
 

Politecnico di Torino  
 

Communications and Computer Networks Engineering (CCNE) 
2021/2022 
December 

 
 
 
 
 
 
 
 
 

Investigating Inconsistencies in            
PRNU-based Camera Identification 

Master’s Thesis 
 
 
 
 
 
 
 
 

Supervisor: Candidate: 
Prof. Tiziano Bianchi Nabeel Nisar Bhat 

(s271913) 
 



Abstract

PRNU (Photo-Response Non-Uniformity) is widely considered a unique
and reliable fingerprint for Camera Identification. The PRNU pat-
terns of two different sensors are always uncorrelated. Such a finger-
print is used as evidence in court for source identification, manipu-
lation detection, etc. Recently, there have been enormous advance-
ments in smartphone cameras. The introduction of software features
like Portrait, AI effect, HDR10+, Scene Recognition, EIS (Electronic
Image Stabilization), etc., which come under the umbrella term com-
putational photography, have significantly improved the camera per-
formance. However, these features have a considerable impact on
the PRNU fingerprint. The complex in-camera processing associated
with these features introduces Non-unique Artifacts (NUA’s) in the
PRNU patterns of such smartphones. Therefore, PRNU patterns cor-
responding to different instances of the same smartphone exhibit un-
expectedly high (cross) correlation scores, leaving a question mark on
the uniqueness of the fingerprint. In other words, the fingerprints of
different devices collide with each other. In such a scenario, camera
identification can not be performed reliably.

The aim is to address the inconsistencies in PRNU-based source iden-
tification. The target consists of images belonging to the recent smart-
phones from Samsung, Huawei, and Xiaomi. A total of 4643 images
belonging to 7 different Smartphone Models are collected from Flickr.
The analysis part consists of verifying the abnormal behavior of the
PRNU for these smartphones. Two tools are proposed to verify the
abnormal behavior: Pair-wise Noise Residual and Pair-wise Finger-
print Comparison. Normalized Correlation and PCE metrics are es-
timated corresponding to every fingerprint or residual couple. Given
the uniqueness of the fingerprint, these metrics should be significantly
lower than the threshold value. On the contrary, the (cross) correla-
tion metrics surpass the threshold, leading to many false positives.
An in-depth analysis of meta-data content does not reveal any ev-
ident link between the Exposure Triangle (Shutter speed, ISO, and
Aperture) and the unexpected behavior. Also, some manufacturers
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choosing not to embed tags related to computational photography
(Portrait Tag, HDR Tag, etc.) does not help either.

This work proposes two algorithms to tackle the problem: SPAM
Classifier and Meta-Data SceneType Tag Classifier. The goal of the
algorithms is to identify the images responsible for the fingerprint col-
lision. The SPAM Classifier is valid for all the models and achieves
high accuracy of 99.8% in classifying the images correctly. On the
other hand, Meta-Data-based Classifier applies to Samsung Models
only. Nevertheless, the latter is quicker and achieves decent accu-
racy of ≃ 86.5%. The images responsible for the abnormal behavior
are discarded as far as fingerprint extraction is concerned. Instead,
the fingerprint is estimated from the images, not producing any false
alarm. The fingerprint obtained in this way is unique and reliable.
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Chapter 1

Introduction

1.1 Background

Source Identification is one of the crucial applications of Digital Image Forensics.

It aims at verifying the origin and genuineness of an image. A typical source iden-

tification problem involves associating a picture to one of the reference devices.

In other words, the purpose is to identify the device which produced the im-

age. Many techniques have been proposed to identify an image source; however,

PRNU-based camera identification prevails over the others.

Over the past decade, PRNU (Photo-Response Non-Uniformity) trace has

been widely used to identify an image source. The PRNU pattern is unique to a

sensor. The patterns of the two different sensors, even if coming from the same

silicon wafer, differ significantly. Moreover, the pattern is relatively constant over

time and survives most camera processing. Due to its uniqueness and reliability,

the PRNU has been used as evidence in courts and by various law enforcement

agencies to check the authenticity of an image, detect manipulations in images,

etc. The reliability of such a trace is vital as it decides whether an accused

is criminal or not. Researches have thoroughly investigated the effectiveness

of such a fingerprint by performing tests on many datasets, e.g., the Dresden

dataset, the VISION dataset, etc. The results have been quite convincing; high

detection accuracies and low percentages of false alarms have been associated

with the PRNU fingerprint. A considerable number of refinements have also

been proposed to improve the robustness of PRNU.
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1.2 Motivation

1.2 Motivation

From the past few years, the task of camera identification has gained much inter-

est worldwide. According to a 2014 report, 1.8 billion pictures were shared every

day on the internet, with a significant stake belonging to smartphones. Recently,

with the advent of computational photography, smartphone cameras are com-

peting with professional ones. The introduction of features like Portrait, Night

Mode, AI effect, HDR10+, etc., which require a lot of in-camera processing, has

turned professional photographers’ minds towards smartphones, given the ease

and convenience smartphones offer. As a result, the share of smartphone cam-

eras in photography has taken to the skies. As per the 2017 report, 85% of the

worlds’ pictures were captured by smartphones. These pictures and tons of source

devices represent a challenge as far as camera identification is concerned. This

poses several questions: Can we use PRNU to identify the origin of such a high

number of images? Does the PRNU trace survive complex in-camera processing?

Is PRNU for modern devices unique?

Recently, Iuliani et al. (2021) highlighted the problems associated with PRNU-

based camera identification in their work, where they tested the effectiveness of

PRNU for modern devices. The team documented quite surprising results as

far as False Alarm Ratio (FAR) is concerned. They reported very high FAR’s

for most modern smartphones. In such a scenario, PRNU will lead to erroneous

camera identification.

This problem is under-researched, and no solution to counter the problem has

been proposed so far.

1.3 Focus

The purpose of this thesis is to check the robustness of PRNU in modern smart-

phones. We focus on verifying the problem on a subset of the dataset of Iuliani

et al. (2021). To do this, we propose two verification tools: Pair-wise Finger-

print and Pair-wise Noise Residual Comparison. These tools expose the problem

of fingerprint collision for modern smartphones. We suppose that this problem

occurs due to the introduction of non-unique artifacts in the images. The com-

plex in-camera processing behind the computational photography is likely to be

similar for the devices of the same smartphone. As a result, the PRNU patterns

and the Noise Residuals exhibit higher cross-correlations than expected. We also

analyze the meta-data of the images to find whether some specific settings cause
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1. INTRODUCTION

this problem. In particular, we focus on the Exposure Triangle in the meta-data

settings.

The novelty of this research is that we propose two algorithms to tackle this

anomalous problem. One of the methods is based on SPAM features, and the

other is based on Meta-Data Screening. Our algorithms aim to identify the images

that produce anomalous behavior, i.e., the images that lead to a large number

of false alarms from those that do not. As a result, we can discard the former

images as far as fingerprint extraction is concerned. Both of our methods have

low computational costs. In particular, the method based on SPAM features

achieves very high accuracy in correctly identifying these images.

1.4 Outline

We begin with the prerequisites in Chapter 2, where we describe the various

concepts that form the ingredients of the main idea. Next, we introduce the

problem in Chapter 3 and discuss the related work. A detailed description of our

dataset follows this in Chapter 4. The dataset chapter is followed by methodology

and methods in Chapter 5, in which we discuss the model and algorithms to tackle

our problem. We also present two problem verification tools in this chapter. Next,

we discuss the experiments concerning the tools and the algorithms in Chapter 6.

We also present the accuracy measures of our algorithms in this chapter. Finally,

we present conclusions, limitations, and future work in Chapter 7.
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Chapter 2

Prerequisites

In this chapter, we present the main concepts relevant to our project. The chapter

is divided into three main sections: Photo-Response Non-uniformity (PRNU),

SPAM features, and Principal Component Analysis (PCA).

2.1 Photo-Response Non-Uniformity (PRNU)

The camera sensor is made of millions of photo-sites or pixels. The function of

these photo-sites is to convert the incoming photons into voltages. Ideally, the

photo-sites, also known as sensor elements, should output equal voltages. How-

ever, because of the manufacturing imperfections, these photo-sites have different

sensitivity towards the incoming light. As a result, each sensor element outputs

a slightly different voltage from others. Every sensor element provides a distinct

gain to the incoming photons. This random fluctuation in the output voltages

of the sensor elements is called Photo-Response Non-Uniformity or PRNU. This

pattern was first identified by Fridrich et al. (2006). PRNU, otherwise known as

pattern noise, is quite specific to the sensor. Therefore, the PRNU patterns of

two different sensors are strongly uncorrelated Fridrich et al. (2006). PRNU is

multiplicative, thus survives most in-camera processing. Moreover, it does not

depend on environmental conditions like temperature, humidity, etc. Therefore,

this pattern is relatively stable and constant over time. Hence, the PRNU noise

is considered a unique and reliable fingerprint in Image Forensics.
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2.1 Photo-Response Non-Uniformity (PRNU)

2.1.1 PRNU Model: How is the fingerprint computed?

The mathematical model presented by Chen et al. (2008), describing the physics

of the camera acquisition process is as follows :

S = GC [(1 + PN)IV +N ′]C +QN (2.1)

S represents the output image of the Sensor,
G represents the Gain,
PN represents the multiplicative PRNU Noise term,
C represents Gamma Correction or Contrast Correction,
IV represents the intensity of the incident light,
N ′ represents the Additive Noise (dark current, electronic noise, etc.),
QN represent the Quantization Noise.
Simplifying the equation and from first-order Taylor approximation (1 + x)n =
1 + nx, the above equation can be re-written as :

S = (GIV )
C [1 + PN +N ′/IV ]

C +QN (2.2)

S = (GIV )
C [1 + CPN + CN ′/IV ] +QN (2.3)

S = S0 + S0P
′
N +N (2.4)

where S0 = (GIV )
C represents a Noise-free image,

P ′N = CPN represents the PRNU term,

and N represents the equivalent Noise term.

Given the model, the aim is to estimate P ′N observing the image S. Figure 2.1

shows the pipeline of the PRNU estimation. We can estimate P ′N in the following

way:

Figure 2.1: Fingerprint Estimation
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2. PREREQUISITES

• Estimate the noise-free image from the original image,

• Subtract the noise-free image from the original image,

• Demodulate the Noise Residual.

Mathematically,

Ŝ0 = D(S) (2.5)

W = S − Ŝ0 (2.6)

W = S0 + S0P
′
N +N − S0 (2.7)

W = S0P
′
N +N (2.8)

where D represents the Denoising Filter,
Ŝ0 represents the estimated Denoised Image,
and W represents the Noise Residual.
P ′N is then estimated from k Noise Residuals.

Wk

Sk

= P ′N +
Nk

Sk

(2.9)

Denoising Filter

The first and the foremost step is the estimation of the noise-free image or de-

noised image. Since we do not observe the noise-free image, precise estimation of

S0 is of utmost importance. The simplest denoising filter is the Low Pass Filter

(LPF). However, the shortcoming of the filter is that the Noise Residual obtained

contains traces of image content (the edges) which the LPF cannot suppress.

Instead, wavelet-based filters seem to give the best performance. The rationale

behind using filters in the wavelet domain is that wavelet transformation sparsi-

fies the signal. Natural images are smooth with few discontinuities, wavelength

representation of images result in few coefficients with large magnitude (details

of the image, i.e., edges) and large coefficients close to zero, instead of in the

pixel domain, all pixels hold equal importance, and there is no way to separate

noisy pixels from the noise-free ones. This sparsifying property of the wavelet

transform helps us better differentiate between the image’s noise component and

noise-free component.

Wavelength transform of the noise-free signal is very sparse. Most of the coeffi-

cients are zero; on the other hand, the wavelength transform of noise gives small

coefficients at all scales. Then thresholding is done to separate noisy coefficients
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2.1 Photo-Response Non-Uniformity (PRNU)

from the noise-free ones (the details of the image); coefficients above the threshold

represent the details of the image. In contrast, coefficients below the threshold

represent noise and are therefore disregarded. In this way, a better-denoised im-

age is obtained to LPF. We use the Michak Filter (Wiener Filter applied in the

wavelet domain) as the denoising filter. The equation of the Wiener filter in the

pixel domain is :

˜f [n] = A(S[n]− µf [n]) + µf [n] (2.10)

where A =
σ2
f

σ2
f+σ2

N
represents the coefficient of the filter,

µf represents the mean of the noise-free image,

σ2
f and σ2

N represent the variances of the noise-free image and the noise, respec-

tively,

S represents the observed image. Since we do not observe the noise-free image, it

is impossible to calculate σ2
f , so in practice, a slight variation of the Wiener filter,

called Lee’s Filter, is used. If we consider noise as zero mean and independent

from the signal, then the following holds:

µS[n] = µf [n] (2.11)

σ2
S = σ2

f + σ2
N (2.12)

Therefore, the equation of the filter can be re-written as:

˜f [n] = max

(
0, σ2

S − σ2
N

σ2
S

)
(S[n]− µS[n]) + µS[n] (2.13)

The rationale behind the above equation is that if the noise variance is low, the

filter’s coefficient is one and our estimated denoised signal is the observed image

itself. On the other hand, if the noise variance is high, the filter’s coefficient

becomes zero, and the denoised signal is simply the mean of the observed image.

PRNU Computation

Once we get the precise estimation of the denoised image, the PRNU is then

estimated maximizing the log-likelihood, and the equation becomes :

P̂N =

∑K
k=1 WkSk∑K

k=1 Sk

(2.14)

If single image is considered,

P̂N =
W

S
(2.15)
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2. PREREQUISITES

We use a single image in computing the fingerprint rather than several images

for two reasons. One, we do not have flat-field images. Second, we want to

understand if the underlying problem is image-specific or not.

2.1.2 PRNU Detector

The fingerprint detection problem involves binary hypothesis testing. The tests

are performed to link an image to one of the reference cameras. We consider a set

of reference fingerprints (P ′i ) corresponding to the different cameras and compute

the fingerprint of the image under test (P ′N). For each camera, the outcome of

the trial depends on the deciding between the two hypotheses H0 and H1 :

H0 : SP
′
N +N,P ′i ̸= P ′N (2.16)

H1 : SP
′
i +N,P ′i = P ′N (2.17)

if H1 holds, the test image is taken by the reference camera

if H0 holds, then the test image is not taken by the reference camera. The out-

comes of the above tests are governed by the metrics: Normalized Correlation (ρ)

Fridrich et al. (2006), and Peak Correlation Energy (PCE) presented by Costa

et al. (2012). These metrics give the similarity scores of the two images. To

compute these metrics, we perform two strategies: Pair-wise Noise Residual and

Pair-wise Fingerprint Comparison, where we correlate two Noise Residuals and

two PRNU terms, respectively, corresponding to two images.

Normalized Correlation

Normalized Correlation between two images is computed in the following way :

ρ =
< W1,W2 >

∥W1∥∥W2∥
(2.18)

< W1,W2 > = ∥W1∥∥W2∥ cos θ (2.19)

where W1 and W2 are the Noise Residuals of the two images, with one of them

serving as the reference. Thus, ρ is cos θ or the cosine distance. If the two

residuals are similar, θ = 0 and cos θ = 1 , therefore ρ = 1, on the other hand

if the two residuals are orthogonal , ρ = 0. A similar expression holds when we

compare the two PRNU terms i.e., P ′N1 and P ′N2.

ρ =
< P ′N1, P

′
N2 >

∥P ′N1∥∥P ′N2∥
(2.20)

< P ′N1, P
′
N2 > = ∥P ′N1∥∥P ′N2∥ cos θ (2.21)

9



2.1 Photo-Response Non-Uniformity (PRNU)

ρ values are then compared to the threshold (T ) , if ρ > T , the two images are

likely taken by the same camera, otherwise not. The threshold is chosen in order

to minimize the probability of the false alarm. Threshold is calculated as :

T =

√
2

L
erfc−1 (2 · FPR) (2.22)

where FPR refers to the False Positive Rate : no of times detector predicts H1

as true, instead of H0,

L refers to the size of the sensor.

If we assume noise to be i.i.d, then for the H0 and H1 hypothesis, the ρ values

behave as Gaussian distribution, with zero mean and the other with some positive

mean, respectively. The variance of ρ, when the image belongs to a different

camera, does not depend on the content of the image; the same does not hold for

H1 when the images come from the same camera.

H0 : σ
2
ρ = 1/L (2.23)

H1 : σ
2
ρ =

σ2
N

∥SPN∥2 + Lσ2
N

(2.24)

Therefore, under H1, the mean and the variance depend on the content of the

image.

Peak Correlation Energy

Peak Correlation Energy or PCE is defined as the ratio of peak energy of the two

Noise Residuals to the average energies. It involves computing cross-correlation

between the two residuals or PRNU terms for every shift. At a certain shift,

when the two residuals or the two PRNU terms align, we get a substantial peak,

while for other shifts, we get random behavior (low values). We take the energy

of the value. The resulting value is, therefore, significantly large.

On the other hand, if the two residuals do not align for any shift, we have

random values for all shifts; the PCE is 1. PCE is more robust than ρ and does

not depend on the content of the image. Mathematically,

PCE =
maxsρ (s)

2

1
N−|W |

∑
s/∈W ρ (s)2

(2.25)

where W is the region around which maximum is expected.

Unfortunately, there is not an analytical model as far as PCE is concerned.
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2. PREREQUISITES

Figure 2.2: PCE Metric

Thresholds have been computed empirically, and the most commonly used thresh-

old for PCE is 60. So if PCE > 60, the two residuals and hence the images belong

to the same camera.

2.2 SPAM Features

Steganography is the process of hiding information such as text etc., in an image.

Steganography is done by adding an independent noise signal, stego noise, to

the Cover Image (Original Image). The final image, which contains confidential

information, is called Stego Image. Due to the addition of noise signal, there are

no significant changes in the image’s content. The human eye can not differentiate

between the stego image and the cover image. The embedding of information is

done at the pixel level. LSB (Least Significant Bit) steganography is one of the

techniques to hide information, where the least significant bit of every pixel is

modified. As a result of this modification, pixel intensity only changes by one,

e.g., 0, which represents black becomes 1, less dark. This does not have any visual

impact on the content and color of the image. Figure 2.3 shows the simple process

of LSB steganography. A simple text message, Fingerprint Collision, is added to

the cover image. The stego image is similar to the cover image. This confidential

information is not limited to text only; images, etc., can also be hidden within

the image. To identify the hidden content, Steganalysis is done.
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2.2 SPAM Features

Figure 2.3: Steganography

In this project, the confidential information is synonymous with NUA’s (Non-

unique Artifacts) introduced by features associated to computational photogra-

phy. We aim at detecting the presence of such artifacts with SPAM Analysis.

Figure 2.4 shows the pipeline of Steganalysis with SPAM.

SPAM or Subtractive Pixel Adjacency Matrix, Pevny et al. (2010) , as the

name suggests involves subtracting the adjacent pixels in the image. The dif-

ferences are calculated along eight directions viz, horizontal directions (←,→),

verticals (↑, ↓), and the diagonals (↗,↙,↘,↖).

D→ (m,n) = S→ (m,n)− S→ (m,n+ 1) (2.26)

Figure 2.4: Steganalysis by SPAM

12
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where D→ represents the difference matrix in horizontal (→) direction. We can
repeat the same procedure for every direction. As a result, the original image
matrix (S) is replaced by the difference matrix D. The rationale behind the pixel
differences is that it suppresses the image content and exposes the stego noise.
The difference kernel [−1 + 1] is the simplest edge detector, and the difference
matrix essentially represents the high pass version of the image. Since natural
images are smooth, the distribution of differences approximates Gaussian behav-
ior, i.e., differences peak around zero, representing the mean value, and quickly
fall on either side. Therefore, it is quite realistic to consider the differences in the
smaller window [−W +W ].
The pixels in the difference matrix are then modeled as 2nd order Markov Chain
(M) and transition probability matrices are calculated along each direction.

M→
xyz = P

(
D→m,n+2 = x|D→m,n+1 = y|D→mm,n = z

)
(2.27)

where M→ refers to the Markov Chain in the horizontal direction,

x, y, z ∈ [−W,+W ].

Finally,the probability matrices are averaged to obtain the SPAM features (SF ).

SF1 =
1

4

[
M→ +M← +M↑ +M↓] (2.28)

SF2 =
1

4

[
M↗ +M↖ +M↙ +M↘] (2.29)

where SF1 refers to the SPAM features in horizontal and vertical directions,

SF2 refers to the SPAM features along diagonals, the final SPAM feature set SF

is [SF1;SF2]. For an image, 686 2nd order SPAM features are obtained.

The SPAM features obtained are microscopic, i.e., they capture minute depen-

dencies between the pixels of an image. The relations or dependencies between

the pixels in the stego image are modified due to the embedding of hidden infor-

mation. SPAM features capture this information, and therefore the features are

distinct for stego and cover images. Once we extract SPAM features, a classifier

is trained to learn the features corresponding to the cover and stego images, re-

spectively. However, because of the high dimensionality of the SPAM features,

we resort to PCA before training the classifier.

2.3 Principal Component Analysis (PCA)

Principal Component Analysis or PCA is one of the data transformation tech-

niques in which data is re-represented or redefined in a new coordinate sys-

tem. The axes of the new coordinate system are called Principal Components

13
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Figure 2.5: 2D PCA Components

(Pc1, Pc2...Pcn), form the basis of the new vector space. The goal of the transfor-

mation is to find new axes that better represent the data and cluster the data

groups. The aim is to capture maximum data variance and simultaneously mini-

mize the error between the data points and their projections. The importance of

the components depends on the increasing order of their variances.

Figure 2.5 shows the distribution of the features along with 2D PC’s. The

data has a larger variance along the main diagonal and less along the other. The

largest Principal Component captures the maximum variance of the data while

the smallest component, orthogonal to the first, captures the lowest. These two

components become the new basis for the two features. For n features, n compo-

nents are computed.

The consequence of this transformation is dimensionality reduction or feature se-

lection. We implement PCA to eliminate the curse of dimensionality of the data.

The 2nd order SPAM features of an image consist of 686 attributes or dimen-

sions. This represents a very high-dimensional data, limiting the performance of

machine learning algorithms. It is not easy to find patterns and cluster high-

dimensional data. Moreover, these number of features represent a lot of compu-

tational burden. Therefore, we transform 686 SPAM features into 686 Principal

Components. Then we make the feature selection; we keep only the essential

components (<< 686) depending on the accuracy of the classifier. Because of

14
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the PCA, our classifier achieves very high accuracy and has a low computational

cost.

15
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Chapter 3

Related Work

In this chapter, we introduce the underlying problem and the recent advance-

ments in the field of PRNU-based camera identification. Before introducing the

problem, we highlight some terminologies to simplify the understanding of the

problem.

Terminologies

The word Model refers to a particular smartphone, e.g., Samsung S10 is a Smart-

phone Model.

The word Devices refers to the different exemplars of the same model, i.e., Dif-

ferent Devices correspond to different instances of Samsung S10, each instance

belonging to a different Flickr User. In other words, different users correspond to

the different devices of the same model. Therefore, we interchangeably use the

word Devices with Users.

Finally, the word Resolution refers to the size of the sensor, which shoots the

image. Modern smartphones have more than one sensor to shoot the image.

Throughout the thesis, we will make use of these terminologies.

3.1 Problem Statement

Camera Identification for modern smartphones turns out to be quite challeng-

ing. Ideally, PRNU patterns (fingerprints) of the images belonging to different

devices are strongly uncorrelated. However, this no longer holds for the recent

smartphones. The problem with modern smartphones is that correlation be-

tween PRNU patterns corresponding to the images of different devices (same

model) results in unexpected distribution. The correlation values easily surpass
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the threshold and overlap with auto-correlation values to some extent. In other

words, the PRNU fingerprints of different devices collide with each other i.e.,

the fingerprints are no longer unique; instead, they have an element of similarity.

Therefore, high False Alarm Ratios (FAR’s) are recorded for these devices. This

type of inconsistent behavior leads to erroneous source identification. In such a

case, one can wrongly link an image to multiple devices.

This unexpected behavior is verified for both the metrics viz, Normalized

Correlation and PCE. These metrics reveal a high FAR. As far as normalized

correlation is concerned, the distribution no longer follows a zero-mean Gaussian

distribution. Moreover, the variance model for the H0 hypothesis is not verified.

An in-depth analysis reveals that the distribution can be modeled as a bi-modal

distribution (Gaussian Mixture), with one mode close to zero mean and the other

with a relatively higher mean.

This problem of fingerprint collision in modern smartphones raises a question

on the uniqueness and reliability of the PRNU for Image Forensics. The use of

PRNU as such in practical scenarios, e.g., court evidence, will lead to misleading

conclusions and drastic consequences.

Approach

This problem is under-researched. To the best of our knowledge, no solution to

address the problem has been reported to the date of submitting the thesis. We

propose two proactive solutions to address the problem of fingerprint collision in

recent smartphones. The solutions are discussed in chapter 5. These solutions

help us identify the images that produce unexpected distribution and, conse-

quently, high FAR’s. Those images are therefore disregarded as for as PRNU

extraction is concerned. Instead, the PRNU is computed from the images pro-

ducing expected distribution and no FAR’s. The PRNU computed in such a way

is without distortions and hence does not produce any erroneous results. In this

way, Camera Identification can be performed reliably.

3.2 Recent Findings

The problem of fingerprint collision was first reported by Iuliani et al. (2021)

in A Leak in PRNU Based Source Identification—Questioning Finger-

print Uniqueness. Iuliani and his team’s work focuses on issues associated

with PRNU-based SCI (Source Camera Identification). The experiments are per-

formed on three datasets: VISION, CONTROL, and Flickr. VISION dataset is a
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popular dataset used to analyze the efficiency of forensic algorithms. It consists

of images from slightly old (released before 2016) smartphones. There are 35 dif-

ferent devices corresponding to 11 brands like Samsung, Apple, Huawei, Lenovo,

LG, etc.

On the other hand, the CONTROL dataset consists of images of recent smart-

phones (released after 2016). The team first verifies the efficiency of PRNU source

identification on the VISION dataset. They analyze 20 images per device. The

fingerprint is estimated using a single image, and PCE is computed between ev-

ery fingerprint couple. The team reports entirely consistent results as far as False

Alarm Ratio is concerned. They obtain a significantly low FAR, less than 0.001.

This strategy, where the fingerprint is estimated using a single image only, does

not affect FAR; it only affects the detection rate. The same procedure is repeated

for the CONTROL dataset. However, this time fingerprints are estimated from

5 flat-field images. On computing PCE between every fingerprint couple, the

team reports quite inconsistent results. High false alarms are seen among Sam-

sung, Xiaomi, and Huawei devices. This behavior is seen both at the model and

brand levels, which means that different devices of the same model and different

models of the same brand suffer from this behavior. The team then verifies this

behavior on the Flickr dataset. They collect images of devices corresponding to

the CONTROL dataset and images from other models as well. Repeating the

same analysis on the Flickr dataset verifies the problem of fingerprint collision in

modern smartphones. The correlation between Pair-wise Noise Residuals exposes

a high percentage of false alarms for these smartphones. Iuliani and his team do

not find any link between meta-data and this behavior. The team fails to provide

any solution to counter the problem.

Joshi et al. (2020) evaluate the robustness of PRNU-based fingerprint consid-

ering different Imaging Pipelines in Empirical Evaluation of PRNU Finger-

print Variation for Mismatched Imaging Pipelines. The team analyses

the problem of fingerprint mismatch across different pipelines. Imaging pipeline

refers to the set of algorithms performed on an image to produce the final digital

image. These algorithms are performed by Imaging Signal Processor, a DSP for

Image Processing. Joshi and his team stress the growing use of neural nets in

modern cameras and its impact on source identification. The team analyses 13

different pipelines that include 10 standard pipelines like Adobe Lightroom, Corel

AfterShot Pro, etc., and 3 neural network-based pipelines. The neural net-based

architectures employ Dnet and Unet for color interpolation and denoising. They

also include an Inet to produce images similar to standard imaging pipelines. The
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team collects 120 raw sensor images from 4 Camera’s: Nikon D7000, Canon EOS

40D, Nikon D90 and Canon EOS 5D. The images are collected at maximum

resolution. These images are processed using the different pipelines mentioned

above. Default settings and minimum post-processing are applied on each pipeline

so that the resulting image is not significantly different across pipelines. The team

aims at analyzing fingerprint mismatches locally and globally. PRNU fingerprints

are estimated corresponding to the same images processed by different pipelines.

Correlation is performed between these fingerprints. One expects to have high

correlation scores because they compare the PRNU’s corresponding to the same

images.

On the contrary, the team reports significantly lower detection scores. The av-

erage PCE score is reduced by 62% between images processed by other pipelines.

To assess the local impact, the group extracts non-overlapping square patches of

varying size viz, 128 × 128, 256 × 256, and 1024 × 1024 from these images. The

group observes a high reduction in detection scores for smaller image patches,

128 by 128 pixels, which are used to detect forgery, than for the larger ones 1024

by 1024 pixels. Also, lower detection rates are seen for neural network-based

pipelines compared to standard pipelines. However, the team does not report

any solution to counter the problem.

Liu et al. (2021) propose CNN-based Camera Identification inEfficient Source

Camera Identification with Diversity-Enhanced Patch Selection and

Deep Residual Prediction. The use of deep learning for Camera Identification

is growing faster than ever. However, the cost of complexity and generalization

remains the bottleneck for deep-learning-based methods, as Liu and his team

report. To tackle the cost of complexity, the team presents a simplified model

where only specific image patches of the size 64 by 64 pixels or higher are used

for training. Instead of using all image patches for training, the team uses some

arbitrary patches. The main focus of the research is the selection of these patches,

i.e., identifying the candidate patches for training. The team employs more than

one criteria to select the patches viz, edge, and textual criteria based on statistical

properties of patches and semantic content. This way, the representative patches

better model the distribution of overall patches.

After selecting the patches, Noise Residuals for these patches are estimated

with the help of Res2Net. Res2Net aims at reducing the image content in the

residual. The final step involves using a classifier module to learn the camera-

specific features. The tests are conducted on the Dresden dataset at the device,

model, and brand levels. The results obtained are similar to the state of art
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algorithms. However, this method is data-driven and computationally costly.

Also, the Dresden dataset is old, and the corresponding devices use obsolete

image processing algorithms. There is not any problem of fingerprint collision in

the Dresden dataset. Therefore, given the complex in-camera processing modern

smartphones employ, this method is likely not going to generalize. Moreover, this

method gets tricky if dark, bright, and smooth patches are used for training.

de Roos & Geradts (2021) describe the factors that affect the efficiency of

PRNU based SCI (Source Camera Identification) in Factors that Influence

PRNU-Based Camera-Identification via Videos . The tests are performed

on videos of iPhone 6. The identified factors are resolution, length, and compres-

sion. Two different resolutions are tested : 720p and 1080p. To achieve video

compression, Snapchat is used. The team observes that a higher resolution and

video length guarantees reliable PRNU estimation. However, compression harms

PRNU estimation.

Nowadays, more research is being done to protect users’ privacy whose im-

ages are used for fingerprint estimation. Since PRNU’s extraction requires several

images of a specific camera, it leaks a considerable amount of user information,

violating privacy. Fernández-Menduiña & Pérez-González (2021) present various

strategies to counter the leakage of information associated with PRNU estimation.

The methods include using flat-field images (sky, etc.), modifying the PRNU fin-

gerprint, and estimating PRNU from encrypted images. However, this increases

the computational complexity and also affects the performance.
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Chapter 4

Dataset

In this brief chapter, we present the data that we collected and analyzed. The

data consists of images. We also discuss the assumptions concerning the dataset.

4.1 Details

Manufacturer Model Resolution Users Images

Huawei

LYA-L29 3648× 2736 10 700
LYA-L29 5120× 3840 7 490
LYA-L29 7296× 5472 2 140
VOG-L29 3648× 2736 10 700
VOG-L29 7296× 5472 2 139

Samsung

SM-G973u 4032× 3024 6 378
SM-G973u 4608× 3456 4 279
SM-G975u 4032× 3024 8 558
SM-G975u 4608× 3456 2 140
SM-A505u 4032× 3024 3 209
SM-G970u 4032× 3024 5 350

Xiaomi Redmi Note 7 4000× 3000 8 560

Table 4.1: Details of the Dataset

Our dataset consists of images from 3 different smartphone manufacturers. These

images correspond to Huawei, Samsung, and Xiaomi smartphones. We collect

images of two models of Huawei , LYA-L29 (Mate 20 Pro) and VOG-L29 (P30

Pro) , four models of Samsung SM-G973u (S10), SM-G975u (S10+), SM-A505u
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(A50) and SM-G970u (S10e) and one model of Xiaomi, Redmi Note 7. Since

these smartphones feature more than one camera sensor, it is possible to shoot

images at different resolutions. So, we have more than one resolution for the

majority of these smartphones.

Table 4.1 shows the details of the dataset wherein, Manufacturer refers to the

brand of the smartphone, the Model refers to a particular smartphone, Resolution

refers to the size of the camera sensor. Users refer to the different devices or

instances of the same model. Each user corresponds to a different device (same

model). The overall structure of the dataset is as follows :

Manufacturer →Model → Resolutions→ Users→ Images

The images corresponding to a particular resolution are uniformly distributed

among these users. For example, for LYA-L29, we have 700 images uniformly

distributed among 10 different devices at 3648 × 2736 resolution. This is true

for every model. The average number of images per user is 70. These number

of images ensure diversity in the data primarily because it is improbable that

these 70 images are shot under the same camera settings, e.g., ISO, Exposure,

Focal Length, etc. Meta-data analysis with MATLAB testifies the diversity of the

data. Secondly, collecting images of different resolutions for most of the models

allows us to draw broader conclusions. Finally, these images are rich in content

as well. The images correspond to the random subjects, e.g., sky, table, cat, etc.,

which represent real-life situations. Therefore the dataset is quite diverse and

realistic simultaneously. This variety ensures that whatever conclusions hold for

this dataset can be generalized for any other realistic dataset.

4.2 Reference and Assumptions

This choice of the dataset is based on the results presented by Iuliani et al. (2021).

Given the timing constraints of the project, we collect a total of 4643 images only,

corresponding to 7 different models. The images are downloaded from the Flickr

database using a Python script. Since we do not have physical possession of the

devices, we resort to meta-data to ensure the genuineness of the data. Meta-data

analysis is used to verify the authenticity of the image. Figure 4.1 reveals the

Meta-Data Content of one of the images belonging to a Flickr user shot on Redmi

Note 7. The authenticity of the image is verified by looking at the Model tag

in the meta-data. Moreover, the resolutions of the images match the device’s

capabilities.
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Figure 4.1: Meta-Data Content with in-built MATLAB tool

Most importantly, looking at GPSInfo tag of the meta-data, it is safe to say

that different users correspond to different devices (of the same model) since

the coordinates corresponding to different users represent different regions of the

world. We verify this for Redmi Note 7 and believe that the same holds for other

models. Images of the same user reveal similar GPS coordinates, while images

from different users show significantly different coordinates. For example, for

Redmi Note 7, the GPS coordinates of the images shot by one of the users reveal

the location around the Mediterranean sea. In contrast, the GPS tag reveals

locations around Poland for another user of the same model. This is one of

the critical assumptions for the dataset. All our conclusions are based on this

assumption. The dataset is then analyzed in MATLAB with the tools discussed
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in chapter 5.
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Chapter 5

Methodology and Algorithms

This chapter presents a model and the associated hypothesis that explains finger-

print collision in the modern smartphones. We discuss two problem verification

tools that expose the unexpected behavior of modern smartphones. Finally, we

discuss two algorithms and their pipelines to tackle this problem.

5.1 Methodology

Model Assumptions

The problem of fingerprint collision occurs in most modern smartphones. We

suppose that this problem occurs due to complex in-camera processing, which is

quite common these days. Camera features like Portrait, HDR10+, AI, Night

Mode, EIS (Electronic image Stabilization), etc., require a lot of processing and

that too, within seconds. The portrait effect is achieved with the help of machine

learning (edge detection) by separating the foreground and blurring the back-

ground. HDR is achieved by capturing n number of images with different shutter

speeds and combining them into a single image to get a wide dynamic range close

to a Human Eye. Because of this complex processing, final images are signifi-

cantly different from the raw sensor images. We believe that the processing, i.e.,

the algorithms behind these features, is somewhat common to the same model

devices. e.g., all the devices of a particular Samsung Model (e.g., S10) likely use

similar if not the same algorithms to produce these effects. In the context of our

terminology, different users of the same model experience similar camera process-

ing. Therefore, this common processing introduces non-unique artifacts (NUA’s)

in the images of these users and consequently distorts the actual fingerprint. As a

result, PRNU patterns and Noise Residuals belonging to different devices exhibit
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higher correlation metrics, leading to erroneous source identification.

Model

Given the above discussion, the PRNU and the Noise Residual terms are modified

with respect to section 2.1.1 in the following way :

S ′ = S0 + S0P
′
N +N +NUA′s (5.1)

W ′ = S ′ − S0 (5.2)

W ′ = W +N + ϵ (5.3)

P ′′N = P ′N +N ′ + ϵ′ (5.4)

where S ′ represents the output image,

NUA’s refers to the non-unique artifacts,

W = S0P
′
N and P ′N refer to the ideal Noise Residual and PRNU term, respectively,

N and N ′ represent i.i.d. Noise Components independent for each image,

ϵ and ϵ′ represent small perturbation due to non-unique artifacts and

P ′′N and W ′ refer to the modified PRNU and Noise Residual terms, respectively.

We estimate Noise Residuals and the PRNU terms from a single image. So,

each estimation of the terms is affected by an independent noise component cor-

responding to the image. Since the PRNU estimation is slightly complex, the

associated noise term N ′ is different from N . We correlate the PRNU terms and

Noise Residuals of two different images. So the independent noise components

corresponding to two different images cancel each other and do not contribute to

false alarms. Instead, ϵ and ϵ′ are responsible for fingerprint collision.

As described in section 2.1.1 the most crucial step in fingerprint computation is

the estimation of the denoised image. We believe that the denoising filter cannot

suppress the NUA’s term completely. Therefore, the denoised image still contains

small traces of the NUA’s. These small perturbations manifest as ϵ and ϵ′ in W ′

and P ′′N , respectively. PRNU patterns and the Noise Residuals corresponding to

the devices of a specific model suffer from the same non-unique perturbation. The

presence of ϵ and ϵ′ in all devices of the same model distorts the uniqueness of the

W ′ and P ′′N and increases the element of similarity among them. This results in

unexpectedly high correlation scores between different devices. Since the PRNU

extraction involves an additional step of demodulating the residual, it is likely

that ϵ′ < ϵ.

The first step involves verification of the problem. Given the simplicity and

time constraints, we limit ourselves to intra-resolution and intra-model analysis,
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i.e., we analyze different devices/users at the same resolution and the same model.

Problem analysis is done in MATLAB using the tools discussed below.

5.2 Problem Verification Tools

To verify the problem of fingerprint collision, we propose two strategies: Pair-wise

Noise Residual (Strategy 1) and Pair-wise Fingerprint Comparison (Strategy 2).

The basics of these strategies are already discussed in section 2.1.2.

Under the strategy 1, we compute and correlate Noise Residuals (W ′) of two

images at a time. Noise Residuals are computed using Denoising Filter. After

calculating the Noise Residuals, Wiener Filtering is applied to remove artifacts

(blockiness) due to JPEG. Then we correlate the Noise Residual of an image

belonging to a specific user with the Noise Residuals of every image belonging to

different users, including the former (auto-correlation).

Steps :

• Compute Noise Residual of 1st Image

• Compute Noise Residual of 2nd Image

• Normalized Correlation and PCE between the two Residuals

• Loop over all Images.

Under the strategy 2, we compute and correlate fingerprints (P ′′N) of two images

at a time. Fingerprint computation is described in section 2.1.1. Rest of the steps

are same as strategy 1.

e.g., for Normalized Correlation (ρ), we do the following :

Strategy 1:

ρ =
< W ′

1,W
′
2 >

∥W ′
1∥∥W ′

2∥
(5.5)

Strategy 2:

ρ =
< P ′′N1, P

′′
N2 >

∥P ′′N1∥∥P ′′N2∥
(5.6)

Under each strategy, we obtain two symmetric matrices corresponding to Nor-

malized Correlation (ρ) and PCE. These matrices reveal the auto-correlation and
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cross-correlation scores between the devices of the same model. For Normalized

Correlation, the diagonal elements are equal to 1, correlation of an image with

itself. Due to the presence of ϵ and ϵ′ in the Noise Residuals and the fingerprints,

respectively, we see elevated correlation scores between different users. We ana-

lyze the problem for every model and every resolution. This analysis is discussed

in detail in chapter 6.

5.3 Algorithms

We propose two algorithms to tackle the problem of fingerprint collision: SPAM

Classifier and Meta-Data SceneType Tag Classifier.

The analysis tools discussed in section 5.2 testify the problem of fingerprint col-

lision. However, an in-depth analysis reveals that some images do not suffer

from fingerprint collision. The distribution of correlation values corresponding

to these images is close to the ideal behavior. These images do not produce any

false alarms. In our terminology, we call them Good Images. The ρ values cor-

responding to these images approximate a zero-mean Gaussian distribution. We

believe that these images do not suffer from NUA’s and therefore do not behave

according to the model introduced in section 5.1. On the other hand, Bad Images

are the ones that produce unexpected distribution and high false alarms. These

bad images are responsible for fingerprint collisions and behave according to the

model discussed in section 5.1.

Following observations hold for pair-wise correlations of good and bad images,

corresponding to different devices (different users):

• Cross-correlation between PRNU patterns of two good images (different

devices) results in a correlation value less than the threshold.

• Cross-correlation between PRNU patterns of one good image and one bad

also yields a correlation value less than the threshold.

• However, the cross-correlation between two bad images produces an unex-

pected correlation value greater than the threshold.

Case 1: Two Good Images

P ′′N1 = P ′N1 +N ′1 (5.7)

P ′′N2 = P ′N2 +N ′2 (5.8)
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Therefore,

ρ12 =
< P ′′N1, P

′′
N2 >

∥P ′′N1∥∥P ′′N2∥
< T (5.9)

Case 2: One Good and One Bad Image

P ′′N2 = P ′N2 +N ′2 (5.10)

P ′′N3 = P ′N3 +N ′3 + ϵ′ (5.11)

Therefore,

ρ23 =
< P ′′N2, P

′′
N3 >

∥P ′′N2∥∥P ′′N3∥
< T (5.12)

Case 3: Two Bad Images

P ′′N3 = P ′N3 +N ′3 + ϵ′ (5.13)

P ′′N4 = P ′N4 +N ′4 + ϵ′ (5.14)

Therefore because of ϵ′,

ρ34 =
< P ′′N3, P

′′
N4 >

∥P ′′N3∥∥P ′′N4∥
> T (5.15)

where indices 1 and 2 correspond to good images,

3 and 4 correspond to bad images,

T represents the detection threshold.

The same observations hold for the Noise Residuals. The crux of this discussion

is that the correlation between a good image and any other always produces

expected distribution. There are no false alarms at all. In contrast, due to the

same perturbation (ϵ′) in the bad images of different devices of the same model,

the corresponding PRNU patterns exhibit elevated correlation values.

The intuition for the algorithms comes from the discussion above. The al-

gorithms aim at identifying these good images. These images can then be used

for unique and reliable fingerprint extraction. While the SPAM classifier is more

accurate and applies to all models, the Meta-Data SceneType Classifier, on the

other hand, is faster but does not apply to all models.
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5.3.1 SPAM Classifier

This algorithm is based on the SPAM features discussed in chapter 2. These

features capture complex dependencies between the pixels and identify the pres-

ence of hidden content in the images. However, here we are not interested in

the traditional Steganalysis. Instead, we model NUA’s (non-unique artifacts) as

the confidential information in the images. So those images contaminated with

NUA’s are Stego Images, and those free from NUA’s are Cover Images. We

use the terms Bad Image and Good Image for the two classes, respectively, as

described in section 5.3. Figure 5.1 shows the pipeline of the algorithm.

Figure 5.1: The pipeline of the SPAM Classifier

• The first step involves manual screening of good and bad images of the

dataset. This is done by counting the number of false positives correspond-

ing to an image. Those images which record 0 false positives are labeled

as good images, while others are labeled as bad. These labels serve as

Ground-Truths for the classifier.

• Then we extract the 2nd order SPAM features from the good and bad im-

ages. These features capture the presence of NUA’s. However, the SPAM

features of each image consist of 686 dimensions. The dataset, therefore,

does not scale with the dimensions of the SPAM features.

• We separately perform PCA on the SPAM features of the good and bad

images to address the curse of dimensionality. We keep only N Principal

Components depending on the accuracy of the classifier.

• The dataset is then divided into the training and test data.

• The fifth step involves training a classifier with the training data. The

classifier outputs labels, good and bad, corresponding to the training data.

Finally, we test the accuracy of the classifier on the test dataset.
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5.3.2 Meta-Data Screening: SceneType Tag Classifier

Figure 5.2: Meta-Data of a Good Image

Meta-Data is a piece of text information automatically embedded in an image

file. It is produced by the device capturing the image. The meta-data contains

valuable information about the image such as Exposure, Shutter Speed, ISO,

Focal Length, GPS info, Device ID, Manufacturer, Date, etc. Since the meta-

data content contains all the image settings, we correlate these settings with the

unexpected behavior. We observe the relation between the tags and correlation

values in the scatter plots. Analysis of scatter plots reveals no link between the

different tags and the unexpected behavior for Huawei and Xiaomi devices.

However, for Samsung Models, one of the meta-data tags, SceneType: A directly

photographed image, correlates highly with the expected behavior. Figure 5.2

shows a typical meta-data content of an image with the presence of a SceneType

tag. The images which record this tag do not suffer from false alarms. These

images resemble good images. Therefore, the problem of fingerprint collision does
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Figure 5.3: The pipeline of Meta-Data SceneType Classifier

not exist for such images. On the other hand, those images whose meta-data does

not contain this tag produce unexpected distribution.

In comparison to the SPAMClassifier, the Meta-Data-based Classifier achieves

lower accuracy. However, it does not require any training at all. Figure 5.3 shows

the pipeline of the algorithm. We need to look for the tag in the meta-data. Once

we find the presence of the tag, A directly photographed image, in the image, we

are pretty confident that the image does not suffer from NUA’s and can therefore

be used for reliable fingerprint extraction. This type of screening is faster and

requires less effort.

The accuracy of this algorithm is calculated by comparing its predictions with

the ground-truths identified under manual screening (1st step) of SPAM Classifier,

presented in section 6.3. The results of this algorithm are described in subsection

6.5.3.
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Chapter 6

Experiments

This chapter presents the experimental setup, the metric for evaluating the meth-

ods, and the analysis carried on the dataset. The critical goal of this chapter is

to discuss the results concerning analysis tools and algorithms.

6.1 Setup

We perform the experiments in MATLAB, a famous work environment with excel-

lent community support and tons of in-built functions. Moreover, for MATLAB,

there exists a library of codes to compute the PRNU fingerprint and the SPAM

features. Thanks to DDE Lab, Binghamton University, NY, for making these

codes accessible to the community.

The data consists of images of recent smartphones whose details are presented

in chapter 4. The first experiment involves an analysis of the problem with the

verification tools proposed in chapter 5. Because of time constraints, we limit

ourselves to intra-resolution and intra-model analysis, i.e., we verify the issue at

the resolution level within each model. In other words, we focus on inter-user

analysis within each resolution. Then we analyze the meta-data content of the

images. We also present a brief experiment with CFA (Color Filter Array) trace

in the images. Finally, we discuss the investigations concerning the two methods.

6.1.1 Metric

To evaluate the performance of our methods, we use a standard metric, Con-

fusion Matrix, popular for supervised machine learning tasks. Since the goal of

our classifier is to predict the images correctly through supervised learning, the
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confusion matrix is an ideal metric. The metric, just like other matrices, consists

of rows and columns. The ground-truths and classifier-predicted labels are along

the rows and columns, respectively. We can use it on the training as well as

testing data. Usually, we use it on the test data. The size of the confusion matrix

depends on the number of classes. Since we have only two classes, viz, good and

bad, the size of the confusion matrix is 2× 2.

Figure 6.1: An example of Confusion Matrix

The matrix compares the classifier’s results with the ground-truths and com-

putes four quantities, two along one diagonal viz, True Positive Rate (TPR), True

Negative Rate (TNR), and two along the other viz, False Negative Rate (FNR)

and False Positive Rate (FPR). One of the two classes serves as a positive class;

e.g., in our case, the positive class refers to a set of good images. Therefore, TPR

is the number of times the classifier can classify good images correctly.

On the other hand, the negative class refers to the bad images, and thus, TNR

relates to the number of times the classifier can classify bad images correctly. FPR

relates to the number of times the classifier incorrectly classifies bad images as

good. FNR refers to the number of times the classifier incorrectly classifies good

images as bad. TPR and TNR are accuracy measures, while FPR and FNR

measure errors in the classifier’s performance. Figure 6.1 shows an example of

the confusion matrix. Rows indicate True Class, and columns indicate Predicted

Class. In the example, TNR is 184
192

, TPR is 135
146

. On the other hand, the error

rates corresponding to FPR and FNR are 8
192

and 11
146

respectively. In other words,

95.83% and 92.4% are the accuracies for each class. Approximately 4% and 8%

are the associated error rates. The confusion matrix also helps us to understand
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the balance of the dataset. In this case, the number of bad examples is more than

good examples. Therefore the accuracy associated with the bad class surpasses

the good. However, both accuracies are reasonably good, above 90%, so the data

imbalance does not significantly impact the classifier’s performance.

6.2 Initial Analysis

This section presents the results we get with the problem verification tools. In

particular, we show the histograms and stats corresponding to Pair-wise Noise

Residual and Pair-wise Fingerprint Comparison. This section exposes the prob-

lem of fingerprint collision.

6.2.1 Pair-wise Noise Residual Comparison: Strategy 1

Under this strategy, we correlate Noise Residuals corresponding to every image

couple. Our focus is on the cross-correlation scores, i.e., Noise Residuals cor-

responding to the images of different users. We use the two metrics, PCE and

Normalized Correlation (ρ), to understand if the residuals are similar or not.

Since the residuals are from different devices, we expect them to be different. We

separately discuss the results concerning the Samsung Models.

Samsung Models

Figure 6.2 shows the histograms corresponding to four Samsung models. The

first row of the figure depicts the histograms of SM-G973u (12 MP), SM-G973u

(16 MP), and SM-G975u (12 MP), and the second row depicts histograms of the

SM-G975u (16 MP), SM-G970u (12 MP), and SM-A505u (12 MP).

These histograms show the distribution of cross-correlation and auto-correlation

scores in black and green, respectively. The X-axis depicts the Normalized Cor-

relation values (ρ), and the y-axis represents frequency (ν). The histograms are

probability normalized. A pink line parallel to the y-axis indicates the detection

threshold, dependent on the size of the sensor.

In all the histograms, we see that many cross-correlation values surpass the

threshold and overlap significantly with auto-correlation scores. Therefore, these

models suffer from high false alarms. The cross-correlation values do not follow a

zero-mean Gaussian distribution. Particularly, both the resolutions of Samsung

S10 and S10+ suffer from the problem of fingerprint collision. We extract some

statistical parameters to see the extent of fingerprint collision for each model.
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Figure 6.2: Normalized Correlation of Samsung Devices

Model µ Threshold σ2
ex σ2

ac FAR
SM-G973u (12 MP) 0.0019 0.0014 8.2e− 08 1.75e− 05 21.6%
SM-G973u (16 MP) 0.0012 0.0012 6.27e− 08 7.931e− 06 19%
SM-G975u (12 MP) 0.0016 0.0014 8.2e− 08 1.178e− 05 22.6%
SM-G975u (16 MP) 0.0052 0.0012 6.27e− 08 3.80e− 05 54%
SM-G970u (12 MP) 7.76e− 04 0.0014 8.2e− 08 6.5e− 06 9.44%
SM-A505u (12 MP) 1.64e− 04 0.0014 8.2e− 08 1.85e− 05 14.67%

Table 6.1: Normalized Correlation Stats of the Samsung Models

Table 6.1 shows the cross-correlation stats of the Samsung Models, where µ

refers to the mean value of cross-correlation, the Threshold is based on sensor

size, σ2
ex refers to the expected variance, σ2

ac refers to the actual variance of the

distribution and FAR refers to the false alarm ratio. MP refers to the Mega

Pixels, i.e., sensor size. The number of devices for each resolution is presented in

chapter 4. We see that the actual variance is significantly higher than expected

for each resolution of the model. The variance equation presented in section

2.1.2 is therefore not verified. Also, the mean of the distribution is substantially

different from zero; it exceeds the threshold for all models except Samsung S10e
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and A50. Above all, we record alarmingly high FAR’s for all of these models.

All the devices suffer from FAR’s > 9%. Therefore, the devices corresponding

to each of these models exhibit significant non-unique artifacts in their images.

Notably, Samsung G975u at a resolution of 4608×3456 (16 MP) suffers the most

with FAR of 54%.

To have a deeper insight into the unexpected behavior of the Noise Residuals,

we plot cross-correlation values only. Since we expect to see a Gaussian behavior,

we fit a single-mode Gaussian distribution to the ρ values.

Figure 6.3: Gaussian Fit to Normalized Correlation

Figure 6.3 shows Normalized cross-correlation values with a Gaussian Fit dis-

tribution for each resolution of the model. The X-axis represents ρ values while

the y-axis represents count or frequency. The mean and the variance of the Gaus-

sian distribution more or less correspond to the values proposed in table 6.1. It

can be seen that many correlation values exceed the pink line, which represents

the threshold. Because of this unexpected distribution, a higher-mean Gaussian

curve fits the correlation values instead of zero-mean. If we carefully inspect the

correlation values of these models, we see that they suffer from a bi-modal distri-

bution, one mode with nearly zero mean and the other with a higher mean. To

visualize the two modes, we fit a bi-modal Gaussian curve to the ρ values.
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Figure 6.4: Gaussian Mixture Modelling

Figure 6.4 shows Gaussian Mixture Modelling (GMM) of ρ values for all the

Samsung Models. GMM shows two peaks for each model: a more prominent

peak close to 0 and a smaller one at a higher ρ value. The higher peak close

Figure 6.5: Gaussian Mixture Clustering
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to the 0 value of ρ indicates that most cross-correlation values follow zero-mean

Gaussian behavior. In comparison, a considerably lower peak suggests that some

of the values do not behave as expected. Therefore, the two modes contribute

in different proportions. The zero-mean mode contributes more to the Gaussian

Mixture.

We can also see that the variance of the higher peak (lower mode) is lower and

better approximates the expected variance. In contrast, variance corresponding

to the higher mode is significantly higher. This unexpected higher-order mode

leads to the problem of false alarms. All of the Samsung models, all resolutions

suffer from this bi-modal distribution. We can easily visualize this with the help

of clustering.

Figure 6.5 shows the associated clustering of ρ values using GMM. The red

and blue dots indicate the two clusters, and the black crosses indicate the two

modes of the Gaussian Mixture. The cluster corresponding to the higher mode

has a larger variance. To further support our analysis, we extract mean and

variance from the two clusters of the Gaussian Mixture. The details are shown

in table 6.2, where indices 1 and 2 correspond to lower and higher modes. These

stats support the above analysis.

Model µ1 µ2 σ2
1 σ2

2

SM-G973u (12 MP) 4.09e− 06 0.0084 1.31e− 07 1.98e− 05
SM-G973u (16 MP) 9.18e− 05 0.0052 1.24e− 07 1.61e− 05
SM-G975u (12 MP) 1.49e− 06 0.0065 1.3e− 07 1.44e− 05
SM-G975u (16 MP) 1.20e− 06 0.0093 9.84e− 08 2.86e− 05
SM-G970u (12 MP) 1.4729e− 07 0.0080 1.2e− 07 9e− 06
SM-A505u (12 MP) 1.37e− 04 0.0108 1.94e− 07 2.7e− 05

Table 6.2: Stats of Gaussian Mixture Modelling

On the other hand, the PCE metric corresponding to the cross-correlation

values also exposes the unexpected behavior. PCE values too suffer from high

FAR’s, although the percentage of false alarms is slightly less than ρ. This is

expected since PCE is more robust than Normalized Correlation.

The histograms in figure 6.6 reveal the PCE cross-correlation scores for the

same Samsung Models. A pink parallel to the y-axis, at a PCE value of 60,

indicates the detection threshold. We can easily see that many values surpass

the detection threshold leading to false positives. Though in some cases, the tails
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Figure 6.6: Distribution of PCE Values for Samsung Models

of the distribution may not be that evident due to the smaller proportion. To

better appreciate the behavior of PCE, we extract some statistics.

Model µ Threshold FAR
SM-G973u (12 MP) 228.5 60 21.5%
SM-G973u (16 MP) 135 60 18.5%
SM-G975u (12 MP) 154 60 21%
SM-G975u (16 MP) 886 60 53.2%
SM-G970u (12 MP) 76 60 9.42%
SM-A505u (12 MP) 220 60 14.08%

Table 6.3: PCE Stats for Samsung Models

Table 6.3 shows the PCE stats of the Samsung Models. Here also, we see a

high percentage of FAR’s. The results obtained with PCE further cement the

problem of non-unique artifacts for these devices. Both PCE and ρ confirm the

problem of fingerprint collision for the Samsung Models.

Now, we focus on Huawei models and Redmi note 7 to see the extent of the fin-

gerprint collision.
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Huawei Models and Xiaomi Redmi Note 7

Huawei Models, LYA-L29 (Huawei Mate 20 Pro) and VOG-L29 (Huawei P30 Pro)

along with Redmi Note 7 also suffer from the unexpected distribution. However,

Figure 6.7: Normalized Correlation for Huawei Models and Redmi note 7

the behavior is not as prominent as the Samsung Models, meaning that they

record significantly lower false alarms than the Samsung ones. Interesting to note

that the highest resolutions of Huawei Models record 0 false positives, unlike the

highest resolutions of Samsung Models (S10 and S10+).

Figure 6.7 shows the histograms for Huawei Models and Redmi Note 7. The

first row of the figure consists of three resolutions of Huawei Mate 20 Pro starting

from lowest to highest (10 MP, 20 MP, and 40 MP). The second row depicts

two resolutions of Huawei P30 Pro (10 MP and 40 MP), followed by a single

Redmi Note 7 (12 MP) resolution. These histograms reveal the distribution of ρ

values. A pink link indicates the sensor-dependent threshold, and the red curve

represents the Gaussian Fit to the distribution.

The histograms corresponding to Huawei Mate 20 Pro and P30 Pro at 40MP

show the expected behavior, i.e., not a single value of correlation exceeds the

threshold. The ρ values corresponding to these resolutions follow the zero-mean

Gaussian curve. Therefore, the devices corresponding to these two resolutions do

not exhibit any non-unique artifacts.
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On the other hand, the histograms corresponding to the lowest resolutions

of both Huawei Models and Redmi Note 7 show that fewer correlation values

surpass the threshold, unlike the Samsung Models, where a comparatively more

extensive number of correlation values exceeded the threshold. However, the

histogram corresponding to Huawei Mate 20 Pro at an intermediate resolution of

20 MP suffers from unexpected behavior. A considerable number of correlation

values exceed the threshold. Therefore, different Mate 20 Pro devices at this

resolution exhibit significant artifacts, leading to higher FAR’s. To gain better

insights, we extract statistical quantities for these models.

Model µ Threshold σ2
ex σ2

ac FAR
LY-L29 (10 MP) 3.43e− 04 0.0015 1.0019e− 07 1.249e− 04 0.85%
LY-L29 (20 MP) 9.44e− 04 0.0011 5.086e− 08 4.744e− 07 48%
LY-L29 (40 MP) 4.2e− 05 7.5e− 04 2.504e− 08 3.49e− 08 0
VOG-L29 (10 MP) 2.25e− 05 0.0015 1.0019e− 07 2.43e− 05 0.24%
VOG-L29 (40 MP) 4.03e− 05 7.5e− 04 2.504e− 08 3.72e− 08 0

Redmi Note 7 (12 MP) 8.44e− 07 0.0014 8.33e− 08 1.255e− 07 0.55%

Table 6.4: Normalized Correlation Stats of Huawei Models and Redmi Note 7

Table 6.4 shows the statistics of the Huawei Models and Redmi Note 7. The

σ2
ex and σ2

ac refer to the expected variance and the one actually found. All the

models, except LY-L29 at 20 MP, record FAR’s < 1%. Particularly for Huawei’s

highest resolutions, the expected variance coincides with the actual. The devices

corresponding to these resolutions behave ideally. However, a very high FAR of

48% can be seen for LY-L29 at the resolution of 5120× 3840 or 40 MP.

We do a similar analysis for these devices as we did for the Samsung ones.

We fit a Gaussian Mixture to understand if these devices suffer from bi-modal

distribution. We see that only Mate 20 Pro at 20 MP resolution suffers from the

bi-modal Gaussian distribution. For all other resolutions, a single-mode Gaussian

curve fits the distribution.

Figure 6.8 shows the bi-modal distribution of ρ values for the Mate 20 Pro at

20 MP resolution. The behavior is similar to what we see for Samsung Models.

The two peaks at ρ values of −1.38e− 05 and 0.0012 correspond to two modes of

the Gaussian Mixture. The latter mode leads to the problem of high false alarms.

To further verify this behavior, we compute the PCE metric for these devices.
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Figure 6.8: GMM for Huawei Mate 20 Pro @20 MP Resolution

Model µ Threshold FAR
LY-L29 (10 MP) 1.0605e+ 03 60 0.69%
LY-L29 (20 MP) 24 60 7.4%
LY-L29 (40 MP) 0.48 60 0
VOG-L29 (10 MP) 145 60 0.23%
VOG-L29 (40 MP) 0.483 60 0

Redmi Note 7 (12 MP) 0.0034 60 < 0.1%

Table 6.5: PCE Stats of the Huawei Models and Redmi Note 7

Table 6.5 shows the PCE stats for Huawei Models and Redmi Note 7. In-

terestingly, with PCE, we record a significantly lower FAR of 7.4% for LY-L29

at 20 MP against 48% for the Normalized Correlation metric. This shows the

Figure 6.9: PCE metric for Huawei Mate 20 Pro @20 MP Resolution
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superiority of PCE over ρ. However, the focus is that 7.4% of the false alarm

ratio is still unexpected. Overall, PCE results are consistent with the Normalized

Correlation. Lower false alarms are seen for these devices than the Samsung ones.

Since FAR is not significant for other devices, we plot PCE values only for

Mate 20 Pro at 20 MP. Figure 6.9 shows the distribution of PCE values for Huawei

mate 20 Pro at 20 MP. We can see that even with PCE, many values surpass the

threshold value of 60.

6.2.2 Pair-wise Fingerprint Comparison: Strategy 2

Under this strategy, we correlate the PRNU terms for every pair of images. We

expect to see slightly different results since the PRNU extraction is more complex

than the Noise Residual. We do this analysis for a subset of models, which exhibit

higher artifacts under Pair-wise Noise Residual Comparison. They are SM-G973u

(Samsung S10) at 12 MP and 16 MP, SM-G975u (Samsung S10+) at 12 MP and

16 MP, and LY-L29 (Huawei Mate 20 Pro) at 20 MP.

Figure 6.10: Normalized Correlation under Pair-wise Fingerprint Comparison

Figure 6.10 shows the ρ values corresponding to Pair-wise Fingerprint correla-

tion. As with the strategy 1, many correlation values surpass the threshold. We
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fit the distribution with Gaussian Mixture, and we find that both Samsung Mod-

els suffer from the same bi-modal Gaussian behavior. However, Huawei Mate 20

Pro does not suffer from two-mode distribution under this strategy. We extract

some statistical parameters corresponding to these devices to see the differences

from Pair-wise Noise Residual comparison.

Model µ FAR
SM-G973u (12 MP) 0.0014 21%
SM-G973u (16 MP) 8.28e− 04 18.4%
SM-G975u (12 MP) 0.0012 22.18%
SM-G975u (16 MP) 0.0034 52%

Huawei LY-L29 (20 MP) 6.9e− 04 25%

Table 6.6: Normalized Correlation Stats for Pair-wise Fingerprint Comparison
.

Table 6.6 shows stats of correlation values using fingerprint comparison, strat-

egy 2. The problem of high FAR persists, though there is an advantage to Pair-

wise Noise Residual comparison. For the Samsung Models, we record a slightly

lower percentage of false positives. However, for Huawei LY-L29 at 20 MP, there

is a massive difference to strategy 1. With the strategy 2, a dip of 23% in the

FAR is seen for this resolution.

Figure 6.11: GMM for Pair-wise Fingerprint Comparison

We fit the GMM to the ρ values of Samsung Models. Figure 6.11 shows the
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Model µ FAR
SM-G973u (12 MP) 127 20%
SM-G973u (16 MP) 61.5 16.8%
SM-G975u (12 MP) 86.41 19.67%
SM-G975u (16 MP) 355 51%

Huawei LY-L29 (20 MP) 13.09 0.65%

Table 6.7: PCE Stats for Pair-wise Fingerprint Comparison

bi-modal Gaussian behavior for the Samsung Models S10 and S10+ at both res-

olutions. These results are consistent with the Pair-wise Noise Residual Compar-

ison. Therefore, with both strategies, the Samsung Models suffer from bi-modal

distribution as far as Normalized Correlation is concerned.

PCE metric for Pair-wise Fingerprint comparison presented in table 6.7, fur-

ther testifies a slight advantage of using strategy 2, in terms of FAR’s. We see a

slight dip in the percentage of false alarms for all the models. This is expected

since fingerprint estimation involves an additional step of demodulating the Noise

Residual. This confirms that the contribution of non-unique artifacts (ϵ′) to the

PRNU terms is less than the contribution (ϵ) to the Noise Residuals. More im-

portantly, PCE significantly reduces FAR for Mate 20 Pro with strategy 2.With

strategy 2, the Mate 20 Pro at 20 MP resolution records < 1% of FAR against

7.4% with the strategy 1. The above analysis shows that strategy 2 outperforms

strategy 1. We present a table that highlights the superiority of Fingerprint

Comparison over Noise Residual in terms of false alarms.

Model Strategy 1 : Strategy 2 (ρ) Strategy 1: Strategy 2 (PCE)
SM-G973u (12 MP) 21.6% : 21% 21.5% : 20%
SM-G973u (16 MP) 19% : 18.4% 18.5% : 16.8%
SM-G975u (12 MP) 22.6% : 22.18% 21% : 19.67%
SM-G975u (16 MP) 54% : 52% 53.2% : 51%

Huawei LY-L29 (20 MP) 48% : 25% 7.4% : 0.65%

Table 6.8: Comparison of two Strategies in terms of FAR’s

Table 6.8 shows FAR’s corresponding to both Normalized Correlation (ρ) and

PCE. We can clearly see that strategy 2 always results in a lower percentage of

false alarms for both metrics.
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In this section, we exposed the problem of fingerprint collision for recent

smartphones. Under both strategies, the unexpected issue of high false alarms is

seen. Strategy 2 is seen to outperform strategy 1 in terms of false alarms. It can

significantly reduce the number of false alarms (Mate 20 Pro at 20 MP). Also,

as expected, PCE outshines the Normalized Correlation metric. So strategy 2

coupled with PCE achieves the best results as far as FAR is concerned. The

Huawei Models and Redmi note 7 do not suffer significantly from the problem

of fingerprint collision. However, the Samsung Models exhibit significant non-

unique artifacts among their devices, which leads to alarmingly high FAR’s with

both the strategies.

6.3 Manual Screening: Cause of Unexpected Be-

havior

Model Number of Good Images Number of Bad Images
SM-G973u (12 MP) 181 197
SM-G973u (16 MP) 74 205
SM-G975u (12 MP) 217 341
SM-G975u (16 MP) 27 113
SM-A505u (12 MP) 44 165
SM-G970u (12 MP) 224 126
LY-L29 (10 MP) 437 263
LY-L29 (20 MP) 62 428
LY-L29 (40 MP) 140 0
VOG-L29 (10 MP) 598 102
VOG-L29 (40 MP) 139 0

Redmi Note 7 (12 MP) 452 108

Table 6.9: Number of Good and Bad Images Manually Identified

The problem verification tools reveal that some cross-correlation values surpass

the threshold. However, other correlation values behave as expected, i.e. are well

below the threshold. We analyze the ρ and PCE values to understand what trig-

gers the unexpected distribution (correlation values greater than the threshold),

in particular for ρ, what gives rise to the second mode of the Gaussian Mixture,

as exposed in the section 6.2. Upon thorough analysis of the pair-wise correlation
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values, we observe that the correlation values corresponding to some images ex-

ceed the threshold, while correlation values corresponding to others do not. The

former are called Bad Images, while the latter as Good Images. Therefore, good

images do not record any false positives, i.e., none of the pair-wise correlation val-

ues (Normalized Correlation or PCE) exceed the threshold. In other words, the

correlation between the PRNU patterns or Noise Residuals of two good images

and one good and one bad always results in values less than threshold. However,

the correlation between patterns or residuals corresponding to two bad images

results in values greater than the threshold. Therefore, we conclude that the

unexpected behavior or the second mode results from pair-wise correlations be-

tween bad images only. It is the subset of bad images, which lead to unexpected

behavior as far as Normalized Correlation and PCE metric are concerned.

Based on the discussion above, we identify good and bad images for each

model. Table 6.9 shows the number of good and bad images identified for each

model and each resolution. A total of 4643 images are analyzed. As discussed

in section 6.2, Huawei models at the highest resolution do not record any false

positives. Therefore there is no bad image for these models. We record a total

of 2595 good and 2048 bad images. These good and bad images serve as ground-

truths for validating the performance of the two algorithms.

6.4 Meta-Data And CFA Analysis

Figure 6.12: Meta-Data Settings VS PCE

After initial analysis, we investigate the meta-data of the images to see if the

unexpected behavior can be linked to some specific settings. We examine the
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scatter plots between each meta-data setting like Exposure, ISO, Aperture, etc.,

with the correlation and PCE values to see if there is some pattern in the scatter

plot. For the sake of readability, we report only Exposure and ISO; the same

results hold for other settings.

Figure 6.12 shows scatter plots of Exposure and ISO against PCE metric for

the images producing unexpected distribution for one of the Samsung Models.

From the scatter plots, it is clear that there exists no pattern concerning the ISO

and the Exposure. We find that there is not a particular setting that triggers

the unexpected behavior. So, the same settings can produce PCE values below

and above the threshold. This behavior is verified for all the models. Thus

the problem of fingerprint collision can happen at any value of Exposure, ISO,

Aperture, etc. Therefore, we rule out the link between unexpected behavior and

the standard meta-data settings.

Figure 6.13: CFA Trace VS PCE

We also probe images to see the existence of CFA (Color Filter Array) trace.

Since modern cameras employ complex in-camera processing, the trace might

get destroyed. Such a trace is detected by exploiting periodicity in the second

derivative. The purpose of analyzing this trace is to see if the absence of the

CFA trace triggers unexpected behavior. This trace is analyzed at the native

resolution of each model.
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Figure 6.13 shows the CFA trace for images against PCE values for Samsung

S10+ which has 140 pictures.We can see that the trace is present in many images.

We record a stronger trace, higher values > 0.2 of CFA for many images. Even

those images recording a stronger CFA trace also suffer from the unexpected

PCE values. For these images, the PCE values are in the order of 1e2. The same

behavior is seen for all models, i.e., no link between high cross-correlation values

and CFA can be established.

This analysis confirms two things: CFA trace is not destroyed despite the

complex in-camera processing of modern smartphones; second, the unexpected

behavior can not be linked to the presence or absence of the CFA trace; there is

no dependence whatsoever.

6.5 Performance of the Algorithms

This section discusses the experiments and the results concerning the algorithms.

6.5.1 SPAM Classifier

We follow the pipeline presented in chapter 5. First, we identify good and bad

images for each model. The details of this step are presented in section 6.3. We

remind that good images are those which record zero false positives. Then we

extract SPAM features for each image. The SPAM function outputs the SPAM

features. The output data is of the size 4643 × 686, where 4643 represents the

number of images and 686 represents the number of SPAM dimensions or features

for each image. SPAM features are pre-processed using PCA to scale down the

number of features. We use a random number of PCA components in the first

instance. The data is divided into training and testing data with a standard

70 : 30 split.

MATLAB APP is used to train a classifier. With MATLAB APP, we use

feature engineering to select the optimum number of PCA components regarding

accuracy and complexity cost. The APP allows us to train many classifiers; we

choose the one with the best accuracy. After multiple hit and trials, we find

that 30 and Cosine KNN represents the optimum choice for the number of PCA

components and the classifier, respectively. Cosine KNN uses the cosine function,

i.e., cos(θ) as the distance metric to find similarities between the neighbors. The

angular difference decides whether to group two points together or not. With

a 70 : 30 split, the training data is of the size 3251 × 30 and the test data
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Figure 6.14: Classifier Training on MATLAB APP

1392 × 30. In order to split the data, we use an in-built function of MATLAB,

which randomly splits the data.

The input to the classifier is the training data. A k-folds cross-validation

is used to prevent the classifier from over-fitting. The training data is divided

randomly into k partitions or folds, and the classifier is trained repeatedly with

k − 1 folds. The remaining 1 fold of the training data is always left out for

validation. The left-out folds are used to tune the model. The results are averaged

across the folds. 20 folds prove to be the best for our data in terms of classifier’s

accuracy. The test data is left unseen to the model.

Figure 6.14 shows the training process of the classifier. The X-axis and the

Y-axis represent two PCA components since it is impossible to visualize > 3

dimensions. The red and blue dots correspond to the 2D PCA components of

good and bad images, respectively. We can see the accuracy of different clas-

sifiers on the training data in figure 6.14. KNN outperforms decision trees and

SVM’s. Among KNN, Cosine KNN achieves the best accuracy. The number of

neighbors chosen is 10, meaning that 10 nearest neighbors are used to classify a

feature point. Moreover, the training is completed in just 14 seconds, thanks to

dimensionality reduction. The classifier achieves a very high accuracy of 99.8%

on the training data. There are only 5 miss-classifications.
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In the subsequent experiments with this algorithm, we try to understand if

the SPAM features are resolution-specific or model-specific. The goal is to see if

the SPAM Classifier generalizes across different models or even resolutions of the

same model. For this, we conduct two experiments. First, we train a classifier

on all models, excluding one. For instance, we train on all models and leave S10

(all resolutions) out. The left-out model is used as the testing data. We do a

round-robin, every-time we leave a different model out as the testing data. Since

there are 7 different models in our dataset, we perform this experiment 7 times; in

each, we leave one of the 7 models out. The second experiment involves training

on one of the resolutions and leaving other resolutions of the same model out. For

example, we train on features of all the resolutions, including S10 (16 MP), and

leave S10 (12 MP) out as the test data. This experiment is done on models which

feature more than one resolution. These two experiments help us to understand

if the SPAM features are model-specific or resolution-specific. The results for the

test data are discussed in subsection 6.5.3.

6.5.2 Meta-Data Screening: SceneType Tag Classifier

For Samsung Models, we find the existence of a meta-data tag, SceneType: A di-

rectly photographed Image. This tag can be used to identify good images directly.

Most of the images which record this tag do not suffer from fingerprint collision.

On the other hand, the images which do not contain this tag suffer from high false

alarms. Both the strategies confirm this behavior. To visualize this behavior, we

first identify the images with this tag for each Samsung model.

Model Images With SceneType Images Without SceneType
SM-G973u (12 MP) 167 211
SM-G973u (16 MP) 73 206
SM-G975u (12 MP) 252 306
SM-G975u (16 MP) 37 103
SM-G970u (12 MP) 203 147
SM-A505u (12 MP) 41 168

Table 6.10: Number of Images with and without SceneType Tag

Table 6.10 shows the number of images with and without the SceneType tag

for each resolution. We plot the normalized correlation and PCE values corre-

sponding to these images. For the sake of readability, we only show results from
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Pair-wise Noise Residual comparison, the same holds for Pair-wise Fingerprint

comparison.

Figure 6.15: Dependence of Normalized Correlation on SceneType Tag

Figure 6.15 shows the distribution of ρ values in presence and absence of the

SceneType tag for all the Samsung Models and all resolutions. The subplots

correspond to S10 (12 MP), S10 (16 MP), S10+ (12 MP) in the first row and

S10+ (16 MP), S10e (12 MP), and A50 (12 MP) in the second row. The green

histograms show the ρ values corresponding to the images which contain Scene-

Type tag. The pink line represents the threshold, and the red curve is a Gaussian

Fit to the distribution. The black histograms depict the correlation scores of the

images which don’t contain the tag.

From the green histograms, it is clear that almost all of the correlation scores

are below the pink line. The problem of high false alarms or bi-modal distribution

is not seen for the images containing this tag. The correlation values follow the

expected zero-mean Gaussian distribution. These images mostly record 0 false

positives or very few in some cases.

On the other hand, those images which do not contain this tag suffer from

the bi-modal distribution. The black histograms reveal that many correlation

values surpass the threshold, leading to high false alarms. Due to the smaller

proportion, the tails may not be that evident in some histograms. We extract

55



6.5 Performance of the Algorithms

Model SceneType Present (µ) SceneType Absent (µ)
SM-G973u (12 MP) 2.605e− 06 0.0032
SM-G973u (16 MP) 8.37e− 05 0.0011
SM-G975u (12 MP) 6.27e− 06 0.0025
SM-G975u (16 MP) 7.43e− 05 0.0068
SM-G970u (12 MP) −3.16e− 07 0.0012
SM-A505u (12 MP) 1.54e− 04 0.0018

Table 6.11: Mean value of Gaussian Fit to Green and Black Histograms

the mean value of the Gaussian curve that fits green and black histograms to

highlight the difference between the two distributions.

Table 6.11 shows the mean value of the Gaussian curve that fits the green and

black distribution. The Gaussian curve that matches the ρ values corresponding

to the images with the SceneType tag for each resolution is nearly a zero-mean.

On the other hand, a relatively higher mean Gaussian curve fits the ρ values of

images without this tag.

Figure 6.16: Dependence of PCE Values on SceneType Tag

The PCE metric also validates these results. The distribution of the PCE val-

ues shown in figure 6.16 corresponds to the images with and without the Scene-

Type tag. The subplots reveal the PCE values corresponding to the Samsung
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Models. The PCE values of images with the SceneType tag are well below the

threshold. On the other hand, PCE values surpass the threshold for the images

which do not contain this tag.

Therefore, both the metrics confirm the association of the SceneType tag to

the expected distribution. To estimate the accuracy of this algorithm, we compare

its performance with the ground-truths from the manual screening described in

section 6.3.

6.5.3 Validation

In this subsection, we present the evaluation metric concerning the two algo-

rithms. The evaluation metric helps us to understand the accuracies of each

algorithm.

SPAM Classifier

Figure 6.17: Confusion Matrix based on Test Data of SPAM Classifier

Figure 6.17 represents the confusion matrix concerning the test data of the SPAM

Classifier. Out of 1392 test examples, the classifier incorrectly classifies only 2 of

them. 99.8% accuracy is associated with the bad class and 99.9% with the good

class. Therefore, our model can achieve very high accuracy in correctly identify-

ing good and bad images corresponding to all the models and resolutions. Even

if we use 50% of data for training the classifier, the model still performs excep-

tionally well with > 99% accuracy for each class. Therefore, the SPAM Classifier
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can be a valuable tool in identifying good and bad images with relatively small

data.

Generalization of SPAM Classifier

Figure 6.18: SPAM Classifier across different Models

Figure 6.18 shows the confusion matrix where the training data consists of features

of all models except S10+. The features corresponding to S10+ (all resolutions

i.e. 12 MP and 16 MP) are left-out to validate the performance of the classifier.

They therefore represent the test data. We leave one of the models out to see if

the SPAM Classifier is to able to generalize across different models.

Figure 6.19: SPAM Classifier across Resolutions of the same Model
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Figure 6.19 shows the confusion matrix where test data only consists of fea-

tures corresponding to 12 MP resolution of S10+. This time the training data

includes features of S10+ (16 MP). So, we train with one of the resolutions and

leave the other resolutions of the same model out for testing. The goal is to see

if the SPAM features generalize across the resolutions of the same model.

The confusion matrices depicted in figures 6.18 and 6.19 reveals poor accura-

cies and high miss-classification costs. The performance of the classifier is like a

random guess. Therefore, the SPAM Classifier does not generalize across different

models and resolutions of the same model. Within a model, SPAM features tend

to be resolution-specific. The same behavior is seen for other models.

Meta-Data Screening: SceneType Tag Classifier

Figure 6.20: Confusion Matrix based on Meta-Data SceneType Tag Classifier

Figure 6.20 shows the confusion matrix for the SceneType Tag-based Classifier.

A total of 1914 images corresponding to all Samsung models are analyzed. The

algorithm achieves a decent accuracy of 84% for the good class and ≃ 89% for the

bad one. Compared to the SPAM Classifier, the accuracies are relatively low, and

the miss-classification percentage is relatively high. 11.16% and 15.91% are the

inaccuracies for each class. Nevertheless, SceneType-based Classifier can prove a

handy tool in real-time identification of good and bad images.
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Chapter 7

Conclusion: Limitations and
Future Work

In this work, we verified the problem of fingerprint collision for recent smart-

phones. The results obtained are consistent with Iuliani et al. (2021). Since the

number of images per device and number of users differs, the results vary slightly.

However, the problem of fingerprint collision is verified in general. We saw that

Huawei Models did not suffer from false alarms at the highest resolution. In

contrast, the rest of Huawei’s resolutions did not seem to cause a problem when

strategy 2 was considered. We can therefore conclude that Huawei Models and

Redmi Note 7 do not suffer significantly from the problem of fingerprint collision.

On the other hand, Samsung Models revealed a high percentage of false alarms

under both strategies. Notably, the highest resolutions of Samsung Models also

recorded many false positives, unlike Huawei’s highest resolutions. Thus, the cor-

responding Samsung Devices exhibit significant non-unique artifacts. Given the

use of PRNU by various law enforcement agencies, this problem of fingerprint

collision represents a threat and can lead to severe consequences.

We did not find any link between the settings and the unexpected behavior

with the meta-data analysis, except for the Samsung Models. Also, some manu-

facturers not choosing to embed the tags related to computational photography

adds to our woes.

We, for the first time, propose two algorithms to counter this problem. Our

algorithms aim at identifying the images suffering from non-unique artifacts. One

of the algorithms is based on SPAM features, and the other is based on the

SceneType tag of meta-data. The algorithm based on SPAM features achieves a

very high accuracy of 99.8% in identifying good and bad images. On the other
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hand, the SceneType-based Classifier is relatively quick and achieves a decent

accuracy (≃ 86.5%.). Once good and bad images are identified, the bad images

are disregarded as far as PRNU extraction is concerned. Instead, good images

can be used to extract a reliable fingerprint.

Limitations

In this section, we discuss the following limitations of our methods:

Algorithms

The SPAM Classifier-based algorithm does not generalize across different models

and resolutions of the same model. The classifier needs to see the training ex-

amples corresponding to each model and all resolutions. In other words, SPAM

features are resolution-specific and therefore do not generalize. This is because

of the pixel-binning and some other processing that is resolution-specific.

On the other hand, Meta-Data-based Classifier is only valid for Samsung

Models; it does not generalize for Huawei and Xiaomi Models. Though relatively

quick, but with a lower accuracy than the SPAM Classifier.

Dataset

The dataset was collected from the Flickr database. Even though the meta-

data settings ensure the authenticity and reliability of the images, we believe

that having access to smartphones could have allowed us to perform additional

experiments. Some manufacturers are not embedding the tags associated with

the computational photography in the images. We could have manually kept

track of the images shot under Portrait, Night mode, AI effect, etc. This also

represents an area of future work.

Future Work

We discuss some of the possible areas for future research:
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Denoising Filter

We believe that the denoising filter cannot suppress the non-unique artifacts

(NUA’s) in the images. The Noise Resdiuals and the PRNU terms contain traces

of NUA’s. Therefore, more powerful denoising filters are required. It is interesting

to see the results with deep learning-based methods, which employ a pre-trained

network to compute the Noise Residuals.

Large Dataset

We have tested our results on a small dataset. We could incorporate additional

smartphones and other professional cameras to test the efficiency of the SPAM-

based algorithm.

Deep Learning

Also, it is interesting to replace the PRNU pipeline entirely with the deep learning

one for modern smartphones. Instead of extracting features from images, we could

directly feed images or patches to the deep learning network.
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