come from sensors, like laser range
finders, cameras, Kinect sensors including also noise and more;

• Plugins: develop custom plugins to simulate and test robots, sensors or to
control the environment. Moreover, many robots and environments (Gazebo
worlds) are provided or it is possible to build another using SDF.

ROS integrates with Gazebo using Gazebo_ros package that allows bidirectional
communication between them.
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Figure 5.6: Gazebo Graphical User Interface

The robot model is simulated using the Unified Robotic Description Format
(URDF), that is an XML file format used in ROS to describe all elements of
a robot. This can only specify the proper kinematic and dynamic features of
a robot like inertia, contact coefficients, joint dynamics giving also their visual
representation and a collision model. The URDF contains simulation parameters
in the gazebo tags. These contains gazebo plugins (sensors and actuators), Gazebo
material properties and dynamic parameters. Hence, to overcome the problem of
having and manage with only a limited set of parameters related to a single robot,
a new format named Simulation Description Format (SDF) was created. It is a
comprehensive description, in XML format, for everything from the world to the
robot level, making it easy to add, delete or modify elements. Gazebo is able to
converts a URDF to SDF automatically.

5.4 Introduction to SLAM algorithm
In robotic applications it is very important to know where the robot is moving.
Simultaneous Localization And Mapping (SLAM) represents a process through
which a robot can build a map of the environment and in the meanwhile, it can be
used to determine its position through the sensorial information that is given by
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onboard sensors. This is useful, because it permits the robot to move everywhere
without the need of knowing a priori information about the surrounding environ-
ment [32].

This method extends the usual requirement of a mathematical model to build
the environmental map. It needs also a representation of the robot state such
as orientation and position in correlation with the knowledge of the position of
extracted landmarks. These algorithms must consider a lot of parameters that
concern not only the map and the representation of the environment but also the
measurements that come from the sensor used.

The most important methods used for sensor application are raw range scan
sensors and feature-based sensors. Furthermore, the most commonly used sensors
are sonar and a laser-based sensor for landmark extraction from a scan and in this
case, the method is LiDAR Slam. In particular, the second one is widely used for
the high accuracy and speed able to generate a very precise measurement of the
distance. Moreover, for the extraction from images, it is used Visual Slam, where
the camera is used in many configurations, and the most used are the RGB-D
sensors, because they provide performance similar to 3D laser sensor but at a
lower cost, even if with some drawbacks related to computational constraints and
visually-reflective material [33].

However, flexibility can be reached combining landmark detection with graph-
based optimization [34]. Moreover, many researchers have shown how the quality
of SLAM-made maps can be influenced by the dynamic environment [35].

First of all, it is important to define such algorithm as applied to a robot in
motion, defining the following quantities at time k:

• xk: robot state including position and orientation;

• uk: control vector applied to a state xk at time k;

• mi: location of a landmark assumed to be time-invariant;

• zik: observation taken from the robot of the location of the ith landmark.

In SLAM, a mobile robot builds a map of an environment and at the same time
finds its location in that map. The trajectory of the platform and the location of
all landmarks are estimated online without the need for previous knowledge of the
location.

Environmental observations can be manipulated for SLAM implementation. The
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first concerns the external sensors that can perceive and locate the landmarks
through two consecutive observations at two successive instants of time in two
consecutive positions. Instead, the second concerns recording, which is a method
that creates spatial constraints by aligning the sensor data that is based on their
readings. As depicted in Figure 5.7, where the true locations are never known, it
can be seen that much of the error between estimated and true landmark location
is common between them and because there is a unique single source. So errors in
landmark location are correlated [32]. A critical factor is uncertainty associated

Figure 5.7: SLAM problem [32]

with predicting the robot’s position. Each motion estimate introduces uncertainty
by increasing the cumulative error leading to an unlimited drift in the poses es-
timates. This can be overcome through the loop closure or by generating spatial
constraints between the estimated poses and the previous places visited. Therefore,
based on non-sequential observations, loop closures create anchor points in the
environment, which help to limit the incremental error in the estimation of the
position.

Furthermore, loop closures can be established when after a certain time the robot
returns to previously visited positions. The implementation of SLAM is usually
organized in the front-end, which is responsible for the methods concerning the
generation of spatial constraints and the back-end which refines the noise found in
the previous results through probabilistic optimization algorithms also providing
feedback for the front-end loop closure. Although this algorithm is used in a lot of
applications, some problems prevent general use and they are summarized in:

1. Accumulation of localization error: all measures made with this algorithm
tend to generate some error that is accumulated over time preventing obtaining

51



Autonomous Navigation

the actual value. So, maps obtained are distorted and correlated by successive
problems. To avoid this, a solution can be that of remembering a previously
visited place through, for example, as a landmark. Pose graph is needed in
this case and the type of optimization is called bundle adjustment in visual
SLAM [34].

2. There is no localization and map is lost: the discontinuous estimation
of position is generated from image and point-cloud mapping, because they
do not consider some characteristics related to the position of the robot. This
kind of problem can be prevented by the use of other sensors from which
data can be fused using an Extended Kalman Filter and particle filters. A
technique to prevent the problem is to remember a previous landmark as a
keyframe. To speed up the scan, it is used a feature extraction process [34].

3. Elevated computational cost for processing and optimization: the
first arises when SLAM is operated in hardware. It is usually performed by
embedded microprocessors that have a reduced processing power. Furthermore,
to have an accurate localization, it is essential to execute image processing and
point cloud matching at high frequency. Another problem is that optimization
calculations such as loop closure are high computation processes. The challenge
is how to execute such computationally expensive processing on embedded
microcomputers. A solution can be to run in parallel different processes [34].

5.4.1 ROS for SLAM
In ROS there are some packages related to the SLAM algorithm:

• hector_mapping: useful in narrow space and emergency situations, it does
not require odometry data as input [35]. It is a node for LiDAR based on
low computational resources [36]. It is mainly used when an IMU (Inertial
Measurement Unity) is present.

• gmapping: requires odometry data and the robot has to be equipped with
a horizontally-mounted, fixed, laser range-finder. The slam gmapping node
is used to transform each incoming scan into the odometry tf frame [37]. It
utilizes Rao-Blackwellised particle filter to estimate the model [35]. However,
particle filters require a lot of number of particles to obtain a good result and
in this way, the computational complexity is increased [38].

• crsm_slam: the Critical Rays Scan Match selects only some subset of laser
scan ray to reduce the noise and improve the quality of map building and does
not use the odometry data [35].
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• rgbd slam: used to perform visual odometry using the only 3D map of the
environment that is built from point cloud [35]. It gives also the current
position of the camera [39]. The drawback is that it is computationally heavy.

• tiny_slam: it is a lightweight solution and use Monte Carlo Localization for
localization [35]. In addition, it uses an alternative grid map that keeps track
of the stored value and it is possible to compute the probability that a cell is
occupied exploiting how beams split the cell [40].

5.4.2 A review of Rao-Blackwellized Particle Filter
The algorithm chosen to acquire and build the map is gmapping. It has been
introduced in 2007 and it is very widely used for this kind of application. It
provides a laser-based SLAM capable of localizing the robot inside the map while
it is creating the surrounding environment. It employes a particle filter named
Rao-Blackwellized Particle Filter (RBPF), introduced by Murphy, Doucet, and
colleagues [41], [42], that represents a technique for model-based estimation in
which, each particle carries an individual map of the environment. Hence, it using
adaptive resampling techniques reduce the computational complexity improving
the position accuracy. The approach used by the Rao-Blackwellized particle filter
for SLAM is that of estimating the joint posterior probability p(x1:t,m|z1:t,u1:t−1)
about the map m and the trajectory x1:t = x1, ..., xt of the robot given observations
z1:t and the odometry measurements u1:t−1 from the robots. It makes use of the
following factorization:

p(x1:t,m|z1:t,u1:t−1) = p(m|x1:t, z1:t) · p(x1:t|z1:t, u1:t−1) (5.1)

with these equations is possible to estimate the trajectory of the robot and the
map given that trajectory. Usually p(m|x1:t, z1:t) is known when mapping with
known poses. A particle filter is applied to compute p(x1:t|z1:t, u1:t−1), where each
particle represents a potential trajectory of the robot. Usually, the sampling
importance resampling (SIR) filter is used. A Rao-Blackwellized SIR filter use
sensor observations and odometry readings when they are available. It updates the
set of samples that represents the posterior about the map and trajectory of the
vehicle in four steps [43]:

• Sampling: the generation of xit is obtained from xit−1

• Importance Weighting: a weight wit is assigned to each particle according
to:

wit = p(x(i)
1:t|z1:t, u1:t−1)

π(x(i)
1:t|z1:t, u1:t−1)

(5.2)
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• Resampling: particles are sampled with replacement proportional to their
importance weight. In this way, there will be fewer amount of particles to
approximate a continuous distribution. After this process, all particles have
the same weight.

• Map Estimation: for each particle, the corresponding map estimate
p(m(i)|x(i)

1:t, z1:t) is computed based on trajectory x(i)
1:t of that sample and the

history of observation z1:t

The problem becomes inefficient when the length of the trajectory and observations
grow over time. For this purpose, a new formulation is given [44]:

π(x1:t|z1:t, u1:t−1) = π(xt|x1:t−1, z1:t, u1:t−1) · π(x1:t−1|z1:t−1, u1:t−2) (5.3)

where the weights are found as:

wit = p(xi1:t|z1:t, u1:t−1)
π(xi1:t|z1:t, u1:t−1) = η · p(zt|xi1:t, z1:t−1) · p(xit|xit−1, ut−1)

π(xit|xi1:t−1, z11:t,u1:t−1) ·
(pi1:t−1|z1:t−1, u1:t−2)
π(xi1:t−1|z1:t, u1:t−2)

∞
p(zt|mi

t−1, x
i
t) · p(xit|xit−1, ut−1)

π(xt|xi1:t−1, z1:t, u1:t−1) · ωit−1

(5.4)

in which η = 1
p(zt|z1:t−1,u1:t−1) is a normalization factor. The authors describe

techniques to compute accurate proposal distributions that adaptively perform
re-sampling to improve the mapping. The optimal choice of proposal distribution
is:

p(xt|mi
t−1, x

i
t−1, zt, ut) = p(zt|mi

t−1, xt) · p(xt|xit−1, ut)s
p(zt|m(i)

t−1, x
Í)p(xÍ|x(i)t−1,ut)dxÍ

(5.5)

The odometry model p(xt|xt−1, ut) is often chosen as proposal distribution especially
when used with a mobile robot equipped with laser range finder. This choice can be
sub-optimal because the accuracy of the laser range finder gives a peaked likelihood
function as in Figure 5.8. In the system, the p(xt|x(i)

t−1, ut) is approximated by a
constant k within the interval L(i) defined as:

L(i) =
î
x|p(zt|mi

t−1, x) > Ô
ï

(5.6)

Hence, the equation can be re-written as:

p(xt|mi
t−1, x

i
t−1, zt, ut) Ä

p(zt|mi
t−1, xt)s

xÍ ∈L(i) p(zt|mi
t−1, x

Í)dxÍ (5.7)

Then, the distribution is locally approximated around the maximum of the likelihood
function by a Gaussian:

p(xt|mi
t−1, x

i
t−1, zt, ut) Ä N (uit,Σi

t) (5.8)
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Figure 5.8: Components of the motion model [45]

For each particle i, the parameters uit and Σi
t are determined as:

uit = 1
η

KØ
j=1

xjp(zt|m(i)
t−1, xj)Σi

t = 1
η

KØ
j=1

xjp(zt|m(i)
t−1, xj)(xj − uit)(xj − uit)T (5.9)

in which η = Σk
j=1p(zt|mi

t−1, xj) is a normalizer. The importance weight w(i)t can
be approximated as:

w
(i)
t = w

(i)
t−1kη (5.10)

The proposal distribution allows a robot equipped with a laser range finder to
obtain good results in terms of particle accuracy as in Figure 5.9.

Finally, in [45] there is the introduction of Neff that denotes the effective number
of particles to perform a resampling step to estimate how well the current particle
set represents the true posterior:

Neff = 1
ΣN
i=1(w(i))2 (5.11)

The approach proposed is to resample each time Neff goes below a given threshold
of N/2, where N is the number of particles.

5.4.3 SLAM in Simulation environment
Gmapping requires a single source of scan and gives as output the 2D occupancy
grid map that is the most widely output used in LiDAR SLAM techniques. So, it
gives a 2D map that represents obstacles on the plane. The expression:

Mgrid = mg(x, y) (5.12)
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Figure 5.9: Particle distributions during mapping. In
a featureless open space, the proposal distribution is the
raw odometry motion model (a). In a dead-end corridor,
particles uncertainty is small in all of the directions (b).
In an open corridor, the particles distribute along the
corridor (c) [45].

usually indicates the probability of a map cell to be occupied; it is 1 if the grid cell
(x,y) is occupied or 0 if it is not occupied.

Moreover, this algorithm includes loop-closure detection, so it can recognize a
location that it has already been visited. Having the loop closure, the accuracy of
the map and the position in the map increase. Performing the algorithm with the
viewer tool RViz, it is possible to see the building of the map in real-time in the
Gazebo simulator. To move the robot in the simulation environment, it is used
teleop twist keyboard that allows going everywhere in the map using the command
from the keyboard.

The node requires to know the frame attached to the mobile base that is rep-
resented by the base link, the frame attached to the map that is map and the frame
attached to the odometry system. Furthermore, the scan topic used to create the
map is firstly set to only one laser, like the frontal or the back one. The problem
is given by the fact that to create the map it should rotate accumulating errors.
Instead, using the topic that merges the scans, it acquires a map in a single shot
without rotating. Figure 5.10 shows the map of the simulation environment built
in the Gazebo simulator. Instead, in Figure 5.11 there is the map acquired with
the gmapping SLAM algorithm.

56



Autonomous Navigation

Figure 5.10: Map of simulation environment

Figure 5.11: 2D map acquired with SLAM algorithm
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5.4.4 Simulation environment and results
First of all, in the system Gazebo plugins of each sensor like for the camera, LiDARs,
and robot model, have been used. Plugins are pieces of code that are compiled
as shared library and inserted into the simulation. They have direct access to
all aspects of Gazebo through the standard C++ classes. Using these plugins it
is possible to manage a lot of aspects useful to simulate own model, like topics
published from sensors, and control any aspect of Gazebo.

After that, to create the system, and so, to establish the connection between
each frames of robot, sensor, and environment, has been created a URDF contain-
ing a set of link elements and joint elements, that allows to describe connections of
the system.

In the simulation environment, the final model of the robot with all the sen-
sors, has been created and hence with the final configuration which involves the use
of four depth-cameras, one for each side, and two LiDARs placed in the diagonal
of the maintenance system, as depicted in Figure 5.12. The robot movement is

Figure 5.12: Gazebo model of the robot

simulated to go from one point to another using the navigation stack, and therefore
also the ability to avoid the collision of obstacles in its path. The results obtained
show the ability of this robot to move easily even in narrow environments thanks
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to the translational movement allowed by the type of wheels and to perfectly follow
the programmed path, compliant with both global and local path planning.

The properties that have been verified are:
• the navigation and localization: objects are arranged in a way that the robot

has to traverse some difficult paths to reach the final goal. In this way, the
navigation of the rover and the localization are tested. They have some errors
especially in the real environment because the wheels are subject to slippage.

• the obstacle avoidance: this aspect has been tested both in simulation and in
real environment by creating narrow paths or putting people in front of the
moving rover.

In particular, two simulation environments have been created. The first, simpler,
is made up of some basic components such as cylindrical and square objects, while
the second environment has been created to simulate the CIM 4.0 environment. To
simulate this, narrow paths are created with more complex objects such as work
tables with a certain complex shape and particular chairs (Figure 5.13) with a
shape that causes the construction of multiple branched obstacles, and people that
could cause the robot to collide.

The first simple simulation environment is shown in Figure 5.14, whose map
acquired through SLAM algorithm is shown in Figure 5.15. The robot plans the
path to reach an endpoint previously set on the map by the user. In the case of
narrow spaces, it can move without colliding with the obstacles that meet in its
path. As it is possible to see from Figure 5.16, multiple obstacles represented by
people have been placed randomly on the map. Although they were not previously
present during the acquisition of the map, the robot can avoid them moving in
tight spaces simply by using a rotational or parallel motion. Figure 5.17 shows the
second simulation environment, which replicates the structure of the real CIM 4.0
environment. In particular, in this environment, narrow spaces are created with
particular objects to simulate the real environment and compare the results. The
figure shows Gazebo environment on the right, and the path planned by the robot
on the left. This exact path is replicated and also tested in reality.

Furthermore, the robot in the simulation environment can move following the
planned path without deviating much as regards the localization, and so, the
position and orientation is accurate.

However, in real life, the behavior differs from that obtained in the simulation
environment, due to the influence of various factors subsequently described in the
hardware implementation and therefore in the experimental tests.
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Figure 5.13: Chair (a) and Table (b) shape built in Gazebo to see the
ability to the robot to see obstacles at each height.

5.5 Laser scan filtered
The laser scanners used have an omnidirectional range of vision of 360°. For this
type of system, two laser scanners are used which are placed in the diagonal of the
robot. A LiDAR is placed at the end of the right front side and another at the end
of the left rear side.

The problem is given by the upper surface of the robot or the maintenance system
which could create some wrong results. The lasers, rotating 360 degrees, also see
the respective rear part which can create non-existent obstacles and therefore wrong
results, as in Figure 5.18.

To overcome this problem, after positioning the LiDARs in the system and then
after creating and arranging the respective reference frames, they are filtered as
described in Figure 5.19. In particular, the viewing range of each LiDAR is reduced
to 270° for both the rear and front, and subsequently, the results obtained are
linked together as a single scan source. This turns out to be useful because for
example in the construction of the map, many algorithms like the used gmapping
require a single scan source.
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Figure 5.14: Simulation environment. On the right Gazebo simulation environ-
ment with simple basic objects (a). On the left RViz 2D visualization environment
(b).

Figure 5.15: Map of the simulation environment ac-
quired through SLAM

The laser scan message that contains raw data that are acquired from LiDARs
is depicted in Figure 5.20. The laser scan data is published in a ROS topic as
sensor_msgs/LaserScan. The most important parameters that are also used to
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Figure 5.16: Simulation environment testing navigation and obstacle avoidance
with many people randomly placed. The three-dimensional objects are displayed
on the left through the Gazebo environment (a). Instead on the left there is the
visualization on RViz where it is possible to see the global path represented by the
green line (b).

manage with the source of scans are represented by angle_min and angle_max
that indicate the angle range measured by LaserScan and ranges that is an array
which gives the distance measured for each angle.

Hence, once set the angle parameters to -180 +180 degrees, the ranges give an
array of 720 points in the 360 degrees. So, in this way, the zero point of the array
corresponds to zero degrees, the point at 180 corresponds to 90 degrees, the point
at 360 corresponds to 180 degrees, and so on.

To filter data and obtain only that one the goes from 0 to 270 degrees for each
LiDAR, after the laser scan topics are published, the points of the array range
that goes from 270 to 360 degrees are set to zero. After that, with this new array
another topic is built corresponding to the LiDARs filtered from back and front side.

The next step is to take the new topics that match the filtered data from both Li-
DARs and merge them into a single topic. To do this, a package called fuse_lidars
has been created. This, use the topics of the two filtered laser scanners respectively
called laserscan_filtered_front and laserscan_filtered_back and the frame
where the topic will be published. Subsequently, the laser scans are concatenated
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Figure 5.17: Movement of the robot in complex environment. On the right there
is the simulation in Gazebo with complex obstacles (a). On the left the robot is
visualized with RViz (b).

Figure 5.18: Visualization of wrong result of frontal LiDAR not filtered
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Figure 5.19: Flowchart of two LiDARs
filtered and concatenated

with the PointClouds and when they are received in a synchronized manner they
are concatenated using the pcl concatenatePointCloud function. Finally, the Point
Cloud is converted into a laser scan taking into account the fact that the Point Cloud
contains three-dimensional data and therefore these points are projected in the 2D
plane obtaining the containment of the two lasers published in output_scan_topic.

The result visible in Figure 5.21 shows both the result of the filtered front Li-
DAR highlighted by the red color, that of the filtered rear LiDAR indicated by
the white color, and finally the total scan representing the two LiDARs together
represented by the multi-color.
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Figure 5.20: LaserScan message [46]

Figure 5.21: LiDARs filtered. The red color is the frontal LiDAR filtered, the
white one is that ones on the back, and the multicolor one is the total scan
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5.6 Navigation stack setup
The Navigation stack (Figure 5.22) [47] is used for autonomous navigation. It
is a collection of ROS packages that through the information acquired from the
odometry, from the sensor data and once received a final position to be reached, it
sends safety velocity commands to the robot. It works well with both differential

Figure 5.22: Navigation Stack

and holonomic robots and it requires the transform tree of a robot. A robot can
be defined as a system composed of many components, each of which is identified
by a position and an orientation in the space, that can be easily represented by
a coordinate frame that is attached to the treated component. It is necessary to
identify a common reference system in which the transformations between the
frames and the relationships between them will be present. The main tf tree has:

• /odom it is related to the odometry reference frame and a lot of time coincides
with the point in which the robot is initialized.

• /base_link it is related to the base of the robot.

• /base_scan it is related to the laser scanner reference frame.

The tf ROS package [48] is used to represent the relationships between the frames
attached to each robot, exploiting the information that is in the URDF files. It is
widely used to represent the transformations between frames of the components
and sensors of a moving robot.
The Navigation stack (Figure 5.23) is widely used for 2D autonomous navigation
in indoor environments. The main component is represented by the move_base
package that computes the velocity command to reach the final goal; it is composed
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by global planner, local planner, global costmap, local costmap and recovery behaviors
nodes, amcl that performs the localization of the robot, map_server that
provides the reference map.

Figure 5.23: Navigation Stack setup [47]

5.6.1 Odometry source
The odometry gives the knowledge about the robot motion. It is mainly obtained
through wheel encoders but in this case, it is not sufficient because of slippage and
vibration given by Mecanum wheels used. Hence, to overcome the problem given
from uncertainties and errors, in the system an Unscented Kalman filter is used
to fuse the data from wheel encoders with that one of the Inertial Measurement Unit.

But, before to fuse together the data from both sensors, a Madgwick filter is
applied. For this purpose, it is used the imu_filter_madgwick package that filters
and fuses data taken from IMU devices and it based on code developed by Sebastian
Madgwick [49]. It is used to fuse angular velocities, accelerations and magnetic
readings from a generic IMU into an orientation quaternion. Then, the result is
published on the imu/data topic [50].

Once obtained the IMU data fused together, these are fused with the wheel
encoders of the scout mobile robot through the robot_localization package. It is a
collection of two state estimation nodes called respectively ekf_localization_node
and ukf_localization_node. Each of them is an implementation of a nonlinear
state estimator for robots moving in 3D space. They have common character-
istics and in particular, they are able to merge an arbitrary number of sensors
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without having any constraints on the number of input sources, they support
multiple ROS message types, they allow to exclude data that you do not want to
include in the state estimation and the estimation takes place continuously as soon
as the robot receives the measurement [51]. The state vector is 15-dimensional:
[x y z α β γ ẋ ẏ ż α̇ β̇ γ̇ ẍ ÿ z̈ ]. Usually, it can be used in two different ways.
The first one is a continuous fusion of sensor data (like wheel encoder odometry
and IMU) to give locally accurate state estimates and the other one is to fuse
continuous data with global pose estimates to provide an accurate and global state
estimate. As shown in Figure 5.24, for this kind of application, the data obtained
from the Madgwick filter are fused with the ones of the wheel encoders through
the ukf_localization_node.

Figure 5.24: Odometry obtained from fusion of IMU and encoders

5.6.2 Map server
This node takes a map saved and offers it as a ROS service. The map file is an
image .pgm that encodes the occupancy data with an associated .yaml file that
describes the map meta-data as shown in Figure 5.25. It is possible to distinguish

Figure 5.25: Map parameters

image that is referred to the path to the image file containing the occupancy
data, resolution that is in meters/pixel, origin is the 2-D pose of their lower-left
pixel in the map (x, y, yaw), occupied_thresh denotes that pixels with occupancy
probability greater than this parameter are occupied, free_thresh shows as pixels
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with occupancy probability less than this are free and negate if the convention with
colors and free or occupied semantics should be reversed [52]. Instead, the image
format describes the occupancy state of each cell. The 2D map is a grid where
each element that is present, has an occupancy value. In Figure 5.11 it is possible
to distinguish a white color that stands for free (0) cell, black for occupied (100),
and unknown (-1) of grey color.

5.6.3 Costmap
The term costmap is used to indicate a map of the environment that divides the
space into cells and assigns a cost to each cell. It subscribes to sensors topics over
ROS updating itself. Each cell can be free, occupied, or unknown and sensors
are used to mark, clear, or do both operations simply changing the cost of a cell.
Other parameters that can be assigned to an occupied cell are the "lethal cost" and
inflation. This last one is defined as the process of propagating the cost values
from occupied cells as [53]:

e−k(dobst−rinfl) (5.13)

where k is a cost scaling factor, dobst is the minimum distance of the robot from
the obstacle, and rinfl is the inflation radius. This last parameter, set by users,
denotes the radius to which the cost scaling function is applied. There are five
main important parameters for costmaps related to inflation (Figure 5.26) [54]:

• Lethal: denotes an obstacle in a cell. If the center of the robot is in that cell,
it will be in a collision.

• Inscribed: means that a cell is less than the inscribed radius of the robot
away from the actual obstacle. If the robot center is in a cell at or above the
inscribed cost, the robot will be in a collision.

• Possibly circumscribed: It has a cost similar to "inscribed" but the robot’s
circumscribed radius is used as cutoff distance. So, if the robot center is in
a cell at or above that value, it will collide depending on the orientation. A
feature of this parameter is to add a cost to an object or to an area in the
map that depends on the user’s preferences.

• Free space: the cost is assumed to be zero.

• Unknown: there is no information about that cell and can be interpreted as
the user wants.

• All other costs are assigned a value between "Freespace" and "Possibly circum-
scribed" depending on the distance from the "Lethal" cell.
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Figure 5.26: Inflation parameters [54]

The Navigation Stack uses costmaps to store information about obstacles in the
world. In the definition of the local and global costmap it is possible to use a
set of sensors that will pass information to the costmaps. In general, navigation
systems perform path-planning on a single costmap storing information in a single
grid but it can be a problem in dynamic people-filled environments. For simplicity,
it is mainly used the monolithic costmap, which has data stored in the singular
grid of value, using one of its for global planning and another for local ones. The
problem is given when there are obstacles at a different heights. For this purpose,
here, layered costmaps are used. They divide the processing costmap data into
semantically-separated layers, as depicted in Figure 5.27.

Hence, each layer tracks obstacles and at the end, the master costmap is modified
and updated using an approach called layered costmaps. The process of populating
the map happens in a way that, data are not stored directly in the grid but maintain
an ordered list of layers (each of which takes into account a certain functionality).
Then, they are populated into the master costmap. In this way, the updated state
is more delineated because, in the layered costmap approach, different types of
costmap information are added to separate layers. So, many layers, as the operator
desires, can be added.
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Figure 5.27: Layered costmaps [55]

The main layers used are Static Map Layer that is usually generated with the
SLAM algorithm to know where walls and obstacles are, it is the bottom layer
of the global costmap that copies its value into the master costmap directly; and
Obstacles Layer used to collect data from sensors as lasers and RGB-D cameras
placing them in a 2D grid. Others are Voxels Layer that is similar to Obstacles
Layer but it is used to highlight obstacles seen at different heights, and Inflation
Layer that inserts a buffer zone around each lethal obstacle that is the location
where the robot will be in collision allowing the robot to not go too close to that
zone [55].

5.6.4 Move base
This represents the main element of the Navigation Stack and it is used to give
safe motion to the robot to reach a final pose.

It requires the sensor topics, odometry data, and amcl [56]. It has global and local
planners to perform the navigation task through the use of two costmaps, global
and local ones, that contain information about obstacles in two-dimensional space.

71



Autonomous Navigation

The global costmap represents the full environment; instead, the local costmap is a
dynamic window that moves in the global one with the robot position. It is made
up of five elements:

• Global planner: it computes the global path from a start position to a final
one avoiding the collision with the obstacle met in the path. It chooses the
trajectory of lower-cost relying on the available global costmap. For this
system, it is used the Navfn, a grid-based global planner that provides a fast
interpolated navigation function to create plans for the robot [57]. It uses the
path search Dijkstra’s algorithm, as in Figure 5.28. The use of this algorithm
for a mobile robot is done by transforming the problem into a graphic search
method through the information of a grid cell map. It considers the nodes
reachable by the robot denoting them as free spaces. As shown in Figure 5.29,
a cost is assigned to each of them and it is increased by the necessary number
of nodes to pass through to reach each node [58].

Figure 5.28: Global planner represented by green line in RViz

• Local planner it provides the velocity commands to the mobile robot following
the global path. It is useful to avoid obstacles that are in the local costmap.
Moreover, it allows the detection of smaller obstacles than the global ones due
to its smaller shape and its greater definition. The dwa_local_planner [59] is
used, that is an implementation of the Dynamic Windows Approach: after a
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Figure 5.29: Dijkstra’s algorithm to find optimal path
[58]

sample of the robot’s control space, for each velocity, there is a simulation of
the robot to see what happens if it is applied to that model. After that, the
algorithm evaluates all the trajectories that result from simulation considering
goal, obstacles, and speed and discards the trajectories that are not useful.
Finally, when it decides what is the best trajectory, it sends the velocity
command to the robot. The useful parameters are given by the maximum
velocity, acceleration, and also translation velocity, as in the example in
Figure 5.30. Between the admissible velocities, a combination of translational
and rotational velocities is computed to maximize an objective function. It
is continuously updated while it is moving in its path. The main role is to
follow the path of the global planner but it should avoid obstacles that are not
considered by the global planner. Hence, it is used to create routes in small
distances.

• Global costmap: it is represented by an occupancy grid map with some
adaptable parameters like dimensions and resolution. In particular, it is the
reference map of the global planner and it is dynamically updated with sensor
data. Each value of the costmap has a value in the range between 0 and 254.
An example is given in Figure 5.31.

73



Autonomous Navigation

Figure 5.30: Local planner in RViz represented by red line

Figure 5.31: Global costmap behavior in RViz

• Local costmap: it takes information from the global costmap. Hence, like
previously, it is updated with sensor data, the values are defined as the same
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as global costmap and it is represented by a local map around the robot-like
in Figure 5.32.

Figure 5.32: Local costmap behavior in RViz

• Recovery behaviors: they are not used in this system. However, if the robot
does not move anymore because it cannot follow the global path, they are
executed. They are made up of different actions to reset and update the local
and global costmaps. In the end, if the robot is still blocked it aborts the
navigation.

5.6.5 amcl node
This node provides the localization of the robot inside a map and, during the
autonomous navigation, it is used with the other nodes. It takes laser scan and
gives pose estimates while it moves and perceives the environment. The subscribed
topics are represented by scan that is the output of the Laser Scan, map which
represents the map published by map_server and the initial_pose that represents
the initial pose of the robot inside the map. Instead, amcl_pose is the published
topic. It gives an estimation of the pose of the robot inside the map [60].

This node uses the Adaptive Monte Carlo Localization method based on the
Monte Carlo Localization that estimated the pose using a Particle Filter. This
localization method is very easy to implement and it has many advantages with
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respect to other works. It is preferable than the Kalman Filter, because it represents
multi-modal distributions giving the possibility to globally localize the robot and
the Markov localization, because it decreases the amount of memory and it is more
accurate because the state represented in the samples is not discretized [61].

The Monte Carlo Localization (MCL), using a particle filter, can represent the
distribution of the likely states in which each particle represents a possible state
and where the robot could be in the map. Initially, it is assumed that the robot
could be anywhere in space. Therefore, a uniform random distribution of particles
is used. Subsequently, whenever the robot moves, it shifts the particles to predict
the new state and if it senses something, the particles are resampled based on
the Bayesian recursive estimate. The particles represent the guesses about where
the robot might be on the map. So, each particle is a description of the possible
future state, and these are discarded if inconsistent with the observation of the
environment or other particles are generated and placed close to consistent ones.
Finally, the particles should converge towards the robot’s true position [62].

This node uses an improved version of the (MCL) that adaptively samples the
particles based on an error estimate using the Kullback-Leibler divergence (KLD)
[63]. The main difference between MCL and AMCL is that AMCL contains a
dynamic set of particles, whereas MCL has a constant number of particles. Hence,
AMCL generates fewer particles if it is more certain about its position and more
particles in case of uncertainty. So, it covers all possible robot states. Hence,
AMCL outperforms classic MCL making the filter converge faster.

5.7 Real-Time Object Detection
In the system, real-time object recognition has been implemented through the use
of YOLO [64]. The name stands for "You only look once" and it is used as an
object detection platform for real-time image processing. Through this system, it is
possible to know objects detected and where they are placed in the space. YOLO,
using a single convolutional network that can be trained to improve the accuracy,
is very fast compared to other previous detection systems. It can detect a variety
of objects simultaneously.

5.7.1 Working principle
The network employed uses features taken from the entire image to predict each
bounding box. The input image is divided into a S X S grid, if the center of an
object falls into one of these grid cell, that one is responsible for detecting that
object. Each of these cells predicts bounding boxes B that describe a rectangle
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that encloses one object and also scores to tell users how certain it is to have an
object into that bounding box. For each bounding box, a classifier predicts a class
and then the confidence score and class prediction are combined. The final number
of bounding boxes is given by S X S X B .

Summarizing, Yolo, for each cell, predicts B boundary boxes, classifies one object
and predicts C conditional class probabilities based on the train dataset used. Each
boundary box has five elements:x, y, w, h, and confidence. The first four values
denote the position and dimension of the box and they are normalized by the image
width and height [64]. The final prediction has a shape defined by:

(S, S,B X 5 + C) (5.14)

Yolo should predict multiple bounding boxes for each grid cell, so there can be
multiple losses for the true positive. Hence, only one of them should be chosen. This
is possible considering the highest IoU (intersection over union) with the ground
truth, making it easier to recognize sizes and aspect ratios of bounding boxes. The
loss function, when only one of each cell prediction is predicted, can be computed
by the composition of Classification loss, Localization loss, and Confidence loss.

The limitations of YOLO are given from spatial constraints on bounding boxes,
because each grid cell predicts two boxes and it can have one class. This will result
in the wrong detection with the nearby object that this model can predict, such
as a small object in groups. However, in comparison to other detection systems,
this method has good performances regard object detection in computer vision [64].
Hence, it is better than other detection systems as Deformable parts models because
all the deformable parts are replaced with a single convolutional neural network
performing future extraction, bounding box prediction, and others concurrently.
Instead, it is similar to R-CNN with the difference that this system puts spatial
constraints on the grid cell proposals helping in the mitigation of multiple detections
of the same object combining individual components into a single optimized model.

Implementation of YOLO

In this system, the Darknet implementation of Yolo, available online, is used [65].
It is a ROS package developed for object detection through images from a camera.
It can be used with CPU being very fast, but it becomes much faster on GPU
where it is possible to install CUDA that is a parallel computing platform and
application programming interface (API) model created by Nvidia.

Here, a pre-trained model of the convolutional neural network is used. It can
detect some classes including data set from VOC and COCO.
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This ROS package is used in parallel with another package that provides the
position of the object in 3D space. Using darknet_ros_3d [66], it is possible to
obtain 3D bounding boxes of an object contained in an object’s list where it is
specified its position in the space.

Using YOLO, it is possible to obtain the three minimum and maximum coor-
dinates in each axis providing the location of the object. The distance between the
camera and the detected object is calculated by finding the center of the object.

So, the coordinates of the point will be:

Xc = (Xmax+Xmin)
2 (5.15)

Y c = (Y max+ Y min)
2 (5.16)

Zc = (Zmax+ Zmin)
2 (5.17)

Then, the object distance-vector, represented by V = (Xc, Y c, Zc), has been
obtained. The distance of an object from camera, in meters is found as:

D =
ñ
Xc2 + Y c2 + Zc2 (5.18)

In the developed configuration Yolo reads, as input, the topic from the depth camera
denoted as camera/color/image_raw and provides as output /bounding_boxes.
The main standard parameters, in this last topic, are:

• object_name: it is the name of the object detected;

• probability: it is the probability of certainty;

• xmin: it represents the X coordinate in meters of the left upper corner of
bounding box;

• xmax: it represents the X coordinate in meters of right lower corner of
bounding box;

• ymin: it represents the Y coordinate in meters of the left upper corner of
bounding box

• ymax: it represents the Y coordinate in meters of the right lower corner of
bounding box
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• zmin: it represents the cooordinate in meters of the nearest pixel of bounding
box

• zmax: it represents the coordinate in meters of the furthest pixel of bounding
box

The central point of the object of each coordinate, denoted as xcen, ycen, zcen,
is added to the previous parameters together with D, which denotes the distance
from the camera in meters.

For this kind of implementation is used the version yolov2-tiny that is much
lighter in terms of computational cost. It can detect a certain class of objects
selecting a certain threshold. Figure 5.33 shows the behavior of detecting a person
in a simulation environment. Instead, in Figure 5.35 it is possible to see the
detection of some simple objects at the CIM 4.0, their name, and the distance
(Figure 5.34) at which they are located. Finally, Figure 5.36 shows how multiple
complex objects are detected in CIM 4.0 environment. While the robot is moving,
as it is possible to see on the top right of the image, it is capable of detecting
multiple objects providing also the distance from them.
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Figure 5.33: Person Detection in simulation environment

80



Autonomous Navigation

Figure 5.34: Distance between objects and camera

Figure 5.35: Detection of bottle and mouse objects with camera d435i
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Figure 5.36: Detection of multiple objects in complex environment in
real time while robot is moving

82



Chapter 6

Hardware implementation
and experimental tests

Considering the type of application, appropriate sensors are chosen to develop
the autonomous mobile robot. First of all, the robot consists of four Mecanum
wheels. These type of wheels allows omnidirectional movement and therefore allow
both rotation and translation. Although its remarkable maneuverability is very
useful for moving in tight spaces, it leads to a great waste of energy efficiency [67].
Other than this, they have a big problem due to vibration and slippage during
their movement. This obviously cannot be overlooked because it can lead to the
accumulation of errors over time.

In self-driving robots, encoders are often used to have an estimate of the po-
sition and therefore of the odometry. Due to the problems described above, the
use of the encoders alone is not enough to acquire correct information because
the number of turns for moving laterally and longitudinally is not the same and
changes with the ground condition. To overcome this problem, many solutions have
been adopted in the years to obtain the odometry with these kinds of wheels. Some
solutions include optical encoders located in the servomotor to obtain rotation
information and ball spherical encoders to have pose information [67]. Others
include the use of a video camera where different frames are captured and compared
obtaining speed and direction respect a point or a reference previously calculated
[68], or the use of two optical mice directed on the down part of the robot and
positioned in the front and back part obtaining angular rotation through the
difference between front and rear displacement [69]. In this application data from
encoders are fused with an Inertial Measurement Unit (IMU) through the use of
an Unscented Kalman Filter.
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In addition, two LiDARs are also used for navigation. In particular, the use
of two LiDARs is due to the need to cover a space of 360°. As it is possible
to see from Figure 6.1, above the robot, there is a rectangular surface used for
maintenance purposes that do not allow to allocate a single sensor only on one side
because in this way we will have only a limited view and the rover could be limited
in the calculation of the route and could end up in a collision with obstacles. There

Figure 6.1: Basic system configu-
ration without sensors

can be two possible solutions for the position of sensors. The use of LiDARs is
fundamental for many purposes. In fact, to acquire a map a laser scan is often used
because, with its long-range, it can cover a long space without passing again in
that place and so avoiding accumulating errors. Another reason, to use the LiDAR
is that the laser scanner operates at different atmospheric conditions with a large
field of view of 360°. The problems that cannot be underestimated, come from the
fact that laser scanners can only scan in an horizontal mode and therefore can only
see objects at the height of the laser, neglecting and failing to see objects that are
at a higher or lower height, as can be seen from Figure 6.2.

To overcome this problem and therefore to have a robust system capable of seeing
obstacles at any height, a good solution is to introduce depth cameras. In fact,
they allow to cover both a horizontal and a vertical field of view and therefore to
overcome the limits of the LiDARs. However, some disadvantages may arise from
environments that are featureless such as white walls or long corridors where it is
difficult to see the depth. In addition, 3D operations are computationally heavy
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Figure 6.2: Laser scan limits

and therefore only PointCloud data are used.

Thus, there are two final configurations. Both have been simulated and tested in
reality. The first configuration is the one that has been chosen as the final configura-
tion. In both the position of the LiDARs is the same, instead what is different is the
position and number of cameras. In particular, the simplest configuration regarding
the position of the cameras provides an arrangement of them in the front and in the
rear, as in Figure 6.3. On the other hand, the second configuration provides for an
arrangement of cameras on all four sides of the system as in Figure 6.4. However,
this last configuration is very complex due to the computational cost given by the
streaming of the data obtained from the cameras.

6.1 Intel RealSense Depth Camera D435i
This type of sensor (Figure 6.5) is widely used in robotics due to its great perfor-
mance and low cost. It is a depth camera that also includes an Inertial Measurement
Unit (IMU). The components of IMU used for this kind of application are an ac-
celerometer that measures the total force acting on the device and the gyroscope
that measures the angular velocity. Together, they give the orientation in 3D space.

It is often preferred in applications like object recognition and collision avoid-
ance, autonomous navigation and mapping solutions, but also for the gesture and
poses detection.

Its large field of view (FOV) does not leave blind space and due to its low sensi-
bility to light, it allows navigation also in space with the light off [70]. Moreover,
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Figure 6.3: First configuration
with two LiDARs in the diagonal and
two depth cameras in the front and
back

Figure 6.4: Second configuration
with two LiDARs in the diagonal and
four depth cameras, one on each side

navigation is allowed both outdoor and indoor without having interference with a
system containing multi-camera configuration, with good accuracy within several
meters operating at low power.

86



Hardware implementation and experimental tests

Figure 6.5: Intel RealSense depth cam-
era d435i

The communication with the camera and all systems is very simple. It is also
available the open-source developers kit Intel RealSense SDK which permits the
integration with a lot of operating systems and programming languages like python.

As shown in Figure 6.6, the d435i is made up of different components. More-
over, the data that are acquired produce simultaneously RGB and depth images. In
particular, it is composed of an RGB module with a frame resolution of 1920x1080,
two infrared modules capable to acquire infrared images, and an IR projector that
improves the performances of this depth camera using an active stereo method.
The depth field of view is 87°x58° (FOV) with a depth resolution of 1280x720 at 90
fps. It contains the integrated Intel RealSense Vision Processor D4 which permits
a detailed reconstruction of the environment processing the images acquired. The
maximum range of vision is 10 meters but its accuracy depends on many factors as
scene, calibration, and lighting conditions.

Figure 6.6: Internal structure of d435i [70]

87



Hardware implementation and experimental tests

The main features and components are shown in Table 6.1.

Parameters Description
Physical Length × Depth × Height: 90mm × 25mm × 25mm

Connectors: USB-C 3.1
Components Camera module: Module D430 + RGB Camera

Vision processor board: Vision Processor D4
Features Use: Indoor/Outdoor

Ideal range: .3 m to 3 m
Image sensor technology: Global Shutter

RGB RGB frame resolution: 1920 × 1080
RGB sensor FOV (H × V): 69° × 42°
RGB sensor technology: Rolling Shutter

RGB frame rate: 30 fps
Depth Depth technology: Stereoscopic

Depth output resolution: Up to 1280 × 720
Depth Field of View (FOV): 87° × 58°

Depth frame rate: Up to 90 fps
Depth Accuracy: <2% at 2 m1

Table 6.1: Main features and components Intel RealSense d435i

6.2 RP-LIDAR A1
In the considered system, the RP-LIDAR A1 (Figure 6.7) laser scanner is used. It
is widely used in robotics and in particular for autonomous navigation, localization,
and mapping, because it represents a low-cost compact size sensor capable of
sensing an environment rotating of 360 degrees. It is a 2D laser scanner, developed
by SLAMTEC, composed of a range scanner that rotates clockwise through a motor
on which there is a belt.

Moreover, it is based on the laser triangulation ranging principle and uses high-
speed vision acquisition. In particular, the RPLIDAR emits an infrared laser signal
and then the returning signal is detected and sampled by the vision acquisition
module. It has 12 meters range scan measuring distance data more than 8000 times
per second [71].

This sensor with very low power consumption has a configurable scan rate from
2-10 Hz. Other technical specifications are listed in Table 6.2.
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Figure 6.7: RP-LIDAR A1

Parameters Description
Physical Width x Length x Height: 96.8 x 70.3 x 55 mm

Weight: 170g
Features Use: Indoor/Outdoor (without sunlight)

Measuring Range: 0.15m - 12m
Range Resolution: ≤ 1 % of the range ≤ 12m

Sampling Frequency: 8K
Rotational Speed: 5.5Hz
System Voltage: 5V
System Current: 100mA

Temperature Range 0℃-40℃
Angular Range 360°

Angular Resolution ≤1°
Accuracy : 1 % of the range ≤ 3 m

2 % of the range 3−5 m
2.5 % of the range 5−25 m

Table 6.2: Main features of RPLIDAR A1

6.3 Boards

6.3.1 NVIDIA Jetson Xavier NX
This board belongs to the NVIDIA Jetson that is a low-power embedded platform
with high performance. In particular, the Jetson Xavier NX (Figure 6.8) contains
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both a Central Process Unit (CPU) and GPU on a single chip of small size (70
mm x 45 mm). It is designed for robots applications and autonomous tasks, it is

Figure 6.8: NVIDIA® Jetson Xavier™
NX [72]

adapt for real-time execution and to perform neural networks computations due to
its integrated software libraries as CUDA. Moreover, it is equipped with four 3.1
USBs, requires MicroSD to work, and supports multiple power modes.

It offers up to 21 TOPS, giving the possibility of high-performance calculation and
allowing to run multiple networks in parallel, processing high-resolution data com-
ing from multiple connected sensors [72]. More detailed features and performance
are listed in Table 6.3 .

6.3.2 NVIDIA Jetson Nano
This kind of board (Figure 6.9) is widely used in robotic applications, because it
has very good performance, it is low cost and it has the smallest size in the family
of Jetson. Moreover, it needs only 10 W of power if set in high performances.
It uses ARM Cortex CPU and a 128 core Maxwell GPU and it is often used for
image processing due to its relationship between processing power and low power
consumption. Therefore, it is used also for running multiple neural networks in
parallel for applications like image classification, object detection, segmentation,
and speech processing [73].

The only problem with this board is given by the fact that it does not have
a wireless module. To overcome this problem, a dual-mode (2.4GHz / 5GHz)
wireless NIC module of Intel has been applied to Jetson Nano.

In addition, the Jetson Nano has two possible types of power supply. One is
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Parameters Description
Width x Length x Height: 103 mm x 90,5 mm x 34 mm

GPU: NVIDIA Volta architecture with
384 NVIDIA CUDA® cores

and 48 Tensor cores
CPU: 6-core NVIDIA Carmel ARM®v8.2

64-bit CPU 6 MB L2 + 4 MB L3
Memory: 8 GB 128-bit LPDDR4x @ 51.2GB/s

Connectivity: Gigabit Ethernet,
M.2 Key E (WiFi/BT included),

M.2 Key M (NVMe)
Display: HDMI and display port
USB: 4x USB 3.1, USB 2.0 Micro-B
Others: GPIO, I2C, I2S, SPI, UART

Table 6.3: Main features of NVIDIA® Jetson Xavier™ NX

Figure 6.9: NVIDIA® Jetson
Nano™ [73]

given by the barrel-jack and is preferable to obtain better performance or to do
operations that require more and constant power, the other through the type-c
connector. Other technical specifications are listed in the Table 6.4.
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Parameters Description
Width x Length: 69 mm x 45 mm

GPU: 128-core Maxwell
CPU: Quad-core ARM A57 @ 1.43 GHz

Memory: 4 GB 64-bit LPDDR4 25.6 GB/s
Connectivity: Gigabit Ethernet, M.2 Key E,

Display: HDMI and display port
USB: 4x USB 3.0, USB 2.0 Micro-B
Others: GPIO, I2C, I2S, SPI, UART

Table 6.4: Main features of NVIDIA® Jetson Nano™

6.4 Scout mini rover

The robot used is the Scout Mini mobile base, which is the compact version of
the Scout 2.0 provided by AgileX Robotics (Figure 6.10). It represents one of the
leading autonomous mobile robots in the market for its speed, agility, compactness,
and compatibility. Being ROS-compatible, it can be used to carry out various
missions including surveillance, exploration, detention, and various educational,
agricultural, and logistic services.

Usually, this type of robot can support a maximum load of 10-20 kg, but the
robot used for this system is equipped with four Mecanum Wheels guaranteeing
a payload of up to 50 kg. This kind of special wheels gives the possibility to
translate and rotate in place in any direction. In addition, with a very small size
of 625x585x222 (L × W × H (mm)) and a weight of 20 kg manages it achieves a
high-speed, precise, stable, and controllable power control system of 10.8km/h.

Through its CAN interface (Figure 6.11) used as a communication interface, it is
possible to install and communicate with all the elements necessary to operate
with this robot. For this purpose, two aviation male plugs are supplied along with
SCOUT MINI. In particular, the robot adopts a standard CAN2.0B communica-
tion with a baud rate of 500K. Via external CAN bus interface, the moving linear
speed and the rotational angular speed of the chassis can be controlled; the robot
will feedback on the current movement status information and its chassis status
information in real-time, motor current, encoder, and temperature. Furthermore,
this robot can be remotely controlled manually through an FS RC transmitter,
which can be used to easily control the robot chassis through a left-hand-throttle
configuration. It also contains some controls for lights, speed, and positions [74].
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Figure 6.10: SCOUT mini omnidirectional [74]

Figure 6.11: Aviation Male Plug for
CAN cable connection [74]
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In particular, a CAN-USB adapter is used to connect the robot to the Nvidia
Xavier Nx and the open-source software package (SDK) available in [75] provides
a C ++ interface to communicate with the mobile platform provided by AgileX
Robotics to send commands to the robot and receive the latest robot status.

6.5 Distribuited Hardware Architecture
The system is developed using Ros Melodic on Ubuntu 18.04, which is a distribution
based on the Linux kernel. It is downloaded and installed on every board present
in the AMR. In particular, given a large number of sensors, it was preferred to have
a distributed architecture to distribute the work on several boards and therefore
reduce the computational cost.

At first, multiple configurations were made and the best is the sensor connec-
tion which includes two LiDARs and two depth cameras. To do this, two LiDARs
and the rover platform are connected to Nvidia Xavier Nx which, allows for good
results thanks to its high performance. In fact, on that board, not only the data
acquisition of the connected sensors but also the main software that allows au-
tonomous navigation is run. However, given the limited number of USB ports, due
to high computational and power cost, it was decided to stream cameras data using
a Jetson Nano. Through this system, represented in Figure 6.12, it is possible to
distribute the computational load. A first prototype of all the systems connected
together is shown in Figure 6.13. Hence, to emulate the final system, a wooden
support is created where the sensors are arranged as in the final configuration. In
the beginning, this prototype was created with simple plywood, which was later
replaced by heavy wooden boards to avoid vibrations due to the type of robot wheels.

Figure 6.14 shows multiple kinds of obstacles at different heights. They are
represented by a chair, a stool, and a bottle. Obstacles perceived by the sensors
are purple and blue colors. In particular, the white points denote what is seen by
LiDAR. It is able to see only the obstacles at its height and therefore only part
of the chair and the stool. Thanks to the use of the camera, it is possible to see
obstacles at each level including the bottle and other parts of the obstacles listed
above.

6.5.1 Network setup
ROS is a distributed system that allows the connection of multiple devices con-
nected to the same network.
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Figure 6.12: Hardware connection of the system

Figure 6.13: Prototype of hardware connection of the system

The hardware connected is: a remote laptop, where RViz is run, which allows the
three-dimensional display of what the robot sees and to give commands to operate,
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Figure 6.14: Comparison of obstacles seen in reality (a) and on Rviz (b)

the Nvidia Xavier Nx, which connects two lidars and the Scout rover and executes
the main software, the Jetson Nano to which two cameras are connected and only
used to acquire the data. Then, these are read by Xavier Nx, which can read and
operate with its published topics.

A ROS system can consist of many nodes that run in parallel, across different
multiple machines, and that can communicate with each other. This is possible
because ROS is a distributed computing environment. To do this ROS needs
bi-directional connectivity on all the machines to be connected, and each machine
must have a name visible to all the others [76].

First of all, the machines should be connected to the same Wi-Fi network and
then one has to look up each machine’s IP address through the terminal of each
computer used through the $ifconfig command. The next step is to edit the
.bashrc file by adding it to the end of the document:

• export ROS_MASTER_URI = http : // < remote_PC_IP >: 11311

• export ROS_HOSTNAME =< current_PC_IP >

In particular, the first line denotes the address of the PC of which it is set the ROS
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Master. In this case, this corresponds to that of the Nvidia Xavier Nx, and this
line must be copied to all the other connected computers because this parameter
identifies the IP where each device looks for the ROS MASTER node. Instead, the
second line denotes the address of the PC that is working and therefore, must be
connected to the ROS Master indicated above, as in Figure 6.15 . First of all, to

Figure 6.15: Network connection of pc, Nvidia Xavier Nx and Jetson Nano

start the autonomous navigation, a launch file is run in the terminal corresponding
to the Nvidia Xavier Nx, which also includes the initialization of the ROS MASTER
node. Subsequently, the launch file of the d435i depth cameras is launched in
the terminal corresponding to the Jetson Nano. Finally, from a remote PC, it is
possible to run RViz to see and execute the commands desired by the user to make
the robot move.

Considering this architecture, another problem is given by having to differen-
tiate more sensors of the same type. The two depth cameras used are distinguished
by the serial number of each one. In fact, each Realsense d435i has a unique serial
code that allows them to be distinguished from others of the same type. First of
all, Intel RealSense SDK 2.0 (librealsense) for Linux and the ROS wrapper for
librealsense should be installed. After, launching the realsense2_camera wrap-
per through the command roslaunch realsense2_camerars_camera.launch, the
serial number will be indicated. So, after having done this procedure for both
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cameras, through a launch file, each camera has been assigned a different name
from the other and different serial numbers.

The two RP LiDARs are distinguished assigning to each of them a different
parameter regarding the serial_port parameter. In particular, it is assigned
/dev/ttyUSB0 for the front LiDAR and /dev/ttyUSB1 for the rear one. These
corresponds to the respective ports to which they are connected. In addition, the
name of the two is also changed to be distinct.

6.6 SLAM experimental tests
The SLAM is done by trying different settings.

In particular, two map acquisitions are tested. Using this type of algorithm
it is possible to use only a single laser scanner source. The first test is done using
only a front LiDAR, the second one using both the two LiDARs placed on front
and on back.

Using only the front LiDAR, the topic /scan_frontal is used. The robot is moved
through the remote control to acquire the map at the speed and in the way it is
desired. Using only one LiDAR, the acquisition of the map is slower because using
this type of system, despite using a LiDAR capable of seeing at 360 °, the viewing
range is limited to 270 ° due to the maintenance device placed above the robot.
Therefore, in order to acquire the map, the robot must be rotated on itself several
times, as shown in Figure 6.16.

When both LiDARs fused together are used in a single topic called /scan_fused, the
map acquisition takes place much faster than before. So, there is no need to rotate
the robot several times by 360° because the whole range of vision is covered, as
shown in Figure 6.17. Although the second setup allows the fastest map acquisition
without the accumulation of position error that usually results from robot rotations
due to Mecanum wheels, it provides a less accurate map. Figure 6.18 shows the
acquisition of map in both tests. The map acquired with a single LiDAR appears
sharper and therefore with more detected objects than the one obtained with two
LiDARs where some objects are not well marked, especially in the central part of
the map. So, in terms of accuracy, the result obtained with only one LiDAR is
better than that with two ones, even if it takes longer time. This is due to the fact
that using both LiDARs, even if fused together, they require the processing of a
greater amount of data. So, proceeding quickly in the building of the map, some
objects could be left out or not defined accurately.

98



Hardware implementation and experimental tests

Figure 6.16: SLAM with only one frontal LiDAR

Figure 6.17: SLAM with frontal and back LiDAR
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Figure 6.18: Map acquisition of the CIM 4.0 environment. In
figure (a) in the upper part of the image it is possible to see the
accurate acquisition with only one LiDAR. Instead in figure (b)
in the lower part, it is possible to see the less accurate acquisition
of the map with two LiDARs.

6.7 Experimental navigation tests

Figure 6.19 shows the final system which includes the cameras on the front and
back sides and the LiDARs positioned in the diagonal of the maintenance system.
Two types of tests have been done in real life where the aspect of localization is
interesting. For this reason, the actual path followed has been visually compared
with the planned one. In the first test, the robot navigates acquiring odometry
information only through the encoders. As it is possible to see from Figure 6.20,
the robot deviates from the planned behavior and therefore from the path that it
should follow. It deviates considerably in the case of curves and when it moves
sideways because the number of revolutions of the wheels to move straight is differ-
ent from those to move sideways. Especially in the case of rotations, sometimes the
orientation of the robot is incorrect. Instead, the second test is done by acquiring
the odometry information from the result obtained by merging the IMU data with
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Figure 6.19: Final configuration of robot
equipped with the sensory system

the encoders one through the Unscented Kalman Filter. As can be seen from
Figure 6.21, the navigation is much better than in the previous case. In particular,
the movement of the robot and its orientation is almost the same as the planned
case, and therefore the result obtained is considerably better. Moreover, the ability
of the wheels to move in tight spaces has been tested, like in the simulation, with
good results.

Experimental tests have been done to evaluate the behavior of the robot in the case
of static and dynamic obstacles. For the first one, they are easily avoided because
they have been detected during the map acquisition so, the global path planning
algorithm plans the trajectory taking into account their presence, as shown in
Figure 6.22.
Dynamic obstacles, i.e. those that are not present in the construction of the
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Figure 6.20: Map of CIM 4.0 and wrong path made by the
robot. The blue line indicates the planned path instead the purple
dotted line indicates the path followed by the robot. With the use
of only one sensor to obtain odometry, there is an accumulation
of errors.

Figure 6.21: Map of CIM 4.0 and better path made by the
robot. The blue line indicates the planned path instead the green
dotted line indicates the path followed by the robot. With the use
of sensor fusion to obtain odometry, a better result is obtained.

map during the SLAM and that appear suddenly, are easily avoided by the robot.
When they are detected, the robot can re-plan the path so that it does not collide
with them. Figure 6.23 shows how the robot can avoid the obstacle that appears
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in front of the robot and how the movement takes place to avoid it. The same
experiment is seen by RViz (Figure 6.24) highlighting the obstacle detection and
the rescheduled path. The robot, exploiting the potential of the omniwheels and
their translation and rotation movements, can avoid obstacles very easily with
great precision, without having to do too many maneuvers.

Figure 6.22: Obstacle avoidance experimental tests with
static obstacles. In the first step, the robot starts to move
(a), in the second one, it detects the obstacle represented
by table (b), in the third one it avoids accurately the static
obstacle (c).
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Figure 6.23: Obstacle avoidance experimental tests. In the first
step, the robot starts to move (a), in the second one, it detects
the obstacle (b), in the third one, it avoids the obstacle rotating
around its (c).

Figure 6.24: Obstacle avoidance in RViz. In the first step, the
robot starts to move following the path planned (a), in the second
one, it detects the obstacle (b), in the third one, it avoids the
obstacles by re-planning the path (c).
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Chapter 7

Conclusions

The developed system results to be very performing and robust. Sensors chosen
for the application are suitable for robot movement in an indoor environment
consisting of obstacles and objects of various shapes and sizes at each level.

The whole system is:

• Flexible: because it can be adapted to different situations. For example, in case
of a change of the maintenance structure placed above the robot, the sensors
used can be placed in different positions and the filter used for the LiDARs can
be adapted to the type of shape in a very simple way. Furthermore, thanks to
the use of ROS, the system can be modified quite easily to adapt it to the
situation, allowing the modification of some features such as size, speed, or
navigation.

• Safe: thanks to the entire sensor system used, the robot can see obstacles
at any height and with an omnidirectional vision, guaranteeing the safety of
objects and people in the environment in which the robot moves.

• Accurate: the robot can locate itself very accurately during navigation thanks
to the sensor fusion algorithms used.

This system can be used in many cases:

• exploration and surveillance: thanks to the ability to move autonomously by
acquiring information from the surrounding environment through sensors, it
can be used to move in an environment that is dangerous for humans. Thus,
the remote operator can see the environment in which he cannot access, for
example, due to the dispersion of harmful gases, through the cameras. In
addition, it can be used to check for the presence of certain objects and people
in an environment.
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• maintenance: the robot could be useful for carrying heavy objects and assisting
the operator in maintenance operations. It can also be used to do repetitive
tasks, such as repeatedly transporting something from one room to another.

7.0.1 Limits and future works
Although the developed autonomous navigation system provides good results, as
desired, some aspects could be improved. A limit is given by the impossibility of
seeing objects that sometimes could be very close to the robot or that are very
small and therefore at floor level. For this reason, the robustness of the system
could be improved by adding ultrasonic sensors to the robot wheels. In this way,
thanks to this type of small and efficient sensors, it would be possible to navigate
with greater safety.

Another limitation is that the robot with these types of sensors can move easily
only in an indoor environment. The outdoors navigation is possible only if there is
no sunlight because it could annoy the results obtained from the LiDARs. This
problem can be overcome by changing the type of LiDARs used with another type
suitable for outdoor navigation.

The system can be exploited to do more precise tasks. Useful actions could
be implemented as future works: following a person or a moving object (like an-
other AMR) and going to precise points following a recognized action by a person
(such as after recognizing a certain gesture like a raised hand) or after recognizing
a certain object (such as QR code or wearable items by operators).
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