

December 2021

Politecnico di Torino

Master’s Degree in Computer Engineering
A.y. 2020/2021

Analysis of Webcam Fingerprint for
User Authentication

Supervisors: Candidate:
Enrico Magli
Tiziano Bianchi

Francesco Stagnitta

Summary

Webcam fingerprint authentication is a novel password-less authentication method
that aims to facilitate the user authentication process in order to make it more usable
and still robust. This thesis analyses the extraction of the webcam fingerprint,
a noise pattern that identifies each webcam among others, and the process of
fingerprint matching using some sets of photos acquired through an acquisition
campaign. After a deep bibliographic research, the thesis discusses models behind
the construction of a capture script both for Windows and MacOS environments.
This script, written in Python, was employed in the acquisition campaign to compose
two datasets of photos taken from 30 different devices. These photos were later
used for the simulation of the webcam fingerprint authentication. In this part,
the fingerprint operations were performed using two distinct algorithms, those
developed by Fridrich and ToothPic, respectively used for fingerprint extraction
and fingerprint matching. The results of the simulation were analysed by means of
ROC curves that assessed the accuracy of the authentication scheme using the two
algorithms. In order to obtain the best results, the problem of Non-Unique Artifacts
had to be resolved. For this purpose, Wiener filtering was applied in the frequency
domain as a post-processing operation on the extracted fingerprint. By applying
this filter, and observing the related ROC curves, it was demonstrated that the
webcam fingerprint authentication process can be used as a robust authentication
method both for Windows and MacOS devices.

iii

Acknowledgements

Throughout the work behind this thesis I received a great support. I would like to
acknowledge every person that contributed by making computers available for this
research and giving useful advice to finish the dissertation in the best possible way.

Moreover, I would like to thank my parents, my sister, and my entire family
who have supported me from the beginning of my studies.

Finally, I would like to thank my friends, particularly Giulia and Salvo, who
have always been a rock to hold onto in difficult times, during my university years.

“It’s fine to celebrate success, but it is more important
to heed the lessons of failure”

Bill Gates

v

Table of Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Authentication State-Of-The-Art 2
1.2 Webcam Fingerprint Authentication 3
1.3 Thesis Objectives . 3

2 Background 5
2.1 PRNU . 5
2.2 Reference Fingerprint Extraction 6
2.3 Fingerprint Compression . 6
2.4 Fingerprint Matching . 7

2.4.1 Correlation Coefficient . 7
2.4.2 Hamming Distance . 7

2.5 ToothPic scheme . 8
2.5.1 How it works . 8
2.5.2 RAW Photos . 9

2.6 Privacy Considerations . 9

3 Capture Script 11
3.1 Software and API Research . 11

3.1.1 Physical Driver Access . 11
3.1.2 Operating System’s Frameworks 12
3.1.3 Cross-Platform Tools and Libraries 12

3.2 OpenCV Properties . 13
3.2.1 Programming Language . 13
3.2.2 Frameworks . 13
3.2.3 Uncompressed Formats . 14
3.2.4 JPEG vs Uncompressed Format 15

vi

3.2.5 Resolutions . 16
3.3 Photos Analysis . 17

3.3.1 JPEG compression . 17
3.3.2 JPEG reconstruction . 17
3.3.3 Results . 17

3.4 Dropbox Saving . 20
3.4.1 Dropbox Apps . 20
3.4.2 Saving Script . 20

3.5 Creation of the Capture Script . 21
3.5.1 Acquiring the Images . 22

4 Dataset Creation 23
4.1 First Dataset . 23
4.2 Fridrich Algorithm . 24

4.2.1 Results . 25
4.3 ToothPic Algorithm . 26

4.3.1 High-Pass Filter . 26
4.3.2 Images Size . 27
4.3.3 Results . 28

4.4 External USB Webcam . 30
4.4.1 Results . 30

4.5 Acquisition Campaigns . 31

5 Final Results 35
5.1 Analysis Process . 35

5.1.1 Fridrich Algorithm Pipeline 36
5.1.2 ToothPic Algorithm Pipeline 36
5.1.3 Modified Pipeline . 37
5.1.4 ROC Curves . 37

5.2 First Dataset Results . 38
5.2.1 ROC Curves Correlation Value 39
5.2.2 ROC Curves Hamming Distance 40
5.2.3 Graphs Explanation . 40

5.3 Second Dataset Results . 41
5.3.1 ROC Curves Correlation Value 41
5.3.2 ROC Curves Hamming Distance 42
5.3.3 Graphs Explanation . 42

5.4 Non-Unique Artifacts . 44
5.4.1 Fingerprint Matching with NUA 45

5.5 Wiener Filter . 46
5.6 Wiener Filter Results . 47

vii

5.6.1 ROC Curves Correlation Value 47
5.6.2 ROC Curves Hamming Distance 48

6 Conclusions 49
6.1 Future Work . 50

Bibliography 53

viii

List of Figures

2.1 ToothPic scheme . 9

3.1 Available formats in OpenCV . 14
3.2 Differences in the pixels between uncompressed images, (a) and (b),

and a compressed image, (c) . 15
3.3 Images captured in two different resolutions 16
3.4 RGB image with 1280x720 resolution in Windows 18
3.5 RGB image with 1280x720 resolution in Windows 18
3.6 RGB image with 1280x720 resolution in MacOS 18
3.7 RGB image with 640x480 resolution in Windows 19
3.8 NV12 image with 640x480 resolution in Windows 19
3.9 YUY2 image with 640x480 resolution in Windows 19
3.10 Dropbox APIs usage . 21
3.11 Examples of the scripts for Windows, (a), and MacOS, (b) 22

4.1 Fingerprint matching PC 1, (a) . 24
4.1 Fingerprint matching PC 2, (b), and PC 3, (c) 25
4.1 Fingerprint matching PC 4, (d) . 26
4.2 Example of the filtering matrix used in the high-pass filter 27
4.3 Fingerprint matching USB webcam, Fridrich algorithm 30

5.1 Example of the txt file for the Fridrich algorithm pipeline 36
5.2 Example of the txt file for the ToothPic algorithm pipeline 37
5.3 Example of the txt file for the modified pipeline 37
5.4 ROC curves of the first dataset results using the double-valued

fingerprints . 39
5.5 ROC curves of the first dataset results using the binarized fingerprints 40
5.6 ROC curves of the second dataset results using the double-valued

fingerprints . 42
5.7 ROC curves of the second dataset results using the binarized finger-

prints . 43

ix

5.8 Histograms of the fingerprint matching process to detect NUA . . . 45
5.9 Histograms of the fingerprint matching process with the application

of Wiener filtering . 46
5.10 ROC curves of the second dataset results using the double-valued

fingerprints. In the Fridrich algorithm pipeline Wiener filtering was
applied . 47

5.11 ROC curves of the second dataset results using the binarized fin-
gerprints. In the Fridrich algorithm pipeline Wiener filtering was
applied . 48

x

List of Tables

4.1 List of devices in the first small dataset 24
4.2 Results of algorithm application with diagonal = −blocksize ∗ 0.3 . 28
4.3 Results of algorithm application with diagonal = blocksize ∗ 0.1 . . 29
4.4 Results of algorithm application with diagonal = blocksize ∗ 0.3 . . 29
4.5 Results of algorithm application with diagonal = blocksize ∗ 0.5 . . 29
4.6 Results, with diagonal = −blocksize ∗ 0.3, of ToothPic algorithm

application in the USB webcam . 31
4.7 Results, with diagonal = blocksize ∗ 0.1, of ToothPic algorithm

application in the USB webcam . 31
4.8 Results, with diagonal = blocksize ∗ 0.3, of ToothPic algorithm

application in the USB webcam . 31
4.9 Results, with diagonal = blocksize ∗ 0.5, of ToothPic algorithm

application in the USB webcam . 31
4.10 Devices involved in the first acquisition campaign 32
4.11 Devices involved in the second acquisition campaign 32

5.1 List of devices in the dataset to detect NUA 44

xi

Chapter 1

Introduction

1

Introduction

The authentication world has always been a fundamental part of the Internet
because it is essential for the users to have a secure experience when accessing
the services offered by the web. Basically, authentication is the act of proving
something to the system that will decide whether the information provided by the
user is enough to pass the authentication process. Authentication relies on three
factors which prove different things [1]:

• Knowledge: It is something the user knows (e.g., password)

• Possession: It is something the user has (e.g., token, identification device)

• Inherent: it is something the user is (e.g., biometric)

These factors can be combined in different ways to create Single-Factor Authen-
tication or Multi-Factor Authentication (MFA) schemes.

1.1 Authentication State-Of-The-Art
The predominant authentication system is password-only authentication which
is based on the knowledge factor, as the user must prove the knowledge of a
password in order to be authenticated by the system. However, over the years,
it was demonstrated that single-factor authentication with the use of passwords
is extremely weak for many reasons. First, online guessing attacks are becoming
more intelligent and effective, given the fact that most users adopt weak and reused
passwords. Then, large-scale password database leaks happening in the last few
years have revealed the critical problem of password storage.

A solution to this problem has been identified in MFA systems, such as 2-Factor
Authentication or Risk-Based Authentication, which rely on additional factors in
order to perform the authentication. Nowadays, following the state-of-the-art,
MFA is implemented with the use of the knowledge factor, through password
authentication, together with the possession factor, using a security token sent
via e-mail or SMS. Although this solution is very robust, it lacks usability since
the user is required to perform many actions to obtain access. Google reported in
January 2018 that 2FA was enabled by less than 10% of their users [2].

Finally, biometric authentication, in which the user is required to use one of his
identifying characteristics (i.e., fingerprint, face), is the most secure authentication
method because it is very difficult for an attacker to steal the used authentication
factor. However, biometric data are regulated in EU by the GDPR [3] and, thus,
they cannot be processed. So, biometric authentication can only be performed
locally in the user devices.

2

1.2 – Webcam Fingerprint Authentication

1.2 Webcam Fingerprint Authentication
In the last few years, considering the growing number of users on the internet
and the every day increase in cyber-attacks, many attempts have been made by
researchers from all over the world to develop new systems that guarantee the
robustness of authentication and, at the same time, are more usable than the
solution adopted in recent days.

In this thesis a new password-less authentication scheme, which relies on the
possession factor, is introduced. It can be either used as an additional factor for
MFA, or even in a single step authentication protocol. Indeed, the possession of a
specific webcam is basically verified by extracting its fingerprint. This system has
already been patented and tested by ToothPic for the smartphone camera, proving
that the camera fingerprint has a good discriminating value in identifying the right
device. In this process, the PRNU extracted from the camera sensor was used as a
Physical Unclonable Function to perform cryptographic operations [4]. This was
possible thanks to the characteristics of the PRNU, which is unique for each sensor
and stable over its lifetime.

The following analyses try to apply the camera fingerprint authentication system
in a PC scenario, using the webcam to capture photos. Hence, it is demonstrated
how to extract a good PRNU from the acquired images and whether the extracted
webcam fingerprint is able to detect the various PCs, which are part of a large
dataset.

When it comes to PCs it is important to note that the user can perform the
authentication with either the built-in webcam or an external USB webcam. In
the first case the user proves to the system that he is in possession of the PC in
which the webcam is incorporated, because all operations in the authentication are
done from the same computer. In the second case the authenticated device is the
external webcam, since the user can use this webcam in every PC. Therefore, the
external USB webcam is used as an authentication token.

1.3 Thesis Objectives
The main purpose of this thesis is to implement webcam fingerprint authentication,
in Windows and MacOS devices, and see if the system is as robust as the one
developed in the smartphones scenario by ToothPic.

To find these results it was decided to follow a fixed path. Firstly, a deep
bibliographic research on the methods to take photos from the selected operating
systems is necessary. Frameworks, tools, and libraries were analysed so to find
how to access the webcam sensor in order to obtain the least processed images
possible. After the selection of the tool, in the acquiring phase, it is needed to build

3

Introduction

a script able to acquire the appropriate photos from the PCs webcam. This script
can be used in an acquisition campaign so to involve many devices. Then, when
the photos acquired in the campaign are collected, the fingerprint extraction and
fingerprint matching processes can be applied to simulate the webcam fingerprint
authentication scheme. Lastly, the obtained results can be analysed using ROC
curves to evaluate the accuracy of the applied authentication method.

4

Chapter 2

Background

In order to fully understand the experiments explained in this thesis, it is necessary
a quick introduction to the concepts of webcam fingerprint and how it specifically
works for user authentication.

Then, the ToothPic authentication scheme is also presented. This authentication
scheme has already been developed for smartphone authentication, using the
fingerprint of the smartphone camera.

Finally, one of the most important issues to deal with is the privacy impact of
this new authentication method, compared to the existing ones.

2.1 PRNU
The photo-response non-uniformity (PRNU) is the main characteristic on which the
whole webcam fingerprint authentication system is based. Basically, it is a pixel-to-
pixel noise generated by physical imperfections of each pixel; these imperfections
are caused by very small variations in the physical dimensions of the pixels, and by
the inhomogeneity naturally present in silicon, which contributes in the ability to
convert photons to electrons [5].

This noise is deeply interesting for our purpose because it is generated by each
pixel, so these imperfections are not correlated. Taking a whole webcam sensor,
composed by at least hundreds of thousands pixels, it is possible to obtain a noise
pattern such that is very likely assured to be unique for each webcam sensor.

Moreover, PRNU is a systematic part of the noise that can be used as an
unclonable physical characteristic of the device because it does not change among
the different images taken by the same webcam, and is relatively stable over the
webcam life [6].

In order to obtain a good PRNU, it is important to have a good light intensity,
since the PRNU term is not visible in saturated areas of the image which contain

5

Background

dark content. Therefore, it is possible to say that PRNU, extracted in favorable
conditions, is a very useful forensic quantity due to its properties of dimensionality,
universality, generality, stability, and robustness [5].

2.2 Reference Fingerprint Extraction
The first step required to estimate the webcam fingerprint is the collection of the
reference images. From these reference images, the reference fingerprint, which
is the fingerprint that uniquely represents the webcam, is extracted. Because of
this reason, the reference fingerprint must be of the best possible quality, and it is
important to extract the PRNU pattern from the most appropriate images.

A set of 20 to 50 images with white and uniform content, as written in 2.1,
is necessary to obtain a good PRNU pattern [7]. The purpose of these reference
images is to illuminate the webcam sensor with a light intensity as more uniform as
possible, and to avoid dark areas in the images, which would decrease the quality
of the PRNU.

The obtained fingerprint is, in substance, a matrix of double-precision values
with the same dimension as the sensor of the webcam. Each matrix cell represents
the PRNU value of one pixel and, together with the other uncorrelated values, it
will compose the pattern that identifies the webcam.

The fingerprint can be extracted from different image formats. Thus, if the
image is in gray-scale, it is only needed to extract the PRNU pattern; otherwise, if
the image is in RGB, firstly the PRNU pattern for each channel must be obtained,
and, then, the RGB-to-gray conversion must be applied to recover a "global" PRNU
fingerprint [7].

2.3 Fingerprint Compression
The fingerprint in double-precision values brings many usability and technical
problems because of its size. Since each cell contains a double-precision value,
occupying 64 bits in memory, the total fingerprint size can be in the order of some
Megabytes.

This size can be a problem in terms of network connection, when the fingerprint
is sent over the network, and in terms of database size, when many reference
fingerprints have to be collected for authentication purposes.

A solution to deal with this problem is the fingerprint compression via binary
random projections. As demonstrated by Valsesia et al. [7], this compression method
is based on the computation of products between the real-valued fingerprint and
random vectors, which compose the sensing matrix. Then, it is possible to obtain
a binary fingerprint quantizing the measurements while keeping their sign.

6

2.4 – Fingerprint Matching

It follows that binary random projections allow to reduce the fingerprint dimen-
sion to one bit per pixel with slight information loss when the comparison between
the different fingerprints is done.

2.4 Fingerprint Matching
The fingerprint matching problem comes when there is a reference fingerprint for a
given webcam, and it is required to decide whether a set of test photos (≈ 100)
have been captured by the same webcam. So, a test fingerprint, that needs to be
compared to the reference fingerprint, will be extracted from these photos.

As seen in the previous sections, there are two different types of fingerprints:

• Double-valued fingerprint

• Binarized fingerprint

For each fingerprint type there exists a different method to solve the problem
of fingerprint matching. Both methods consist in finding how much the reference
fingerprint and the test fingerprint are similar, so a correlation value is calculated.

Then, it is needed to set a proper threshold value that will be compared to the
calculated correlation value. From this comparison it will be possible to detect
whether the test fingerprint matches the reference fingerprint, or not.

2.4.1 Correlation Coefficient
When we have to compare real-valued uncompressed fingerprints, a correlation
coefficient must be computed and, then, compared with the selected threshold. If
the calculated correlation coefficient is higher than the threshold, the test fingerprint
matches the reference fingerprint.

Representing the fingerprints as real-valued vectors, the correlation coefficient is
defined as [4]

ρ = kT
1k2

ë k1 ë2ë k2 ë2
.

In this equation k1 is the first fingerprint, k2 is the second fingerprint, and ρ is
the correlation coefficient between k1 and k2.

2.4.2 Hamming Distance
When dealing with binarized fingerprints it is necessary to determine whether
the sequence of bits that represents the reference fingerprint is equal to the one
representing the test fingerprint.

7

Background

Given two bit sequences of the same size, the Hamming distance is the number
of positions in which the bits are different between the two sequences.

Using this distance it is possible to calculate a comparison term which allows to
determine whether the binarized fingerprints are the same or not. If the calculated
Hamming distance is higher than the threshold, the test fingerprint does not match
the reference fingerprint.

2.5 ToothPic scheme
As mentioned in the introduction, the aim of this thesis is to implement the scheme
of camera fingerprint authentication, developed by ToothPic for smartphones, in a
PC scenario.

ToothPic [8] is a company working in the field of Cybersecurity that has
developed and patented a technology to make each smartphone camera a secure
key to perform cryptographic operations.

Its authentication scheme is a solution for multi-factor authentication which
ensures a good trade-off between usability and security, as the user is not asked
to perform complicated tasks while the authentication mechanism remains highly
robust. This is guaranteed because this system obtained the FIDO2 certification
[9], meaning that camera fingerprint authentication is compliant to the FIDO
Alliance’s newest set of specifications.

2.5.1 How it works

ToothPic’s technology is based on the concepts of camera fingerprint explained
in the previous sections. The fingerprint extracted from the set of photos taken
by the smartphone camera is used as the physical secret to implement a physical
unclonable function (PUF). In this way it is possible to obfuscate the private key
of an asymmetric key pair following the implementation represented in Figure 2.1.

When dealing with asymmetric cryptography, the most crucial task is to secure
the storage of the private key. At the moment of the creation of a new asymmetric
key pair, the private key is firstly obfuscated with the extracted camera fingerprint,
and then stored inside the user’s device. The obfuscation of the private key does
not expose any information about the key itself, so a potential attacker, who steals
this obfuscated private key, will not be able to perform any operation.

Whenever the user needs to use the private key to compute a cryptographic
operation, the system will capture another set of photos, and will generate again
the fingerprint on-the-fly. Then, the private key is de-obfuscated and it is ready to
be used to sign a document, or to solve a challenge message.

8

2.6 – Privacy Considerations

Figure 2.1: ToothPic scheme

2.5.2 RAW Photos
An important consideration in the mechanism explained above is the use of RAW
photos [4]. This is necessary because it is possible that a potential attacker could
extract the camera fingerprint from a set of images uploaded to the Internet (e.g.,
to a social network) in a JPEG format.

The usage of unprocessed photos eliminates this problem because they are not
affected by JPEG compression. Indeed, JPEG compression deletes some high
frequency information from the image. This characteristic is exploited by the
ToothPic’s system using only the high frequency information present in RAW
photos by means of a high-pass filter.

2.6 Privacy Considerations
From the user’s privacy point of view it is possible to focus on some considerations
about the webcam fingerprint authentication technology.

Firstly, a decisive feature of webcam fingerprint is that it does not need to
store any biometric or sensitive personal data. Therefore, it is possible to process
webcam fingerprint data without the strictly restrictions defined in Article 9 of

9

Background

GDPR [3], which comes into force when biometric and sensitive data are processed.
Furthermore, following this system, it is not needed to store any images. In fact,

having the fingerprint of the webcam, it is not possible to obtain any information
about the image from which it was extracted.

Consequently, it is possible to say that the use of webcam fingerprint allows to
have a robust and usable system which does not compromise the privacy of the
users.

10

Chapter 3

Capture Script

This chapter discusses the bibliographic research of possible methods to access the
PC webcam in order to capture some photos needed by the webcam fingerprint
process.

Afterwards, the chosen library, OpenCV, is deeply analysed by looking at the
possible programming languages to use and evaluating the different photos captured
with various settings of the webcam.

Finally, the Python script, created to take the photos in the campaign, is
analysed and explained.

3.1 Software and API Research
In the world of Personal Computers there exist many libraries, software and frame-
works able to access the webcam to obtain some images. However, heterogeneous
environments and different operating systems must be taken into account.

In this thesis the attention is only focused on the most available operating
systems on the market, MacOS and Windows.

3.1.1 Physical Driver Access
The lowest possible level is to directly access the webcam drivers, however this
solution was not considered because it is not a scalable solution.

In fact, the PCs, especially those with Windows as operating system, have
several webcams which require dedicated drivers. Moreover, it is also imaginable
that, in the future, the number of drivers to deal with will grow, and the old ones
will be updated with new functionalities.

Hence, it is truly difficult to write a program for each available driver, and to
keep the whole capture process up-to-date.

11

Capture Script

3.1.2 Operating System’s Frameworks
Going up to the operating system level, Windows and MacOS make available some
frameworks capable of accessing the webcam in order to allow programmers to
write camera applications in an easier way. The following multimedia frameworks
are available:

• AVFoundation: Successor of the Apple’s AVKit API and is usable by every
Apple device. For the purpose of this thesis, it is available from MacOS 10.7
or later versions. AVFoundation provides an API that gives the possibility
to access the Mac’s built-in webcam so to write camera application in Swift,
which is the used programming language. Differently from iOS and iPadOS
versions, in MacOS it is not possible to capture photos in an unprocessed
format [10].

• DirectShow: API created by Windows to support audio and video streams,
and to manage multimedia files. DirectShow is designed for C++ and is
distributed by the Windows SDK. Although it supports a lot of formats,
there is no mention of a possible RAW format acquisition in the provided
documentation [11].

• Microsoft Media Foundation: Next generation multimedia platform for
Windows, part of the Windows SDK, that will take the place of DirectShow
after a period of co-existence. It is available from Windows Vista or later,
and requires the use of C/C++. Like DirectShow, the Microsoft Media
Foundation’s documentation does not mention support to an unprocessed
format [12].

3.1.3 Cross-Platform Tools and Libraries
Another option to take into consideration is to exploit some third-party tool or
library that is able to operate regardless of the operating system installed on the
device. In this way it is possible to build a portable script that can be used in both
Windows and MacOS environment.

• OpenCV: Cross-platform library for computer vision applications, originally
developed by Intel. OpenCV is free of charge, since it is open-source, and
available for both desktop and mobile operating systems. Thanks to its wide
adoption, it is well documented and easy to use. It is natively written in C++,
but offers also bindings in other programming languages such as Python, Java
and MATLAB [13].

• FFMPEG: Open-source software for multimedia, able to manage input/out-
put streams, and format conversion. FFMPEG is available as cross-platform

12

3.2 – OpenCV Properties

command line tool, or as a set of libraries that can be used by programmers
to build applications. These libraries are called libav [14] and are written in
the C programming language [15].

• Scikit-image: Open-source and cross-platform collection of algorithms for
image processing. It is mainly written in Python [16].

• SimpleCV: Open-source framework available in Python that allows to access
high-powered computer vision libraries, such as OpenCV, in an easier way
[17].

3.2 OpenCV Properties
The selected library used to access the PC webcam is OpenCV. This choice was
made considering the fact that OpenCV is cross-platform and, examining the
source-code, does not apply any image processing, directly providing the output
made available by the selected operating system framework.

Even if OpenCV does not offer the possibility to get the RAW image, none of
the methods discussed in 3.1 seem to be able to retrieve it.

3.2.1 Programming Language
The first version of OpenCV was written in C but, nowadays, the older interface is
deprecated in advantage to the newer C++ version. Hence, the entire library is
now available through a primary C++ interface. In any case, OpenCV provides
programmers with some bindings in Python, Java, and MATLAB.

Therefore, the selected programming language was Python, because it can be
easily used as a script. So, the usage of Python has speeded up and simplified the
construction of the capture application, in which the opencv-python [18] library
was adopted.

3.2.2 Frameworks
When OpenCV is asked to open the webcam, it is necessary to load the proper
library in order to interact with the operating system in the right way. There are
three different properties to pass as parameters to the VideoCapture function:

• CAP_AVF: This represents the AVFoundation framework, and it is needed
in the MacOS environment.

• CAP_DSHOW: This represents the DirectShow framework used in Win-
dows.

13

Capture Script

• CAP_MSMF: This represents the newer Microsoft’s multimedia framework,
Microsoft Media Foundation.

If for the MacOS script the choice was forced, for the Windows one there was
the possibility to choose between DirectShow and Microsoft Media Foundation.
The choice fell on Microsoft Media Foundation because in the future it will be the
Microsoft’s standard multimedia framework.

3.2.3 Uncompressed Formats
OpenCV makes available some uncompressed image formats, depending on both
the properties set by the programmer, and the capabilities of the frameworks. In
fact, not all the properties given by OpenCV will be actually set in the camera by
the framework, but only the available ones. The output image is an uint8 array
in which the bytes, represented in the cells of Figure 3.1, can be organized in the
following ways:

Figure 3.1: Available formats in OpenCV

• RGB: In the RGB format the image is represented by 3 channels: red, green,
and blue. Every pixel will produce 3 bytes, one for each channel, so the
obtained image length is 3 times the number of pixels of the webcam sensor.

• YUY2: This format is characterized by two parts: the luminance, represented
by the Y channel, and the chrominance, represented by the UV channel. For
the purpose of this thesis it is needed to extract only the luminance part.

14

3.2 – OpenCV Properties

• NV12: This format is almost similar as the YUY2 format, but the chrominance
part is smaller and the bytes are differently organized.

Thanks to the PROP_CONVERT_RGB property, which manages the conver-
sion of the image into RGB format, it is possible to obtain these formats. If it is
enabled the output will be an RGB image, if it is disabled a YUY2 or NV12 image
can be obtained, depending on the webcam specifications.

While in MacOS it is not possible to obtain neither YUY2 nor NV12, so the
only possible format is RGB, in Windows it is possible to obtain all three formats.

3.2.4 JPEG vs Uncompressed Format

(a) RGB image (b) NV12 image

(c) JPEG image

Figure 3.2: Differences in the pixels between uncompressed images, (a) and (b),
and a compressed image, (c)

Taking a photo with the same webcam, it is possible to notice the differences
among the various image formats. In particular, as shown in Figure 3.2, the JPEG

15

Capture Script

compressed image, (c), reveals the classical 8x8 block division used to compress
the photo.

Differently, from the uncompressed images, (a) and (b), it is possible to see a
better quality of the image that is also reflected in the higher images size.

In this case, as explained in 3.2.3, the NV12 image was obtained disabling
the OpenCV property required for RGB conversion. Then, only the luminance
component was extracted from the acquired data.

3.2.5 Resolutions

Another aspect to deal with is the photo resolution, since OpenCV gives the
opportunity to modify it. Considering that the webcams can capture photos in
different resolutions, it is needed to select a unique resolution in order to have
fingerprints of the same size. This is important because, as written in 2.4, two
fingerprints of the same size are necessary for the fingerprint matching process.

In MacOS devices OpenCV is not able to modify the resolution, so it is possible
to capture photos only with 1280x720 resolution.

In Windows devices it is possible to set the preferred resolution. By default,
OpenCV sets the 640x480 resolution but, in some webcams, it is possible to select
the 1280x720 resolution.

(a) 640x480 resolution
(b) 1280x720 resolution

Figure 3.3: Images captured in two different resolutions

From Figure 3.3 it is possible to see that, selecting the two different resolutions,
the photo is horizontally cropped and properly scaled, since the two resolutions have
a different aspect ratio. Hence, there is no image processing when the resolution is
modified in OpenCV. However, the resolution can be a potential problem in some
old Windows devices because the maximum one is 640x480. This characteristic
will limit the fingerprint length of every PC in the entire system.

16

3.3 – Photos Analysis

3.3 Photos Analysis
Before the creation of the script, it is needed to select which properties to set in
OpenCV for the image format and resolution.

While the choice is forced for the MacOS script, and the retrieved images will
be in RGB format with 1280x720 resolution, further image analyses are required
for the Windows script.

Even if with OpenCV it is not possible to obtain unprocessed images, it is
still important that the uncompressed image captured by OpenCV has not been
reconstructed from a JPEG image. This event would have resulted in a loss of
information in the image.

3.3.1 JPEG compression
The JPEG compression is based on the following steps [19]:

1. First of all the image, converted in grayscale, is divided into 8x8 pixel blocks.

2. Then, for each block, the Discrete Cosine Transform (DCT) is calculated

3. The 64 DCT coefficients are uniformly quantized, using a quantization table
of 64 elements. The quantization consists in the division between the DCT
coefficients and the corresponding elements of the quantization table. The
result is rounded to the nearest integer.

4. Finally, the resulting integer matrix is encoded.

3.3.2 JPEG reconstruction
When the uncompressed image is obtained by the reconstruction of a JPEG image,
it is applied the reverse process, with respect to the compression one.

The idea is to apply the JPEG compression to the uncompressed image, and
find whether the DCT coefficients of a specified spatial frequency are multiple
values of a possible quantization element.

If the histogram of the selected frequency shows only the multiple values of the
quantization element, the image was reconstructed from a JPEG photo, otherwise,
if the histogram is continuous, the image was not reconstructed.

3.3.3 Results
The experiment was done on the images captured with the combination of webcam
properties discussed before. Two spatial frequencies are pictured for each image.

17

Capture Script

The first one is for the DC frequency, in the [1, 1] position of each 8x8 block,
where most of the image information is contained. The second one is for a possible
AC frequency, in position [1, 2] of each 8x8 block.

Figure 3.4: RGB image with 1280x720 resolution in Windows

Figure 3.5: RGB image with 1280x720 resolution in Windows

Figure 3.6: RGB image with 1280x720 resolution in MacOS

Except for the RGB image taken in a particular Windows PC, Figure 3.4, every
photo captured with the various webcam properties appears not to have been
reconstructed from a compressed JPEG image. It is possible to verify this because

18

3.3 – Photos Analysis

the values of the represented histograms are continuous, and not multiple of a
quantization element.

Figure 3.7: RGB image with 640x480 resolution in Windows

Figure 3.8: NV12 image with 640x480 resolution in Windows

Figure 3.9: YUY2 image with 640x480 resolution in Windows

As written, the JPEG reconstruction can be visible in Figure 3.4, where the
graph is not continuous. In this case the photo was acquired by a Dell Inc. Vostro
5471 with Windows as operating system. Comparing these histograms to those
obtained from other images, with different properties, of the same computer (Figure

19

Capture Script

3.7, and Figure 3.9) it is possible to see that the property, which introduced this
event, was the resolution setting to 1280x720.

It is not possible to say that the RGB image with 1280x720 resolution will be
reconstructed from a JPEG one in every Windows PC. This fact is demonstrated
in the histograms obtained by a photo captured in another Windows PC, MSI
Prestige 14 Evo A11M. As we can see in Figure 3.5, the histogram is continuous,
which means that the image was not reconstructed from a JPEG one.

Therefore, since not every Windows PC is capable of acquiring non-reconstructed
images in RGB format with 1280x720 resolution, it was decided to write a script
that acquires uncompressed RGB images with the OpenCV default resolution,
which is 640x480 in Windows and 1280x720 in MacOS.

3.4 Dropbox Saving
At this point, before definitively writing the entire capture script and starting
the acquisition campaign, it is necessary a way to collect the photos taken with
OpenCV on the various PCs.

Thanks to the Dropbox account offered by the Politecnico di Torino, it is possible
to create the repository where all data is saved.

3.4.1 Dropbox Apps
Dropbox offers developers the possibility to create Dropbox Apps on the DBX
platform. Thanks to the SDKs made available by Dropbox, developers can access
their own Apps in order to save data inside a dedicated folder within the Dropbox
repository. The folder used by the Dropbox App remains private thanks to an
authorization token necessary to access the folder.

These SDKs are available in many programming languages such as HTTP,
JavaScript, and Python [20]. Since it was previously chosen to use OpenCV Python
APIs, Python was also chosen as the DBX platform SDK. In this way it is possible
to write a script, as explained in 3.4.2, that uploads every data inside the private
Dropbox folder created in advance.

3.4.2 Saving Script
Following the Dropbox for Python documentation [21],the script used to upload
data to Dropbox must first import the dropbox package. Then, a Dropbox API
object, called dbx in Figure 3.10, is instantiated using the access token of the
Dropbox App. In this way the object is directly connected to the App created in
Dropbox and it is able to make API calls.

20

3.5 – Creation of the Capture Script

Next, it is required to find an available subfolder, inside the folder of the Dropbox
App, where to load the whole acquired data.

Finally, there is the uploading process in which every file contained by the
data directory is uploaded to the destination folder inside Dropbox using the
"files_upload()" API.

Figure 3.10: Dropbox APIs usage

3.5 Creation of the Capture Script
The final capture script will firstly install the required libraries and then call the
various Python scripts. In order to make it portable it was written in command
languages.

For the MacOS version the bash programming language was used, so the user has
to run it from the Terminal. For the Windows version the PowerShell programming
language was chosen, available only on Windows, because it is able to generate an
executable file that will automatically run the script.

The acquired images will be placed in a dedicated folder, called data, together
with a log file, info.log, which will contain every action performed by the scripts so
to record some information and detect possible problems. The script is designed to
perform the following tasks:

1. Install, if not already present, Python 3.9.5 using a provided installation
executable.

21

Capture Script

2. Install the needed Python packages by means of pip install.

3. Obtain the device information such as PC model, OS, and Python version.

4. Obtain webcam properties, such as default and maximum resolution, through
the use of OpenCV

5. Acquire 30 reference photos running the proper Python script

6. Acquire 100 test photos running the proper Python scripts

7. Save the entire data folder inside the Dropbox repository using the script
discussed in 3.4.2

3.5.1 Acquiring the Images
Before calling each Python acquiring script, a popup message is displayed, along
with a webcam preview, showing the user how to properly take the photos, according
to what written in Chapter 2.

• The reference images have to be composed by white and uniform content, so
it is recommended to put a white sheet of paper in front of the webcam.

• The first 50 test images need to portray normal PC usage by the user.

• The last 50 test images have to frame another scene where there are no human
faces.

(a)

(b)

Figure 3.11: Examples of the scripts for Windows, (a), and MacOS, (b)

22

Chapter 4

Dataset Creation

As explained in the previous chapter, the created script is designed to get 30
reference images and 100 test images from every device. These images are taken
in RGB format with the default resolution chosen by OpenCV for each different
device. Nevertheless, it was later decided to conduct a second acquisition campaign
by forcing the resolution of the images to 1280x720.

This chapter describes a smaller dataset used to check whether the fingerprint,
extracted by means of the Fridrich algorithm, is visible from the webcam photos or
not.

Afterwards, it is given a brief description of the algorithm developed by ToothPic
for the camera fingerprint system, discussing the parameters that have to be adapted
to the photos captured by webcams and showing the results of the algorithm
application.

Lastly, the script application to an external USB webcam is analysed and it is
represented the construction and the composition of the two acquisition campaigns
datasets.

4.1 First Dataset
The first thing to do was to extract the fingerprint and see whether it was visible
or not. It means to examine if the reference fingerprint matches the test fingerprint
of the same PC and, at the same time, does not match the test fingerprints of
different PCs. For this purpose, a small dataset was created, described in Table
4.1, consisting of 2 Windows devices and 2 MacOS devices.

For the Windows PCs, an MSI and a Dell, the resolution of the images is
640x480 because, according to section 3.2.5, that resolution is the default one.
Differently, the default photo resolution set by OpenCV in the two Apple devices
is 1280x720.

23

Dataset Creation

Table 4.1: List of devices in the first small dataset

Model OS Resolution ID

MSI Prestige 14 Evo A11M Windows 10.0.19043 640x480 PC 1

Dell Inc. Vostro 5471 Windows 10.0.19042 640x480 PC 2

Apple MacBook MacOS 10.13.6 1280x720 PC 3

Apple MacBook MacOS 10.16 1280x720 PC 4

4.2 Fridrich Algorithm
At the beginning, the activity performed on these image sets was the extraction of
the reference fingerprints using the Camera Fingerprint Matlab toolbox, based on
the findings of Jessica Fridrich [5]. Then, each reference fingerprint was compared
with the four fingerprints obtained from the sets of test images, in order to find
out whether that fingerprint, through the correlation value, will match the one of
the right device or not.

An important thing is the crop used for the images. Since the fingerprints need
to have the same size to be compared and the captured images, as shown in Table
4.1, have different resolutions, every image is cut to the minimum resolution of
640x480. Thus, the fingerprint is represented by 307200 double values, one for each
pixel, and its size is 2.458 MB.

(a)

Figure 4.1: Fingerprint matching PC 1, (a)

24

4.2 – Fridrich Algorithm

4.2.1 Results

The calculated histograms, represented in Figure 4.1, show the correlation between
the reference fingerprint and the fingerprint extracted from each test image. The 4
test-sets are defined by different colours.

From the results it can be seen that the reference fingerprint and the test
fingerprint of the same webcam have a significantly higher correlation value than
other webcams. Every correlation value written in the legend is calculated as the
mean value of the vector pictured in the graph.

(b)

(c)

Figure 4.1: Fingerprint matching PC 2, (b), and PC 3, (c)

25

Dataset Creation

(d)

Figure 4.1: Fingerprint matching PC 4, (d)

4.3 ToothPic Algorithm
The algorithm developed by ToothPic is used for the camera fingerprint system
in smartphones. In addition to extracting the fingerprint from the image sets, it
performs fingerprint compression, as described in 2.3. Thus, it is possible to obtain
both a fingerprint in double-precision values and a binarized fingerprint.

4.3.1 High-Pass Filter
The ToothPic algorithm applies a high-pass filter to the luminance of each photo.
In this way, only the high frequencies of the PRNU are considered so to decrease
the risk of a potential reconstruction of the fingerprint from JPEG images found
by an attacker on the internet. However, the high-pass filter must be adapted to
the information contained in the images taken by the PC webcams. It means that,
since it is not possible to get a RAW image from the webcam, it is needed to check
how many low frequencies can be cut in order to obtain a good fingerprint. The
high-pass filter is designed in the following way:

1. The Discrete Cosine Transform (DCT) of the image that needs to be filtered
is calculated.

2. The filtering matrix is built by means of a special parameter, diagonal, that
can be manually modified. This matrix is of the same dimension as the selected
image block. An example of this matrix is displayed in Figure 4.2.

26

4.3 – ToothPic Algorithm

3. The filter is applied by multiplying the DCT of the image and the filtering
matrix cell by cell.

4. Finally, the inverse-DCT of the above output is calculated. This new matrix
will be used in the pipeline of the fingerprint extraction.

Figure 4.2: Example of the filtering matrix used in the high-pass filter

4.3.2 Images Size
Differently from the Fridrich algorithm, in this algorithm it is necessary to have a
square image. This feature is required because of the random projections applied
to compress the extracted fingerprint.

In the first dataset the minimum acquiring resolution is 640x480, so the images
must be cut to the square resolution 480x480. This will produce two 480x480
fingerprints with the following sizes:

27

Dataset Creation

• Double-precision: 1.843 MB

• Compressed: 28.8 kB

4.3.3 Results
As written in 4.3.1, the design of the high-pass filter is handled by the diagonal
parameter. Defining the blocksize as the dimension of the photo edges after it
has been cropped (in this case 480), the diagonal parameter can take the values
between −blocksize, in which the high-pass filter will filter the whole image, and
+blocksize, in which no value is filtered out. As example, using the filtering matrix
of Figure 4.2, where the diagonal has been set to blocksize ∗ 0.2, the 80% of the
low frequencies, which stay in the upper-left corner of the image’s DCT, would be
cut off.

In order to find which diagonal parameter to choose for the following experiments,
4 different values were tested. The results in Table 4.2, Table 4.3, Table 4.4, and
Table 4.5 represent the comparison of the reference fingerprints, in the horizontal
rows, with each device’s test-set for 4 possible diagonal values. Each cell contains
two different values:

• The first one is the correlation value between the double-valued fingerprints.

• The second one is the percentage of the Hamming distance between the
compressed fingerprints, defined in 2.4.2, on the total fingerprint length.

By analysing both the correlation and the Hamming distance between the
fingerprints it is possible to see that, as the diagonal value increases, there is a
better correlation and a lower Hamming distance. A good result for every PC is
obtained when the diagonal is set to blocksize ∗ 0.3 and blocksize ∗ 0.5.

Table 4.2: Results of algorithm application with diagonal = −blocksize ∗ 0.3

PC 1 test PC 2 test PC 3 test PC 4 test

PC 1 ref -0.0261
49.54%

−0.0030
50.02%

0.0004
50.01%

0.0014
50.17%

PC 2 ref −0.0009
50.09%

0.0833
47.20%

−0.0054
50.11%

0.0053
49.92%

PC 3 ref 0.0009
50.03%

0.0052
49.97%

0.3008
40.11%

0.0004
50.07%

PC 4 ref −0.0017
50.11%

−0.0003
49.83%

−0.0029
50.08%

-0.0020
49.94%

28

4.3 – ToothPic Algorithm

Table 4.3: Results of algorithm application with diagonal = blocksize ∗ 0.1

PC 1 test PC 2 test PC 3 test PC 4 test

PC 1 ref 0.0479
48.38%

−0.0019
50.07%

0.0020
50.01%

0.0014
50.14%

PC 2 ref 0.0017
49.58%

0.0931
47.01%

−0.0027
50.19%

0.0030
49.86%

PC 3 ref 0.0040
49.87%

0.0009
49.92%

0.3219
39.52%

0.0028
49.97%

PC 4 ref −0.0002
50.12%

0.0023
49.74%

−0.0041
50.25%

0.0083
49.59%

Table 4.4: Results of algorithm application with diagonal = blocksize ∗ 0.3

PC 1 test PC 2 test PC 3 test PC 4 test

PC 1 ref 0.0386
48.89%

−0.0012
49.95%

0.0031
50.01%

0.0016
50.14%

PC 2 ref 0.0038
49.79%

0.0940
47.04%

−0.0008
50.00%

0.0003
50.08%

PC 3 ref 0.0037
49.91%

−0.0012
50.10%

0.3366
39.09%

0.0022
50.10%

PC 4 ref 0.0035
49.83%

0.0004
50.13%

−0.0004
50.12%

0.0223
49.23%

Table 4.5: Results of algorithm application with diagonal = blocksize ∗ 0.5

PC 1 test PC 2 test PC 3 test PC 4 test

PC 1 ref 0.0319
48.82%

−0.0008
50.04%

0.0032
49.78%

0.0011
50.08%

PC 2 ref 0.0098
49.67%

0.0888
47.13%

0.0004
49.96%

−0.0006
50.12%

PC 3 ref 0.0008
49.80%

−0.0021
50.14%

0.3448
38.86%

0.0011
50.03%

PC 4 ref 0.0017
50.02%

0.0022
49.93%

0.0012
49.95%

0.0379
48.99%

29

Dataset Creation

4.4 External USB Webcam

Despite the majority of the webcams nowadays are integrated in the PC, it is also
possible to find external USB webcams. These webcams are widely adopted in
desktop PCs and can be used even when the built-in webcam is broken.

Since the script is also capable of capturing photos from them, it can be useful
to extract the fingerprint from these photos and analyse the results obtained. For
this experiment it was used a Keyteck USB External WebCam, which was able to
take photos with 640x480 resolution.

4.4.1 Results

Applying the Fridrich algorithm to the images acquired with the USB webcam it is
clear that the reference fingerprint has a high correlation with the test fingerprint
of the same webcam, while the correlation with the other webcams is near to zero,
as pictured in Figure 4.3.

Figure 4.3: Fingerprint matching USB webcam, Fridrich algorithm

Regarding the application of the ToothPic algorithm, the results in Table 4.6,
Table 4.7, Table 4.8, and Table 4.9 prove that the correlation and the Hamming
distance between the reference fingerprint and the test fingerprint have a good
discriminating value to match the right webcam. As seen above, also for this USB
webcam the values become better with the increase of the diagonal parameter.

30

4.5 – Acquisition Campaigns

Table 4.6: Results, with diagonal = −blocksize ∗ 0.3, of ToothPic algorithm
application in the USB webcam

USB test PC 1 test PC 2 test PC 3 test PC 4 test

USB ref 0.1185
46.35%

0.0037
50.02%

0.0013
50.34%

0.0007
50.07%

−0.0009
50.08%

Table 4.7: Results, with diagonal = blocksize ∗ 0.1, of ToothPic algorithm
application in the USB webcam

USB test PC 1 test PC 2 test PC 3 test PC 4 test

USB ref 0.1608
44.93%

−0.0019
50.23%

0.0041
49.96%

0.0023
49.76%

−0.0017
50.25%

Table 4.8: Results, with diagonal = blocksize ∗ 0.3, of ToothPic algorithm
application in the USB webcam

USB test PC 1 test PC 2 test PC 3 test PC 4 test

USB ref 0.2008
43.59%

0.0001
50.07%

0.0034
50.04%

−0.0033
50.11%

0.0002
49.90%

Table 4.9: Results, with diagonal = blocksize ∗ 0.5, of ToothPic algorithm
application in the USB webcam

USB test PC 1 test PC 2 test PC 3 test PC 4 test

USB ref 0.2124
43.22%

−0.0037
49.97%

−0.0023
50.13%

−0.0038
50.21%

0.0006
49.76%

These outcomes demonstrate that even in a USB webcam scenario the webcam
fingerprint system can be used with acceptable results. In any case, for authentica-
tion purposes, it is important to say that the fingerprint is only able to authenticate
the webcam, so the user must always use the same webcam in order to perform
the authentication.

4.5 Acquisition Campaigns
After all the required analysis on single photos and individual devices, it was
necessary to extend the dataset to conduct more accurate studies. For this reason

31

Dataset Creation

two acquisition campaigns were conducted with the aim of building two different
datasets. Both datasets, described in Table 4.10 and Table 4.11, are composed by
30 Windows and MacOS devices.

Table 4.10: Devices involved in the first acquisition campaign

Brand Resolution N°

Dell 640x480 8

Apple 1280x720 8

Asus 640x480 4

Lenovo 640x480 4

Hewlett-Packard 640x480 3

MSI 640x480 1

Huawei 640x480 1

Acer 640x480 1

Table 4.11: Devices involved in the second acquisition campaign

Brand Resolution N°

Dell 1280x720 15

Apple 1280x720 8

Lenovo 1280x720 3

Hewlett-Packard 1280x720 2

MSI 1280x720 1

Asus 1280x720 1

For the first acquisition campaign it was decided to capture the photos with the
default resolution given by OpenCV. This choice was made because of two reasons:

• As defined in 3.3, if the resolution is forced it can be possible to obtain RGB
photos reconstructed from a JPEG one from Windows devices. With the
default resolution this situation should not happen.

32

4.5 – Acquisition Campaigns

• Not all Windows PCs are able to take photos with 1280x720 resolution. Hence,
with this solution, the webcam fingerprint system can involve more devices.

After analysing the results obtained with the data of the first campaign, explained
in Chapter 5, it was decided to conduct a second acquisition campaign with new
properties. This time the resolution was forced to 1280x720 in order to obtain a
bigger fingerprint which should improve the results.

However, as written above, not all Windows devices were able to acquire photos
with the desired resolution, therefore the second dataset is slightly different from
the first one.

33

34

Chapter 5

Final Results

In this chapter the results of the webcam fingerprint authentication mechanism
are presented, taking into consideration the two large datasets created. The
authentication process was performed following 3 different pipelines, one for each
algorithm explained in the previous chapter plus a modified pipeline. Then the
results, saved as correlation values and Hamming distances, were compared to each
other in order to construct ROC curves by calculating the true positive rate and
the false positive rate.

As will be shown later in this chapter, because of some peculiarities of the second
dataset, unexpected results were retrieved from the Fridrich algorithm application.
For this reason, after conducting more analyses on the data, a possible explanation
of the detected anomaly was presented. In addition, the concept of Wiener filtering,
a solution to the problem of the second dataset that improves the results, was
introduced.

5.1 Analysis Process

The analysis process on the datasets was conducted in the following way. For
every PC in the dataset the reference fingerprint was firstly extracted, then the
correlation between the reference fingerprint and the test fingerprint of each PC was
calculated. These results were saved into a txt file which was later used to create
the ROC curves. This file starts with a string that contains all the information of
the selected device (device ID, model, OS, and the algorithm used). Three different
pipelines, described below, have been used to simulate the authentication system.

35

Final Results

5.1.1 Fridrich Algorithm Pipeline
The first pipeline is based on the Fridrich algorithm explained in 4.2. After creating
the string that identifies the device, the double-valued reference fingerprint is
computed.

For every device in the dataset it was implemented the fingerprint matching
process by calculating the correlation value for each test image and saving these
values in a correlation array. The output values in the file, shown in Figure 5.1,
represent the mean (first value) and the standard deviation (second value) of the
correlation array. In the first line there are the correlation and the standard
deviation of the same device that is under analysis, so the correlation of the first
line is higher than the others.

Figure 5.1: Example of the txt file for the Fridrich algorithm pipeline

5.1.2 ToothPic Algorithm Pipeline
The second pipeline is based on the ToothPic algorithm explained in 4.3. As
diagonal, it was decided to evaluate 4 different values, based on the outcomes
obtained before, in order to see the different results:

• diagonal = 0.2 ∗ blocksize

• diagonal = 0.3 ∗ blocksize

• diagonal = 0.35 ∗ blocksize

• diagonal = 0.4 ∗ blocksize

Here the txt file structure is the same as the one presented above, except for the
output values which reflect a difference in the pipeline.

In this pipeline there are the authentication processes with both double-valued
fingerprints and binarized fingerprints. Therefore, the first value in the file, displayed
in Figure 5.2, is the correlation between the double-valued fingerprints, and the
second one is the percentage of the Hamming distance on the total length of the
binarized fingerprint.

36

5.1 – Analysis Process

Figure 5.2: Example of the txt file for the ToothPic algorithm pipeline

5.1.3 Modified Pipeline
The last pipeline is based on the union between the Fridrich algorithm and the
ToothPic algorithm. Also in this case the txt file structure is the same.

The idea behind this modified pipeline is to apply the random projections on
the fingerprint obtained by the Fridrich algorithm. Differently from the binarized
fingerprint calculated with the ToothPic algorithm, this one will be extracted using
the whole images information since the Fridrich algorithm does not apply any
high-pass filter. In Figure 5.3 it is shown an example of the generated file which
contains, for each line, the correlation value of the double-valued fingerprints and
the Hamming distance between the binarized fingerprints.

Figure 5.3: Example of the txt file for the modified pipeline

5.1.4 ROC Curves
When every txt file was obtained, data analysis was performed by means of Receiver
Operating Characteristic (ROC) curves. These curves represent the accuracy of
a binary classifier system at the variation of a threshold, which is in charge to
discriminate whether the result is true or false.

For the purposes of this thesis it is necessary to evaluate the fingerprint matching
process presented in 2.4. So, the correlation values and the Hamming distances
previously calculated have been compared to the various thresholds. For each
threshold value, 4 parameters have been determined:

• True Positive (TP): The test fingerprint correctly matches the reference

37

Final Results

fingerprint of the same device. In this case it would be authenticated the right
device.

• True Negative (TN): The test fingerprint does not match the reference
fingerprint of a different device. In this case the wrong device will not be
authenticated.

• False Positive (FP): The test fingerprint matches the reference fingerprint
of a different device. In this case it would be authenticated a wrong device.

• False Negative (FN): The test fingerprint does not match the reference
fingerprint of the same device. In this case the right device will not be
authenticated.

The analysis of the ROC curves is based on the comparison of a pair of values
obtained, for each examined threshold, from the parameters indicated above: True
Positive Rate (TPR), and False Positive Rate (FPR).

The True Positive Rate, also called sensitivity, shows the probability that the
device under analysis successfully passes the authentication process. The ideal
True Positive Rate is 1.

TPR = TP

TP + FN
The False Positive Rate, is the probability that the device under test passes the

authentication process even if it should not. So, it represents the authentication
rate of a wrong device, and it is dangerous. The ideal False Positive Rate is 0.

FPR = FP

FP + TN

5.2 First Dataset Results
Taking into consideration the photos acquired in the first acquisition campaign, as
written in 4.1, the images were obtained using a default resolution. Consequently
the minimum resolution obtained was 640x480. Since the ToothPic algorithm
requires a square crop to apply random projections, it was decided to cut every
image to the resolution of 480x480, obtaining the following sizes for the fingerprints:

• Double-precision: 1.843 MB

• Compressed: 28.8 kB

38

5.2 – First Dataset Results

The ROC curve used as a reference is the one obtained from the results of the
Fridrich algorithm because the images are not filtered, thus the fingerprints do not
loose any information. For this reason, the following graphs present the comparison
between the Fridrich ROC curve, both for double-valued and binarized fingerprints,
and the curves obtained from the ToothPic algorithm.

In the successive graphs there are the results obtained from the full dataset, and
the results obtained from the subset of Windows devices and the subset of MacOS
devices.

5.2.1 ROC Curves Correlation Value
In these graphs, shown in Figure 5.4, the analysis of the double-valued fingerprints
is illustrated. The ROC curve obtained from the Fridrich algorithm is compared to
the ROC curves obtained from the ToothPic algorithm before the application of
random projections to compress the fingerprints. So, the correlation value was used
in order to perform the fingerprint matching process.

Figure 5.4: ROC curves of the first dataset results using the double-valued
fingerprints

39

Final Results

5.2.2 ROC Curves Hamming Distance
The graphs in Figure 5.5 display the comparison between the results obtained from
the modified pipeline of the Fridrich algorithm, which are the binarized fingerprints,
and the results obtained from the complete ToothPic algorithm pipeline, which
includes fingerprint compression. It means that the decision parameter, used to
determine the TPR and the FPR, was the Hamming distance.

Figure 5.5: ROC curves of the first dataset results using the binarized fingerprints

5.2.3 Graphs Explanation
From the ROC curves describing the first dataset, it can be seen that the webcam
fingerprint authentication process has overall acceptable results for the Fridrich
algorithm. In any case, when the high-pass filter is applied within the ToothPic
algorithm, the results seem to get worse when a large portion of the image is filtered
(lower diagonal value).

This accuracy drop is more visible in the ROC curves of Figure 5.5. In fact,
the binarized fingerprints carry an additional loss of the information due to the
compression process, therefore the ROC curves, especially those obtained from the
ToothPic algorithm, show low results.

40

5.3 – Second Dataset Results

However, an important thing to note is that there is a big difference between
Windows and MacOS results. MacOS devices appear to have a more visible
fingerprint than Windows ones. The explanation may be that OpenCV, using
the AVFoundation back-end in MacOS environment, is able to get less processed
data with respect to Windows environment, keeping more information about the
PRNU.

5.3 Second Dataset Results
Given the above results, especially for the ROC curves obtained in the Windows
devices, it was decided to conduct a second campaign with the aim of getting a
higher-resolution fingerprint. In this way the fingerprint will have more information
and the accuracy, shown in the ROC curves, should improve.

As explained in 4.5, the second dataset is composed only by devices capable of
taking photos with 1280x720 resolution. Thus, it was possible to cut the images to
the square resolution, needed by the ToothPic algorithm, of 720x720. With this
new image crop the generated fingerprints are of the following sizes:

• Double-precision: 4.147 MB

• Compressed: 64.8 kB

While every MacOS device already present in the first dataset was able to get
1280x720 resolution images, not all Windows devices had the possibility to do that,
so the second dataset is composed by different Windows devices. An important
characteristic of this new dataset, as seen in the following results, is the presence
of many devices of the same model. In particular, it was possible to get the photos
from:

• 8 Dell Inc. Vostro 3591

• 4 Dell Inc. Latitude 5510

5.3.1 ROC Curves Correlation Value

The following graphs, in Figure 5.6, represent the ROC curves of both the Fridrich
and ToothPic algorithm considering the double-valued fingerprints, using the corre-
lation value between the reference fingerprint and each test fingerprint as decision
parameter.

41

Final Results

Figure 5.6: ROC curves of the second dataset results using the double-valued
fingerprints

5.3.2 ROC Curves Hamming Distance
The graphs in Figure 5.7, picture the ROC curves obtained from the results of the
modified Fridrich algorithm pipeline and the binarized fingerprints obtained from
the complete ToothPic algorithm application. Hence, the decision parameter was
the Hamming distance between the reference binarized fingerprint and each test
binarized fingerprint.

5.3.3 Graphs Explanation
Evaluating the double-valued fingerprints extracted with the Fridrich and the
ToothPic algorithms, in Figure 5.6, it can be seen an unexpected result. While the
ROC curves obtained by applying the ToothPic algorithm give a better accuracy
compared to the one with lower-resolution fingerprints, the outcomes of the Fridrich
algorithm application are really poor. The expectation of the Fridrich algorithm,
as demonstrated by the first dataset results, was to have the best accuracy among
each obtained outcome because the high-pass filter was not applied to cut some

42

5.3 – Second Dataset Results

information from the photo. On the contrary, the ROC curve is even worse than
the one obtained with the 480x480 fingerprint.

Moreover, analysing the subsets of Windows and MacOS devices it is possible
to see that the problem is present only in Windows devices since the ROC curves
of MacOS devices are perfect for each pipeline used.

The binarized fingerprints results of Figure 5.7 are basically in line with the
ones of the double-valued fingerprints. The Fridrich ROC curve still shows a bad
accuracy, while the other ROC curves, especially with a higher diagonal value, have
excellent accuracy for the fingerprint authentication scheme.

Figure 5.7: ROC curves of the second dataset results using the binarized finger-
prints

Therefore, the performance drop of the Fridrich algorithm in Windows PCs
may be due to the presence of many devices of the same model. Indeed, in some
cases, the PRNU pattern noise may contain some Non-Unique Artifacts which
are equal for PCs of the same model. These artifacts, as evident in the results,
affect the fingerprint matching process generating many false positives and false
negatives. However, the results of the ToothPic algorithm seem to eliminate this
problem since the accuracy, as expected, is greater than the one obtained with

43

Final Results

lower-resolution fingerprints.
In the following sections the problem of the Fridrich algorithm ROC curves will

be examined in more detail, and a possible solution will be given together with the
results of the corrected pipeline.

5.4 Non-Unique Artifacts

The ROC curves extracted from the second dataset show that the Fridrich algorithm,
instead of generating the best accuracy, generates very negative results for both
double-valued and binarized fingerprints.

This event could be caused by Non-Unique Artifacts (NUA). Basically, these
artifacts are components that are systematically present in every photo (e.g., color
interpolation artifacts, on-sensor signal transfer, and sensor design). The main
feature of NUA is that they are not unique among different sensors, but devices of
the same model, or even the same brand, shares them [22]. The consequence is
that the PRNU is altered, and ambiguities may arise in the fingerprint matching
process.

Taking into consideration the second dataset, it was stated in 4.5 that the
dataset consists of multiple Windows devices of the same model and brand, unlike
the first dataset which did not raised this problem. Instead, with regard to MacOS
devices, it is possible to notice that the extracted PRNU does not contain any
NUA as the ROC curves of the MacOS subset show almost perfect results.

Another interesting consideration concerns the application of the two different
algorithms. While the Fridrich algorithm results present problems, the ROC curves
of the second dataset display that the application of the ToothPic algorithm seems
to delete NUA from the fingerprint because the results are very good. This event
may be due to the high-pass filter application. It is indeed imaginable that the
low-frequencies filtering of the images could potentially lead to NUA removal.

Table 5.1: List of devices in the dataset to detect NUA

Model OS Resolution ID

Dell Inc. Vostro 3591 Windows 10.0.19042 1280x720 PC 1

Dell Inc. Vostro 3591 Windows 10.0.19042 1280x720 PC 2

Dell Inc. Latitude 5510 Windows 10.0.19041 1280x720 PC 3

MSI Prestige 14 Evo A11M Windows 10.0.19043 1280x720 PC 4

44

5.4 – Non-Unique Artifacts

5.4.1 Fingerprint Matching with NUA
In order to deeply analyse the NUA problem, a small dataset was chosen with the
purpose of executing the fingerprint matching process with the Fridrich algorithm
and seeing whether these NUA are evident in the plotted histograms. The devices
of this experiment are listed in Table 5.1. The PCs were chosen so to have two
devices of the same model, Dell Inc. Vostro 3591, a device of the same brand but
of a different model, Dell Inc. Latitude 5510, and a device of a different brand,
MSI Prestige 14 Evo A11M.

Figure 5.8: Histograms of the fingerprint matching process to detect NUA

In this experiment the reference fingerprint of PC 1 was extracted and, then,
compared to the test fingerprints of each device in this small list to check the
correlation values.

From the histograms of Figure 5.8 the expected results can be confirmed. The
test fingerprint of the different Dell Inc. Vostro 3591 device has a high correlation
with the reference fingerprint because they have many NUA in common. The
correlation of the Dell Inc. Latitude 5510 is much lower compared to the other
Dell devices, nevertheless it is still a high correlation because the histogram values
are not zero. So, NUA can be a problem even in devices of the same brand and of
a different model. Considering that the MSI Prestige 14 Evo A11M fingerprint is,
as expected, completely uncorrelated with the analysed reference fingerprint, it is
demonstrated that the fingerprint matching process works well in a scenario of two
completely different PCs.

45

Final Results

5.5 Wiener Filter

A solution that should solve the NUA problem is post-processing each image by
applying the Wiener filter. As well-known in literature, Wiener filtering is able
to suppress non-unique artifacts [4] so to improve the estimation of the PRNU in
the fingerprint extraction process. In this kind of post-processing the Wiener filter
operates in the frequency domain.

For this reason the Fridrich algorithm pipeline was modified with the addition
of a function, which calculates the Discrete Fourier Transform and applies Wiener
filtering, after the extraction of the fingerprint, thus removing any periodical pattern
from the extracted PRNU.

Then, the fingerprint matching process was performed again with the devices of
Table 5.1 to check whether the histograms of Figure 5.8 have been fixed using this
new pipeline.

Figure 5.9: Histograms of the fingerprint matching process with the application
of Wiener filtering

From Figure 5.9 it is possible to notice that, even if the correlation of the same
PC is lower than the process without Wiener filtering, the correlations of the other
devices, including those with the same model and brand, are zero. This means that
NUA have been removed and the correlation of the same PC is given only by the
extracted PRNU.

46

5.6 – Wiener Filter Results

5.6 Wiener Filter Results
After analysing the problems caused by NUA and applying the Wiener filter,
which seems to remove non-unique artifacts, it was decided to execute the Fridrich
algorithm again for the whole second dataset. The purpose was to verify whether
the promising findings displayed in 5.5 would be confirmed with a larger number
of devices. This time, the Fridrich algorithm pipelines were modified, both the one
that extracts the double-valued fingerprint and the one that extracts the binarized
fingerprint, with the application of the Wiener filter. In the following images the
ROC curves obtained from the Fridrich algorithm and the Wiener filtering are
compared with the ROC curves obtained before from the ToothPic algorithm.

Figure 5.10: ROC curves of the second dataset results using the double-valued
fingerprints. In the Fridrich algorithm pipeline Wiener filtering was applied

5.6.1 ROC Curves Correlation Value
The ROC curves of the fingerprint matching process with double-valued fingerprints
in Figure 5.10 show that the Wiener filter has an excellent effectiveness in deleting
NUA from photos, since the curve representing the Fridrich algorithm is the one

47

Final Results

with the best level of accuracy, as expected at the beginning.
Furthermore, the application of the Wiener filter does not affect the perfect

results obtained in the MacOS subset with the Fridrich algorithm because the
extracted ROC curve is, once again, the best possible.

5.6.2 ROC Curves Hamming Distance
In Figure 5.11 the outcomes of the fingerprint matching process with binarized
fingerprints are displayed. From the Fridrich ROC curve it can be noticed that, even
with the application of the Wiener filter and the compression of the fingerprints, it
is possible to obtain a great robustness in the fingerprint matching process.

Figure 5.11: ROC curves of the second dataset results using the binarized
fingerprints. In the Fridrich algorithm pipeline Wiener filtering was applied

48

Chapter 6

Conclusions

49

Conclusions

The webcam fingerprint, if extracted from photos taken in controlled situations,
is confirmed as a valid mechanism from which a robust authentication scheme
can be built. The results of these studies demonstrate that ROC curves can be
obtained with the best accuracy from both Windows and MacOS PCs, even with
the differences in the photo acquisition pipeline introduced by the two frameworks
used by OpenCV. In particular, MacOS devices had very good outcomes from the
beginning even with a smaller fingerprint, while Windows devices needed further
actions in order to achieve the same accuracy level.

Another important issue solved, was the presence of Non-Unique Artifacts in
the PRNU of the PCs of the same model. While the first dataset did not give the
opportunity to see that, due to its composition, the second dataset made possible
a deeper analysis of NUA presence in the fingerprint extracted from the acquired
photos. This problem was managed with the application of Wiener filtering as a
post-processing operation on the fingerprint. Therefore, the better overall results
were retrieved using the higher-resolution fingerprints extracted from the second
dataset. A possible weakness on designing the webcam fingerprint authentication
system on 1280x720 images is that not all Windows PCs are capable of capturing
them, so these PCs cannot use the potential authenticator built from the findings
of this thesis. The biggest improvement in accuracy achieved by a larger fingerprint
is visible when dealing with binarized fingerprints. In fact, in a real-world scenario,
the double-valued fingerprints will not be used because of the considerations in 2.3.

In conclusion, the last aspect to evaluate is which pipeline should be used to
extract the reference fingerprints and perform the fingerprint matching process.
For the ToothPic algorithm, the best ROC curve is the one obtained when the
diagonal value has been set to blocksize ∗ 0.4. This means that the high-pass filter
cuts the 60% of the low frequencies that stay above the principal diagonal of each
image’s Discrete Cosine Transform. Instead, the binarized fingerprint obtained
from the Fridrich algorithm, after the application of the Wiener filter, has a perfect
accuracy level. However, there is no high-pass filter in the pipeline to extract this
fingerprint, so the full image is considered. This could lead to a potential problem
if many images captured by the PC webcam can be found on the Internet. In any
case, the probability to upload such images online is very low, differently from
photos taken with a smartphone camera. Thus, the choice of which pipeline to use
for future work is only technological, considering the pros and cons of these two
possibilities.

6.1 Future Work
Webcam fingerprint authentication may represent a considerable upgrade to solve
the usability problem of Multi-Factor Authentication. So, starting from the studies

50

6.1 – Future Work

of this thesis, an authenticator which implements these pipelines in a real-world
scenario can be built. The authenticator can be a good support for MFA systems
such as 2-Factor Authentication, which always requires an additional authentication
factor in addition to passwords, or Risk-Based Authentication, a newer MFA
system which assesses the risk of every login attempt and requires an additional
authentication factor when the risk is high [23]. It might also be possible, in
some controlled situations where no critical systems are involved, to use webcam
fingerprint as Single-Factor Authentication.

Another imaginable future work could be the implementation of this system for
Linux devices. In this thesis they were not considered because it was first decided
to analyse the most used operating systems, Windows and MacOS. As the obtained
results demonstrate the reliability of this mechanism, the study can be expanded to
Linux devices. This is also favoured by the usage of OpenCV, since it is available
in Linux environments.

51

52

Bibliography

[1] National Institute of Standards and Technology (NIST). Authentication Factor.
2021. url: https://csrc.nist.gov/glossary/term/authentication_
factor (visited on 11/23/2021).

[2] Grzergor Milka. Anatomy of Account Takeover. In Enigma 2018 (Santa Clara,
CA). USENIX Association. 2018. url: https://www.usenix.org/node/
208154 (visited on 11/23/2021).

[3] EUR-Lex. General Data Protection Regulation. 2016. url: https://eur-
lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&
from=EN (visited on 10/26/2021).

[4] Diego Valsesia, Giulio Coluccia, Tiziano Bianchi, and Enrico Magli. «User
authentication via PRNU-based physical unclonable functions». In: IEEE
Transactions on Information Forensics and Security 12.8 (2017), pp. 1941–
1956.

[5] Jessica Fridrich. «Digital image forensics». In: IEEE Signal Processing Maga-
zine 26.2 (2009), pp. 26–37.

[6] Jan Lukas, Jessica Fridrich, and Miroslav Goljan. «Determining digital image
origin using sensor imperfections». In: Image and Video Communications and
Processing 2005. Vol. 5685. International Society for Optics and Photonics.
2005, pp. 249–260.

[7] Diego Valsesia, Giulio Coluccia, Tiziano Bianchi, and Enrico Magli. «Com-
pressed fingerprint matching and camera identification via random projec-
tions». In: IEEE Transactions on Information Forensics and Security 10.7
(2015), pp. 1472–1485.

[8] ToothPic S.r.l. ToothPic. 2020. url: https://www.toothpic.eu/ (visited
on 10/25/2021).

[9] FIDO Alliance. FIDO2. 2021. url: https://fidoalliance.org/fido2/
(visited on 10/26/2021).

[10] Apple Inc. AVFoundation. 2020. url: https://developer.apple.com/
documentation/avfoundation (visited on 10/29/2021).

53

https://csrc.nist.gov/glossary/term/authentication_factor
https://csrc.nist.gov/glossary/term/authentication_factor
https://www.usenix.org/node/208154
https://www.usenix.org/node/208154
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://www.toothpic.eu/
https://fidoalliance.org/fido2/
https://developer.apple.com/documentation/avfoundation
https://developer.apple.com/documentation/avfoundation

BIBLIOGRAPHY

[11] Microsoft Corporation. DirectShow. 2021. url: https://docs.microsoft.co
m/en-us/windows/win32/directshow/directshow (visited on 10/29/2021).

[12] Microsoft Corporation. Microsoft Media Foundation. 2021. url: https://
docs . microsoft . com / en - us / windows / win32 / medfound / microsoft -
media-foundation-sdk (visited on 10/29/2021).

[13] OpenCV team. OpenCV. 2021. url: https://opencv.org/about/ (visited
on 10/29/2021).

[14] FFMPEG. libav. 2021. url: https://trac.ffmpeg.org/wiki/Using%
20libav* (visited on 10/29/2021).

[15] FFMPEG. FFMPEG. 2021. url: https://ffmpeg.org/about.html (visited
on 10/29/2021).

[16] scikit-image development team. Scikit-image. 2021. url: https://scikit-
image.org/ (visited on 10/29/2021).

[17] Inc. Sight Machine. SimpleCV. 2021. url: http://simplecv.org/ (visited
on 10/29/2021).

[18] Inc. GitHub. OpenCV Python. 2021. url: https://github.com/opencv/
opencv-python (visited on 10/29/2021).

[19] Gregory K Wallace. «The JPEG still picture compression standard». In: IEEE
transactions on consumer electronics 38.1 (1992), pp. xviii–xxxiv.

[20] Inc. Dropbox. Dropbox Developers Documentation. 2021. url: https://www.
dropbox.com/developers/documentation (visited on 11/04/2021).

[21] Inc. Dropbox. Dropbox for Python Documentation. 2019. url: https://drop
box-sdk-python.readthedocs.io/en/latest/ (visited on 11/04/2021).

[22] Mo Chen, Jessica Fridrich, Miroslav Goljan, and Jan Lukás. «Determining
image origin and integrity using sensor noise». In: IEEE Transactions on
information forensics and security 3.1 (2008), pp. 74–90.

[23] Stephan Wiefling, Markus Dürmuth, and Luigi Lo Iacono. «More Than Just
Good Passwords? A Study on Usability and Security Perceptions of Risk-based
Authentication». In: Annual Computer Security Applications Conference. 2020,
pp. 203–218.

54

https://docs.microsoft.com/en-us/windows/win32/directshow/directshow
https://docs.microsoft.com/en-us/windows/win32/directshow/directshow
https://docs.microsoft.com/en-us/windows/win32/medfound/microsoft-media-foundation-sdk
https://docs.microsoft.com/en-us/windows/win32/medfound/microsoft-media-foundation-sdk
https://docs.microsoft.com/en-us/windows/win32/medfound/microsoft-media-foundation-sdk
https://opencv.org/about/
https://trac.ffmpeg.org/wiki/Using%20libav*
https://trac.ffmpeg.org/wiki/Using%20libav*
https://ffmpeg.org/about.html
https://scikit-image.org/
https://scikit-image.org/
http://simplecv.org/
https://github.com/opencv/opencv-python
https://github.com/opencv/opencv-python
https://www.dropbox.com/developers/documentation
https://www.dropbox.com/developers/documentation
https://dropbox-sdk-python.readthedocs.io/en/latest/
https://dropbox-sdk-python.readthedocs.io/en/latest/

	List of Figures
	List of Tables
	Introduction
	Authentication State-Of-The-Art
	Webcam Fingerprint Authentication
	Thesis Objectives

	Background
	PRNU
	Reference Fingerprint Extraction
	Fingerprint Compression
	Fingerprint Matching
	Correlation Coefficient
	Hamming Distance

	ToothPic scheme
	How it works
	RAW Photos

	Privacy Considerations

	Capture Script
	Software and API Research
	Physical Driver Access
	Operating System's Frameworks
	Cross-Platform Tools and Libraries

	OpenCV Properties
	Programming Language
	Frameworks
	Uncompressed Formats
	JPEG vs Uncompressed Format
	Resolutions

	Photos Analysis
	JPEG compression
	JPEG reconstruction
	Results

	Dropbox Saving
	Dropbox Apps
	Saving Script

	Creation of the Capture Script
	Acquiring the Images

	Dataset Creation
	First Dataset
	Fridrich Algorithm
	Results

	ToothPic Algorithm
	High-Pass Filter
	Images Size
	Results

	External USB Webcam
	Results

	Acquisition Campaigns

	Final Results
	Analysis Process
	Fridrich Algorithm Pipeline
	ToothPic Algorithm Pipeline
	Modified Pipeline
	ROC Curves

	First Dataset Results
	ROC Curves Correlation Value
	ROC Curves Hamming Distance
	Graphs Explanation

	Second Dataset Results
	ROC Curves Correlation Value
	ROC Curves Hamming Distance
	Graphs Explanation

	Non-Unique Artifacts
	Fingerprint Matching with NUA

	Wiener Filter
	Wiener Filter Results
	ROC Curves Correlation Value
	ROC Curves Hamming Distance

	Conclusions
	Future Work

	Bibliography

