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Abstract

Recent advances in technology allow us to collect a large amount of data over time
in diverse fields and the amount of data transferred exceeds the human ability
to study it manually. Generally, standard statistical approaches assume that the
samples are generated by a specific statistical model and do not scale well with
the amount of data and thus automated data analysis becomes necessary. On the
other hand, machine learning methods consider the data generation process as a
black box and try to learn from the input only. Moreover, in many application
fields, such as economic, healthcare and security, there is the need to have fast
computations but at the same time receive a reliable result.

Traditional models use supervised machine learning algorithms but, in the
context of applications, collecting and annotating such large-scale datasets is
difficult, time-consuming or even too expensive, and it requires domain knowledge
from experts in the field. Therefore, anomaly detection has been such a great
challenge for researchers and practitioners.

Anomaly detection is referred to as the process of detecting anomaly data
instances. The definition of an anomaly depends on the task and domain but, most
of the time, it is an instance that significantly deviates from the others. In this
thesis, the focus is on deep learning models for anomaly detection in time series.
In the first part, a general overview of the anomaly detection task is provided and
the properties and the definition of the time series are presented. Then, in the
second part, various state of the art anomaly detection algorithms are discussed.
Moreover, I present two new approaches, along with a comparison with the classic
methods. In the third part, experiments carried out with different datasets and
different architectures are shown.

Furthermore, I provide some improvements to the presented methods. In detail,
the experiments are made with two public datasets and one on damage detection in
industrial composite structures. These datasets have different properties in order
to show how the discussed methods perform in different situations.

In the end, the results show the ability of the proposed models to detect
anomalous patterns in time series from different fields of application while providing
structured and expressive data representations.
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Chapter 1

Introduction

In recent years, advances in technology allowed us to collect a large amount of
data over time in diverse fields, exceeding the human ability to study it manually.
Generally, standard statistical approaches assume that the samples are generated
by a specific statistical model and do not scale well with the amount of data.
Moreover, in many application fields, there is the need to have fast computations
but at the same time receive a reliable result.

On the other hand, machine learning methods consider the data generation
process as a black box and learn from the input only. Hence, automated data
analysis becomes necessary.

One of the most important data analysis tasks is the detection of anomalies in
the data.

1.1 Definition of anomaly
The definition of an anomaly depends on the task and domain but, most of the
time, it is an instance that significantly deviates from the others.

During the years, many authors and researchers have given their definitions
of an anomaly. For example, Hawkins defines an outlier as an observation that
"deviates so significantly from other observations as to arouse suspicion that it was
generated by a different mechanism"[1].

The anomalies, in all the definitions described in the literature:

1. are points that usually exhibit strange behaviours with respect to the majority
samples. However, in certain situations, anomalies can be also samples with
normal behaviour that occur at "strange timesteps". In literature, these
particular anomalies are called Contextual anomalies.

2. have low frequency, in fact, they represent a small subset of the entire data.

1



Introduction

Figure 1.1: Example of an anomaly detection model.

As shown in Figure 1.1, in the case of a model trained to recognize the images
of apples (normal class), the anomalies are all the images that do not contain an
apple. For example, a banana and a chair are classified as anomalies.

The anomaly is a general concept and thus this term is often used interchangeably
with other terms. For example, the word outlier is used most in statistical with
the meaning of something that comes from a different distribution and thus is often
associated, in machine learning, to the concept of anomaly.

1.2 Applications
Nowadays, many traditional fields have been more "smart" thanks to the addition
of sensors that have made some operations automatic. For this reason, anomaly
detection is an increasing area of research because it is widely used in more and
more fields.

Bulusu et al. [2] provided the following main applications of anomaly detection:

• Intrusion Detection. An intrusion detection system is a system that moni-
tors network traffic for suspicious activity and issues alerts when such activity
is discovered. A key challenge for intrusion detection is the huge volume of
data and sophisticated malicious patterns.

• Fraud Detection. It refers to the detection of fraudulent activities occurring
in many domains such as e-commerce, banking, insurance, law enforcement,
etc. A good fraud detection system should be able to identify fraudulent
transactions accurately and should make the detection possible in real-time.

2
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• Anomaly Detection in Healthcare and Industrial domains. Anomaly
detection in the healthcare domain tries to detect abnormal patient conditions
or instrumentation errors. Since this is a very critical problem, anomaly
detection requires a high degree of accuracy. Similarly, in industrial systems
like wind turbines, power plants, and storage devices that are exposed to
large amounts of stress daily, it is critical to detect any damages as quickly as
possible.

• Anomaly Detection in IoT. As the number of IoT devices is growing, it is
crucial to maintain their safety and security. Due to a large number of sensors,
utilizing deep learning approaches to process large amounts of data is a rising
trend.

1.3 Challenges
As mentioned above, anomalies are data samples that do not comply with the
expected normal behaviour. Hence, a naive approach for detecting anomalies is to
define a region in the data space that represents normal behaviour and declare a
sample as an anomaly if it does not lie in this region.

However, anomaly detection seems seemingly a simple task but, in reality, Pang
et al. [3] defined the following challenges that must be faced:

• Heterogeneous anomaly classes. For definition, anomalies are irregular,
and thus, one class of anomalies may demonstrate completely different be-
haviour and characteristics from another class of anomalies. For example,
in video surveillance, the abnormal events of robbery, traffic accidents and
burglary are visually highly different.

• Rarity and class imbalance. Anomalies are typically rare data instances
and for this reason, it is difficult to collect a large amount of labelled abnormal
instances leading to an imbalanced dataset. Moreover, most of the time, it
is impossible to collect a full labelled dataset and thus we must proceed in a
semi-supervised or unsupervised way which especially often incur in a high
number of false positives.

• Diverse types of anomaly. Based on the type of applications, the definition
of an anomaly changes. For certain domains, a small deviation from the normal
behaviour may have far-reaching consequences and thus may be declared as
an anomaly. In other applications, the deviation needs to be large for the
input to be declared as an anomaly.

• Unknownness. Anomalies are points without clear definition and they
are associated with many unknowns, e.g., instances with unknown abrupt

3
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behaviours and distributions. They remain unknown until actually occur, such
as novel frauds, network intrusions and breakage of a sensor. In other words,
we do not know what to expect before they occur.

• High dimensional data. Nowadays, most of the data sources are multidi-
mensional with two or more features and thus the problem becomes more
complex because the anomaly can occur in each of the features. Complex data
require deeper networks and in general, it is more challenging to define the
boundaries between the normal instances and the anomalies.

• Noise-resilient anomaly detection. Many semi-supervised algorithms
assume the labelled training data is clean, which can be vulnerable to noisy
instances that are mistakenly labelled as an opposite class label. In such
cases, we may use unsupervised methods instead, but this fails to utilize the
genuine labelled data. The main challenge is that the amount of noise can
differ significantly from datasets and applications therefore we must build a
model able to distinguish when it can trust or not the data.

4



Chapter 2

Time series

2.1 Introduction

The goal of this thesis is to study the problem of anomaly detection in multivariate
time series.

In this chapter, the fundamental basis of the time series is discussed. Anomaly
detection methods are specific to the type of data. For instance, the algorithms
used to detect anomalies in images are different to the approaches used on data
streams.

With the ever-growing computational power in recent decades, machine learning
approaches increased in popularity for data science tasks such as classification
and pattern detection. Therefore, many researchers started to use these machine
learning methods to detect anomalies in time series.

2.2 Definition of time series

A common definition of time series is that it is a sequence of data taken at successive
equally spaced in time. Thus it is a sequence of discrete-time data.

Time series are used in statistics, signal processing, pattern recognition, finance,
weather forecasting, astronomy, communications engineering, and largely in any
domain of applied science and engineering which involves temporal measurements.

Time series analysis comprises methods for analyzing time-series data to extract
meaningful statistics and other characteristics of the data. The difference between
a simple regression task and a time series analysis is that, in the latter case, the
model must not only learn the correlation between characteristics but also the
correlation with time.

5
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2.3 Univariate and multivariate time series
Researchers and authors have defined two main categories of time series.

Definition 2.3.1 (Univariate time series) A univariate time series X =
{xt}t ∈ T is defined as an ordered set of real-valued observations, xt, where each
observation is recorded at a specific t ∈ T ⊆ Z+.

Definition 2.3.2 (Multivariate time series) A multivariate time series X =
{xt}t ∈ T is defined as an ordered set of k-dimensional vectors, each of which is
recorded at specific time t ∈ T ⊆ Z+ and consists of k real-valued observations,
xt = (x1t, ..., xkt).

A univariate detection method only considers a single time-dependent variable,
whereas a multivariate detection method is able to simultaneously work with more
than one variables.

Moreover, the detection method can be univariate even if the input data is
a multivariate time series because an individual analysis can be performed on
each time-dependent variable without considering the dependencies that may exist
between the variables.

In contrast, a multivariate technique cannot be used if the input data is a
univariate time series.

Since correlation dependencies between the variables are not considered when
applying univariate techniques to each time-dependent variable, we can overcome
this problem by preprocessing the time series with a dimensionality reduction
technique called PCA.

In this way, the new features are combinations of the initial input variables and
also uncorrelated each other (Figure 2.1).

Figure 2.1: Effect of PCA in a multivariate time series (image taken from [4]).

6
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2.4 Autocorrelation
Since a time series is a sequence of values for different timestamps, it could be
useful to find the temporal correlation within the same features.

Just as correlation measures the extent of a linear relationship between two
variables, autocorrelation measures the linear relationship between lagged values of
the same feature of a time series (hence the name autocorrelation).

There are several autocorrelation coefficients, corresponding to each panel in
the lag plot. For example, r1 measures the relationship between yt and yt−1, r2
measures the relationship between yt and yt−2 and so on.

The value of rk can be written as:

rk =

Tq
t=k+1

(yt − ȳ)(yt−k − ȳ)
Tq
t=1

(yt − ȳ)2
(2.1)

where T is the length of the time series. The autocorrelation coefficients make up
the autocorrelation function or ACF.

The autocorrelation plot can be also used to view if the time series has a trend
or seasonal behaviour. When data have a trend, the autocorrelations for small lags
tend to be large and positive because observations nearby in time are also nearby
in size. So the ACF of trended time series tend to have positive values that slowly
decrease as the lags increase.

When data are seasonal, the autocorrelations will be larger for the seasonal lags
(at multiples of the seasonal frequency) than for other lags.

When data are both trended and seasonal, there is a combination of these effects.

7
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Figure 2.2: Autocorrelation plot.

The autocorrelation plot in Figure 2.2 represents the temporal correlation of the
temperature recorded in Barcelona during 2019. It is possible to observe that the
correlation between a day and the four preceding days is very strong, this means
that the temperature of one day depends on one of the days immediately before.

Moreover, the autocorrelation plot has peaked with lags equal to 10 and 30 (one
month) thus for a given day dt has a strong correlation with the temperature of
dt−1:t−4 but also with temperature further back in time.

We can conclude by saying that the time series considered as an example is
stationary with no associated trend because the autocorrelation decreases quickly
for small lags but with a likely seasonal behaviour.

2.5 Trend

Trend is a pattern in data that shows the movement of a series to relatively higher
or lower values over a long period of time. In other words, a trend is observed when
there is an increasing or decreasing slope in the time series. The trend usually
happens for some time, then disappears and it does not repeat.

In Figure 2.3, the antidiabetic drug sales in Australia show a clear and increasing
trend of sales during the years.
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Figure 2.3: Monthly sales of antidiabetic drugs in Australia (image from [5]).

2.6 Seasonality
A seasonal pattern occurs when a time series is affected by seasonal factors such as
the time of the year or the day of the week. Seasonality is always of a fixed and
known period.

For example, the monthly sales of antidiabetic drugs (Figure 2.4) show seasonality
which is induced partly by the change in the cost of the drugs at the end of the
calendar year.

In this case, it is clear that there is a large jump in sales in January each year.
Actually, these are probably sales in late December as customers stockpile before
the end of the calendar year, but the sales are not registered with the government
until a week or two later. The graph also shows that there was an unusually
small number of sales in March 2008 (most other years show an increase between
February and March). The small number of sales in June 2008 is probably due to
incomplete counting of sales at the time the data were collected.
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Figure 2.4: Example of seasonality (image taken from [5]).

2.7 Cycles
A cycle occurs when the data exhibit rises and falls that are not of a fixed frequency.
These fluctuations are usually due to economic conditions, and are often related to
the “business cycle.” The duration of these fluctuations is usually at least 2 years.

Cyclic behaviour is quite different from seasonal behaviour. If the fluctuations
are not of a fixed frequency then they are cyclic; if the frequency is unchanging
and associated with some aspect of the calendar, then the pattern is seasonal.

In general, the average length of cycles is longer than the length of a seasonal
pattern, and the magnitudes of cycles tend to be more variable than the magnitudes
of seasonal patterns.
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Figure 2.5: Example of a cycle (image taken from [5]).

The monthly housing sales in the USA, in Figure 2.5, show strong seasonality
within each year, as well as some strong cyclic behaviour with a period of about
6–10 years.

2.8 Stationarity
Intuitively, a stationary time series is a time series having the same characteristics
over every time interval or in other words whose properties do not depend on the
time at which the series is observed. Formally, we can express it as follow:
Definition 2.8.1 Xt is a stationary time series, if ∀s ∈ R: the distribution of
(xt, ..., xt+s) is equal.

The above definition implies that a stationarity time series x1, ..., xT will have the
following characteristics:
1. Constant mean, thus no trend exists in the time series.

2. The time series has a constant variance.

3. There is a constant autocorrelation over time.

4. The time series has no seasonality, i.e., no periodic fluctuations.
Most of the time series is not stationary but some methods could help to make

the data close to the stationarity.

Differencing One of the most used methods is the differencing because it can
happen that a time series is not stationary but the differences between consecutive
observations are. Therefore the time series after the transformation is given as
xÍ
t = xt − xt−1.
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Is always better to have stationary time series? Machine learning methods
are used when the classical methods fail and better results are needed. It is
impossible to know how to best model unknown nonlinear relationships in time
series data and some methods may result in better performance when working
with non-stationary observations or some mixture of stationary and non-stationary
views of the problem.

In conclusion, stationary time series are not always preferred but this is part of
the feature engineering/selection when using machine learning methods.

2.9 Decomposition
Time series data can exhibit a variety of patterns, and it is often helpful to split a
time series into several components (trend, seasonality and cycles), each representing
an underlying pattern category.

During the decomposition, usually, the trend and cycle are combined into a
single trend-cycle component. Hence, a time series can be viewed as a combination
of three components: a trend-cycle component, a seasonal component, and a
remainder component (containing anything else in the time series).

Often this is done to help improve understanding of the time series, but it can
also be used to improve forecast accuracy.

When decomposing a time series, it is sometimes helpful to first transform or
adjust the series in order to make the decomposition (and later analysis) as simple
as possible.

An additive decomposition is when:

yt = St + Tt +Rt, (2.2)

where yt is the data, St is the seasonal component, Tt is the trend-cycle component,
and Rt is the remainder component, all at period t. Alternatively, a multiplicative
decomposition would be written as

yt = St × Tt ×Rt. (2.3)

The additive decomposition is the most appropriate if the magnitude of the
seasonal fluctuations, or the variation around the trend-cycle, does not vary with
the level of the time series. When the variation in the seasonal pattern, or the
variation around the trend-cycle, appears to be proportional to the level of the
time series, then a multiplicative decomposition is more appropriate. Multiplicative
decompositions are common with economic time series.

Many time series include trends, cycles and seasonality. When choosing a
forecasting method, the first step is to identify patterns in the time series data,
and then choose a method that is able to capture those patterns properly.
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2.10 Types of Anomalies
In literature, as shown in Figure 2.6, anomalies in time series can be broadly
classified into three categories: point anomalies, contextual anomalies and collective
anomalies.

In recent years, due to the increase of the complexity of the reality that we want
to model, also the complexity of the anomalies is increased. Therefore, it is needed
to have tools to analyze such data, learn the patterns and autonomously detect
anomalies.

For this reason, Deep anomaly detection (DAD) methods have been shown to
detect all three types of anomalies with great success.

Deep learning models can detect anomalies in both univariate and multivariate
data whether the anomaly afflicts a single sensor or more time-dependent variables.
In other words, in the case of multivariate time series, we can find anomalies in
one or more features.

Type of Anomaly

Point Contextual or
Conditional

Collective or
Group

Figure 2.6: Taxonomy of anomalies.

2.10.1 Point Anomalies
The most simple and common anomaly in the area of time series is the point
anomaly. Point anomalies are points that deviate from the majority of other
samples and often represent an irregularity or deviation that happens randomly
and may have no particular interpretation.

A naive approach for a given univariate time series can be to consider as an
anomaly each point xt with distance from its expected value higher than a predefined
threshold τ :

|xt − x̂t| > τ (2.4)

where xt is the observed value and x̂t is its expected value.
For instance, in Figure 2.7, the daily temperature in Barcelona in 2019 are

recorded and the 23rd January seems a point anomaly since it significantly deviates
from the rest of the values.
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Figure 2.7: Example of the types of anomalies.

2.10.2 Contextual Anomalies
A contextual anomaly is a data instance that could be considered anomalous only in
some specific context. These anomalies are the most difficult to recognize because
we must train the model in a way that it is able to capture also the context of each
timestamp.

Figure 2.7 illustrates the example of a contextual anomaly considering tempera-
ture data indicated by a drastic drop in August; this value is not indicative of a
normal value found during this specific month and in general in summer. Having a
daily temperature of 5°C in winter in Barcelona is normal but the same temperature
in summer is regarded as an anomaly.

2.10.3 Collective or Group Anomaly Detection
Anomalous collections of individual data points are known as collective or group
anomalies, where each point individually appears as normal while observed in a
group exhibit unusual characteristics. Moreover, these sequences can be periodic
subsequence outliers that are repeated over time. Unlike point outliers where
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periodicity is not relevant, periodic subsequence outliers are important in areas
such as fraud detection because it might be interesting to discover certain periodic
anomalous transactions over time.

In the example of the temperature in Barcelona (Figure 2.7, for two weeks the
temperature remains exactly the same and it might probably not seem anomalous
because the temperature is reasonable. On the other hand, it is very unlikely that
for 15 days the temperature remains perfectly constant thus we can conclude by
saying that probably the sensor stopped work for that specific range of dates.

2.11 Type of learning
Anomaly detection is a binary task where a sample can be normal or an outlier.
Anomalies are rare and most of the time it is challenging to obtain their labels
because we need to break manually the machine and then record the samples.

Based on the data and labels available, it is possible to divide the algorithms
into three categories as shown in figure 2.8.

Type of learning

Supervised Semi-supervised Unsupervised

Figure 2.8: Taxonomy based on the type of models.

2.11.1 Supervised
Supervised methods involve training a binary model, using labels of both normal
and anomalous data instances.

The supervised techniques usually have higher performance compared to other
methods as they use the labelled data from both classes. They can learn the
boundary from the labelled training examples and then more easily classify the
unseen test data.

However, the anomalies available during the training may not represent the full
spectrum of anomalies, supervised approaches may overfit and perform poorly on
unseen anomalous data.

Furthermore, these methods are not as popular as semi-supervised or unsuper-
vised methods due to the lack of availability of labels. Moreover, the performance

15



Time series

is sub-optimal because the number of normal samples is far more than the total
number of anomaly ones.

2.11.2 Semi-supervised
We refer to the anomaly detection techniques as semi-supervised if they utilize
unlabeled contaminated data in addition to labelled instances of the in-distribution
class. Since the labels of normal instances are easier to obtain than anomalies, these
methods are more widely adopted. The learning phase involves the normal sample
to be able to separate outliers. One of the most used semi-supervised models is the
autoencoder, where it learns to reconstruct the normal samples during training.
With sufficient training samples, the model produces low reconstruction errors on
normal points whereas fails on anomalies samples.

Other famous semi-supervised methods are the one-class SVN and GANs that
are also widely used in this area of research.

2.11.3 Unsupervised
This last type of learning detects outliers solely based on the properties of the data
instances without labels. Unsupervised techniques are quite flexible and broadly
applicable as they do not rely on the availability of labels.

These methods learn to inherit characteristics and the boundary between the
normal instances and the anomalies ones in an autonomous way. Unfortunately,
this flexibility comes at cost of robustness because unsupervised techniques are very
sensitive to noise and data corruption and are often less accurate than supervised
or semi-supervised algorithms.

Nowadays, in more and more fields, researchers are focusing on unsupervised
learning due to its high flexibility and the lack of labels. Therefore, this type of
learning is growing and it is adopted more and more.

2.12 Pipeline
A machine learning pipeline is a way to codify the workflow it takes to produce a
machine learning model. It consists of multiple sequential steps that span from
data extraction and preprocessing to model training and testing.

In the case of anomaly detection, the pipeline can be summarized as shown in
Figure 2.9.
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Define type of
anomalies to detect Collect data Build model Find the optimal

threshold

Figure 2.9: Scheme of the pipeline in DAD.

1. Define the type of anomalies to detect The first step is to define the
type of anomalies we expect to detect. It is mainly based on domain knowledge
and it is very important because each type of outlier has its characteristics and
requires different detection methods.

For example, group anomalies require an evaluation method with a high temporal
dependency thus in this way it can recognize sequences of anomalies over time. On
the other hand, to detect point anomalies the detection algorithm should focus
more on single instances instead of sequences.

2. Collect data This phase span from data mining to data preprocessing. Raw
data require transformations or modifications because, depending on the nature of
the data, there could be missing values at certain time-steps, features with different
scales which require scaling or also features that can be removed or added.

Moreover, with data analysis, we can model the data to discover useful informa-
tion and correlations between the features.

3. Build model Next when the data have been processed and the type of
anomalies that we want to identify is clear, we move on to the creation of the
model. Depending on the task, we can choose a model from the ones existing in
the literature or decide to develop a new model build on top of the knowledge of
the domain and the data.

After the definition of the architecture of the model, we train the network with
the data collected in the previous step.

4. Find the correct threshold This last step is the most difficult because
there are many ways to separate the normal instances from the anomalies ones.
The boundary between the normal points and the anomalies is often hard to define
due to many factors such as the high dimensionality of input data or the nature of
the anomalies.

Almost all researches are focused now on this last step because is the most
important in order to detect the anomalies.
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2.13 Autoencoders
An auto-encoder is a type of neural network used in unsupervised learning in which
the network is composed of an encoder and a decoder sub-models. The encoder
forces a compressed representation of the input in smaller dimensions and the
decoder attempts to recreate the input from the compressed version provided by
the encoder.

Auto-encoders are applied to many problems, from facial recognition, feature
detection and data denoising. They represent data within multiple hidden layers
by reconstructing the input data, effectively learning an identity function. When
trained solely on normal data instances, they fail to reconstruct the anomalous
data samples producing a large reconstruction error. These points associated with
a high residual error are considered anomalies.

The choice of autoencoder architecture depends on the nature of data, convolu-
tional networks are preferred for image datasets while Long short-term memory
(LSTM) based models are able to capture the time dependency in sequential data.

The deep of an autoencoder depends on the dimension of the input data. The
more dimensions, the more layers are needed to extract all the relevant information
during training.

The type of learning is unsupervised because the model does not require any
information about the labels, making it very popular and widely used in literature.

Figure 2.10: Scheme of a generic autoencoder (image taken from [6]).

As shown in Figure 2.10, The input x is compressed by the encoder gφ to a
lower dimensional space z and then the decoder fθ tries to reconstruct the original
input. The parameters (φ, θ) are learned together to output a reconstructed data
sample same as the original input, x ≈ fθ(gφ(x)).

There are various metrics to quantify the difference between two vectors. One
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of the most adopted metrics is the MSE loss:

LAE(θ, φ) = 1
n

nØ
i=1

(xi − fθ(gφ(xi)))2 (2.5)

Autoencoders for dimensionality reduction Auto-encoders with a single
layer along with a linear activation function are nearly equivalent to Principal
Component Analysis (PCA). While PCA is restricted to a linear dimensionality
reduction, autoencoders enable both linear or non-linear transformations. The
difference between these two approaches is visualized in the figure 2.11 below.

Figure 2.11: Comparison between PCA and an autoencoder (image taken from
[7]).

The big deal with autoencoders One reason why they have attracted so many
researches and attention is that they have long been thought to be a potential
avenue for solving problems without the need for labels.

Autoencoders are not a truly unsupervised learning technique (which would
imply a different learning process altogether), they are a self-supervised technique,
a specific instance of supervised learning where the targets are generated from the
input data.

Although autoencoders are simple and effective architectures for outlier detection,
the performance can get degraded due to noisy training data.
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Chapter 3

Anomaly detection: state of
the art and new proposals

3.1 Introduction
The focus of this thesis is on deep learning models for anomaly detection in multi-
variate time series. In general, anomaly detection approaches can be categorized in
terms of the type of data needed to train the model and the method used to define
the boundary between the region with normal instances and the anomaly one.

In this chapter, we are going to discuss the actual state of the art for, respectively,
the SWaT and MSL datasets.

Moreover, in the last two sections, we will present two new approaches, each of
them with different properties and application contexts.

3.2 A Deep Learning Solution for Anomaly De-
tection in Industrial Control Systems

Real-world Industrial Control Systems (ICSs) are dynamic and operate in noisy
environments: these factors may hamper the correct functioning of the detection
system because they can “shift” the normal behaviour. In such scenarios, the main
challenge is to periodically refresh the detection thresholds.

A common issue of one-class classification mechanisms is the high false alarm rate
caused by the progressive evolution of the normal behaviour of the ICS with respect
to the initial one, based on which the model was trained. This phenomenon, called
domain shift, can be caused by changes in the industrial workflow, degradation of
devices and communication links over time, installation/removal of devices, updates
in the devices’ firmware or configuration, or external noise on the communication
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channels.
For example, in case of the SWaT dataset, a domain shift can be observed in the

feature AIT201 (Analyser Indication Transmitter) where in training set it assumes
a range in interval [251, 272] µS/cm (micro Siemens per centimetre), while in the
test one it ranges in [168, 267] µS/cm with a substantial different distribution, as
illustrated in Figure 3.1.

Figure 3.1: Shift of the distribution of sensor AIT201.

In summary, a common drawback of available solutions is that they are not
flexible enough to quickly and efficiently adapt to changes in the production
environment. In a water treatment plant, examples of such changes are: increasing
the size of a water tank or replacing a motorised valve with another with different
operation modes. Instead, Abdelaty et all. [8] have proposed a new approach based
on a dynamic threshold that evolves with the system.

Figure 3.2: Scheme of the architecture.
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In Figure 3.2, we can see the network architecture and in particular, the wide
branch that memorizes and learns the relationships between features in the training
set and the deep branch that tries to explore relationships that do not exist in the
training.

Instead, the output section is split into multiple branches to serve large-scale
ICSs where the sensors are controlled by several PLCs, usually specialised on a
specific part of the industrial process with specific behaviour and anomaly threshold.

Moreover, the authors of the paper, to prevent the forecasting model to copy
the last values of the input time windows, the Wout is separated by a time interval
called horizon H.

The neural network presented above has been trained to minimise the Mean
Square Error (MSE) cost function.

TTNN To have a dynamic threshold, the authors have introduced the Tuning
Threshold Neural Network.

Figure 3.3: Architecture of TTNN. Only the first element of the output is kept.

As input, we have the prediction error MSE as a univariate time series. We
use G instances of TTNN, one for each output section of the model, to tune the
thresholds Tg, g ∈ [1, G].

Then, each instance is trained with the prediction error MSEg measured on a
single output section g on the validation set, which only contains benign records,
as the training set. The trained model is used in the online system to compute the
optimal anomaly threshold Tg using past prediction errors.

In the end, the threshold Tg used for anomaly detection on sensors values
collected in time interval [t, t+ s) is obtained using past prediction errors computed
in time interval [t0, t0 + s+Win), where t0 = t−H −Win.

Anomaly detection in actuators To detect anomalies in the actuators the
authors suggested to create a database to store, during the training, all the
combinations of the actuators.

During the evaluation, if a combination has no occurrences in the dataset it is
marked as an anomaly.
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Anomaly detection in sensors In Figure 3.4, we can observe how the model
reports an anomaly.

Figure 3.4: Detection process on section g of sensors through WDNN and adaptive
thresholds.

To reduce the false positives caused by sudden changes in the underlying
physical process, DAICS only reports an anomaly at time t on the sensors if
the anomaly condition has been also previously observed for Wanom consecutive
sampling intervals.

The few-time-steps algorithm The few-time-steps algorithm has been de-
signed to efficiently reconfigure DAICS in a production environment in the case an
anomaly is identified by the system and then recognised as a false alarm by the
technician. The only assumption is that the technician can recognise false alarms
caused by changes in the normal operating condition of the ICS.

In the case of a false positive in the actuators, the algorithm adds that combina-
tion to the database when the technician has determined that is normal and that
must be treated as such by the system.

Instead, if the false positive is one or more sensors, the output sections of the
neural network that have produced the false alarm are updated according to the
predefined number of epochs. SGD is employed to fine-tune the output section
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through multiple gradient steps and the prediction loss is calculated for the data
samples aggregated in a batch of S samples containing the false alarm.

3.3 Multivariate Timeseries Anomaly Detection
via Graph Attention Network

Zhao et all. [9] have proposed a novel framework in which they try to model the
correlations between different features explicitly, while the temporal dependencies
within each time-series are modelled at the same time.

The key ingredients of this method are two graph attention layers, namely
the feature-oriented graph attention layer and the time-oriented graph attention
layer. Whereas the first layer captures the causal relationships between multiple
features, the time-oriented graph attention layer underlines the dependencies along
the temporal dimension.

In addition, they integrate the advantages of a forecasting-based model and
a reconstruction-based model for better representations of time series data. The
two models can be optimized simultaneously by a joint objective function. The
forecasting-based model focuses on single-timestamp prediction, while the recon-
struction based model learns a latent representation of the entire time series.

Figure 3.5: The architecture of MTAD-GAT.

In Figure 3.5, it is shown the architecture of the entire model which is composed
of the following modules in order:

1. A 1-D convolution layer at the first layer to extract high-level features of each
time-series input.

2. The outputs of the 1-D convolution layer are processed by two parallel graph
attention (GAT) layers, which underline the relationships between multiple
features and timestamps.
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3. The output representations from the 1-D convolution layer and two GAT layers
are concatenated together, feeding them into a Gated Recurrent Unit (GRU)
layer with d1 hidden dimension. This layer is used for capturing sequential
patterns in time series.

4. The outputs of the GRU layer are fed into a forecasting-based model and
a reconstruction based model in parallel to obtain the final result. The
forecasting-based model is implemented as a fully-connected network, and
adopt VAE for the reconstruction-based model.

The reason why both forecasting-based and reconstruction-based models are
implemented is that they have shown their superiority in some specific situations.
The forecasting-based model is specialized for feature engineering of next times-
tamp prediction, and the construction-based model is good at capturing the data
distribution of the entire time series.

Moreover, none of the existing solutions in the literature capture the corre-
lations between multiple features explicitly, which is emphatically addressed in
this algorithm to enhance the performance of multivariate time-series anomaly
detection.

Generally, given a graph with n nodes, i.e., {v1, v2, ..., vn}, where vi is the feature
vector of each node, a GAT layer computes the output representation for each node
as follows:

hi = σ
1 LØ
j=1

αijvj
2

(3.1)

where hi denotes the output representation of node i, which has the same shape
with input vi; σ represents the sigmoid activation function; αij is the attention
score which measures the contribution of node j to node i, where j is one of the
adjacent nodes for node i; L denotes the number of adjacent nodes for node i.

The attention score αij can be computed by the following equations:

eij = LeakyReLU(wT (̇vi ⊕ vj)) (3.2)

αij = exp(eij)qL
j=1 exp(eij)

(3.3)

Here ⊕ represents the concatenation of two-node representations, w ∈ R2m is
a column vector of learnable parameters where m is the dimension of the feature
vector of each node, and LeakyReLU is a nonlinear activation function.

In detail, in the feature-oriented graph attention layer each node represents a
certain feature, and each edge denotes the relationship between two corresponding
features. Specifically, each node xi is represented by a sequential vector xi =
{xi,t|t ∈ [0, n)} and there are totally k nodes, where n is the total number of
timestamps and k is the total number of multivariate features.
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On the other hand, in the time-oriented graph attention layer a node xt repre-
sents the feature vector at timestamp t, and its adjacent nodes include all other
timestamps in the current sliding window. The output of the feature-oriented graph
attention layer is a matrix with shape k × n where each row is an n dimensional
vector representing the output for each node and there are in total k nodes.

During the training process, the parameters from both models are updated
simultaneously. The loss function is defined as the sum of two optimization targets,
i.e., Loss = Lossfor+Lossrec, where Lossfor denotes the loss function of forecasting-
based model and Lossrec denotes the loss function of reconstruction-based model.

Lossfor =

öõõô kØ
i=1

(xn,i − x̃n,i)2 (3.4)

Lossrecon = −Eqφ (z|x)[logpθ (x|z)] +DKL(qφ(z|x) || pθ(z)) (3.5)

The model assigns a score to each point according to the formula:

score =
kØ
i=1

(x̂i − xi)2 + γ × (1− pi)
1 + γ

(3.6)

where (x̂i−xi)2 is the squared error between the forecasting value x̂i and the actual
value xi, indicating how much the actual value of feature i deviates from prediction;
(1−pi) is the probability of encountering an abnormal value for feature i according to
the reconstruction model; k is the total number of features; γ is a hyper-parameter
to combine the forecasting-based error and the reconstruction-based probability.

3.4 Deep Evidential Regression
In recent years, uncertainty estimation has had a central role and a high impact
on society. Standard neural networks are black-box predictors, from a given input
they return an output but we do not know the intermediate steps. Unfortunately,
there are some tasks in which we need to know the uncertainty of the prediction,
mostly in tasks in which an automatic operation is executed immediately after
the prediction. This is due to the fact that a wrong prediction can lead to the
execution of a wrong operation that could have potentially high risk in particular
tasks such as autonomous driving, medical domain, high imbalanced datasets or
data with high bias.

Therefore is very important to calibrate the uncertainty of the prediction to make
the model in condition to understand when to trust the prediction and proceed
with the execution (low uncertainty) or does not do anything (high uncertainty).
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In literature, Bayesian neural networks can output both the prediction and the
uncertainty associated with that prediction through assumptions a priori on the
weights of the network. In this manner, the model is able to answer "I do not know"
when it does not truly know the correct prediction.

This property changes how we train the model because in addition to optimizing
the network to output the correct prediction we must check that the uncertainty is
coherent with the prediction.

From the human perspective, having the uncertainty of the prediction is very
important and makes trusting the model easier because humans know that further
operations are executed only if the uncertainty is low.

For example, in the case of autonomous drive, the model should apply the
brakes only if it recognizes a pedestrian in the trajectory of the car. This automatic
operation must be executed only if the model is very sure that there is a pedestrian
otherwise there is a risk of a car accident.

As we will see, Deep Evidential Regression is able to capture the uncertainty
along with the prediction in a similar Bayesian way.

Precise uncertainty estimates are useful for recognizing out-of-distribution (OOD)
test samples and when the model is likely to fail.

There are two different uncertainties that can be calculated:

1. uncertainty in the input data, called aleatoric uncertainty.

2. uncertainty in the prediction, called epistemic uncertainty.

In literature, already exists methods able to capture and model the uncertainty.
Bayesian networks place probabilistic priors over network weights and use sampling
operations to approximate the output variance. On the other hand, there are
several disadvantages including the computational cost of sampling during inference
and the question of how to choose the right prior distribution.

With Deep Evidential Regression, the prior assumptions are not more on the
weights as done in Bayesian NNs, but directly over the likelihood function. There-
fore, by training the model to output the hyperparameters of the higher-order
evidential distribution, we get simultaneously the prediction along with the epis-
temic and aleatoric uncertainty without the need for sampling as shown in Figure
3.6.
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Figure 3.6: General overview of deep evidential regression model.

3.4.1 Evidential uncertainty for regression
In case of regression, we assume our target, yi were drawn i.i.d from a normal
distribution with parameters θ = (µ, σ2). With maximum likelihood estimation
(MLE), we aim to learn a model to infer θ that maximize the likelihood of observing
our targets, y, given by p(yi |θ). We proceed in this way by minimizing the negative
log likelihood loss function:

Li(w) = − log p(yi |µ, σ2) = 1
2 log(2πσ2) + (yi − µ)2

2σ2 (3.7)

In learning θ, this function models successfully the uncertainty in the data but
not also the predictive epistemic uncertainty.

With Deep Evidential Regression, the problem setup is the same as before but
now yi are drawn i.i.d from a normal distribution with unknown mean and variance.
This leads to placing a Gaussian prior distribution on the unknown µ and an
Inverse-Gamma prior on the unknown σ2:

(y1, . . . , yN) ∼ N (µ, σ2)
µ ∼ N (γ, σ2υ−1) σ2 ∼ Γ−1(α, β)

(3.8)

We use the network to infer m = (γ, υ, α, β) where γ ∈ R, υ > 0, α > 1, β > 0.
To obtain an approximation for the true posterior, we assume that the two

distributions are independent and the estimated distribution can be factorized such
that q(µ, σ2) = q(µ) q(σ2).
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Therefore, the approximation takes the form of the Gaussian conjugate prior,
the Normal Inverse-Gamma (NIG) distribution:

p(µ, σ2ü ûú ý
θ

| γ, υ, α, βü ûú ý
m

) = βα
√
υ

Γ(α)
√

2πσ2

3 1
σ2

4α+1
exp

;
− 2β + υ(γ − µ)2

2σ2

<
(3.9)

In other words, we can interpret this as the higher-order evidential distribution
on top of the unknown lower-order likelihood distribution from which observations
are drawn.

3.4.2 Prediction and uncertainty estimation
As said in the previous section, the model tries to infer two uncertainties. The
first one is the aleatoric uncertainty, also referred to as statistical or data uncer-
tainty which is representative of unknowns that differ each time we run the same
experiment. The epistemic uncertainty describes the estimated uncertainty in the
prediction.

Given a NIG distribution we can compute these metrics as:

E[µ] =
Ú ∞

µ=−∞
µ p(µ) dµ = mean of normal distribution p(µ)

E[σ2] =
Ú ∞

σ=0
σ2 p(σ2) dσ2 = mean of inverse gamma distribution p(σ2)

V ar[µ] =
Ú ∞

µ=−∞
µ2 p(µ) dµ − (E[µ])2 = variance of normal distribution p(µ)

(3.10)
Then:

E[µ] = γ,ü ûú ý
prediction

E[σ2] = β
α−1ü ûú ý

aleatoric

, V ar[µ] = β
υ(α−1)ü ûú ý

epistemic

. (3.11)

3.4.3 Learning the evidential distribution
The learning task is divided in two distinct parts: (1) acquiring or maximizing
model evidence in support of our observations and (2) minimizing the evidence or
inflating uncertainty when the prediction is wrong. In other words, we can think of
(1) as a way of fitting data to the evidential model while (2) enforces a prior to
remove incorrect evidence and inflate uncertainty.

(1) Maximizing the model fit.

p(yi|m) = p(yi|θ,m)p(θ|m)
p(θ|yi,m) =

Ú ∞

σ2=0

Ú ∞

µ=−∞
p(yi|µ, σ2)p(µ, σ2|m) dµ dσ2 (3.12)
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The model evidence is, in general, not straightforward to evaluate since comput-
ing it involves integrating out the dependence on latent model parameters. However,
in the case of placing a NIG evidential prior on Gaussian likelihood function an
analytical solution does exist:

p(yi|m) = St(yi; γ,
β(1 + υ)
υα

, 2α) (3.13)

where St(y;µSt, σ2
St, υSt) is the Student-t distribution evaluated at y with location

µSt, scale σ2
St and υSt degrees of freedom. We denote the loss as the negative

logarithm of model evidence:

LNLL
i (w) = 1

2 log
!π
υ

"
− α log(Ω) +

1
α+ 1

2

2
log((yi − γ)2υ + Ω) + log

1 Γ(α)
Γ(α+ 1

2 )

2
(3.14)

where Ω = 2β(1 + υ). This loss provides an objective for training the model to
output parameters of a NIG distribution to fit the observations by maximizing the
model evidence.

(2) Minimizing evidence on errors. Next, we try to minimize evidence on
incorrect predictions. In case of a regression task, the minimization task involves a
novel evidence regularizer, scaled on the error of the i-th prediction,

LRi (w) = |yi − E[µi]| · Φ = |yi − γ| · (2υ + α) (3.15)
This loss imposes a penalty whenever there is an error in the prediction and scales
with the total evidence of our inferred posterior. In other words, large amounts of
predicted evidence will not be penalized as long as the prediction is close to the
target.

Summary and implementation details. The total loss, Li(w), consists of the
two loss terms for maximizing and regularizing evidence, scaled by a regularization
coefficient, λ,

Li(w) = LNLLi (w) + λLRi (w) (3.16)
Here, λ trades off uncertainty inflation with model fit. Setting λ = 0 yields an
over-confident estimate while setting λ too high results in over-inflation.

In practice, our NN is trained to output the parameters, m, of the evidential
distribution: mi = f(xi, w). Since m is composed of 4 parameters, f has 4 output
neurons for every target y. We enforce the constraints on (υ, α, β) with a softplus
activation (and additional +1 added to α since α > 1). Linear activation is used
for γ ∈ R.

For our experiments, we consider a dynamic λ that is updated at each step
according to the following formula:

λnew = λ+ 10−4(̇LRi − 10−2) (3.17)
Doing so, λ is updated proportionally to the changes of the regression loss.
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3.5 Graph Neural Network
Most of the existing methods are not able to learn which sensors are related to one
another and for this reason, the resulting model has difficulties to caption potential
inter-relationships. This limits their ability to detect and explain deviations from
such relationships when anomalies occur.

Recently, graph neural networks (GNNs) have shown success in detecting anoma-
lies and at the same time modelling the relationships among the sensors. On the
other hand, applying these methods to time series data faces two main challenges:

1. different sensors can have very different behaviours, e.g. one sensor may
measure the temperature while another measures the pressure. General GNNs
use the same model parameters to model the behaviour of each node and thus
face limitations when different sensors have different behaviours.

2. typically GNNs treat the graph structure as input but most of the time
relationships between sensors are initially unknown and should be learned
along with our model.

Deng et all. [10] have proposed a novel attention-based approach called Graph
Deviation Network (GDN), which learns a graph of relationships between sensors
and detects anomalies from these patterns.
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Figure 3.7: Overview of the proposed method.

As shown in Figure 3.7, this method involves four main components:
1. Sensor Embedding, which uses embedding vectors to capture the charac-

teristics of each sensor.

2. Graph Structure Learning learns the graph data structure.

3. Graph Attention-Based Forecasting learns to predict the future value of
a sensor based on attention function over its neighbours in the graph.

4. Graph Deviation Scoring calculates the deviation error of the predicted
value.

This work is very important because provides an explainable model through
its embeddings, its learned graph structure and by comparing the predicted and
actual behaviour of the sensors.

Since this method separate input test data depending on the forecasting error,
the training data is assumed to consist only of normal data.

3.5.1 Embedding
Machine learning models take vectors (arrays of numbers) as input. When working
with text or in general with categorical features, the first thing we must do is come
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up with a strategy to convert strings to numbers (or to "vectorize" the features)
before feeding it to the model.

From the literature, we know the One Hot Encoding but this method is very
inefficient because, to represent each value/word, we will create a zero vector with
length equal to the vocabulary, then place a one in the index that corresponds to
the desired value. Therefore, in doing so, we create a very sparse matrix with many
zeros.

On the other hand, another interesting approach is to encode each word using a
unique vector. Firstly, we need to define the size of the embedding that corresponds
to the dimension used for the vector to identify each value.

For example, if we set 2 as embedding size and in our training set we have the
following values:

[4, 1, 2, 3]

Once the network has been trained, we can get the weights of the embedding layer,
which in this case will be of size (5, 2) and can be thought as the Table 3.1 used to
map integers to embedding vectors:

Index Embedding
0 [1.2, 3.1]
1 [0.1, 4.2]
2 [1.0, 3.1]
3 [0.3, 2.1]
4 [2.2, 1.4]

Table 3.1: Table to map each value to its vector.

So according to these embeddings, our data will be represented as:

[[2.2, 1.4], [0.1, 4.2], [1.0, 3.1], [0.3, 2.1]]

3.5.2 Sensor Embedding
As said in the previous section, different sensors can have very different character-
istics and these characteristics can be related in complex ways. Ideally, we would
want to represent each sensor in a flexible way that captures the correlation in a
dimensional space with a given dimension (an hyperparameter).

vi ∈ Rd, for i ∈ {1, 2, . . . , N}

The idea behind the embeddings is that sensors with similar values should have
a high tendency to be related to one another. In this model, these embeddings are
used in two ways:
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1. for structure learning

2. to perform attention over neighbors in a way

The embeddings are initialized randomly and then trained along with the rest
of the model.

3.5.3 Graph Structure Learning
The main data structure is the directed graph, whose nodes represent sensors
and whose edges represent dependency relationships between them. The decision to
use a direct graph is motivated by the fact that the dependency patterns between
sensors is not necessary symmetric. This means that an edge from one sensor to
another indicates that the first sensor is used for modelling the behaviour of the
second but the contrary is not true.

The adjacency matrix A stores this direct graph, where Aij represents the
presence of a directed edge from node i to j.

This method is very flexible because can be applied either to the usual case
where we do not have prior information about the connection among sensors or in
case where we have some prior information about which edges are plausible.

During training, for each sensor i we represent the set of candidate relations Ci
with the prior information.

Ci ⊆ {1, 2, . . . , N} \ {i} (3.18)

If there is not a prior information, the candidate relations of sensor i is simply all
sensors, other than itself.

For a given node i in order to select its candidate relations, we compute the
normalized dot product between node i’s embedding vector, and the embeddings
of its candidates j ∈ Ci:

eji = vTi vj
||vi|| · ||vj||

for j ∈ Ci (3.19)

Aji = 1 {j ∈ TopK({eki : k ∈ Ci})} (3.20)

Then, we select the top k similarities, where k is a hyperparameter.

Mean Proposal A disadvantage of this method is the fact that the number of
connections per node k is a predefined parameter. In particular, it can happen that
sometimes a specific sensor requires more connections (e.g., fundamental sensors in
autonomous driving computation) whereas others instead are less connected (e.g.,
peripheral sensors in autonomous driving). This algorithm fixes the number of
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connections of each node without considering the nature and the importance of
the sensors.

Therefore, I would propose another approach in order to change how the edges
are created. First of all, we replace the TopK function from 3.20 with the mean
operation.

Aji = 1 {j ∈ {eji ≥ mean(eki : k ∈ Ci)}} (3.21)

In this way, for each node, we first compute the mean among all the candidates’
similarities and then we select only those with a similarity greater than the calcu-
lated mean. This brings two advantages, (1) it facilitates the system to be more
dynamic without constraints during the learning phase and (2) it removes one
hyperparameter.

3.5.4 Graph Attention-Based Forecasting
In this components, we implement a forecasting-based approach, where we forecast
the expected value for each sensor based on the past values. This mechanism allows
the user to easily identify the sensors which deviate from their expected behaviour.
Moreover, it can be useful to compare the expected value of each sensor and the
observed one to understand why the model has recognized a sensor as anomalous.

In order to capture the relationships between sensors, we introduce a graph
attention-based feature extractor to mix the node’s information with its neighbors
based on the learned structure as follows:

z
(t)
i = ReLU

3
αi,iWx

(t)
i +

Ø
j∈N (i)

αi,iWx
(t)
j

4
(3.22)

where x(t)
i ∈ Rw is node i’s input feature, N (i) = {j |Aji > 0} is the set of

neighbors of that node obtained from the learned adjacency matrix A, W ∈ Rd×ω

is a trainable weight matrix which applies a shared linear transformation to every
node, and the attention coefficients αi,j are computed as:

g
(t)
i = vi ⊕Wx

(t)
i

π(i, j) = LeakyReLU
3
aT

3
g

(t)
i ⊕ g

(t)
j

44
αi,j = exp(π(i, j))q

k∈N (i)∪{i} exp(π(i, k))

(3.23)

where ⊕ denotes concatenation. Therefore, g(t)
i is the concatenation between the

sensor embedding vi and the corresponding transformed feature Wx
(t)
i and a is

a vector of learned coefficients for the attention mechanism. After the feature
extractor, we have the representations for all N nodes {z(t)

1 , . . . , z
(t)
N }.
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For each z(t)
i , we element-wise multiply it with the corresponding embedding vi

and use the results across all nodes as the input of stacked fully-connected layers
with output dimensionality N , to predict the vector of sensors values at time step
t:

ŝ(t) = fθ
1è
v1 ◦ z(t)

1 , . . . , vN ◦ z(t)
N

é2
(3.24)

where ŝ(t) is the model predicted output. During the training, the model tries to
minimize the following loss function:

LMSE = 1
Ttrain − ω

TtrainØ
t=ω+1

...ŝ(t) − s(t)
...2

2
(3.25)

which is the Mean Squared Error between the predicted output ŝ(t) and the observed
data ŝ(t).

3.5.5 Graph Deviation Scoring
Given the learned data structure and the forecastings, we want to detect and
explain anomalies. To do this, the model computes individual anomalousness scores
for each sensor and also combines them into a single score for each time step. In
this way, we know when anomalies occur and which sensor is affected.

The error value at time t for the sensor i can be computed:

Erri(t) = |s(t)
i − ŝ

(t)
i | (3.26)

As different sensors can have very different characteristics, their deviation values
may also have very different scales. To prevent the deviations of one sensor being
dominant over the other sensors, we perform a robust normalization of the error of
each sensor:

ai(t) = Erri(t)− µ̃i
σ̃

(3.27)

where µ̃i and σ̃i are the median and inter-quantile range (IQR) across time ticks of
the Erri(t) values. The reason why we use the median and IQR instead of mean
and standard deviation is that they are more robust against anomalies. Then, to
compute the overall score at time tick t, we aggregate over sensors using the max
function:

A(t) = max
i

ai(t) (3.28)

Moreover, often some values are not perfectly predicted and result in sharp spikes
in error values even when this behaviour is normal, thus we use a simple moving
average of length three to generate the smoothed scores As(t).

Finally, a time tick t is labelled as an anomaly if As(t) exceeds a fixed threshold,
equals to the max of As(t) over the validation data.
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Chapter 4

Experiments

4.1 Introduction

In this chapter, we are going to discuss the most used preprocessing techniques and
all the metrics that we use in the experimental section. After these theory definitions,
we implement the algorithms presented in the previous chapter describing the
obtained results.

4.2 Preprocessing

Data scaling is a recommended pre-processing step when working with many
machine learning algorithms. Machine learning models learn a mapping from input
variables to an output variable. The scale and distribution of the data drawn from
the domain may be different for each variable. Input variables may have different
units (e.g. feet, kilometres, and hours) that, in turn, may mean the variables have
different scales.

Differences in the scales across input variables may increase the difficulty of
the problem being modelled. An example of this is that large input values (e.g. a
spread of hundreds or thousands of units) can result in a model that learns large
weight values. A model with large weight values is often unstable, meaning that it
may suffer from poor performance during learning and sensitivity to input values
resulting in higher generalization error. Moreover, if a feature has a variance that
is orders of magnitude larger than others, it might dominate the objective function
and make the estimator unable to learn from other features correctly as expected.
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4.2.1 Data Normalization
A common transformation in machine learning is the normalization which is a
rescaling of the data from the original range so that all values are within the new
range [min,max].

z = X −Xmin

Xmax −Xmin

∗ (max−min) +min (4.1)

In general, the new range is [0, 1] and the good practice usage with normalization
and other scaling techniques is as follows:

1. Fit the scaler using available training data. For normalization, this means the
training data will be used to estimate the minimum and maximum observable
values.

2. Apply the scale to training data. This means we can use the normalized data
to train our model.

3. Apply the scale to testing data. This means we can prepare new data in the
future on which we want to make predictions.

In general, in the case of outliers with abnormal values (too high or too low),
this transformation is not used because it is sensitive to outliers.

4.2.2 Standardization
Another widely used transformation is the standardization in which we scale the
data in order to have zero mean and unit variance. This can be thought of as
subtracting the mean value or centring the data as shown in 4.2.

z = x− µ
σ

(4.2)

Like normalization, standardization can be useful, and even required in some
machine learning algorithms when our data has input values with differing scales.

Standardization assumes that our observations fit a Gaussian distribution (bell
curve) with a well-behaved mean and standard deviation. We can still standardize
our data if this expectation is not met, but we may not get reliable results.

Furthermore, standardization maintains useful information about outliers and
makes the algorithm less sensitive to them in contrast to min-max scaling, which
scales the data to a limited range of values. Many machine learning classifiers,
such as SVN, require standardization in order to achieve better results. On the
other hand, classifiers based on distance metric prefer normalization to reduce the
distances.
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As for the normalization, also in this case we calculate the mean and standard
deviation only with training data. Then, we apply the transformation both to the
training and testing set.

4.2.3 Quantile transformation
Raw data input variables may have a highly skewed or non-standard distribution.
This could be caused by outliers in the data, multi-modal distributions, highly
exponential distributions, and more.

Many machine learning algorithms prefer or perform better when numerical
input variables and even output variables in the case of regression have a standard
probability distribution, such as a Gaussian (normal).

The quantile transform provides an automatic way to transform a numeric input
variable to have a different data distribution, which in turn, can be used as input
to a predictive model.

This method transforms the features to follow a normal distribution. Therefore,
for a given feature, this transformation tends to spread out the most frequent
values. It also reduces the impact of (marginal) outliers: this is therefore a robust
preprocessing scheme.

The transformation is applied to each feature independently. First, an estimate
of the cumulative distribution function of a feature is used to map the original
values to a uniform distribution. The obtained values are then mapped to the
desired output distribution using the associated quantile function. Features values
of new/unseen data that fall below or above the fitted range will be mapped to
the bounds of the output distribution. This transform is non-linear and thus it
may distort linear correlations between variables measured at the same scale but
renders variables measured at different scales more directly comparable.

From the statistics, we know that a quantile function is the inverse of the
cumulative probability distribution (CDF). A CDF is a function that returns the
probability of a value at or below a given value.

4.3 Evaluation Metrics
For definition, anomalies are rare events and this leads to an imbalanced dataset
where we have few abnormal instances and thus we need to choose the right
evaluation metric to take into account this property.

We consider the following metrics to evaluate a model:

• the model performance metrics: precision, recall and f1 score;

• the prediction confusion matrix;
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• the ROC AUC Score;

• the PR AUC Score;

Let’s start with some definitions:

• TP: samples for which the prediction is positive and the true label is positive.

• FP: samples for which the prediction is positive but the true label is negative.

• TN: samples for which the prediction is negative and the true label is negative.

• FN: samples for which the prediction is negative but the true label is positive.

The importance of these terms depends on the situation we are facing. For
example in the case of medicine, a false-positive patient, as well a false negative
one, means a wrong medicine therapy. Therefore, we wanted to analyze results
using the confusion matrix to know where and when our model fails.

The most common metrics used in machine learning are:

Precision = TP

TP + FP
(4.3)

Recall = TP

TP + FN
(4.4)

F1 score = 2× precision× recall
precision+ recall

(4.5)

False PositiveRate = FP

FP + TN
(4.6)

In this case, the accuracy is not taken into account because since the dataset is
highly imbalanced this metric does not help.

4.3.1 ROC curve
A receiver operating characteristic curve, or ROC curve, is a graphical plot that
illustrates the performance measurement for the classification problems at various
threshold settings. ROC is a probability curve and AUC represents the degree or
measure of separability and corresponds to the area under the curve. It tells how
much the model is capable of distinguishing between classes.

Higher the AUC, the better the model is at predicting 0 classes like 0 and 1 classes
as 1. By analogy, the higher the AUC, the better the model is at distinguishing
between normal samples and anomalies ones.
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Figure 4.1: ROC curve.

As shown in figure 4.1, an excellent model has AUC near to the 1 which means
it has a good measure of separability. When AUC is 0.5, it means the model has
no class separation capacity.

The ROC curve is plotted with TPR against the FPR where TPR is on the
y-axis and FPR is on the x-axis.

When we have a very imbalanced dataset, we should pay attention to this score
because the false positive rate for highly imbalanced datasets is pulled down due
to a large number of true negatives. We should use it when we care equally about
positive and negative classes. ROC AUC can be optimistic on severely imbalanced
classification problems with few samples of the minority class.

4.3.2 PR curve
A PR curve is simply a graph with precision values on the y-axis and recall values
on the x-axis. In other words, the PR curve contains TP/(TP+FN) on the y-axis
and TP/(TP+FP) on the x-axis.

As shown in figure 4.2, it is desired that the algorithm should have both high
precision, and high recall. However, most machine learning algorithms often involve
a trade-off between the two measures. A good PR curve has a greater AUC (area
under the curve). In the figure 4.2, the classifier corresponding to the blue line has
better performance than the classifier corresponding to the green line.

The intuition is the following: since PR AUC focuses mainly on the positive
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Figure 4.2: Caption

class (precision and recall) it cares less about the frequent negative class. We can
say that we use PR-Curve when we want to focus more on the positive class.

4.4 Datasets and experiments
After the data analysis and methods explanation, the next step is to test the
algorithms with the described datasets. Since each dataset has its characteristics,
it is interesting to study the performance of each proposed method in different
situations to present its strengths and weaknesses.

For example, the SWaT has point and group anomalies with a limited duration,
whereas the dataset of the strain gauge of a suspension arm has a break-out point.
This means that the system works until a certain timestep and then it breaks and
from that point, all the samples are anomalies.

In literature, there are mainly two approaches based on reconstruction or
forecasting. Due to this difference of the datasets, both reconstruction-based models
and forecasting-based models are implemented.

Forecasting-based models predict the actual value of the next timestamp in
a deterministic manner, which is sensitive to the randomness of the time series.
On the other hand, reconstruction models alleviate this problem by learning a
distribution of stochastic variables, which is more robust to perturbations and
noises.
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As in any task that involves time series, the input data is split into time windows,
where their length is a hyperparameter. Instead, the stride is set to 1 because only
online models are considered.

For a better comparison, all the experiments are made with the same learning
rate (1 · 10−3), batch size (64), Adam as optimizer and a dropout layer with a rate
of 0.2.

Moreover, we have added two callbacks to reduce the learning rate with a rate
0.1 if there is no improvement in the validation loss for five epochs and stop the
training if for ten epochs the validation loss does not decrease.

Furthermore, when discussing several algorithms, it is useful to compare a
baseline model, defined as the simplest method in the literature, with the actual
state of the art algorithm. In this way, the results obtained from the experiments
are comparable and considerations about the performance are possible.

4.4.1 SWaT
SWaT is a fully operational scaled-down water treatment plant with a small
footprint, producing 5 gallons/minute of doubly filtered water. This testbed
replicates large modern plants for water treatment such as those found in cities.
Its main purpose is to enable experimentally validated research in the design of
secure and safe CPSs. SWaT has six main processes corresponding to the physical
and control components of the water treatment facility as shown in Figure 4.3.

Figure 4.3: Scheme of the CPS.
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Attack scenarios SWaT consists of six stages where each stage contains a
different number of sensors and actuators. Based on attack points in each stage,
the attacks are divided into four types.

1. Single Stage Single Point (SSSP): A single-stage single point attack focuses
on exactly one point in a CPS.

2. Single Stage Multi-Point (SSMP): A single-stage multiple point attack focuses
on two or more attack points in a CPS but on only one stage.

3. Multi Stage Single Point (MSSP): A multi-stage single point attack is similar
to an SSMP attack except that now the SSMP attack is performed on multiple
stages.

4. Multi Stage Multi-Point (MSMP): A multi-stage multi-point attack is an
SSMP attack performed in two or more stages of the CPS.

A total of 36 attacks were launched during the data collection process. The
duration of the attack is varied based on the attack type. A few attacks, each
lasting ten minutes, are performed consecutively with a gap of 10 minutes between
successive attacks. Some of the attacks are performed by letting the system stabilize
before a subsequent attack. Some of the attacks have a stronger effect on the
dynamics of the system and cause more time for the system to stabilize. Simpler
attacks, such as those that affect flow rates, require less time to stabilize. In general,
attacks lasted between a few minutes to an hour.

Attack category Number of attacks
SSSP 26
SSMP 4
MSSP 2
MSMP 4

Table 4.1: Number of attacks per category.

Data collection process The data collection process lasted for a total of 11
days. SWaT was functioning non-stop 24 hours/day, during the entire 11-day
period. SWaT was run without any attacks during the first seven of the 11-days.
Attacks were launched during the remaining four days.

The data collection process starts from an empty state of SWaT. This initializa-
tion was deemed necessary to ensure that all the tanks are filled with unfiltered
water and not pre-treated.
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All the data was logged continuously once every second. As the data collection
process started from an empty state, it took about 5 hours for SWaT to stabilize
and the samples during this time are removed.

To speed up the training process, the original data samples are down-sampled
to one measurement every 10 seconds by taking the median values. The resulting
label is the most common label during the 10 seconds.

In table 4.2 are summarized the size of both training and testing sets. Moreover,
from the statistics, we notice that we have enough data and anomalies in the test
set (about 1/10).

Number of
dimensions

Training set
size

Testing set
size

Anomaly
ratio (%)

55 47.520 42.833 11.71%

Table 4.2: Statistics of the dataset used in experiments.

Data analysis and challenges In general, the datasets of CPSs are more
complicated than the others because they represent a system in continuous evolution.
The correlations and the distributions of the features are mutable because the
system degrades over time.

As described in Section 3.2, some features are constants in the training set but
not in the testing one.

From the data analysis, we have 37 non-constants features in the training set
and their distribution can be observed in Figure 4.4.
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Figure 4.4: Boxplot of the features.

Detrending In many cases, it is advisable to train a model with a stationary
time series but most of the time the input data is not. For this reason, one possible
choice is to consider as input xt − xt−1. In this way, the distribution now is more
similar to the Gaussian and the time series is stationary.
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Figure 4.5: Effect of the detrending operation.

As shown in Figure 4.5, we can notice how the feature "FIT401" has a distribution
far from the normal one before the transformation and then after the detrending
this distance is minimized.

Baseline

Based on the original paper [11], we choose a forecasting-based model in which
we predict the values of the next timestep. Therefore, we have to change the
architecture as shown in Figure 4.6.

Input (T, N)

LSTM (T, 80)

LSTM (T, 80)

Dense (N)

Figure 4.6: Scheme of the forecasting model with time windows of size T and N
features.

The neural network is composed of two LSTM layers followed by a Dense layer
with the output dimension equal to the number of features we want to predict.
In our simple implementation, our model learns to predict only one timestep at a
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time.
From the explanation paper, we know that all the anomalies affect a number

of sensors between 1 and 4 therefore we define a threshold for each feature and in
case of an error higher than the threshold we consider that sample as an anomaly.

As we consider the error between our predictions and the true values as the
threshold, the size of the time window may have an impact on the model perfor-
mance. To study this impact, we train the same model with two different sizes of
time windows. From the theoretical point of view, with a larger time windows, the
model can learn more long temporal patterns.
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Figure 4.7: Comparison of the reconstruction with different values of w.

As shown in Figure 4.7, the same sequence is reconstructed very well except for
the correctly wrong anomaly one. In general, the performance grows with the size
of the time window until a certain value. Models with large windows require more
time to train and thus in general we stop increasing this parameter until we find
reasonable scores.

We can plot the confusion matrix in order to show how the model distribute
the predictions.
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Figure 4.8: Confusion matrix with w = 8.

In Figure 4.8, the confusion matrix shows that the number of false positives is
very high and thus we expect a low precision. The reason is that some features are
always bad reconstructed and consequently the samples will be considered always
anomalies.

In Table 4.3, we made a comparison of scores with different values of w and, as
supposed theoretically, the performance is higher with a larger window.

w F1 score Precision Recall ROC AUC PR AUC

8 24.40% 13.98% 96.47% 56.59% 13.42%
60 25.20% 14.78% 97.16% 58.96% 13.89%

Table 4.3: Mean of scores after 5 runs.

In particular, the PR AUC is very low in both models due to the high number
of false positives.

Deep Evidential Regression

As described in the previous section, the Deep Evidential Regression is suitable for
univariate regression, where the model has to predict only one value.

However, in Section 2, we have discussed that it is impossible to study multi-
variate time series in a univariate way. Therefore, we train one network for each
feature as we did with the MSL dataset and for each feature we store the estimated

50



Experiments

entropy. It is important to highlight that as input we pass the entire number of
features whereas the output consists of only one. In this way, the model can better
capture the dependency among the features.

Then, after all the training, we consider the maximum entropy between the
features for each sample and we select the threshold to maximize the ROC score.

We replace the Dense layer of the previous architecture with a new DenseNor-
malGamma layer provided by the author of the original paper [11]. In this way,
the new Dense layer has four times the number of original output because for each
output feature it provides the estimation of the four variables µ, γ, α, β.
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Figure 4.9: Comparison of the same portion of data with different w.
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In Figure 4.9, we can notice how both the reconstructions are similar but the
one with a larger size of the window has smaller errors and its uncertainty is more
coherent with the true values.

Inside the anomaly region, both models correctly miss estimating the uncertainty
because it does not include the true values. The reason is that since the anomaly
is something "unexpected" the models are not able to estimate the uncertainty and
thus that region is predicted as an anomaly.

Detrending As described in the previous section, a possible method to make
the distribution of the features closer to the normal one is the detrending operation.
Doing so, since our method is based on the assumption that the predictable variable
is normally distributed, we expect high results.

F1 score Precision Recall ROC AUC PR AUC

19.74% 11.92% 57.33% 50.57% 11.83%

Table 4.4: Mean of scores after 5 runs.

Unfortunately, as shown in Table 4.4, the performance are very bad because
with the detrending operation all the features are stationary and thus harder to
predict since they do not depend on time anymore.

A possible solution - Quantile Transformation The goal is to transform
our data without change the stationary of the time series. One of the possible
preprocessing operation available on scikit-learn is the Quantile Transformation.

w F1 score Precision Recall ROC AUC PR AUC

8 54.43% 43.56% 72.84% 80.83% 35.98%
8 (with QuantileTrans.) 58.82% 50.44% 70.53% 80.67% 39.03%

60 60.61% 60.05% 77.05% 80.77% 42.88%
60 (with QuantileTrans.) 53.92% 42.77% 73.13% 80.03% 34.41%

Table 4.5: Mean of scores after 5 runs.

As shown in Table 4.5, the model with a larger time window performs better.
We can notice how with the Quantile Transformation the performance is increased
with w = 8. The behaviour has changed with a larger time window where the best
model is obtained with Standard Scaler as suggested by the authors of the paper.

Overall, this method goes beyond the baseline even though it has been extended
to the multivariate case.
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Graph Neural Network

In the previous experiments with other methods, we removed the 13 constants
features because they do not bring any information. Instead, in the paper, the
authors trained the model with the entire set of sensors and actuators thus we first
try this setting to reproduce their result and then set a sort of baseline for further
experiments.

As already discussed, with this forecasting-based algorithm, we have to tune the
following hyperparameters:

• k: denotes the number of connections (edges) for each node. The value of k
can be chosen according to the desired sparsity level. A higher value means
that the graph is very dense in which all nodes are linked to each other. In
case of low value, the number of edges decreases and this is the way it is more
sparse.

• embeddings dimension: dimension of the embedding space.

• time window length (w): size of the time window.

First of all, we reproduce the scores obtained with the suggested parameters
from the authors of the paper with all the features as shown in Table 4.6.

k
Embeddings
dimension

out layers
inter. dim

size of
time window

15 64 128 5

Table 4.6: Hyperparameters suggested by the paper.

With these parameters, we were able to reproduce the results from the paper
and we obtained the confusion matrix shown in Figure 4.10 in which we notice
that the model is very accurate. It is able to identify correctly almost all normal
samples and a high number of anomalies maintaining the number of miss-classified
samples low.
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Figure 4.10: Confusion matrix with the suggested parameters.

Since some features are constants in the training set but not in the testing
one, the model fails to reconstruct them. In Figure 4.11, we plot the comparison
between the reconstructed sequences and the real ones of the two features constant
in the training set.
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Figure 4.11: Example of reconstruction of two different sensors.

The model makes errors in both features and the reconstruction is very bad
because the true signals are almost constant to certain values but the network is
not able to capture and learn this behaviour but instead, it tries to approximate
them with dynamic behaviours.

For this reason, the next experiment is to remove these features reducing the
dimension of the dataset to 37 in order to speed up the training process considering
only features that bring information.

With this new setting, from the confusion matrix in Figure 4.12 we can observe
how this new model identifies fewer FPs and FPs than the previous one. This
proves that the feature selection has improved the training process and the model
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seems more flexible.

Figure 4.12: Confusion matrix with feature selection.

Moreover, we can compare the reconstruction of a feature with both models. In
Figure 4.13, we notice that the feature MV101 is badly reconstructed by the first
model (the one with all features) and the true values (green line) are far from the
reconstructed ones. For what concerning this feature, we can say that the model
has failed to understand the correct behaviour.

Instead, the model with the reduced number of features has performed well and
it approximated correctly the true values and badly the anomaly ones.
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Figure 4.13: Reconstruction of a portion of the same feature (MV101 ) before
and after the feature selection.

Then, in Table 4.7 we compare the scores obtained with both models.

Method F1 score Precision Recall ROC AUC PR AUC

With all features 79.82% 97.82% 67.51% 83.65% 69.83%
Drop constants features 81.10% 97.55% 69.41% 84.59% 71.28%

Table 4.7: Scores obtained with the suggested hyperparameters after 5 runs before
and after the feature selection.
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There is a slight increase of the f1 score (+2%) and recall (+2%) whereas the
precision remains stable around 97.5% and for this reason, in the next experiments
we proceed with the feature selection.

After these experiments, we also analyze the influence of each hyperparameter
and its impact on the model’s performance. The first hyperparameter that we test
is the k.

As shown in Figure 4.14, with both settings the reconstruction of that feature
is very accurate. With k = 10, the reconstruction data present some high spike
values mostly inside the anomaly sequence.

Figure 4.14: Comparison of the reconstruction of the same portion of input data
with k = 10 (top) and k = 20 (bottom).
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Increasing the value of k seems to impact only the reconstruction of the anomaly
sequence. In fact, with k = 20 the reconstruction error of the anomaly sequence is
lower than the first case.

In Table 4.8, we notice the scores with different values of k. During my experi-
ments with a static value of this hyperparameter, I found a high deviation of the
scores thus we can conclude that by doing more runs the differences of the scores
decreases.

Method F1 score Precision Recall ROC AUC PR AUC

k = 10 81.31% 97.22% 69.87% 84.80% 71.45%
k = 20 80.50% 96.29% 69.16% 84.40% 70.19%

Mean proposal 81.75% 97.29% 70.16% 85.40% 71.86%

Table 4.8: Mean scores with different k after 5 runs.

My proposal performs slightly better than the models with a predefined value of
k. With this new setting and the same hyperparameters of previous experiments,
the learned graph is composed of 37 nodes (features) and the edges: min=2 and
max=32. This proves that each sensor has its behaviour and requires a different
number of connections.

The second hyperparameter that we study is the size of the embeddings. The
embeddings are necessary to connect nodes to each other and for this reason, the
next experiment is dedicated to studying the influence of the variation of the
dimension of the embeddings space.

From the literature, it does not exist a correct formula or an always-good value
for the size of embedding for each task. Instead, we need to tune this parameter
by doing more trials and then studying the performance to select the best value.
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Figure 4.15: Reconstruction of the first feature with dim = 32.

In Figure 4.15, it is shown the reconstruction with dim = 32. As with the
previous hyperparameters, the reconstruction is still good with low errors but some
points, inside the anomaly sequences, presents very high peaks in the reconstruction.

Since the reconstruction is almost the same with dim = 128, for simplicity, we
avoid plotting it and we can conclude by saying that both the proposed embeddings
dimensions can be considered as equivalent and valid solutions from the reconstruc-
tion and performance points of view as shown in Table 4.9 where the model with a
smaller embedding size performs slightly better.

Method F1 score Precision Recall ROC AUC PR AUC

dim = 32 80.74% 97.15% 69.11% 84.42% 70.74%
dim = 128 80.62% 97.55% 68.71% 84.24% 70.69%

Table 4.9: Mean scores with different size of embeddings after 5 runs.

The last hyperparameter that we can study is the size of the time window. The
authors of the original paper decided to choose a small value because the model
does not implement temporal learning and to speed up the training process. As
described in the introduction of this section, increasing the size of the time window
increase the ability of the model to capture long temporal dependency and in some
situation, it translates into better performance.
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Figure 4.16: Reconstruction of a portion of the input data with w = 10(top) and
w = 20 (bottom).

In Figure 4.16, the reconstruction error of the first model (w = 10) is increasing
from sample #15000 where the separation between the true signal and the output
of the network grows.

Instead, this problem is solved in the second model with a larger time window
(w = 20) where all the normal sequences from the beginning to the end are
reconstructed perfectly.

In Table 4.10, the results obtained are summarized as the average of five runs.
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Method F1 score Precision Recall ROC AUC PR AUC

w = 10 80.58% 97.55% 68.70% 84.24% 70.67%
w = 20 80.10% 96.93% 68.26% 83.99% 69.88%

Table 4.10: Mean scores with different size of time window after 5 runs.

The results show that different sizes of the time window do not improve the
scores obtaining almost the same performance on the test set. This means that
increasing the size of the input sequences and consequently the training time is not
worth it because the performance remains almost the same.

We can conclude by saying that the disadvantage of this method is that it does
not include a network to learn the temporal correlations as in MT-GAT [9].

Consequentially, increasing the size of the window does not improve the perfor-
mance.

Conclusions

In this section, we have discussed the experiments with the SWaT dataset. From
the nature of the dataset, we know that there is a domain shift and thus the
distribution of the features change with time.

Consequently, traditional methods that try to approximate the distribution of
the input as the Deep Evidential Regression are not suitable in environments where
the features are in evolution. However, methods like the Quantile Transformation
have shown success in increasing the performance.

Method F1 score Precision Recall
Baseline 25.20% 14.78% 97.16%

Deep Evidential Regression 60.61% 60.05% 77.05%
Graph Neural Network 81.75% 97.29% 70.16%
State of the art (DAICS) 88.92% 91.85% 86.16%

Table 4.11: Comparison of the results between the proposed approaches and the
state of the art.

In Table 4.11, there is a comparison between the scores obtained with the
proposed models and the state of the art algorithm. The advantages of DAICS
algorithm are:
1. Dynamic threshold. This dataset presents a domain shift and thus requires

a threshold that adapts itself with the distribution of the input data and its
changes.
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2. Reconfiguration in case of false positives. It is possible to reconfigure DAICS
in a production environment in the case an anomaly is identified by the system
and then recognised as a false alarm by the technician.

My second proposed approach (Graph Neural Network) presents some interesting
points such as a graph architecture and interpretability of the results via sensor
embeddings.

Figure 4.17: Force-directed graph layout with attention weights as edge weights,
showing an attack. The red triangle denotes the central sensor identified by our
approach, with highest anomaly score. Red circles indicate nodes with edge weights
larger than 0.1 to the central node.

In Figure 4.17, the edges in the learned graph provide interpretability by
indicating which sensors are related to one another. Moreover, the attention
weights further indicate the importance of each of a node’s neighbours in modelling
the node’s behaviour.
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4.4.2 Mars Science Laboratory rover (MSL)

Figure 4.18: Image of the curiosity rover.

This dataset is a set of data about the state of the Curiosity Rover sent on Mars
in a mission to study if the planet can host life. This subsystem consists of the
X-Band subsystem for direct communication with Earth and the UHF subsystem
for communications with Mars relay orbiters, including the Mars Reconnaissance
Orbiter (MRO), Odyssey (ODY), Maven (MVN), Mars Express (MEX), and the
Trace Gas Orbiter (TGO).

From the Telemanom paper [12], we know that this dataset is divided into
different channels and thus we need to process each channel in a univariate manner,
training and evaluating the model to each channel.

Moreover, all data has been anonymized with regard to time and all telemetry
values are pre-scaled between (-1,1) according to the min/max in the test set.
Channel IDs are also anonymized, but the first letter gives indicates the type of
channel (P = power, R = radiation, etc.).

Model input data also includes one-hot encoded information about commands
that were sent or received by specific spacecraft modules in a given time window.
The distribution of these values is depicted in Figure 4.19.
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Figure 4.19: Boxplot of the first feature of the training set.

Along with the available data, it is provided with a file with the details of
anomalies channel by channel. From this file, we know that two types of anomalies
are detected: point and contextual anomalies.

In table 4.12, we notice that the number of channels is 27 with a total number
of 36 anomaly sequences.

Total anomaly sequences 36
Point anomalies (% tot.) 19 (53%)

Contextual anomalies (% tot.) 17 (47%)
Unique telemetry channels 27
Telemetry values evaluated 66,709

Table 4.12: Summary of the dataset.

Labels adjustment Since the anomalies are in sequence, the authors suggest
that is enough to recognize at least one point of that anomaly sequence. Only
one true positive is recorded even if portions of multiple predicted sequences fall
within a labelled sequence. If no predicted sequence overlaps with a positively
labelled sequence, a false negative is recorded for the labelled sequence. For all
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predicted sequences that do not overlap a labelled anomalous region, a false positive
is recorded.

Baseline

With the first missions on Mars, NASA started to release some public datasets
about the state of their rovers. One of these is the MSL, studied initially by some
employees of the NASA centre in order to recognize and prevent anomalies in the
system. They collected the results and the description of the proposed model in
the original paper [12].

Furthermore, many advanced experiments are performed with this dataset in
the years and the actual at the state of the art is the Multivariate Time-series
Anomaly Detection via Graph Attention Network [13]. The authors have proposed
both reconstruction and forecasting models and they found out that the model that
best fits the characteristics of this dataset is the one based on the reconstruction of
the input data.

Their motivation is based on the fact that the dataset is highly unpredictable
with stationary features and they demonstrate how the reconstruction-based model
outperforms the forecasting one.

Therefore, we proceed with the training channel by channel of the autoencoder,
described previously in Figure 4.26, with size of the time window from the original
paper (w = 250).

Figure 4.20: Comparison between the real values and the reconstructed ones.
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In Figure 4.20, the comparison between the real values and the predicted ones
with w = 250 of feature C-2 shows that the network has learnt the general shape
of the input data but the error is still high.

For each channel, we select the threshold as the point that maximizes the area
under the ROC curve.

In Table 4.13, we can see the number of true positives, false positives and false
negatives for each channel.

Channel True Positives False Positives False Negatives

M-6 1 0 0
M-1 0 0 1
M-2 1 0 0
S-2 1 0 0

P-10 1 0 0
T-4 1 0 0
T-5 1 0 0
F-7 0 1 3
M-3 0 0 1
M-4 0 0 1
M-5 1 0 0
P-15 1 0 0
C-1 1 0 1
C-2 2 14 0
T-12 0 0 1
T-13 0 0 2
F-4 1 4 0
F-5 1 0 0

D-14 2 0 0
T-9 2 1 0
P-14 1 1 0
T-8 0 0 2
P-11 1 0 1
D-15 0 0 1
D-16 0 0 1
M-7 1 0 0
F-8 0 0 1

20 21 16

Table 4.13: Predictions for each channel with w = 250. Channels with the worst
performance are highlighted in red.
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In summary, in almost all channels, the anomaly sequences are recognized. On
the other hand, in Table 4.13 are highlighted the three channels with very bad
scores. In particular, the model fails to reconstruct the channel C-2 and thus the
number of false positives is high. If the model had reconstructed better those three
features the scores would have been even higher.

Then, we sum all false positives, false negatives and true positives and we obtain
the final scores shown in Table 4.14.

F1 score Precision Recall

50.08% 44.74% 57.22%

Table 4.14: Final scores after 5 runs.

Deep Evidential Regression

With this dataset, we proceed again in a univariate way, training and evaluating
each channel separately using time windows of size 250 as suggested by the paper
[12].

Unlike the baseline, this method is based on forecasting thus it is interesting to
study this dataset with another configuration.

Figure 4.21: Reconstruction of the channel F-5.

In Figure 4.21, we observe how the model has perfectly reconstructed the channel
F-5 and, in correspondence with the anomalous sequence, we can see how the
uncertainty of the model is higher.
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Channel True Positives False Positives False Negatives

M-6 1 0 0
M-1 0 0 1
M-2 1 0 0
S-2 0 0 1

P-10 0 0 1
T-4 1 0 0
T-5 0 0 1
F-7 3 0 0
M-3 0 0 1
M-4 0 0 1
M-5 0 0 1
P-15 1 0 0
C-1 1 0 1
C-2 1 0 1
T-12 0 1 0
T-13 0 0 2
F-4 0 0 1
F-5 1 0 0

D-14 1 0 1
T-9 1 0 1
P-14 1 0 0
T-8 0 0 2
P-11 2 0 0
D-15 1 0 0
D-16 1 0 0
M-7 1 0 0
F-8 1 0 0

19 1 16

Table 4.15: Predictions for each channel with w = 250.

In Table 4.15, we can see how the number of false negatives is very high meaning
that the model has reconstructed perfectly also some of the anomaly sequences.
This is because those anomalies do not present changes in their distributions.

In the end, in Table 4.16, we can see the final scores. There is a huge improvement
in the scores obtained with the baseline. The recall score is low due to the high
number of false negatives.
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F1 score Precision Recall

70.16% 96.48% 54.90%

Table 4.16: Final scores after 5 runs.

Graph Neural Network

Proceeding as before, we try first with the default parameters used for the SWaT
dataset using a time window of size 250.

During the experiments, I found that by changing the parameters the recon-
structions produced did not change. Therefore, for simplicity, we will only discuss
the scores obtained.

Both models produce the same reconstruction plot so it is useless to plot it and
the only difference is on the number of testing labels.

Figure 4.22: Reconstruction of the channel M-1
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As shown in Figure 4.22, the model is not able to reconstruct well the input and
it approximates only the general shape of the data.

More in detail, in Table 4.17, it is possible to notice that all channels are correctly
predicted and, unlike the previous methods, the number of false positives and false
negatives is very low.

Channel True Positives False Positives False Negatives

M-6 1 0 0
M-1 1 0 0
M-2 0 0 1
S-2 1 0 0

P-10 1 0 0
T-4 1 0 0
T-5 1 0 0
F-7 3 0 0
M-3 1 0 0
M-4 0 0 1
M-5 1 0 0
P-15 1 0 0
C-1 2 0 0
C-2 1 1 1
T-12 1 0 0
T-13 2 0 0
F-4 0 0 1
F-5 1 0 0

D-14 2 0 0
T-9 1 1 1
P-14 1 0 0
T-8 1 0 1
P-11 1 0 1
D-15 0 0 1
D-16 1 0 0
M-7 1 0 0
F-8 1 0 0

28 2 8

Table 4.17: Predictions for each channel with w = 250.
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In Table 4.18, there are the scores obtained with the default parameters.

w F1 score Precision Recall

250 83.08% 93.00% 75.00%

Table 4.18: Mean scores after 5 runs.

With this model, we have obtained the highest results.
Then, we try to change the number of connections per node (k).
In Table 4.19, we can summarize the results obtained with different values of k.

Value of k F1 score Precision Recall

k = 10 80.29% 100.00% 67.48%
k = 30 80.65% 96.00% 69.00%

Mean proposal 85.71% 100.00% 75.00%

Table 4.19: Mean scores after 5 runs.

Changing the value of k does not improve the performance of the model. The
only difference is the balance between false positives and false negatives. For
example, with a lower value of k the model does not recognize false positives.

With my mean approach, the scores are higher and in particular f1 score and
recall. Removing the constraints on the graph structure, each node has from 10 to
40 connections for almost all channels. This proves that trying to make each node
the same as the others do not work.

Then, we can proceed in our experiments by changing the size of the embedding.
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Value of dim F1 score Precision Recall

dim = 32 87.97% 97.00% 81.00%
dim = 128 83.87% 100.00% 72.00%

Table 4.20: Mean scores after 5 runs.

In Table 4.20, we notice how changing this parameter the performance decrease
a lot.

The last hyperparameter that we can change is the size of the time window.
Due to the lack of samples, the expectation is that by increasing this parameter,
the performance will also increase because the number of predicted labels is lower.

Value of w F1 score Precision Recall

w = 60 81.97% 100.00% 69.00%
w = 250 83.08% 93.00% 75.00%

Table 4.21: Mean scores after 5 runs.

In fact, in Table 4.21, we notice how the model with w = 250 outperforms the
first one but it does not mean that the second model performs better.

In other words, removing the few normal points ad the beginning of the testing
set will result in a final set with ever more anomalies than normal points.

Conclusions

This dataset is very hard to model and many experiments in literature are performed
on this data. Moreover, the channels have very different distributions because each
channel models a different physical system.

Furthermore, due to how the dataset was collected, different features with differ-
ent meanings are put together. For example, the dataset includes one-hot encoded
information about commands that were sent or received by specific spacecraft
modules in a given time window.

Due to the nature of the data, reconstruction-based models are reported to get
better performance. Unfortunately, the two proposed methods are both based on
forecasting and, since the data are stationary, we could not get high scores.
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Method F1 score Precision Recall
Baseline 50.08% 44.74% 57.22%

Deep Evidential Regression 70.16% 96.48% 54.90%
Graph Neural Network 87.97% 97.00% 81.00%

State of the art (MTAD-GAT) 90.84% 87.54% 94.40%

Table 4.22: Comparison of the results between my proposal approaches and the
state of the art.

Nonetheless, as shown in Table 4.22, with Graph Neural Network the performance
is high. The results of the baseline model are quite satisfactory when compared to
the ones obtained in Telemanom [12].

Both of the proposed models have a precision score higher than the state of the
art, meaning that the number of false positives is lower.

Deep Evidential Regression fails to detect some anomalies because those samples
do not present any shift distribution with respect to the normal ones and thus they
are reconstructed well.

The state of the art, MTAD-GAT, implements two different graphs to learn the
correlations between the features and the temporal one. Moreover, the authors
have proposed a combination of both reconstruction and forecasting contributions.

This function makes the model applicable in various contexts since it just
requires modifying the parameter γ that controls the trade-off between the two
contributions.
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4.4.3 Suspension arm

Figure 4.23: Scheme of the suspension arm. (image taken from [14]).

This private dataset, provided by AddFor, represents the simulate damage of a
suspension of a car in a simulate environment with sampling rate of 3Hz as shown
in Figure 4.23. The data has been already preprocessed with the MinMaxScaler in
range [0, 1] therefore we can directly train the model with the provided data.

In Figure 4.24, we can notice that all the 30 features are float with no missing
or wrong values.

Figure 4.24: Boxplot of training set.

Some sensors have distributions completely different from the normal one and
this, as said before, can make the train more difficult for the model. In Figure 4.25,
we can see some of those sensors with strange distributions.
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Figure 4.25: Plot of the distributions of some features.

Moreover, as shown in Table 4.23, we know that we have enough data to train
and validate the model and the number of anomalies is far greater than the normal
samples.

At the end, after the adfuller test, we conclude saying that the timeseries is
stationary thus we do not apply the detrending.

Number of
dimensions

Training set
size

Validation set
size

Testing set
size

Anomaly
ratio (%)

30 56.114 190.475 61.647 71.55%

Table 4.23: Summary of the dataset.

Since we have a large validation set (around 190k samples), we use this set to
pick the best parameters and for the threshold selection.
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Baseline

As described in the previous section, this dataset is composed of 30 features and
the data available have already been normalized in the range [0, 1] thus any scaling
operation is not needed.

From the discussed characteristics of this dataset, the best approach is to
implement a reconstruction-based model and for this reason the initial model is
an auto-encoder based on LSTM layers so the network can capture the temporal
dependency of the input data.

Input (T, N)

LSTM (T, 16)

LSTM (T, 4)

LSTM (T, 4)

LSTM (T, 16)

Output (T, N)

encoder
decoder

Figure 4.26: Scheme of the proposed auto-encoder with T time instants and N
features.

In Figure 4.26, the network’s architecture is shown and it can be seen that the
model takes as input a multivariate time series with N features in T time instants.
The encoder, composed of two LSTM layers, encodes the time series to a dimension
of 4. Then, the 1x4 vector is repeated w times, with w the number of instants in
each window. The final layers decode the repeated encoded vector to re-built the
input time series.

As said in Section 2.12, after the training, the last step in the pipeline is to
define the way to calculate the threshold. A very trivial method is to compute the
MSE with the reconstruction error of the last point of each time window and then
plot the ROC curve to choose a threshold that maximizes the area under the curve
of the validation data samples. The goal is to maximize the ROC score since other
metrics are sensible to the imbalance of the classes. Then, the MSE over the test
samples is calculated and the previously calculated threshold is used to divide the
normal sample from the anomaly one.
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Figure 4.27: Portion of reconstruction of the first two features of the breaking
point of the suspension with w = 8.

In Figure 4.27, there is a comparison of the same portion of input data with
different values of the hyperparameter w. In both reconstructions, the AE performs
very well at approximating the shape of the input data for that specific feature
whereas it correctly fails with the anomaly sequence.

w F1 score Precision Recall ROC AUC PR AUC

8 94.90% 99.50% 90.79% 92.51% 98.87%
60 93.42% 99.26% 88.23% 89.97% 98.48%

Table 4.24: Mean of scores on validation set after 5 runs with different w.

From the scores in Table 4.24, the model with a smaller dimension time window
performs slightly better and this can be motivated by the fact that the dataset has
a low temporal dependency. Therefore, for further experiments, only this setting is
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considered.
From what concerning the method to pick the best threshold, two possible ways

can be described. In general, since the anomalies can be in even one sensor at
a time and consequentially the average reconstruction error would be low, some
authors pick one threshold for each feature based on reconstruction error on the
validation set.

Threshold F1 score Precision Recall ROC AUC PR AUC

Multiple 97.86% 95.83% 100.00% 72.50% 95.83%
Single 94.90% 99.50% 90.79% 92.51% 98.87%

Table 4.25: Mean of scores on validation set after 5 runs with different threshold
selection.

As shown in Table 4.25, in this dataset, since the features are homogeneous
and the anomaly is on more than one feature it is better to proceed to select a
global threshold based on the average of the reconstruction error (MSE). Therefore,
considering the ROC curve in Figure 4.28, the best threshold is the point closer
to the point (0, 1) or, in other words, the one that maximizes the area under the
curve.

Figure 4.28: ROC curve of validation set.

Finally, in Table 4.26, we can observe the scores of the model with the best
settings.
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F1 score Precision Recall ROC AUC PR AUC

89.40% 87.81% 91.16% 79.60% 86.37%

Table 4.26: Final scores after 5 runs.

Deep Evidential Regression

As did for the SWaT dataset, we train one model for each feature because Deep
Evidential Regression is suitable for univariate regression only, where the model
has to predict only one value.

We implement the same architecture shown before with the new DenseNormal-
Gamma layer.

Figure 4.29: Comparison of the reconstruction of the same portion of data with
different w.

In Figure 4.29, we can observe how with both models the reconstruction error is
very low and then with a smaller time window the model has captured correctly
the anomaly region by increasing the uncertainty in that area.

On the other hand, with w = 60 the model is able to reconstruct well also
the anomaly region with low uncertainty. This behaviour is the demonstration
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of the overfitting occurring during the training. In other words, the model does
not estimate correctly the uncertainty because it does not recognize that region as
anomalous.

Quantile Transformation As did for SWaT dataset, we try also with the
Quantile Transformation with the goal to reshape the distribution of the features.
In previous experiments, this transformation had improved the performance with
w = 8 thus we test also a model with this transformation.

Figure 4.30: Reconstruction of a portion of data after Quantile Transformation.

In Figure 4.30, we observe how the reconstruction of the model with the Quantile
Transformation presents high uncertainty in the abnormal region whereas the normal
samples are correctly reconstructed. Despite this plot, the performance is almost
comparable with the one of the model with Standard Scaler.

w F1 score Precision Recall ROC AUC PR AUC

8 98.52% 99.23% 97.82% 94.12% 99.08%
8 (with QuantileTrans.) 97.40% 98.56% 96.57% 87.49% 98.06%

60 93.67% 99.04% 88.86% 88.99% 98.33%

Table 4.27: Final scores on validation set after 5 runs.

As shown in Table 4.27, the model that performs better is the one with a smaller
time window as discussed before.

Since the company has provided also a validation set, we proceed following
the standard procedure in machine learning. We test the hyperparameters on the
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validation set and then we pick the best combination to get the final results on the
testing set.

To select the correct threshold, we consider again the ROC curve and the point
that maximizes the area under the curve.

Figure 4.31: ROC curve.

In Figure 4.31, we can observe the ROC curve and the point represents the best
threshold that we will use on the testing set.

Then, in Table 4.28, we show the final results on the testing set with the best
combination found (w = 8).

F1 score Precision Recall ROC AUC PR AUC

92.13% 87.20% 97.66% 80.78% 86.83%

Table 4.28: Final scores after 5 runs with w = 8.

We can notice an improvement in the already good performance of the baseline
model. In addition to the detection of anomalies, we get also the uncertainty
associated with each point making this method very suitable in this context.
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Graph Neural Network

Firstly, as did before, we define the baseline scores using the suggested hyperpa-
rameters of the SWaT dataset and then we change one parameter at a time to
study how the performance changes.

Since the company has provided the validation set, we find the best hyperpa-
rameters on that set and then we evaluate the best combination on the testing
set.

In Figure 4.32, we can see the reconstruction of the first feature.

Figure 4.32: Reconstruction of a portion of the first feature.

The reconstruction of the normal sequence is very accurate whereas the anomaly
one presents many reconstruction errors. This good behaviour is reflected also in
the final scores as shown in Table 4.29 where we reach very high performance.

F1 score Precision Recall ROC AUC PR AUC

89.71% 87.82% 100.00% 82.41% 87.82%

Table 4.29: Mean scores on the testing set after 5 runs.

In particular, we can notice that the recall is 100% thus there are not false
negatives.

Then, we can proceed with changing the value of k. In Figure 4.33, we can
observe the comparison of the reconstruction of the same portion of input data of
the first feature with different values of k.
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Figure 4.33: Comparison of reconstruction of the same portion of data with
different values of k.

As in the case of SWaT, a high value of the number of connections per node k
increases the capacity of the model to better reconstruct the input for both normal
and anomaly sequences.

In Table 4.30, we have the comparison between a couple of static values of k
and my implementation with a dynamic k. We notice how with my method the
performance is overall higher. The reason is that the sensors of this dataset are
more correlated than the SWaT dataset.
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k F1 score Precision Recall ROC AUC PR AUC

k = 10 97.57% 95.26% 100.00% 81.54% 97.99%
k = 20 98.69% 97.97% 99.41% 92.49% 99.06%
Mean k 98.91% 98.27% 99.21% 92.56% 99.55%

Table 4.30: Mean scores after 5 runs changing the k parameter.

Then, we can analyze how the predictions and performance change with different
sizes of the embeddings.

In Figure 4.34, a portion of the second feature is reconstructed with different
embeddings dimensions.

Figure 4.34: Comparison of reconstruction of the same portion of data with
different values of dim.
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With a high embeddings size, the true signal is reconstructed better as in
previous experiments. In general, these tests have proved that the size of the
embedding is the key of this method and the optimal value let the model minimize
the reconstruction error. In fact, in Table 4.31, the performance with dim = 128
are by far higher than the one with dim = 32.

size F1 score Precision Recall ROC AUC PR AUC

dim = 32 96.18% 92.64% 100.00% 85.73% 98.94%
dim = 128 98.17% 94.56% 100.00% 91.16% 98.90%

Table 4.31: Mean scores after 5 runs changing the embeddings size.

The last parameter that can help the model to increase the performance is the
size of the time window. As did earlier, we try to increase that value in order to
study the behaviour of the network with different input dimensions.

From the architecture of the model, we know that it does not implement the
time correlation among the variables thus we expect that by changing this value
the performance remains stable. To demonstrate this, we can see in Table 4.32 how
the scores with w = 10 are much higher than the model with a larger window.

w F1 score Precision Recall ROC AUC PR AUC

w = 10 96.63% 92.65% 100.00% 91.62% 98.65%
w = 20 94.69% 89.60% 100.00% 88.85% 94.86%

Table 4.32: Mean scores after 5 runs changing the size of the time window.

We can plot also the confusion matrix as shown in Figure 4.35. With a smaller
time window, the number of false positives is half of the model with a larger window.
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Figure 4.35: Confusion matrix with w = 10 (left) and w = 20 (right).

As the last experiment, we combine all the best hyperparameters found and
observe the scores with this final combination on the testing set.

Hyperparameters F1 score Precision Recall ROC AUC PR AUC

default 89.71% 87.82% 100.00% 82.41% 88.82%

w = 10
Mean k

dim = 128
92.03% 88.23% 98.77% 82.87% 90.23%

Table 4.33: Final scores on testing set.

In Table 4.33, we summarize the results obtained with the model with the default
hyperparameters and the one with the best combination found on the validation
set. The latter model performs slightly better though the scores on the test set are
lower than the ones on the validation set.

Conclusions

Since it is an industrial dataset, the data present a domain shift. In fact, the
distribution of the validation set is slightly different from the one of the testing sets.
This can be proven by the different scores obtained with these two sets of data.
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Method F1 score Precision Recall
Baseline 89.40% 87.81% 91.16%

Deep Evidential Regression 92.13% 87.20% 97.66%
Graph Neural Network 92.03% 88.23% 98.77%

Table 4.34: Comparison of the results of the proposed approaches.

In Table 4.34, we can notice how both proposed methods perform well on the
unseen test data.

Since in this dataset we have a breakout point, the scores are higher than the
previous datasets.

With the Graph Neural Network, it is possible to learn the correlation between
the features and, especially in industrial domains, this can be very important in
order to find which sensor is damaged.

At the same time, the contribution of the Deep Evidential Regression is very
important to estimate the uncertainty of the predictions.
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Conclusions

In this thesis, we have presented two new approaches for anomaly detection in
multivariate time series, in particular in the industrial domain. These methods try
to solve some challenges specific to this field.

In Chapter 3, we have described first the Deep Evidential Regression. The
contribution of this method is the capacity of estimating the uncertainty of the
predictions without sampling during the training. Instead of placing priors distri-
butions on network weights, as is done in Bayesian NNs, the authors have placed
priors directly over the likelihood function. By training a neural network to output
the hyperparameters of the higher-order evidential distribution, a grounded repre-
sentation of both epistemic and aleatoric uncertainty can then be learned without
the need for sampling and no additional training time. In the industrial domain,
the goal is to recognize anomalies in real-time with a high degree of certainty.

The Deep Evidential Regression is designed for the detection of anomalies in
images or univariate regression. During the thesis, we have extended the application
domains to the multivariate time series and provided an evaluation system based
on the entropy of the data.

The second proposed method is the Graph Neural Network that is based on
a graph network. The model can capture and learn the correlations among all
the sensors providing interpretability of the model through the graph structure
and the embeddings. In particular, the graph edges and attention weights provide
interpretability by indicating which sensors are related to one another. Moreover,
the attention weights further indicate the importance of each of a node’s neighbours
in modelling the node’s behaviour. The number of connections for each node is
predefined as a hyperparameter but, during the experiments, we have also provided
a possible implementation based on a dynamic number of connections per node
observing an increase in the performance. The reason is that each sensor may
require a different number of connections due to its nature. For example, an
important sensor requires more connections than a peripheral one.
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For each public dataset, we have also presented the state of the art algorithms
describing their characteristics.

The DAICS [8] proposes an adaptive threshold that changes with the distribution
of the input data trying to solve the problem of the domain shift due to the
deterioration of components.

The MTAD-GAT [9] implements two different graph networks to learn both the
correlations among the features and the temporal ones. Moreover, since in literature
both reconstructed-based and forecasting-based models have been proposed, this
method implements a combination of both the models. By doing so, the algorithm
can be applied in many more situations.

In conclusion, uncertainty estimation and the explanation of the anomalies
have a very significant societal impact because humans will inevitably become
increasingly trusting in a model’s predictions.
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