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Abstract

In the last two decades, the deep technological developments in the fields of artifi-
cial intelligence, computing platforms and sensors boosted the use of autonomous
mobile robots in complex environments, such as factories, airports, offices, caves
and also in hospitals. One of the first problems that agents have to overcome for
a successful navigation is the avoidance of dynamic obstacles.

The LINKS Foundation in Turin carries out research in different domains,
such as AI, IoT, Cyber-physical and autonomous systems. This thesis was born
as one of the first building blocks of a LINKS project: build up an autonomous
system of internal mail delivery across its offices, based on a fleet of mobile agents.
At a first stage Turtlebot robots will be used for this purpose; each of which shall
achieve the navigation goal relying on LIDAR data only. The objective of this
thesis is to implement an efficient navigation within these constraints, exploiting
ROS2, the recently released version of the widely established Robotic Operating
System. At the same time, this thesis work aims at helping to solve the open
points about dynamic obstacles avoidance in ROS2 Navigation Stack (Nav2),
raised by the ROS2 community. Indeed, the latter does not embeds a strategy
specific for dynamic obstacles handling during navigation.

A research about the autonomous navigation problem and the ROS2 func-
tionalities has been carried out. Then, it has been proposed and implemented a
method to integrate dynamic obstacles handling within the Nav2 stack available
in ROS2, exploiting the concept of costmap layers. The proposed approach aims
at laying the base for a highly modular pipeline for navigation, allowing future
adaptation to specific use cases in LINKS projects. Finally, simulations in virtual
environments have been carried out using Webots simulator and Rviz, outlining
improvements marings and critical points for the future work at LINKS.
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Introduction

In the last two decades, the deep technological developments in the fields of artifi-
cial intelligence, computing platforms and sensors boosted the use of autonomous
mobile robots in complex environments. Indeed, this research area is more rel-
evant than ever before, as shown by a recent analysis on "IEEE Xplore" digital
library [1]. Mobile robots are actually used in industrial automation, surveillance,
transportation, personal and medical applications. In industries, mobile robots
are revolutionising flexible manufacturing systems and logistics, where automatic
guided vehicles (AGV’s) have been dominant for years. Localization and naviga-
tion of commercial AGVs is still commonly accomplished by wire guidance where
induction is sensed from electrified wires embedded in the floor. Several other
navigation methods are available today, including ceiling mounted bar codes, range
or camera-based wall-following, using floor markers or magnets, and following
magnetic tape. However, even though AGV’s are a well established solution for
material handling, they have two main disadvantages as highlighted by Arkin and
Murphy [2]: a limited drivepath and a limited interaction with the workstations.
On the other hand, mobile autonomous robots are developed as intelligent agents
that can interact actively with the industrial environment and so, they better
attain the level of flexibility envisioned by Industry 4.0 revolution. For example,
Angerer, Pooley, and Aylett [3] propose a multi-agent system for dynamically
reconfiguring mobile robots to accomplish a range of variations of tasks in an
automobile factory thanks to the customizable features of each individual vehicle.
Their fleet management system includes an ontology describing the objects and
where they are located in the facility, and a set of tasks that the system is able
to carry out. The system can dynamically generate new agents to execute tasks
that may arise when the environment changes. Robotic automation is relieving
human workers of many repetitive tasks also in healthcare. When combined with
a fleet management system, autonomous mobile robots (AMRs) boost worker
productivity and safety, and improve patient care. For example, the University
of California San Francisco (USCF) Medical Center has been using TUG robot
by Aethon since 2015 [4]. This robot securely delivers medications to nursing



units. It automates deliveries that are normally made through pneumatic tubes
or by manual couriers, even in case of controlled substances and refilling carts.
Best of all, by using biometric security and unique pin codes, TUG ensures only
authorized medical personnel to add or remove specimens to the secured cabinet.
Finally, TUG provides also automated, cost-effective delivery of meals to patient
floors and returns dirty trays to Food Service. Finally, one of the most developed
applications of mobile agents are surveillance and inspection. The increasing need
for automated surveillance of indoor environments, such as airports, warehouses,
production plants, etc. has stimulated the development of intelligent systems
based on mobile sensors. Differently from traditional passive surveillance devices,
which can only detect events and trigger alarms, to active surveillance, robots
can be used to interact with the environment, with humans or with other robots
for more complex cooperative actions. For example, S5 security robots by SMP
Robotics Systems Corp. [5] are designed to replace patrolling security guards
and to provide mobile CCTV1 monitoring. This security robot moves around a
restricted area automatically, without direct operator supervision. Images from its
built-in cameras are transmitted to the security station. If a stationary security
sensor is triggered, the robot changes its route and moves to the location of the
possible alert. On the other hand, many inspection robots have been developed in
order to carry out fast and precise inspections in hazardous environment in place of
humans. Quadruped robots that can adapt to almost any kind of terrain are quite
diffused nowadays. These robots can provide invaluable help after catastrophes
by navigating and mapping the environment. Some of them are even equipped for
rudimentary manipulation, enabling them to interact with the environment and
use certain tools. Sensors mounted on the robots can provide critical information
regarding the state of the surroundings, like radiation levels, temperature, the
presence of toxic or flammable gas to ensure the safety of human resources. Robot
Spot developed by Boston Dynamics is an exemplary case. Among the different
applications of this robot, there is Kidd Creek case [6]. Kidd is the metal mine
with deepest base on Earth and boasts the longest surface-to-bottom underground
ramp. Here, Spot is used to inspect underground development faces after a blast
and check that all the blast charges have detonated before crews arrive to dig
deeper into the Kidd Mine. In this way, people are kept out of harm’s way and
the job can be done without the need of waiting until the toxic gasses have been
vented out of the area.

This thesis work is realized in collaboration with the LINKS foundation of
1closed-circuit television



(a) Agile 1500 by Comau -
https://www.comau.com/en/competencies/
robotics-automation/collaborative-
robotics/automatic-guided-vehicles-agv/ (b) TUG robot by Aethon in the University of

California San Francisco Medical Center.

(c) S5 security robot by SMP Robotics Systems
Corp patrolling an airport.

(d) Spot robot during a mine inspection.
- https://www.techeblog.com/boston-
dynamics-spot-robot-dog-underground-
kidd-creek-mine/

Figure 1: Some mobile robots applications.

Turin. The LINKS Foundation – Leading Innovation & Knowledge for Society – is a
no-profit private Foundation founded in 2016 with the aim to boost the interaction
between research and the business world towards the internationalization of the
local socio-economic system. It carries out research in different domains, such as
AI, IoT, Cyber-physical and autonomous systems and cybersecurity. One of the
projects of LINKS is to build up an autonomous system of internal mail delivery
across its offices. The system consists in an intelligent infrastructure capable of
managing a fleet of robots in charge of transporting the mails. Each robot shall
be able to navigate autonomously on the base of a pre-loaded static map of the
building, avoiding every kind of dynamic obstacle encountered on its way. At
a first stage Turtlebot robot will be used, which shall acheive this goal relying
on LIDAR data only. The objective of this thesis is to implement an efficient
navigation within these constraints, exploiting ROS2, the recently released version
of the widely established Robotic Operating System. At the same time, this thesis
work aims at helping to solve the open points about dynamic obstacles avoidance
in Navigation Stack (Nav2), raised by the ROS2 community. Indeed, the latter
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does not embeds a strategy for dynamic obstacles handling during navigation.
First of all, a research about the state of the art of autonomous navigation has
been carried out. The aim was to define the problem of navigation in formal terms
and then explore the multiple currently exploited solutions, in order to identify
the best ones for the indoor autonomous navigation of the Turtlebot. Secondly, an
accurate study of the ROS2 framework was needed. As mentioned above, ROS2
is a quite recent platform, thus it lacks of exhaustive documentation, requiring
a direct look at the source code to understand some basic new functionalities.
Moreover, the LTS release (Foxy) still had some problems when the thesis work
started in March. So, the goal was to correctly configure the whole development
environment (Linux Ubuntu OS, ROS2 Foxy, Nav2 stack and simulation tools) on
the Intel® NUC 8 computer given by LINKS, solving the eventual conflicts. After
that, Webots simulation environment had to be configured with the new ROS2
version, and validated through the available demo packages simulations. After
studying Webots architecture, two simulated environments have been prepared
and validated with the basic navigation stack configuration. Once that the whole
framework was understood, configured and validated, the efforts focused on how
to implement a strategy for dynamic path planning. The idea was to exploit
the possibility to create costmap layer plugins, in order to lay the base for a
highly modular pipeline for navigation, allowing future adaptation to specific use
cases in LINKS projects. The developed approach has been finally validated by
simulations. However, margins of improvements are multiple and an extensive
batch of tests is necessary to optimize performances, but this is out of the scope
of this thesis work.
Here it follows a brief description of the chapters content, in order to ease the
reading of this thesis work.

Chapter 1 provides the formal definition of the indoor autonomous navigation
problem, outlining the taxonomy of the current algorithm solutions.

Chapter 2 explains the major innovation of ROS2 with respect to ROS and
outlines the main characteristic of the Navigation Stack used to implement dynamic
path planning in this thesis work.

Chapter 3 presents some information about the current navigation strategies
developed in Navigation Stack by the research community. Then it explains the
theory behind the developed approach and its implementation.

Chapter 4 illustrates how the methods outlined in the previous chapter has
been implemented in the ROS2 framework.

Chapter 5 shows how the simulation environments have been created and the
results of the simulation tests.
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Chapter 1

Indoor autonomous navigation

The aim of this chapter is to introduce the reader to the topic of autonomous
navigation of mobile robots in industrial domains as well as in common service
robotics applications. The problem will be tackled with a specific focus on indoor
environments, providing a formal description and highlighting all the critical
functions needed to accomplish the navigation task. Furthermore, some of the
most common algorithms and methodologies to solve the planning problem in
navigation are presented; alongside there is a classification, useful to locate the
solution proposed in this thesis work in the current panorama.

1.1 Introduction

The foundations of mobile robotics are the fields of locomotion, perception,
cognition and navigation [7]. Although there exists a huge amount of diverse
mobile robots concerning the locomotion system, this work only deals with wheeled
robots.

The term perception indicates the way by which the robot acquires knowledge
about the surrounding environment. Therefore, it usually refers to the multiplicity
of sensors that can be integrated on a robot for this purpose: encoders, ultrasonic
sensors, infrared sensors, laser range finders, depth sensors, etc.

Cognition is the elaboration process of the perception information – both
about the external environment and about the robot itself – and the consequent
decision-making and execution tasks that the robot actuates to achieve high-level
objectives. Usually, the robot adopts cognitive models to represent itself and the
environment and, based on that, the control system plans the robot’s motion.
Therefore, cognition is the central node of a robot’s ‘intelligence’.

Finally, navigation is the robot’s comprehensive skill allowing it to move
from one place to another in a known or unknown environment. Thus, the

6



1.2. Problem statement Chapter 1

navigation skill is the result of the integration of perception data, localization (the
robot awareness of its position and orientation), cognition and motion control.
Navigation can be decomposed into the following tasks [7]:

• Generate the model of the world in the form of a map.

• Compute a collision-free trajectory from a starting position to a target
position.

• Move along the calculated trajectory, avoiding collision with obstacles.

The following section will provide a more precise formulation of the navigation
problem.

1.2 Problem statement

The problem of autonomous navigation is broad and complex, since it requires
the integration of many different functional blocks to be solved. In Fig. 1.1 there
is a simplified scheme that highlights the basic relationships among the cited
functional blocks and introduces some of the terminology that will be used in this
work. This scheme is valid both for most robots [8] and for autonomous vehicles
(self-driving cars) [9] and it displays the architecture of an autonomous agent on
three levels: perception, decision making, vehicle.

Figure 1.1: General architecture of the autonomous navigation problem.

7
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Perception. As mentioned in Section 1.1, perception includes the software
components that process the sensor data in order to determine the position of the
agent in the workplace (Localization) and its state variables (State Estimation).
These knowledge might be augmented by additional information such as pre-loaded
maps of the environment.

Decision Making. When a pre-loaded map is available, this is usually feeded
to the Task Planner (or Route Planner) – possibly together with GNSS data
if available, which considers high-level objectives and plans a route to the goal
state. Then, the Behavior Planner combines the goal/task information from
the Task planner with the sensor data and uses them to check feasibility, adjust
the plan based on environmental constraints and trigger re-planning if needed.
Alongside Task and Behavior Planners, usually, a separated functional block
(Predictions) extracts information about obstacles – such as pedestrians, other
robots or moving objects – and estimates their behavior. The Motion Planner
elaborates the dynamic obstacle predictions, the high-level plan and the drivable
space to compute the actual motion sequence to reach the goal without breaching
any constraint.

Vehicle. The Motion Planner can output either steering, acceleration or velocity
commands directly, or a sequence of states. This depends on the vehicle actuation
system and type of robot (differential drive, car-type, omnidirectional, synchro
drive, etc.).

1.2.1 Motion Planning

After the presentation of a general architecture of an autonomous agent, this
work will focus mainly on the motion planning topic. Hence, it follows a more
formal definition of the motion planning problem, based on the configuration
space theory, as proposed in La Valle book [10]. First, some basics definitions are
given below:

• The world (or workspace) W is the space where the agent exists; so, usually
W = R3, but for simpler problems it is sufficient W = R2. Therefore, the
robot A and the obstacle regions O are considered closed subsets of W .

• A configuration q of a robot is the set of all the parameters defining the pose
of the agent in W . For example, in the simplest robot model q = (xt, yt, θ)
if W = R2.

8



1.3. Planning Algorithms Chapter 1

Figure 1.2: Graphical representation of the motion planning problem based on the
C-space concept [10]. The black arrow represents the path from the initial
to the goal position across the Cfree space.

• The configuration space, expressed as C-space, is the set of all the possible
configurations the robot can assume due to a transformation. Indeed, it is a
topological manifold.

• Given A(q) the agent in configuration q ∈ C, the free-space is defined as
Cfree = {q ∈ C |A(q) ∩ O = ∅}.

• The obstacle-space is so defined as Cobs = C \ Cfree

• qI ∈ Cfree indicates the initial configuration and qG ∈ Cfree indicates the
goal configuration.

Therefore, the motion planning problem can be defined as the problem of
finding a continuous path τ that moves an agent from a starting pose qI to a goal
pose qG avoiding obstacles (Fig. 1.6). Formally, It is about finding τ such that:

τ : [0, 1]→ Cfree, τ(0) = qI , τ(0) = qG

1.3 Planning Algorithms

In the years, a great number of algorithms have been developed to solve the motion
planning problem, based on different mathematical approaches and technologies.
In this section, some of the most typically deployed algorithms are categorized in
families based on their common basic principles. However, this is not meant to be
an exhaustive taxonomy of all the available planning algorithms, it rather aims at
helping the reader in locating the solution proposed in this thesis work inside the
current scenario of motion planning approaches.

9
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1.3.1 Metrics

In order to identify a family of algorithms, the following metrics are taken into
consideration [11]:

• Type of output: a path, a trajectory, a symbolic representation or a
maneuver, compatibly with the control interface of the actuation system.
In this regard, set-algorithms are distinguished from solve-algorithms. The
former return as output only a decomposition of the workspace – so a
complementary algorithm is needed to find the feasible motion, the latter
directly output the sequence linking the initial pose to the goal pose.

• Space-time property: essentially, according to this property, planning
algorithms can be predictive or reactive. Predictive algorithms generate a set
of possible motions and then select the best one according to the objective
behavior, based on a longer time horizon. Reactive algorithms deform the
high-level plan considering a shorter range of actions, in a shorter time
horizon. Thus, the algorithms of the first class have better performance, but
they are more computationally demanding than the latter.

• Mathematical domain: heuristic, biomimetic, geometric, logic, etc.

1.3.2 Taxonomy

Here it follows a taxonomy of algorithms based on the metrics mentioned above,
six categories have been identified.

Space configuration

It is a class of set-algorithms whose aim is a particular decomposition of the
evolution space – the workspace W augmented with the time dimension. These
algorithms are based on geometric aspects and can be used either in a predictive
fashion – choosing a coarser space decomposition to reduce computational costs,
or in a reactive manner with a finer decomposition for better accuracy. Therefore,
the criticality of these algorithms is the denseness of the space decomposition:
with a too coarse decomposition it might not be possible to accomplish kinemat-
ics constraints, while a too fine decomposition may result in shoddy real-time
performance. They are characterized by three subsequent steps [11]:

1) sample or discretize the evolution space;

2) discard the discrete elements of the space (points, cells or lattices) in collision
with obstacles or unfeasible;

10



1.3. Planning Algorithms Chapter 1

3) Either output the resulting Cfree space, or operate a pathfinding step and
directly send the waypoints to the control block.

In this class, three families can be identified on the base of the denseness of the
decomposition:

• Sampling-based decomposition: the points of the evolution space are
picked at random, as in the Probabilistic Roadmap (PRM) algorithm [12]
for instance, then connected together to build an obstacle free roadmap
(a graph) and finally solved by a pathfinding algorithm that outputs the
waypoints to the mobile agent. An example is shown in Fig. 1.3a

• Connected cells decomposition: the space is decomposed into cells using
geometry and then an occupancy grid or a cells connectivity graph is derived
as in Fig. 1.3b. Common methods are the Dynamic Window Approach
(DWA) [13], the Voronoi decomposition [14] and Vector Field Histograms
(VFH) [15]. However, these algorithms may require large memory and
ineffective moving obstacles management.

• Lattice representation: the space is decomposed into motion primitives,
each one connected to the subsequent one. The state evolutions represented
by the lattice are then provided as a reachability graph of maneuvers (see
Fig. 1.3c). These algorithms are very common in highway motion planning.

Pathfinding algorithms

This family is directly derived from the graph theory used to solve combinatorial
problems in operational research. Essentially, they find a path in a graph optimiz-
ing a certain cost function.

For known environments, the graph earlier generated by a space configuration
algorithm is searched by common algorithms such as Dijkstra [16] – which
finds the path of minimum total length between two given nodes – and A*
[17] – which reduces the computational times of Dijkstra by exploring the fewest
number of nodes. Actually, there exist several further versions of these algorithms:
Anytime Weighted A* (AWA*) , D*, etc.

For known environments, the most common solutions are based on the Rapidly-
exploring random trees (RRT) [18] algorithm: similarly to PRM, the points of
the configuration space are picked up randomly, then they are connected to build
a graph according to a "nearest" criterion. Even then, there are different versions:
a popular improvement is RRT* [19], which, unlike simple RRT, is guaranteed to
converge to a sub-optimal solution.

11
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(a) Sampling-based decomposition.

(b) Connected cells decomposition.

(c) Lattice representation.

Figure 1.3: Space configuration illustrations in a highway autonomous driving scenario
[11]. All the possible points / cells / maneuvers are displayed in blue, the
discarded ones in red, and the solution in green.

(a) Example of the shortest path computed with
Dijkstra algorithm (in red) from qI to qG inside
the graph represented with black lines connecting
the nodes. The blue regions are obstacles and
external contours.

(b) The black lines represent the paths
discovered by the RRT algorithm
after 45 iterations.

Figure 1.4: Pathfinding algorithms, illustrative examples from [10]

Attractive and Repulsive Forces

These types of algorithms are biomimetic-inspired: the evolution space is repre-
sented with attractive forces for desired motions (e.g. legal speed) and repulsive
forces for obstacles (e.g. road borders, lane markings, obstacles). Therefore, they
are typically used to the purpose of reactive motion deformation.

Many of these algorithms are based on the Artificial Potential Field (APF)

12
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concept [20], where the robot goal position is associated to attractive forces, while
all the obstacles to repulsive ones. Thus, the robot’s configuration is treated as a
point in a potential field that guides it to the goal, and the output of the algorithm
is a path. This path can be further smoothed by adding a Velocity Vector Field
(VVF) as in [21].

Another common approach is the elastic band [22]. It is a collision-free path
generated by modelling the environment as a spring-mass system considering N
number of nodes on which the potential forces act (Fig. 1.5b). The initial shape of
the elastic is the free path generated by a (global) planner. Subjected to artificial
forces (potential field), the elastic band deforms in real-time to a short and smooth
path that maintains clearance from the obstacles.

(a) Artificial Potential Field generated by two cars on a highway. The field lines ranging from
blue (lower potential) to red (higher potential) shape the path from the initial position
(yellow square) to the goal (green circle). [23]

(b) Elastic band example: here three nodes of the path (circles) are modelled as a
spring-mass system. The repulsive field generated by the obstacle deforms the
path, which would be straight otherwise.

Figure 1.5: Attractive and Repulsive Forces algorithms illustrative examples.

Parametric and semi-parametric curves

They are curve-based geometric methods, built as a succession of simple and
predefined curves, so they can easily take into account the kinematic constraints
of the vehicle. There are two main categories: point-free and point-based curves.

13



1.3. Planning Algorithms Chapter 1

However, these algorithms are more suitable for highway autonomous driving,
rather than for common mobile robotics applications.

Artificial Intelligence

AI algorithms for motion planning have met a wide spread in recent years, since
they are adaptive, flexible and reactive to the environment. They are mostly
employed as solve-algorithms for predictive planning, but their versatility ensures
an applicability as set-algorithms as well. Four families can be distinguished:

• Logic approaches are adopted also as set-algorithms. They generate
or select a set of time/space states or actions on the base of an a-priori
knowledge and an inference engine.The most used inference engine is rule-
based reasoning, adopted by Nilson et al. [24] to perform lane change
maneuvers on highways. The engine is populated of easily implementable
logic conditions that clearly identify the cause and effects, however, if the
model becomes too complex, cyclic reasoning and the exhaustive enumeration
of rules decisively impact the computation time. Therefore, they are mostly
suitable in constrained and predictable environments. Sample approaches:
decision trees, FSM, Bayesian networks [25].

• Heuristic algorithms are experience-based and aim at an approximate
solution, resulting in a fast and efficient solution to the navigation problem.
They usually return a set of actions and require low computational time.
Usually, these algorithms involve modelling of the agent as endowed with a
rational and social behavior, accepting observations from the environment
and implementing a multipolicy decisionmaking.Thus, they are particularly
useful in uncertain environment, indeed, Mehta et al. [26] used this approach
for making a small robot in a social environment - similarly to the aim of
this thesis work. Additionally, decision making can also be supported by
learning methods, such as Support Vector Machines (SVM) and Evolutionary
methods [27].

• Approximate reasoning mimics human reasoning. With respect to the
logic approach, here the knowledge base is non-Boolean and there is a learn-
ing approach to classify new knowledge to adapt to future situations. Fuzzy
logic belongs to this cathegory. Fuzzy systems have rules based on boolean
compromises, so the permissiveness of the designed rules guarantees adapt-
ability to uncertain data. Fuzzy controllers turn out to be good solutions for
obstacle avoidance [28]. On the other hand, their main drawbacks are their
lack of traceability and the absence of a systematic design methodology.

14
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Besides this, there are Artificial Neural Networks (ANN) [29], as well as
Convolutional Neural Networks (CNN) and Reinforcement learning. Their
main advantage is their ability to learn by training on multidimensional
data. Nevertheless, their main drawbacks for autonomous driving are the
absence of a causal explanation to a solution and the large amount of data
required for the learning process - less if unsupervised learning based.

• Human-like methods propose high-level models that mirror human pro-
cesses for solve-algorithms. They are potentially learning and cognitive
procedures. They are able to handle complex situations on the base of some
established rules, so they are useful for both predictive and reactive planning.
However, they are difficult to model and to use accurately. Examples are
Risk estimators [30], taxonomic models [31].

Numerical optimization

The optimization problem for motion planning is defined as a solve-algorithm based
on logic and heuristic approaches. The optimization is usually expressed as the
minimization of a cost function of some state variables under a set of constraints,
and avoiding the combinatorial explosion of these problems is a competitive re-
search topic. Numerical optimization is widely used in motion planning, either to
decrease the solving time of a graph’s exploration, or to exploit the mathematical
properties of the problem, in order to find a predictive solution in a restrictive
space for instance. Examples: Linear Programming (LP) [32], Quadratic Program-
ming [33], Model Predictive Control (MPC) [34], Dynamic Programming (DP) [35].

Figure 1.6: Example formulation of a constrained optimization problem.

As presented above, there are multiple approaches to the problem of au-
tonomous navigation, but let’s focus on the specific application case of this thesis
work. A single robot in LINKS is expected to navigate in a partially known
environment: the static map of the building, where the offices are located, shall
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be provided to the mobile agent, then, dynamic obstacles - such as people - and
unforeseen small static obstacles - such as additional tables, chairs or plant pots -
shall be handled separately. Moreover, the mobile agent will be equipped with
only LIDAR sensor, so high-level visual information about the environment are
not available. Basically, this allows to discard too complex solutions like the
AI-based types, avoiding spending much time in data collection, which would be
necessary otherwise, since the project is at its first stage. On the other hand,
the mathematical formulation of a tailored optimization problem would not be
convenient to integrate it in the existing navigation solutions provided within the
ROS2 framewrok. Therefore, this thesis will be dealing with space configuration
algorithms, such as DWA, together with traditional pathfinding algorithms, and
attractive and repulsive forces approach. More details about this will be provided
in Chapter 3, after having introduced the Navigation Stack in ROS2.
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Chapter 2

ROS2 framework

The aim of this chapter is to describe the main features of ROS2, the upgraded
new version of ROS (Robotic Operating system), which has been the virtual
environment adopted along the course of this thesis work both for algorithm
implementation, for simulations and for deployment on the physical robot. First,
some common ROS concepts are explained, so to make the reader feel more
comfortable in reading. Then, there is a focus on the specific novelties of ROS2 with
respect to ROS, which makes the former finally suitable for real-time embedded
applications. Section 2.3 illustrates the ROS2 Navigation Stack (originated
from ROS Navigation Stack), which is the ROS software stack for autonomous
navigation. Finally, few words are spent to describe TurtleBot3, the chosen
hardware platform to test the solution developed in this work.

2.1 ROS concepts

ROS is an open-source, meta-operating system for building robotic applications.
It provides the typical services of an operating system (OS), including hardware
abstraction, low-level device control, message-passing between processes, and
package management. It also provides tools and libraries for writing, building
and running code across multiple computers [36]. Since it is not an actual OS,
it has to be installed on an existing one, such as Ubuntu, one of Linux distri-
butions. Following is a list of basic ROS terminology and architectural components:

• Nodes. ROS nodes are the basic units of a ROS application. They are
single-purpose, executable programs/processes.

• Messages. They are the mean through which nodes send data to each other;
they are declared with a specific type, either standard (Boolean, integer,
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float, etc.), or application-specific (Twist, Pose, etc.) for more complex
nested messages.

• Topics. Topics are the channels though which nodes exchange messages.
The communication through topics occurs with a Publish/Subscribe logic: a
publisher node publishes a message over a topic and all the nodes subscribed
to that topic receive that message.

• Services. Unlike topics, services realize a Request/Response synchronous
communication among nodes: a service server node responds only when
there is a request from a service client node, that can send requests as well
as receive responses. Once request and response of the service are completed,
the connection between two nodes is lost.

• Actions. Similar to services, action clients send a request to an action server
in order to achieve some goal and will get a result. Unlike services, while the
action is being performed, an action server sends progress feedback to the
client. Therefore, actions are used when a response may take a significant
length of time.

ROS software is organized on a package basis and each node-to-node con-
nection is managed by a particular server node called Master (see Fig. 2.1). A
package contains nodes, configuration files, libraries, and so on. On top, there are
metapackages, which are sets of packages having a common purpose, such as the
Navigation Stack mentioned above.

Figure 2.1: ROS communication scheme.
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2.2 ROS2 main innovations

Even though ROS usage has increased a lot since its first release, it has some
architectural limitations that prevent it from being the basis of products for the
market. Actually, ROS requires significant resources (memory, network bandwidth,
CPU) and cannot guarantee fault-tolerance, deadlines or process synchronization
but, above all, it does not satisfy real-time run requirements [37]. The first ROS2
distribution was released in 2017 with the following design goals, unreachable
by ROS: support teams of multiple robots, small embedded platforms, real-time
control, non-ideal networks, multi-platform support (Linux, Windows, RTOS)
[38].
To reach these goals, ROS2 involves a structural change and adopts new tech-
nologies such as the Data Distribution Service (DDS) [39]. Figure 2.2 shows the
architecture of ROS2 compared to ROS. The main differences are the following:

1) ROS mainly supports Linux-based operating system. ROS2 provides more
portability of deployment on underlying operating systems, such as Linux,
Windows, Mac, and RTOS.

2) ROS data transport protocol uses TCPROS/UDPROS, and communication
is controlled by the Master node. Communication in ROS2 is based on
DDS standard, enhancing fault tolerance capabilities. QoS (Quality-of-
Service) of DDS gives flexible parameters settings to control the reliability of
communication. Thanks to the DDS standard, each topic in ROS2 acquires
the additional capability of storing historical message data.

3) Intra-process in ROS2 provides a more optimized transmission mechanism.

Figure 2.2: ROS/ROS2 architecture.
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A completely new component of ROS2, not present in ROS, are Lifecycle (or
Managed) nodes [40]. They are nodes that contain state machine transitions
for the bringup and the teardown of ROS2 servers (see Fig. 2.3). Each of them
has four primary states: Unconfigured, Inactive, Active and Finalized; transitions
out of a primary state are triggered by an external supervisory process, such as
a common ROS2 node. This is made possible by a well known interface, which
exposes a managed node to the ROS ecosystem. Using ROS2’s managed/lifecycle
nodes feature allows to ensure that all required nodes have been instantiated
correctly at the system startup, before they begin their execution. Lifecycle nodes
also allows on-line restarting or replacing of nodes. Therefore, they are widely
used in the Navigation stack to realize safer navigation applications.

Figure 2.3: State machine at the base of a lifecycle node.
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2.3 ROS2 Navigation Stack

Navigation in ROS1 (Nav1) is based on move_base [41], an unconfigurable sin-
gle process state machine that plans and executes the path in order to reach
the goal position on the map. It relies on a global_planner node that expli-
cates the functionality of a Route Planner (see Section 1.2) on the base of the
global_costmap environmental representation, and on a local_planner work-
ing on a local_costmap , which explicates the functionalities of a motion planner.
However, move_base allows only one single global and local trajectory planner
at a time. In principle, this allows full autonomous navigation, but actually, it
supports effectively only differential and omnidirectional robots.

Figure 2.4: Navigation 2 architecture.

Navigation 2 on ROS2 (Nav2) is the new implementation of the navigation
metapackage already available on ROS1, but it has a completely new architecture,
shown in figure 2.4:

• Unchanged from Nav1. The TF transformations among coordinate
frames [42] ( map → odom → base_link → [sensor frames] ) are pro-
vided as tfMessages obtained from sensors, odometry and the amcl node,
which is an Adaptive Monte-Carlo Localization [43] technique based on a
particle filter for the localization in a static map. The static initial map is
provided by the map_server and finally the output is a cmd_vel message
sent to the specific robot controller.
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• New in Nav2. The true novelty of Nav2 is that it comes with a modular
and reconfigurable (at run-time) core, consisting in a behavior tree (BT)
navigator and task-specific asynchronous servers. They have the following
features:

– Each server has an action server interface to handle goals, provide
feedback and return results to client.

– Each server has a map of plugins, so it can support N plugins; thus
different algorithms can be used in different unique contexts.

– They can leverage multi-core processors using multi-processing frame-
works, being able to compute more complex navigation tasks.

Details about these concepts are provided in the following paragraphs, since
they are crucial in the implementation phase of this thesis project.

BT Navigator. The Behavior Tree Navigator uses a behavior tree to «orches-
trate» the navigation tasks, loading it from an .xml file. BTs were first developed
in the computer game industry as a better alternative to Finite State Machines
(FSMs), used in the control structures of Non-Player Characters (NPCs). Indeed,
BTs ensure better reactivity and modularity with respect to FSMs (a detailed
theory about BTs can be found in this book [44]). Therefore, it is possible to
create custom robot behaviors expanding, pruning or adding sub-trees to the
branches of the BT, as it is done in this work. Nav2 implements the BT Navigator
upon the BehaviorTree.CPP library [45], which simplifies the building of complex
navigation behaviors starting from basic primitive ones.

Navigation servers. Planner, Controller and Recovery action servers are used
to host a map of algorithm plugins to complete various tasks. They also host
the environmental representation used by the algorithm plugins to compute their
outputs.

• In general, Planner plugins are for computing a valid, and potentially optimal,
path from the current pose to a goal pose or computing a complete coverage
path.

• Controller plugins replace the local_planner of Nav1: they compute a
feasible control effort to follow the global plan, based on a local environmental
representation.

• The Recovery behaviors are plugins triggered by the BT when a navigation
failure occurs.
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A last important notice has to be made on the Controller plugins. Nav2 comes
essentially with two default plugins for local motion planning: theDWB controller
[46] (a modified version of the previous implementation of DWA algorithm in
Nav1) and the TEB (Time Elastic Band) controller [47], which uses Timed-elastic-
bands for time-optimal point-to-point nonlinear model predictive control. These
plugins arise from the need to make Nav2 capable of managing dynamic obstacles
efficiently. However, this goal is still an open challenge for the ROS community.
Therefore, this work tries to integrate a dynamic obstacles tracking into the
costmap environmental representation together with these existing controller
plugins. This will be the topic of the next chapters.

To sum up, some of the main differences between Nav1 and Nav2 are collected
in Table 2.1

Table 2.1: Summing up on Nav2 advantages with respect to Nav1.

Navigation 1 Navigation 2

Based on move_base : un-
configurable single process
state machine.

Relays on a super configurable behavior tree. Re-
covery, planner and controller are independent
servers: they can be removed, swapped out, etc.

Allows only one single
global and local trajectory
planner at a time.

Multiple local trajectory and path planners.

Costmap 2D environmen-
tal model (occupancy grid).

Positioning system agnostic: either 2D/3D or
visual SLAM can be utilized.

It supports effectively only
differential and omnidirec-
tional robots

Works with all major robot types: differential,
omnidirectional, Ackermann, circular, arbitrary
shape.

Dynamic Window Approach
(DWA) trajectory planner.

Implements an improved version of DWA, which is
the DWB planner plugin.

2.3.1 Environmental representation and Costmap2D

As mentioned above, the robot relies on a costmap representation of the environ-
ment, on top of which planner and controller servers compute a preferred route
through obstacles minimizing a cost function. In Nav2, this is made possible by
the dedicated package nav2_costmap_2d, which subscribes to the sensor data
and builds a 2D or 3D space representation in the form of an occupancy grid:
based on the input size and resolution parameters, each cell can assume an integer
value value between 0 ans 255 in compliance with the sensor data. However,
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the underlying used structure actually can represent only three values: FREE,
UNKNOWN and OCCUPIED, which are set to 0, 255 and 254 respectively by
default.

The huge potential of the costmap representation in ROS2 recides in the adop-
tion of the costmap layers method [48]: unlike traditional monolithic costmaps,
where all the data are stored in a singular grid of values, in costmap layers ap-
proach, each layer tracks one type of obstacle or constraint, and then modifies a
master costmap which is used for the path planning (see Fig. 2.5). This approach
has much better performances in dynamic, people-filled environments, with respect
to the monolithic costmap approach. In particular, the benefits are:

Figure 2.5: Example of application of costmap layers: a static and an obstacle layer
are inflated and combined into the master costmap.

• Clearer Update Step: keeping information separated in different layers makes
the update step more clearly delineated and helps avoiding conflicts between
sensor data and costmap values already stored.

• Dynamic Update Areas: the layered costmap only updates the region of
the map that the individual layers reckon necessary. Only values within a
predefined bounding box are updated, giving the costmap extra stability
and potentially a greater efficiency, since smaller amounts of map can be
updated at separate steps.
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• Ordered Update Process: costmap layers are updated with an explicit
ordering, allowing the user to specify custom laws to combine values of
different layers in order to suit best their application use case. This leads to
and incredible flexibility and modularity, expanding the costmap’s semantic
possibilities.

ROS2 manages the costmaps through the costmap_2d::Costmap2DROS object
which provides a user-friendly interface to the users. It contains a costmap_2d::
LayeredCostmap which is used to keep track of each of the layers. Each layer is
instantiated as an individual plugin in the parameter file used to launch Nav2. In
this way local_costmap and global_costmap are differentiated not only on the
base of size and update frequency, but also with respect to the layers they are
made up of. Base layers in Nav2 are essentially three:

• Static Layer: stores the costs relative the static map provided at launch
time.

• Obstacle Layer: continuously mark and clear cells according to sensor data.

Figure 2.6: Inflation Layer costs assignment.

• Inflation Layer: propagates cost values out from occupied cells that decrease
with distance, in order to provide a safety margin for the robot navigation.
In particular, five cost levels are defined, as shown in figure 2.6 [49]:
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– "Lethal" cost means that there is an actual (workspace) obstacle in a
cell.

– "Inscribed" cost means that a cell is less than the robot’s inscribed
radius away from an actual obstacle. So the robot is in collision if its
center is in a cell greater or equal cost than the inscribed cost.

– "Possibly circumscribed" cost is similar to "inscribed", but using the
robot’s circumscribed radius as cutoff distance. Thus, if the robot
center lies in a cell at or above this value, only the robot orientation
can tell whether it collides with an obstacle or not.

– "Freespace" cost is assumed to be zero, meaning that there is nothing
that should prevent the robot from going there.

– "Unknown" cost means there is no information about a given cell.

– All other costs are assigned a value between "Freespace" and "Possibly
circumscribed" depending on their distance from a "Lethal" cell and
the decay function provided by the user.

2.4 TurtleBot3

TurtleBot is a low-cost, personal robot kit with open-source software, created in
November 2010. The specific model used in this project is TurtleBot3, developed
in 2017 with features to supplement the lacking functions of its predecessors:
TurtleBot1 and TurtleBot2 (2012).

TurtleBot3 is small, affordable, programmable and ROS-based, thus it is widely
used for education, research, hobby, and product prototyping. The TurtleBot3
can be customized into various ways, providing an easy way to assemble its
mechanical parts and use optional parts such as a computer and sensor. In
addition, TurtleBot3 is evolved with cost-effective and small-sized Single-Board
Computer that is suitable for robust embedded system, 360 degree distance sensor
and 3D printing technology.

The TurtleBot kit consists of a mobile base, 2D/3D distance sensor, laptop
computer or SBC(Single Board Computer), and the TurtleBot mounting hardware
kit. In addition to the TurtleBot kit, users can download the TurtleBot SDK from
the ROS wiki. TurtleBot is designed to be easy to buy, build, and assemblable,
using off the shelf consumer products and parts that easily can be created from
standard materials. It comes in two models: Burger and Waffle; in this thesis
work, Turtlebot3 Burger has been used – both in simulation and in LINKS
laboratory. The TurtleBot’s core technology is SLAM (Simultaneous Localization

26



2.4. TurtleBot3 Chapter 2

Figure 2.7: TurtleBot3 Burger platform.

Figure 2.8: TurtleBot3 Burger dimensions.

and Mapping) and Navigation, making it suitable for home service robots. It can
also be controlled remotely from a laptop, a joypad or an Android-based smart
phone.

TurtleBot3 Burger is equipped with different sensors: IMU sensors (gyroscope,
accelerometer, magnetometer), LiDAR and motors encoders. For driving, it adopts
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ROBOTIS smart actuator DYNAMIXEL [50], which is an all-in-one actuator
embedding a DC motor, a controller, a driver, sensors, reduction gear and a
network (Fig. 2.9). Some other useful specification are listed in table 2.2:

Figure 2.9: TurtleBot3 DYNAMIXEL actuator.

Items Specifications
Maximum translational velocity 0.22m/s
Maximum payload 15 kg
Size (L x W x H) 138mm x 178mm x 192mm
Weight (+ SBC + Battery + Sen-
sors) 1 kg

IMU
Gyroscope 3 Axis, Ac-
celerometer 3 Axis, Magne-
tometer 3 Axis

MCU
32-bit ARM Cortex®-M7
with FPU (216 MHz, 462
DMIPS)

SBC (Single Board Computers) Raspberry Pi

LiDAR Sensor 360◦ Laser Distance Sensor
LDS-01

Table 2.2: Some of the TurtleBot3 Burger specifications.

Concerning the LiDAR sensor, the LDS-01 1 is the 2D laser scanner mounted
by default on the TurtleBot3 Burger. It is capable of sensing 360 degrees, collecting
a set of data around the robot that can be used either for SLAM (Simultaneous
Localization and Mapping) or navigation. It supports USB interface for an
easy installation on a PC. However, LDS-01 has a maximum distance range of
3.5m. Therefore, in order to obtain an effective comparison between the solution
developed in this thesis and the actual available Nav2 capabilities, a LiDAR with

1https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/
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greater maximum distance range and finer resolution has been adopted in place
of LDS-01: RPLIDAR A3 2.

(a) LDS-01 sensor. (b) RPLIDAR A3 sensor.

Figure 2.10

Table 2.3 collects the most significant differences between the two sensors.

Items LDS-01 RPLIDAR A3

Maximum distance range 3.5m 25 m (light objects)
10m (dark objects)

Scan rate 5Hz
15 Hz (ad-
justable bertween
10Hz − 20Hz)

Sampling rate 1.8 kHz 16 kHz
Angular Resolution 1◦ 0.225◦

Table 2.3: Comparison of some specifics of LDS-01 and RPLIDAR A3.

The setting of the ROS2 Foxy interface for TurtleBot3 will be illustrated in
Chapter 5.

2.4.1 RPLIDAR working principle

The RPLIDAR A3 adopts laser triangulation ranging principle.
The core runs clockwise to perform a 360 degree omnidirectional laser range

scanning of the surrounding environment and then generate an outline map for
the environment. It contains a laser emitter and a camera to receive the reflected
beams. In particular, the laser emits an infrared laser signal that is then reflected
by the object to be detected (Fig. 2.11). The beam passes through a pinhole lens
and hits a CCD3 camera sensor. By construction, thus, the triangles defined by
(b, dk) and by (b′k, d′) are similar: this means that the distance to the object is

2https://www.slamtec.com/en/Lidar/A3
3charge-coupled device
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Figure 2.11: Laser triangulation ranging principle - illustrative scheme.

nonlinearly proportional to the angle of the reflected light, and as soon as the
camera measures the distance b′k one can estimate the actual distance dk using
triangles similarities concepts.

In ROS2 the measured distances are shared using the LaserScan.msg message4.
The costmap used in Nav2 subscribes to a specific topic to read the LIDAR data
and then marks the costmap cells accordingly to the received distances.

4Message definition: https://github.com/ros2/common_interfaces/blob/master/
sensor_msgs/msg/LaserScan.msg
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(a) Gazebo virtual environment.

(b) Rviz

Figure 2.12: Laser beams emitted by LiDAR sensor are displayed in the Gazebo
virtual environment and corresponding points are visualized in Rviz.
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Chapter 3

Dynamic path planning

Nowadays, given the huge developments of AI in computer vision and enhancement
of camera performances for robotics, most of dynamic obstacles handling strategies
are based on visual information. However, this reflects in higher hardware costs due
to the greater computational demand. LIDAR-based solutions are not common,
but they allow a cheaper setup of the robot; the key points are so the LIDAR
points filtering, interpretation as obstacles and tracking. In the following sections,
more detailed information about local planning strategies implemented in Nav2 are
provided. Then, from their comparison arise the reasoning behind the Dynamic
Obstacle Layer approach developed in this work.

3.1 LiDAR-based planning solutions

As explained in Chapter 1, the dynamic obstacle handling is faced in motion
planning at local level, meaning that in Nav2 dynamic obstacle avoidance should
be addressed by the Controller server. In fact, Nav2 provides two implementation
approaches for local planning as Controller server plugins: DWB Controller
(nav2_dwb_controller1) and TEB Controller (teb_local_planner2).

The DWB Controller is a plugin that implements the Dynamic Window Ap-
proach. It works in the domain of translational and rotational velocities. It
considers all velocities that the robot, limited by its maximum acceleration, can
reach within a time interval between two steering commands. All the velocities
that would result in a collision are excluded. Among the remaining velocities,
the most promising one is chosen by using a cost function, represented as a grid
map, encoding the cost of traversing through each grid cell. It takes as inputs the
direction of the goal, the distance to the nearest obstacle and the current velocity

1https://github.com/ros-planning/navigation2/tree/main/nav2_dwb_controller
2https://github.com/rst-tu-dortmund/teb_local_planner
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of the robot into account [13].
The TEB (Timed Elastic Band) Controller is the evolution of the Elastic Band

Algorithm (EBA) implemented in ROS1. Basically, the EBA is the implementation
of the elastic band approach cited in paragraph 1.3.2. It uses a full, obstacle free
path from a start point to a goal point. This path is split in sections, which are
then repositioned under the impact of newly detected obstacles using an artificial
force model. A force between the sections holds them together while a repulsive
force pushes the path away from obstacles. In order to use this approach, the
velocities for the robot have to be chosen by an additional control algorithm.
TEB enhances the concept of the EBA: the sections of the path are additionally
associated with a timing information. Using this information, a cost function can
take both the driving time and the distance to obstacles into account.

At its first stable release, Nav2 was validated through an exemplary experi-

Figure 3.1: Tiago robot operated in the “Marathon 2” experiment [51] while navigating
the corridors of Technical School of Telecommunications Engineers at the
Rey Juan Carlos University.

ment, documented in “The Marathon 2: A Navigation System” [51]. Here, two
professional robots are operated in a human-filled environment in a University
setting running at near-industrial speeds and implementing the complete Nav2
stack, using the TEB Controller plugin. The authors – the main developers and
maintainers of the Nav2 stack – show that the robot can successfully navigate
in a crowded environment. This might make think that the TEB Controller can
deal with dynamic obstacles as well. In truth, students walking in the university
are seen as every other obstacle in the local environment representation. Indeed,
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the navigation was successful, but the number of recovery behaviors was high (4.3
recoveries per mile). This is not generally a poor-performance indicator, since it
is part of a fault-tolerant and robust system. However, the majority of recovery
behaviors executed were due to two cases: low localization confidence – usually
when too many people surrounded the robot, preventing enough LiDAR rays to
reach the static map – and inability to compute a route to the goal at local level.
This second condition often verified when students walked traversing the computed
local path, getting too close to the robot and forcing it to a sudden replanning.
This triggered the wait recovery behavior, which pauses the navigation until the
path is clear.

Figure 3.2: A moving obstacle getting to close to the robot during navigation and
triggering the wait recovery: the TurtleBot restarts its navigation only
when the obstacle get away its proximity area.

In conclusion, the authors claim the TEB controller can account for dynamic
obstacles in computing velocity commands, however, no explicit obstacle detection
is utilized. Therefore, they aim to integrate these explicit detections in the actual
implementation of Nav2, further enabling robots to operate more safely around
humans and other agents. Indeed, the main maintainer of Nav2 has launched a
challenge to the community to develop such solution on the Nav2 documentation
website3, also asking for a 2D LiDAR based dynamic obstacle detection. The
method proposed in the following sections tries to accomplish this challenge.

3.2 Methods

Even if TEB algorithm does not explicictely takes into account dynamic obstacles,
[52] explains in detail a configuration of the ROS package to do this. However, this

3https://navigation.ros.org/2021summerOfCode/projects/dynamic.html
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setup takes a higher computational time than DWA and simple Elastic-Band (not
available in ROS2) as documented in [53]. The method developed in this thesis
work is inspired to the costmap_converter package provided in [52] – albeit
developed in ROS1 – and it is based on the analysis of the LiDAR data, already
provided in their costmap representation, for the obstacle detection step.

In principle, a more heuristic approach was evaluated, such as the ones pre-
sented in [54] and [55]. Here the dynamic obstacles detection is performed applying
some heuristic algorithms directly on the LiDAR pointclouds, clustering the ob-
stacles based on parameters such as cluster radius, distance inbetween points
and others. However, this would have resulted in higly tailored solution for the
specific use case, requiring a re-tunig of the parameters in case of a change of
the environment. On the other hand, the approach developed in this work is
articulated in three steps:

1) Object detection – Starting from the costmap representation of the envi-
ronment, dynamic obstacles are identified and separated from static ones,
applying image processing algorithms and running average filters.

2) Object tracking – Detected dynamic obstacles are tracked and their ve-
locity is estimated applying a Kalman Filter.

3) Cost assignment – a developed costmap layer assigns costs around each
moving obstacle in the local_costmap according to a 2D Gaussian shape
with variances proportional to the obstacle velocity and oriented in its
moving direction.

The theory behind each step will be illustrated in detail in the following
subsections, while the implementation strategy will be presented in Chapter 4.

3.2.1 Object detection

Once the robot is powered up and ready to navigate, its costmap representation
of the environment is handled as an image during the object detection step.

From now on, the operation of separating the static obstacles from dynamic
ones in the costmap is referenced as background subtraction. In principle, this
term indicates any technique which allows an image’s foreground to be extracted
for further processing, such as object recognition. Background subtraction al-
gorithms can be divided into running average background, Gaussian mixture
background, kernel density background and eigen-background according to the
background models [56]. Running average background subtraction has the lowest
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computational complexity, but sometimes selecting the model updating rate may
be troubling. If the updating rate is too high, it may cause artificial “tails” to
be formed behind the moving objects. In order to overcome the existing problem
in the traditional running average background model, the proposed approach
consists in the combination of the running average background with the temporal
difference method.

The basic recursive equation of a running average filter is the following:

Bt+1(x, y) = (1− α)Bt(x, y) + αFt(x, y) (3.1)

Where, (x, y) denote the coordinates of a single pixel in the image, Bt is the
background image at the time t , Ft is the current input image at time t. The
updating rate α represents the speed of new changes in the scene updated to the
background frame.

In the context of this work, the foreground detection is obtained by applying
two running average filters: a “slow” and a “fast” filter, applied to each cell (pixel)
of the costmap image:

Pf (t+ 1) = (1− αf )Pf (t) + αfC(t) (3.2)
Ps(t+ 1) = (1− αs)Ps(t) + αsC(t) (3.3)

Pf (t) and Ps(t) represent the output of the fast and the slow running average
filters at time t, respectively. The gains αf and αs define the effect of the current
costmap C(t) on P. The two filters together allow to compute the temporal
difference between two consecutive image frames in order to isolate the dynamic
obstacles (foreground mask) from the background, without affecting the latter
with to much noise. Therefore, the two filter rates are chosen as follows:

0 ≤ αs < αf ≤ 1

However, large objects form blocks of cells in the local costmap, therefore,
the equations 3.2 and 3.3 are extended by a term that captures the running
average filter of the 8 cells nearest neighbors (NN). β denotes the ratio between
the contribution of the central cell filter and the effect of the neighboring cells
to Pf(t) and Ps(t). So, the complete equations defining the slow and fast filters
become:

36



3.2. Methods Chapter 3

Pf (t+ 1) = β[(1− αf )Pf (t) + αfC(t)] + 1− β
8

∑
i∈NN

Pf,i(t) (3.4)

Ps(t+ 1) = β[(1− αs)Ps(t) + αsC(t)] + 1− β
8

∑
i∈NN

Ps,i(t) (3.5)

In order to identify if a cell is occupied by a moving obstacle, it undergoes two
thresholding steps after computing the filter output values:

1) Fast filter activation: the fast filter has to exhibit an activation that exceeds
a threshold c1:

Pf (t) > c1 (3.6)

2) The difference between the fast and the slow filter has to exceed a threshold
c2 in order to eliminate quasi-static obstacles with low frequency noise:

Pf (t)− Ps(t) > c2 (3.7)

Figure 3.3: Dynamic objects filtering steps – Consider the navigation costmap at a
certain instant, where a moving obstacle is traversing a region with some
noise.

The output of this thresholding operations is a binary map (Fig. 3.3): if a cell is
compliant to both thresholding operations, it is marked with one, while free space
and static obstacles are labeled with zeros. Thus, a binary map marking all the
dynamic obstacles is obtained.

The next step is to give a meaning to the zeros and ones of the binary map
so to provide a suitable input to the object tracking step. Indeed, in order to
estimate obstacles velocity, we need first to identify and represent them as obstacles
(clustering) and compute the coordinates of a representative point, the obstacle
centroid in this case. To this purpose, an heuristic blob detection and clustering
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algorithm, provided by the OpenCV library, has been implemented through the
SimpleBlobDetector class [57]. The algorithm receives as input an image and it
is controlled by parameters. It works in the following steps:

1) Thresholding : the source image is thresholded with with different thresh-
olds starting at minThreshold and converted to many binary images. These
thresholds are incremented by thresholdStep until maxThreshold. So the
first threshold is minThreshold, the second is minThreshold + thresholdStep,
the third is minThreshold + (2× thresholdStep), and so on.

2) Grouping : In each binary image, connected dark pixels are grouped
together to form binary blobs.

3) Merging : Blobs centers are computed, and blobs located closer than
minDistBetweenBlobs are merged.

4) Center & Radius Calculation : Centers and radii of the new merged
blobs are computed and finally returned.

In the specific implementation used in this work, the Thresholding step is
skipped, since the input image is already a binary image. The parameters for
SimpleBlobDetector can be set to filter the type of blobs based on different
criteria:

• By color : setting filterByColor = 1, you can specify blobColor = 0
to select darker blobs, and blobColor = 255 for lighter blobs. In between
values allow to filter out blobs with a particular grey tone.

• By Size : filter the blobs based on size by setting the parameters filterByArea
= 1, and appropriate values for minArea and maxArea. For instance, setting
minArea = 100 will filter out all the blobs that have less then 100 pixels.

• By Circularity : This just measures how close to a circle the blob is. For
instance, a regular hexagon has higher circularity than a square. To filter
by circularity, you can need to set filterByCircularity = 1. Then set
appropriate values for minCircularity and maxCircularity. Circularity
is defined as

4 ∗ π ∗ Area
perimeter2

That is a circle has a circularity of 1, circularity of a square is 0.785, and so
on.
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• By Convexity : Convexity is defined as the (Area of the Blob / Area of
it’s convex hull). Recalling that the Convex Hull of a shape is the tightest
convex shape that completely encloses it. To filter by convexity, you need
to set filterByConvexity = 1, followed by setting 0 ≤ minConvexity ≤
1and maxConvexity ( ≤ 1)

• By Inertia Ratio : This measures how elongated a shape is. For a circle
this value is 1, between 0 and 1 for an ellipse, and for a line it is 0. To
filter by inertia ratio, you need to set filterByInertia = 1, and set 0 ≤
minInertiaRatio ≤ 1 and maxInertiaRatio (≤ 1 ) appropriately.

In the specific implementation used in this work, blobs representing the dynamic
obstacles are filtered out based on size (area), circularity and inertia ratio. All
the parameters used for the blob detection have been set based on intuition and
validated in the simulation environment developed in this thesis, however, they
could be optimized in future, performing some tuning in different scenarios, but
without compromising too much the versatility of the whole dynamic obstacle
detection pipeline.

The blob detection steps provides as output obstacles represented by their
centroid – the coordinate of the cell (pixel) in the weighted center of the blob –
and contours – a list of the cells which define the blob contours.

Figure 3.4: Dynamic objects detection output: centroids and contours.
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3.2.2 Object tracking

The centroid of dynamic obstacles progresses with each costmap update and
subsequent foreground detection. The assignment of blobs in the current map to
obstacle tracks constitutes a data association problem. In order to disambiguate
and track multiple objects over time, the current obstacles are matched with the
corresponding tracks of previous obstacles. A new track is generated whenever a
novel obstacle emerges that is not tracked yet. Tracks that are not assigned to
current objects in the foreground frame are temporarily maintained. The track is
removed if it is no longer confirmed by object detections over an extended period
of time. The assignment problem is solved by the so-called Hungarian algorithm,
which was originally introduced by [58]. The algorithm efficiently solves weighted
assignment problems by minimizing the total Euclidean distance between the
tracks and the current set of obstacle centroids. Then, a Kalman filter estimates
the current velocity of tracked obstacles assuming a first order constant velocity
model. The constant velocity model sufficiently captures the prevalent motion
patterns of humans and robots in indoor environments.

Assignment Problem

The linear sum assignment problem to match a tracked obstacle with a detected
obstalce can be formalized as follows. A problem instance is described by a matrix
C, where each Ci,j is the cost of matching a previously tracked obstacle i (set A) to
a detected obstacle j (set B). Here the cost is calculated as the Euclidean distance
between the obstacle objects of the two sets. The goal is to find a complete
assignment of objects of set A to the ones of set B of minimal cost.

Formally, let X be a boolean matrix where Xi,j = 1 iff row i is assigned to
column j. Then the optimal assignment has cost

min
∑
i∈A

∑
j∈B

Ci,jXi,j

s.t. each row is assignment to at most one column, and each column to at most
one row.
However, the original Hungarian algorithm solves the assignment problem with a
square C matrix. This is not the case, since at each step new obstacles can appear
in the scene, as well as others may disappear, so that matrix C might be often
rectangular. Thus the exploited algorithm is a modified version of the original one
[59], whose steps are directly reported in the following. It describes the manual
manipulation of a two-dimensional matrix by starring and priming zeros and by
covering and uncovering rows and columns.
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• Step 0: Create an NxM matrix called the cost matrix in which each element
represents the cost of assigning one of N tracks to one of M detections.
Rotate the matrix so that there are at least as many columns as rows and
let k = min(n,m).

• Step 1: For each row of the matrix, find the smallest element and subtract
it from every element in its row.

• Step 2: Find a zero (Z) in the resulting matrix. If there is no starred zero
in its row or column, star Z. Repeat for each element in the matrix. Go to
Step 3.

• Step 3: Cover each column containing a starred zero. If K columns are
covered, the starred zeros describe a complete set of unique assignments. In
this case, Go to DONE, otherwise, Go to Step 4.

• Step 4: Find a non covered zero and prime it. If there is no starred zero in
the row containing this primed zero, Go to Step 5. Otherwise, cover this
row and uncover the column containing the starred zero. Continue in this
manner until there are no uncovered zeros left. Save the smallest uncovered
value and Go to Step 6.

• Step 5: Construct a series of alternating primed and starred zeros as follows.
Let Z0 represent the uncovered primed zero found in Step 4. Let Z1 denote
the starred zero in the column of Z0 (if any). Let Z2 denote the primed
zero in the row of Z1 (there will always be one). Continue until the series
terminates at a primed zero that has no starred zero in its column. Unstar
each starred zero of the series, star each primed zero of the series, erase all
primes and uncover every line in the matrix. Return to Step 3.

• Step 6: Add the value found in Step 4 to every element of each covered
row, and subtract it from every element of each uncovered column. Return
to Step 4 without altering any stars, primes, or covered lines.

• DONE: Assignment pairs are indicated by the positions of the starred zeros
in the cost matrix. If Ci,j is a starred zero, then the element associated with
row i is assigned to the element associated with column j.

Kalman Filter

Kalman filtering is an algorithm that provides estimates of some unknown variables
given the measurements observed over time. It is generally used to estimate states
based on linear dynamical systems in state space format. Here, it is first provided
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the general formalization of the one-step Kalman Filter algorithm, secondly it is
specified how it is adapted to the object tracking case, similarly to what is done
in [60].
The process model defines the evolution of the state from time k− 1 to time k as:

xk = Fxk−1 + Buk−1 + wk−1 (3.8)

where F is the state transition matrix applied to the previous state vector xk−1 ,
B is the control-input matrix applied to the control vector uk−1 , and wk−1 is the
process noise vector that is assumed to be zero-mean Gaussian with the covariance
Q, i.e., wk−1 ∼ N (0, Q).

On the other hand, the measurement model describes the relationship between
the state and the measurement at the current time step k:

zk = Hxk + νk (3.9)

where H is the measurement matrix, zk is the measurement vector, and νk is the
measurement noise vector that is assumed to be zero-mean Gaussian with the
covariance R , i.e., νk ∼ N (0, R).

The role of the Kalman filter is to provide estimate of xk at time k , given the
initial estimate of x0 , the series of measurement, z1,z2,. . . ,zk , and the information
of the system described by H , B , F , R , and Q. Even though the covariance
matrices are supposed to reflect the statistics of the noises, the true statistics of
the noises is not known or not Gaussian in many practical applications. Therefore,
Q and R are usually tuned by the user to get the desired performances. The
Kalman filter algorithm consists of two stages: prediction and update, which are
repeated over and over one after the other. In the notation used in the following,
superscript ˆ means ‘estimate’ of the underlying variable, so x̂n|m represents the
estimate of x at time n given observations up to and including time m ≤ n.

Predict
Predicted (a priori) state es-
timate

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk

Predicted (a priori) estimate
covariance

Pk|k−1 = FkPk−1|k−1Fk
ᵀ + Qk
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Update
Measurement residual ỹk = zk −Hkx̂k|k−1

Kalman gain Kk = Pk|k−1Hᵀ
k(HkPk|k−1Hᵀ

k + Rk)−1

Updated (a posteriori) state
estimate

x̂k|k = x̂k|k−1 + Kkỹk

Updated (a posteriori) esti-
mate covariance

Pk|k = (I−KkHk) Pk|k−1

The predict stage produces an estimate of the state at the current timestep
using the state estimate from the previous timestep. This predicted state estimate
is also known as the a priori state estimate because it does not include any
observation information from the current timestep, even though it is an estimate
of the state at the current timestep. In the update phase, the innovation (the
measurement residual), i.e. the difference between the current a priori prediction
and the current observation information, is multiplied by the optimal Kalman
gain and combined with the previous state estimate to refine the actual state
estimate. This corrected estimate is termed the a posteriori state estimate.

In this work, the used Kalman filter estimates the current velocity of tracked
obstacles assuming a first order constant velocity mode. Thus, the state space
has 6 dimension, while the observation space has 3 – only position is known for a
newly detected blob. The considered state vector for each dynamic obstacle is:

x = [pᵀ,vᵀ]ᵀ

where p = [px, py, pz]ᵀ is the position vector and v = [vx, vy, vz]ᵀ is the velocity
vector whose elements are defined in x, y, z axes. The state at time k can be
predicted on the base of the previous state as:

xk =
pk

vk

 =
pk−1 + vk−1dt+ 1

2 ãk−1dt
2

vk−1 + ãk−1dt


where ãk−1 is the eventual acceleration applied to the ego vehicle and dt is the
sampling time. The above equation can be rearranged as:

xk = Fxk−1 + Gãk−1 (3.10)

There is no Bu term since there are no known control inputs. Instead, ãk−1 is
the effect of an unknown input and G applies that effect to the state vector. In
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particular:

F =
I3×3 I3×3dt

03×3 I3×3

 G =
1

2I3×3dt
2

I3×3dt


where F is the state transition matrix, 03×3 and I3×3 denote 3×3 zero and identity
matrices, respectively. Here a constant velocity model for the obstacles is assumed,
meaning that between the k− 1 and k speed is considered constant. Uncontrolled
forces, instead, are supposed to cause a constant acceleration that is normally
distributed, with mean 0 and standard deviation σa = [σax σay σaz]ᵀ. So,Eq. (3.10)
becomes:

xk = Fxk−1 + wk

Figure 3.5: Dynamic objects tracking output.

where wk ∼ N (0, Q). Therefore, within this assumption, the process noise
covariance matrix is:

Q = GGᵀσa
2 =

1
4I3×3dt

4σ2
a

1
2I3×3dt

3σ2
a

1
2I3×3dt

3σ2
a I3×3dt

2σ2
a


where σ2

a = [σ2
ax σ

2
ay σ

2
az]ᵀ. On the other hand, the measurement model is:

zk = Hxk + νk

where νk is the measurement noise with covariance matrix R and

H =
[
I3×3 03×3

]

44



3.2. Methods Chapter 3

since only position is measured. The variance of the position measurement errors
has been reasonably assumed a priori, so that

R = I3×3

Finally, matrix P can be initialized to:

P =
I3×3 03×3

03×3 10× I3×3


where error covariance on velocities has been set higher, since they are not mea-
sured.
All these matrices are provided to a solver which repeatedly computes the predic-
tion and update steps, as better specified in the Implementation chapter (Chapter
4).

3.2.3 Cost assignment

The last step is embedding the information about detected dynamic obstacles into
the costmap in a meaningful manner. In fact, the crucial problem is to translate
the velocity vector information of each obstacle – magnitude and orientation – so
that the robot navigation system, i.e. Planner and Controller, can easily account
for it. The idea is to inflate the region around a detected dynamic obstacle
with a two-dimensional Gaussian shape. In particular, the intuition suggested to
associate the magnitude of the obstacle velocity with the peak of the Gaussian;
in this way, faster obstacles are inflated more than slower ones. This has the
aim to make the local planning aware of the obstacle with a sufficient heads-up
for replanning. Furthermore, the orientation information is used to inflate more
the cells along the moving direction of the obstacles. This is actually obtained
blending two 2D Gaussian shapes, one inflating the cells in front of the obstacle
and the other inflating the cells on its back region; this is an approach which has
been inspired by a study about the social groups space modelling by Laga et al.
[61].

In detail, given an obstacle O with centroid in position c(x, y) in the map
reference frame, we define a local coordinate system with origin in c, X-axis
oriented in the velocity vector direction, Z-axis pointing outwards the costmap
plane and Y-axis set according to the right-hand rule (Fig. 3.6). Therefore, the
obstacle inflation region is represented by the following funtion:

Φ
c, Σfront,Σback

(q) = δ(xq)Φc, Σfront
(q) + [1− δ(xq)]Φc, Σback

(q) (3.11)
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where q = (xq, yq) are the coordinates of a point in the map reference frame,
Φc,Σfront

is the Gaussian function that inflates the frontal area of the obstacle,
Φc,Σback

is the Gaussian function that inflates the back space, and δ(x) is the
parameter that blends the two functions to account for the obstacle orientation,
being:

δ(x) =

1 if x ≥ 0

0 otherwise
(3.12)

Figure 3.6: Local obstacle reference frame wrt the global (map) reference frame.

For both the Gaussian functions, it is adopted a formulation similar to the
one proposed by Yang et al. [62]:

Φc,Σ(q) = Aexp

{
− [d cos(ϑ− ϑc)]2

2σ2
x

− [d sin(ϑ− ϑc)]2

2σ2
y

}
(3.13)

where d is the Euclidean distance and between q = (xq, yq) and c(x, y) and ϑ is
the angle formed bay the point position vector with respect to the global X-axis,
ϑc is the angle between the obstacle moving direction and the X-axis of the map
coordinate system (Fig. 3.6), A is an amplitude parameter set to the maximum
cost possible on the costmap, i.e. 255, and σ2

x, σ2
y are the diagonal entries of

the Σ covariance matrix, which determines the shape of the inflation region. In
particular, the two covariance matrices are defined as follows:

Σfront =
σ2

x_front 0
0 σ2

y_front

 ; Σback =
σ2

x_back 0
0 σ2

y_back

 (3.14)

Therefore, σx and σy can be tuned to model a generic shape at will. Here, in order
to take in account the obstacle velocity magnitude, a maximum obstacle speed
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max_speed has been supposed. Then, in order to inflate more the front region,
we define the speed ratio r = vel

max_speed
, where vel is the obstacle detected speed.

Finally, the variances are modified according to the following heuristics:


σ2
x_front = (1 + r)σ2

x_front

σ2
y_front = (1− r

2)σ2
y_front

σ2
x_back = (1− r)σ2

x_back

σ2
y_back = (1− r

4)σ2
y_back

(3.15)

In this way, the Gaussian shape is lengthened in the direction of the obstacle
motion and narrowed in the lateral area.

Gaussian functions blending Here few words are spent to make the meaning
of the δ parameter clearer. To be more specific, let’s consider Figure 3.7, where
again a detected dynamic obstacle is located at position c(x, y) and its estimated
velocity vector forms an angle ϑc with the positive X-semiaxis of the map frame.
To determine if a point (a costmap cell) is inside the obstacle front or back space,
the simple concept of inner product between vector has been used. Being ~v the
obstacle velocity vector and ~q the position vector of the considered point in the
local reference frame, q will be in the front space if the following condition holds:

~v · ~q ≥ 0⇒ cos|ϑc − ϑ| ≥ 0 (3.16)

Figure 3.7 shows the two types of possible cases. In the first scenario (Fig. 3.7-a),

Figure 3.7: a) A point q in the frontal space. b) A point q within the back area.

where the q point is in the obstacle frontal space, the projection of the vector
~q along the obstacle’s moving direction is parallel to the velocity vector ~v, thus
generating a positive inner product. In the second case (Fig. 3.7-b), with the q
point in the human back space, instead, the projection of ~q has opposite direction
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to ~v producing a negative inner product.
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Implementation

This chapter provides a general description of the implementation of the approach
proposed above inside the ROS2 framework.

First of all, Linux Ubuntu 20.04 operating system was installed on the Intel
NUC computer, after having reported several performance issues when trying to
configure the whole environment in a virtual machine on my personal PC. Secondly,
ROS2 Foxy has been installed from debian packages following the instructions on
the official documentation website1. Then, four workspaces have been created to
keep a clean management of the souce code:

• nav2_ws – Here the Nav2 stack source has been downloaded and built from
Nav2 documentation website2 in order to allow modifications of the source
files.

• turtlebot3_ws – This is the workspace where I downloaded the Turtlebot3
packages from ROBOTIS3. It contains all the necessary packages to run
Navigation 2 on TurtleBot3 robot, both in simulation and in real world; it
offers a useful interface package for Gazebo simulator as well – not used in
this thesis work.

• ros2_webots_ws – It contains all the Webots example packages4 for the
different types of robots, including Turtlebot3. They provide all you need
to build the robot model in a virtual environment. Installing these packages
from source allowed to modify the parameters defining the TurtleBot3 model
and, in particular, the LiDAR sensor parameters, changed according to the
RPLIDAR A3 specifications.

1https://docs.ros.org/en/foxy/Installation/Ubuntu-Install-Debians.html
2https://navigation.ros.org/build_instructions/index.html#

for-main-branch-development
3https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-start/
4https://automaticaddison.com/how-to-install-and-demo-the-webots-robot-simulator-for-ros-2/
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• ros2_ws – It is the workspace where the packages implementing the pro-
posed approach are built, namely ros2_costmap_to_dynamic_obstacles,
kf_hungarian_tracker, nav2_dynamic_costmap_layer_plugin and nav2_
dynamic_msgs. The details are outlined in the following paragraphs.

Figure 4.1: General scheme of how the different software functional blocks interact
with each other and with the simulates external environment.

The very high level view of all these packages interactions is shown in
Figure 4.1. As it is shown, the ros2_costmap_to_dynamic_obstacles pack-
age implements the obstacle detection (see Sec. 3.2.1) functions and outputs
the blobs corresponding to detected obstacles through a specific custom ROS2
message type on the /detection topic. The kf_hungarian_tracker package
provides a subscription to this topic, so that it can perform object tracking
(see Sec. 3.2.2). Then, it publishes the dynamic obstacles and their esti-
mated velocities on the local_costmap/tracking topic, directly communicat-
ing with the Nav2 stack. Finally, the costmap layer, implemented through
nav2_dynamic_costmap_layer_plugin, processes this information to compute
the Gaussian costs (see Sec. 3.2.3) and updates the master costmap used for the
robot navigation. Each functional block is now illustrated in more details.
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4.1 Messages and topics

The communication of the dynamic obstacles information occurs through two
message types: Obstacle.msg and ObstacleArray.msg defined in the nav2_
dynamic_msgs package:

• Obstacle.msg

std_msgs/Header header

unique_identifier_msgs/UUID id

geometry_msgs/Point position # center position
geometry_msgs/Vector3 velocity

geometry_msgs/Vector3 size

where UUID is a 128-bit ID [63] uniquely associated to each obstacle,
position contains the coordinates of the obstacle centroid, velocity is the
estimated velocity vector ad size contains the dimensions of the obstacle
bounding box along the three axies X-, Y- and Z-axis. Actually, the third
dimension is ignored, since the LiDAR provides two-dimensional data.

• ObstacleArray.msg

std_msgs/Header header

Obstacle[] obstacles

which is basically an array of obstacle messages generated at the same time.

As shown in Figure 4.1, these messages are communicated through topics /detection
and local_costmap/tracking, however, when ros2_costmap_to_dynamic_obs-
tacles communicates the detected blobs to the kf_hungarian_tracker, the
velocity information is not present yet, so this field is initialized to a zero vector,
while position and size are filled as detailed in the following section.

4.2 Costmap conversion

The ros2_costmap_to_dynamic_obstacles package has the following composi-
tion:
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∼/ros2_ws/src/ros2_costmap_to_dynamic_obstacles

CMakeLists.txt

package.xml

src

background_subtractor.cpp

blob_detector.cpp

costmap_converter_node.cpp

costmap_to_dynamic_obstalces.cpp

include

background_subtractor.h

blob_detector.h

costmap_to_dynamic_obstalces.h

tests

costmap_converter_node The costmap_converter_node is the ROS2 node
that executes the conversion process. When the node is spinned, its constructor
CostmapConversionNode::CostmapConversionNode() creates a costmap (cost-
map_ros_) parallel to the one generated by the navigation process on a separate
thread, with custom parameters and a publish frequency of 5Hz, as the local
costmap, using the costmap_2d::Costmap2DROS object wrapper. Then it instanti-
ates the /detection topic creating a publisher with a timer of 150ms, calling all
the conversion processes (see next paragraph) from the publisher callback function
publishCallback().

costmap_to_dynamic_obstacles The costmap_to_dynamic_obstalces .cpp
and .h files provide the object detection functionalities through the CostmapTo-
DynamicObstacle class. An object of this class is instantiated by the costmap-
_converter_node and CostmapToDynamicObstacle::initialize() initializes
all the parameters of the CostmapToDynamicObstacle object used for the succes-
sive background subtraction and blob detection. Then, the publishCallback()
callback function executes the following function calls:

• CostmapToDynamicObstacle::setCostmap2D() Converts the costmap_ros_
into an OpenCv matrix object (cv::Mat 5), so that it can be manipulated
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by background_subtractor and blob_detector.

• CostmapToDynamicObstacle::compute() performs the actual work (con-
version of the costmap to obstacles):

1) Separation of dynamic obstacles from static ones. Here it calls Background-
Subtractor::apply() method. Through this method, dynamic obsta-
cles are isolated in the foreground mask fg_mat, an 8-bit binary image
containing the filtered dynamic pixels.

2) Blob detection is done calling BlobDetector::detect() method, which
returns each blob in terms of two arrays: keypoints_ containing the
blobs centroids, and contours containing the blobs contours as an
array of cv::Point(s) for each blob.

3) Fill the ObstacleArrayMsg (the array of obstacles object messages):
for each tracked objects it sets the obstacle message fields: a UUID
is generated, keypoints_[i] is assigned to position, header is filled
with the current timestamp and ‘/map’ global reference frame, since
when the Costmap2D object is converted into a cv::Mat object, the
reference frame information is preserved. Finally, in order to simplify
the kf_hungarian_tracker job, given an obstacle contours, a bounding
rectangular area is generated calling cv::boundingRect(), rectangle
width and length are then properly assigned to the size field.

Figure 4.2 shows the output of background subtraction and blob detection for a
single moving obstacle in a rectangular empty environment. It can be noticed that
the static obstacles (room walls appearing as the white rectangle) are correctly
filtered out and only the dynamic pixels appear in the fg_mask.

5“The class Mat represents an n-dimensional dense numerical single-channel or multi-channel
array. It can be used to store real or complex-valued vectors and matrices, grayscale or color
images, voxel volumes, vector fields, point clouds, tensors, histograms” [64].
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(a) t = 1s. (b) t = 2s (c) t = 3s

Figure 4.2: Time evolution of the filtered moving obstacles. Above there are the
original costmap_ros_ converted to cv::Mat, while below there are the
corresponding fg_mask(s).

4.3 Hungarian tracker

The kf_hungarian_tracker package has the following composition:

∼/ros2_ws/src/kf_hungarian_tracker
kf_hungarian_tracker

__init__.py

kf_hungarian_node.py

obstacle_class.py

package.xml

setup.py

tests

obstacle_class The obstacle_class.py defines the ObstacleClass, which
wraps a Kalman filter and extra information for one single obstacle:

class ObstacleClass:

"""
State space is 3D (x, y, z) by default,simply make z a constant value
and independent of x, y to work on 2D.
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Arttibutes:
position: 3d position of center point, numpy array (3, 1)
velocity: 3d velocity of center point, numpy array (3, 1)
kalman: cv2.KalmanFilter
dying: count missing frames for this obstacle, if reach
threshold, delete this obstacle

"""
[...]

In particular, the cv2.KalmanFilter is the OpenCV calss [65] which imple-
ments the Kalman fiter predict and update steps, precisely, through the methods
cv2.KalmanFilter.predict() and cv2.KalmanFilter.update(). When an ob-
ject of this class is instantiated, matrices H , F , R , P and Q are initialized as
specified at the end of Subsection 3.2.2.

kf_hungarian_node The kf_hungarian_node is the ROS2 node that executes
the obstacle tracking and solves the assignment problem:

class KFHungarianTracker(Node):

'''
Use Hungarian algorithm to match presenting obstacles with new
detection and maintain a kalman filter for each obstacle.
Spawn ObstacleClass when new obstacles come and delete when
they disappear for certain number of frames

Attributes:
obstacle_list: a list of ObstacleClass that currently
present in the scene
sec, nanosec: timing from sensor msg
detection_sub: subscrib detection result from detection node
tracker_obstacle_pub: publish tracking obstacles with
ObstacleArray
tracker_pose_pub: publish tracking obstacles with
PoseArray, for rviz visualization

'''
[...]

First of all it creates a publisher to the local_costmap/tracking topic and
a subscriber to the /detection topic. All tracked obstacles are stored in
obstacle_list, while the incoming detected obstacles from message are stored
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in detections list. The core processes are then executed by the subscription
callback function in the following order:

1) Compute the delta time used as the Kalman filter timestep as the differ-
ence between the arriving message (on /detection) timestamp and the
timestamp of the previous message, locally stored.

2) Read message from topic and execute the Kalman prediction step, calling
ObstacleClass.predict().

3) Having obstacle_list and detections compute the cost, i.e. the Eu-
clidean distance, for all the combination of obstacle_list[i] and detections[j].
Then, solve the assignment problem with the Hungarin algorithm imple-
mented by scipy.optimize.linear_sum_assignment(cost_matrix) (avail-
able in the scipy library.

4) Execute the Kalman update step by calling ObstacleClass.correct().

5) Construct the ObstacleArray message and publish it on the local_costmap/-
tracking topic.

Figure 4.3: Rviz visualization of kf_hungarian_tracker node in case of two moving
obstacles.
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Figure 4.3 shows s typical output of the kf_hungarian_tracker node: two
moving obstacles are detected and their estimated velocity is displayed, together
with obstacles bounding boxes.

4.4 Dynamic costmap layer plugin

Before illustrating the nav2_dynamic_costmap_layer_plugin some modifications
to the Nav2 source are presented, specifically regarding the nav2_costmap_2d
package.

4.4.1 Modifications to nav2_costmap_2d

Each costmap layer plugin (ObstacleLayer, InflationLayer, etc.) is defined as
a class derived from the Layer base class. The latter provides all the attributes and
methods needed to define a custom costmap layer. Then, the LayeredCostmap
class is used to handle the master costmap resulting from the layers composition
– according to a specified policy – and to interface it with all the other Nav2
functionalities thorugh the Costmap2DROS Node class. When initialized, a Layer
object provides the following ROS instances:

void Layer::initialize(

LayeredCostmap * parent,

std::string name,

tf2_ros::Buffer * tf,

nav2_util::LifecycleNode::SharedPtr node,

rclcpp::Node::SharedPtr client_node,

rclcpp::Node::SharedPtr rclcpp_node);

[...]

So, a Layer object is basically a lifecycle node, directly connected to a parent
LayeredCostmap. Actually, in the current ROS2 Foxy version, the Lifecycle
nodes management of subscriptions has some problems. As a matter of fact,
initially, the implemented nav2_dynamic_costmap_layer_plugin tried to sub-
scribe to the local_costmap/tracking topic directly from within the plugin class
(DynamicLayer), but without succes. Therefore, it was necessary to add some
lines of code in the files defining the Costmap2DROS and LayeredCostmap classes.

First of all, in layered_costmap.cpp and layered_costmap.h a container of
received dynamic obstacles has been added as a new attribute of LayeredCostmap
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class:
nav2_dynamic_msgs::msg::ObstacleArray::ConstSharedPtr
dynamic_obstacles;
Two methods are added to update the obstacle container and read from it safely:

• Update the stored container of dynamic obstacles:

void LayeredCostmap::updateDynamicObstaclesContainer(const

ObstacleArrayPtr obstacle_msg)

{

std::lock_guard<std::mutex> lock(mutex_);

dynamic_obstacles = obstacle_msg;

}

• Return the dynamic obstacles detected by the kf_hungarian_tracker in
the form of ObstacleArray message:

ObstacleArrayConstPtr LayeredCostmap::getDynamicObstacles()

{

std::lock_guard<std::mutex> lock(mutex_);

return dynamic_obstacles;

}

In this way, independently of the costmap plugin loaded – different plugin could
be eventually created in the future – each generic costmap plugin could access the
dynamic obstacles information.

After that, similarly to what happens for transmitting the information about
the robot footprint across all the layers, here, it is the Costmap2DROS ROS node
that subscribes to the local_costmap/tracking topic:

if(dynamic_obstacles_plugin){

tracks_sub_ =

create_subscription<nav2_dynamic_msgs::msg::ObstacleArray>(

"tracking",

10,

std::bind(&Costmap2DROS::tracksCallback, this,

std::placeholders::_1));

RCLCPP_INFO(get_logger(), "Created subscription to dynamic

obstacles topic");

}
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Subscription to the topic occurs only when dynamic_obstacles_plugin = True,
that is the dynamic obstacle layer plugin is enabled at Nav2 launch from the
.yaml file specifying all the launch information. The callback function simply
reads the messages from the topic and updates the obstacles container:

Costmap2DROS::tracksCallback(const ObstacleArrayPtr obstacle_msg)

{

layered_costmap_->updateDynamicObstaclesContainer(obstacle_msg);

}

4.4.2 nav2_dynamic_costmap_layer_plugin

The dynamic costmap layer plugin is developd in a package with the following
structure:

∼/ros2_ws/src/nav2_dynamic_costmap_layer_plugin

CMakeLists.txt

package.xml

src

dynamic_costmap_layer_plugin.cpp

include

dynamic_costmap_layer_plugin.h

dynamic_costmap_layer.xml

The layer class DynamicLayer provides the Gaussian cost assignment around
dynamic obstacles mainly through the DynamicLayer::updateCosts() method.
In particular, it executes the following steps:

1) Get dynamic obstacles and store them locally:

[...]

ObstacleArrayConstPtr obstacles(new

nav2_dynamic_msgs::msg::ObstacleArray);

[...]

obstacles = layered_costmap_->getDynamicObstacles();

[..]
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2) Transform between frames: dynamic obstacles are computed and processed
by ros2_costmap_to_dynamic_obstacles and kf_hungarian_tracker pack-
ages with respect to ‘/map’ reference frame. However, the dynamic costmap
layer is inteded to be plugged into the local_costmap, which uses the
‘/odom’ as global reference frame. Therefore, it is necessary to transform
the obstacles position and velocity information accordingly, in order to assign
the costs correctly. This is done using the tf2 package:

geometry_msgs::msg::TransformStamped map_to_odom_transform;

obstacles = layered_costmap_->getDynamicObstacles();

obs_frame = obstacles->header.frame_id;

global_frame = layered_costmap_->getGlobalFrameID();

obs_frame = obs_frame.substr(1); // remove the "/" from topic
name

try

{

map_to_odom_transform = tf_->lookupTransform(global_frame,

obs_frame, tf2::TimePointZero);

} catch (tf2::TransformException & ex) {

RCLCPP_INFO(rclcpp::get_logger("nav2_costmap_2d"),

"DynamicLayer: Could not transform %s to %s: %s",

obs_frame.c_str(), global_frame.c_str(), ex.what());

return;

}

3) Loop through all the obstacles in the container and assign costs for each of
them by calling DynamicLayer::markDynamicObstacle(), which the func-
tion that implements the Gaussian composition as illustrated in subsection
3.2.3. Here is the function prototype:

/**
* @brief update the relevant grid cells in the cost map according

to the given pose of a person
*
* @param obstacle_in_costmap_x map cell x coordinate of obstacle

center
* @param obstacle_in_costmap_y map cell y coordinate of obstacle

center
* @param angle angle of obstacle in map (orientation wrt the

global frame)
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* @param costmap costmap to update
* @param vel velocity module of the obstacle.
*/
void markDynamicObstacle(int obstacle_in_costmap_x, int

obstacle_in_costmap_y, double angle, nav2_costmap_2d::Costmap2D

*costmap, unsigned char * costmap_array, double vel);

The nav2_dynamic_costmap_layer_plugin typical output is shown in Figure
4.4: in the simulated world (on the right) an obstacle in robot’s local space is
moving leftwards. The robot successfully estimate its motion direction and the
costmap layer assigns costs so that the Gaussian has a peak oriented towards the
left.

Figure 4.4: An obstacle moving leftwards with respect to the TurtleBot.
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Chapter 5

Simulation environment and tests

This chapter illustrates the general setup of the simulation environment realized
to test, debug and validate the navigation application developed in this thesis
work. The essential tools used for this purpose are Webots 2021a [66], for the
creation and simulation of the environments and the robot model, and Rviz [67]
for the visualization of internal outputs and debugging.

Lastly, the path planning approach available in ROS2 (DWB) and the DWB
integrated with the proposed Dynamic Obstacle Layer method (DWB + DOL)
are compared through simulations.

5.1 Simulation Environment

When building robotic applications within the ROS framework, a realistic and fast
responsive simulation environment is fundamental to visualize a complex behavior
such as an autonomously navigating robot. Usually, the developers choice falls on
the Gazebo simulator [68], but here, upon suggestion of LINKS, Webots has been
adopted.

5.1.1 Webots

Webots allows to create 3D virtual worlds with physics properties such as mass,
joints, friction coefficients, etc. The user can add simple passive objects or ac-
tive objects called mobile robots. These robots can have different locomotion
schemes (wheeled robots, legged robots, or flying robots). Moreover, they may
be equipped with a number of sensors and actuator devices, such as distance
sensors, drive wheels, cameras, motors, touch sensors, emitters, receivers, etc. Fi-
nally, the user can program each robot individually to exhibit the desired behavior.
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A world, in Webots, is a 3D description of the properties of robots and of
their environment. It contains a description of every object: position, orientation,
geometry, appearance (like color or brightness), physical properties, type of object,
etc., in the form of Webots Nodes. Worlds are organized in hierarchical structures
defined as Scene Tree. For example, it specifies if a robot contains two or three
wheels, a distance sensor and a joint, which itself contains a camera, etc. A robot
can be also imported into a world as an external PROTO file, to keep the world
file cleaner. A Webots Controller is a computer program that controls a robot
specified in a world file. Controllers can be written in any of the programming
languages supported by Webots: C, C++, Java, Python or MATLAB. When a
simulation starts, Webots launches the specified controllers, each as a separate
process, and it associates the controller processes with the simulated robots.

Figure 5.1: Sample Webots interface. The text editor on the right can be used to
modify the world or the controller files without the need of and external
IDE.

The Webots interface allows to modify the source files live through an embedded
text editor and make the modifications effective just reloading the world.
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5.1.2 Environments

First of all, the robot model in Webots had to be modified in order to reflect the
custom hardware setup, i.e., mounting of the RPLIDAR A3 instead of the default
LDS-01 LiDAR. This because a PROTO file for the RPLIDAR A3 is not available in
Webots, yet. To do so, it has been necessary to create a new sensor PROTO file in
Webots installation folder (~/.ros/webotsR2021a/webots/projects/devices/-
robotis/protos. So, starting from a copy of the latter, the following lines have
been changed in the new RPLidar.proto file:

[...]

horizontalResolution 1600 // = fieldOfView/angularResolution, which
is 0.225° for rplidar A3

fieldOfView 6.28318 // 360°
numberOfLayers 1

near 0.07

minRange 0.2 // [m]
maxRange 25 // [m]
noise IS noise

[...]

The result is a sensor with the same aspect and position on the Turtlebot of the
LDS-01, but with performances reflecting the specifications of the RPLIDAR A3
(see Table 2.3).

Once the robot model has been defined, two virtual environments have been
created. The main world is an empty rectangular arena 10m×6m where dynamic
obstacles are simulated as wooden boxes of 20 cm × 20 cm base and 50 cm tall,
configured as robot nodes. Once placed in position, the boxes move with a constant
speed back and forth traversing the entire arena along the short side direction.
A controller has been coded for each obstacle and the speed can be commanded
when the world is launched, so that simulations scenarios can be easily modified.
The presented environment is shown in Figure 5.2.

This has been the world used to debug the developed source code step by step
with the use of Rviz.

The second environment is a more realistic world, intended to simulate the
final robot behavior in a context similar to the LINKS offices (Fig. 5.3). Indeed,
an office room setup has been realized starting from an existent template, adding
a model of a walking person (Pedestrian.proto).
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Figure 5.2: Main dynamic environment used for simulations and debugging
(dyn_env_1.wbt).

Figure 5.3: LINKS offices simulation environment. (break_room.wbt).

5.1.3 Rviz

Rviz is a 3d visualization tool for ROS applications. It provides a view of robot
model and surroundings, captures sensor information from robot sensors, and
replays captured data. It can display data from cameras, lasers, from 3D and
2D devices, including pictures and point clouds. Rviz has been used throughout
the whole development to visualize the output of each package illustrated in
Chapter 4. In fact, costmap_converter_node and kf_hungarian_tracker node
both contain a publish function for Rviz:

• costmap_converter_node publishes the bounding boxes of detected dy-
namic obstacles through publishAsMarker() function. This, together with
the fg_mat_ visualization, helped in verifying the output of the obstacles
detection:
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void publishAsMarker(

const std::string &frame_id,

const nav2_dynamic_msgs::msg::ObstacleArray &obstacles) {

visualization_msgs::msg::MarkerArray box;

for (auto obstacle : obstacles.obstacles) {

box.markers.emplace_back();

box.markers.back().header.frame_id = frame_id;

box.markers.back().header.stamp = now();

box.markers.back().ns = "Obstacles Markers";

box.markers.back().type =

visualization_msgs::msg::Marker::CUBE;

box.markers.back().action =

visualization_msgs::msg::Marker::ADD;

box.markers.back().pose.orientation.w = 1.0;

box.markers.back().pose.position = obstacle.position;

box.markers.back().scale = obstacle.size;

box.markers.back().scale.z = 0.01;

box.markers.back().color.r = 0.0;

box.markers.back().color.g = 1.0;

box.markers.back().color.b = 0.0;

box.markers.back().color.a = 0.5;

}

marker_pub_->publish(box);

}

• kf_hungarian_tracker publishes bounding boxes and velocity vectors,
clearing the display when obstacles disappear from the range and prop-
erly adding newly detected ones:

# rviz visualization
if self.tracker_marker_pub.get_subscription_count() > 0:

marker_array = MarkerArray()

marker_list = []

# add current active obstacles
for obs in filtered_obstacle_list:

obstacle_uuid = uuid.UUID(bytes=bytes(obs.msg.id.uuid))

(r, g, b) = colorsys.hsv_to_rgb(obstacle_uuid.int % 360 /

360., 1., 1.) # encode id with rgb color
# make a cube
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marker = Marker()

marker.header = msg.header

marker.ns = str(obstacle_uuid)

marker.id = 0

marker.type = 1 # CUBE
marker.action = 0

marker.color.a = 0.5

marker.color.r = r

marker.color.g = g

marker.color.b = b

marker.pose.position = obs.msg.position

angle = np.arctan2(obs.msg.velocity.y,

obs.msg.velocity.x)

marker.pose.orientation.z = np.float(np.sin(angle / 2))

marker.pose.orientation.w = np.float(np.cos(angle / 2))

marker.scale = obs.msg.size

marker_list.append(marker)

# make an arrow
arrow = Marker()

arrow.header = msg.header

arrow.ns = str(obstacle_uuid)

arrow.id = 1

arrow.type = 0

arrow.action = 0

arrow.color.a = 1.0

arrow.color.r = r

arrow.color.g = g

arrow.color.b = b

arrow.pose.position = obs.msg.position

arrow.pose.orientation.z = np.float(np.sin(angle / 2))

arrow.pose.orientation.w = np.float(np.cos(angle / 2))

arrow.scale.x = np.linalg.norm([obs.msg.velocity.x,

obs.msg.velocity.y, obs.msg.velocity.z])

arrow.scale.y = 0.05

arrow.scale.z = 0.05

marker_list.append(arrow)

# add dead obstacles to delete in rviz
for uuid_ in dead_object_list:

marker = Marker()

marker.header = msg.header
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marker.ns = str(uuid_)

marker.id = 0

marker.action = 2 # delete
arrow = Marker()

arrow.header = msg.header

arrow.ns = str(uuid_)

arrow.id = 1

arrow.action = 2

marker_list.append(marker)

marker_list.append(arrow)

marker_array.markers = marker_list

self.tracker_marker_pub.publish(marker_array)

As it has been anticipated above, Riz was the only tool usable to understand if
the code behaved as expected. So, before starting any development and testing
activity, it was necessary to configure the virtual world environment with Rviz
through SLAM (Simultaneous Localization and Mapping).

5.2 SLAM

“SLAM is the computational problem of constructing or updating a map of an
unknown environment while simultaneously keeping track of an agent’s location
within it” [69]. That is, the robot is moved in an unknown environment (the one in
Fig. 5.2 for example) and it builds the static map used for all the subsequent tests.
In particular, the cartographer – a Google open source project [70] – has been
used as a default SLAM method, implemented in the turtlebot3_cartographer
package. To perform SLAM, for both the environments mentioned above, two
static versions have been created. In particular, dyn_env_1_static world is the
copy of dyn_env_1 without moving boxes, while break_room_static world is the
copy of break_room but without the pedestrian. The Cartographer method uses
a grid map-based world representation; it actually performs two steps. The first
one is called “local SLAM” and it uses a Ceres scan matcher [71] on a small map,
known as a submap, to estimate the pose and orientation of the vehicle. The
second step is “global SLAM”, which optimizes the pose by utilizing a larger scan
matcher on the aggregation of the submaps. The steps followed to acquire the
static map for a given environment are the following:

1) Launch the static virtual environment to be mapped in Webots (Terminal
1):
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$ export TURTLEBOT3_MODEL=burger

$ ros2 launch webots_ros2_turtlebot dynamic_robot_launch.py

world:=$HOME/ros2_webots_ws/src/webots_ros2/

webots_ros2_turtlebot/worlds/<WORLD_FILENAME.wbt>

2) Launch the Cartographer package that pops up an Rviz window for visual-
ization (Terminal 2):

$ export TURTLEBOT3_MODEL=burger

$ ros2 launch turtlebot3_cartographer cartographer.launch.py

use_sim_time:=True

3) Lauch the teleop_keyboard node, which allows to send velocity commands
to the Turtlebot through the keyboard. Then, start navigating the whole
environment until it is fully covered and the acquired map is satisfactory
shown in Rviz (Terminal 3):

$ export TURTLEBOT3_MODEL=burger

$ ros2 run turtlebot3_teleop teleop_keyboard

4) Finally save the map as a .pgm file in the target folder using the nav2_map_ser-
ver package (Terminal 4):

$ ros2 run nav2_map_server map_saver_cli -f

~/ros2_webots_ws/src/webots_ros2/webots_ros2_turtlebot/resource/

<MAP_FILENAME.yaml>

5.3 Simulation tests

In principle, the goal of this thesis is to perform a preliminary evaluation of the
proposed method, comparing it to the current solutions. A substantial perfor-
mance evaluation of the dynamic obstacle layer approach would require several
configurations and different simulation environments, since the parameters in-
volved are more than a hundred; however, this is out of the scope of this work,
which aims at laying the base for LINKS future improvements. According to these
considerations, the tests proposed here are for comparing the behavior of the
TurtleBot3 robot in presence of dynamic obstacles implementing the default DWB
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Controller, with the DWB Controller integrated with the developed Dynamic
Obstacle Layer (DOL).

In particular, the virtual environment dyn_env_1 has been used. Here, the
Turtlebot3 is commanded to navigate from one side of the rectangular arena to
the opposite side, covering a total distance of 8m (Fig. 5.4). The parameters
recorded for the evaluation purpose are: the travel time, the number of wait
recovery behaviors triggered during travel and if any collision occurred. Data have
been collected in two test cases: obstacles (boxes) constant speed set to 0.6m/s2

(Test set 1) and 0.8m/s2 (Test set 2). The results are commented in the following
two subsections.

Figure 5.4: dyn_env_1.wbt test scheme.

5.3.1 Test set 1 – 0.6m/s2

For the first test set, N1 = 50 simulations have been launched for both DWB and
DWB + DOL configurations. Table 5.1 sums up the global navigation results,
where:

• Smooth navigation – is the percentage of total navigations launched during
which the TurtleBot3 smoothly navigated until reaching the goal position.
At most, the robot has reduced its speed to 0m/s2 for few milliseconds in
order to avoid collision with a moving box in its proximity.

• Wait recoveries – is the percentage of total navigations during which the
wait recovery behavior has been triggered, still successfully reaching the
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goal. Wait recovery is usually triggered when an obstacles comes suddenly
too close and the Controller Server cannot find an affordable path within a
certain timeout parameter, then the Recovery Server is triggered.

• Collisions – is the percentage of total navigations launched that were con-
sidered unsuccessful because the TurtleBot3 collided with a moving box.
In some cases, one of the boxes collided with the robot dragging it with it
for a long distance, thus messing up the TurtleBot localization system. In
some other cases, collisions were less severe and, although its localization
was partially compromised, the robot managed to reach the goal, thanks to
effectiveness of the AMCL1.

DWB + DOL DWB
Smooth navigation 86,0% 82,0%
Wait recoveries 10,0% 0,0%
Collisions 4,0% 18,0%
Total successful
navigations

96,0% 82,0%

Table 5.1: Navigation results at 0.6 m/s2 obstacles speed.

As it is also shown in Fig. 5.5, the proposed method combined with DWB
reported a greater successful navigation rate than simple DWB: 96% against 82%
respectively. In particular, the ‘smooth navigation’ percentage is quite similar
between the two approaches, but the DWB+DOL solution reported fewer collisions
because the wait recovery was triggered more times. This means that the dynamic
obstacle layer provides a safer navigation if combined with the actual DWB
planner. Indeed, the Gaussian costs forewarn the Turtlebot about an approaching
obstacle and the Recovery Server is triggered on time if moving on would result
in a collision. On the other hand, with the chosen obstacle speed (0.6m/s2) and
the same Nav2 parameters settings, DWB does not react on time if an obstacle
suddenly approaches.

Concerning the ‘smooth navigation’ cases, though percentage over the total
number of tests is similar – 86% DWB+DOL, 82% DWB – travel time performances
are different. Figure 5.6 shows the box plots representing the travel time data of
all the ‘smooth navigation’ cases for the two approaches. First of all, it can be
noticed that the DWB distribution is more asymmetric and for sure non-Gaussian.
Secondly, the mean travel time reported in DWB+DOL is lower than that of DWB,
even if only of 1 s. However, the most important result is that the interquartile

1Adaptive Monte Carlo Localization embedded in Nav2 through nav2_amcl package
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Figure 5.5: Test set 1 – global navigation performances.

(IQR) range for DWB+DOL is smaller than DWB box. Thus, it seems that the
proposed method ensures to estimate a more confident travel time for a given
environment and settings. Finally, it has to be noticed that outliers lays all below
the box plot for the DWB+DOL (shorter travel times), while they are all longer
travel times for the DWB plot. This suggests that carrying out more tests might
produce less overlapped box plots and so more accurate considerations. Table 5.2
collects some statistical data about the box plots.

Figure 5.6: Test set 1 – Box plot of travel times for ‘smooth navigation’ test cases.
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DWB + DOL DWB
Standard deviation 1,064 2,558
Mean value [s] 35,29127 36,91798
Median value [s] 35,59976 36,20260
Max travel time [s] 37,00594 38,76978
Min travel time [s] 33,58855 34,89583

Table 5.2: Test set 1 – box plot statistical data for ‘smooth navigation’ test cases.

5.3.2 Test set 2 – 0.8m/s2

For the second set of data, the obstacle speeds have been set to 0.8m/s2. This
value has been chosen in order to push the available DWB Controller to its limits.
Indeed, in this case, onlyN2 = 30 simulations are sufficient to clearly prove the poor
performances of the DWB with respect to the DWB+DOL approach. Actually,
the only difference in the settings and parameters of the whole environment – and
the Nav2 parameters – with respect to the previous test set is the obstacle speed.
The same metrics have been taken into consideration and the results are shown in
Figure 5.7 and Table 5.3.

DWB + DOL DWB
Smooth navigation 50,0% 43,3%
Wait recoveries 36,7% 0,0%
Collisions 13,3% 56,7%
Total successful
navigations

86,7% 43,3%

Table 5.3: Navigation results at 0.8 m/s2 obstacles speed.

It can be noticed that the number of collisions during the simulations launched
with only DWB have remarkably increased (from 18,0% at 0.6m/s2 to 56,7%).
This has happened also for the DWB+DOL (from 4,0% at 0.6m/s2 to 13,3%),
but the percentage of triggered recoveries has increased as well, ensuring 86,7% of
successful navigations, while the percentage of success in case of DWB has halved
wrt Test set 1. This confirms the effectiveness of the proposed approach, at least
in terms of navigation safety.

On the other hand, travel time data have been collected as well. However,
starting from N2 = 30 data points and considering that the ‘smooth navigation’
cases are 50% (DWB+DOL) and 43,3% (DWB), it is not possible to make robust
consideration. Anyway, Figure 5.8 shows the box plot for the Test set 2. Here, data
relative to the 0.8m/s2 are displayed in matt colours (blue tone for DWB+DOL
and red tone for DWB), then data from the previous test set are displayed as well,
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Figure 5.7: Test set 2 – global navigation performances.

using the same but transparent colours.

Figure 5.8: Test set 2 – Box plot of travel times for ‘smooth navigation’ test cases.

It can be noticed that median values are very similar to the ones of Test
set 1. The first remarkable difference is that in Test set 2, due to the small
amount of data, the DWB+DOL box plot has a greater variance. This is also
because the faster are the obstacles, the more corrective actions are performed by
the robot, making the travel time more unpredictable. Concerning the data for
DWB, the variance has considerably reduced wrt the previous test set. However,
the data sample is too small (13 ‘smooth navigation’ cases) and ‘smooth navi-
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gation’(s) are reported only when the robot starts the navigation at a random
‘lucky’ instant, for which the planned path is not traversed by any of the moving
boxes when the robot passes through the crossing point with an obstacle trajectory.

As it is shown by simulation results, the DOL approach definitely reports some
performances improvements in terms of collisions rate, but still collisions occur,
even at the lower obstacle speed of 0.6m/s2. One reason behind this could be
the not optimal communication between the Webots virtual environment and the
Navigation Stack, that may cause delays in the detection and costs computation.
However, this is strictly related to the computational performances of the whole
ROS2 + Linux environment installed on the Intel NUC platform. Despite this,
some of the following Nav2 parameters could be tuned to reduce the collisions rate
with the adopted HW/SW setup. Referring to the Configuration Guide section of
DWB Controller in the Nav2 documentation page2:

• controller_frequency – default value 20 Hz – Increasing the frequency
at which the Controller Server runs, the local trajectory is re-planned faster
by the DWB Controller plugin. So, the robot should react faster to an
approaching obstacle, preventing collision.

• update_frequency – default value 5 Hz – Frequency of update of the
local_costmap. Increasing the update frequency of the costmap the robot
would read more recent Gaussian cost values, thus, basing local path planning
calculation on more reliable data would certainly help in a faster reaction to
obstacles.

• <dwb plugin>.sim_time: – default value 1.7 s – It is the time the DWB
plugin simulates ahead by to generate the affordable local trajectories before
scoring them and choosing the best one. Obviously, slightly increasing
this parameter, the DWB Controller should better discriminate colliding
trajectories from non-colliding ones. However, DWB is still a local planner,
so it does not make sense to increase it too much, as it would end up doing
the job of the Planner Server.

• <dwb plugin>.BaseObstacle.scale: – default value 0.02 – It is the scale
according to which the DWB plugin scores a trajectory based on where the
path passes over the costmap. Increasing this scale, the robot should take
into more consideration of not passing through cells with a moderated cost
(typically the ones resulting from inflation). This should also produce longer

2https://navigation.ros.org/configuration/index.html
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but smother navigation, since the robot is encouraged to keep away from
inflation regions.

Increasing the above listed parameters, especially the first three, may seem
an obvious option to improve the performances. However, this would reflect in a
greater computational demand. Therefore, their values should be chosen and fine
tuned according to the desired hardware performances of final target hardware
that will be installed on the physical Turtlebot.

A last comment is reserved to the Gaussian cost assignment. Here, the Gaus-
sian shape parameters, i.e., the variances, have been set on the base of intuition
and on an hypothetical obstacle maximum speed (recall eq. 3.15). In contrast,
an additional function could be introduced to compute the costs combining the
obstacle speeds with the robot speed. For instance, if the robot maximum speed
is too small with respect to the obstacle one, it should not try to pass over it,
so Gaussian costs should be modulated accordingly. On the other hand, an idea
could be including the obstacle speed information directly into the local planner,
however this approach results much more complex and it would not be as modular
as the proposed DOL.

In conclusion, the proposed Dynamic Obstacle Layer approach seems to provide
a safer navigation in presence of dynamic obstacles. At the same time, in the
majority of the test cases, the DOL allows to plan a smoother trajectory than
the DWB Controller alone, resulting in reduced travel times for equal starting
conditions. Indeed, despite the Turtlebot has a maximum speed lower than the set
obstacle speeds, it manages to adjust the trajectory when an obstacle is reported
by the DOL, being able to dodge it or passing behind it. However, travel time
performances have a lot of margins of improvement.
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Conclusions and future
developments

Autonomous vehicles navigation is a vast topic. The initial state of the art research
has been useful to define the problem in the context of indoor navigation, providing
a theoretical base for the LINKS project development. However, between theory
and practice there is a huge gap. This work has tried to bridge this divide through
the development of an implementable solution within the ROS2 framework, which
has put not few constraints to the design. The proposed Dynamic Obstacle Layer
approach implements a strategy for dynamic obstacle handling that can be easily
integrated with the current ROS2 Navigation Stack, thus being a flexible and
modular solution for the problem. The simulation tests carried out in a dynamic
virtual environment have shown a relevant performance improvement in terms
of collisions rate and travel times, integrating the DOL with the available DWB
Controller. Therefore, it can be concluded that the thesis goals have been reached.
Nevertheless, the DOL code involves many parameters (e.g. filters parameters,
blob detection parameters, Gaussian costs scaling factors, etc.) some of which
have been set based on intuition and manual tuning.

Being the first building block of a wider LINKS project, this thesis represents the
starting point of many possible future works in different directions.

First of all, the DOL has been tested only in a virtual environment. Even
though Webots has been set to provide as realistic simulations as possible, only
tests in real world can validate the proposed approach, using a physical Turtlebot
with real sensors and, above all, having a direct eye feedback about the global
robot behavior.

Beyond that, object detection is based on the thresholds set for the running
average filter. The chosen values have been manually tuned on the base of the
examples reported in [52], however, the filtering is not 100% accurate for low
obstacle velocities. Thus, a set of tests should be carried out to finely tune these
parameters according to the hypothetical future application scenarios.
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Furthermore, the original aim of this work was to integrate the DOL not
only with DWB, but also with the TEB Controller. However, even if developers
announced the porting of teb_local_planner in ROS2, in truth the package
still does not install correctly upon the current Nav2 stack. Indeed, several issues
have been raised in the related Github pages, but the community has not found a
solution yet. So, after unsuccessfully trying to solve the problem on my own with
the support of LINKS, the integration of DOL with TEB was discarded.

Finally, the incorporation of camera information can be studied to provide a
categorical information about dynamic obstacles, e.g., discriminating a walking
person from another robot, so that the robot could react accordingly with different
planning strategies. Categorical information can be easily integrated in a multy-
layer costmap on the base of the current DOL, and Planner and Controller plugins
can be easily foreseen to implement different behaviors.

All these points might inspire future works at LINKS to carry on the develop-
ment of the automated mail delivery system project.
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