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Abstract

Investing in the stock market has become incredibly popular in recent times. More
noticeably a huge number of young, risk averse and inexperienced traders are
now impacting the market with over 25 millions of options contract traded daily.
The instability that this trend brought to the table gave rise to increased demand
for uncorrelated asset classes - i.e. assets that are not influenced by the current
market situation – such as collectibles and sports betting. In a certain sense the
betting and trading world have a lot in common, whoever is able to process the
information at their disposal better and faster is usually going to make a profit. A
classic example of how technology is impacting the stock market is HFT or High
Frequency Trading, a financial trading approach that requires dedicated software
to perform the acquisition and liquidation of positions on the very short-term,
sometimes seconds, allowing investors to leverage small profits on a huge number
of transactions. Since the first attempts to apply predictive models to horse racing
in the 1970s, which failed due to the lack of data, technology has made a huge step
forward. In recent years some companies have specialized in collecting and selling
sports data that is now more available than ever before. With the aid of artificial
intelligence we can now analyze each event in a match and evaluate its effects on
the final outcome. This approach is exploited by sports organizations at all levels.
Managers know which players are the most valuable and which generate the higher
fan engagement. Bookmakers have a tool to correctly evaluate the performance
of each team to offer profitable odds, but so do investors. The ability to identify
a betting scenario where the odds don’t represent correctly the possible outcome
opens up the possibility for a systematic betting approach that in the long run will
yield a profit.
Even if betting has always been associated to gambling, with the aid of big data and
artificial intelligence, one individual can now profit from mispriced wagers in the
sports market in the same way that one could profit from trading mispriced options
in the stock market. The necessity of extracting the most valuable information
and metrics from the data that is at our disposal represents a valuable competitive
advantage as it boasts our ability to find profitable investment opportunity.
In this thesis I present a complete data management pipeline that can efficiently
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extract valuable information that are later going to be used to train AI models.
The theoretical approaches to identify value betting scenarios have been already
openly presented in the scientific literature, on the other side the technical details
are mostly kept secret by companies who don’t want to disclose their design choices.
I hope that this work can represent a valuable starting point for future research in
the betting and sports analytic world.
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Chapter 1

Introduction

This work shows the results of my research conducted during the first half of 2021
during an internship at Mercurius BI srl, an Italian company that develops artificial
intelligence models to trade and capitalize on the sports betting market. For this
project I oversaw designing and developing a new data extraction pipeline that
could serve all their current needs but would also be able to adapt to different
requirements that may arise in the future. This work hinges heavily on the graph-
oriented database to replace their current architecture.

1.1 How big data is impacting sports betting
Since Billy Beane’s first attempt of building a competitive baseball team in 2003
using evidenced-based decision methods, it was immediately clear that approach
represented a revolution for the world of sports. In the last years the amount of
high-quality data available drastically increased and data acquisition processes
are becoming more sophisticated. Experts developed new patterns and metrics
that can be extracted from the same data enhancing the informative power of the
information at our disposal.
Nowadays companies that want to maintain a competitive advantage over their
competitors need to keep pushing the accuracy of their predictive models to
guarantee the lowest degree of risk possible. To achieve this a good data extraction
pipeline and feature engineering process is paramount.

1.2 Value bet detection
Before discussing how data is exploited to find profitable bets one must first define
the concept of value bet. A value bet is a bet that offers better chances of returning
a gain than a loss, in other words, a bet that you are more probable to win than
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Introduction

loose. In general value betting is systematic approach that when properly performed
should generate returns in the long run. The term value betting is used in many
odds-based games such as Poker but in this case we are going to discuss value
bets in the context of soccer. Bookmakers fix the odds of a team according to the
probability that the team has of winning, the lower the odds, the higher the price.
For example an odd of 2.5 means that the bookmaker will pay you 2.5 times the
amount you bet, that is a net return of 1.5 times your initial investment. Starting
from the odds, one can compute the probability of winning of a that is implied by
the given odds themselves. To do so we simply perform the division:

implied odds probability = 100
offered odds

For example an odd of 2.5 will imply a probability of 100/2.5 = 40%. However,
for the betting market, the probability implied by the odds takes into account the
real chance of winning of a team but it doesn’t reflect it purely. This is due to the
fact that bookmakers take into account other factors and fix the odds based on
their business model. In the end, they also have to make a profit.
Now let’s assume that a given team is playing with odds of 3 to win, this would
imply a winning probability of 33%. However, our artificial intelligence model tells
us that indeed that team has a probability to win of 50%. Now we can use the
following formula to compute the expected value of our bet.

Expected V alue = (Fair probability − Market probability)
Market probability

This leaves us with the non trivial task of finding a way to extract the winning
chance of a team from its performance. As shown in chapter 3, many approaches
have been presented to analyze the performance of a team and compute the fair
probability of winning, however the theory behind value betting is always the same,
find betting scenarios that have a positive expected value.
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Chapter 2

Modern Database
technology

When designing a data storage architecture the choice of the underlying database
system is of vital importance. A classical approach to database involved the use of
relational databases, but in recent year we’ve seen NoSQL databases conquering
the world of big data and major tech companies. In this chapter are discussed the
major aspects of this two different approaches, with their relative benefits.

2.1 The relational database
Since its first adoption between the late ‘70s and early ‘80s, relational databases
have always been the commercial standard for storing data. Relational database
exploit the concept of relation to build an efficient representation of the data, and
represent this relations with tables.

In 1970, Edgar F. Codd published an important paper called “A Relational
Model of Data for Large Shared Data Banks” claiming that the adoption of the
mathematical notion of “relation” could solve some of the problems related to the
database models that were popular at the time, mainly the network model and the
hierarchical model. Both the network and hierarchical model consisted of tree or
graph data structure to keep track of the links between data using pointers. To
query the data that was stored on the bottom of the tree one had to traverse it
from the top, however, this implied that program had to have knowledge of the
internal organization of the data in order to proficiently navigate the tree. Codd
saw a major weak point in this approach: if applications bore the responsibility
of navigating data to find the needed bits of information, the program would
immediately break if the underlying structure of data would change. The relational
model was born in a quest to achieve what Codd defines as “the independence
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Figure 2.1: A standard table representation in a relational database

of application programs and terminal activities from growth in data types and
changes in data representation”.

Codd introduced the relational model that would be later refined in the following
years. Iin his studies he described a complete theoretical system that would
guarantee solid basis for his model, including: ALPHA, a SQL-like language that
he created to query the database but also important notions of relational algebra
and relational calculus. The term relation that we use in this context is a purely
mathematical one. Given two sets Si, Sj a relation is a collection of ordered pairs
containing one object from each set. If the object x ∈ S1 and y ∈ S2, then the
objects are said to be related if the ordered pair (x, y) is in the relation.

This model was characterized by two main factors, the first is that data would
be organized in tables, and the second is that data would be normalized. When
talking about data, the process of normalization refers to a set of rules that the
data should have to guarantee homogeneity and Independence of the data. During
the early ’70s, Codd defined the first normal form and then expanded it to the
second normal form. For data to be in second normal form it should respect the
following rules:

• No attribute domain has a relation as attribute, that basically implies not
having another table as an attribute, which is the condition for data to be in
first normal form.
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• Tables don’t contain non-prime key that are functionally dependent on any
subset of columns that constitute the candidate key.

We recall that a candidate key is a set of columns of minimal cardinality that
uniquely identify a relation. All the elements that can be part of a candidate key
are called prime keys.

Figure 2.2: An example of hierarchical database structure, to access the level 3
information a user must navigate the entire hierarchy

2.2 The NoSQL paradigm
From its commercial success, in the ’80s, relational database have been consistently
used and as of today they still stand as one of the most used database systems.
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However, some of the features that characterize RDBMs, proved to not work as
well in certain use cases.

With the increase of the web traffic, organizations and businesses had to originally
recur to vertical scaling - i.e. upgrading the machine that ran their software -
to increase performance every time they incurred in a significant performance
drop. However there is a technological limit to the performance that a single
machine can provide, so big tech companies came to the point where vertical
scaling wasn’t a reliable way to increase the performance of their systems anymore.
The only option remaining was to distribute the load among different machines
and scale the performance horizontally - i.e. increasing the number of machines
that are concurrently dedicated to a single task -, unfortunately SQL was simply
not designed to work in this of environment. The table-oriented data structure
requires join operation to merge data from different tables, indeed, to implement
join operations efficiently a centralized system is required. Tech giants started to
face the need to scale very quick and Amazon and Google presented respectively
SimpleDB and BigTable in the mid 2000s to try and face the need for greater
performance.
Since relational databases are often referred to as SQL systems, the word NoSQL
started to appear on social network as a catchword to identify these new non-
relational database systems. These new cluster based systems were developed with
new objectives that were clearly different from those that guided the development
of the original relational model:

• Faster performance

• Being able to operate efficiently on distributed systems

• Being able to rapidly adapt to fast paced changes of the requirements

• Having the ability to handle huge data stores of semi-structured data

• Being always available to minimize downtime
Quickly NoSQL became an answer to real world problem, and today is used by

the biggest players in the tech industry to run their operations, which are the same
individual that lead their development.

The NoSQL database can now be group in four different families: document-
oriented based, column-family, key-value and graph database. We are going to
dedicate a small section to each one of this databases

2.2.1 Transactional models: ACID vs BASE
One crucial aspect of database systems is the adopted transaction model. The
transaction model establishes a set of rules in which determinates how a database
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carries out basic data storing and management practices. Relational and NoSQL
database use two very different approaches regarding the transactions managament,
they respectively use the ACID and BASE model.

The ACID paradigm is based on four characteristics that ensure the consistency
of data when performing a transaction. These are:

• Atomicity: also known as the all or none principle. It implies that a
transaction is either performed to its full extent or its rolled back.

• Consistency: before and after a transaction the state of the database remains
valid. This means that inserting, removing or updating data doesn’t violate
the schema or any constraint or rule currently enforced on the environment.

• Isolation: Every transaction is executed without competing for any of the
database resources with other transactions. The execution queue is moderated
by the DMS that ensures the sequential execution of the queries.

• Durability: The results of a completed transaction will persist in the DBMS
storage.

For this reason ACID compliant database a must in certain application that require
the higher degree of accuracy when performing a transaction. A common example
is a transfer of funds between two bank accounts. Financial application alike will
use ACID databases almost exclusively. To enforce this level of security however
it requires sophisticated management of resources which is a computationally
demanding task for most use cases. Indeed the use of ACID transaction is pessimistic
in most applications; the success of the NoSQL paradigm came partially from
the relaxation of this requirements to achieve better scalability, performance and
resilience.

To solve the problems that tech companies were facing - building high-available,
cluster-based data stores - a more flexible approach to transaction management had
to be adopted. The acronym BASE captures well this new set of driving principles:

• Basically Available The system is able to provide a response to almost every
request.

• Soft State Since the system doesn’t guarantee immediate consistency, the
system may return data that is not updated.

• Eventually consistent Eventually the data on the cluster is going to be
consistent on every partition

These two different approaches are a consequence of the CAP theorem, which is
gonna be discussed in detail in a later section.
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2.2.2 Why a NoSQL database could be the right choice
As discussed, NoSQL databases were born with high scalability, raw performance
and availability in mind. Using one of these databases however could be justified
even for smaller volumes of data if one needs to:

• Handle semi-structured or unstructured data.

• Query data with few and simple predetermined patterns.

• Your use case fits well in one of the main categories of NoSQL databases.

2.2.3 Document-oriented database
Document oriented databases are a very popular category of database system. They
allow storing data in a way that is very close to the way a JSON file is organized.
This system allows to store and retrieve data in a semi-structured way and are
very capable in keeping together data that needs to be accessed simultaneously.

Figure 2.3: An example of document

Documents themselves are very flexible objects: the fact that their data structure
is self defined makes changing the data structure easy. Moreover, documents can be
nested: this removes the need to perform any join operation between table, however
the data schema must be query oriented - i.e. to store the information we need
in an efficient way, we need prior knowledge of the required information. Their
flexible schema, fast performances and high scalability, increased the popularity of
document oriented data stores, especially in agile development environments.
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2.2.4 Column-family database
Traditional relational databases were designed to read data from a single row at
the time since every row represented a relation. For this reason the design choices
focused on having a row store architecture. Rows of table would simply be stored
on the disk sequentially.

Figure 2.4: Representation of a row oriented storage

This approach proves very effective when writing a new row to the disk, as you
simply append it at the end of the current data. This however proves inefficient
when we want to read data, and even worst when we want to perform a join
operation. This is due to the fact that usually we bring more data then we need to
perform the join. This inefficiencies are not very noticeable when we work with
small data stores but drastically impact our performance when we have billions of
entries to go through.
Column oriented database was designed to work in data warehouses where retrieving
and analyzing data is the core task. In this format, the values of the columns are
stored close togheter.

Figure 2.5: Representation of a column oriented storage

Each value in a column is then assigned to a key, which can though as the row
index in the classical RDBMs. This key has the function of keeping track of which
columnar values belong to the same entity.

This approach was first presented in a paper from 2005[1], where the advantages
of such representation for mostly-read environment are presented. The main benefit
of this storing approach is the reading performance, mainly due to the need to
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access a smaller portion of data. Moreover columns can be saved on different disks
and the search can be parallelized, making a dominant design in the cloud data
warehouse market.

Figure 2.6: Graphical representation of a column oriented data store

2.2.5 Key-Value database
Key value databases are the simplest NoSQL stores. They key-value entry is very
close to the concept of dictionary: given a certain key the system is able to access
the value stored in the database. This model allows for the most freedom in defining
the data structure: the key is agnostic with respect to the content stored in the
value part. This internal structure guarantees extreme speed and scalability.

2.2.6 Graph database
Both the key-value and document-oriented database are so called aggregate oriented,
data is internally store to face a particular criterion that is often to keep often used
data together. Since the level of data aggregation is predetermined, it is easy to
spread collections of data between different machines. Grouping data on a different
aggregation level would require adding foreign keys to perform a join operation at
the application level, which would become a very expensive task very fast. Graph
database on the other hand are modeled on graph theory. They allow to easy
model connections and links between data so that the user can explore data from
any perspective. Graph data store are not the best at handling huge amounts of
data, however they offer very deep analysis options. Relations in graph database
are modeled as edges and entities are modeled as vertices. Both vertices and edges
are semi structured data, so the use of this model makes for infrastructures that
can quickly adapt to changes in the data representation, however deeper changes
in the architecture require a start from scratch or a mass update.

10
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Figure 2.7: An example of key-value store. Note that the content of the value
can be anything as data is completely unstructured

2.3 CAP Theorem
In computer theory, the CAP theorem states that a distributed database can only
guarantee two out of the three following features:

• Consistency: all the machines that are part of the cluster always contain
the same data

• Availability: the system is always able to provide a successful response, even
if it’s not the most updated one

• Partition Tolerance: the ability of the system to keep operating even after
a network failure takes place.

From the theorem we can derive three main design archetype:

• CA: the system is consistent and available at all time. This is the approach
followed by relational data stores. Since this system is not able to handle
partitions we can’t improve the resilience of the system to faults. In distributed
environment however is generally not possible to forgo partitioning.

• CP: when a network error causes a disagreement between two node the system
has to suspend the activity of one of the two nodes until consistency is restored.

• AP: we don’t care about providing obsolete data if a partition occurs, when
the partition is solved, consistency can be eventually restored.

11
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Figure 2.8: CAP theorem visualization https://www.researchgate.net/
figure/Visualization-of-CAP-theorem_fig2_282679529

Considering the fact that partitioning the data is necessary to operate at scale,
this theorem leaves us with the choice between delivering an available infrastructure
or a consistent one. Of course this is true only if we want to guarantee all these
properties at the same time, however these requirements can be handled by designers
and managed to a finer level.

12
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Chapter 3

Statistical approach for
performance evaluation

In 1993, Vic Barnett and Sarah Hilditch conducted research on the effects that an
artificial pitch could have on the home team performances. They concluded that:
“Quantitatively we find for the AP (artificial pitch) group about 0.15 more goals
per home match than expected and, allowing for the lower than expected goals
against in home matches, an excess goal difference (for home matches) of about
0.31 goals per home match. Over a season this yields about 3 more goals for, an
improved goal difference of about 6 goals.”

For the first time a given team was associated with an expected performance.
This is at the core of the techniques that are currently used to detect profitable
betting scenarios. As explained in the section discussing value bets detection,
evaluating the true probability of a team to win is paramount, much more so in a
sport like soccer, where the goal is generally a rare event and results can be often
decided by a single goal of difference. Since the inception of this approach many
different frameworks were born, the most relevant being the Expected Goal, the
Expected Threat and Valuing Action by Estimating Probabilities frameworks. These
models address different aspects of the game. While the first focuses on the more
relevant event in a soccer game, the shot, the other two maintain a broader view
on the game, weighting the actions that in the long term will bring to a goal.

3.1 xG - Expected goals
A good definition for the expected goal metric could be the following:
“Expected Goals, or xG, are the number of goals a player or team should have
scored when considering the number and type of chances they had in a match.”
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Since the objective of soccer is to score as many goals as possible, when looking
for a metric to evaluate the performance of a team or player, it is natural to be
willing to evaluate the scoring chances that a team can generate. It is immediately
clear to any soccer fan that shooting is not enough to make a goal. One may argue
that if a team takes enough chances at it, eventually a shot will reach the back
the net. However, it would be silly to think that taking a high number of shots,
regardless of their quality, would significantly increase your scoring chances. In a
certain sense the target measure of the xG model is exactly the intrinsic quality of
a shot, the probability that a shot, taken in certain condition would end up turning
in a goal. Figure 3.1 shows the position of all the shots that Hakan Chalhanoglu
took during the 2019-2020 Serie A season, with their relative xG value represented
by the dimension of the circle. It’s easy to see that shots that were took far away
from the goal represent less of a threat for the defending team.

At this point should be clear that not all scoring chances are created equal.
Finding the most influential factors to compute expected goals have been object of
discussion for years. The distance from the goal and the position of the shot have
always been the most relevant factors for the evaluation of the quality of the shot,
it’s easy to see that a penalty shot and a header from the penalty mark don’t have
much in common other than the position of the shot and the likelihood of these
two events ending up in a goal is very different. Many other casualties have been
studied separately, for example the speed of the shot ([2]; [3]) and its accuracy
[4]; [5];[6]). In this regard, it had a great relevance an article published in 2012
by Sam Green, a data scientist that at the time was working for Opta Sports, a
sports analytics company. In the article Green analyzed the performance of the
Premier League strikers and used the expected goal framework to give an objective
interpretation to each players scoring record, moreover he explored the factors
that made a shooting opportunity a good shooting opportunity and compared the
results of the strikers that tried their luck with difficult shots against those who
took fewer but higher quality opportunity.

Having said this, there is not a specific formula to calculate xG. Many models
have come up since the introduction of xG and every user and organization has
tried to improve the quality of its prediction by factoring in different elements
for example what part of the body was used to take the shot or if the shot was
taken during a counterattack and so on. Depending on the granularity of the
data to which we apply the expected goal method it can be used to estimate the
potential of a single event, player or an entire team, both offensive and defensive.
The intrinsic value of the xG framework is clear nowadays. Some clubs, like the
club FC Midtjylland won their first Danish league title using this method for the
recruitment of players ([7]). Analysts and coaches gain a clear advantage in having
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Figure 3.1: The above representation shows all the shooting attempts of Hakan
Chalhanoglu, where larger circles correspond to higher values of xG
https://theanalyst.com/na/2021/07/what-are-expected-goals-xg/

a statistical tool to evaluate players performance, and now it’s getting used as a
tool to exploit the betting market.

3.2 VAEP - Valuing Actions by Estimating Prob-
abilities

In 2019 a PhD student at KU Leuven published a paper where he discusses the
importance of evaluating a broader range of actions with respect to those taken into
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account by the expected goal model. As highlighted before, shooting in soccer is a
rare event so how does one evaluate the impact that a player is going to have on a
game if he’s directly accounted for scoring goals? The intuition was to create an
evaluation framework that would include a broader range of actions. This objective
poses different challenges. How would one evaluate a successful pass or a decisive
defensive intervention? The VAEP model aims at answering this exact questions.
To compute the VAEP value of an action we first need to define some notation. As
an assumption, we divided the game in different game states S = [a1, a2, ..., an], and
that for each of this states we can compute the chance that, given that game state,
the home team will score or concede. Respectively Pscores(Si, h) and Pconcedes(Si, h).
Once we have stated these two simple quantities, evaluating an action simply means:
how much will an action affect any of these two probabilities? The formula the
VAEP value of an action can be computed as follows:

V (ai, x) = ∆Pscores(ai, x) + (−∆Pconcedes(ai, x)) (3.1)

Please note that the VAEP value is simply the contribution of an action in increasing
the scoring probability of a team plus the contribution in lowering the chances of
conceding a goal. In this formula we denoted a given action as ai and as x the
team of the player that performed the actions. Using VAEP it’s easy to extract
an evaluation metric for player performances, we just have to sum the value of all
the actions he performs and average it over the window of time that we want to
compute.

rating(p) = 1
m

Ø
ai∈AT

p

V (ai) (3.2)

Using this formula we can compute ratings for players with different granularity, the
more natural being the VAEP for 90 minutes, but also analyzing the performance
of a player over a season could be helpfull.

3.3 xT - Expected threat
Expected threat is another metric that gain popularity in the recent years. Just
like the VAEP it tries to evaluate a broader range of actions besides shots. To do
so the expected threat metric analyze the possessions of each team. The argument
here is that every valuable scoring occasion is built up by each team with a series of
passes and dribbles that will eventually move the ball in a position where shooting
is easier. When using this method, the pitch is divided into M ×N zones. Each of
this zones is carachterized by three different probabilities:
1. Move probability: the probability that will move the ball from a specific

zone to another. The information about the destination of the pass or the
dribble is store into a transition matrix.

16



Statistical approach for performance evaluation

2. Shoot probability: the probability that a player will shoot in a given position

3. Goal probability: how often a shot from a certain position is converted into
a a goal

Figure 3.2: The visualization for the transition matrix
https://karun.in/blog/expected-threat.html

Starting from this quantities we can compute the expected threat value iteratively
for each zone. The formula to compute the xT is:

V (x, y) = Ps(x, y) +
Ø

∀(z,w)
T(x,y)→(z,w) × V(z,w) (3.3)

where (x, y) is the current position and (z, w) is any other position in the pitch.
From the formula you can see that expected threat is recursively defined. To
compute it we initially start by setting the value of V (x, y) to zero for each zone.
The we start computing V (x, y) for each zone for the first time. At this moment
only the contribution due to the probability of scoring has positive value, which
makes it the same as an xG model. The next iteration will give us the probability
of scoring after a pass in the same possession and so on. This notion makes the
expected threat model very easy to interpret, as it basically gives us the chance
to score a goal in the next n actions, where n is the number of iterations that
were computed. With this notion we can evaluate the performance of a player by
summing the positive difference in xT that his actions generate.
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Figure 3.3: 2d and 3d visualization of the expected threat https://karun.in/
blog/expected-threat.html
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Chapter 4

Data structure design and
architecture design

The design of a data structure and feature extraction pipeline that is able to manage
sport related data is not an easy task. The main sources of data that can be used
for scientific performance evaluation are optical tracking data and event stream
data. Optical tracking data is used by sampling images at high frequencies and
then extract the location of the players and the ball with the aid of a dedicated
software. Event stream instead is the list of all the events that happened in a
game with their position and time. For my research I have been working with data
provided by WyScout which is of the second type. In this chapter I will discuss the
implementation details of the design I proposed to efficiently exploit this kind of
data.

The use of event stream data conditions heavily our design choice and poses
different challenges. In general, not all provider adhere to the same data represen-
tation, moreover an update of the provider API may break the code as backwards
compatibility is not guaranteed. For this reason companies have to tailor their
software to work with a single provider, most of the time creating a lock-in effect.
Indeed this project was designed to specifically work with the WyScout API version
2.

4.1 The WyScout data representation
Every event is reported in a JSON file that contains various information, divided
in two main parts: the information on the match and the list of the events. Table
4.1 and 4.2 respectively report the data structure of the provided data.

This organization of the documents allow us to quickly process the data once
we find the correspondence between the information we are interested in and the
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Attribute Description
WyId Unique match Id

Label
A string that reports the teams
name and final result e.g. Chelsea
- Arsenal,2-1

Date Local date and time for the match
DateUTC UTC date and time for the match

Status Possible status for the match e.g.
cancelled, played, postponed etc.

Duration Regular, Extra time or Penalties
Winner Id of the winning team
CompetitionId Id of the competition
SeasonId Id for the season

RoundId In competitions with rounds, is a
unique Id that defines the round

Game week
In competitions spanning over var-
ius weeks, it’s the week of the
match, 0 otherwise

Teams Data
nested dictionaries containing
data for the team: coach, forma-
tion, lineup etc.

Venue String with the name of the venue

Referees
An array containing the unique Id
of the referees for the match and
their role

HasDataAvailable
A boolean value with the avail-
ability of the information for the
match

Table 4.1: The match data structure
complete reference at https://apidocs.wyscout.com/

relative tags and IDs.

4.2 Definition of the requirements
As stated in the previous chapter the main objective of this data extraction is to
predict the true chances of winning of every team. For this purpose the metric
that Mercurius chose to adopt is the expected goal - xG. The list of parameters
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Attribute Description
Id a unique event identifier

EventId An Id that descibes the type of
event, i.e. shot, pass, duel etc.

PlayerId Unique identifier of the player per-
forming the action

TeamId Unique identifier of the player’s
team

MatchId Unique identifier of the match
Matchperiod 1H - first half

2H - second half
E1 - first extra time
E2 - second extra time
P - penalties time

EventSec Seconds elapsed since the start of
the match

EventName A string with the explicit type of
event i.e. shot, pass, duel, etc.

SubEventId An Id that describes a sub cate-
gory of events e.g. head pass

SubEventName
A string with the explicit subtype
of event i.e. head pass, hand pass
etc.

Positions
X and Y coordinates of the start-
ing and ending position of the
event

Tags
An array of tags to describe spe-
cific situations e.g. the goal tag is
added to shot that score a goal

Table 4.2: The event data structure
complete reference at https://apidocs.wyscout.com/

that are considered for the computation of this metric is extremely long, so for the
purpose of this thesis we are going to consider only to the following ones:

• The angle of the shot with respect to the center of the goal

• If the shot is a penalty

• If the shot is happening after an attempt of block by the goalie
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• If the shot follows a key pass

• If the shot is labeled as an opportunity

• If the shot is performed during a counter attack

• If the shot is the consequence of a dangerous ball lost

• If the shot is preceded by a corner

• The game state

• If the player is shooting with its natural foot

Hence the main duty of this new database would be to easily extract the data
needed to compute the xG value for each shot. The second task was to implement a
new set of queries that involved dealing with sequences of events like the following
ones:

1. Find all the uninterrupted sequences of actions that end with a shot.

2. Find, for each game of a given team in a season, the average number of
sequences that start in a defensive sector of the pitch and end in an offensive
zone.

Moreover, these queries should be easily accomplished on different levels of granu-
larity: we need to compute the xG value both for a single player and entire teams,
over the course of a single game, a set of games or an entire season.

As the choice of a NO-SQL database system is heavily query oriented, these
queries highlight the need of finding a convenient way to analyze series of events.
Regarding the system requirements, since the total amount of raw data is relatively
small, aproximately 36 giga-bytes, we don’t need to partition our data store, for
this reason we can achieve perfect local consistency. The system would be run on a
server hosted on the Amazon Web Services platform, and should be able to get
automatically updated every time WyScout releases data about recently played
games.

4.3 The choice of the database
Given the requested queries, the choice of the database was a very important task.
When dealing with the computation of the xG value for each shot, almost every
DBMS could be used to efficiently solve the issue, since all we need to do is to
extract a given set of properties of each shot. However it was also necessary to find
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a database that could efficiently store sequences of events and query the patterns
inside the database. For this reason a graph oriented database was chosen, in
particular I settled for Neo4j. The main reasons for choosing a graph database are
the following:

1. The logical model of the data can be reflected in the physical model, making
very easy to design the data store.

2. The graph-oriented environment allows us to exploit the DBMS capabilities
to find the patterns that we are looking for, without recurring to complex
aggregation phases.

3. Neo4j is a reliable system with a large community and support, so it’s a good
choice for mission critical application.

With graph-oriented database we can express otherwise complex relations in a
relatively simple way: for example we could generate a node for a season and then
link to that node all the games that took place in that season. In the next section
we are going to analyze how the data has been modeled.

4.3.1 A small comparison with document-oriented and
column-oriented DBMS

During the research phase three different DBMS have been tested, one for each
family. MongoDB, Cassandra and Neo4j where the candidates for the document-
oriented, column-oriented and graph-oriented DBMS. As mentioned before, when
analyzing only the xG value for every shot, every category of DBMS accomplished
the task very easily. MongoDB in particular can basically store the entire match
document without needing any preprocessing, making the write operations to the
data store very fast. Similarly Cassandra can do the same by uploading massive
Json files collections at once. However once we moved to testing the queries
concerning sequences of events it became clear that a graph-oriented DBMS was
the best fit. Verifying a condition for a sequence trough a document or a tabular
database required a preaggregation phase computed explicitly via software, then
the data on sequences could be stored in a document or in a table. Neo4j instead
allows us to query for specific Node-Link-Node patterns, and more importantly,
can handle variable length path analysis with ease.

4.4 Design guidelines for graph-oriented DBMS
A graph database consists of nodes, which represents entities, and edges, which
represent relationships between nodes.
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Figure 4.1: An example of a graph database representation

(a) A graph with too many nodes (b) A graph with overcrowded nodes

Figure 4.2: Examples of two bad designs

Both nodes and links are characterized by one or more labels and both can
store addittional informations. This representation is extremely powerful but also
extremely easy to understand. Links can represent a wide variety of concepts
and/or predicates which makes graph-oriented DBMS very flexible tools. When
designing the data structure however one should be aware of some basic concepts.
The first is to avoid extreme data fragmentation or concentration. Since data is
unstructured one could have very few nodes with a high number of attributes or
a very high number of nodes with very few attributes. Of course both of these
approaches are generally wrong, graph should model significant entities as nodes
and keep the marginal information as attributes.

Another pattern that should be avoided, especially when the the number of
nodes in the graph increases drastically is the super node pattern. A super node is
a node that has a very high number of connections to other nodes. This pattern
can severely impact both read and write performance, but can be solved using fan
out, a solution that was implemented even in my proposed design.

In figure 4.3 its shown a classic example of the fan out technique. It would be
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Figure 4.3: An example of the fan out design

nice to keep track of all the actions a player performed during his career, however
a players performs a huge number of actions every match. Hence every node player
would quickly degenerate in a super node. To solve this we create meta nodes that
group the actions by the game in which they were performed. Even when there’s
not a natural way to group entities in a convenient way is important to keep the
number of edges connected to a node relatively small.

4.5 Proposed data structure and feature extrac-
tion

Having discussed the requirements and some common design guidelines I am going
to present the proposed data structure and discuss the design choices. Recalling the
data structure of the WyScout API, I am going to present the various parts that
make up the complete data model in the same order in which they are processed
during the feature extraction phase. Note that the DBMS is first created and
seeded with all the data current available, then is updated every time a new match
is played. The feature extraction process is carried out for every JSON file that we
currently have on hand during the database seeding procedure, then is performed
again every time we want to update it with a new JSON file. It’s important to
consider that the data is highly connected, so the feature extraction procedure had
to be designed to be run sequentially on a high number of documents.
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1) Preprocessing
Before loading the data in the data base some preprocessing steps are required.
First of all we need to clean the data. WyScout changed the way arrays are reported
after 2015, so we need to convert the old representation to the new one - after
2015 every attribute in the JSON file is reported as an array, to have a consistent
representation we need to wrap non-array attributes into one element arrays. Some
features are then computed for each element:

• If the event is a shot we compute the angle with respect to the center of the
goal.

• The game state and player state. To describe this two attributes is better to
use an example. Let’s assume that team A is winning the game against team
B with a score of 2 to 1. All the events for team will have a game state of
+1, and all the events for team B will have a game state of -1. So game state
is simply the goal difference computed for each team. Player state is pretty
much the same but considers the number of players on the field for each team
- i.e. the number of red cards.

• The representation of the position is changed. WyScout represents position as
the percentage distance on each axis starting from the bottom left corner - e.g.
a coordinate of (x = 50, y = 50) is the center of the field, while a coordinate
(x = 50, y = 100) is the center of the enemy team goal. For consistency with
other Mercurius’ software we need to shift the coordinates so that the center
of the field is in (x = 0, y = 0)

2) Loading the match
Every time a document is loaded we create a new node with the Id of the match.
Then we check the season id the game has been played in, if we haven’t already
created a node with such Id we also create a Season node. Then we create two
Period nodes for the match, representing the first and second half of the game
respectively.

3) Loading the events
Once the match has been loaded we start loading all the events. Events are the
single more important entities for our model and are by far the largest in cardinality,
averaging at around 1600 per match. We look for the Match node that we just
created and link all the events for the game to the respective Period Node. The
use of the Period node was implemented to speed up the retrieval of events: this is
because a graph-oriented database when searching for a node connected to another
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Figure 4.4: Match data structure

needs to traverse all the edges until it finds a correspondence. By dividing the
events in two subgroups, if we know in which periods an event took place we can
consistently halve the retrieval time for this nodes. This is also the phase in which
we collect all the information necessary to compute the xG for every shot. To do
so we need to extract the following parameters for every event:

• The event category - shot, pass, duel, etc.

• Starting and ending position

• Time elapsed since the beginning of the match

• The match Id - this is a redundant information, but is extracted for index
optimization purposes

• The current game state - i.e. the difference in score and players on the field
for the team performing the action

• The angle with respect to the center of the goal, valid only for shots

• Various tags to describe the context

• The player Id - again redundant but used for index optimization

4) Loading Players and "Partecipation" nodes
This portion of feature extraction sees a major adoption of the fan out pattern.
For every match we want to load all the players that took part in it and create a
node for each one of them, assuming they are not already in the data base. We
iterate along the list of events and extract a list of distinct player Ids, their team
Ids, the season Id and the match Id. Then we create a new Participation that
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couples each player to all the actions he performed during a match. The result is
showm in figure 4.5. The Participation node conveniently store the information
about the player, the match, the team the player played for at the time and is
linked to the season node. In this way we can compute the expected goal with
different granularity, depending on the need.

Figure 4.5: Caption

5) Link the events and the participation nodes
Once we created all the participation nodes, we iterate along every event of the
match and we link it with the corresponding participation node.

6) Creating the "Next" relation
The next relation is the key aspect that allows the analysis of sequences of actions.
Simply, every event is linked to the event that will happen next. This kind of
relation has an attribute team that can assume two different values: "same" and
"different". Basically if one event and the next one are done by players of the same
team we label the link with the "same" label and we do otherwise in the opposite
case. This simple trick allows us to express the concept of possession for a team: an
arbitrary number of actions performed by the same team represents a possession,
and the pattern matching capabilities of Neo4j allow us to look for sequences of
events where all the "next" relation in the chain have the attribute "same".

4.6 Querying the database
Querying a graph database can be done in different ways, depending on how
the data structure has been defined. Nodes can be retrieved directly with the
corresponding Id, but also through a logical pattern. Let’s say that we have a
database with 100 games divided in 5 seasons, if we want to look for the game with
Id = 42 we can use two different approaches:

• Query the database for the Match node with Id = 42. This query will require
to check at most 100 nodes.
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Figure 4.6: A representation of the final data structure. Note that not all the
attributes are reported

• If we know in which season the game was played - e.g. SeasonId = 3 - we
can query the database to query only the match nodes linked to the season
node with Id = 3. This will take at most 5 checks to find the correct season
and at most 20 checks (assuming the 100 matches are equally divided among
the 5 seasons) to find the correct match.

Please consider that with the use of indexes the retrieval performance of relevant
information is quicker, however this querying approach should be kept in mind
when working with graph database, as it was found experimentally that following
a known path is faster than looking for a specific node, even when indexed. The
code reported in 1 shows how this approach is implemented. To load all the events
in the corresponding match we need to iterate over all the events contained in the
JSON file, create a node for each one of them and finally link this new node to the
right period node of its corresponding event. At this time, the node of the match
and periods are already in the database, but to operate a faster search we look for
them starting from the Season id. Since the number of season is much smaller than
the number of matches, this restricts the search space substantially.
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Algorithm 1 The query used to load the events for every match, an example of
how using paths optimizes the retrieval time.

1: WITH CALL apoc.load.json($path)
2: YIELD valuew
3: UNWIND value[’events’] as event
4: MATCH(s:Seasonid:value[’match’][’seasonId’])<-[:IN_SEASON]-

(m:Matchid:value[’match’][’wyId’])-[:HAS_PERIOD]->(p:Periodperiod:
event[’matchPeriod’])

5: CREATE (e: Eventid: event[’id’])-[:IN_PERIOD]->(p)
6: SET e.name = event[’eventName’],
7: e.position = [event[’positions’][0][’x’], event[’positions’][0][’y’]],
8: e.time = event[’eventSec’],
9: e.matchId = value[’match’][’wyId’],

10: e.teamId = event[’teamId’],
11: e.state = event[’state’],
12: e.angle = event[’angle’],
13: e.tags = event[’tags’],
14: e.subEventId = event[’subEventId’]

30



Data structure design and architecture design

4.7 Architecture design
The designed database system of course requires to be interfaced with the pre-
existing software that is currently in use by the company. All Merurius’ services are
hosted on Amazon Web Services platform, so also the database had to be hosted
on an AWS service.To ensure complete operation, the architecture must include
various components:

• A server hosting the DBMS

• A seeding script that loads all the matches currently available on the
database storage.

• A way to load new matches every time WyScout provides an update

Fortunately the AWS environment provides powerful tools to build a web
infrastructure that is able to satisfy all our requirements. In particular, an EC2
machine was used to host the DBMS, an S3 disk was used for the mass storage,
while a stateless Lambda function was used to load new games in the DBMS. In
figure 4.7 a scheme of the final architecture is presented.

Figure 4.7: Caption

It’s important to note that also the lambda functions performs the preprocessing
phase and loads the match in the same way the seeding script does.
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Chapter 5

Results

In this chapter are presented the performance and the possibilities that the designed
DBMS provides. The dataset that was made available for testing is restricted to a
total of 646 matches from the 2019-2020 Premier League season and the 2020-2021
Serie A season, with a total size of 282,9 MB. The resulting graph will have in order
1,1 millions of nodes and 3,2 millions of edges. The small dimension of the dataset
is mainly related to the low availability of free data and the high cost associated
with buying stream event data from a provider such as WyScout or StatsBomb.

5.1 Data exploration possibilities
The usability of a technology is an aspect that is hard to evaluate numerically.
Graph-oriented database offer a visual representation that is easy to understand
and navigate. In particular, Neo4j offers a complete solution for quick prototyping
and experimentation the Neo4j Browser User Interface. This is a complete GUI
that allows developers to quickly develop a new data schema, but can also be
used to present implementation details to others. This possibilities proved to be
especially useful while debugging queries and during the design phase of the data
schema and new queries. Another notable feature is the possibility to start from
a single node and explore the adjacent nodes to query the database in a more
interactive way.

5.2 Read and write performance
Read and write performance are usually two of the most valued aspects when
designing a DBMS. In this case however the write performance of the system is
not as relevant. The seeding of the DBMS can be performed nighttime, while
consistency after the release of new matches data can be achieved in relatively long
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Figure 5.1: A portion of the data schema as represented in the Neo4j Browser
User Interface

time frames - e.g. a couple hours. This is due to the fact that the AI models are
not trained often. Figure 5.2 reports the loading time required to load each game
from our dataset into the DBMS, the average time require to preprocess and load a
game is 0.338 seconds. This kind of performance allows us to load a full 380 games
season in under two minutes, which is a decent result, however to obtain this result
it is very important to optimize the indexes used. The list of indexes is reported
in table 5.1. Note that in Neo4j a single attribute index is used to speed up the
retrieval of a node with a given Id -e.g. the match with Id 19248 - while multiple
attributes indexes are used to find a node that is linked to a starting node - e.g.
the event with Id 12313 linked to the match with Id 19248.

Reading performance on the other hand is a more important aspect since more
rapidly available data can shorten the training cycle if we do not plan to keep all
the dataset in the main memory. In case we have enough memory to do so instead
we can extract the data that we need to carry out the training before hand, to
reduce the impact that a real time extraction would bring. For the purpose of
this work we are going to consider the expected goal as the only parameter used
for the performance evaluation of every team, to accomplish this task one sample
query could be: "Find all the shot that team with Id 3205 performed during season
with Id 185727". When performing this kinds of query the DBMS starts streaming
responses after 1ms, which is basically an immediate response. More complex
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Label Attributes Type
Event Id Uniqueness
Event Id-MatchId Uniqueness
Match Id Uniqueness
Match Id-SeasonId Uniqueness
Participation MatchId-PlayerId Uniqueness
Season SeasonId Uniqueness

Table 5.1: The indexes used in the final design

Figure 5.2: Time required to load every game from our dataset

queries require more time to be computed, for example a query like :"Find all the
sequences of 5 events that start with a pass and end with a shot completed by the
team with Id 1610" requires 65ms to return. This latter type of queries however
represents a very advanced degree of aggregation that would otherwise be very to
achieve by manipulating the data via software.
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Conclusions

In this work it is presented a complete DBMS architecture specifically designed
for performance evaluation and value bet detection. This work wants to prove the
efficacy of graph oriented DMBS in modelling soccer related data among other use
cases.

The architecture is based on Neo4j, a NoSQL DBMS, which allows an agile
development with rapidly changing requirements and design choices. Due to the
nature of this kind of application, the system’s design is query-oriented and tailored
to work specifically with the WyScout event-stream data format, nonetheless the
data schema can be used with other data provider that is able to provide the same
contextual information. The ability of loading collections of JSON documents
directly into the graph requires that the input files are strictly formatted to prevent
errors, a problem which has arisen also with WyScout older data.

The system is also able to deliver great performances and functionalities. The
main task that it would be able to complete was to find all the shots that a given
player or team performed over a variable time window to compute the expected
goal value of each of those shots. This kind of query is completed within one
millisecond which is an almost latency free response. In addition, thanks to the
graphs representation we are able to query the database for complex patterns with
simple queries, which simplifies enormously the work load of designing new metrics.
Also this kind of queries are computed extremely fast by the system.

This design should not be intended as a perfect design, but considering the lack
of academic literature on the subject, it may prove as a useful starting point for
further design improvements, or as a valuable solution for data scientist that want
to implement new metrics, like movement chains [8]
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