
POLITECNICO DI TORINO
Department of control and computer Engineering

Master of Science in
Data Science and Engineering

Master Thesis

Long-Term temporal attention in Efficient

Human Action Recognition Architectures

Supervisors:

Prof. Andrea Bottino

Candidate:
Lorenzo Atzeni

Academic year 2020-2021

Contents

Contents 2

List of Tables 5

List of Figures 7

Abstract 11

Introduction 13

1 Human activity recognition 15
1.1 Applications . 16
1.2 Types . 16
1.3 RGB Video based Action recognition 17

1.3.1 Challenges . 17
1.3.2 Types . 19

1.4 Datasets . 20
1.4.1 UCF-101 . 20
1.4.2 HMDB-51 . 21
1.4.3 Something to Something V1 24
1.4.4 Kinetics . 24

1.5 Thesis goals . 25
1.5.1 Modeling the Temporal Dimension 25
1.5.2 Efficient online RGB Video Action Recognition 26

2 Architercutres 27
2.1 Convolutional Neural Network 27

2.1.1 2D convolutions . 28
2.1.2 3D convolutions . 29

2

CONTENTS 3

2.1.3 (2+1)D convolutions 30
2.1.4 Depth-wise Convolutions 31
2.1.5 Squeeze-and-Excitation Blocks 31

2.2 RNN . 34
2.2.1 Advantages and Drawbacks 35
2.2.2 LSTM . 35

2.3 Transformer . 37
2.3.1 Scaled dot-product attention 37
2.3.2 Multi-Head attention 38
2.3.3 Encoder and Decoder 38
2.3.4 Positional encoding . 39
2.3.5 Causal Attention . 39

2.4 Human activity recognition architectures 40
2.4.1 ConvNet-LSTM . 41
2.4.2 Two-Stream Networks 42
2.4.3 3D ConvNets . 42
2.4.4 TSM (Temporal Shift Module) 44
2.4.5 Transformers . 45
2.4.6 3D ConvNets - Transformers 46

2.5 Efficient Networks: A Review 46
2.6 State of the art comparison 47

3 Model Architecture 49
3.1 Transformer-XL Architecture 49

3.1.1 Segment-Level Recurrence with State Reuse 50
3.1.2 Relative Positional Encoding 50
3.1.3 Vanilla Transformer Input Length Problem 51
3.1.4 Inference . 54
3.1.5 Training . 54
3.1.6 Receptive field . 54

3.2 ALiBi: Attention with Linear Biases 55
3.2.1 Architecture . 56

3.3 MoViNets . 57
3.3.1 Causal convolutions . 58
3.3.2 Stream buffer . 59
3.3.3 Fusing the concepts of stream buffer and state reuse . . 60
3.3.4 Convolutional Block 61

3.4 The Proposed Architecture . 62

3

CONTENTS 4

3.4.1 Modeling the Temporal Dimension 62
3.4.2 Efficiency and Latency 65
3.4.3 Architecture Details 65

4 Experiments 74
4.1 Implementation Details . 74

4.1.1 Architectures . 75
4.1.2 Training and Evalution 76
4.1.3 Latency Testing . 77
4.1.4 FLOPS estimation and parameters count 78
4.1.5 Peak Memory Occupancy 78

4.2 Experiment results . 78
4.2.1 HMDB51 Results . 80
4.2.2 UCF101 Results . 81
4.2.3 Something to Something V1 Results 82
4.2.4 State-of-the-Art Comparison 83
4.2.5 Generalization to Longer Sequences 84
4.2.6 Clip centering . 87

Conclusions 90

Bibliography 91

4

List of Tables

1.1 Summary of characteristics of UCF101. (from [41]) 21
1.2 Something to Something V1 dataset summary. (from [12]) . . 23

2.1 State-of-the-art comparison on kinetics-600 47

3.1 Slowdown in terms of running time during evaluation. Evaluation

is based on per-token time on one GPU. (From [6]) 52
3.2 MoViNet-A0 Architecture. 67
3.3 MoViNet-A1 Architecture. 68
3.4 MoViNet-A2 Architecture. 69
3.5 Base vs. Streaming Architectures 70
3.6 Classification head using the transformer architecture with

dmodel = 128 and A0-stream architecture. 71
3.7 Classification head using the transformer architecture with

dmodel = 192 and A0-stream architecture. 71
3.8 Classification head using the transformer architecture with

dmodel = 256 and A0-stream architecture. 72
3.9 MoViNet-A0-T192 Architecture. 73

4.1 Model architectures specifications used for the experiments
with Something to Something V1. 79

4.2 Model architectures specifications used for the experiments
with HMDB51. 80

4.3 Model architectures specifications used for the experiments
with HMDB51. 82

4.4 State-of-the-Art performance comparison on UCF101. 85
4.5 State-of-the-Art performance comparison on HMDB51. 86

5

LIST OF TABLES 6

4.6 State-of-the-Art performance comparison on Something-to-Something
V1. 87

4.7 Capability of generalizing to longer sequences on SSv1. 88
4.8 Capability of generalizing to longer attention length on SSv1. . 88

6

List of Figures

1.1 Increase in dimension of the dataset over the last decade, in
log scale. The dataset release time is shown on the x-axis,
the dataset dimension on the y-axis (log scale). The circle
dimensions represent the number of labels. (from [51]) 17

1.2 At the top: Coarse Action Recognition. It’s possible to infer
the action displayed just by a few frames. The environment
does also give strong clues about the action performed. At
the bottom: Fine-Grained Action Recognition. The athlete
performs different actions that are characterized by small dif-
ferences in the pose and a precise temporal sequence. The
context information is not enough to classify the action. (from
[49]) . 18

1.3 HMDB51 statistics relative to: a) visible body part, b) camera
motion, c) camera view point, d) clip quality. (from [24]) . . . 22

1.4 Some classes of the HMDB51 dataset. The action are not
challenging for the temporal dimension, nor they require to
capture small differences in pose. (from [24]) 22

1.5 An example video, representing the action “Pretending to
put something into something”. Crowd-workers are asked to
record the video representing the action and providing a place-
holder for “something”. 23

2.1 2D convolutions [26] . 28
2.2 Comparison between 2D (a) and 3D convolutions (b) (from [31]) 29
2.3 3D convolution (a) and (2+1)D convolution (b). (a) The 3D

convolution performs a single spatio-temporal operation using
a kernel of size t × d × d, while (b) the (2+1)D convolution
performs one spatial operation followed by a temporal one [43]. 30

7

LIST OF FIGURES 8

2.4 Depth-wise convolution. The filters and the corresponding
input over which is convoluted are displayed with the same
color. The input has dimension w × h × c with w = h = 12
and c = 3. Each filter has dimensions w×h×c with w = h = 5
and c = 1. (from [46]) . 31

2.5 Squeeze and Excitation block [15]. 32
2.6 A traditional RNN layer. x<t> represents an element of the

input sequence, where t represents the index of the element in
the sequence. a<t> represents the output hidden state of the
element x<t>. h<t> represents the output of the element x<t>.
(from [33]) . 34

2.7 Notation used in the RNNs diagrams. (from [33]) 34
2.8 Architecture of a traditional RNN cell. (from [33]) 35
2.9 Architecture of a traditional LSTM cell. (from [33]) 36
2.10 Transformer architecture (from [44]) 37
2.11 Causal Attention. The element xt attends only to the input

values xt2 with t2 <= t. (from [6]) 39
2.12 Convolutional network with LSTM head (from [21]) 41
2.13 Two-stream networks. The network takes as input both RGB

images and Optical Flow of the frames. The RGB frames
contains crucial information about the object and the envi-
ronment, the Optical Flow contains movement information.
(from [21]) . 42

2.14 3D convolutional neural networks. They take as input K RBG
frames, and they perform evaluation of the action. (from [21]) 43

2.15 TSM (Temporal Shift Module). TSM module works by shift-
ing the channel information along the temporal dimension,
allowing to share information between neighboring frames.
(from [28]) . 44

2.16 3D ConvNets + Transformer architecture. The Temporal Global
Average Pooling layer is eliminated and the activation is fed
to a transformer architecture that handles the temporal mod-
eling. (from [20]) . 45

8

LIST OF FIGURES 9

3.1 On the left, we can observe the first training step using the
fixed activation and stopped gradient. On the right, the sec-
ond training step is performed. The activation computed from
the preceding segments are saved and used to compute the
output of the following segment. The cached activations are
displayed with a lighter color with respect to the activation
computed in the current step. (from [6]) 50

3.2 Training of vanilla transformer. A new segment is used to
train at timestep two, without any information coming from
segment one. The first tokens of each segment suffer from low
context information. (from [6]) 52

3.3 Vanilla transformer evaluation step. The input is shifted by
only one token to provide maximum context information. The
receptive field, represented in green, is limited by the current
segment in input, represented with the color blue. The color
yellow represents the activations. (From [6]) 53

3.4 Transformer-XL evaluation step. The model uses the informa-
tion computed in preceding steps to provide maximum context
information for all the tokens. The context information is de-
nominated as Extended Context. The cached activations are
displayed in lighter colors. (from [6]) 53

3.5 Extrapolation: as the number of input tokens at evaluation
increases, Sinusoidal [44], Rotary [42] , T5 Bias [36] methods
show a degrade in performances, while ALiBi shows no de-
grade in performances. On the x-axis the number of input
tokens, on the y-axis the perplexity (lower is better). The
models are trained on WikiText-103 [30] with sequence length
of L = 1024. (from [35]) . 56

3.6 Computation of ALiBi positional encoding. Each attention
score (qi · kj) is summed by a constant multiplied by a head-
specific non-learnable parameter m. [35] 57

3.7 Standard Convolution on the left, Causal Convolution on the
right. The kernel size is 3, padding is shown in white. Causal
Convolutions are obtained by padding only the left side by
the amount k-1, where k is the kernel size. Lighter color con-
nections indicates the computation that is not involved in the
current label prediction. [22] 58

9

LIST OF FIGURES 10

3.8 Causal Convolution on the left, Causal Convolution with stream
buffer on the right. The kernel size is 3, the padding is shown
in white, the stream buffer is show in yellow. The stream buffer
is obtained by caching the activation obtained in the previous
computations. Lighter color connections indicates the com-
putation that is not involved in the current label prediction.
(from [17]) . 59

3.9 The MobileNetV3 convolutional block. It is characterized by
an expansion block, a depth-wise convolution followed by a
Squeeze-and-Excite layer and a reduction layer. [14] 61

3.10 Locality in convolutions, The receptive field of convolutions
grows linearly with the number of layers in the network and
the kernel dimension. 63

3.11 Difference in receptive field. On the left the receptive field of
a convolution architecture with the last layer being a trans-
former layer. On the right, the receptive field of a convolu-
tional architecture. The convolutional layers has been chosen
to have kernel dimension k = 3 and the transformer architec-
ture has attention length equal to 6. 64

4.1 Change in accuracy with respect to the centering of choice. . . 89

10

Abstract

Human activity recognition focuses on automatically understanding the ac-
tivity performed by humans. This field is of particular interest thanks to
many real-world applications such as video indexing/retrieval, surveillance,
Human-Machine interaction. In particular, this work focuses on RGB video
data, which, in the last decade, has made huge improvements, mainly due
to the progress made in the field of deep learning and the emergence of
high-quality large-scale datasets. However, there are many challenges to
overcome in the field of RGB Human Action Recognition, such as the high
computational requirements of the current architectures, mainly due to the
high dimensionality of the input. RGB videos are represented by two spatial
dimension and a temporal one, which remains a major challenge. It is, in
fact, difficult for the current architectures to reason about the events that
happened far in the past or to grasp details dislocated in particular frames
along the temporal dimension. The goal of this thesis is to tackle the problem
related to the capability of the system to grasp information along the tem-
poral dimension while maintaining low computational requirements for the
system. This is achieved by combining efficient convolutional architectures,
with a classification head based on the Transformer architecture. In this
work, the MoViNets architectures family are used as backbones, while the
Transformer-XL is used as Transformer head. The efficient MoViNet acts like
a feature extractor, while the Transformer architecture processes the feature
extracted. Thanks to its ability to process sequential information, the Trans-
former architecture reasons about feature extracted, attending to long-term
relationships between frames and particular salient information contained in
one or more particular frames. Furthermore, the architectures created are
able to handle video streams and run real time on a mobile device. The use
of three Transformer architectures having different computational require-
ments is investigated. The first experiments are performed on two small

11

ABSTRACT 12

datasets, namely HMDB51 and UCF101, where the results show that the
Transformer architecture performs consistently with the original MoViNets
architecture. To further investigate the new architectures, experiments on
the Something-to-Something (SSv1) dataset are performed. This dataset is
both more complex in the temporal dimension and larger than the dataset
used in the previous experiments. The results on this dataset, show a 2.91%
increase in performances for the lightest model over the original MoViNet ar-
chitecture, reaching a new State-of-the-Art result. The results of the largest
Transformer model, instead, report a slight reduction in performance with
respect to the original MoViNet architecture, this may indicate that a larger
Transformer head is necessary for larger models. The proposed new Trans-
former architectures have brought new SOTA results on SSv1, but further
research is needed in order to explore the applicability to larger models. The
proposed Transformer architectures are also considerable comparable with
the standard MoViNets for HMDB51 and UCF101. Furthermore, the results
show that the Transformer architecture with the lower number of parameters
still performs consistently with both the architecture with higher parameters
and the original convolutional architecture for HMDB51 and UCF101, pro-
viding a valid alternative in case of a memory constrain.

12

Introduction

Human activity recognition can be defined as the task of automatically un-
derstanding the activity performed by humans. The ability to recognize
the tasks performed by humans is particularly interesting for different ap-
plications such as video indexing/retrieval, surveillance and human-machine
interactions. Furthermore, recent progresses in the Deep Leaning field and
the creation of larger datasets have brought improvements in reliability and
performances, generating an increasing interest in this field.
The actions can be represented through different types of data modalities,
including skeleton, RGB video, optical flow, accelerometer data and point
clouds. This thesis work will focus on RGB Video based Action recogni-
tion, defined as the task of recognizing human actions from RGB videos.
RGB Video Action Recognition faces important challenges, such as the high
computational requirements of current Action Recognition Systems. These
requirements are mainly due to the high dimensionality of the input, which
has three dimensions: the temporal one and the two spatial dimensions. For
the two spatial dimensions, a lot of work has been done in the field of image
classification in order to provide efficient models, while the additional tem-
poral dimension remains a major challenge.
Currently, the topic of efficient Human Action Recognition has been tackled
using 3D convolutional neural network created with NAS (Neural architec-
ture search). This practice is highly computationally expensive, but it does
provide state-of-the-art results. The most recent and efficient networks are
X3D [10] and MoViNets [22].
As far as the temporal dimension is concerned, there has been an effort to
create architectures that are capable of capturing long-term relationships
between frames. One example is [48] where the authors propose to use the
transformer to model the outputs of multiple short clip segments computed
by a 3D CNN, extending the receptive field of the network and improving the

13

INTRODUCTION 14

details along the temporal dimension. The approach used in [20] proposed to
remove the Temporal Global Average Pooling layer and to feed the output of
the 3D CNN to the transformer. This would enable for better performances
determined by a more accurate modeling of the temporal dimension.
The goal of this thesis is to address the limitations of the current models
for Human Action Recognition, providing a new architecture that is able to
tackle the problem related to high computational requirements of current
Human Action Recognition systems and that is also able to attend to long-
term relationships along the temporal dimensions. The approach is based on
the idea proposed by [20] to remove the Temporal Global Average Pooling
layer and to feed the output of the 3D CNN to the transformer architecture.
The backbone is constituted by a 3D CNN of the MoViNets family, and the
transformer of choice is the Transformer-XL [6]. This new architecture is
both efficient and capable of keeping the original properties of the MoViNets
such as low latency and possibility to receive as input a stream of frames.
The use of three Transformer architectures having different computational re-
quirements is investigated. The first experiments are performed on two small
datasets, namely HMDB51 [24] and UCF101 [41]. The results show that the
architectures with the Transformer head perform consistently with the origi-
nal convolutional architecture. To further investigate the new architectures,
experiments on the Something-to-Something dataset are performed. This
dataset is both more complex in the temporal dimension and is larger than
the dataset used in the previous experiments. The results on this dataset,
show a 2.91% increase in performances for the lightest model over the stan-
dard MoViNet, reaching a new State-of-the-Art result. The largest model
reports, instead, a slight reduction in performance with respect to the stan-
dard MoViNet, we believe this may indicate that a larger Transformer head
may be necessary for larger models. The experiments carried out in this
thesis have been performed while doing an internship in Addfor S.p.a.
This thesis is structured as follows. Chapter 1 discusses the field of Hu-
man action recognition, its challenges and applications. Chapter 2 presents
the current State-of-the-Art used in the field. The newly proposed architec-
ture and their properties are discussed in Chapter 3. Chapter 4 describes
the experiments performed and the results obtained, showing a comparison
between the different architectures. Finally, conclusions are drawn.

14

Chapter 1

Human activity recognition

Human activity recognition focuses on automatically understanding the ac-
tivity performed by humans. The actions can be represented through dif-
ferent types of data modalities, including skeleton, RGB video, optical flow,
accelerometer data and point clouds. Different types of data contain different
types of information, which can be used together to achieve better results,
or can be used separately, providing different advantages or disadvantages in
terms of accuracy, robustness, memory and computing requirements.

• Skeleton data includes the joints and the bones of the human body
and how they move in space-time. Skeleton data is sufficient when the
actions don’t require information coming from the environment or from
the objects that are being manipulated.

• “Optical flow is defined as the apparent motion of individual pixels
on the image plane. It often serves as a good approximation of the
true physical motion projected onto the image plane.” [20] This kind
of information does contain a lot of low-level information about the
motion, but most of the information about the original image is lost,
making it impossible to identify objects that are not in motion with
respect to the camera. For this reason, in order to keep information
about the original video, optical flow is often used together with RGB
frames.

• RGB video data is the richest source of information compared to the
previous two types, since it is the source from which both the skeleton
and optical-flow information are generated.

15

1.1. APPLICATIONS 16

1.1 Applications

Human action recognition has attracted a lot of interest in the field of com-
puter vision, thanks to the wide variety of applications, such as:

• Video indexing/retrieval [16]: The ability to understand the actions
that are being performed is crucial for indexing and retrieving video
with specific content.

• Surveillance [29]: Surveillance applications require the system to iden-
tify malevolent actions.

• Human-Machine interaction [39]: Having machines that truly and eas-
ily understand our actions is a crucial step towards the integration of
machines in our daily life, or in our work environment.

• Physical activity recognition [37]: Having sensors that are capable of
recognizing human activities can help us keep track of our physical
activity, with good consequences on our health.

1.2 Types

Body-worn sensor based

Body-worn sensor based Activity recognition uses sensors worn by the user
to recognize the actions performed [4]. Sensors can be a smartphone or
a smartwatch and are precise enough to provide estimation of the power
consumption that happened through the physical exercise. it’s also possible
to recognize steps, running, stairs up/down and other useful information to
monitor the physical activity [37].

Video based Action recognition

Video based Action recognition is the task of recognition of human action
from videos. It’s probably the most commonly used approach for Action
Recognition, and it is currently investigated in the area of Deep Learning,
with important results. In this category are included also the tasks that
involve methodologies that manipulate features extracted from the video,
i.e. optical-flow or skeleton data.

16

1.3. RGB VIDEO BASED ACTION RECOGNITION 17

Figure 1.1: Increase in dimension of the dataset over the last decade, in log
scale. The dataset release time is shown on the x-axis, the dataset dimension
on the y-axis (log scale). The circle dimensions represent the number of
labels. (from [51])

1.3 RGB Video based Action recognition

RGB Video based Action recognition is the task of recognition human action
from RGB videos. It is a very important task due to numerous applications in
the real world such as video indexing/retrieval, surveillance, human-machine
interaction, physical activity recognition. In the last decade the field of RGB
Video Based Action recognition has made huge improvements, manly due to
the progress made in the field of deep learning, and the emergence of high-
quality large-scale datasets. Fig. 1.1 shows the increase in dimension of the
dataset over the last decade, in log scale.

1.3.1 Challenges

RGB Video based Human Action Recognition does face important challenges.
The first challenge is defining a label space. Everyday actions are generally
composed of sub-actions, following a hierarchical structure, where the most
elementary actions are called Atomic Actions. This hierarchical structure

17

1.3. RGB VIDEO BASED ACTION RECOGNITION 18

Coarse action recognition

dribbling basketball braiding hair salsa dancing

Fine-grained action recognition

leap
leg change side split

0.25 turn

 leap forward with leg change and 0.25 turn to side split

playing trumpet

Figure 1.2: At the top: Coarse Action Recognition. It’s possible to infer the
action displayed just by a few frames. The environment does also give strong
clues about the action performed. At the bottom: Fine-Grained Action
Recognition. The athlete performs different actions that are characterized
by small differences in the pose and a precise temporal sequence. The context
information is not enough to classify the action. (from [49])

makes it often unclear the granularity to consider during the construction of
a dataset, making the labeling choice not well-defined.
The second challenge is determined by the different ways an action can ap-
pear. The same action can in fact be seen from different viewpoints, or can
be shown just partially, or can be composed of different sub-actions. All
these different ways an action can appear make it hard for the action recog-
nition system to generalize to unseen videos. For example the simple action
of opening something can have very different sub-actions based on the object
that the actor is manipulating. E.g. opening a door looks very different from
opening an umbrella.
The third challenge is represented by the high computational requirements of
current Action Recognition Systems. These requirements are mainly due to
the high dimensionality of the input, which has three dimensions: the tem-
poral one and the two spatial dimensions. For the two spatial dimensions,
a lot of work has been done in the field of image classification in order to
provide efficient models, while the additional temporal dimension remains a
major challenge.

18

1.3. RGB VIDEO BASED ACTION RECOGNITION 19

1.3.2 Types

Coarse Action Recognition

Chuhan Zhang et al [49] define coarse action recognition as the task of recog-
nizing actions from videos where objects and background can strongly help
infer the label of the video and the action can be easily determined by few
frames. Typical datasets of Coarse Action Recognition are UCF101 [41],
HMDB51 [24], and Kinetics [21]. In Fig. 1.2 at the top we can observe an
example of Coarse Action Recognition: additional frames provide little to
no additional information, furthermore there is no need to pay attention to
details due to the amount of information coming from the environment.
While most of the datasets for video action recognition belong to this cate-
gory, we have to stay aware that us humans have the ability to pay careful
attention to details. While models and datasets created for coarse action
recognition are actually suited for most applications, in reality application
like human-machine interactions in work environments require a more Fine-
Grained grasping of the actions.

Fine-Grained Action Recognition

Chuhan Zhang et al [49] define Fine-Grained Action Recognition as the task
of recognizing actions from videos where the details are important both in
the temporal and in the spatial domain. Subtle differences in the pose, or the
specific sequence in which they appear on the video, may describe different
actions. In the Fig. 1.2, we can observe the difference between Coarse and
Fine-Grained Action Recognition.
This kind of datasets are suited to benchmark the capability of the model
to grasp details. The capability of the model to pay attention to details
dislocated along the temporal dimension is not only desirable, but a necessity
in certain applications.

Discussion on the necessity of fine-grained details

Humans are extremely good at grasping fine-grained details along the tempo-
ral dimension. They are in fact capable to easily recognize subtle movements
along the temporal dimension that would put in trouble modern Human Ac-
tion Recognition Systems. In the Fig 1.5 someone pretends to put something
in two different bowls without actually leaving it on any of the two. This

19

1.4. DATASETS 20

example is very complex for the temporal component because it is necessary
to pay close attention to the details dislocated along all the video. Action
Recognition in the real world is even more complex than staged datasets, set-
ting the bar for defining a successful Action Recognition system even higher.
Going back to the previously mentioned application regarding Human Ma-
chine Interaction, in our daily life most of the actions that we perform are
not grossly defined by the environment, and they are often characterized by
specific Fine-Grained manipulation of objects. In order to achieve a useful
and successful collaboration between humans and machines through videos,
it is necessary that the machines are able to spontaneously grasp the details
of the actions performed. If the Action Recognition System is not capable
of detecting such details, the user may be forced to repeat the same action,
trying to make it unnaturally slower or clearer. Spontaneous collaboration
with human-computer interfaces is not a problem restricted to Human action
recognition, but it involves also speech recognition systems. Rebman et al.
[38] provide a study about the acceptance rate of speech recognition systems
in physicians work environment, showing how non-natural conversations and
difficulty of the system to grasp the words of the physician can bring to a very
low acceptance rate, up to consider the system counterproductive according
to 31% of the physicians, while 36% where neutral and only 33% thought it
was a good idea to introduce it in the work environment.

1.4 Datasets

Datasets are an important part of the improvements happened in recent
years in RGb Video Action Recognition. In the field of deep learning, the
increase in size of the datasets usually brings important improvements in
performances. The increase of the datasets over the years is shown in Fig.
1.1. The datasets used in this work are the UCF101 [41], the HMDB51 [24]
and the Something-to-Something dataset [12]. The first two being Coarse
Action Recognition Datasets, while the last one is a Fine-Grained action
recognition dataset.

1.4.1 UCF-101

UCF101 [41], with 13, 320 clips and 101 action classes, is currently considered
a small dataset of coarse action recognition. It has been released in Novem-

20

1.4. DATASETS 21

Actions 101
Clips 13320

Groups per Action 25
Clips per Group 4-7

Mean Clip Length 7.21 sec
Total Duration 1600 mins

Min Clip Length 1.06 sec
Max Clip Length 71.04 sec

Frame Rate 25 fps
Resolution 320×240

Table 1.1: Summary of characteristics of UCF101. (from [41])

ber 2012 and at the time it was considered to be the largest video dataset
available.
The clips are obtained from YouTube videos, and they have a resolution of
320×240 pixels and a frame rate of 25 FPS. The clips of one class are divided
in 25 groups, which contain 4-7 clips each. Clips belonging to the same group
have common features, such as background or actor.
The train/test split have been created to ensure that clips from the same
group are not shared in train and test split, since the clips of one single
group are obtained from a single video. The statistics of this dataset are
presented in Table 1.1.

1.4.2 HMDB-51

HMDB-51 [24] is a commonly used benchmark dataset for Coarse Action
Recognition. The dataset is nowadays considered a small dataset, with
6, 766 manually annotated clips extracted from different sources, including
YouTube. This dataset contains a total of 51 action categories, each contain-
ing at least 101 clips. The camera motion has also been reduced through the
use of offline algorithms. The statistics of the dataset can be found in Fig.
1.3.
Due to the acquisition modalities, broadly speaking internet videos, the ac-
tions are generally easily identifiable from the context and often few frames
are enough for the classification. Some action of the dataset are displayed in

21

1.4. DATASETS 22

Figure 1.3: HMDB51 statistics relative to: a) visible body part, b) camera
motion, c) camera view point, d) clip quality. (from [24])

Figure 1.4: Some classes of the HMDB51 dataset. The action are not chal-
lenging for the temporal dimension, nor they require to capture small differ-
ences in pose. (from [24])

22

1.4. DATASETS 23

Dataset Specifications
Number of videos 108,499
Number of class labels 174
Average duration of videos (in seconds) 4.03
Average number of videos per class 620

Table 1.2: Something to Something V1 dataset summary. (from [12])

Figure 1.5: An example video, representing the action “Pretending to put
something into something”. Crowd-workers are asked to record the video
representing the action and providing a placeholder for “something”.

Fig. 1.4.

Training and testing set generation

The clips are provided with additional meta tags that include: camera view-
point, presence of camera motion, video quality, number of actors involved.
Those meta tags are used in order to create training and test set that not
only have balanced classes, but they also present balanced meta tags. For
each action category they select sets of 70 training clips and 30 test splits in
order to obtain a 70/30 balance for each meta tag. Clips of the same video
are also not present in both training and test set.

23

1.4. DATASETS 24

1.4.3 Something to Something V1

Something to Something V1 [12] is a dataset which involves manipulation
of objects of daily life. The intent of the dataset is to force the model to
learn characteristics and abstract concepts related to the objects that are
being manipulated. The dataset consists of 108, 499 short clips across 174
labels, with duration between 2 and 6 seconds, labeled with simple textual
descriptions. The textual description describes details about the object and
the action that is being performed. Learning the label will ideally provide
the model with the ability to understand physical properties of the world.
The videos are specifically created for this dataset through crowdsourcing
methodologies. By doing so it’s possible to have a much better control over
the creation of the dataset, as it is required for the particular intent for
which this dataset has been created. The actors would create videos based
on textual templates such as “putting [something] into [something]” where
something is replaced by the actual objects. An example of video from
the dataset is displayed in Fig. 1.5. The objects are chosen by the actor
performing the action. The dataset presents an 80/10/10 split respectively
for training, evaluation and test sets. The video created by a same actor are
located on the same split. A dataset summary is displayed in Table 1.2.
For the reasons discussed above, this dataset can be considered a dataset of
Fine-Grained Action Recognition.

1.4.4 Kinetics

Kinetics [21] is a large, video dataset for human action recognition. The Ki-
netics dataset has been built with the intent of providing significant benefits
in accuracy when pre-training on it and fine-tuning on another dataset. The
videos are obtained from YouTube, and each clip is captured from a different
video. For this reasons this dataset provides a wide variety of actors and a
lot of differences in how the actions are performed. They are also not profes-
sional videos, so they may include camera-motions and low-quality footage.
The actions of the dataset include: Person Actions like swimming or run-
ning, Person-Person Actions like kissing, hugging and Person-Object Actions
like sharpening a pencil, welding. The dataset has 400 human action classes,
with 400-1150 clips for each action, and each of the clips is around 10 seconds
long. There are a total of 306, 345 videos, divided in three splits. Training
split with 250-1000 videos per class, validation split with 50 videos per class

24

1.5. THESIS GOALS 25

and testing split with 100 videos per class.

1.5 Thesis goals

The differences between Coarse and Fine-Grained action recognition have
been discussed in previous sections, highlighting the limitations of Coarse
Action Recognition and the necessity of properly modeling the temporal di-
mension. Another important challenge is represented by the high computa-
tional requirements of current Action Recognition System, as discussed in
Chapter 1.3.1.
The goal of this thesis is to address the limitation of the current models
for Human Action Recognition, and provide a new architecture that is both
computational efficient and capable of reasoning effectively over long-term
RGB videos.

1.5.1 Modeling the Temporal Dimension

Most of the effort of this work will focus on properly modeling the Temporal
dimension in order to capture:

• Short-term relationships between frames, defined as the ability to cap-
ture information about frames that are few steps away from each others.

• Long-term relationships between frames, defined as the ability to cap-
ture information about frames that are many steps away from each
others, up to seconds or minutes away from each others.

• Single frame information, defined as the ability to capture informa-
tion contained in a particular frame, ignoring non-relevant information
contained in the remaining part of the video.

The first point is very important in order to capture low-level information,
such as the moving of objects’ edges and other motion cues, that are generally
neglected by networks that perform late fusing of the temporal dimension.
This kind of information can be considered as the information collected by
feature extractor like optical-flow or 3D convolutions.
The ability to capture Long-Term information is a very important property
as well. Imagine an application such as a kitchen assistant, it would be
important for the assistant to remember things such as tasks that we have

25

1.5. THESIS GOALS 26

already performed, or remember the object that you are manipulating even
though they are currently out of sight. These are all properties that humans
have, and they are necessary for a comfortable human-machine interaction.
The ability to detect Single Frame information can be crucial in tasks where
some action is performed very fast and can change completely the label of the
action itself. An example of this kind of tasks can be found in the Something
to Something dataset. Looking at the Fig. 1.5, it looks like the actor is going
to put something into the bowls multiple times. It’s just afterwards, when
the actor leaves the bowls without any additional item, that you can classify
correctly the action. Furthermore, what happened in the last few frames has
changed completely the action itself.

1.5.2 Efficient online RGB Video Action Recognition

Most of the real-world application don’t need state-of-the-art results, a few
percentages increase in accuracy may not change dramatically the applicabil-
ity of the model in a real-world environment. This is especially true when we
consider that the increase in accuracy is often a consequence of an increase in
computational requirements and/or an increase in the latency of the model
itself.
Real-world applications have constrains in both latency and model compu-
tational requirements. Human-Computer interfaces generally have strong
constrains in latency, due to the fact that we perceive as natural only close
to real-time interaction, such as the ones that we experience with other peo-
ple. An increase in latency can result in customers being frustrating and
discouraged to use the technological device.
A focus of this thesis is to work on models that are feasible for deployment on
mobile devices. Both online and offline versions of the model will be studied,
due to the drop in accuracy often inevitable when using online models.

26

Chapter 2

Architercutres

This chapter will focus on the presentation of the current state-of-the-art
architectures. The first sections will be dedicated to explaining the basic
building blocks. The later sections will be instead dedicated to the expla-
nation of current state-of-the-art Human Action Recognition systems, their
characteristics, advantages and disadvantages.

2.1 Convolutional Neural Network

Convolutional neural network (CNN) is a type of Artificial Neural Network,
based on the operation of multiplying a sub-sample of the input values by
a kernel and summing them. The kernel slides along the input dimensions
allowing for parameter reuse, furthermore it interacts only with a sub-sample
of the input at every kernel evaluation, for this reason CNNs are characterized
by a local receptive field. “With local receptive fields, neurons can learn to
extract elementary features as oriented edges, end-points, corners. [...] These
features are then combined by the subsequent layers in order to detect higher-
order features” [27]. In addition, for some specific input data like images or
videos, elementary feature detectors that are useful on one part of the input
are likely to be useful across the entire input [27]. Convolutional neural
networks have been successfully used in many computer vision tasks such as
image recognition, image segmentation, video recognition and detection.
Formally they are refered to as convolutional neural network because they
are in fact using a mathematical operation called convolution, described, in

27

2.1. CONVOLUTIONAL NEURAL NETWORK 28

Figure 2.1: 2D convolutions [26]

the discrete form, as:

s(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a) (2.1)

Where x denotes the input function and w denotes the kernel function. The
computer implementation of the convolution is performed using multidimen-
sional arrays referred to as tensors [11]. The values of the functions x and w
are zeros whenever we are outside the dimensions of the tensors, while they
assume the values of the tensor itself whenever they are inside the tensor
dimensions.

2.1.1 2D convolutions

2D convolutions take inputs of two dimensions (+ channel dimension) and
compute the output by multiplying the input with the kernel, a two-dimensional
matrix (+ channel dimension), and summing the results. Sliding the kernel
over the two dimensions of the input we obtain the output matrix as dis-
played in figure 2.1.
Formally we can expand the previous formula of the convolution operation
to convolve over two dimensions at the time:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.2)

28

2.1. CONVOLUTIONAL NEURAL NETWORK 29

Figure 2.2: Comparison between 2D (a) and 3D convolutions (b) (from [31])

Or, since the convolution is commutative:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.3)

Where I is the two dimensional function representing the input, while K is
the two dimensional function representing the kernel. [11]

2.1.2 3D convolutions

3D convolutions are a natural evolution of 2D convolutions for inputs with 3
dimensions (+ channel dimension). They are, for example, suited for videos
which have one temporal dimension and two spatial dimensions. The kernels
of a 3D convolution have 3 dimensions. For this reason a 3D kernel with
dimensions (k, k, k), where k is the kernel dimension for each of the 3 di-
mensions, will have a higher number of parameters and will require higher
computation for a single kernel evaluation when compared with the 2D ker-
nel of the dimensions (k, k). The kernel slides along all of the 3 dimensions,
increasing the number of kernel evaluations when going from an input di-
mension of (h,w) to (t, h, w), where h and w represent height and width,
while t represent the temporal dimension. Compared with 2D convolutions,
3D convolutions are characterized by higher computational cost, due to a
more expensive single kernel evaluation and to a higher number of evalua-
tions caused by the additional dimension.
Formally, expanding the same concept of convolutions to the case of 3 di-
mensions, we obtain the following formula:

S(t, i, j) = (K ∗ I)(t, i, j) =
∑
u

∑
m

∑
n

I(t− u, i−m, j − n)K(u,m, n)

29

2.1. CONVOLUTIONAL NEURAL NETWORK 30

Figure 2.3: 3D convolution (a) and (2+1)D convolution (b). (a) The 3D
convolution performs a single spatio-temporal operation using a kernel of size
t × d × d, while (b) the (2+1)D convolution performs one spatial operation
followed by a temporal one [43].

Now the I is the tree dimensional function representing the input, while K
is the tree dimensional function representing the kernel.

2.1.3 (2+1)D convolutions

Given the problems related to the higher computation requirements intro-
duced by 3D convolutions, there is a high interest in providing efficient way
to compute the 3D convolution operation, or an equivalent one. A possibility
has been presented by [43] where the 3D convolution has been approximated
by a 2D convolution followed by a 1D convolution, decomposing the compu-
tation in two steps. Let ci be the channels of the output of the ith layer and
c̃i be the intermediate channel of the 2D convolution at layer ith. Let t, w, h
be the kernel dimensions, w and h being the spatial dimensions and t the
added 3rd dimension. The 3D convolution having kernel size ci−1×t×d×d is
replaced by one 2D convolution having kernel size ci−1, 1×d×d followed by a
1D convolution having kernel size c̃i×t×1×1. The hyperparameter c̃i can be
chosen arbitrarily in order to increase or reduce the computational require-
ments and the number of parameters of the computation. An illustration of
the two different types of convolutions can be found in Fig. 2.3.

30

2.1. CONVOLUTIONAL NEURAL NETWORK 31

Figure 2.4: Depth-wise convolution. The filters and the corresponding input
over which is convoluted are displayed with the same color. The input has
dimension w × h× c with w = h = 12 and c = 3. Each filter has dimensions
w × h× c with w = h = 5 and c = 1. (from [46])

2.1.4 Depth-wise Convolutions

In standard convolutions the filter is convolved over the input along its di-
mensions. The filter has the same channel dimension of the input and each
kernel evaluation is performed over the whole channel dimension of the input.
Depth-wise convolution instead is a type of convolution where each filter has
channel dimension equal to 1 and the number of filter is equal to the number
of channels of the input. Each filter is convoluted only with the correspond-
ing channel of the input. A 2D Depth-wise convolution performed over a 2D
input is presented in Fig. 2.4. In this case there are 3 filters and the input
has the same channel dimension of the filter. The first filter is convoluted
with the first channel of the input, the second filter is convoluted with the
second channel of the input and so on, as displayed by the colors in the figure.
Depth-wise convolution can be used to reduce the computational complexity
of standard convolutions, on the other hand the channel dimension has to
stay the same between input and output. For this reason they are frequently
followed by an expansion (or reduction) layer in order to match the desired
channel dimension of the output.

2.1.5 Squeeze-and-Excitation Blocks

A Squeeze-and-Excitation [15] block is a computational unit that operates
upon a transformation Ftr that maps the input X ∈ RH′×W ′×C′ to an output
U ∈ RH×W×C . In the rest of the chapter, the transformation Ftr will repre-
sent a 2D convolutional operation.
The convolution is characterized by a an implicit and local modeling of the

31

2.1. CONVOLUTIONAL NEURAL NETWORK 32

Figure 2.5: Squeeze and Excitation block [15].

channel dimension. Implicit because the channel information is contained
only due to the summation during the kernel evaluation, local because every
kernel evaluation has only the information coming from the subsample of
the input that is using for the computation. The objective of the Squeeze-
and-Exitation block is to provide a global explicit modeling of the channel
dimension. Modeling the inter-channel dependencies can help the model
focus on informative channel features, making it easier to learn from them
without the noise coming from uninformative channel features. The Squeeze-
and-Excitation block is composed of two different operation: squeeze and
excitation.

Squeeze: Global Information Embedding

The modeling of the channel dimension in standard convolutions is limited
by the fact that standard convolutions are characterized by a local receptive
field, hence making impossible for the convolution to gather global informa-
tion about the channel dimension. This problem is addressed by the squeeze
operation.
The global channel information is gathered inside z ∈ RC by computing
Global Average Pooling (GAP). For the c-th element of z, the GAP opera-
tion can be expressed as such [15]:

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (2.4)

where uc indicates the c-th channel of the feature map U.

32

2.1. CONVOLUTIONAL NEURAL NETWORK 33

Exitation: Adaptive Recalibration

The squeeze operation produces a global channel information vector s. To
fully exploit this information two main requirements have to be satisfied. The
first one is that the information coming from z has to be processed by a non
linear function capable of learning the interactions between the channels.
The second one is that it has to be able to emphasize multiple channels,
since the information will be likely distributed across different channels. A
simple operation that is capable of meeting these criteria can be a two layer
Feed Forward Neural Network with a sigmoid [11] activation function. The
operation can be described as follows:

s = Fex(z,W) = σ(W2δ(W1z)) (2.5)

where σ represents the sigmoid function and δ the ReLU [32] function. The

weights W1 ∈ RC
r
×C and W2 ∈ RC×C

r are, respectevely, a dimensionally
reduciton layer with reduction parameter r and a dimensionally expansion
layer that returns the channel dimension of the feature map U. The param-
eter r can be chosen to make the operation more or less expensive. The final
result of the block is obtained as:

x̃c = Fscale(uc, sc) = scuc (2.6)

where x̃c is the c-th element of the output X̃ = [x̃1, x̃2, ..., x̃C] and uc ∈
RH×W . The overall structure is presented in Fig. 2.5.

Adaptation to 3D Convolutions

It’s possible to extend the Squeeze and Excitation networks to operate upon
a different transformation Ftr that maps the input X ∈ RT ′×H′×W ′×C′ to
an output U ∈ RT×H×W×C . A transformation of this kind can be a 3D
convolution. In order to make the squeeze transformation compatible it’s
enough to extend the global average pooling to 3 dimension as:

zc = Fsq(uc) =
1

T ×H ×W

T∑
k=1

H∑
i=1

W∑
j=1

uc(k, i, j) (2.7)

The scale transformation can be represented by the same formula:

x̃c = Fscale(uc, sc) = scuc (2.8)

Where now uc ∈ RT×H×W .

33

2.2. RNN 34

Figure 2.6: A traditional RNN layer. x<t> represents an element of the input
sequence, where t represents the index of the element in the sequence. a<t>

represents the output hidden state of the element x<t>. h<t> represents the
output of the element x<t>. (from [33])

Figure 2.7: Notation used in the RNNs diagrams. (from [33])

2.2 RNN

A Recurrent Neural Network (RNN) is a particular type of Artificial Neural
Network specialized for processing a sequence of values. In RNNs the output
of the previous cell can be used as input for the next cell, allowing for infor-
mation flow along the data sequence. [11] The overall structure is displayed
in Fig. 2.6, where the cells are displayed in light blue, the input in green,
the output in red.
The architecture of each cell can be described as follows:

a<t> = tanh(Waaa
<t−1> +Waxx

<t> + ba) (2.9)

h<t> = a<t> (2.10)

where tanh is the hyperbolic tangent function and Wax, Waa, ba are param-
eters of the RNNs. x<t> represents an element of the input sequence, where
t represents the index of the element in the sequence. a<t> represents the
output hidden state of the element x<t>. h<t> represents the output of the
element x<t>.
Each cell of the RNN layer shares the same parameters, for this reason this

34

2.2. RNN 35

Figure 2.8: Architecture of a traditional RNN cell. (from [33])

type of network is called Recurrent. The architecture of a cell is displayed in
Fig. 2.8. The notation used in this section and in the following is displayed
in Fig. 2.7.

2.2.1 Advantages and Drawbacks

Thanks to the recurrent nature of RNNs the weights are reused at each time-
step allowing to process inputs of any length without an increase in model
dimension. RNNs are also capable to store information coming from the past
elements, but they have difficulty in accessing information processed far in
the past. Due to the iterative process RNNs don’t allow for parallelization
[11], making current GPUs and AI accelerators computationally inefficient.
Traditional RNNs are also characterized by the problem of vanishing gradi-
ent [11]. This problem can be encountered when training Neural Networks
with gradient-based methods and back propagation. During training, the
parameters are updated proportionally to the partial derivative of the loss
function. The partial derivative (gradient) may get smaller and smaller as
it propagates through the layers, causing the Neural Network to train very
slowly or to stop training completely.

2.2.2 LSTM

LSTM (Long Short-Term Memory) [13] is a particular type of RNNs intro-
duced to solve the vanishing gradient problem, through the use of particular
types of gates which provide at least one path for which the gradient does

35

2.2. RNN 36

Figure 2.9: Architecture of a traditional LSTM cell. (from [33])

not vanish. The general formulation of a gate is the following:

Γ = σ(Wx<t> + Ua<t−1> + b) (2.11)

where W , U , b are parameters of the model and σ is the sigmoid function.
The tth LSTM cell is also provided with a cell state in input indicated with
ct−1. Inside the LSTM architecture we have three types of gates: Γu the
update gate, Γf the forget gate and Γo the output gate. Every gate out-
puts a vector with numbers between 0 and 1. The gate vector is multiplied
element-wise with a second vector, which keeps the value if the gate value is
1 or changes the vector value to 0 if the gate values is 0.
The forget gate decides which values of the cell state to keep or to forget.
The update gate decides which values of the input to use to update the cell
state. The output gate decides which values of the cell state are relevant for
the current output. The architecture of an LSTM can be described as follows:

c̃<t> = tanh(Wc[a
<t−1>, x<t>] + bc) (2.12)

c<t> = Γu ◦ c̃<t> + Γf ◦ c<t−1> (2.13)

a<t> = Γo ◦ tanh(c<t>) (2.14)

h<t> = a<t> (2.15)

The sign ◦ denotes the element-wise multiplication between two vectors.
The sign tanh represent the hyperbolic tangent function, Wc and bc are pa-
rameters of the model. The overall architecture of an LSTM cell is displayed
in Fig. 2.9.

36

2.3. TRANSFORMER 37

Figure 2.10: Transformer architecture (from [44])

2.3 Transformer

A transformer is a deep learning architecture that uses the mechanism of
attention. The transformers were initially intended to be used for sequential
data, for example in the field of Natural Language Processing (NLP) [44], but
later the transformer has been used for Images and Video as a more general
network. The innovative building block of the transformer architecture is the
scaled dot-product attention.

2.3.1 Scaled dot-product attention

The input consists of queries keys and values, of dimension dk, dq and dv,
respectively, where dk = dq. For each query, the dot product with all the
keys is computed. Considering the matrix of all keys vectors as K and
the matrix of all queries vector as Q we could write the dot product as

37

2.3. TRANSFORMER 38

a matrix multiplication QKT . The result is then scaled by
√
dk and then

passed through a softmax function before computing the multiplication with
the matrix V containing all the values. The operation can be expressed as
follows:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.16)

2.3.2 Multi-Head attention

In order to enhance parallelization, multiple attention are performed in par-
allel. Values, queries and keys are linearly projected h times to dv, dq and
dk dimensions, respectively. Each of these projections are used as input to
perform attention in parallel. The output of the different h attention heads
are then concatenated and linearly projected again to the dimension of the
input.

2.3.3 Encoder and Decoder

The Transformer architecture composes of an encoder and a decoder. The
encoder is used to encode the input X1:n into hidden states H1:n, thus defining
the mapping [45]:

fθenc : X1:n → H1:n (2.17)

The decoder is used to process the hidden states of the encoder and provide
the appropriate output. Formally can be seen as an architecture that mod-
els the conditional probability of the target vector sequence Y1:n given the
encoded hidden states H1:n [45]:

pθdec(Y1:n|H1:n) (2.18)

The encoder is composed of N identical layers where N can be chosen
arbitrarily. Each layer is generally composed of two blocks. The first block is
composed of a Multi-Head attention, followed by a residual connection and
a normalization operation. The second block is composed of a feed forward
network and another residual connection and normalization operation.
The decoder is also composed of N identical layers. The decoder layer is
slightly different, presenting in addition a masked Multi-Head Attention to
ensure causality. The masked Multi-Head Attention attends to the values and

38

2.3. TRANSFORMER 39

Figure 2.11: Causal Attention. The element xt attends only to the input
values xt2 with t2 <= t. (from [6])

keys coming from the encoder layers. The overall structure is represented in
Fig. 2.10.

2.3.4 Positional encoding

The architecture described so far is a set architecture, meaning that it is not
capable to make use of the order of a sequence. It is therefore necessary to
inject into the input positional information such that the model is capable of
infer the position of the values in the sequence. In the original transformer,
the positional encoding are sine and cosine functions of different frequencies:

PE(pos,2i) = sin(pos/100002i/dmodel) (2.19)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2.20)

Where pos is the position and i is the dimension. Each dimension corresponds
to the function with a different frequency.

2.3.5 Causal Attention

Self-attention is defined as the attention where the keys and queries come
from the same sequence in input. Causal attention is a particular type of

39

2.4. HUMAN ACTIVITY RECOGNITION ARCHITECTURES 40

self attention where the queries are only allowed to look at preceding keys
in input. This can be necessary in some particular task where the model is
trying to predict the next value of a particular sequence. Causal attention
is obtained by adding to the matrix multiplication a particular constant
triangular matrix having zeros on the diagonal and below it, and minus
infinity above the diagonal. This matrix can be considered as a Mask and It
is denoted with M . Revisiting the formula (2.16) as discussed, we have:

CausalAttention(Q,K, V) = softmax(
QKT

√
dk

+M)V (2.21)

In practice, considering the matrix
QKT

√
dk

, the values below the diagonal

correspond to the interaction of the queries with the keys of the past, while
the values above the diagonal correspond to the interaction of the queries
with keys of the future. The mask allows to keep unchanged the interaction
of queries with the past keys by adding the value zero. On the other hand,
adding minus infinity to the interaction of the queries with keys of the future
will produce an output of zero after the softmax computation.
The visual representation of causal attention can be seen in figure 2.11, where
it’s possible to observe that any given input element interacts only with
elements of the past.

2.4 Human activity recognition architectures

This section will be focused on presenting some common architectures used
today to solve the task of Human Activity Recognition, in particular:

• ConvNet-LSTM [7]: Convolutional network with a LSTM layer on top.

• Two-Stream Networks [40]: Networks provided with two streams that
handle different data modalities.

• 3D ConvNets [22, 10]: Convolutional Networks with 3D filters.

• TSM [28]: Temporal Shift Module, a particular methodology that al-
lows 2D convolutional Neural Networks to handle 3D input.

• Transformer architectures [2]: Transformer architecture adapted to
handle 3D videos.

40

2.4. HUMAN ACTIVITY RECOGNITION ARCHITECTURES 41

Figure 2.12: Convolutional network with LSTM head (from [21])

• 3D ConvNets - Transformers [20, 48]: Architectures that use both 3D
ConvNets and Transformer architecture to take advantage of the fea-
tures of both the architectures.

2.4.1 ConvNet-LSTM

One of the first approaches to video classification using deep learning was to
adapt to videos the efficient architectures already used in image classifica-
tion. This can be achieved by using recurrent neural networks, in particular
very often LSTM, a particular type of recurrent neural network presented in
Chapter 2.2.2. A ConvNet is used as a backbone to process the single RGB
frames, while the LSTM is used to memorize information coming from the
hidden states produced by the evaluation of the frames by the ConvNet (Fig.
2.12). This kind of approach is very convenient because it can build upon
the improvements coming from the image recognition architectures, but it
may fail to gather low-level information coming from the temporal dimen-
sion, since the network fuses the information of the images only very late in
the architecture, just before the classification layer. It’s also an inefficient
approach, especially with the increase in the frame rate, since the image in-
formation from the video may be very redundant for frames close to each
other.

41

2.4. HUMAN ACTIVITY RECOGNITION ARCHITECTURES 42

Figure 2.13: Two-stream networks. The network takes as input both RGB
images and Optical Flow of the frames. The RGB frames contains crucial
information about the object and the environment, the Optical Flow contains
movement information. (from [21])

2.4.2 Two-Stream Networks

As mentioned in the Chapter 2.4.1, LSTMs may lack the ability to capture
low-level motion details, due to the fact that they perform temporal fusion
only very late in the architecture. To solve this problem, RGB 2D ConvNet
is often combined with another 2D ConvNet which takes as input low-level
motion features extracted from the video, e.g. optical-flow (figure 2.13).
By providing information about the low-level movements, these models are
able to perform better than their single stream version, with the trade-off of
requiring more computational resources due to the addition of a second 2D
ConvNet.

2.4.3 3D ConvNets

Another approach to Video Action Recognition using 3D convolutions (figure
2.14). Using 3D convolutions, the networks end up requiring more computa-
tional resources and having more parameters to train, while making it diffi-
cult to use the pretrained weights. Training a 3D ConvNet on image datasets
like imagenet doesn’t seem to provide the same benefits as it happens with
2D ConvNets. This problem was solved with the publication of the Kinetics

42

2.4. HUMAN ACTIVITY RECOGNITION ARCHITECTURES 43

Figure 2.14: 3D convolutional neural networks. They take as input K RBG
frames, and they perform evaluation of the action. (from [21])

dataset [21], now commonly used for pre-training 3D ConvNets. The Kinetics
dataset is a large video dataset for human action classification, and thanks
to its dimensions it is suited for pre-training Neural Networks with a large
number of parameters. Due to the higher computational complexity, usually
3D CNNs are fed with short clips, typically 2-5 seconds [48]. Thanks to
improvements to the architecture and to the ability to perform pre-training
on the very large Kinetics datasets, now 3D ConvNets are state of the art in
most benchmarks, only recently being challenged by Transformer-based ar-
chitectures. Two of the most recent 3D ConvNets architecture are MoViNets
[22] and X3D [10].

MoViNets

Mobile Video Networks (MoViNets) [22] are a family of computationally and
memory efficient models that have the ability to work in an online environ-
ment. They are generated through the use of NAS (Neural Architecture
Search) with the objective of creating the next standard for efficient video
networks, deployable in real world applications. Two version of MoViNets
are available:

• Base: suitable for efficient offline inference. The models take in input
a clip of 50 frames (or more for more computationally expensive net-
works), and perform a single evaluation. Because of the high latency,

43

2.4. HUMAN ACTIVITY RECOGNITION ARCHITECTURES 44

Figure 2.15: TSM (Temporal Shift Module). TSM module works by shifting
the channel information along the temporal dimension, allowing to share
information between neighboring frames. (from [28])

these models are not suited for online inference, but they are still de-
ployable on mobile devices thanks to the low memory and computation
requirements.

• Streaming: suitable for online inference. The models are able to take
as input a stream of frames, one or more per evaluation, and perform
evaluation in real time on mobile devices.

X3D

X3D [10] Networks are a family of computationally and memory efficient
models released by Facebook AI Research. They were state of the art for
efficiency before the release of MoViNets, and they are based purely on
3D convolutions. X3D Networks were reimplemented by the authors of the
MoViNets paper which modified the training to allow for a higher number of
frames in input, and they evaluated the models using a single clip per video.
Single clip evaluation appears to be more efficient than multi-clip evaluation,
making this model a stronger and more fair baseline for MoViNets.

2.4.4 TSM (Temporal Shift Module)

Conventional 2D CNNs are computationally efficient, but they fail to capture
the temporal information. On the other hand, 3D CNNs are very good at
capturing temporal components, especially at a low level, but they often lack

44

2.4. HUMAN ACTIVITY RECOGNITION ARCHITECTURES 45

Figure 2.16: 3D ConvNets + Transformer architecture. The Temporal Global
Average Pooling layer is eliminated and the activation is fed to a transformer
architecture that handles the temporal modeling. (from [20])

the computational efficiency of 2D CNNs. TSM (Temporal Shift Module)
[28], is a method to use highly efficient 2D CNNs for video classification.
This is possible thanks to the fact that TSM allows the 2D models to reason
about the temporal dimension. TSM is implemented simply by performing
a shift of the channels along the temporal dimension like shown in Fig. 2.15.
This implementation increases only marginally the computation required and
it does not increase the number of parameters.

2.4.5 Transformers

Very recent approaches propose the use of Transformer-based architectures
which already represent the state-of-the-art in sequence modeling tasks like
machine translation and language understanding. At first they made their
way to the field of image recognition with the famous VIT [8], and then
to video understanding with ViViT [2]. They are generally more computa-
tionally expensive architecture, but they are nevertheless capable of reaching
state-of-the-art results in common video understanding benchmarks [2].

45

2.5. EFFICIENT NETWORKS: A REVIEW 46

2.4.6 3D ConvNets - Transformers

The transformer architecture has proven itself to be reliable in sequence mod-
eling tasks. New approaches use the transformer architecture in order to
model long term relationships between frames along the temporal dimension
[20], [48]. The approach proposed in [20] is to use 3D convolutions as back-
bones which are capable of capturing low-level temporal features and are
more efficient than current transformer architectures for videos. The authors
remove the Temporal Global Average Pooling layer and they feed the output
of the 3D CNN to the transformer architecture (Figure 2.16). The Temporal
Global Average Pooling is a layer used in many 3D ConvNets just before
the classification layers to reduce the input dimensionality by computing the
average over the temporal dimension. By removing the Temporal Global
Average Pooling layer, the temporal information is preserved and the output
of the CNN is processed by the transformer as sequential input data, a field
in which the transformer architecture has excelled, e.g. NLP.
The previous approach is capable of improving the capability of the network
to capture information coming from the temporal dimension, but it does not
solve the problem of being forced to handle short video sequences, a prob-
lem that afflicts 3D CNNs [48]. To solve this problem, a new approach [48]
proposes to use the transformer to model the outputs of multiple short clip
segments computed by a 3D CNN. This approach provides the model with a
long temporal receptive field, enhancing the capability to remember details
that happened a long time ago in the past. E.g. if someone has taken a pie
from the fridge 20 seconds ago, the label eating a pie should be more likely,
even in case the pie is not clearly visible anymore.

2.5 Efficient Networks: A Review

This Review is focused on models which are efficient and have low mem-
ory consumption. More computational expensive models perform better on
benchmarks, but they are not of interest for this work, which focuses on
architectures that can be used for inference on mobile devices.

46

2.6. STATE OF THE ART COMPARISON 47

Model Params FPS Frames Res GFLOPS Top-1
A0 3.1M 5 1x50 172 2.71 71.5
A0-stream 3.1M 5 1x50 172 2.73 70.3
MobileNetV3-S* 2.5M 5 1x50 224 2.80 61.3
MobileNetV3-S+TSM* 2.5M 5 1x50 224 2.80 65.5
X3D-XS* 3.8M 2 1x20 182 3.88 70.2
A1 4.6M 5 1x50 172 6.02 76.0
A1-stream 4.6M 5 1x50 172 6.06 75.6
X3D-S* 3.8M 4 1x40 182 7.80 73.4
X3D-S* 3.8M 5 1x50 182 9.75 74.3
A2 4.8M 5 1x50 224 10.3 77.5
A2-stream 4.8M 5 1x50 224 10.4 76.5
MobileNetV3-L* 5.4M 5 1x50 224 11.0 68.1
MobileNetV3-L+TSM* 5.4M 5 1x50 224 11.0 71.4
X3D-XS* 3.8M 2 30x4 182 23.3 72.3
X3D-M* 3.8M 5 1x50 256 19.4 76.9

Table 2.1: State-of-the-art comparison on kinetics-600. Frames indicates
the number of frames in input with format clips × frames, Res the spatial
resolution in input and GFLOPS the number of GFLOPS used in one video
evaluation. Top-1 indicates top-1 accuracy on Kinetics-600. *denotes a
reproduced model (from [22])

2.6 State of the art comparison

When compared to images, processing videos can be extremely computation-
ally expensive due to the presence of the extra temporal dimension. For this
reason, outside the scope of beating state-of-the-art results, very large and
heavy models rarely find an application to solve real-world problems. Con-
sidering the hardware at my disposal and the time for training very large
models, the choice has been to focus on light and efficient models. As men-
tioned in the previous chapters, some of the best efficient networks in Video
Action Recognition are: MoViNets [22], X3D [10] and 2D networks with
TSM [28].
The comparison made by Kondratyuk et al. [22], includes the MoViNets fam-
ily, the X3D family and MobileNetV3 with TSM. The comparison is shown
in Table 2.1 where we can observe state-of-the-art results in relation to the

47

2.6. STATE OF THE ART COMPARISON 48

GFLOP necessary to perform evaluation of a single video of the Kinetics-600
[3] dataset. From top to bottom, the first section includes network with less
than 5 GFLOPS, the second includes networks with GFLOP between 5 and
10, the third includes networks with GFLOP between 10 and 30. The X3D
networks have been reimplemented in order to perform Single-clip evaluation,
which appears to be more efficient than multi-clip evaluation. Single-clip
evaluation is defined as the evaluation performed using only one clip of the
same video, Multi-clip evaluation is defined as the evaluation using multiple
clips of the same video.
MoViNets appear to be more efficient than the other models with which
has been compared to. In the 0 − 5 GFLOPS and in the 5 − 10 GFLOPS
range both A0 and A0-stream perform better than all the model proposed,
while in the 10 − 30 GFLOPS range the A2-stream model perform slightly
worse than X3D-M*, while havivng around half the GFLOPS. The A2 model
performs better than all the other models. From these results, MoViNets ap-
pears to be the current state of the art for efficient Video Action recognition,
beating the TSM method applied to MobileNets and the X3D efficient net-
works mentioned before, for further details see Table 2.1. For these reasons
the MoViNets family has been chosen as backbone for the architecture used
during the experiments.

48

Chapter 3

Model Architecture

This chapter will cover topics related to the architectures that will be used to
perform the experiments. The proposed architecture will be composed of a
MoViNet [22] backbone and a transformer classification head. The approach
used is to substitute the global average pooling layer with a transformer
classification head, as proposed by [20] and discussed in section 2.4.6. The
MoViNet architectures have been chosen as a backbone due to their efficiency,
as explained in the previous chapter. The transformer architecture of choice
is the Transformer-XL [6], the reasoning behind the choice of the transformer
architecture will be explained in the following sections and his related to its
high efficiency and low latency.
In this chapter the MoViNets architectures will be presented in details, as
well as the Transformer-XL architecture that is being integrated with the
MoViNets.

3.1 Transformer-XL Architecture

Transformer-XL [6] is a transformer architecture that enables learning be-
yond fixed length sequences and solves the problem of context fragmentation,
further explained in Chapter 3.1.3. The overall architecture is composed by a
recurrent mechanism, in particular the hidden states of each of the segments
are saved and used to compute the hidden states of the next one, without
recomputing them for each segment in input. The self-attention over the
saved hidden state (produced by the previous evaluations) allows the model
to capture very long-term relationships that go beyond a single segment.

49

3.1. TRANSFORMER-XL ARCHITECTURE 50

Figure 3.1: On the left, we can observe the first training step using the
fixed activation and stopped gradient. On the right, the second training step
is performed. The activation computed from the preceding segments are
saved and used to compute the output of the following segment. The cached
activations are displayed with a lighter color with respect to the activation
computed in the current step. (from [6])

3.1.1 Segment-Level Recurrence with State Reuse

The recurrence and state reuse can be formally expressed as such [6]:
Let Xseg be the current segment and xsegi the ith adjacent non overlapping
segment of Xseg. The hidden states are indicated as hli, the layer is indicated
by the superscript l, where l = 0 indicates the input layer.
Then the lth layer hidden state for segment xsegi+1 is defined as hli+1, and is
computed as follows:

hli+1 = TransformerLayer(hl−1i , hl−1i+1) (3.1)

where the computation of keys, values and queries is done as follows:

h̃l−1i+1 = SG(hl−1i)⊕ hl−1i+1 (3.2)

qli+1, k
l
i+1, v

l
i+1 = hl−1i+1W

T
q , h̃

l−1
i+1W

T
k , h̃

l−1
i+1W

T
v (3.3)

where the concatenation operation is indicated with ⊕ and SG indicates the
operation of stop gradient. The overall structure of the recurrence method-
ology is illustrated in Fig. 3.1

3.1.2 Relative Positional Encoding

The idea presented so far is very appealing, but there is still a problem to
be solved in order to make it possible to implement. From Chapter 2.3.4 we

50

3.1. TRANSFORMER-XL ARCHITECTURE 51

remember that the transformer architecture operates on a set rather than on
sequence data. In order to make it work on sequential data, it is necessary the
use of positional encoding. Due to state reuse, standard sinusoidal positional
encoding may result unable to provide enough positional information for the
Transformer-XL architecture [6]. Formally, let xi be the i-th input sequence
of the model, U1:L the sinusoidal positional encoding from 1 to L where L is
the length of the input sequence. Then we can express the computation of
the hidden states of the first layer as follows [6]:

hi = f(hi−1, xi + U1:L) (3.4)

hi+1 = f(hi, xi+1 + U1:L) (3.5)

We can observe that xi is associated with the same positional encoding as
xi+1 making indistinguishable the position of xi,j and xi+1,j for any j =
1, 2, 3, ..., L. This would end up in a performance loss. In order to solve this
problem, [6] proposes to use relative positional encoding and to inject them
into the attention score of each layer, instead of statically injecting them into
the embeddings of the first layer. By doing so, the positional information
is computed for each layer and for each segment and hidden activation in
input, allowing for accurate relative positional information. Furthermore,
it is not necessary to know the absolute position of a token, it is enough
to know the relative position of that particular token with respect to the
query. This is particularly true in most application where the first token
does not have any particular semantic meaning. While they introduce a new
type of positional encoding, recent research suggests ALiBi [35] as a more
suitable option, thanks to the important properties presented in Chapter
3.2. Particularly, ALiBi has shown a great ability to generalize to longer
sequences than the ones used in training.

3.1.3 Vanilla Transformer Input Length Problem

The transformer improves over the RNN, Section 2.2, by solving the prob-
lems of vanishing gradient that afflicted RNN [34]. As a consequence, the
transformer architecture is, in theory, capable of receiving as input an ar-
bitrary long sequence. In practice, though, the Transformer model is char-
acterized by a complexity O(n2 · d) [44], where n is the input length and d
is the representation dimension, making it computationally expensive to in-
crease the input length. For this reason a simple approach used for training

51

3.1. TRANSFORMER-XL ARCHITECTURE 52

Figure 3.2: Training of vanilla transformer. A new segment is used to train
at timestep two, without any information coming from segment one. The
first tokens of each segment suffer from low context information. (from [6])

Attn Len How much vanilla transformer [1] is slower

3,800 1,874x
2,800 1,409x
1,800 773x
800 363x

Table 3.1: Slowdown in terms of running time during evaluation. Evaluation is
based on per-token time on one GPU. (From [6])

transformers is to split the input in arbitrary long sequences, and training
the architecture without any information flow across sequences, ignoring the
context information coming from adjacent segments of data. This idea is im-
plemented by [1] and shown in Fig 3.2. There are two main limitation of this
approach: the first one is that it’s not possible to capture any long-term de-
pendency that goes beyond the predefined input length, while the other one
is that the sequences are split without taking in consideration any semantic
relationships, causing a problem defined as context fragmentation [6]. This
problem is caused by a reduced context information for the few first elements
of the sequences, causing an inability of the network to infer correctly the
labels, leading to inefficient optimization and inferior performances.

52

3.1. TRANSFORMER-XL ARCHITECTURE 53

Figure 3.3: Vanilla transformer evaluation step. The input is shifted by only
one token to provide maximum context information. The receptive field,
represented in green, is limited by the current segment in input, represented
with the color blue. The color yellow represents the activations. (From [6])

Figure 3.4: Transformer-XL evaluation step. The model uses the information
computed in preceding steps to provide maximum context information for all
the tokens. The context information is denominated as Extended Context.
The cached activations are displayed in lighter colors. (from [6])

53

3.1. TRANSFORMER-XL ARCHITECTURE 54

3.1.4 Inference

As described in the previous chapter, the vanilla transformer suffers from the
context segmentation problem. For this reason during evaluation, at each
step, the segment is shifted right by only one value and all the values have to
be recomputed. This methodology is very computationally expensive, but it
is necessary in order to have the maximum context during evaluation. The
evaluation procedure is displayed in Fig. 3.3.
During evaluation the Transformer-XL, on the other hand, reuses the acti-
vation computed from the previous step allowing the model to provide max-
imum context information to all the tokens and achieve very fast evaluation
time when compared with Vanilla Transformer. The process of evaluation
performed with sequence length in input equal to 4 is illustrated in Fig. 3.4.
A comparison between evaluation latency of the Transformer-XL and Vanilla
transformer can be found in Table 3.1

3.1.5 Training

During training the Transformer-XL takes as input the current sequence and
the activations coming from the previous ones. The gradient is blocked and
backpropagation is performed only for the activation of the new segments.
The process is illustrated in Fig. 3.1.
As a comparison the Vanilla transformer only takes as input the current seg-
ment and it’s not capable to gather any information from the previous ones.
The process is illustrated in Fig. 3.2.

3.1.6 Receptive field

In vanilla transformers, the attention length is equal to the length of the
segment itself, where attention length is defined as the number of elements
that the transformer attends in one step. Due to the absence of cached acti-
vations, the attention mechanism is performed only on the current segment
in input.
The Transformer-XL, on the other hand, could potentially have an attention
length longer than the segment itself. It is in fact possible to expand the at-
tention mechanism to attend directly to values multiple segments away from
the current segments, which are cached. It is also possible to train the model

54

3.2. ALIBI: ATTENTION WITH LINEAR BIASES 55

with a given attention length and use a longer length during evaluation, even
though there are some concern about the ability of the model to generalize to
longer input sequences. A discussion about the generalization problem and
a promising solution can be found in Chapter 3.2.
Expanding the attention mechanism in evaluation is not the only way through
which the Transformer-XL is capable of obtaining a wider receptive field. The
receptive field of the Transformer-XL grows similarly to how it happens in
convolutional neural networks, Chap. 3.4.1. In particular, the receptive field
grows linearly with respect to the number of layers and the attention length,
O(N×L) where N is the number of layers and L is the attention length. This
expansion of the receptive field happens faster than convolutions due to the
fact that attention length is usually much larger than the kernel dimensions.
The expansion of the receptive field is considerable, the extended receptive
field is shown in Fig. 3.4. The receptive field of the vanilla transformer is
limited by the segment length, and it is shown in Fig. 3.3.

3.2 ALiBi: Attention with Linear Biases

Attention with Linear Biases (ALiBi) [35] has been proposed in order to solve
the problem of evaluating on longer sequences at test time, than the ones seen
during training. ALiBi is a simple and efficient method which constists in
adding a bias to the query-keys attention score proportional to the distance.
Before continuing the analisys of the properties of ALiBi, few definitions are
needed:
Press et al. (2021) define “extrapolation as the ability of the model to con-
tinue to perform well as the number of input tokens during validation in-
creases beyond the number of tokens the model was trained on” [35].
Perplexity is defined as “a measurement of how well a probability distribu-
tion or probability model predicts a sample. It may be used to compare
probability models. A low perplexity indicates the probability distribution
is good at predicting the sample.” [47].
One way to measure the ability to extrapolate is to measure perplexity with
respect to the number of tokens used for evaluation. Transformers trained
with ALiBi shows much higher ability to extrapolate with respect to existing
methods. The improvement in perplexity on WikiText-103 [30] are displayed
in Fig. 3.5.

55

3.2. ALIBI: ATTENTION WITH LINEAR BIASES 56

1024 4000 8000 12000 16000
Inference Input Tokens

15

25

35

45

55

Pe
rp

lex
ity

 (
)

Extrapolation for
Models Trained on 1024 Tokens

Sinusoidal
Rotary
T5 Bias
ALiBi

Figure 3.5: Extrapolation: as the number of input tokens at evaluation in-
creases, Sinusoidal [44], Rotary [42] , T5 Bias [36] methods show a degrade
in performances, while ALiBi shows no degrade in performances. On the
x-axis the number of input tokens, on the y-axis the perplexity (lower is bet-
ter). The models are trained on WikiText-103 [30] with sequence length of
L = 1024. (from [35])

3.2.1 Architecture

Taking as a reference the attention formula 2.16, the computation of attention
scores for a single query qi ∈ R1×d can be defined as:

softmax(
qiK

T

√
dk

) (3.6)

where i indicates the i-th query of the input and d = dk = dq where dk and
dq are the key and query dimension, respectively. The matrix K ∈ Ri×d

containes the first i keys.
The ALiBi positional encoding can be expressed as a modification of the
softmax argument with the addition of a bias term [35]:

softmax(
qiK

T

√
dk

+m · [0,−1,−2, ...,−(i− 1)]) (3.7)

Where the scalar m is a slope fixed before training, specific for each head.
The original implementation suggests to set, for n heads, the slopes to the
geometric sequence that starts at 2−2

(−log2n+3)
and uses the same value as its

56

3.3. MOVINETS 57

q1 k1

q2 k1 q2 k2

q3 k1 q3 k2 q3 k3

q4 k1 q4 k2 q4 k3 q4 k4

q5 k1 q5 k2 q5 k3 q5 k4 q5 k5

0

1 0

2 1 0

3 2 1 0

4 3 2 1 0

+ m

Figure 3.6: Computation of ALiBi positional encoding. Each attention score
(qi · kj) is summed by a constant multiplied by a head-specific non-learnable
parameter m. [35]

ratio. In particular for a model with 8 heads the slopes are the geometric
sequence 1

21
, 1
22
, 1
23
, ..., 1

28
, that starts from 1

21
and computes the next element

by multiplying to 1
21

. Fig. 3.6 shows the computation of the attention scores
with the ALiBi positional encoding.

3.3 MoViNets

Given the consideration reported in the State-of-the-Art results reported in
section 2.6, the choice fell on the MoViNets [22] models. Particularly in-
teresting are the streaming models that allow for online inference on mobile
devices, with the tradeoff of a small loss in accuracy. The non-streaming ver-
sions of MoViNets are based on the use of standard 3D convolutional layers.
The streaming version of the models is slightly different, since the 3D convo-
lutional layers are substituted by (2+1)D layers, to obtain a lower inference
time in case of mobile application using the TensorFlow lite framework. Ex-
cluding the architecture search results, the main architectural contributions
made by this paper is the use of causal convolutions together with the stream
buffers in the streaming version of these models. The concepts of causal con-
volution and stream buffer are presented in the section below.
The lighter MoViNets model is A0, the architectural description is provided
in table 3.2. Under “Operation” is indicated in order: The kernel size in
the format (T ×H2) where T represent the temporal dimension and H the
height dimension, which is displayed with a power of two, representing that
the same dimension is used also for the width. Then, always under “Opera-

57

3.3. MOVINETS 58

Figure 3.7: Standard Convolution on the left, Causal Convolution on the
right. The kernel size is 3, padding is shown in white. Causal Convolutions
are obtained by padding only the left side by the amount k-1, where k is the
kernel size. Lighter color connections indicates the computation that is not
involved in the current label prediction. [22]

tion” the base channel dimension and the expansion channel dimension are
displayed. The base and the expansion channel refer to the block presented
in Chapter 3.3.4.

3.3.1 Causal convolutions

Causal convolutions are a slight modification of standard convolution that
ensures to process only information coming from the past, meaning that the
prediction at time step t cannot depend on any of the future time steps.
In Fig. 3.7 an example of the difference between standard convolution and
causal convolution is displayed. In the example the standard convolution
takes as input information coming from the past (t − 1, t − 2), from the
present (t) and from the future (t + 1, t + 2). Causal convolution instead
takes as input information coming only from the past (t−1, t−2, t−3, t−4)
and from the present (t). The causal convolution can be implemented by
the use of padding to shift the input, such that the convolution considers
only the input belonging to the past. Considering a kernel having temporal
dimension k, it’s possible to implement the causal convolution padding left
by the amount k− 1, corresponding to the operation of shifting the input by
the same amount [22].

58

3.3. MOVINETS 59

Figure 3.8: Causal Convolution on the left, Causal Convolution with stream
buffer on the right. The kernel size is 3, the padding is shown in white, the
stream buffer is show in yellow. The stream buffer is obtained by caching the
activation obtained in the previous computations. Lighter color connections
indicates the computation that is not involved in the current label prediction.
(from [17])

3.3.2 Stream buffer

Causal convolutions enable the possibility to cache the activation previously
computed and save computational resources. In MoViNets the activations
are cached in the so-called stream buffer, illustrated in Fig. 3.8.
Formally, let Xclip be the current clip of video and xclipi the i-th adjacent non
overlapping subclip of Xclip. Let Bl

i be the stream buffer for the i-th clip
and lth layer, initialized to zero for i = 0. For the input layer we have l = 0.
Let bl be the length of the temporal dimension of the stream buffer at layer
l. It’s possible to compute the activation of the first convolutional layer as
follows [22]:

A1
i = f(B0

i ⊕ x
clip
i) (3.8)

And update the stream buffer for the next subclip:

B0
i+1 = (B0

i ⊕ x
clip
i)[−b0 :] (3.9)

It’s possible to extend this reasoning to the following layers:

Al+1
i = f(Bl

i ⊕ Ali) (3.10)

And update the stream buffer for the next subclip:

Bl
i+1 = (Bl

i ⊕ Ali)[−bl :] (3.11)

59

3.3. MOVINETS 60

where the selection of the last bl elements is indicated as [−bl :], and the
concatenation operation is indicated with ⊕. The model accumulates new
information coming from the streaming video inside the stream buffer allow-
ing for a variable number of frames in input. It is in fact possible to choose
any amount of frames per subclip T clip. This allows for lower or higher mem-
ory consumption, using a smaller or larger per subclip temporal dimension
T clip, respectively. Thanks to the stream buffer it is in fact possible to select
a subclip having temporal dimension T clip = 1. This choice reduces memory
consumption and per-frame latency, since it allows to compute the output
frame by frame. A comparison of peak memory consumption with and with-
out the use of stream buffers (with T clip = 1) shows a memory consumption 2
to 15 times lower using the architecture with stream buffers. For a complete
overview see Table 3.5.

3.3.3 Fusing the concepts of stream buffer and state
reuse

The MoViNets stream buffer and the Transformer-XL state reuse are con-
ceptually very similar. Since in the following sections the two architectures
will be used in the same model, a common view of the two modalities is
provided.
Formally, let Al be the activation of layer l, A0 the input of the model, and
Ali the i-th adjacent non overlapping segment of Al. Bl

i is defined as the acti-
vation stored for the i-th segment and l-th layer. In the case of convolutional
layers Bl

i is initialized to zero for i = 0. Let bl be the number of maximum
activation to store at layer l. It’s possible to compute the activation of the
next layer as follows:

Al+1
i = f(Bl

i, A
l
i) (3.12)

And update the activaiton stored for the next subclip as follows:

Bl
i+1 = SG((Bl

i ⊕ Ali)[−bl :]) (3.13)

where the selection of the last bl elements is indicated as [−bl :], and the
concatenation operation with ⊕. SG indicates the stop gradient operation.
The function f can be expressed as such in the case of convolutional layer:

f(Bl
i, A

l
i) = ConvolutionLayer(Bl

i ⊕ Ali) (3.14)

60

3.3. MOVINETS 61

1

1x1, NL Dwise, NL
3x3 1x1

+

Pool

FC,
Relu

FC,
hard-σ

⊗

Mobilenet V3 block

Figure 3.9: The MobileNetV3 convolutional block. It is characterized by an
expansion block, a depth-wise convolution followed by a Squeeze-and-Excite
layer and a reduction layer. [14]

or in the case of transformer layer:

f(Bl
i, A

l
i) = TransformerLayer(Bl

i, A
l
i) (3.15)

Where the computation of keys, values and queries is done as follows:

Ãli = Bl
i ⊕ Ali (3.16)

ql+1
i+1, k

l+1
i+1, v

l+1
i+1 = AliW

T
q , Ã

l
iW

T
k , Ã

l
iW

T
v (3.17)

From this chapter B will represent the stream buffer for both convolutional
and transformer layers.

3.3.4 Convolutional Block

The MoViNets convolutional block is based on the MobileNetV3 [14] convo-
lutional block. The original mobilenet block is characterized by a expansion
layer, followed by a depthwise convolution, Section 2.1.4, a Squeeze-and-
Excitation [15] layer and a projection layer to project the output to a lower
dimension. The original MobileNetV3 block is modified by expanding the
2D convolution to 3D convolutions in order to deal with 3D video input, i.e.
the 2D convolutions are substituted with 3D convolutions. The Squeeze-and-
Excitation layer is modified as discussed in Section 2.1.5.

61

3.4. THE PROPOSED ARCHITECTURE 62

3.4 The Proposed Architecture

The transformer architecture has proven itself to be capable of handling
very well sequence data. This ability has been exploited initially in the
field of Natural Language Processing, reaching later successful results also
in other fields. Recently the transformer architecture has proven itself very
useful also in the field of Video Action Recognition. In [35] they replace the
Temporal Global Average Pooling layer at the end of 3D ConvNets with a
Transformer architecture, leading to important improvements in accuracy. In
[48] thanks to the Transformer architecture they are capable of attending to
the entire span of the video, reaching State-of-the-Art results. They use 3D
convolutions and pooling to produce a representation of the clip, then they
use the transformer to interact between the representation of the different
clips of the same video. A fully transformer architecture has been proposed
which is capable of achieving State-of-the-Art accuracy, even though it is
computationally expensive. [2]
To the best of my knowledge, no previous work has been done to integrate
transformer architecture in efficient models, in order to improve the model
capabilities while keeping the architecture computationally efficient.
In this work, the efficiency of the MoViNets is combined with the ability of
processing sequence data of the transformer architecture. Taking inspiration
from [35] the Temporal Global Average Pooling layer at the end of MoViNets
is replaced with a Transformer-XL architecture. The aim of this work is to
improve the previous integration of the Transformer architecture in the field
of Video Action Recognition, allowing for a better modeling of the temporal
dimension while maintaining high efficiency and low latency. The proposed
architecture with Transformer inner dimension dmodel = 192 and MoViNet-
A0 as backbone is displayed in Table 3.9.

3.4.1 Modeling the Temporal Dimension

Modeling correctly the temporal dimension can be a very important and
challenging task for Video Action Recognition. The ideal architecture has to
be able to capture:

• Short term relationships between frames: defined as the ability to cap-
ture information about frames that are close to each others.

• Long term relationships between frames: defined as the ability to cap-

62

3.4. THE PROPOSED ARCHITECTURE 63

Figure 3.10: Locality in convolutions, The receptive field of convolutions
grows linearly with the number of layers in the network and the kernel di-
mension.

ture information about frames that are many steps away from each
others.

The ability of capturing short-term relationships can be interpreted as the
ability to capture low-level information, as for example low-level motion in-
formation of the objects. This kind of features can be exploited through the
use of kernels and convolutions or by low-level feature extractor like optical-
flow.
Capturing long-term relationships between frames can be very important,
since a particular action could be arbitrarily long or could need some infor-
mation from a long time ago in the past. E.g. if someone has taken a pie
from the fridge 20 seconds ago, the label eating a pie should be more likely
even in case the pie is not clearly visible while the actor is eating it. This type
of information can be captured through the use of the attention mechanism
and its ability to handle long sequences of data.

Limitation of 3D convolutions: Local Receptive Field

Convolutions are capable of capturing low-level temporal features thanks to
the property of locality and weight reuse [43]. While these properties do have
many important and useful consequences, they also have limitations due to

63

3.4. THE PROPOSED ARCHITECTURE 64

Figure 3.11: Difference in receptive field. On the left the receptive field of a
convolution architecture with the last layer being a transformer layer. On the
right, the receptive field of a convolutional architecture. The convolutional
layers has been chosen to have kernel dimension k = 3 and the transformer
architecture has attention length equal to 6.

the bias induced into the model itself.
The concept of locality allows the model to extend his receptive field only
in the subsequent layers, which combine the features to obtain higher-level
features. The property of locality and the corresponding receptive field are
displayed in Fig. 3.10. In particular the receptive field of the model expands
linearly with respect to the number of layers N and to the kernel dimension
k, for each input dimension, i.e., O(N × k).
Due to the usage of low values for the kernel dimension k, even on the latest
layers, the model receptive field may not be large enough to include the all
the input. The receptive field is usually expanded by the final Global Average
Pooling layers commonly used in ConvNets.

Transformers: Expanding the Receptive Field

In the proposed architecture the Temporal Global Average pooling is re-
placed with few layers of the Transformer-XL architecture. As discussed
earlier, the Transformer-XL has a low latency which makes it a good candi-
date for building efficient architectures. The Transformer-XL also has a large
receptive field, making it suitable to replace the Global Average Pooling. In
fact, although the average allows you to extend the receptive field at will,
also makes the extrapolation of content belonging to individual frames more
difficult for the network. Furthermore, computing an average over many

64

3.4. THE PROPOSED ARCHITECTURE 65

frames may result in an information loss due to the fact that every frame is
weighted the same way. This is a suboptimal behavior for a layer responsible
for modeling the temporal dimension, especially if we consider Fine-grained
Action Recognition, where a single particular frames can be critical to the
recognition of the task itself. On the contrary, the transformer, thanks to the
attention mechanism, is capable of selecting the most important activations
and use them for classification. The transformer architecture, in one time
step, can attend to as many values as the value of the attention length of the
model. It is not unusual to have models with an attention length of 512 or
larger.
The larger attention length, with respect to 3D convolutions, ensures a very
different behavior when the transformer architecture is combined with the
stream buffer. In particular, we can observe a substantial difference in the
receptive field of the network when combining convolutions with transformer
layers. Even a single transformer layer can substantially increase the recep-
tive field, as shown in Fig. 3.11.

3.4.2 Efficiency and Latency

Another objective is to obtain models which are lightweight such that they
can be used to perform inference locally on mobile devices. For this reason,
it has been chosen to use the MoViNets architectures as backbones for the
proposed models, as they have demonstrated themselves to be very efficient.
The proposed architecture is provided with two transformer layers which
replace the GAP as discussed in chapter 3.4.1. The choice of the trans-
former architecture fell on the Transformer-XL, due to its properties, espe-
cially the faster inference time with respect to vanilla transformer. In fact,
the Transformer-XL state reuse behaves similarly to the MoViNets Stream
Buffer, meaning that it stores the activation so that it doesn’t have to recom-
pute them at every evaluation. This property of not having to recompute the
activation is the key to the low latency of both the Transformer-XL and the
MoViNets. The other property of the Transformer-XL is causality, necessary
to work together with the streaming version of MoViNets.

3.4.3 Architecture Details

As already discussed, the new architecture will use MoViNets as backbones
for a transformer classification head. The transformer architecture used is

65

3.4. THE PROPOSED ARCHITECTURE 66

a Transformer-XL with two layers. The “key” and “value” matrices of all
attention mechanisms have an inner dimensionality of dkv = 64 and all atten-
tion mechanisms have 6 heads. The model dimensions have a dimensionality
of dmodel = 128 displayed in Tab. 3.6, or dmodel = 192 displayed in Tab. 3.7
or dmodel = 256 displayed in Tab. 3.8, in order of increasing computational
requirements. The following dense layer has dimensionality equal to four
times dmodel. These three classification heads created by changing the model
dimensions are used to create three different versions for each MoViNet.
The proposed architecture with dmodel = 192 and MoViNet-A0 as backbone is
displayed in Table 3.9. The base backbone is a MoViNet-A0, while on top we
have Transformer-XL layers followed by a classification fully connected layer.
Comparing the model with the original MoViNet-A0 architecture in Table
3.2 with the transformer version in 3.9, we can see that the GAP layer is sub-
stituted with an average pooling layer with kernel of dimension (1× 5× 5),
where 1 is the temporal dimension, and 5 are the spatial dimensions. The
temporal dimension of the activations is therefore kept the same, and the
activations are fed to the transformer architecture as sequential data.

Summarizing, the new architecture has nice properties introduced by the
stream buffer, such as:

• Possibility to learn long dependencies. The activation are saved and
it’s therefore possible to attend to frames that are very far in the past.

• Lightweight models and possibility of deployment on mobile devices for
real-time application.

And properties introduced by the transformer architecture:

• Capturing long-term relationships between frames.

• Capable of attending to particular salient frames thanks to the atten-
tion mechanism.

In the following chapter we will discuss the benefits and the downsides of
each of the architectures investigated, a comparison of the results obtained
on the different architectures, and an analysis of the properties of the newly
introduced models.

66

3.4. THE PROPOSED ARCHITECTURE 67

Stage Operation Output size

data stride 5, RGB 50× 1722

conv1 1× 32, 8 50× 862

block2 [1×52, 8, 40] 50× 432

block3

[
5×32, 32, 80
3×32, 32, 80
3×32, 32, 80

]
50× 212

block4

[
5×32, 56, 184
3×32, 56, 112
3×32, 56, 184

]
50× 102

block5

 5×32, 56, 184
3×32, 56, 184
3×32, 56, 184
3×32, 56, 184

 50× 102

block6

 5×32, 104, 344
1×52, 104, 280
1×52, 104, 280
1×52, 104, 344

 50× 52

conv7 1× 12, 480 50× 52

pool8 50× 52 1× 12

dense9 1× 12, 2048 1× 12

dense10 1× 12, 600 1× 12

Table 3.2: MoViNet-A0 Architecture. Under operation for the different
blocks we have, in order, the kernel size in the format kt×k2

s, where t indicates
the temporal dimension and s indicates the spatial dimensions, the base
channel and the expansion channel of the convolutional block. If only one
value is provided after the kernel size, it is referred to the output channels.
Output size is in the format T×S2, where T indicates the temporal dimension
and S indicates the spatial dimensions.(from [22])

67

3.4. THE PROPOSED ARCHITECTURE 68

Stage Operation Output size

data stride 5, RGB 50× 1722

conv1 1× 32, 16 50× 862

block2

[
1×52, 16, 40
3×32, 16, 40

]
50× 432

block3

 3×32, 40, 96
3×32, 40, 120
3×32, 40, 96
3×32, 40, 96

 50× 212

block4

5×32, 64, 216
3×32, 64, 128
3×32, 64, 216
3×32, 64, 168
3×32, 64, 216

 50× 102

block5

5×32, 64, 216
3×32, 64, 216
3×32, 64, 216
3×32, 64, 128
1×52, 64, 128
3×32, 64, 216

 50× 102

block6

5×32, 136, 456
1×52, 136, 360
1×52, 136, 360
1×52, 136, 360
1×52, 136, 456
3×32, 136, 456
1×32, 136, 544

 50× 52

conv7 1× 12, 600 50× 52

pool8 50× 52 1× 12

dense9 1× 12, 2048 1× 12

dense10 1× 12, 600 1× 12

Table 3.3: MoViNet-A1 Architecture. Under operation for the different
blocks we have, in order, the kernel size in the format kt×k2

s, where t indicates
the temporal dimension and s indicates the spatial dimensions, the base
channel and the expansion channel of the convolutional block. If only one
value is provided after the kernel size, it is referred to the output channels.
Output size is in the format T×S2, where T indicates the temporal dimension
and S indicates the spatial dimensions. (from [22])

68

3.4. THE PROPOSED ARCHITECTURE 69

Stage Operation Output size

data stride 5, RGB 50× 2242

conv1 1× 32, 16 50× 1122

block2

[
1×52, 16, 40
3×32, 16, 40
3×32, 16, 64

]
50× 562

block3

3×32, 40, 96
3×32, 40, 120
3×32, 40, 96
3×32, 40, 96
3×32, 40, 120

 50× 282

block4

5×32, 72, 240
3×32, 72, 160
3×32, 72, 240
3×32, 72, 192
3×32, 72, 240

 50× 142

block5

5×32, 72, 240
3×32, 72, 240
3×32, 72, 240
3×32, 72, 240
1×52, 72, 144
3×32, 72, 240

 50× 142

block6

5×32, 144, 480
1×52, 144, 384
1×52, 144, 384
1×52, 144, 480
1×52, 144, 480
3×32, 144, 480
1×32, 144, 576

 50× 72

conv7 1× 12, 640 50× 72

pool8 50× 72 1× 12

dense9 1× 12, 2048 1× 12

dense10 1× 12, 600 1× 12

Table 3.4: MoViNet-A2 Architecture. Under operation for the different
blocks we have, in order, the kernel size in the format kt×k2

s, where t indicates
the temporal dimension and s indicates the spatial dimensions, the base
channel and the expansion channel of the convolutional block. If only one
value is provided after the kernel size, it is referred to the output channels.
Output size is in the format T×S2, where T indicates the temporal dimension
and S indicates the spatial dimensions. (from [22])

69

3.4. THE PROPOSED ARCHITECTURE 70

Model Top-1 Res Frames FPS gflops Mem (MB)

MobileNetV3-L* 68.1 224 1×50 5 11.0 23

MoViNet-A0 71.5 172 1×50 5 2.71 173
MoViNet-A0-Stream 70.3 172 1×50 5 2.73 71

MoViNet-A1 76.0 172 1×50 5 6.02 191
MoViNet-A1-Stream 75.6 172 1×50 5 6.06 72
MoViNet-A1-Stream-Ens (x2) 75.9 172 1×25 2.5 6.06 72

MoViNet-A2 77.5 224 1×50 5 10.3 470
MoViNet-A2-Stream 76.5 224 1×50 5 10.4 85
MoViNet-A2-Stream-Ens (x2) 77.0 224 1×25 2.5 10.4 85

MoViNet-A3 80.8 256 1×120 12 56.9 1310
MoViNet-A3-Stream 79.6 256 1×120 12 57.1 82
MoViNet-A3-Stream-Ens (x2) 80.4 256 1×60 6 57.1 82

MoViNet-A4 81.2 290 1×80 8 105 1390
MoViNet-A4-Stream 80.5 290 1×80 8 106 112
MoViNet-A4-Stream-Ens (x2) 81.4 290 1×40 4 106 112

MoViNet-A5 82.7 320 1×120 12 281 2040
MoViNet-A5-Stream 82.0 320 1×120 12 282 171
MoViNet-A5-Stream-Ens (x2) 82.9 320 1×60 6 282 171

ResNet3D-50 78.7 224 1×250 25 390 3040
ResNet3D-50-Stream 76.9 224 1×250 25 390 2600
ResNet3D-50-Stream-Ens (x2) 78.6 224 1×125 12.5 390 2600

Table 3.5: Base vs. Streaming Architectures on Kinetics 600. We
and report the inference resolution (res), number of clips × frames per clip
(frames), and frame rate (fps) for each video. We measure the total GFLOPs
per video across all frames. We denote “Stream” to be causal models using a
stream buffer frame-by-frame, and “Ens” to be two ensembled models (with
half the input frames so FLOPs are equivalent). Memory usage is measured
in peak MB for a single video clip. * denotes reproduced models.

70

3.4. THE PROPOSED ARCHITECTURE 71

Stage Operation Output size

conv7 1× 12, 480 50× 52

pool8 1× 52 50× 12

transformerlayer9 128 50× 12

transformerlayer10 128 1× 12

dense12 1× 12, 512 1× 12

dense13 1× 12, 600 1× 12

Table 3.6: Classification head using the transformer architecture with
dmodel = 128 and A0-stream architecture. The operation indicates, in order,
the kernel size in the format kt×k2

s, where t indicates the temporal dimen-
sion and s indicates the spatial dimensions, and the output channel. For the
Transformer layers only the dimension of the model is displayed. Output
size is in the format T×S2, where T indicates the temporal dimension and S
indicates the spatial dimensions.

Stage Operation Output size

conv7 1× 12, 480 50× 52

pool8 1× 52 50× 12

transformerlayer9 192 50× 12

transformerlayer10 192 1× 12

dense12 1× 12, 768 1× 12

dense13 1× 12, 600 1× 12

Table 3.7: Classification head using the transformer architecture with
dmodel = 192 and A0-stream architecture. The operation indicates, in order,
the kernel size in the format kt×k2

s, where t indicates the temporal dimen-
sion and s indicates the spatial dimensions, and the output channel. For the
Transformer layers only the dimension of the model is displayed. Output
size is in the format T×S2, where T indicates the temporal dimension and S
indicates the spatial dimensions.

71

3.4. THE PROPOSED ARCHITECTURE 72

Stage Operation Output size

conv7 1× 12, 480 50× 52

pool8 1× 52 50× 12

transformerlayer9 256 50× 12

transformerlayer10 256 1× 12

dense12 1× 12, 1024 1× 12

dense13 1× 12, 600 1× 12

Table 3.8: Classification head using the transformer architecture with
dmodel = 256 and A0-stream architecture. The operation indicates, in order,
the kernel size in the format kt×k2

s, where t indicates the temporal dimen-
sion and s indicates the spatial dimensions, and the output channel. For the
Transformer layers only the dimension of the model is displayed. Output
size is in the format T×S2, where T indicates the temporal dimension and S
indicates the spatial dimensions.

72

3.4. THE PROPOSED ARCHITECTURE 73

Stage Operation Output size

data stride 5, RGB 50× 1722

conv1 1× 32, 8 50× 862

block2 [1×52, 8, 40] 50× 432

block3

[
5×32, 32, 80
3×32, 32, 80
3×32, 32, 80

]
50× 212

block4

[
5×32, 56, 184
3×32, 56, 112
3×32, 56, 184

]
50× 102

block5

 5×32, 56, 184
3×32, 56, 184
3×32, 56, 184
3×32, 56, 184

 50× 102

block6

 5×32, 104, 344
1×52, 104, 280
1×52, 104, 280
1×52, 104, 344

 50× 52

conv7 1× 12, 480 50× 52

pool8 1× 52 50× 12

transformerlayer9 192 50× 12

transformerlayer10 192 1× 12

dense12 1× 12, 768 1× 12

dense13 1× 12, 600 1× 12

Table 3.9: MoViNet-A0-T192 Architecture. Under operation for the
different blocks we have, in order, the kernel size in the format kt×k2

s, where
t indicates the temporal dimension and s indicates the spatial dimensions,
the base channel and the expansion channel of the convolutional block. If
only one value is provided after the kernel size, it is referred to the output
channels. For the Transformer layers only the dimension of the model is
displayed. Output size is in the format T×S2, where T indicates the temporal
dimension and S indicates the spatial dimensions.

73

Chapter 4

Experiments

The experiments in this study focus on three datasets: HMBD51 [24], UCF101
[41] and Something-to-Something [12]. The first two datasets have fewer
clips, with 6, 766 clips and 13, 320 clips, respectively, while the third has a
larger number of clips corresponding to 108, 499. The first two datasets have
three different splits for evaluation, while the last one follows the standard
division into training, validation and test set. Moreover, the first two can
be considered as Coarse Action Recognition datasets, while the last one is
a Fine-Grained Action Recognition dataset. The results are calculated on
the three splits of HMDB51 and UCF101 as suggested by the respective
papers. The results on Something-to-Something are performed on the vali-
dation dataset provided by the authors. Moreover, it is important to consider
that the MoViNets backbones have been pre-trained on the Kinetics-600 [3]
dataset.
In the following sections we will discuss the benefits and the downsides of
each of the architectures investigated, a comparison of the results obtained
on the different architectures, and an analysis of the properties of the newly
introduced models.

4.1 Implementation Details

The experiments compare the results of the original MoViNets [22] models,
both the streaming and non-streaming versions, with the newly proposed
networks. The streaming versions are named A0-stream, A1-stream and
A2-stream, while the non-streaming versions are indicated with A0, A1 and

74

4.1. IMPLEMENTATION DETAILS 75

A2. The architectures go from A0 to A2, representing increasingly larger
models. The models chosen are the smallest of the MoViNets family, which
are more suited for the training hardware at our disposal. Furthermore,
the A2 non-streaming model hasn’t been trained due to the impossibility
of the model to fit the GPU memory. The comparison covers the different
properties of the network such as GFLOPS, number of parameters, peak
memory occupancy and Latency. For the scope of this work, the MoViNets
models have been reimplemented in PyTorch, following the code released
by the authors in TensorFlow [22], and using the same weights released by
the authors in their original implementation. The results obtained by the
reimplemented architectures are displayed with an asterisk *, e.g. A0-stream∗

indicates the reimplemented A0-stream model.
The architectures presented are characterized by different latency, number
of parameters, GFLOPS, and peak memory occupancy. The properties are
displayed in Tables 4.1, Table 4.3 and Table 4.2, for the models having 60,
30 and 20 frames in input, respectively.
The streaming versions of the models are indicated in what follows with a -s-
or -stream, while the transformer versions are indicated with T . The models
with transformer are also provided with a number indicating the dimension
of the model. As an example, the transformer version having a dmodel = 128
with a A0 backbone is indicated with A0T-s-128 or A0T-stream-128.

4.1.1 Architectures

As discussed in section 3.4, the modified architectures are composed by a
MoViNet backbone and a Transformer-XL [6] classification head. The trans-
former head is characterized by 6 heads of dimension 64 each for a total dim
of 384. The expansion layer of the feed forward network of the transformer
block is set to two times the transformer inner dimension dmodel, where dmodel
corresponds to the dimension in input and in output to both the self-attention
and feed-forward layers. The classification feed-forward network instead is
composed by two layers with the expansion layers dimension set to four times
dmodel. The transformer head is composed by two transformer layers.
The new models have been chosen to be lightweight and to have a low enough
latency to allow them to be used for online inference. The model dimension
dmodel has been modified in order to obtain three different models with sim-
ilar GFLOPS with respect to the original streaming version. The proposed
transformer heads have different numbers of parameters due to the different

75

4.1. IMPLEMENTATION DETAILS 76

dmodel dimension, on the other hand, the number of GFLOPS is very close
to the original network.
The proposed architectures are three, with 128, 192 and 256 model dimen-
sion dmodel. The attention length and the number of frames in input are
different for each dataset, as one model may not gain in accuracy by an in-
crease in the number of frames or attention length. This is especially true for
HMDB51 and UCF101 datasets, which are considered Coarse-Action Recog-
nition Datasets.
The proposed architectures are very fast and can be realistically used in
real-time applications.

4.1.2 Training and Evalution

The models are fine-tuned with cosine learning rate with a warm-up period
equal to 5 epochs of training, except for SSv1 which is trained with a warm-
up period of 3 epochs. The optimizer of choice is Adam with learning rate
(LR) equal to 1e− 4 and weight decay 0.0001 for all the models, except for
SSv1, where the LR is equal to 7e− 5. Augmentation consisting of random
resized crops and RandAugment [5] has been applied. The models are trained
with batch size 16 and a frame rate of 5 FPS for HDB51 and UCF101, while
for SSv1 a frame rate of 12 FPS is used. The number of frames in input at
training time is kept constant also at evaluation time. In order to reduce
the memory requirements, models are trained using FP16. MoViNet-A1 has
been trained with batch size 15 in order to fit the GPU memory. On UCF101
and HMDB51, in order to reduce memory consumption during training, the
models with stream buffer are trained with Tclip = 10 and back propagation
is not performed through the stream buffer. On SSv1 due to the higher
number of frames in input the models it has been chosen a Tclip = 20 for the
A0 based models, for the A2 training we have instead Tclip = 10 due to the
impossibility of fitting the model on the GPU memory when provided with
a Tclip = 20.
The evaluation is always performed only using one clip of video, instead
of using multiple clips of the same video. During evaluation, a resize to
1.2 × dinput where dinput represent the dimension of the height and width of
the input of the model, and then a center crop is performed to obtain the
dimension desired dimension dinput. If not otherwise specified the dinput of
the models is euqal to 174 for the A0 and A1, and 224 for A2. Along the
temporal dimension we select the first frames of the video for HMDB51 and

76

4.1. IMPLEMENTATION DETAILS 77

UCF101 and the center frames of the video for SSv1.

4.1.3 Latency Testing

MoViNets A0, A1 and A2 would be the models that can realistically run on
a mobile device. In particular, the streaming version has been realized with
the intent of a possible deployment for real-time applications. This is mainly
due to the lower latency that can be achieved thanks to the stream buffer. To
understand the improvements in latency, the latency has been tested for both
the streaming versions and the non-streaming versions of MoViNets in single
frame evaluation. The tests include also the newly introduced models in
order to observe whether the transformer architecture introduces an increase
in latency.
The tests have been done using a randomly generated input of the same
dimension of the input videos. 10 runs are completed to warm up the CPU,
then 60 evaluations are performed, and the average latency is computed.
The input of the non-streaming versions has dimension (1× 3× t× h× w),
while the input of the streaming version has dimension (1 × 3 × 1 × h ×
w). The dimensions correspond, respectively, to the batch dimension, to
the number of channels of the RGB video, to the time dimension and to
the two spatial dimensions. The time dimension is kept equal to 1 for the
streaming dimension, while it’s equal to the total length of the video for the
non-streaming version. As discussed in section 3.3.2 the streaming versions
allow for a frame by frame inference (T clips = 1) which improves the inference
time, making these networks suitable for online inference.
The overall latency is shown are shown in Tables 4.2, 4.3 and 4.1, for 20, 30
and 60 frames in input, respectively. The results in the tables highlight a
consistent increase in latency for the non-streaming models as the number of
frames in input increases. Considering A0 the models experiences a latency
of 81.57 ms, 118.41 ms and 270.46 ms considering 20, 30 and 60 frames in
input, respectively. This is due to the fact that in order to compute the label
for a given timestep it is necessary to provide the whole clip to the model.
The streaming versions instead don’t experience increase in latency thanks
to the presence of the stream buffer that allows to store the past activation,
instead of recomputing them. The increase in attention length also doesn’t
seem to provide a relevant difference in latency.
The tests have been performed on an x86 processor i9-9940x.

77

4.2. EXPERIMENT RESULTS 78

4.1.4 FLOPS estimation and parameters count

In order to obtain the FLOPS estimation and the parameters count of the
model, a software developed by Facebook has been used [9]. In this case
the input dimensions are constant for both the streaming and non-streaming
version of the models, and they correspond to the entire input video. It is
therefore measured the FLOPS necessary to compute the label of a single
video.
The models are created in order to have comparable GLOPS between versions
of the same backbone.

4.1.5 Peak Memory Occupancy

Peak memory occupancy is defined as the maximum amount of memory oc-
cupied by the network in inference or training. In particular, in this chapter,
peak memory occupancy will refer to the maximum amount of memory oc-
cupied by the network during the inference of a single clip.
The non-streaming models results are reported by providing the whole clip
to the model, while the streaming versions results are obtained by providing
the clip frame by frame, as possible thanks to the presence of the stream
buffer.
Due to the fact that non-streaming architectures take as input the whole
clip, we can observe an increase in memory occupancy with the increase
of the number of frames in input, considering the same architecture. The
streaming version of the architectures instead show a peak memory occu-
pancy that doesn’t increase significantly with the increase in the number of
total frames of the clip. Overall, the architectures with the transformer head
have a higher peak memory occupancy with respect to the streaming ver-
sions, which increases with the increase of model dimension dmodel. The peak
memory occupancy of the transformer versions does not change significantly
with the change in the number of frames in input. The results on peak mem-
ory occupancy can be found in Table 4.2 with 20 frames in input, Table 4.3
with 30 frames in input, Table 4.1 with 60 frames in input.

4.2 Experiment results

The first experiments have been done on the HMDB51 and UCF101 dataset.
The HMDB51 dataset, with only 6, 766 clips, and the UCF101, with 13, 320

78

4.2. EXPERIMENT RESULTS 79

clips, are now considered very small datasets. The results of the new archi-
tectures on small datasets may fail to provide information about the perfor-
mances of the architecture when scaling up to larger datasets. On the other
hand, it may result time-consuming to test multiple architectures with very
large dataset, if not provided with sufficient computational resources.
Something to Something V1, with 108, 499 clips, is the biggest dataset used
during the experiments, and, due to computational resources, only two ar-
chitectures have been trained on this dataset. The chosen architectures are
the A2T-stream-256 and the A2-stream in order to have a comparison for the
performances. The architectures have been chosen based on the results on
the smaller datasets and on the computational requirements and capabilities.

Model Param Att Len Frames GFLOPS Lat(ms) Mem(MB)
A0∗ 2.24M - 1×60 3.56 270.46 107.49
A0-s∗ 2.88M - 1×60 3.40 18.01 20.75
A0T-s-128 2.34M 60 1×60 3.44 19.13 30.78
A0T-s-192 2.89M 60 1×60 3.46 19.21 41.11
A0T-s-256 3.54M 60 1×60 3.49 19.36 52.64
A1∗ 3.82M - 1×60 7.79 486.77 171.10
A1-s∗ 5.57M - 1×60 7.56 29.55 38.87
A1T-s-128 4.81M 60 1×60 7.60 30.34 47.11
A1T-s-192 5.37M 60 1×60 7.62 30.36 57.48
A1T-s-256 6.03M 60 1×60 7.65 30.61 69.06
A2-s∗ 6.45M - 1×60 14.60 36.36 49.94
A2T-s-128 5.61M 60 1×60 14.65 37.54 57.83
A2T-s-192 6.17M 60 1×60 14.67 37.83 67.69
A2T-s-256 6.84M 60 1×60 14.7 38.17 79.55

Table 4.1: Model architectures specifications used for the experiments with
Something to Something V1. Params indicates the number of parameter
of the model, Att Len indicates the length of the attention for the models
that use a transformer architecture, Frames indicates the number of frames
in input in the format n-clips × n-frames-per-clip, GFLOPS indicates the
GFLOPS necessary for a single clip evaluation, Lat indicates the latency
experienced in producing the label of the next frame in the video and Mem
represent peak memory occupancy in evaluating a single clip.

79

4.2. EXPERIMENT RESULTS 80

4.2.1 HMDB51 Results

Model Params Att Len Frames GFLOPS Lat(ms) Mem(MB)
A0∗ 1.99 - 1×20 1.19 81.57 40.67
A0-s∗ 2.62 - 1×20 1.13 18.08 19.79
A0T-s-128 2.278 20 1×20 1.15 18.84 30.42
A0T-s-192 2.80 20 1×20 1.15 18.81 40.57
A0T-s-256 3.42 20 1×20 1.16 19.19 51.92
A1∗ 3.56 - 1×20 2.60 136.91 67.15
A1-s∗ 5.32 - 1×20 2.52 29.15 37.92
A1T-s-128 4.75 20 1×20 2.53 30.61 46.75
A1T-s-192 5.27 20 1×20 2.54 30.16 56.94
A1T-s-256 5.9 20 1×20 2.55 30.24 68.34
A2-s∗ 6.20 - 1×20 4.87 36.97 48.98
A2T-s-128 5.55 20 1×20 4.88 37.28 57.47
A2T-s-192 6.08 20 1×20 4.89 37.48 67.42
A2T-s-256 6.71 20 1×20 4.90 37.41 78.83

Table 4.2: Model architectures specifications used for the experiments with
HMDB51. Params indicates the number of parameter of the model, Att Len
indicates the length of the attention for the models that use a transformer
architecture, Frames indicates the number of frames in input in the format
n-clips × n-frames-per-clip, GFLOPS indicates the GFLOPS necessary for
a single clip evaluation, Lat indicates the latency experienced in producing
the label of the next frame in the video and Mem represent peak memory
occupancy in evaluating a single clip.

As already pointed out, the HMDB51 dataset is a dataset of coarse action
recognition. The model has been trained with 20 frames, due to the fact that
the model accuracy either didn’t improve or got worse with an increase in
the number of frames in input. This can be explained by the fact that, being
a dataset for Coarse Action Recognition, the actions can be easily captured
by few frames of the videos.
The experiments performed provide a comparison between the accuracy of
the different architecture. From Table 4.5 it’s possible to observe that the
streaming versions have a comparable accuracy with the non-streaming ver-
sions. Furthermore, the models with transformer provide comparable accu-

80

4.2. EXPERIMENT RESULTS 81

racy with respect to both the reimplemented streaming and non-streaming
MoViNets.
Considering the A0 based models, A0-stream performs slightly better than
the best performing transformer model with 69.74% accuracy and 69.41%,
respectively. Considering instead the A1 based models, A1-stream performs
slightly better than the best performing transformer model with 73.32% ac-
curacy and 73.26%, respectively. Lastly, the best performing transformer
A2 model, A2T-stream-192, performs slightly better than A2-stream with
74.62% accuracy and 74.56%, respectively.
The transformer versions have proved to be a valid alternative to standard
MoViNets. In particular, the version with dmodel = 128 has a considerable
lower number of parameters when compared to the version without a trans-
former, while having a comparable accuracy, making it a suitable option in
case of a memory constrain.

4.2.2 UCF101 Results

The UCF101 dataset is also a dataset of coarse action recognition. The
number of frames in input is set to 30 because providing more frames either
didn’t improve or got the accuracy worse. This can be explained by the fact
that being a dataset for Coarse Action Recognition, the action can be easily
captured by few frames of video. We can also expect that UCF101 requires
more information in the temporal dimension with respect to HMDB51 due
to the fact that HMDB51 performances caps out at a number even lower of
frames.
On UCF101, the architectures with transformers perform better than the
original streaming versions. In particular, the models with dmodel = 256
outperform all the corresponding reimplemented streaming version of the
MoViNets, achieving the best results for A1 and A2 with a slight increase
of 0.21% and 0.36% with respect to A1-stream and A2-stream, respectively.
The A0T-stream-192 version with Transformer dimension dmodel = 192 is
the best performing A0 streaming model, with an increase of 0.74% with
respect to A0-stream. The A0T-stream-192 slightly outperforms also the
non-streaming version of A0. As discussed for the HMDB51 dataset, the
models with transformer dimension dmodel = 128 remain of particular interest,
thanks to the lower number of parameters and comparable accuracy. The
models with dmodel = 256 are also interesting thanks to the consistent increase
in accuracy while maintaining the GFLOPS of the model constant. For

81

4.2. EXPERIMENT RESULTS 82

detailed information about the results, see Table. 4.4.

Model Params Att Len Frames GFLOPS Lat(ms) Mem(MB)
A0∗ 2.09M - 1×30 1.78 119.41 57.52
A0-s∗ 2.73M - 1×30 1.70 18.08 20.19
A0T-s-128 2.3M 30 1×30 1.72 19.18 30.57
A0T-s-192 2.8M 30 1×30 1.73 19.08 40.79
A0T-s-256 3.47M 30 1×30 1.74 19.12 52.21
A1∗ 3.67M - 1×30 3.90 227.72 93.60
A1-s∗ 5.43M - 1×30 3.78 29.28 38.31
A1T-s-128 4.77M 30 1×30 3.80 30.26 46.90
A1T-s-192 5.31M 30 1×30 3.81 30.70 57.16
A1T-s-256 5.95M 30 1×30 3.82 30.49 68.63
A2-s∗ 6.30M - 1×30 7.30 36.79 49.37
A2T-s-128 5.57M 30 1×30 7.32 38.16 57.62
A2T-s-192 6.12M 30 1×30 7.33 37.84 67.64
A2T-s-256 6.76M 30 1×30 7.35 37.89 79.13

Table 4.3: Model architectures specifications used for the experiments with
UCF101. Params indicates the number of parameter of the model, Att Len
indicates the length of the attention for the models that use a transformer
architecture, Frames indicates the number of frames in input in the format
n-clips × n-frames-per-clip, GFLOPS indicates the GFLOPS necessary for
a single clip evaluation, Lat indicates the latency experienced in producing
the label of the next frame in the video and Mem represent peak memory
occupancy in evaluating a single clip.

4.2.3 Something to Something V1 Results

The Something to Something dataset is a considerably larger dataset than
HMDB51 and UCF101 and, as explained in Section 1.4.3, can be considered
a Fine-Grained action recognition dataset. A first experiments has been per-
formed with A0-stream and A0T-stream-256, with an input size of (112, 112)
and T clips = 20. A0-stream has been chosen to provide a comparison to the
performances of the model, as it has comparable parameters and GFLOPS
with respect to A0T-stream-256. The newly proposed model is capable of
outperforming the standard MoViNets by a 2.91%, with 45.27% and 42.36%

82

4.2. EXPERIMENT RESULTS 83

accuracy for A0T-stream-256 and A0-stream, respectively. To the best of
our knowledge this is a new State-of-the-Art result for models with compa-
rable GFLOPS, providing strong evidence of the efficancy of the transformer
architecture to model the temporal dimension in the field of RGB Human
Action Recognition. Considering the larger dataset size, it seemed appropri-
ate to test also on A2 for the experiment, being the larger architecture tested
in this work. Also, to avoid bottlenecking the architecture, the model with
dimension dmodel = 256 has been chosen for the experiments. Due to the
high memory resources necessary to perform training, the models have been
trained with T clips = 10, in order to fit the GPU memory. A2-stream has been
chosen to provide a comparison to the performances of the model, as it has
comparable parameters and GFLOPS with respect to A2T-stream-256. The
experiments report that the original version of the MoViNets outperforms the
Transformer version with 49.11% and 47.70% accuracy, respectively. This re-
sult is in contrast with the previously results, and may be due to the higher
T clips used in A0, which allows to backpropagate further in the temporal di-
mension, or it may be a result of an not sufficiently large Transformer head
for the A2 architecture. Further experiments are necessary to better under-
stand the reasons behind this outcome.
The results are reported in Table 4.6.

4.2.4 State-of-the-Art Comparison

In this section, the results of the proposed architectures are compared with
State-of-the-Art architectures. The models selected for this comparison are
models which are provided with information regarding the GLOPS, and are
comparable with the architectures studied in this work, in terms of GFLOPS
and parameters. It is relevant to report that only few architectures have a
comparable number of GLOPS due to the high efficiency of MoViNets.
3D-MobileNetV2 1.0x [23], where 1.0x indicates the width multiplier of the
network, is a conversion to 3D CNN of the efficient 2D MobileNetV2 archi-
tecture. Comparing the results on UCF101, Table 4.4, 3D-MobileNetV2 1.0x
fails to achieve comparable accuracy, reporting 13, 67% lower accuracy with
respect to A1T-stream-256, with similar GFLOPS. Ligar [18], is a more re-
cent approach that proposed a new architecture, which is capable of providing
more competitive results. The network can be compared with A1T-stream-
256, having 4.47 and 3.82 GLOPS, respectively. Ligar reaches 93.63% accu-
racy, which represent a 1.64% drop in accuracy with respect to A1T-stream-

83

4.2. EXPERIMENT RESULTS 84

256. STM [19], instead, presents similar accuracy to A2T-stream-256, while
requiring 3× more GFLOPS. R(2+1)D-BERT [20] is reported due to the
fact that currently holds State-of-the-Art accuracy in UCF101. The model
provides a 2, 5% increase in accuracy with respect to A2T-stream-256, while
requiring more than 20× the GFLOPS. The real number of GFLOPS used
for R(2+1)D-BERT is unknown due to the fact that they didn’t report the
number of clips used in evaluation.
Comparing the results on HMDB51, Table 4.5, STM [19], reports 72.20% ac-
curacy, which is lower than the 73.26% accuracy reported by A1T-stream-256
while requiring more than 10× the GLOPS. MSNet-R50 [25] reports 1.18%
increase in accuracy over A2T-stream-192, while requiring almost 70× more
GFLOPS.
Comparing the results on SSv1, Table 4.6, A2-stream and A2T-stream-
256 perform 1.79% and 3.11% worse in accuracy than MSNet-R50, respec-
tively, but they require less than half the GLOPS. The A0T-stream-256 per-
forms with similar accuracy to TSM (R50), while having more than 20× the
GFLOPS. To the best of my knowledge no model with comparable GFLOPS
to A0-stream, A0T-stream-256 , A2-stream and A2T-stream-256 has been
trained on SSv1. The MoViNets and the transformer versions perform bet-
ter than all the architectures reported with comparable GFLOPS. In partic-
ular, the proposed A0T-stream-256 performs 2.91% better than A0-stream,
reaching a new State-of-the-Art result.

4.2.5 Generalization to Longer Sequences

The architectures can take as input a larger number of frames, with respect
to the ones used in training. A study of the generalization abilities has been
done on the A2-stream-T256 and A2-stream trained on SSv1. In this case
the number of frames used in training corresponds to 60 and the dataset used
is SSv1. From Table 4.7, we can observe that both the Transformer and the
standard architecture are capable of generalizing to longer sequences, with
a consistent performance improvement even when provided with 1.5× the
frames used during training, corresponding to 0.28% and 0.59% increase in
accuracy for the Transformer and standard architecture, respectively. When
evaluating with 3× the frames used during training, we observe a +0.66%
and +0.43% in accuracy for the Transformer and standard architecture, re-
spectively, with respect to the evaluation performed using the same number
of frames used in training. The results are obtained with an attention length

84

4.2. EXPERIMENT RESULTS 85

Name Frames GFLOPS Params Accuracy
A0∗ 1×30 1.78 2.09M 93.89
A0-stream∗ 1×30 1.70 2.73M 93.37
A0T-stream-128 1×30 1.72 2.3M 93.70
A0T-stream-192 1×30 1.73 2.8M 94.11
A0T-stream-256 1×30 1.74 3.47M 93.77
A1∗ 1×30 3.90 3.67M 95.59
A1-stream∗ 1×30 3.78 5.43M 95.06
A1T-stream-128 1×30 3.80 4.77M 94.87
A1T-stream-192 1×30 3.81 5.31M 94.85
A1T-stream-256 1×30 3.82 5.95M 95.27
3D-MobileNetV2 1.0x [23] 10×16 10×0.45 3.12M 81.60
LIGAR [18] 1×16 4.74 4.47M 93.63
A2-stream∗ 1×30 7.30 6.30M 95.83
A2T-stream-128 1×30 7.32 5.57M 96.00
A2T-stream-192 1×30 7.33 6.12M 96.07
A2T-stream-256 1×30 7.35 6.76M 96.19
STM [19] 1×8 33.3 24.0M 96.2
LIGAR [18] 10×16 10×4.74 4.47M 94.85
R(2+1)D-BERT [20] NA×64 NA×152.97 66.67M 98.69

Table 4.4: State-of-the-Art performance comparison on UCF101. Frames
indicates the number of frames in input in the format n-clips × n-frames-per-
clip, GFLOPS indicates the GFLOPS used in evaluation,Params indicates
the number of parameter of the model. In bold we can find models with
the best accuracy, compared with models having similar GFLOPS. When
the non streaming version performs better than the best streaming version,
both the best performing streaming version and the non-streaming version
are displayed in bold.

85

4.2. EXPERIMENT RESULTS 86

Name Frames GFLOPS Param Accuracy
A0∗ 1×20 1.19 1.99M 69.87
A0-stream∗ 1×20 1.13 2.62M 69.74
A0T-stream-128 1×20 1.15 2.28M 69.08
A0T-stream-192 1×20 1.15 2.80M 68.41
A0T-stream-256 1×20 1.16 3.42M 68.78
A1∗ 1×20 2.60 3.56M 74.01
A1-stream∗ 1×20 2.52 5.32M 73.32
A1T-stream-128 1×20 2.53 4.75M 72.87
A1T-stream-192 1×20 2.54 5.27M 72.45
A1T-stream-256 1×20 2.55 5.95M 73.26
A2-stream∗ 1×20 4.87 6.20M 74.58
A2T-stream-128 1×20 4.88 5.55M 74.16
A2T-stream-192 1×20 4.89 6.08M 74.62
A2T-stream-256 1×20 4.90 6.71M 74.05
STM [19] 1×8 33.3 24.0M 72.2
TSM† [25] 10×8 10×33 24.3M 71.9
MSNet-R50 [25] 10×8 10×34 24.5M 75.8

Table 4.5: State-of-the-Art performance comparison on HMDB51. † Rep-
resents a reimplemented model. Frames indicates the number of frames
in input in the format n-clips × n-frames-per-clip, GFLOPS indicates the
GFLOPS used in evaluation,Params indicates the number of parameter of
the model. In bold we can find models with the best accuracy, compared with
models having similar GFLOPS. When the non streaming version performs
better than the best streaming version, both the best performing streaming
version and the non-streaming version are displayed in bold.

86

4.2. EXPERIMENT RESULTS 87

Name Frames GFLOPS Param Accuracy
A0-stream∗ 1×60 1.443 2.875M 42.36
A0T-stream-256 1×60 1.534 3.414M 45.27
A2-stream∗ 1×60 14.60 6.45M 49.11
A2T-stream-256 1×60 14.70 6.84M 47.70
TRN [50] NA×8 NA×16 18.3M 34.4
TSM (R50) [28] 1×8 33 24.3M 45.6
MSNet-R50 [25] 1×8 34 24.5M 50.9
X3D-M† (non-pretrained) [17] 6×16 6×6.4 3.3M 46.7
BQN [17] 6×48 6×9.7 6.6M 53.7

Table 4.6: State-of-the-Art performance comparison on Something-to-
Something V1. † Represents a reimplemented model. Frames indicates
the number of frames in input in the format n-clips × n-frames-per-clip,
GFLOPS indicates the GFLOPS used in evaluation, Params indicates the
number of parameter of the model. In bold we can find models with the best
accuracy, compared with models having similar GFLOPS.

equal to the input length for the Transformer version.
It’s also possible for the Transformer to extend or reduce the attention length,
with respect to the one used in training. The experiments in Table 4.8
show that the network benefits from having an attention length equal to the
amount of frames in input, even when larger than the attention length used
in training, highlighting the ability of the Transformer attention mechanism
to successfully generalize to longer sequences. A strong reduction in per-
formance is instead observable when the attention length is set to 50% the
number of frames in input, especially when provided with a low number of
frames in input.

4.2.6 Clip centering

It is of particular interest the study of centering of the evaluation clip, since
the models are provided with a single clip of the video. The choice of the cen-
tering of the clip can strongly influence performance, depending on whether
the videos contain more information at the beginning, at the center or at the
end of the videos. A study of this kind has been done on the A2-stream-
T256 and A2-stream trained on SSv1. From Fig. 4.1, we can observe the
models tend to perform better with center subclips when provided with few

87

4.2. EXPERIMENT RESULTS 88

Name Frames Train Frames Eval Accuracy
A2-stream∗ 1×60 1×60 49.11
A2-stream∗ 1×60 1×90 49.70
A2-stream∗ 1×60 1×180 49.54
A2T-stream-256 1×60 1×60 47.70
A2T-stream-256 1×60 1×90 47.98
A2T-stream-256 1×60 1×180 48.36

Table 4.7: Capability of generalizing to longer sequences on SSv1. The mod-
els provide better accuracy when they receive in input a number of frames
longer than the one they are trained on. The best performing versions for
the A2-stream and A2T-stream-256 are displayed in bold.

Name Frames Train Frames Eval Att Len Accuracy
A2T-stream-256 1×60 1×180 1×90 48.14
A2T-stream-256 1×60 1×180 1×135 48.16
A2T-stream-256 1×60 1×180 1×180 48.36
A2T-stream-256 1×60 1×60 1×30 45.44
A2T-stream-256 1×60 1×60 1×45 47.50
A2T-stream-256 1×60 1×60 1×60 47.70

Table 4.8: Capability of generalizing to longer sequences on SSv1. The mod-
els provide better accuracy when provided with an attention length longer
than the one they are trained on. Reducing the attention length provides a
consistent drop in accuracy. The best performing versions are displayed in
bold.

88

4.2. EXPERIMENT RESULTS 89

Figure 4.1: Change in accuracy with respect to the centering of choice. On
the left the A2-stream-T256 model with attention length equal to the number
of frames in input. On the right the A2-stream network. The chart represent
the accuracy of the models when provided with the left, center, right frames
of a clip, with respect to the number of frames in input.

frames, probably due to the more information contained at the center of the
video. Once the number of frames in input gets close to the total number of
frames of the video (most of the videos are contained within 72 frames), the
differences between left, center, right becomes less important. Considering
the results discussed in this section, as already anticipated, the accuracy on
SSv1 are reported using centered clips.

89

Conclusions

In this thesis, the topic of Human Action Recognition has been investigated
with the objective of proposing an architecture which is capable of modeling
Long-Term relationships between frames and that is, at the same time, very
efficient in order to be used for real time application on mobile devices. The
overall architecture is composed of a MoViNet backbone combined with a
Transformer-XL classification head. In order to test the capabilities of the
newly proposed networks, the models have been trained on three datasets:
HMDB51, UCF101 and Something-to-Something V1.
The results show that the Transformer architectures have comparable accu-
racy, for the dataset of HMDB51 and UCF101. On Something-to-Something
V1, the largest and most challenging dataset for the temporal dimension, the
experiments report that the Transformer version A0-stream-256 outperforms
the original A0-stream improving the SOTA by 2.91% in accuracy, when com-
pared with models with similar GFLOPS. A slight decrease in performance
is instead observed for A2T-stream-256 when compared with A2-stream on
SSv1. This may be due to different reason and more investigation has to
be done to understand the applicability of the Transformer architecture to
larger models.
Both the Transformer and the original architecture are also capable of gen-
eralizing to longer input sequences, with a performance improvement even
when provided with 3× the frames used in training, +0.66% and +0.43% for
the Transformer and original architecture, respectively.
Overall, the Transformer architecture is a very general architecture, reason
for which it’s important to keep working on the integration of the Trans-
former architecture to extend the current capabilities of the Action Recogni-
tion models. The integration of the Transformer architecture in the field of
efficient action recognition has brought State-of-the-Art results, but further
research is needed in order to explore the applicability to larger models.

90

Bibliography

[1] Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion
Jones. Character-level language modeling with deeper self-attention.
CoRR, abs/1808.04444, 2018.

[2] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lu-
cic, and Cordelia Schmid. Vivit: A video vision transformer. CoRR,
abs/2103.15691, 2021.

[3] João Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier,
and Andrew Zisserman. A short note about kinetics-600. CoRR,
abs/1808.01340, 2018.

[4] Tanzeem Choudhury, Sunny Consolvo, Beverly Harrison, Jeffrey High-
tower, Anthony LaMarca, Louis LeGrand, Ali Rahimi, Adam Rea,
G. Bordello, Bruce Hemingway, Predrag Klasnja, Karl Koscher, James
Landay, Jonathan Lester, Danny Wyatt, and Dirk Haehnel. The mobile
sensing platform: An embedded activity recognition system. Pervasive
Computing, IEEE, 7:32–41, 05 2008.

[5] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Ran-
daugment: Practical data augmentation with no separate search. CoRR,
abs/1909.13719, 2019.

[6] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le,
and Ruslan Salakhutdinov. Transformer-xl: Attentive language models
beyond a fixed-length context. CoRR.

[7] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus
Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell.
Long-term recurrent convolutional networks for visual recognition and
description. CoRR, abs/1411.4389, 2014.

91

BIBLIOGRAPHY 92

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. CoRR, abs/2010.11929, 2020.

[9] Facebookresearch. fvcore/flopcount.md at main · facebookre-
search/fvcore, Apr 2021.

[10] Christoph Feichtenhofer. X3D: expanding architectures for efficient
video recognition. CoRR, abs/2004.04730, 2020.

[11] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[12] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna
Materzynska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo
Fründ, Peter Yianilos, Moritz Mueller-Freitag, Florian Hoppe, Christian
Thurau, Ingo Bax, and Roland Memisevic. The ”something something”
video database for learning and evaluating visual common sense. CoRR,
abs/1706.04261, 2017.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9:1735–80, 12 1997.

[14] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,
Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang,
Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching for mo-
bilenetv3. CoRR, abs/1905.02244, 2019.

[15] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks.
CoRR, abs/1709.01507, 2017.

[16] Weiming Hu, Dan Xie, Zhouyu Fu, Wenrong Zeng, and Steve Maybank.
Semantic-based surveillance video retrieval. IEEE Transactions on Image
Processing, 16(4):1168–1181, 2007.

[17] Guoxi Huang and Adrian G. Bors. Video classification with finecoarse
networks. CoRR, abs/2103.15584, 2021.

92

http://www.deeplearningbook.org

BIBLIOGRAPHY 93

[18] Evgeny Izutov. Ligar: Lightweight general-purpose action recognition,
2021.

[19] Boyuan Jiang, Mengmeng Wang, Weihao Gan, Wei Wu, and Junjie Yan.
STM: spatiotemporal and motion encoding for action recognition. CoRR,
abs/1908.02486, 2019.

[20] M. Esat Kalfaoglu, Sinan Kalkan, and A. Aydin Alatan. Late temporal
modeling in 3d CNN architectures with BERT for action recognition.
CoRR, abs/2008.01232, 2020.

[21] Will Kay, João Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier,
Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back,
Paul Natsev, Mustafa Suleyman, and Andrew Zisserman. The kinetics
human action video dataset. CoRR, abs/1705.06950, 2017.

[22] Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Mingxing Tan,
Matthew Brown, and Boqing Gong. Movinets: Mobile video networks for
efficient video recognition, 2021.

[23] Okan Köpüklü, Neslihan Kose, Ahmet Gunduz, and Gerhard Rigoll. Re-
source efficient 3d convolutional neural networks. CoRR, abs/1904.02422,
2019.

[24] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a
large video database for human motion recognition. In Proceedings of the
International Conference on Computer Vision (ICCV), 2011.

[25] Heeseung Kwon, Manjin Kim, Suha Kwak, and Minsu Cho. Motion-
squeeze: Neural motion feature learning for video understanding. CoRR,
abs/2007.09933, 2020.

[26] T. Lane. Multi-channel convolutions explained with. . .
ms excel! https://medium.com/apache-mxnet/

multi-channel-convolutions-explained-with-ms-excel-9bbf8eb77108,
November 2018.

[27] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Ob-
ject Recognition with Gradient-Based Learning, pages 319–345. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1999.

93

https://medium.com/apache-mxnet/multi-channel-convolutions-explained-with-ms-excel-9bbf8eb77108
https://medium.com/apache-mxnet/multi-channel-convolutions-explained-with-ms-excel-9bbf8eb77108

BIBLIOGRAPHY 94

[28] Ji Lin, Chuang Gan, and Song Han. Temporal shift module for efficient
video understanding. CoRR, abs/1811.08383, 2018.

[29] Weiyao Lin, Ming-Ting Sun, Radha Poovandran, and Zhengyou Zhang.
Human activity recognition for video surveillance. In 2008 IEEE Inter-
national Symposium on Circuits and Systems, pages 2737–2740, 2008.

[30] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher.
Pointer sentinel mixture models. CoRR, abs/1609.07843, 2016.

[31] Sparsh Mittal and Vibhu . A survey of accelerator architectures for 3d
convolution neural networks. Journal of Systems Architecture, 115, 01
2021.

[32] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, ICML’10,
page 807–814, Madison, WI, USA, 2010. Omnipress.

[33] Christopher Olah. Understanding lstm networks. https://colah.

github.io/posts/2015-08-Understanding-LSTMs/, Aug 2015.

[34] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty
of training recurrent neural networks, 2013.

[35] Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long:
Attention with linear biases enables input length extrapolation, 2021.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Explor-
ing the limits of transfer learning with a unified text-to-text transformer.
CoRR, abs/1910.10683, 2019.

[37] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore, and Michael
Littman. Activity recognition from accelerometer data. volume 3, pages
1541–1546, 01 2005.

[38] Carl Rebman, Milam Aiken, and Casey Cegielski. Speech recognition in
the human–computer interface. Information & Management, 40:509–519,
07 2003.

94

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

BIBLIOGRAPHY 95

[39] I. Rodomagoulakis, N. Kardaris, V. Pitsikalis, E. Mavroudi, A. Kat-
samanis, A. Tsiami, and P. Maragos. Multimodal human action recog-
nition in assistive human-robot interaction. In 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
2702–2706, 2016.

[40] Karen Simonyan and Andrew Zisserman. Two-stream convolutional net-
works for action recognition in videos. CoRR, abs/1406.2199, 2014.

[41] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101:
A dataset of 101 human actions classes from videos in the wild. CoRR,
abs/1212.0402, 2012.

[42] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Ro-
former: Enhanced transformer with rotary position embedding. CoRR,
abs/2104.09864, 2021.

[43] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and
Manohar Paluri. A closer look at spatiotemporal convolutions for action
recognition. CoRR, abs/1711.11248, 2017.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. CoRR, abs/1706.03762, 2017.

[45] Patrick von Platen. Transformer-based encoder-decoder models, Oct
2020.

[46] Chi-Feng Wang. A basic introduction to separable convolutions, Aug
2018.

[47] Wikipedia. Perplexity — Wikipedia, the free encyclopedia. http://en.
wikipedia.org/w/index.php?title=Perplexity&oldid=1022965742,
2021. [Online; accessed 02-October-2021].

[48] Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaiming He,
Philipp Krähenbühl, and Ross B. Girshick. Long-term feature banks
for detailed video understanding. CoRR, abs/1812.05038, 2018.

[49] Chuhan Zhang, Ankush Gupta, and Andrew Zisserman. Temporal query
networks for fine-grained video understanding. CoRR, abs/2104.09496,
2021.

95

http://en.wikipedia.org/w/index.php?title=Perplexity&oldid=1022965742
http://en.wikipedia.org/w/index.php?title=Perplexity&oldid=1022965742

BIBLIOGRAPHY 96

[50] Bolei Zhou, Alex Andonian, and Antonio Torralba. Temporal relational
reasoning in videos. CoRR, abs/1711.08496, 2017.

[51] Yi Zhu, Xinyu Li, Chunhui Liu, Mohammadreza Zolfaghari, Yuanjun
Xiong, Chongruo Wu, Zhi Zhang, Joseph Tighe, R. Manmatha, and
Mu Li. A comprehensive study of deep video action recognition. CoRR,
abs/2012.06567, 2020.

96

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Human activity recognition
	Applications
	Types
	RGB Video based Action recognition
	Challenges
	Types

	Datasets
	UCF-101
	HMDB-51
	Something to Something V1
	Kinetics

	Thesis goals
	Modeling the Temporal Dimension
	Efficient online RGB Video Action Recognition

	Architercutres
	Convolutional Neural Network
	2D convolutions
	3D convolutions
	(2+1)D convolutions
	Depth-wise Convolutions
	Squeeze-and-Excitation Blocks

	RNN
	Advantages and Drawbacks
	LSTM

	Transformer
	Scaled dot-product attention
	Multi-Head attention
	Encoder and Decoder
	Positional encoding
	Causal Attention

	Human activity recognition architectures
	ConvNet-LSTM
	Two-Stream Networks
	3D ConvNets
	TSM (Temporal Shift Module)
	Transformers
	3D ConvNets - Transformers

	Efficient Networks: A Review
	State of the art comparison

	Model Architecture
	Transformer-XL Architecture
	Segment-Level Recurrence with State Reuse
	Relative Positional Encoding
	Vanilla Transformer Input Length Problem
	Inference
	Training
	Receptive field

	ALiBi: Attention with Linear Biases
	Architecture

	MoViNets
	Causal convolutions
	Stream buffer
	Fusing the concepts of stream buffer and state reuse
	Convolutional Block

	The Proposed Architecture
	Modeling the Temporal Dimension
	Efficiency and Latency
	Architecture Details

	Experiments
	Implementation Details
	Architectures
	Training and Evalution
	Latency Testing
	FLOPS estimation and parameters count
	Peak Memory Occupancy

	Experiment results
	HMDB51 Results
	UCF101 Results
	Something to Something V1 Results
	State-of-the-Art Comparison
	Generalization to Longer Sequences
	Clip centering

	Conclusions
	Bibliography

