
POLITECNICO DI TORINO

Master’s Degree in COMPUTER ENGINEERING

Academic Year 2020-2021
Degree Session of December 2021

CouchDB Injection Active Scan Rules for
OWASP ZAP

Supervisor:

Prof. Riccardo SISTO

Candidate:

Matteo PAPPADÀ

Corporate tutors:

Dr. Ivan AIMALE

Dr. Luigi CASCIARO

Abstract

This thesis consists in the development of an add-on for the OWASP ZAP pro-
gram, useful for performing a vulnerability analysis of the NoSQL database called
CouchDB. CouchDB is a NoSQL database, document type, with documents based
on the JSON standard and it is written in Erlang. Its main known vulnerabilities
are:

• Query injection, which can lead to a password bypass in a login page, if executed
in a certain way, but also to the exposure of secret database documents.

• The creation of users with admin privileges, where, thanks to the difference
between the JSON parser of Erlang and the one of Javascript, any user can
create an administrator profile for the database, leading to the exposure of
the whole infrastructure.

OWASP ZAP was chosen as the program to develop the analysis of these vulnera-
bilities, because it is one of the most used programs in the world of cybersecurity
regarding the analysis of web applications. After contacting the development team
of this open-source application and agreeing on the development of the add-on
for CouchDB injection, the work was divided into the following steps. Building
up a web application that interfaces with a CouchDB database, written in such a
way that these vulnerabilities can be found. The latter were first attacked through
an ad-hoc Java application which performs the injection successfully through two
different methods, each one attacking one of the vulnerabilities. Then the develop-
ment moved on OWASP ZAP, and the add-on for the active scan rules of CouchDB
was created, following the best practise of the development team; in this case all
the attacks stand in the same method. The vulnerable web application was used
to test the Java application and the ZAP add-on; but since this application was
made on purpose to be successfully attacked, other open-source application found
on GitHub were used to test the efficiency of the scan rules. The add-on was then
uploaded to the forked git repository of the main project, and a pull request was
made to the development team, waiting for it to be accepted and then released in
a new version of OWASP ZAP.

ii

Table of Contents

List of Figures vi

Introduction 1

1 NoSQL databases and CouchDB 3
1.1 NoSQL databases, a bit of history 3
1.2 NoSQL vs. SQL . 4

1.2.1 SQL: Pros and Cons . 4
1.2.2 NoSQL: Pros and Cons . 5

1.3 Categories of NoSQL . 6
1.3.1 Key-Value database . 6
1.3.2 Document database . 7
1.3.3 Column-oriented database 8
1.3.4 Graph database . 9

1.4 Apache CouchDB . 11
1.4.1 CouchDB: Architecture . 12
1.4.2 CouchDB: Benefits and Features 13

2 OWASP and Penetration Testing 16
2.1 What is OWASP? . 16
2.2 OWASP Top 10 . 17
2.3 Penetration Testing . 22
2.4 OWASP ZAP: Zed Attack Proxy 24

2.4.1 Spider . 26
2.4.2 Fuzzer . 26
2.4.3 Passive Scan Rules . 27
2.4.4 Active Scan Rules . 27

3 CouchDB Injection Active Scan Rules 29
3.1 Introduction . 29
3.2 Problem study: CouchDB vulnerabilities 30

iv

3.2.1 Query Injection . 30
3.2.2 Privilege Escalation . 37

3.3 Organization and Structure of the Work 41
3.3.1 CouchDB Version and Setup 41
3.3.2 JavaScript Web Application 44

3.4 Java Application for CouchDB Injection 48
3.5 ZAP Extension: CouchDbInjectionScanRule 53

3.5.1 Query injection for Check Bypass 55
3.5.2 Query injection for Password Bypass 57
3.5.3 Privilege Escalation . 59
3.5.4 Additional Information . 60

4 Testing Phase 62
4.1 Introduction . 62
4.2 Application for CouchDB version 3.1.1 63
4.3 Application for CouchDB version 1.6.1 65
4.4 “CouchDB” by sagarparker . 66
4.5 "verge" by johnsellejr . 68
4.6 Additional Information . 72

Conclusions 73

Bibliography and Sitography 76

v

List of Figures

1.1 Schematic example of the key-value structure 7
1.2 Code example of the key-value structure 7
1.3 Example of the document database structure 8
1.4 Example of a column-oriented database structure 9
1.5 Example of a graph structure . 10
1.6 Logo of CouchDB. (Source: https://it.m.wikipedia.org/wiki/

File:Apache_CouchDB_logo.svg) 11
1.7 Schema of the CouchDB architecture. 13

2.1 OWASP Organization logo. (Source: https://owasp.org/) 17
2.2 OWASP Top Ten 2021 . 18
2.3 OWASP ZAP Logo. (Source: https://github.com/zaproxy) . . . 24
2.4 Graphical User Interface of ZAP. 25

3.1 Schema of the query injection attack. 31
3.2 Request for login knowing the username and password. 31
3.3 Request for login knowing only the username and bypassing the

password. 32
3.4 Example of the server code for the "/get" exposure. 33
3.5 Example of the "getDocument" function, used by the Figure 4 piece

of code. 33
3.6 Request for getting the "secretDoc" that will be rejected by the server. 34
3.7 Request for getting the "secretDoc" that will be accepted by the server. 34
3.8 Request for getting "_all_docs" that will be rejected by the server. 35
3.9 Request for getting "_all_docs" that will be accepted by the server. 35
3.10 Example of JSON object to be parsed, with a duplicated property. . 39
3.11 Result of the JSON parser taking as input the object of Figure 3.10. 39
3.12 Result of the Erlang parser taking as input the object of Figure 3.10. 40
3.13 Example of request to perform a Privilege Escalation Attack. 41
3.14 Document for a user of the web application. 42
3.15 Document for a secretDoc. 42

vi

https://it.m.wikipedia.org/wiki/File:Apache_CouchDB_logo.svg
https://it.m.wikipedia.org/wiki/File:Apache_CouchDB_logo.svg
https://owasp.org/
https://github.com/zaproxy

3.16 Document for ZAP add-on. 43
3.17 Document of the administrator in the 1.6.1 version. 43
3.18 Login page of the web application for version 3.1.1 of CouchDB. . . 44
3.19 Get Document page of the web application for version 3.1.1 of

CouchDB. 45
3.20 Create user page of the web application for version 1.6.1 of CouchDB. 46
3.21 Method sendGet of the Java Application. 49
3.22 First part of method injection311 of the Java Application. 50
3.23 Second part of method injection311 of the Java Application. 51
3.24 Third part of method injection311 of the Java Application. 52
3.25 Method injection161 of the Java Application. 53
3.26 Properties used for the check bypass attack. 55
3.27 Piece of code where the message for the check bypass attack is

constructed and sent. 55
3.28 Piece of code where the method scan tries to convert the response

of the check bypass attack in a JSON object or in a JSON array. . . 56
3.29 If statement of the check bypass attack that decides if must raise an

alert. 57
3.30 Property used for the password bypass attack. 57
3.31 Piece of code where both the “good” and the infected messages for

the password bypass attack are constructed and sent. 57
3.32 If statement of the password bypass attack that decides if must raise

an alert. 58
3.33 Properties used for the privilege escalation attack. 59
3.34 Piece of code where the message for the privilege escalation attack

is constructed and sent. 59
3.35 If statement of the escalation privileges attack that decides if must

raise an alert. 60

4.1 Site tree of application for CouchDB v3.1.1. 63
4.2 Alert raised for the Check Bypass attack on the application for

CouchDB v3.1.1. 64
4.3 Alert raised for the Password Bypass attack on the application for

CouchDB v3.1.1. 64
4.4 Site tree of application for CouchDB v1.6.1. 65
4.5 Alert raised for the privilege escalation attack on the application for

CouchDB v1.6.1. 66
4.6 Graphical interface of "CouchDB" by sagarparker. 67
4.7 Site tree of application “CouchDB” by sagarparker. 67
4.8 APIs exposed by the server of "CouchDB" by sagarparker, out of

the scope of ZAP. 68

vii

4.9 Graphical interface of the home page of "verge" by johnsellejr. . . . 69
4.10 Graphical interface of the signup page of "verge" by johnsellejr. . . . 70
4.11 Graphical interface of the login page of "verge" by johnsellejr. 70
4.12 Site tree of application “verge” by johnsellejr. 71
4.13 Alert raised for the password bypass attack on the application “verge”

by johnsellejr. 72

viii

Introduction

The issue of security is a topic that has become very concerning in recent years.

Every day new technologies come out, and with them all the problems and vulnera-

bilities they can bring out, giving new material for malicious people to exploit. For

this reason, security increasingly needs to keep up with the times and be integrated

into the development process of a technology, and not be added later, after release,

endangering those who use it. The best solution if we want a secure system is

to integrate the security part in the development cycle, following the DevSecOps

paradigm, which suggests to study from the beginning the mitigation and solution

to all kind of problems that may arise during the development. To do this, some

programs that allow to perform vulnerability assessment in a simple and effective

way exist.

The goal of the thesis is the development of an extension for the famous tool used

in cybersecurity, called OWASP ZAP. This is a program used for vulnerability

assessment of the web application and for the penetration testing. It has two main

valences, it can be used as a proxy, which intercept all the packets sent and received

from the network, with the possibility to read and modify them. Otherwise, the

other main function of OWASP ZAP, is the one which permits the user to perform

some analysis and attacks to a web application in order to find out flaws and

vulnerabilities.

The extension of OWASP ZAP that has been developed during the work for this

1

Introduction

thesis is related to the vulnerabilities of CouchDB. In fact, it is useful to find out if

a web application, which relies on this kind of NoSQL database, is vulnerable to

specific known attacks.

In the first chapter we will discuss about the NoSQL databases in general, about

the differences between them and the SQL ones, and there will be also a detailed

description of all types of NoSQL databases. Then the discussion will move to

CouchDB, where it is explained how it works, how it is structured and what kind

of benefits it brings to the users. OWASP ZAP will be the topic of the second

chapter, with an introduction to the OWASP organization and its areas of interest,

addressing one the most famous project , that is OWASP Top Ten. After a brief

explanation of what is a Penetration testing, we will get right to the description of

OWASP ZAP, talking about how it can be used, what are its main features, and

how the main components work, improving the mechanisms of this tool.

The third chapter will talk about the main topic of this thesis, that is the work

conducted to develop the extension for OWASP ZAP. It will be analyzed the vul-

nerabilities of CouchDB, that are the Query Injection and the Privilege Escalation,

with a detailed description of why they are present and how is possible to exploit

them. Then, we will discuss about the organization of all the environments useful

to the work, such as the technologies used and the setup of all the systems. At the

end, the development phase will be addressed, starting from the first step, that is

the description of the Java application created to perform a preliminary analysis of

the systems, arriving to the OWASP ZAP extension for CouchDB itself.

The last chapter will analyze all the tests executed on the systems created on

purpose for this work, and also on a couple of applications found on GitHub,

developed by other people, that rely on CouchDB for the database.

All the work for this thesis has been conducted for the “Politecnico di Torino”

under the supervision of the professor Riccardo Sisto, in collaboration with “Blue

Reply srl” company, with the support of Dr. Ivan Aimale and Dr. Luigi Casciaro.

2

Chapter 1

NoSQL databases and

CouchDB

1.1 NoSQL databases, a bit of history

The term NoSQL was used for the first time by Carlo Strozzi in 1998 when he

was describing the relational database that he created, since it didn’t use the SQL

language. This name was used again in the mid-2000, this time to identify a

non-relational database (the SQL systems are related to the relational databases).

NoSQL technologies are born to satisfy the need of processing data in a faster and

a lighter way than the classical relational databases; this need arose also because of

the large amount of data, and the variety of this data across the internet. NoSQL

can stand for “no SQL system”, but the most accepted definition is “not only

SQL”, which means that this kind of systems can manipulate unstructured data

and structured data as well, and some of them can also support the SQL query

language. NoSQL databases fame and success are due to the fact that they can

handle and process Big Data in a fast, light and efficient way; for this reason, a lot

3

NoSQL databases and CouchDB

of big companies (such as Amazon, Google, Facebook, and so on), began to adopt

this kind of technologies.

1.2 NoSQL vs. SQL

With the word SQL (Structured Query Language) we refer to the query language

used to manipulate and extract data from a well-structured relational database.

Data are organized in tables full of tuples and every table has a number of attributes

that can be related to the attributes of another table; for this reason, they are called

“relational databases”, because the tuples of different tables can be connected to

each other by means of a relation.

NoSQL databases are based on a different mechanism of manipulating and extracting

data. The concept of relation between data is not present in this kind of databases.

They are born to make the representation of heterogeneous data, that cannot be

closed in a well-structured schema, easier.

Both SQL and NoSQL are very useful and used today because each application

needs a different kind of database technology, and with them we can find the

appropriate solution. But how to choose the one which fits better? Here is a list of

pros and cons for both kind of technology.

1.2.1 SQL: Pros and Cons

Pros:

• Minimized data storage: thanks to normalization and other optimization, they

can minimize the storage footprint and maximize performances.

• Flexible queries: they abstract data over the implementations below them to

support different workloads and to optimize queries.

4

NoSQL databases and CouchDB

• Well-known data integrity semantics: thanks to the four properties that guar-

antee valid transactions (defined by the ACID paradigm) that are atomicity,

consistency, isolation and durability.

Cons:

• Rigid data models: they need careful preliminary design to guarantee perfor-

mance and duration to evolution.

• Horizontal scalability: limited or completely unsupported.

• Single point of failure: mitigated by replication techniques.

1.2.2 NoSQL: Pros and Cons

Pros:

• Flexible data models: they don’t need a fixed schema, so the developers don’t

have to define a structure before creating the database. Schemas are dynamic

and can be modified on-the-fly.

• Dynamic schema for unstructured data: documents are created without a pre-

imposed structure, so each of them have a unique structure. Other attributes

and fields can be added in a second moment, according to the syntax of each

kind of database.

• Horizontal scalability: they are designed to support horizontal scalability and

they have no single point of failure.

• Performance: thanks to the limited functionality range.

Cons:

• ACID constraints not satisfied.

5

NoSQL databases and CouchDB

• “Classical” distributed system problems: not specific of NoSQL systems, but

is common to encounter such problems, like compatibility, process synchro-

nization, resource management, etc.

• Non-flexible access patterns: no optimization of the queries due to the lack of

abstraction of data.

1.3 Categories of NoSQL

NoSQL databases are used for different purposes; for this reason, we don’t have a

single type of NoSQL database, but we can distinguish four different categories.

1.3.1 Key-Value database

The key-value database is based on a pair of attributes, one called key and the

other one which represents the value (as the name can suggest). It is usually

used when an unstructured, simple and fast schema is needed. Naturally, it is

not recommended when data has to be logically linked with each other or when

complicated queries are needed; neither it is not suitable also in systems where

there are frequent data updates and advanced mechanisms for the transaction

consistency. His simplicity makes him very scalable and capable of storing big

amounts of data.

The key-value model works in a very simple way: every attribute of an object

represented in the database is identified by the key (used to call that attribute) to

which is attached a value that depicts the actual information content. The latter

can be a number, a string or a new object composed by other key-value pairs.

6

NoSQL databases and CouchDB

Figure 1.1: Schematic example of the key-value structure

Figure 1.2: Code example of the key-value structure

1.3.2 Document database

The document database is one step higher in complexity than the key-value one.

The document can be compared with the concept of object of the Object-Oriented-

Programming paradigm; in fact, we can model a document with all the necessary

fields and component that it needs, and every document can be different one from

another, because in this kind of system the concept of schema is not present.

The document model is very similar to the key-value one, they differ in the way the

data are stored, organized and identified (by means of a document, indeed). The

7

NoSQL databases and CouchDB

most used pattern to fill a document is a key-value representation, often a common

internet standard like JSON and XML is used.

As we will see later on, CouchDB belongs to this typology of NoSQL databases.

Figure 1.3: Example of the document database structure

1.3.3 Column-oriented database

Similarly to the SQL databases, in this kind of NoSQL databases, data is stored in

tables; but differently from the first ones that store data in rows, in the latter they

8

NoSQL databases and CouchDB

are store by columns. The difference between these two approaches consists in the

data access speed and efficiency; this because when we want to look something up

in a row-oriented database, the system performs a scan of each row of the table,

even if we required only a column. Instead, in a column-oriented database, each

column is store separately, like a stand-alone table; this allows the look up to be

quicker and more efficient, but only if the number of columns involved is small.

This kind of database is usually used in systems where big data are processed and

in web applications that rely on distributed systems.

Figure 1.4: Example of a column-oriented database structure

1.3.4 Graph database

The Graph typology is the most complex one and it is used to represent situation

in which data has many interconnections, like in a social network. The peculiarity

of this type of systems is that data are not inserted in structured tables, but are

modeled in structures called graphs that are composed by nodes and edges:

• A node is the entity we want to store, like a tuple in a relational database; for

example, it can be represented by means of a key-value store.

• An edge embodies the relationship between two nodes. We can imagine it like

9

NoSQL databases and CouchDB

a line which connects two entities and it can have a its properties; it can also

have a direction (like an arrow) to point out on which node the property is

related.

Here is an example of a graph.

Figure 1.5: Example of a graph structure

10

NoSQL databases and CouchDB

1.4 Apache CouchDB

Figure 1.6: Logo of CouchDB. (Source:
https://it.m.wikipedia.org/wiki/File:Apache_CouchDB_logo.svg)

CouchDB (which stands for "Cluster Of Unreliable Commodity Hardware DataBase”)

was created in 2005 by Damien Katz, as an open-source project originally written

in C++, but in 2006 it was moved to the Erlang language. In 2008 it became an

Apache Software Foundation project; its first beta version was released in October

2009 and from April 2012 it was published a new stable version periodically, up to

the latest one released in September 2020 (version 3.1).

As we said before, it is born as an open source project and still it is today; in

fact, a large and active community of developer works every day to continuously

improve this technology, with the aim of keeping it easy to use and web-friendly.

For this very reason, CouchDB has become very popular and it is used by a lot of

enterprises. Due to the fact that it is free to use, it is chosen against the proprietary

11

https://it.m.wikipedia.org/wiki/File:Apache_CouchDB_logo.svg

NoSQL databases and CouchDB

software because when a company chooses the latter, most of the time, is subjected

to the so-called vendor lock-in1.

1.4.1 CouchDB: Architecture

The architecture of CouchDB is composed by four basic components; let’s explain

for each one its job:

• HTTP Request. It is the module used to exchange information with the

outside world. It is written in JavaScript, and it is used to retrieve data from

documents. It also permits the creation of custom views, thanks to the use of

a MapReduce mechanism.

• CouchDB Engine. This component is the core of CouchDB, in fact it

manages documents, views, indexes and everything concerning the storage of

internal data; to handle all these operations it relies on the B-Tree2 structure.

• Replica Database. It is the component in charge of replicating data to a

local or a remote database, and of synchronizing all the documents between

the databases.

• Document. It is the “leaf” component, the actual data container, which

stores all the information inside itself.

In Figure 1.7 we can see how these components are connected to each other to

create the CouchDB infrastructure. The HTTP Request is the boundary compo-

nent, which interfaces with the CouchDB Engine. The latter exchanges information

1The condition in which the relationship between the vendor and the customer requires that
other services, similar to those provided by the vendor, have to be purchased from that specific
vendor and not from other ones

2A structure used to find keys or documents in a database, in a very fast way, reducing the
number of memory access. It derives from the binary search tree, in which all keys on the left
subtree have a lower value than the keys on the right subtree belonging to the same node.

12

NoSQL databases and CouchDB

and messages with all the Replica databases to keep updated and synchronized all

the documents they supervise.

Figure 1.7: Schema of the CouchDB architecture.

1.4.2 CouchDB: Benefits and Features

CouchDB is used also because it offers different benefits, both on users and devel-

opers point of view. For example, it is resilient, thanks to its architectural design,

for the partitioning databases and scaling data on several nodes. In fact, CouchDB

supports horizontal partitioning and data replication, and this permits the creation

of a simple and manageable way for balancing the load of read and write operation

during the building phase of the database. It is also very customizable ad it is

oriented to the development of performance-driven applications, no matter the

number of users or the data volume. Another benefit comes from the possibility to

read data in every moment; if we think about the classical relational databases,

13

NoSQL databases and CouchDB

when a table needs to be updated, the read operation on the row of data being

modified is blocked to other users, until the update has not been completed. This

behavior can cause accessibility problems for the users but also bottlenecks in data

management processes. CouchDB uses a mechanism of concurrency to manage

the database access called “MVCC” (Multi-Version Concurrency Control); this

means that, whatever the database load is in a certain time, it will work without

limitations of performance and speed for all the users and because of the document

are versioned and added in real time, every read operation will see the freshest

database snapshots, no matter the arrival order of the requests. CouchDB offers a

flexibility that cannot be found in proprietary database systems; this is due to the

strong support of the open-source community and to the several years of experience

as a NoSQL solution.

One of the mechanisms which makes CouchDB very attractive is the bi-directional

replication; this permits the synchronization of the data, across several servers.

This kind of replication allows companies to maximize the availability of data, to

locate in an easier way data closer to the end user, to simplify backup mechanism

and to reduce recovery time. In fact, no matter if data are stored in one or more

servers, rather, when CouchDB identifies a change in a document it ensures all

the copies of that document remain synchronized to each other to the most recent

version.

As a tool for queries and reports for documents, views are used by CouchDB;

they permit to search for documents and to filter information inside the latter,

according to user preferences. The amazing thing of CouchDB is the freedom

the user has in representing information; this because views are built dynamically

and there is no limitation on the number of different views runnable on the same

trunk of data. These views can be seen as design documents, which do not affect

other data documents and so they can be also replicated on several servers like the

latter. Apache MapReduce is also a feature of this database; it allows to create very

14

NoSQL databases and CouchDB

powerful indexes that can be used to recognize relationships between documents,

based on information which is contained in them, and do complex connection and

calculations.

CouchDB is flexible, fast and powerful also because uses a REST API (a standard

web programming interface based on REST principles) with the CRUD (create,

read, update, delete) operations available from all the places. It permits also to

the users to collect data on the local devices, so they can work offline, for example

when there is a loss of connection, and manage it, until the user will be back online

causing the synchronization of data.

As we said before, CouchDB is a document database and for this reason documents

are the basement for storing data. They are populated using the JSON language,

there are no limitations on the text size or the number of elements of each document

and they can be accessed from several sources at the same time.

15

Chapter 2

OWASP and Penetration

Testing

2.1 What is OWASP?

In 2001, a collective of people began to show interest about secure coding practices.

Their concern was to make developers aware of what are the risks when writing

code and what are, instead, the most secure way to do it. The impact that this

community had on the world of programming during the following 3 years led to the

2004, when the Open Web Application Security Project (OWASP), was officially

founded as a no-profit organization whose duty is to prevent in a pro-active way,

common attacks on applications. As the old and unsecure code was increasingly

widespread, and due to this the attacks were increasing too, this organization is

born to establish a standard for the secure coding practices, based on an ethical

ideology which leads to maintain a neutrality from any pressure done by the private

organizations.

16

OWASP and Penetration Testing

Figure 2.1: OWASP Organization logo. (Source: https://owasp.org/)

For this reason, OWASP is not controlled by any company, so it’s impartial and its

standards can be used to check the reliability of the applications and to keep under

control all the brand-new discovered vulnerabilities. Thanks to this, the businesses

are encouraged to include the security phase into the development process ant to

integrate the maintenance to ensure the security over the time, of the application.

There are a lot of interesting projects supervised by OWASP and for the purposes

of this research it has been used one of them, called OWASP ZAP, a tool which

execute vulnerability assessments over web applications. But before start talking

about OWASP ZAP there is another project, that can be considered the most

famous one, called OWASP Top Ten, on which it is appropriate to spend a few

words.

2.2 OWASP Top 10

The OWASP Top Ten is a ranking of the most dangerous vulnerabilities of web

application, written down by OWASP with the consensus of security experts from

around the planet. This free accessible document provides the description and

a possible solution for each position of the rank. The risks are classified basing

on some factor, like the severity of the risks, the size of the negative impact they

can have on an application and the frequency with which a vulnerabilities are

discovered.

17

https://owasp.org/

OWASP and Penetration Testing

The goal of this report is to make all programmers and developers aware about the

risks they can fall into when building up a web application, and how to avoid these

risks, embedding the document’s guidelines inside their security process, so they

may minimize the possibility to have application with known vulnerabilities.

The Top Ten is maintained by OWASP since 2003 and it is updated every three

or four years, according to the changes and progresses of the application security

market. This project is very important because it is used as a standard in web

application development by the most important company in the world. In fact,

when an auditor finds out that an organization is not addressing the Top Ten, he

may define it late regarding the compliance standard. Instead, integrating this

project inside the development lifecycle shows an overall effort to the best practices

for security in the computer world.

The last updated version of the Top Ten has been published this year, after four

years from the last one; here it is, with a brief explanation of all the vulnerabilities

(all the comparisons will refer to the OWASP Top Ten 2017).

Figure 2.2: OWASP Top Ten 2021

18

OWASP and Penetration Testing

• A01:2021-Broken Access Control. Every user in an infrastructure is under

the control of an access policy, that checks which privileges this user have.

The Broken Access Control happens when this policy is not set as it must

be, and so users have permissions on areas of the network those must be

forbidden to them. By using this vulnerability, a malicious person can access,

modify, delete sensitive data, or modify account privileges to install virus in

the infrastructure.

From the previous Top Ten, it moves up to the first position from the fifth

one, this means now it is the most dangerous risk for a web application, with

a 3.81% of incidence occurrence rate.

To prevent this risk, organization must set up as better as possible to access

control policy, for example using a role-based authentication and authorization.

• A02:2021-Cryptographic Failures. It points out that often password

protection is no longer enough and all database containing sensitive data

should use by default a strong encryption.

From the Top Ten 2017, it gains one position, and it changes the name

from Sensitive Data Exposure, because the latter was a consequence of the

Cryptographic Failures, and not the root problem.

The solution to this kind of problem is to use the best encryption solution, to

prevent attacks by the today’s advanced deciphering programs.

• A03:2021-Injection. In an injection attack, the malicious person injects

some code in the system to perform bad actions that can cause the breakdown

of the system itself, or in the most common scenario, can steal sensitive data

by simply requesting it to the system. Some examples of injection can be the

cross-site scripting (XSS), the SQL and NoSQL injection, the email header

injection, and much more.

This is one of the most widely spread and one of the oldest kind of attacks in

19

OWASP and Penetration Testing

web application. In fact, it is the one that for more times has been first in this

ranking (four consecutive times: in 2007, 2010, 2013 and 2017); but this year,

with a 3.73% of average incidence rate, it is “only” the third vulnerability

in the Top Ten, because of the growth of different and more sophisticated

attacks.

The solution for the injection should be to eliminate all the fields with user

inputs and using instead technologies like biometrics authentication, OTP

(one-time password), and so on. These solutions, however, are not simple

to implement for every company, and for this reason injection is the most

common vulnerability.

• A04:2021-Insecure Design. This is a brand-new item added to the current

Top Ten for the first time. It refers to the risk regarding the application design

defects. These defects are not only associated to the application architecture

itself, but also conceptual errors in design, for example if someone wants to

sell a product with a discount for the first 100 customers, a malicious person

can use 100 different IP addresses and buy all the product with the discount,

just to resell them at a higher price.

To prevent these behaviours, the developers should use secure patterns and

references for the design architecture, testing all the possibilities, for example

with a group of tester trying to find all possible loopholes of the application

and when it is assured that all the malicious intents are avoided, save that

architecture for future uses.

• A05:2021-Security Misconfiguration. The Security Misconfiguration

refers to the general failure of all necessary security checks when implementing

an application. The common scenario of this vulnerability is when the system

administrator forgets to protect again the systems after an exposure for tests,

or when he keeps the default security settings.

20

OWASP and Penetration Testing

A solution for the Security Misconfiguration is to disable all the default and

unnecessary privileges, resources, and permissions, exception made for those

who really need them, and to check the system configuration after every update

or even better periodically.

• A06:2021-Vulnerable and Outdated Components. This is the classic

situation in which a web application, a database management system, or an

operating system is used with an obsolete version and so it needs an update.

The greatest danger due to this lack of updating is that all the vulnerabilities

discovered for that system are known, so they are easily attackable. This item

is three spots higher in the rank, with respect of the latest one, which further

exacerbates the unconsciousness of system maintainers.

Naturally, the best way to prevent this risk is to do periodic update of all the

technologies, to apply all the released patches, and to eliminate all the old

and useless component.

• A07:2021-Identification and Authentication Failures. Called Broken

Authentication until the latest Top Ten, where it was in the second position.

Now it is seventh, thanks to the fact that companies are using multi-factor

authentication with OTP and biometrics more frequently than the past years,

resulting stronger against attacks like social engineering and brute force.

• A08:2021-Software and Data Integrity Failures. Another brand-new

item added to this year Top Ten; Software and Data Integrity Failures refers

to when there is not a data integrity verification process while performing

important action on the systems. For example, a bad person can modify a

software update file, adding some malicious code, like a virus or a malware,

and if the integrity of this file is not verified, it will be automatically executed

compromising the system.

The solution for this vulnerability is the use of PKI-based verification with

21

OWASP and Penetration Testing

digital signature to check the reliability and the authenticity of this kind of

files. Another defence that can be put in place to avoid this risk is to verify

that an external person cannot modify the code of critical files.

• A09:2021-Security Logging and Monitoring Failures. Previously called

Insufficient Logging and Monitoring, the Security Logging and Monitoring

Failures vulnerability outlines the failure of the reporting and monitoring

systems to find out trail of intrusion. This can be caused by loggers not set in

the right way, or by an inadequate threshold for an intrusion alert. If some of

these mechanisms work bad, all violation and data breaches can remain not

visible for a very long time.

The solution for this risk is to ensure that all the actions like input validation

and login attempts are monitored and logged real-time.

• A10:2021-Server-Side Request Forgery. Also in the last position, there

is a brand-new vulnerability introduced in 2021. Server-Side Request Forgery

(SSRF) refers to when the attacker uses remote URLs forcing the server to

send HTTP requests to services those stands in the internal infrastructure.

Naturally, these requests are used to steal information and data. SSRF attacks

are increasing in parallel with the increasing web application based on cloud

services.

To prevent SSRF attacks, blocking all the external request via the network

access control policies can be a solution.

2.3 Penetration Testing

Penetration Testing is the most widely used technique to test the vulnerabilities

of a web application. It is a way to find flaws and risks in a system when it is

unknown how it is made internally and what kind of technologies were used to

22

OWASP and Penetration Testing

build it up, like an analysis of a Black Box.

The main phases of penetration testing are:

• Planning. The tester decides how to set up the environment he will use for

the tests, which kind of attack he wants to attempt and what are the expected

results.

• Discovery. This phase precedes the attack, and here the pentester tries to

find out something about the web application, like some missing piece or bad

configuration that will bring to a successful attack.

• Attack. Here the tester executes the real attack, sending requests and

messages in order to cause a vulnerability to appear.

• Reporting. This is the last phase, where all the flaws and vulnerabilities

found are reported in a text document, with a detailed description of what

type of attack caused a particular vulnerability, what can be the solution for

it, if it is a known vulnerability or a new one, and so on.

There are some tools, in the cybersecurity world, made on purpose to execute a

penetration test in an automated way. These are useful because they don’t need a

special training for the tester and even a beginner can use them without struggling.

They are faster than a manual test, as every automated mechanism, but they

are not reliable as the manual ones. This because, with an automated test, an

algorithm decides which kind of message has to exchange with the web application

and basing on the pattern of the response sent back from the latter, the algorithm

decides if there is or not the presence of a vulnerability. Of course, they could

detect vulnerabilities where there are no ones, this scenario is called False Positive,

and some checks could say everything is fine when there is, instead, a vulnerability,

and here we have a False Negative.

So, if an automated test finds no vulnerability, the application cannot be considered

23

OWASP and Penetration Testing

secure, instead we can assume that system is not affected by known vulnerabilities,

but it can have other ones which may be discovered with a more accurate manual

penetration testing.

OWASP worked very well on this kind of tools, and it has developed (together with

a large community) the OWASP ZAP project, one of the most popular open-source

programs for penetration testing.

2.4 OWASP ZAP: Zed Attack Proxy

Figure 2.3: OWASP ZAP Logo. (Source: https://github.com/zaproxy)

OWASP Zed Attack Proxy (ZAP) is a tool, written in Java, used for penetration

testing that allows to detect the presence of vulnerabilities within web application.

It is born in 2012, as a fork from Paros Proxy (a penetration testing proxy) made

by Simon Bennetts, the project lead of OWASP ZAP. It inherits from its parent

the nature of proxy, but it integrates more functionalities, indeed, OWASP ZAP

is composed by two macro-components. The first one is exactly the proxy; used

like this, it permits to intercept and analyze all the network packets, like HTTP

request and responses, and it gives to the user the possibility to modify them to

24

https://github.com/zaproxy

OWASP and Penetration Testing

see the behavior of the application. The other component is an automated scanner,

that tests the web application via different rules and mechanisms based on real

attacks, according to the technology being tested.

Figure 2.4: Graphical User Interface of ZAP.

OWASP ZAP is a flexible and simple product, and it can be used by any level

of user, from the novice pentester to the professionals of this sector. But it is a

powerful tool, so it must be used very carefully given its dangerous nature. Is

recommended to use it only in allowed environments, like test shell of the web

application, in order to not commit mistakes and make a product unusable or

irreparable.

OWASP ZAP offers a series of additional functionalities in addition to the main

core, called extensions, which increase the capabilities of this tool, allowing it to be

adapted in the best possible way to the needs of the tester, who is free to perform

one type of attack rather than another by activating or deactivating the desired

add-on. Let’s see more in details some of the most important and useful extension.

25

OWASP and Penetration Testing

2.4.1 Spider

The spider is a tool used by search engines to find out web contents. Within

OWASP ZAP, when the spider add-on is used, it requests an URL to be inserted

which identifies the web application to be tested; this extension will perform a scan

to the inserted URL, discovering all the resources connected to the web application.

The spider, starting from the root page, tries to visit all the links in contained in

it, and repeats this operation recursively for each page found. When there are no

more resources to discover, a tree of links will be built up and will be showed to

the user.

2.4.2 Fuzzer

The fuzz is a technique of penetration testing in which the tester sends to the

system randomly formatted data trying to break it. For example, in a form field

for a date, the parser expects an 8-bit integer for the day, another one for the

month and a 16-bit integer for the year, all separated by a slash, so you are not

allowed to insert alphabetical characters or symbols instead of numbers. But what

happens if someone enters 37 for the day, or 17 for the month, or 65.536 (=216) for

the year? The system is prepared to reject this input, or it will accept it? And

if it will accept it, how it will behave? The fuzz technique is used to test these

behaviors and to answer all this questions, trying to figure out if the system can be

vulnerable or if the developer has handled all the possible inputs in a perfect way.

In OWASP ZAP there is an extension for this kind of test, called Fuzzer which

is responsible to analyze all this inputs. It generates semi-random data to inject

trying to detect risks for the system. This data is generated with some of the most

common values (famous in the cybersecurity world for being dangerous) and some

really random values.

26

OWASP and Penetration Testing

2.4.3 Passive Scan Rules

When OWASP ZAP analyzes a web application, it scans all the HTTP requests

and responses exchanged with the application. There are two approaches that can

be used to test the vulnerabilities of a system, that are the passive scan and the

active one.

Passive Scan Rules are, as the name can suggest, a collection of rules useful to

analyze in a passive way all the messages mentioned before. Since this kind of scan

is passive, this extension will not modify any request or response, so it is the safest

feature to use on OWASP ZAP.

2.4.4 Active Scan Rules

The second approach, more intrusive and dangerous than the passive one, is Active

Scan Rules. In this case, all the HTTP messages are manipulated by some rules

written according to the vulnerabilities that have to be tested.

Since this add-on is intrusive, it is not recommended to use it on a web application

if we don’t own its rights, because, as previously said, this can cause malfunctions,

steal sensitive data, and break the application. So, if we do something like that

to an application deployed on internet, its administrator can report us as the bad

guys.

Active Scan Rules are a way to perform a phase of the penetration testing in an

automated way; here we can find some examples of what kind of attack is possible

to test with them:

• SQL injection. A kind of attack performed on SQL databases, which exploits

the lack of input checks to inject malicious code in the system making it retrieve

sensitive data or execute operations on it.

27

OWASP and Penetration Testing

• NoSQL injection. The equivalent of the previous one, but used to attack

NoSQL databases (this is the one I improved with the CouchDB rules).

• Buffer overflow. A technique which exploits the fact that some strings can

be contained in a static sized buffer, and if the input is bigger than the buffer,

the overflow of data could be stored in sensitive portions of memory causing

malfunction and vulnerabilities.

• CRLF injection. A type of attack in which the ASCII special character

Carriage Return (13) and Line Feed (10), normally used to go to the new line

(in Windows systems are used both, in Linux/UNIX only LF) inside a file, are

used to inject malicious code.

• Cross-site Scripting (XSS). With this kind of attack, a malicious person

can make the client-side of other users to execute a script he created to steal

information, for example the credentials of the service they are using.

It must be considered that all these automated mechanisms are reliable, but they

are not 100% effective in every case. In fact, as mentioned before (in the section

2.3), they are affected by false positives and false negatives. So, we can say Active

Scan Rules are very useful, but we have to be careful and watch out for False, both

positives and negatives, and maybe integrate with them more reliable manual tests.

28

Chapter 3

CouchDB Injection Active

Scan Rules

3.1 Introduction

The general purpose of the thesis is to improve an open-source program used for

the cybersecurity; the tool that has been chosen is one of the most famous and

used one, which is called OWASP ZAP.

The first step was to choose what kind of improvement could be introduced to

OWASP ZAP, so after consulting the dedicated Issue section on the official GitHub

page of the tool, the choice was to add a scan rule for NoSQL databases1. The

choice was made taking into consideration that NoSQL databases are becoming

more and more used, but also due to the fact that OWASP ZAP does not provide

any kind of scanning rule for this type of databases, except for MongoDB.

The following choice to make was deciding which NoSQL database to take under

1Issue “Add more NoSQL scan rules” #3480, (source: https://github.com/zaproxy/
zaproxy/issues/3480)

29

https://github.com/zaproxy/zaproxy/issues/3480
https://github.com/zaproxy/zaproxy/issues/3480

CouchDB Injection Active Scan Rules

analysis, and after several researches and a consultation with the OWASP ZAP

development team, CouchDB was selected as the most interesting database to add

to this type of scan.

3.2 Problem study: CouchDB vulnerabilities

After the study of the mechanisms, the pros and cons, and the peculiarities of

CouchDB, for the development of an extension that exploits the vulnerabilities of

this technology, it is necessary to understand what are these vulnerabilities that

CouchDB presents.

3.2.1 Query Injection

Like the classic query injection known for the SQL databases, also in NoSQL ones

there is the possibility to perform this kind of attack. Here we cannot talk about

SQL injection, but the behavior of the attack is the same. The attacker wants to

use some ploy to access information and data he is not allowed to, and with some

request formatted in a certain way this is possible.

Let’s imagine that the malicious person knows what kind of technology is used for

the server, which framework and database are used for the application he wants to

attack, and that he can send arbitrary requests to the server, like he is an ordinary

user. The goal he wants to achieve is to make the requests he sends to cause an

unintentional behavior of the application, also of CRUD paradigm operations, only

through some well-made change in the queries.

30

CouchDB Injection Active Scan Rules

Figure 3.1: Schema of the query injection attack.

In the Figure 3.1, we have in red the malicious request and in blue the ordinary

operations that the application performs for every request. This highlights the fact

that for the application, the red request is accepted and processed like a normal

one, so if the database retrieves data the attacker is not allowed to see and use,

the server is not aware of it and sends the response to the caller anyway.

With CouchDB there are two kinds of query injection that are possible:

• Password bypass. If we have an application with a login page, exposed with

a REST API like “/login”, we can access our page using the GUI of the web

application, or sending a request towards it like the one in Figure 3.2.

Figure 3.2: Request for login knowing the username and password.

31

CouchDB Injection Active Scan Rules

For example, let’s assume that the user Alice, whose username is “alice” and

password is “12345”, wants to login to the page. She sends the request exactly

as in the Figure 3.2, and the application server responds with true, because

the database verifies that for the username “alice” the password matches the

one sent by the user.

If an attacker, let call him Bob, wants to login to the same web application

with Alice’s credential, and he knows only her username, he can format the

request in a way that the response of the application server is the same as

the one before. In fact, if the request is written like the one in Figure 3.3,

the characters “[%24ne]”, which are the URL-encoded equivalent of “[$ne]”,

causes the response to be the same as the one from the request in Figure 3.2.

Figure 3.3: Request for login knowing only the username and bypassing the
password.

This happens because the characters “[$ne]” are a keyword for CouchDB

which says to the database “for this attribute, look for the one not equal to

the value I’m giving to you”, so when the database receives the username

“alice” and the password[$ne] equal to nothing (e.g., in JavaScript will be

interpreted as undefined), it will search the document with the corresponding

username and then it will check if the password contained in that document is

not equal to the value received (nothing or undefined) and the check will pass,

because it’s true that the password “12345” is not equal to nothing. With this

simple attack, Bob can bypass the password check for every user he knows

the username.

32

CouchDB Injection Active Scan Rules

• Check bypass. If the database contains documents which are not accessible

by normal users, for sure there is a check (e.g., an if statement) in the server

code, that controls if a normal user is trying to get this kind of documents,

causing the request to be rejected.

Figure 3.4: Example of the server code for the "/get" exposure.

Figure 3.5: Example of the "getDocument" function, used by the Figure 4 piece
of code.

33

CouchDB Injection Active Scan Rules

Let’s assume that we have a document identified by the key “secretDoc” in

the database, that a normal user is not allowed to access, and that the server

exposes a REST API to be used when a user wants to retrieve a specific

document from the database, for example “/get”, by giving as a parameter its

key (the unique identifier of the document).

In Figure 3.4 and Figure 3.5 we can see an example of how the code could

be in the application server for the scenario discussed before. So let imagine

that Alice wants to get all the information about the secret document, and

she sends the request as in Figure 3.6, but the server responds with “401

Unauthorized” because she is an ordinary user, so she cannot retrieve the

“secretDoc”.

Instead, Bob, who is a common user too, but he is a malicious person, tries to

retrieve this document with the request pictured in the Figure 3.7 and he is

able to get it.

Figure 3.6: Request for getting the "secretDoc" that will be rejected by the
server.

Figure 3.7: Request for getting the "secretDoc" that will be accepted by the
server.

This happens because “key[]” is seen by the server as an array, so the compar-

ison “key === “secretDoc”” in the if statement of Figure 3.5 (second line) is

34

CouchDB Injection Active Scan Rules

false, because an array cannot be equal to a string. With this easy request,

Bob can bypass the check and he is able to get the secret document.

There is also another thing that Bob can do; in fact, CouchDB uses some

keywords (all with an underscore as first character) to do different things.

For example, with the keyword “_utils” we can access the graphical engine

to manage the database; the one interesting for Bob is “_all_docs”, which

retrieves all the document in a specific database. It is suggested to forbid the

ordinary users to use this type of commands, and as we can see in the same

if statement of before in Figure 3.5 (second line), in addition to the check

on the “secretDoc” there is another control (placed in or with the latter), to

check if the first character of the requested key is an underscore, and so if the

request is formatted as in the Figure 3.8, the server will respond with a “401

Unauthorized” like before.

But if the request has the form of the Figure 3.9, as in the previous attack, it

will bypass the check, because key[0] is intended to access the first character

of the string received, but if the server receives an array, key[0] is equal to

“_all_docs” and not to “_” so the result of the comparison will be false, and

the execution of the code will continue in the else statement, making the server

to retrieve to Bob all the documents present inside the database.

Figure 3.8: Request for getting "_all_docs" that will be rejected by the server.

Figure 3.9: Request for getting "_all_docs" that will be accepted by the server.

35

CouchDB Injection Active Scan Rules

At the end, we can say that with this kind of attack, a bad person can bypass

the checks that are made to forbid the access to some sensitive document, and

he can steal the information of one of these or in the worst case of all the

documents.

The mitigation2 when these kinds of attacks are discovered in an application can

be the use of type casting, transforming every input in String (for example), in this

way there would not be comparisons between two objects of different entities and

all the checks would be reliable; but if we are working with complex structured

data, it would not fit well and would not work. Another downside can be on the

developer point of view, who can easily forget to add the toString() function to

all the data received from the outside. Another thing that we can do is to add

checks for every input to verify that what we have received is of the type of what

we expected, with this we are sure that every property will be used in the correct

and secure way; but as in the previous solution, also here we have a problem when

we are working with complex structured data, because we would have to check a lot

of properties or even combinations of them. At the end we can say that also this is

not a good solution, because it needs a lot of code modifications, and it is not easy

to manage all the kinds of object present in the application in a secure way.

The best solution to have a secure application is to integrate the security part in

the development cycle, using the DevSecOps3 paradigm, and so to study from the

beginning the mitigation and the solution to all kind of problems.

2In the world of computing, Mitigation is a way to fix bugs found in code.
3DevSecOps is a paradigm that addresses the development lifecycle of software or hardware in

general. The difference with the classic lifecycle is that security is integrated from the beginning
and each phase goes through the security team. This can save a lot of money and a lot of work,
compared to someone who only integrates the security phase at the end of the lifecycle, or even
some years after release.

36

CouchDB Injection Active Scan Rules

3.2.2 Privilege Escalation

In CouchDB, as in the majority of systems around the world, common users have

the permission to do limited actions; for example, as we have seen in the Section

3.2.1, an ordinary user cannot access some documents (like secret ones) and cannot

send requests using CouchDB keywords to perform actions on the database. These

are only a few examples of what is forbidden for a common user. Instead, a user

with administrator privileges has no limitation and can manipulate everything

he wants. These “almighty” users are very important figures, and of course it

is recommended to select a strict circle of trusted people (or even better only

one person, for example the owner of the application) and give them this kind of

privileges. In this way, all the sensitive operations are monitored and restricted to

known people, and if something bad happens, the blame is on one of them. This

mechanism is used to prevent normal users to cause damages or misfunctions on

a system, or to expose sensitive data; if something like this happens, it is easy

to trace the source of the problem and to find a solution in a short time. But

what happens if a bad person finds a way to get these privileges and become an

administrator user? Naturally the answer to the previous question is obvious, and

that is a big problem, because not only he is allowed to perform risky operations,

moreover, he is considered trusted until someone notice his presence inside the

system (and it can take a long time).

There is a known vulnerability in CouchDB, that permits this kind of attack,

usually called “Privilege Escalation” because the attacker is able to grab all the

permission forbidden to him and so he escalates the hierarchy of the system.

This vulnerability has been published in 2017 in the CVE (Common Vulnera-

bilities and Exposures), a public repository where all the discovered issues are

published to help corporates, development teams and all the parties involved

37

CouchDB Injection Active Scan Rules

in the cybersecurity world, to exchange information about all the vulnerabili-

ties and how to prevent them, and it is identified via the code CVE-2017-12635

(https://cve.mitre.org/cgi-bin/cvename.cgi?name=2017-12635). Let’s ex-

plain how to exploits this vulnerability and why does it work.

First of all, it is useful to specify that this attack will be successful only if the

CouchDB version used is before the 1.7.0 or one of 2.x before the 2.1.1, because in

the other versions this problem has been fixed. Then, to acquire administration

privileges, an attacker should know the IP address of the CouchDB instance of the

database he wants to attack, or at least the application that relies on the database,

has to expose a path which allows to insert documents inside the database. If we

have one of these preconditions, the attack is possible, and the attack can prepare

his well-made request. The goal is to insert in the database called “_users” an

entry. Inside this database are stored all the documents (filled JSON objects) of

the users which have access to the DBMS (DataBase Management System); every

document contains information about the user it represents, like the identifier, the

name, the password, the type of user and the roles. The latter attribute, called

“roles” precisely, is the one of interest in this attack, because inside it are contained

in the form of an array, the privileges that user owns, encoded with particular

keywords. If we try to insert a user with the “roles” attribute equals to “_admin”

the system would reject the request; this happens because a role can be assigned

to a user only by the administrator, after the creation of the document and so

the checks made by DBMS are successfully prevent this behavior. However, it

was discovered that there is a discrepancy between the module that performs the

checks on the correctness of the received request that is written in JavaScript, and

CouchDB itself, which is responsible to insert the documents and it is written in

Erlang. In fact, when a request for a new document to be inserted in the “_users”

database arrives, CouchDB receives it, pass it to the JavaScript function which

performs the checks discussed before, and if it returns success the document is

38

https://cve.mitre.org/cgi-bin/cvename.cgi?name=2017-12635

CouchDB Injection Active Scan Rules

inserted by the DBMS, if not the document is discarded. Up to here, everything is

ordinary and seems to work well, but the flaw stands in the fact that JavaScript

uses a JSON parser native of this language, while CouchDB uses a parser called

“Jiffy”, proper of the Erlang language, and these two parsers work differently in a

specific situation. The scenario, which is used to exploits this vulnerability, takes

place when there is a duplicate for an attribute inside the JSON object. Let’s see

how the two parsers work when they receive an object like that.

Figure 3.10: Example of JSON object to be parsed, with a duplicated property.

If a string representing aJSON object like the one in Figure 3.10 is received by the

JavaScript parser, it will take only the last value for the same property name, so

the resulting JSON object will be like the one in Figure 3.11.

Figure 3.11: Result of the JSON parser taking as input the object of Figure 3.10.

39

CouchDB Injection Active Scan Rules

Instead, when the same sting arrives to the Erlang parser, it accepts both values for

the duplicated property and the resulting object would be like the one in Figure 3.12.

Figure 3.12: Result of the Erlang parser taking as input the object of Figure
3.10.

Now it’s easy to imagine how the attack can be performed. The attacker prepares

an object with the property “roles” duplicated, the first one with the “_admin”

value, and the second empty; it will be accepted by the JavaScript function, because

it will take into consideration only the empty property for roles, but when CouchDB

will insert the document inside the database, both the value with “_admin” and

the empty one will be used, and the attack is completed. So, by sending this kind

of request to the system, the malicious person is able to create a user, with his

credential, and most important, with the role of administrator and all the privileges

it brings. In Figure 3.13 there is an example of how the request can look like.

Naturally the “path”, in the request of Figure 3.13, is the address of the CouchDB

instance or the address of the server application that the bad person wants to

attack.

The mitigation to this vulnerability is, of course, to use a version of CouchDB

different from the ones which are affected to this problem. So, it is suggested to

keep the system updated. Also, another solution to build a stronger defense against

this attack, could be to modify the application server in a way that it does not

send the request as it received it, but to do some checks on the reliability and to

make this request trusted first, and then to send it to the database.

40

CouchDB Injection Active Scan Rules

Figure 3.13: Example of request to perform a Privilege Escalation Attack.

3.3 Organization and Structure of the Work

The goal of this thesis is to develop an add-on for OWASP ZAP that is capable to

recognize if a web application, which relies on CouchDB for the database part, is

vulnerable or not to the attacks discussed in Section 3.2. To achieve this, some

technologies and settings were used as the environment to develop and test this

extension. Here we will see how the work has been organized and structured.

3.3.1 CouchDB Version and Setup

First important thing to do, was to select the version of CouchDB to install, to

be used for performing the attacks. For the Query injection, it was chosen the

version 3.1.1 (the latest one), while for the Privilege Escalation, the pick went on

the version 1.6.1. This choice to have two different version is due to the fact that

it could seem obsolete to test everything only on the old version, so it was decided

to use one for a type of vulnerability, and one more recent, and certainly more

41

CouchDB Injection Active Scan Rules

widespread nowadays, for the other vulnerability. A virtual machine was created

for each version of CouchDB. For the 3.1.1 it was used Ubuntu as operating system,

while for the 1.6.1, beacuase of compatibility issues with Linux (it was a too old

version), Windows was chosen.

For the version 3.1.1, the databases were organized in this way: in addition to

the default ones (“_users” and “_replicator”) it was created another database

called “users” (to not be confused with the default one “_users”), which contains

documents representing the people who wants to log in a web application. For

simplicity, all the password of these users were not hashed, and they were stored in

clear (in a real system this is strongly discouraged). The documents inside this

database are five: one is depicted in Figure 3.14, other two are similar to the latter

but with different attributes, one for a secret document (Figure 3.15) and the last

is the one in Figure 3.16 for the ZAP add-on.

Figure 3.14: Document for a user of the web application.

Figure 3.15: Document for a secretDoc.

42

CouchDB Injection Active Scan Rules

Figure 3.16: Document for ZAP add-on.

For the version 1.6.1, instead, there was no need to create other database, because

as we said, this version it was used for the Privilege Escalation attack, so the

interesting database, namely “_users”, is created by default after the installation.

Inside it the is only the document for the administrator, created at installing time,

too. In the Figure 3.17 we can see how it looks like.

Figure 3.17: Document of the administrator in the 1.6.1 version.

From the Figure 3.17 we can notice also that the “_admin” role is not shown

explicitly; this is done for a security matter, even if, as we explained before,

it is possible to insert a document with administrator privileges exploiting the

CVE-2017-12635 vulnerability.

43

CouchDB Injection Active Scan Rules

3.3.2 JavaScript Web Application

For both instances of CouchDB, it was used a web application, written in JavaScript,

with the use of Node.js modules, like “express” to expose the REST API paths and

“nano” to interface the database. The REST APIs exposed for the web application

of the version 3.1.1 of CouchDB are the following:

• Root page (“/”). This is the root path, it will render the login page of the

application, which is represented in Figure 3.18, when an HTTP GET requests

it. There are two text input for username and password, and a button to

submit the credential; when it is pressed a JSON object with username and

password inside is sent via an HTTP POST request to the “/login” path.

There is also another button below, which redirect to the “/get” path.

Figure 3.18: Login page of the web application for version 3.1.1 of CouchDB.

44

CouchDB Injection Active Scan Rules

• “/get”. When an HTTP GET request arrives for this path, a page for search-

ing a document is visualized. As shown in Figure 3.19, it is composed by a

text input for the id of the document to be retrieved and a button to submit

the search, which will send an HTTP GET request to “/getKey” with a query

parameter called “key” equals to the text inserted in the input box; also here,

there is another button below, for the redirection to the login page.

Figure 3.19: Get Document page of the web application for version 3.1.1 of
CouchDB.

• “/login”. This is the path that receives the HTTP POST request for the login

of the users. Here there is a call to the function “checkCredentials”, which is

responsible to contact the database, asking it to search for a document that

has the same username (if it exists), and then to check if the password of this

document coincides with the one received from the form page. The response

of this API will be a JSON object with a property called “login” that has a

45

CouchDB Injection Active Scan Rules

value equal to true if the credentials are correct, or equal to false vice versa.

• “/getKey”. This one is responsible to receive an HTTP GET request with

the key of the document to search for, inside the query parameters, and to give

this key to the function “getDocument”. The latter will contact the database

asking it to search for the only document with the same key (if it exists), and

then to retrieve it. The response of the web application will be the document

if it is found, or an error message if not, both in a JSON object format.

In the web application for the CouchDB 1.6.1 version, the REST API exposed

are:

• Root page (“/”). This is the root path, it will render the page to create a

user, which is represented in Figure 3.20, when an HTTP GET requests it.

There is a text input for the entire string (to be written in the form of a JSON

object) that will be parsed to become the new document, and a button to

submit the latter; when it is pressed the string is sent via an HTTP POST

request to the “/createUser” path.

Figure 3.20: Create user page of the web application for version 1.6.1 of
CouchDB.

46

CouchDB Injection Active Scan Rules

• “/createUser”. This path is responsible to receive the string from the Create

user page and send it to the database, asking for the insertion of a document

filled with the JSON object resulting from parsed string. The response of the

application will be an HTTP 200 with the message of the database, which will

say that the document has been successfully inserted, or an HTTP 400 with

the error message of the database.

At first, to find out if everything were set in the right way and worked fine for the

purpose of this work, a test has been performed: some HTTP requests were sent to

both applications to see how they would react. This test has been executed with

“good” requests, like the real username and password for the login or the JSON

object without the “_admin” word inside the “roles” attribute. Both requests were

successful, the first one received as response a “login: true”, and the second one

created a user without privileges. When it was determined that the applications

worked in the correct way, the “bad” requests came into play. For every path

(except the root ones) an HTTP request formatted in a way to perform a kind

of attack, has been sent. For the “/login” was sent a POST request with an

object in the body made of a username equal to “alice” and the password property,

used to perform the query injection attack to bypass the password, written as

“password[$ne]=”. The response was the same as the one for the “good” request,

so the attack worked. Also, for the “/get” path, an HTTP GET request with

the key equal to “secretDoc”, but formatted as “key[]=” to perform the query

injection check bypass, was sent and the response was the secret document: the

attack worked here, too. These two examples involve the knowledge of a particular

value inside the database, like the username of the person we want to log in, or

the name of the secret document; if the malicious person does not know some of

this, there is a way to discover something. He can perform the attack to retrieve

from the “/get” all the documents (with the _all_docs keyword) and then look to

47

CouchDB Injection Active Scan Rules

some interesting information. With this request, for every document, the response

visualize only some properties, however among them there is the identification key

of every document. Now that the attacker has discovered all the key of all the

documents, he can retrieve (again with the “/get”) every document one by one and

search for interesting values, like usernames (not password because normally inside

a database is stored the hash value of the password) or top-secret texts. Also for

the “/createUser” API, a request constructed as explained in before, and so with

two attributes for the “roles”, one with “_admin” and the other empty, was sent

and the user was created successfully: it was a user with administrator privileges.

When it was determined that the attacks worked on the built infrastructures, the

work moved on the next phase, namely the development of a Java application

which performs in an automated way all these kinds of attack, trying to exploit

the vulnerability of CouchDB

3.4 Java Application for CouchDB Injection

Before the development of the extension for OWASP ZAP, it was necessary to go

through an intermediate phase in which an application written in Java, as will

also be the add-on, was developed to perform the attacks on the test environments

created for both versions of CouchDB. This step has been done to understand

how the built infrastructures would react and also to understand how to create an

automated system that communicates with a web application trying to perform

some attacks on it.

The application is composed by two classes, the Main class and the CouchDBInjec-

tion class. Inside the latter there are a bunch of methods useful to the application

to execute the attacks; let’s see in depth how they are made:

48

CouchDB Injection Active Scan Rules

• The constructor. It receives a string with the address of the application to

attack, and assigns it to the property ipAddr (the only property of this class).

• sendGET. This method receives a string with the complete path to send the

HTTP GET, it sends the request, and it waits for the response; then when

the latter is received, it is transformed in a JSON object and returned to the

caller. (Figure 3.21)

• sendPOST. It receives a string with the complete path to send the HTTP POST,

and a string that contains the body of the request. It fills all the components

of the request and then sends it, and it waits for the response; then when

the latter is received, it is transformed in a JSON object and returned to the

caller. (Similar to Figure 3.21, but with parameter body and method “POST”)

Figure 3.21: Method sendGet of the Java Application.

49

CouchDB Injection Active Scan Rules

• sendPUT. This method is analogue to the sendPOST, but instead of an HTTP

POST, it sends an HTTP PUT request. It returns the response in the format

of a JSON object, too. (Similar to Figure 3.21, but with parameter body and

method “PUT”)

• injection311. This is the method that performs the query injection attack,

let’s see how it is structured. In the first part (Figure 3.22), it tries to get the

“secretDoc” of the database (web application for CouchDB 3.1.1), using the

sendGET to the path "/get?key[]=secretDoc". If the response has a status

code equal to 200, the method will print a string to inform the user that the

secret document is compromised, and it will also print the document itself.

Figure 3.22: First part of method injection311 of the Java Application.

In the second part (Figure 3.23), the injection311 tries to retrieve all the docu-

ments of the database using the sendGET to the path "/get?key[]=_all_docs”.

If the attack is successful, the method will print a message to say that all the

documents are compromised on the web application under test and also all

the document discovered.

50

CouchDB Injection Active Scan Rules

Now, in the third phase the injection311 wants to try to login with an

existing username on the database, but without knowing the password. So it

selects one random document from the previous JSON object (the one with all

the documents), extracts the key, and sends a GET request (via the sendGET)

to retrieve the whole document identified by that key.

Figure 3.23: Second part of method injection311 of the Java Application.

When the response arrives, the document is explored to search for the user-

name property; when this method has a username to exploit, it will use

the sendPOST to the “/login” path with the body of the request containing

the found username and the password property formatted for the attack of

password bypass (“password[$ne]:”). Also here, if the response gives a positive

result, the method will print a message to inform the user that the attack was

successfully completed.

51

CouchDB Injection Active Scan Rules

Figure 3.24: Third part of method injection311 of the Java Application.

• injection161. This is the method which performs the privilege escalation

attack (possible only on the version 1.6.1 of CouchDB). It uses the sendPUT

to send an HTTP PUT request to the application, that has in the body the

JSON representation of the user to be inserted, but with the “roles” property

repeated two times: the first with the “_admin” keyword, and the second

empty (as discussed before in the description of this attack). Basing on the

form of the response, this method will print a message to tell user if the

document has been inserted correctly, if it already exists or if cannot be

created a user with administrator privileges.

52

CouchDB Injection Active Scan Rules

Figure 3.25: Method injection161 of the Java Application.

Inside the other class there is only the main method, which asks the user to insert

the URL of the application to attack and the port number on which it is executed.

Then it instantiates a CouchDBInjection object passing to the constructor the

concatenation of the address and the port number inserted by the user. When

the object is ready, the main method calls first the injection161 and then the

injection311 catching the errors for both methods in case they occur. This

application has been executed for both the web applications and it was useful to

adjust some details in the JavaScript server code and in the CouchDB configuration.

After this, the work can finally move on the OWASP ZAP extension.

3.5 ZAP Extension: CouchDbInjectionScanRule

The extension for the CouchDB vulnerabilities to be written for OWASP ZAP is

categorized under the “Active Scan Rules”, so a new module inside the relative

package has to be created in order to develop the add-on. There are three different

packages for the “Active Scan Rules”: one for the release version, one for the beta

ad another one for the alpha release of OWASP ZAP. So, due to the fact that this

is the first version of this extension, it has been created in the “ascanrulesAlpha”

package (the package related to the alpha release).

53

CouchDB Injection Active Scan Rules

First of all, let’s see how an Active Scan Rule works inside OWASP ZAP. Before

performing this type of analysis, it’s necessary to build the sites tree of the applica-

tion under test. To do so, the spider extension is necessary; it takes the URL of the

web application and then it discovers all the available paths for that application.

For each path is displayed the type of the request (like GET, POST, or PUT) that

it accepts, and all the parameters it receives. When the tree is built, it is possible

to launch the “Active Scan Rules”, setting the starting point, which can be the root

of the web application (in this way all the paths will be scanned) or a specific path;

it is possible to decide also what kind of technology we want to test, which type of

scan rules we want to perform and the strength of the attacks that will be executed.

Then all the selected automated scan rules are performed, exchanging messages

with the web application, according to how each scan rule has been designed. If a

vulnerability is detected, the scan rules have the task of raising an alert to inform

the user, on which path, with what type of request and what kind of vulnerability

has been discovered.

After this premise, we can see how the scanning rule was designed for CouchDB.

The “CouchDbInjectionScanRule” entity is a class that extends the “AbstractApp-

ParamPlugin” class and inherits from it, and from all other classes higher in the

hierarchy, some useful methods for the purpose of an Active Scan Rule. There

are some getters4 useful to retrieve messages and constants to be displayed in the

graphical interface, for giving the user hints on how to use the extension, give

him a description of how it works, or an explanation of the vulnerability found.

Then there are three methods, one called |verb*|init| for the initialization of the

variables and for environment preparation, and other two both called scan, in

4A kind of method very popular in OOP (Object-Oriented Programming) used to retrieve
properties that are private. If a property is private, can be used only inside the class the belong,
so the use of a getter is a mechanism to expose it to the other classes. Often getters are associated
with setters: the firsts are used to read the properties and the second to write them.

54

CouchDB Injection Active Scan Rules

which the difference stands in the fact that they receive a different number of

parameters. Usually the one who receives an HttpMessage and a NameValuePair

is used to make some assumption on the request under analysis; while the other

one, which receives a HttpMessage and two String (for parameter and value) is

used to apply the rules of the scan. These two methods are called for each request

and for each property, for example if a REST API accepts two properties for a

GET request, the scan methods are called one time for the first property, on which

some manipulation can be done, and one time for the second property, and the

same manipulation will be done also for it.

The scan method of CouchDbInjectionScanRule (the one in which all the auto-

mated rules are performed) is divided in three macro-sections, each one identified

by a type of attack that can be executed on CouchDB. Let’s see more in detail how

they are structured.

3.5.1 Query injection for Check Bypass

In this first part, the parameter of the request is taken and concatenated with

the suffix “[]”, that cause the attack under analysis to be successful, while the

“_all_docs” keyword is set as the value associated to the parameter.

Figure 3.26: Properties used for the check bypass attack.

Figure 3.27: Piece of code where the message for the check bypass attack is
constructed and sent.

55

CouchDB Injection Active Scan Rules

Then the request is sent (Figure 3.27), and the response is captured and analyzed:

the expected message should be a JSON object with all the information of the

response, included an array with all the document listed, under the “rows” property,

or straight a JSON array including all the documents of the database. So, the

method tries to convert the string of the response body in a JSON object (Figure

3.28); if the conversion is successful, the property “rows” (if it exists) is extracted

from the object and put inside a JSON array, instead, if the conversion fails the

method tries another conversion, this time with a JSON array.

At the end, if the status code of the response is equal to “200” and the array

extracted from the response is not null, the attack is considered executable, and so

an alert with all the information about this vulnerability is raised (Figure 3.29).

Figure 3.28: Piece of code where the method scan tries to convert the response
of the check bypass attack in a JSON object or in a JSON array.

56

CouchDB Injection Active Scan Rules

Figure 3.29: If statement of the check bypass attack that decides if must raise an
alert.

3.5.2 Query injection for Password Bypass

In this section of the code, the parameter under analysis is concatenated with the

suffix “[$ne]”, used to bypass the password inside the database and the value is set

equal to the value received by the “scan” method, that is “ZAP” (this because the

value of the password in this attack is not important, and it must be different from

the real password, according to the explanation in Section 3.2.1), then the message

is sent.

Figure 3.30: Property used for the password bypass attack.

Figure 3.31: Piece of code where both the “good” and the infected messages for
the password bypass attack are constructed and sent.

57

CouchDB Injection Active Scan Rules

Before sending the latter, a “good” message has been sent to the server with

the same values, but without adding the suffix to the parameter (Figure 3.31); this

message will be used as a counterproof for the response. In fact, we expect the

counterproof message to receive a response that says the login has failed (because

the password “ZAP” is not correct) while the infected message receives a response

that tells the login has been successful. If this happens, and so the responses for

the two messages are different, an alert with all the information about the found

vulnerability is raised to warn the ZAP user (Figure 3.32).

Figure 3.32: If statement of the password bypass attack that decides if must
raise an alert.

58

CouchDB Injection Active Scan Rules

3.5.3 Privilege Escalation

In this last part of the scan method, the parameter is left as it is, while the value

is set to the string representing the JSON object which identifies the user to be

inserted inside the database (as shown in Figure 3.33), formatted in the way useful

to make the attack executable, that is with the “roles” property repeated two times

(one with the “_admin” keyword and one empty).

Figure 3.33: Properties used for the privilege escalation attack.

Figure 3.34: Piece of code where the message for the privilege escalation attack
is constructed and sent.

Then the request is sent, and when the response arrives, its body is extracted

and put inside a string. So, the method checks if inside this string is contained a

specific word, that is “ok” if the document has been inserted, or “conflict” if the

document cannot be inserted because it already exists, but if it was not present

inside the database, it would be inserted anyway. If this condition is asserted, the

attack is possible and an alert, which describes the vulnerability in question, is

raised (Figure 3.35).

59

CouchDB Injection Active Scan Rules

Figure 3.35: If statement of the escalation privileges attack that decides if must
raise an alert.

3.5.4 Additional Information

Unlike before, when with the Java application it was known the REST API on

which the attack it will be tried, and all the parameters for each path, here in

OWASP ZAP, everything is unknown, and the web application is treated like a

black box. In fact every attack is performed for each path found for the application,

so it is more difficult to be sure that a vulnerability is found and that an attack

was successfully performed. Some False Positives can emerge after an analysis with

OWASP ZAP, so the developers of the extensions should find a solution to raise an

alert if and only if there is a good percentage of confidence about the vulnerability.

This problem was considered also inside the “CouchDbInjectionScanRule” extension,

using specific checks before raising an alert, like searching for specific keyword

within the body of responses, or controls that avoid an attack to be executed on

a resource that for some reason is unrelated to the type of attack, for example,

the Privilege Escalation part will never be executed on a path that accepts a

GET request, because the insertion can be made only with a PUT (or at most

60

CouchDB Injection Active Scan Rules

with a POST). Once the development was over, the add-on was tested with some

applications that rely on CouchDB; in the next chapter we will talk about how the

extension performed against each infrastructure used.

61

Chapter 4

Testing Phase

4.1 Introduction

The development of the extension cannot be considered finished without a testing

phase, so in this chapter we will see the results it gives for some selected application.

But before talking about the tests, we should spend some words to explain how

the tests were made and on which kind of applications. Since OWASP ZAP is an

intrusive tool, we cannot use it trying to attack an application deployed on the web,

like a bank portal or an e-commerce based on CouchDB, to see if the extension can

find vulnerabilities. This is not allowed, because an analysis with OWASP ZAP

can compromise a system, and this can be interpreted as a real attack, giving the

owner of the application the permission to investigate and in the worst cases to

report the tester.

For this reason, it has been taken the decision to build dedicated applications (one

for the version 3.1.1 and one for the 1.6.1) as mentioned in the previous chapter

(Section 3.3.2). But, since these applications were built with the intention of

being vulnerable to the attacks under consideration, and thus to make the add-on

successfully complete the analysis finding the vulnerabilities, other applications

62

Testing Phase

found on GitHub, and developed by other users, were selected, downloaded, and

deployed on a local virtual machine, and then used to test the operation of the

CouchDB extension.

4.2 Application for CouchDB version 3.1.1

The first application under analysis is the one created with the latest version

(v3.1.1) of CouchDB. After the initial scan with the spider extension of OWASP

ZAP, the site tree discovered is represented in Figure 4.1.

Figure 4.1: Site tree of application for CouchDB v3.1.1.

Then the test moved to the Active Scan Rules, and when the attacks were com-

pleted, two alerts were showed in the dedicated window. As it was expected both

the attack for the Check Bypass and for the Password Bypass can be performed on

this application. In Figure 4.2 and 4.3 we can see the alerts with all the details

related the vulnerabilities.

63

Testing Phase

Figure 4.2: Alert raised for the Check Bypass attack on the application for
CouchDB v3.1.1.

Figure 4.3: Alert raised for the Password Bypass attack on the application for
CouchDB v3.1.1.

From the figures, we can find out that the alerts show the URL used to perform

the attack, in URL-encoded format, in fact, in the URL for the Check Bypass, that

is “http://192.168.1.162:3000/getKey?key%5B%5D=_all_docs” the characters “[”

64

Testing Phase

and “]” are substituted by the analogous characters “%5B” and “%5D”. Moreover,

indications about the parameter on which the attack was successful and how it was

formatted are given by the alerts. For example, in the alert for Password Bypass

attack is indicated the parameter “password” as the one vulnerable and that the

attack was performed using the format “password[$ne]” for this parameter. From

this test we can determine that the detection of the two vulnerabilities under the

category “Query Injection” works well in the developed extension.

4.3 Application for CouchDB version 1.6.1

Then the test moved to the second application created for the purpose of this thesis,

that is the one for CouchDB version 1.6.1. Like before, the first thing to do is to

discover the site tree of this application by using the spider extension of OWASP

ZAP, represented inf Figure 4.4.

Figure 4.4: Site tree of application for CouchDB v1.6.1.

Then the real attack is performed through the Active Scan Rules component,

giving it as URL for the attack the root of the web application. When the scan

is over, we can notice that an alert (like the one in Figure 4.5) is showed in the

related tab, saying that the vulnerability for the Privilege Escalation has been found.

65

Testing Phase

Figure 4.5: Alert raised for the privilege escalation attack on the application for
CouchDB v1.6.1.

We can see that the URL used for the attack is displayed, with the type of HTTP

request used (POST in this case). A short summary of the attack is showed,

describing the use of the property “roles” duplicated, one with the value “_admin”

and the other empty, and referring also to the CVE code of the vulnerability. As we

expected, also here, we found out that the privilege escalation attack works well and

the “CouchDbInjectionScanRule” add-on is able to find this kind of vulnerability.

4.4 “CouchDB” by sagarparker

One of the applications found on GitHub is named “CouchDB” and is developed by

sagarparker (https://github.com/sagarparker/CouchDB). This is a very basic

application which permits all the classic CRUD operations (Create, Read, Update,

Delete), via a simple graphical interface (showed in Figure 6). It is developed in

JavaScript, with the use of Node.js and React1.

1React is a very popular framework, developed and maintained by Meta (the Facebook
company), which is used to build single-page application.

66

https://github.com/sagarparker/CouchDB

Testing Phase

Figure 4.6: Graphical interface of "CouchDB" by sagarparker.

This application was deployed on a local machine, and it was attacked with the

OWASP ZAP tool. As always, first thing to do is to construct the site tree of

the application, using the spider add-on, so we can see the REST API it exposes

(shown in Figure 4.7).

Figure 4.7: Site tree of application “CouchDB” by sagarparker.

As we can see the built site tree do not show something interesting, because only

some resources like images or design script are found by the spider ; this happens

67

Testing Phase

because the architecture of the application is structured in a way that all the APIs

are hidden from the outside, and they are accessible only by the application itself.

In Figure 4.8 we can see that the spider extension found out some paths useful for

the attack, but they are marked as “Out of Scope”, exactly because, thanks to the

use of a framework like React, the application has been built secure against these

kinds of attacks.

Figure 4.8: APIs exposed by the server of "CouchDB" by sagarparker, out of the
scope of ZAP.

Naturally, in this case, if we perform a scan with the Active Scan Rules, no alerts

will be raised, because there is nothing to attack. The test discussed until now is

related to the application by sagarparker attached to the version 3.1.1 of CouchDB;

the same results were obtained with version 1.6.1. “CouchDB” from sagarparker is

an example of how an application should by structured, using frameworks that give

the developer a step ahead in security. For the purpose of this thesis, this test has

been useful, because it brought an example of secure application, and because it

has been possible to demonstrate that in cases like this no false positives are found.

4.5 "verge" by johnsellejr

The other application found on GitHub is named “verge” and has been developed by

johnsellejr (https://github.com/johnsellejr/verge). This is a php application

with basic functions of a social network, that are “signup” (Figure 4.10) ad “login”

(Figure 4.11).

68

https://github.com/johnsellejr/verge

Testing Phase

Figure 4.9: Graphical interface of the home page of "verge" by johnsellejr.

After the deploy of the application with the version 3.1.1 of CouchDB, the analysis

with OWASP ZAP started. First, the site tree has been constructed with the help

of the spider extension: in Figure 12 is showed what it looks like.

Then the attack to find vulnerabilities related to CouchDB was launched, starting

from the root of the application, using the active scan rules add-on. For this

application two alerts were raised, both related to the “/login” API and to the

password bypass attack. The first (showed in Figure 13) is related to the “password”

parameter, as it should be, so we can deduce that this kind of attack is performable,

and the application is not protected from the query injection. In fact, also with a

malicious request, sent “by hand” to that API, the login with a known username

was successful.

69

Testing Phase

Figure 4.10: Graphical interface of the signup page of "verge" by johnsellejr.

Figure 4.11: Graphical interface of the login page of "verge" by johnsellejr.

70

Testing Phase

The other alert is related to the “username” parameter, telling us that also the

username can be bypassed. This is a false positive, but in this case, it is shown

only because the attack was performed leaving all the parameters on the default

value. If before the attack, we set the “username” parameter to something specific

(like the username of a user we know it is present in the database), the second alert

would not appear.

Figure 4.12: Site tree of application “verge” by johnsellejr.

71

Testing Phase

Figure 4.13: Alert raised for the password bypass attack on the application
“verge” by johnsellejr.

The same operation has been repeated using the version 1.6.1 of CouchDB, but the

application has proven to be incompatible with this version, and it was not able

to run. Thanks to this application, the reliability of the password bypass control

of the extension, has been strengthened, but also has been proved that the other

controls do not raise alerts when the vulnerability related to them is not present.

4.6 Additional Information

For testing purpose, a lot of other applications found on GitHub, were used, but most

of them had compatibility problems with the operating system or with CouchDB

itself, so it was impossible to make them run correctly. Other applications, instead,

had been developed in a secure way, so the attacks did not work, both performed

from the extension, and performed “by hand” or with the Java Application (the

one described in Section 3.4). In this moment, the extension is under the review of

the OWASP ZAP development team, and if no problems will be found, the pull

request will be accepted, and “CouchDbInjectionScanRule” will be added to the

main project.

72

Conclusions

In this thesis have been analyzed the problems related to CouchDB, how to find

them and how to try to correct them.

Initially a discussion about NoSQL databases in general, and then about CouchDB

in depth has been made. Then the focus moved on the tools used nowadays

to perform vulnerability assessment and penetration testing, talking about the

OWASP organization and its famous projects, like the one used for the goal of

this thesis, that is OWASP ZAP. So, a long description of how the vulnerabilities

of CouchDB can be exploited, has been made, emphasizing the risks to which a

system can be subjected if they are not discovered and fixed. For this reason a

tool to find out these vulnerabilities, has been developed, and all the development

process, has been described in this work. It has been exposed how the add-on

works, and how it is done inside, for a deep knowledge in using it. Also the test

phase has been described, with the intention to understand if the extension has

been developed correctly and if it will be possible to use it by anyone who needs it.

To make it possible for a large number of people to use it, the collaboration with

OWASP ZAP team has been very useful. In fact, an add-on for this program,

capable of finding out the vulnerabilities of CouchDB, has been developed to

answer the issue “Add more NoSQL scan rules” #3480, (source: https://github.

com/zaproxy/zaproxy/issues/3480). Now it is in the approval phase, under the

inspection and the tests of the OWASP ZAP development leaders, waiting to be

73

https://github.com/zaproxy/zaproxy/issues/3480
https://github.com/zaproxy/zaproxy/issues/3480

Conclusions

accepted and published, initially in the alpha release of the tool (this can take

several months), and maybe a day in the stable release. When the release will

happen, everyone will be able to use the extension developed for this work, and it

will be helpful for the developers working with CouchDB. The final consideration

that can be done in the current scenario, is that CouchDB, together with all the

other NoSQL databases, are very efficient and easy to use, but much more must be

done on the development and on the use of these kind of technologies, with more

awareness about their vulnerabilities and so on their security and reliability.

74

Bibliography and Sitography

[1] Introduction to Apache CouchDB. en-us. Section: DBMS. Nov. 2021. url:

https://www.geeksforgeeks.org/introduction-to-apache-couchdb/

(visited on 10/09/2021).

[2] Remote Code Execution in CouchDB. url: https://justi.cz/security/

2017/11/14/couchdb-rce-npm.html (visited on 11/17/2021).

[3] 5984,6984 - Pentesting CouchDB - HackTricks. url: https://book.hacktri

cks.xyz/pentesting/5984-pentesting-couchdb (visited on 11/08/2021).

[4] CVE - CVE-2017-12635. url: https://cve.mitre.org/cgi-bin/cvename.

cgi?name=2017-12635 (visited on 11/15/2021).

[5] Patrick Spiegel. NOSQL INJECTION (FUN WITH OBJECTS AND AR-

RAYS). url: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&

source=web&cd=&ved=2ahUKEwjSr7LktZj0AhUL3aQKHVaAC2cQFnoECAIQAQ&

url=https%3A%2F%2Fowasp.org%2Fwww-pdf-archive%2FGOD16-NOSQL.

pdf&usg=AOvVaw3-L_6r5fy9bt6thSjB8rce (visited on 11/14/2021).

[6] CRLF Injection | OWASP. en. url: https://owasp.org/www-community/

vulnerabilities/CRLF_Injection (visited on 11/10/2021).

[7] OWASP ZAP – Active Scan. url: https : / / www . zaproxy . org / docs /

desktop/start/features/ascan/ (visited on 11/10/2021).

76

https://www.geeksforgeeks.org/introduction-to-apache-couchdb/
https://justi.cz/security/2017/11/14/couchdb-rce-npm.html
https://justi.cz/security/2017/11/14/couchdb-rce-npm.html
https://book.hacktricks.xyz/pentesting/5984-pentesting-couchdb
https://book.hacktricks.xyz/pentesting/5984-pentesting-couchdb
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2017-12635
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2017-12635
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjSr7LktZj0AhUL3aQKHVaAC2cQFnoECAIQAQ&url=https%3A%2F%2Fowasp.org%2Fwww-pdf-archive%2FGOD16-NOSQL.pdf&usg=AOvVaw3-L_6r5fy9bt6thSjB8rce
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjSr7LktZj0AhUL3aQKHVaAC2cQFnoECAIQAQ&url=https%3A%2F%2Fowasp.org%2Fwww-pdf-archive%2FGOD16-NOSQL.pdf&usg=AOvVaw3-L_6r5fy9bt6thSjB8rce
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjSr7LktZj0AhUL3aQKHVaAC2cQFnoECAIQAQ&url=https%3A%2F%2Fowasp.org%2Fwww-pdf-archive%2FGOD16-NOSQL.pdf&usg=AOvVaw3-L_6r5fy9bt6thSjB8rce
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjSr7LktZj0AhUL3aQKHVaAC2cQFnoECAIQAQ&url=https%3A%2F%2Fowasp.org%2Fwww-pdf-archive%2FGOD16-NOSQL.pdf&usg=AOvVaw3-L_6r5fy9bt6thSjB8rce
https://owasp.org/www-community/vulnerabilities/CRLF_Injection
https://owasp.org/www-community/vulnerabilities/CRLF_Injection
https://www.zaproxy.org/docs/desktop/start/features/ascan/
https://www.zaproxy.org/docs/desktop/start/features/ascan/

BIBLIOGRAPHY AND SITOGRAPHY

[8] OWASP ZAP – Passive Scan. url: https://www.zaproxy.org/docs/

desktop/start/features/pscan/ (visited on 11/10/2021).

[9] Fuzzing | OWASP. en. url: https://owasp.org/www-community/Fuzzing

(visited on 11/10/2021).

[10] OWASP ZAP: un potente strumento per scoprire vulnerabilità di siti Web.

url: https://www.guruadvisor.net/it/sicurezza/825-owasp-zap-un-

potente-strumento-per-scoprire-vulnerabilita-di-siti-web (visited

on 11/09/2021).

[11] OWASP ZAP. url: https : / / devopedia . org / owasp - zap (visited on

11/09/2021).

[12] OWASP Top 10:2021. url: https : / / owasp . org / Top10/ (visited on

11/08/2021).

[13] What Is the OWASP Top 10 and How Does It Work? | Synopsys. url:

https://www.synopsys.com/glossary/what-is-owasp-top-10.html

(visited on 11/07/2021).

[14] The Start of OWASP – A True Story. en. url: https://www.veracode.com/

blog/intro-appsec/start-owasp-true-story (visited on 11/06/2021).

[15] Discover the Open Web Application Security Project (OWASP). en. url:

https://openclassrooms.com/en/courses/5162996-secure-your-web-

application-with-owasp/6122326-discover-the-open-web-applicati

on-security-project-owasp (visited on 11/06/2021).

[16] Cos’è un’API RESTful? it. url: https://www.redhat.com/it/topics/

api/what-is-a-rest-api (visited on 11/03/2021).

[17] Vendor lock-in. it. Page Version ID: 119259069. Mar. 2021. url: https://it.

wikipedia.org/w/index.php?title=Vendor_lock-in&oldid=119259069

(visited on 10/23/2021).

77

https://www.zaproxy.org/docs/desktop/start/features/pscan/
https://www.zaproxy.org/docs/desktop/start/features/pscan/
https://owasp.org/www-community/Fuzzing
https://www.guruadvisor.net/it/sicurezza/825-owasp-zap-un-potente-strumento-per-scoprire-vulnerabilita-di-siti-web
https://www.guruadvisor.net/it/sicurezza/825-owasp-zap-un-potente-strumento-per-scoprire-vulnerabilita-di-siti-web
https://devopedia.org/owasp-zap
https://owasp.org/Top10/
https://www.synopsys.com/glossary/what-is-owasp-top-10.html
https://www.veracode.com/blog/intro-appsec/start-owasp-true-story
https://www.veracode.com/blog/intro-appsec/start-owasp-true-story
https://openclassrooms.com/en/courses/5162996-secure-your-web-application-with-owasp/6122326-discover-the-open-web-application-security-project-owasp
https://openclassrooms.com/en/courses/5162996-secure-your-web-application-with-owasp/6122326-discover-the-open-web-application-security-project-owasp
https://openclassrooms.com/en/courses/5162996-secure-your-web-application-with-owasp/6122326-discover-the-open-web-application-security-project-owasp
https://www.redhat.com/it/topics/api/what-is-a-rest-api
https://www.redhat.com/it/topics/api/what-is-a-rest-api
https://it.wikipedia.org/w/index.php?title=Vendor_lock-in&oldid=119259069
https://it.wikipedia.org/w/index.php?title=Vendor_lock-in&oldid=119259069

BIBLIOGRAPHY AND SITOGRAPHY

[18] couchdb. en-us. Mar. 2021. url: https://www.ibm.com/cloud/learn/

couchdb (visited on 10/23/2021).

[19] Database of Databases — CouchDB. en. url: https://dbdb.io/db/couchdb

(visited on 10/23/2021).

[20] NoSQL Database Types - DZone Database. en. url: https://dzone.com/

articles/nosql-database-types-1 (visited on 10/18/2021).

[21] A Brief History of Non-Relational Databases - DATAVERSITY. url: https:

//www.dataversity.net/a-brief-history-of-non-relational-databa

ses/# (visited on 10/10/2021).

[22] SQL vs. NoSQL Databases: What’s the Difference? | IBM. url: https :

//www.ibm.com/cloud/blog/sql-vs-nosql (visited on 10/09/2021).

[23] B-albero. it. Page Version ID: 121249462. June 2021. url: https://it.

wikipedia.org/w/index.php?title=B-albero&oldid=121249462 (visited

on 11/18/2021).

[24] Fuzzing. it. Page Version ID: 123191859. Sept. 2021. url: https://it.

wikipedia.org/w/index.php?title=Fuzzing&oldid=123191859 (visited

on 11/10/2021).

78

https://www.ibm.com/cloud/learn/couchdb
https://www.ibm.com/cloud/learn/couchdb
https://dbdb.io/db/couchdb
https://dzone.com/articles/nosql-database-types-1
https://dzone.com/articles/nosql-database-types-1
https://www.dataversity.net/a-brief-history-of-non-relational-databases/#
https://www.dataversity.net/a-brief-history-of-non-relational-databases/#
https://www.dataversity.net/a-brief-history-of-non-relational-databases/#
https://www.ibm.com/cloud/blog/sql-vs-nosql
https://www.ibm.com/cloud/blog/sql-vs-nosql
https://it.wikipedia.org/w/index.php?title=B-albero&oldid=121249462
https://it.wikipedia.org/w/index.php?title=B-albero&oldid=121249462
https://it.wikipedia.org/w/index.php?title=Fuzzing&oldid=123191859
https://it.wikipedia.org/w/index.php?title=Fuzzing&oldid=123191859

Acknowledgements

I would like to thank Professor Riccardo Sisto, for giving me the opportunity

to work under his supervision, on this thesis allowing me to combine my two

main interests in the world of computer engineering, namely programming and

cybersecurity.

The assistance provided to me by Dr. Luigi Casciaro and Dr. Ivan Aimale from

Blue Reply srl has been essential for the development of this project, and I would

like to thank them for this, but also for the experience they have allowed me to

live within a very prestigious company, which has been a reason for personal growth.

A great acknowledgement goes out to my mother, who has been always by my side

giving me all her love, for all the sacrifices she made for me and for teaching me to

be strong in life, no matter what happens.

I would like to thank my father and his partner, for encouraging me to always give

my best, to look to the future with optimism, and for the sacrifices they have made

for me.

I am deeply grateful to my girlfriend, Greta, who accompanied me throughout my

journey, with love, care, and sweetness in good and bad times, always trying to

motivate me and give me strength.

80

Acknowledgements

An acknowledgement goes also to all my relatives, grandparents, aunts, uncles

and cousins, who have accompanied me towards this goal by encouraging me and

supporting me in every moment.

And last but not least, a huge thank goes to all my friends, my brothers by choice

and my life companions who have always been ready to give me moments of fun,

big laughs, but also a lot of help and comfort when I needed it.

Finally, I also want to thank Turin, this wonderful city, which has welcomed me and

will always be in my heart with all its buildings and monuments, its boulevards,

sports facilities, and breath-taking views.

81

	List of Figures
	Introduction
	NoSQL databases and CouchDB
	NoSQL databases, a bit of history
	NoSQL vs. SQL
	SQL: Pros and Cons
	NoSQL: Pros and Cons

	Categories of NoSQL
	Key-Value database
	Document database
	Column-oriented database
	Graph database

	Apache CouchDB
	CouchDB: Architecture
	CouchDB: Benefits and Features

	OWASP and Penetration Testing
	What is OWASP?
	OWASP Top 10
	Penetration Testing
	OWASP ZAP: Zed Attack Proxy
	Spider
	Fuzzer
	Passive Scan Rules
	Active Scan Rules

	CouchDB Injection Active Scan Rules
	Introduction
	Problem study: CouchDB vulnerabilities
	Query Injection
	Privilege Escalation

	Organization and Structure of the Work
	CouchDB Version and Setup
	JavaScript Web Application

	Java Application for CouchDB Injection
	ZAP Extension: CouchDbInjectionScanRule
	Query injection for Check Bypass
	Query injection for Password Bypass
	Privilege Escalation
	Additional Information

	Testing Phase
	Introduction
	Application for CouchDB version 3.1.1
	Application for CouchDB version 1.6.1
	“CouchDB” by sagarparker
	"verge" by johnsellejr
	Additional Information

	Conclusions
	Bibliography and Sitography

