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Summary

In control systems, when the state equations are unknown, the design of a state
observer usually consists first in identifying the model of the system from exper-
imental data, and then in designing an observer from the identified model. This
two-step procedure is generally not optimal. In this thesis, a one-step procedure
is presented, where observers are directly designed from experimental data, using
neural networks to approximate the nonlinearities in the system. This procedure
is here used in two different applications. First, some uncertain linear systems are
taken as case studies from research papers where robust linear filters are presented;
a nonlinear observer is designed from data and its robustness is compared to those
filters. Then, a satellite attitude control system is considered, where the angular
velocity cannot be directly measured and is usually estimated using an EKF (ex-
tended Kalman filter). If the satellite is used to hook debris, its inertia matrix can
vary substantially and in this case robustness is important. A nonlinear observer
is then designed from data to estimate the angular velocity and its performance is
compared to the EKF.
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Chapter 1

Introduction

The design of filters and state observers in control systems is a frequent task when
some unmeasurable or noise-corrupted variables are needed as inputs to the con-
troller. In most cases, however, the equations of the system to be filtered are
unknown and the common paradigm consists in first identifying the system from
experimental data, and then designing a filter on the identified system. This is a
two-step procedure that is characterized by an evident problem: since the iden-
tified model is just an approximation of the system, the resulting filter is only
optimal for this approximation, not for the actual system, on which its perfor-
mance may decrease substantially. Furthermore, when the system is nonlinear,
designing an optimal filter is a very difficult task ([1]) and only approximate filter
can be derived most of the times ([2]). There is also the case of uncertain systems,
where the design of robust filters requires the knowledge of the uncertainty model
(i.e. a model of the parametric uncertainties), but when the system is nonlinear
it is very hard to obtain such a model. Even when the system is linear, the linear
Kalman filter designed for the nominal system is not robust and it has large vari-
ance when the system is perturbed; in this case, other robust filter design methods
are proposed in the literature ([3], [4]) but their robustness is still not high.
In [5] a one-step procedure is proposed to overcome the drawbacks of the two-step
approach. Here the filter is obtained directly from experimental data, without first
identifying the system. The filter obtained with this procedure is called a Direct
Virtual Sensor (DVS). The advantage of this approach is that the performance is
usually better than the two-step one, especially in the case of uncertain systems.
In this thesis, this procedure is analyzed in the parametric-statistic approach
(stochastic noises and parametric filter structure) and it is implemented to design
robust observers by means of Neural Networks and, after a theoretical introduc-
tion of its foundations, it is first shown that, even for linear uncertain systems,
the most robust filter is nonlinear, comparing the performances with the results in
[3] and [4]; then, a nonlinear uncertain system is considered (a spacecraft attitude
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Introduction

control system) and a DVS is used to estimate some unmeasurable states and its
estimation accuracy is compared to the one of an extended Kalman filter. Also in
this case it is shown that the DVS has the best accuracy and robustness. The work
in this thesis therefore confirms the superiority of the one-step procedure to the
two-step one for both linear and nonlinear systems and proposes a design method
that guarantees better performances and robustness than what can be found on the
literature for filter design, and the consequences are of paramount importance for
situations where high accuracy is needed for precision tasks in uncertain scenarios
and where inaccuracies can lead to high costs and even mission failures.

1.1 Theoretical foundations
Following the notation in [5], let S be a discrete-time system, described by the
equations

xt+1 = F(xt, ũt) + wt
x (1.1)

ỹt = Hy(xt, ũt) + wt
y (1.2)

z̃t = Hz(xt, ũt) + wt
z, (1.3)

where

• xt ∈ Rnx is the state

• ũt ∈ Rnu is the known input

• ỹt ∈ Rny is a measured output

• z̃t ∈ Rnz is a quantity to estimate

• wt
x is the process noise and wt

y,wt
z are output noises.

The objective is designing a filter that, using the inputs (ũτ , ỹτ ), τ ≤ t, gives an
estimate ẑt as output. Such a filter is indicated in the paper as Direct Virtual
Sensor (DVS). In a parametric-stochastic approach, the noises wt

x and wt
y

are assumed to be stochastic, a parametric filter structure is considered and the
objective is minimizing V ar(z̃t − ẑt) for any t.
Let us now suppose we have a set of collected data {ũt, ỹt, z̃t, t = 1,2, . . . , T}, the
functions f , Hy, Hz are unknown and (F,Hy) is observable in the sense of [5]. In
the following paragraphs, the two-step approach and the one-step approach are
compared.
As previously stated, the two-step approach consists in first identifying the system
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1.1 – Theoretical foundations

and then designing a filter on the identified system. In the first step, we select a
parametric model structure that defines the following model set:

M := {M(θM) : θM ∈ θM}, (1.4)

where θM is a compact subset of RnθM and nθM is the number of parameters of the
model structure. The model structure selection corresponds to the choice of the
functions that approximate the system behavior; for instance, it could be a neural
network with a defined structure, a sum of polynomials up to a certain order, etc.
Using the training set

DM := {ũt, (ỹt, z̃t), t = 1, . . . , T}, (1.5)

a model M̂ = M(θ̂M) of S is identified from DM , where ũt is considered as the
input of M̂ and (ỹt, z̃t) as the outputs. The model is identified selecting the θ̂M
such that

θ̂M = arg min
θM∈θM

1
T

T∑
i=1

1
2‖(ỹ

t, z̃t)− (ytM , ẑ
t
M)‖2

2, (1.6)

where (M t, ẑtM) is the prediction given by M(θM). In the second step, then, a
minimum-variance filter K̂ = K(θ̂M) is designed for M̂ , in order to give an output
estimate ẑt of z̃t using (ũτ , ỹτ ), τ ≤ t.
In the one-step approach proposed in the paper, instead, we select a parametric
filter structure that defines the following set:

V := {V (θV ) : θV ∈ θV }, (1.7)

where θV is a compact subset of RnθV and nθV is the number of parameters. Using
the training set

DV := {(ũt, ỹt), z̃t, t = 1, . . . , T}, (1.8)

a filter V̂ = V (θ̂V ) for S is directly identified fromDV , where (ũt, ỹt) are considered
as the inputs of V̂ and z̃t as the output (the difference between DV and DM is
evident). The filter is identified selecting the θ̂V such that

θ̂V = arg min
θV ∈θV

1
T

T∑
t=1

1
2‖z̃

t − ẑtV ‖2, (1.9)

where (ũt, ỹt) is the input of the filter and ẑtV is the output of the filter.
Note that, while the structure of K̂ can not be chosen as it depends on the identified
model structure, the structure of V̂ can instead be chosen, without even identify-
ing a model of S. This is where the name Direct Virtual Sensor comes from for
V̂ , whereas K̂ is a Model-based Virtual Sensor instead. Let us now discuss the
properties of DVSs both for linear and nonlinear systems.
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1.1.1 Linear systems
When the system S is linear, let us assume that a linear filter structure V (θV ) is
selected and, at the same time, a linear Kalman-filter K̂ is designed to estimate ẑt
on the basis of an identified model M̂ of S belonging to a linear model structure
M(θM). If the model structure M(θM) is of order nM , so is K(θM); therefore, if
the selected structure V(θ) is of order nM , we have K(θM) ∈ V .
When the assumptions in [5], Section 3.1 are verified, the following theorem holds:

Theorem 1
With probability 1 as T →∞,

1. V̂ = arg minV (θV ) E(‖z̃t − ẑtV ‖2
2) (V̂ is the minimum-variance filter

among all filters belonging to V)
2. If K̂ ∈ V , then E(‖z̃t − ˆ̃ztV ‖2

2) ≤ E(‖z̃t − ˆ̃ztK‖2
2)

3. If S = M(θ0
M) ∈M and K(θ0

M) ∈ V , then V̂ is a minimum variance
filter among all linear causal filters mapping (ũτ , ỹτ )→ z̃τ , τ ≤ t

4. If S = M(θ0
M) ∈ M, K(θ0

M) ∈ V , M(θM) is globally identifiable, S
is stable, and the data are informative enough, then E(‖z̃t− ˆ̃ztV ‖2

2) =
E(‖z̃t − ˆ̃ztK‖2

2)

The previous theorem states in particular that, under the hypothesis of the theo-
rem, the filter V̂ is always better than K̂, even when S is unstable; the only case
where K̂ has the same estimation error variance of V̂ is when the assumptions in
point 4 are satisfied (in particular, the stability of S and the fact that S ∈ M ,
which means that the model structure perfectly models S).

1.1.2 Nonlinear systems
When the system S is nonlinear, let us assume that a nonlinear filter structure
V (θV ) is selected satisfying condition M1 (see Appendix of [5]) and is related to
the parametric nonlinear regression form

ẑtV = fV (θV , ẑt−1
V , . . . , ẑt−nVV , ỹt, . . . , ỹt−nV , ũt, . . . , ũt−nV ). (1.10)

At the same time, a nonlinear minimum variance filter K̂ is designed to estimate
ẑt on the basis of an identified model M̂ belonging to a nonlinear model structure
M(θM) that satisfies M1. When the assumptions in [5], Section 3.2 are verified,
the following theorem holds:

Theorem 2
With probability 1 as T →∞,
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1.2 – Neural-network-based NARX and NFIR

1. V̂ = arg minV (θV ) E(‖z̃t − ẑtV ‖2
2) (V̂ is the minimum-variance filter

among all filters belonging to V)
2. If K̂ ∈ V , then E(‖z̃t − ˆ̃ztV ‖2

2) ≤ E(‖z̃t − ˆ̃ztK‖2
2)

3. If S = M(θ0
M) ∈M and K(θ0

M) ∈ V , then V̂ is a minimum variance
filter.

Note that, differently from the linear case, the minimum variance filter K̂ cannot
generally be computed, but only approximated; therefore, the advantages of the
one-step method over the two-step one are even more significant.

To summarize, fV can be a linear function in the case of linear systems,
but, more in general, it is a nonlinear function chosen according to the standard
parametrizations found in the literature, that vary from radial basis functions to
neural networks ([6]). It is important, therefore, to notice that this method is
generalizable to any form of nonlinear approximation for f , and that neural net-
works are just one of these forms. A DVS, in other words, can use neural networks
to approximate the nonlinearity of the system, but also polynomial functions etc.,
and the DVS method is the same for any choice. The following section explores
in depth the structure of the filter when the neural-network-based NARX model
is chosen.

1.2 Neural-network-based NARX and NFIR
The design of a filter following the procedure that was explained above considers
the variable to estimate as a time series to be forecast using other other input time
seris given as inputs. There are many ways to model a time series, one of which is
the nonlinear autoregressive exogenous (NARX) model. According to this
model, the filter takes an input u and an output y and estimates

ŷtV = f(yt−1,yt−2, . . . ,yt−na ,ut,ut−1, . . . ,ut−(nb+1)). (1.11)

The quantities yt−1,yt−2, . . . ,yt−na ,ut,ut−1, . . . ,ut−(nb+1) are the model regressors
and the function f is the output function. The term "autoregressive" comes from
the presence of the past estimated values of the same series among the regressors,
while the term "exogenous" come from the presence of an exogenous input series u
among the regressors. The notation is not to be confused with the one used above;
indeed, for a system in the form described above, we would have ut = [ũt, ỹt] and
yt = z̃t. Note that in the previous equations the output estimate at time t is
done using the measured outputs at previous time steps; this is called a one-step
prediction. If, instead, the past estimated values are used, i.e.

ŷtV = f(ŷt−1, ŷt−2, . . . , ŷt−na ,ut,ut−1, . . . ,ut−(nb+1)), (1.12)

17



Introduction

then we have amulti-step prediction. Assuming that the real y is known at training
time, the training is different depending on the chosen type of prediction. If
the filter performs a one-step prediction, then the training shall be focused on
prediction, i.e. the real y has to be used as regressor. If, instead, the filter
performs a multi-step prediction, the training shall be focused on simulation, and
the estimated ŷ is used as regressor, whereas the real y is only used to compare the
filter output ŷ(t) and the real output y(t). Note that, while in the training phase
we assume to be able to measure y to use it for training (for example by simulating
the system), at runtime instead it may be unmeasurable; in that case, multi-step
prediction is the only way. As mentioned before, the structure of f can be any
nonlinear expression, for instance polynomials. The case where f is the output
function of a neural network is considered in the following. Using the specifications
of the System Identification Toolbox in Matlab (used for this work, together with
the Deep Learning Toolbox) the output function follows the structure in Figure
1.1 and it is basically a neural network whose output function is

Figure 1.1. NARX filter structure

f(x) = LT (x− r) + g(Q(x− r)) + d, (1.13)
where x is the vector of regressors, LT (x− r) is the output of the linear function
block, g(Q(x− r)) is the output of the nonlinear function block, r is the vector of
the mean of the regressors, Q is a projection matrix that makes the calculations
well conditioned and d is a scalar offset added to the output. g(x) is usually a sum
of n nonlinear units:

g(x) =
n∑
k=1

αkκ(βTk (x− γk)), (1.14)

where βk is a vector (so βTk (x− γk) is a scalar) and κ(s) is generally chosen to be
the sigmoid function, i.e.

κ(s) = 1
1 + e−s

. (1.15)
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1.2 – Neural-network-based NARX and NFIR

The output function is then represented by the neural network in Figure 1.2. More

Figure 1.2. Sigmoid neural network

specifically, this neural network maps the input x(t) = [x1(t),x2(t), . . . ,xm(t)]T to
the scalar

y(t) = y0 + (x(t)− x)TPL + S(x(t)), (1.16)

where

• x(t) ∈ Rm is the vector of regressors with mean x

• y0 ∈ R is a scalar offset

• P ∈ Rm,p, m ≥ p, is a projection matrix (p is the number of linear weights)

• L ∈ Rp is a vector of weights

• S(x) is a sum of dilated and translated sigmoid functions:

S(x) =
n∑
i=1

sif((x− x)TQbi + ci), (1.17)

where

– n is the number of units,
– Q ∈ Rm,q, m ≥ q is a projection matrix,
– the si ∈ R are the output coefficients,
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– the bi ∈ Rq are the dilation coefficients,

– the ci ∈ R are the translations,

– f(z) is the sigmoid functions as defined above.

Other neural network structures that can be considered are the wavelet net-
works, where the nonlinear function operates on radial combinations of inputs.
The structure can be seen in Figure 1.3.

Figure 1.3. Wavelet neural network

Here, the input x(t) = [x1(t),x2(t), . . . ,xm(t)]T is mapped to the scalar

y(t) = y0 + (x(t)− xTPL +W (x(t)) + S(x(t)), (1.18)

where

• x(t),x, y0,P,L are defined as above,

• W (x) is a sum of dw dilated and translated wavelets as in the following equa-
tion:

W (x) =
dw∑
i=1

wifw(bi(x− x)TQ− ci), (1.19)

where fw(x) = e
−xT x

2 ,

20



1.2 – Neural-network-based NARX and NFIR

• S(x) is a sum of ds dilated and translated scaling functions (scalelets) as in
the following equation

S(x) =
ds∑
i=1

sifs(bi(x− x)TQ− ei), (1.20)

where fs(x) = (dim(x)− xxT )e−xT x
2

As previously stated, the difference between one-step prediction and multi-step
prediction lies in the use of either y or ŷ as a regressor. The network structure
changes accordingly; for instance, using the narxnets in the Deep Learning Tool-
box, if we choose the one-step prediction then the network must be in open-loop
mode, as in Figure 1.4; instead, if we choose the multi-step prediction then the
network must be in closed-loop mode, as in Figure 1.5. The difference is evident
and it lies in the feedback of the estimated ŷ in the second case, whereas in the
first case only the real measurements y are used.

Figure 1.4. Open-loop neural network

Figure 1.5. Closed-loop neural network

As to the nonlinear function, there are other functions that can be used, but
in this thesis the sigmoid function was used. Furthermore, to ensure stability
of the observer, the autoregressive nature of NARX was discarded, by not putting
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any ŷ(t − τ), τ = 1, . . . among the regressors: the input of the filter is then only
made of a number of current and delayed values of the input u, so that, in general,
the filter V estimates y according to this equation:

ŷtV = f(θ;ut,ut−1, . . . ,ut−(nb+1)), (1.21)

where f(x) is the output of the sigmoid network and θ is the vector of the parame-
ters of the neural network, calculated during the training phase using, for instance,
the nonlinear least squares as a performance metrics. Note that by removing
any ŷ(t − τ) among the regressors, the filter now becomes a nonlinear finite
impulse response (NFIR) filter. The full NARX model is instead a nonlinear
infinite impulse response (NIIR) model. It is reminded that the difference between
a FIR and an IIR is that, when the input is the Dirac’s delta function, the output
response of the FIR goes to 0 after a finite time, whereas the one of the IIR does
not. In other words, an NFIR can be obtained by using a NARX and removing
the y estimates among the regressors, and this is the design choice of this thesis.
Given the lack of autoregression in the chosen filter structure, the results of The-
orem 1 and Theorem 2 are not guaranteed; however, it is shown in the following
sections that even without autoregression the DVS still outperforms the Kalman
filter when the system S is linear and a parametric perturbation is present (the
Kalman filter is better only on the nominal system); furthermore, when the sys-
tem S is nonlinear, the non-autoregressive DVS outperforms the extended Kalman
filter even on the nominal system. This is an important result, since the linear
Kalman filter and the EKF are autoregressive. As a final remark, let f 0 be the
true function that we want to approximate with f(θ;x) = ∑r

i=1 αiσi(x), where
x is the vector of the regressors and the various σi(x) are the basis. The basis
can be fixed (for instance polynomials in x) or tunable (for instance, using neural
networks, the sigmoid functions in x). It is clear that the objective is to find the
σi and θ such that f(θ;x) → f 0(x) as r → ∞. It is proven that the number r
of basis needed to accurately approximate f 0 with f grows exponentially with the
number of regressors n if the basis is fixed (this problem is known as the curse of
dimensionality). If the basis is tunable, however, and f 0 satisfies some regularity
conditions, r grows linearly with n.
Furthermore, what the training does on a neural network (for time series forecast-
ing) is solving the optimization problem

min
θ∈θ

T∑
t=0

(f(θ;xt)− yt)2, (1.22)

in the case of nonlinear least squares, where the output yt is known at training time
(it is contained in the dataset used for training) and T is the number of time steps
of the time series used for training. The function to minimize is called the loss
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1.2 – Neural-network-based NARX and NFIR

function and it is generally a nonlinear non-convex function, so this optimization
problem is non-convex, which implies that the optimum found during the training
might be a local optimum.
Finally, a form of regularization is usually performed during training to avoid over-
fitting, i.e. adapting too much to the training set, losing the ability to generalize
to new data. This is done by modifying the minimization problem this way:

min
θ∈θ

T∑
t=0

(f(θ;xt)− yt)2 + λ‖Rθ‖2
2, (1.23)

where λ is the regularization factor and R � 0 is a square weighting matrix,
usually chosen equal to the identity matrix. The higher λ, the smaller ‖θ‖2 and
the stronger the regularization. This form of regularization is called Tikhonov
regularization.

23



24



Part II

Design of robust observers
with neural networks and
linear systems examples

25





Chapter 2

Design of robust DVSs

In the previous part, the difference between the two-step and the one-step filter
design procedures was explained, considering a situation where the equations of
a system S are unknown. In both cases, since there are unavoidable parametric
uncertainties, it is important that the resulting filter is robust as the uncertain-
ties on S vary in a certain range, or, in other words, the filter estimation error
variance must be as low as possible for every resulting S in the considered range
of uncertainties. Let us consider, for instance, a multiplicative uncertainty model,
where ξ ∈ Rnξ is the vector of parameters of S that are subject to uncertainty (so
ξnom is the vector of nominal parameters). Let Ωmin, Ωmax be two diagonal weight
matrices Ωmin,Ωmax ∈ Rnξ,nξ such that ξmax = Ωmaxξnom, ξmin = Ωminξmin (ob-
serve that choosing Ω = I we have Ωξnom = ξnom). Note that the entries (i, i)
of Ω are the eigenvalues λi(Ω). Let now SΩ be the resulting system when the
perturbations associated to the weight matrix Ω are applied to the parameters.
We want the filter to be as accurate as possible for all SΩ with Ω such that
λi(Ωmin) ≤ λi(Ω) ≤ λi(Ωmax), i = 1, . . . , nξ.
The two-step procedure consists of identifying a SΩnom from a set of measurements
and designing a filter K̂ that is optimal for SΩnom . In the one-step procedure, in-
stead, the measurements coming from SΩmin

and SΩmax are used to directly obtain
a filter that works in that range (the idea behind this procedure is to consider
SΩmin

and SΩmax as the limit cases on which the filter must still work). As is il-
lustrated in the next chapters, this allows for more robustness, as the second filter
(the DVS) has low variance in the whole range, whereas the performance of the
first filter K̂, instead, generally deteriorates evidently as the true parameters are
distant from the nominal ones.
An important part for an accurate DVS design is the collection of the data to be
used for training. Let us assume that, following the same notation of the previous
part, we can measure a corrupted output y and we want to estimate a quantity z
(that can be a linear or nonlinear combination of the states, that in turn may be
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measurable or unmeasurable). Two phases can be distinguished: a training phase
and a runtime phase. The training phase is where the data is collected to train
the DVS; in this phase, the quantity z is assumed to be measurable or simulable
exactly. The runtime phase, instead, is where the DVS is actually used to estimate
z, which is now unmeasurable. Now, if the system has a deterministic input u as
well, a dataset

DV := {(u(k),y(k)), z(k) | k = 1, . . . , T
Ts
}, (2.1)

where T is the time length considered and Ts is the sampling time. Since multiple
experiments are performed to collect the data, then we can write

DV := {{(ui(k),yi(k)), zi(k) | k = 1, . . . , T
Ts
} | i = 1, . . . , ne}, (2.2)

where ne is the number of experiments. If a deterministic input u is not present,
instead, the dataset becomes

DV := {{yi(k), zi(k) | k = 1, . . . , T
Ts
} | i = 1, . . . , ne}, (2.3)

The parameters T and Ts are chosen so to observe the dynamics of the system
long enough and to catch the relevant frequencies. Note that the experiments are
to be performed when the system is in open-loop.
If u is present, a random input u has to be given to S during the experiment
(following for instance the Uniform distribution). If it is already known what the
range of u will be at runtime (for instance due to the saturation of the actuators),
then in the training phase u must be a random input in that range.
The experiments in this thesis are performed half on SΩmax and half on SΩmin

,
and the initial conditions of the system states vary at each experiment. After the
dataset is collected, the DVS is trained on it. The architecture of the DVS is
chosen prior to the training, and the choice includes the number of hidden units,
the nonlinear function, the regularization factor etc. If there are multiple output
variables to be predicted, it’s better to design a DVS for each output, so that each
DVS performs the optimal prediction for its related output.
As explained in the previous part, the DVS can be based on any form of linear or
nonlinear approximation (linear functions, polynomials, etc.). The DVS method
is the same with any choice, and the only difference lies in the structure of the
approximation and, therefore, in the inference process. The DVSs designed in this
thesis are based on neural networks. In the next chapter, the case of linear systems
is considered.
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Chapter 3

Robust DVSs for linear
systems

In the case of linear systems, the performance of the filter obtained with the two-
step approach noticeably decreases when SΩ /= SΩnom especially when K̂ is the
current Kalman filter (that is, however, the minimum-variance filter on SΩnom .
The situation is even worse when K̂ is the delayed Kalman filter (see Appendix).
To overcome this problem, other linear robust filters are found in the literature,
based for instance on covariance matrix upper bounds ([3]) or on Linear Matrix
Inequalities ([4]). In the following sections, two examples of linear systems are
therefore considered, a DVS is designed for each example, and its robustness is
compared to the one of a current Kalman filter (CKF), a delayed Kalman filter
(DKF), and the filters of the papers cited above (that in this thesis are referred
to as Shaked filter ([3]) and Duan filter ([4]). It is then shown that a robust DVS
can be nonlinear even for linear systems.

3.1 Comparison with the Shaked filter
In [3] a robust discrete-time minimum variance observer is proposed for the fol-
lowing uncertain linear system:

xk+1 =
[
0 −0.5
1 1 + δ

]
xk +

[
−6
1

]
wk, |δ| < 0.3 (3.1)

with the measurement
yk =

[
−100 10

]
xk + νk. (3.2)

The process noise wk ∈ R and the output noise νk ∈ R are such that:
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E(wk) = 0
E(νk) = 0

E(
[
wk
νk

] [
wTl νTl

]
) =

{
I2 k = l
0 k /= l

We want to estimate zk =
[
1 0

]
xk. In the paper, the H2 filtering problem is

considered, where the objective is finding a minimum-variance filter that minimizes
the variance of the estimation error E((z− ẑ)T (z− ẑ)). A minimum-variance filter
is obtained with the following state equation:

x̂k+1 =
[
0 −0.5861
1 1.1895

]
x̂k +

[
−0.0053
0.0016

]
(yk −

[
−100 10

]
x̂k) (3.3)

Figure 3.1. Simulink scheme of the system (Shaked case)

With δ = 0.5, however, the system becomes unstable, and the proposed filter
does not estimate correctly the status. In the following, it is shown how a well-
designed DVS not only outperforms both the Kalman filter and the Shaked filter
when δ /= 0, but also it correctly estimates the state even when δ = 0.5 and
the system is unstable. To obtain the DVS, the open-loop system is simulated
for 1000s ten times with δ = 0.5 and ten times with δ = −0.5, always with
wk, νk ∼ N (µnom, σ2

nom), where µnom = 0, σ2
nom = 1. The initial state x0 changes

each time, according to the uniform distribution between −5 and +5. We then
merge the twenty experiments and use the resulting dataset for training. In Figure
3.1 the Simulink scheme of the system is shown, where there are two blocks that
generate the random noise w, ν and two output blocks that gather the y and z
data. sys_actual is the block representing the LTI system with the perturbation.

To obtain the DVS, the nlarx command in the System Identification toolbox is
used. The filter is built considering:
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3.1 – Comparison with the Shaked filter

• the corrupted system output y as the filter input u1

• the real z as the filter output y1

• a Sigmoid network with 5 units

• a sampling time Ts = 1s

• a regularization factor λ = 1e− 2

• the values u1(t), u1(t− 1) as regressors

After the training, we obtain an average training accuracy of 95.4%.

Figure 3.2. Plot of the nonlinearity of the DVS (Shaked case)

In Figure 3.2 the function y1(u1(t), u1(t− 1)) obtained is shown, and its almost
linear nature is clear, since it resembles a plane, which is compatible to the linear
nature of the system.
To obtain the validation accuracy, the system is simulated again and the system
output y is given as input to the filter; the filter output is then compared with z.
In Figures 3.3, 3.4 and 3.5 the validation accuracy is shown. The higher accuracy
when δ = −0.5,+0.5 is due to the fact that the experiments used for training were
performed with those values of δ.

The variance of the estimation error is then measured, using (1) the current
Kalman filter, (2) the delayed Kalman filter, (3) the Shaked filter, (4) the DVS.
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Figure 3.3. Validation accuracy with δ = 0 (Shaked case)

First, the performance is measured varying δ and with wk, νk ∼ N (µ, σ2), keeping
µ = µnom, σ2 = σ2

nom. Ten simulations are performed where the initial conditions
are randomly chosen according to the uniform distribution between −5 and +5,
and the average variance is calculated.

δ Current Kalman Delayed Kalman Shaked NL DVS
0 0.000245 35.9485 44.3469 0.4515

+0.3 57.8721 1523.3464 52.3918 0.8852
−0.3 4.4321 142.459 47.9492 0.2943
+0.5 6.978e+06 1.739e+08 6.176e+03 1.237
−0.5 8.8321 251.4313 48.3995 0.2254

Table 3.1. Performances varying only δ (Shaked case)

As we can see from Table 3.1, the current Kalman filter is the best only on the
nominal system. On the perturbed ones, however, the DVS is noticeably the best,
even when δ = 0.5.
Another type of robustness is then tested other than the one to parametric uncer-
tainty. Using the same DVS found earlier, its accuracy is tested against uncertainty
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3.1 – Comparison with the Shaked filter

Figure 3.4. Validation accuracy with δ = −0.3,+0.3 (Shaked case)

on the noise structure. Therefore, keeping δ = 0, we vary σ2
w and σ2

ν .

σ2
w σ2

ν Current Kalman Delayed Kalman Shaked NL DVS
1 10 0.0022009 35.9008 45.8755 0.43558
10 1 0.0010877 356.7499 448.6862 10.3115
10 10 0.0029875 372.5341 468.9653 10.6136

Table 3.2. Performances varying only σ2
w and σ2

ν (Shaked case)

As we can see from Table 3.2, the current Kalman filter is the best and this is
coherent with the fact that the system is the nominal one. However, the DVS still
outperforms both the delayed Kalman filter and the Shaked filter. Also, the noise
w appears to be more impactful than ν.
Finally, we test the DVS when the noises do not even follow the gaussian distri-
bution, but the uniform one, varying the interval of the distribution.

Based on the results shown in Table 3.3, also in this case the current Kalman
filter is the best and the DVS outperforms both the delayed Kalman filter and
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Figure 3.5. Validation accuracy with δ = −0.5,+0.5 (Shaked case)

[a, b] Current Kalman Delayed Kalman Shaked NL DVS
[−1,1] 8.8387e-05 11.9941 15.0644 0.14007
[−2,2] 0.00032737 48.3574 61.3474 0.61263

[−10,10] 0.0065642 1212.1872 1532.4783 37.2973

Table 3.3. Performances without uncertainty but with uniformly dis-
tributed noises (Shaked case)

the Shaked filter. The decrease in accuracy of the DVS is due to the fact that, at
training time, only Gaussian white noises were used. In an application where the
real noise variance or distribution is unknown, the training should be done using
different variances and distributions.
Finally, we want to see how robust is the observer when the initial conditions are
different than the ones used for training (that were uniform between −5 and 5).
For instance, if we set x0 = [1000; 1000], with δ = 0 and w, ν Gaussian white
noises, we obtain an average variance equal to 81.7944. As shown in Figure 3.6,
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3.2 – Comparison with the Duan filter

where the estimation error in the first 50 seconds is plotted, this is due to the fact
that, at the beginning, the error is very high, even though it converges to zero after
a few seconds. Indeed, the average error variance ignoring the first 10 seconds is
equal to 0.5552.

Figure 3.6. Estimation error with x0 = [1000; 1000] (Shaked case)

3.2 Comparison with the Duan filter

In [4] another robust filter design procedure is proposed by means of linear matrix
inequalities (LMI). In particular, the example number 2 on the paper is used to
compare the performance of the Duan filter against a DVS. This example is very
similar to the one in [3], but the objective is different. Given the system described
by the following matrices:

A =
[
0 −0.5
1 1 + δ

]
, B =

[
−6 0
1 0

]
,

C =
[
−100 10

]
, D =

[
0 1

]
, L =

[
1 0

]
, |δ| ≤ 0.45
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the H∞ problem is here considered instead: given a scalar γ∞, the objective is
finding a stable filter such that

‖z − z‖2 < γ∞‖w‖2 (3.4)

for allwk ∈ l2[0,+∞). As a performance index, then, the value ‖z−z‖2
‖w‖2

is considered
(the value ‖w‖2 is assumed to be known at simulation time). In the paper, a filter
with the following matrices is found:

AF =
[

1.9248 0.6322
−6.1254 −1.9575

]
, BF =

[
0.0038
0.0071

]
(3.5)

LF =
[
−0.1590 −0.0605

]
, DF =

[
−0.0078

]
(3.6)

and we want to test its performance against a DVS. As before, 10 simulations with
δ = 0.5 and 10 with δ = −0.5 are merged and used for training (each one with
uniformly distributed initial conditions between −5 and 5). The scheme in Figure
3.7 is used to perform the experiments. Even though it seems that there is no
output disturbance, the input noise w is a vector with two components and, by
looking at the matrices B and D, it is evident that the first components affects
x whereas the second affects y. The same configuration as before for the DVS is
used, i.e. we consider

• the system output y as the filter input u1

• the real z as the filter output y1

• a Sigmoid network with 5 units

• a sampling time Ts = 1s

• a regularization factor λ = 1e− 2

• the values u1(t), u1(t− 1) as regressors

In Figure 3.8 the output function y1(u1(t), u1(t− 1)) is plotted, and once again
is coherent with the linearity of the system since it is an almost perfect plane.

The validation accuracy is then tested, first on the nominal system (Figure 3.9),
then with δ = −0.45,+0.45 (Figure 3.10), and finally with δ = −0.5,+0.5 (Figure
3.11).

The higher accuracy with δ = −0.5,+0.5 is due to the fact that the training
was performed with those values of δ, but the accuracy with δ = 0,−0.45,+0.45
is comparable. Finally, the obtained DVS is used to compare its performance (the
H∞ index) to the one of the Kalman filter and the Duan filter, varying δ. 10
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3.2 – Comparison with the Duan filter

Figure 3.7. Simulink scheme of the system (Duan)

Figure 3.8. Plot of the nonlinearity of the DVS (Duan case)

simulations are done for 1000 seconds, and also the noise w is collected so that its
norm can be calculated.

The H∞ index is calculated for each simulation and the average is shown in
Table 3.4.

It is evident that, excluding the nominal case where the current Kalman filter
is the best, the DVS outperforms all the other filters, even when the system is
unstable (δ = +0.5).
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Figure 3.9. Validation accuracy with δ = 0 (Duan case)

δ Current Kalman Delayed Kalman Duan DVS
0 0.16186 6.0563 1.2643 0.67028

−0.45 3.5484 18.8207 1.2612 0.50454
0.45 64.7371 323.5909 1.3035 1.2369
−0.5 4.3688 22.7127 1.2495 0.47786
+0.5 2628.0843 13115.0147 1.5685 1.1169

Table 3.4. Performances varying only δ (Duan case)
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Figure 3.10. Validation accuracy with δ = −0.45,+0.45 (Duan case)
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Figure 3.11. Validation accuracy with δ = −0.5,+0.5 (Duan case)
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Chapter 4

Spacecraft attitude control

4.1 Introduction

It is of fundamental importance to control the attitude of a spacecraft, which can
be a space station orbiting around a planet, a satellite to be pointed towards a
target, a space vehicle etc.
In the case of satellites, the orientation must be usually controlled with respect
to either a point on Earth (Earth pointing satellites) or a celestial frame (inertial
pointing satellites). However, controlling a nonlinear system is a delicate task that
requires high accuracy, and high robustness is needed whenever an exact model
of the system cannot be obtained, or when the system itself can change during
a mission. The second scenario is considered in this thesis, where an example of
a satellite used to hook space debris is explored. The problem of space debris
is becoming more and more important as time goes by. Particularly in Earth
orbit, indeed, there is a strong presence of derelict spacecraft, which is in turn
subject to disintegration and collisions that generate more waste. Furthermore,
even the unburned particles of rocket motors and the solidified liquids expelled
from spacecrafts contribute to the high amount of debris that represents a risk
to spacecrafts and an environmental problem. Space companies are developing
solutions to this problem, by designing spacecrafts (satellites, for instance) that
are able to track and hook objects in space. An example is the ELSA-d (End-of-Life
Service by Astroscale) satellite, designed by the japanese company Astroscale and
shown in Figure 4.1. However, after a spacecraft hooks a tensor, its inertia matrix
can vary substantially, depending on the object geometry and mass and from the
position of the hook with respect to the spacecraft axes. Generally speaking, we
can imagine that the inertia matrix can even triplicate, so the ACS must work well
also in that case and robustness is needed. In the example explored in this thesis,
it is supposed that the angular speed can not be measured. The industry standard

43



Spacecraft attitude control

in this case would be to use an extended Kalman filter to estimate it, but it is not
guaranteed to be the minimum-variance filter, neither the most robust one. A DVS
is therefore deployed and its performance is compared to the one of the EKF, both
in closed-loop and in open-loop. However, the system must first be modeled so
that the simulation can be done; in the following sections, the spacecraft dynamics
are described to derive an attitude control system, as in [7].

Figure 4.1. A rendering of ELSA-d (Author: Astroscale, CC-BY-SA)

4.2 Rotations
Let us first start by defining the concept of frame of reference. An orthogonal
frame of reference R = {O, i,j,k} is formed by an origin O and a set of three
mutually orthogonal versors {i,j,k} with origin in O. We can dinstiguish three
kinds of RFs:

• body frames: the origin and the axes are defined by points of a rigid body,
and the body Center of Mass (CoM) is taken as the origin;

• trajectory frames: the axes are aligned with the three instantaneous directions
of the body trajectory in space, and the body CoM is taken as the origin;

• celestial frames: the origin and the axis are defined by points and directions
in the universe.

Let us now consider two RFs:

• F1 = {O1, I,J,K} with axes X, Y, Z,
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4.2 – Rotations

Figure 4.2. Representing a point with respect to two different reference frames

• F2 = {O2, i,j,k} with axes x, y, z,
where R0 = X0I + Y0J + Z0K is the position of the origin of F2 w.r.t. F1. If
we have a point in space expressed as R = XI + Y J + ZK w.r.t. F1 and as
r = xi + yj + zk w.r.t. F2, we can writeXY

Z

 =

X0
Y0
Z0

 + T

xy
z

 ,T :=

 I · i I · j I · k
J · i J · j J · k
K · i K · j K · k

 ,
where T is the direction cosine matrix (DCM). Since translations and rotations can
be treated independently, and we are more interested in rotations, it is assumed
R0 = 0, so that XY

Z

 = T

xy
z

 ,
and we can see that T is the transformation of the coordinates from F2 to F1.
There is also another interpretation of DCMs: instead of a transformation from
the coordinates in F2 to the ones in F1, Tv can be seen as the rotation of v from
the orientation of F1 to the one of F2, but remaining in the fixed frame F1.

4.2.1 Euler angles
Considering a fixed frame of reference with axes (X, Y, Z), we can define three
elementary rotation matrices, representing:

45



Spacecraft attitude control

• a rotation by an angle φ about X

T1(φ) :=

1 0 0
0 cosφ − sinφ
0 sinφ cosφ



• a rotation by an angle θ about Y

T2(θ) :=

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



• a rotation by an angle ψ about Z

T3(ψ) :=

cosψ − sinψ 0
sinψ cosψ 0

0 0 1



Any rotation can be expressed by a composition of the elementary rotations, that
mathematically corresponds to a product of T1,T2,T3. Rotations can be either
extrinsic or intrinsic. To be more clear, if we have two RFs, one fixed with axes
X, Y, Z and one rotating with axes x, y, z, extrinsic rotations are about the axes of
the fixed frame, whereas intrinsic rotations are about the axes of the rotating one.
For instance, the matrix T1(φ)T2(θ)T3(ψ) can be seen as an extrinsic rotation
about Z (by ψ), then about Y (by θ) and finally about X (by φ), or as an intrinsic
rotation about x (by φ), then about y’ (by θ) and finally about z” (by ψ).

4.2.2 Quaternions

According to Euler’s rotation theorem, any displacement of a rigid body such that
one point is fixed is equivalent to a rotation about an axis passing through the
fixed point. The axis u is the eigenvector corresponding to the eigenvalue 1 of the
rotation matrix.
This means that we can describe any 3D rotation with four variables, one rep-
resenting the angle and three representing the axis. We now introduce the Eu-
ler parameters: a rotation of an angle β about an axis defined by the versor
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u = u1i + u2j + u3k can be described by the following four parameters:

q0 := cos β2
q1 := u1 sin β2
q2 := u2 sin β2
q3 := u3 sin β2

These parameters form a quaternion. Quaternions are elements of a four-dimensional
linear vector space with basis {1, i, j,k}. A quaternion q can be written as

q = q0 + q1i + q2j + q3j = q0 + q = (q0, q1, q2, q3),

where q0 is called the real part and q is called the imaginary part.
Any vector r = (x, y, z) in the 3D space can be seen as a quaternion with null

real part, i.e. (0, r). Let us now consider the situation where we want to rotate
r about the axis u by an angle α and let q = (cos α

2 , u1 sin α
2 , u2 sin α

2 , u3 sin α
2 ) be

the quaternion corresponding to the rotation. The vector r′ resulting from the
rotation can be calculated as

(0, r′) = q⊗ (0, r)⊗ q∗,

where q∗ is the conjugate quaternion of q defined as (q0,−q) and ⊗ is the Hamilton
product:

q⊗ p = (q0p0 − q · p) + (q0p + p0q + q× p).

It follows that a composition of rotations T = T1T2 . . .Tn corresponds to the
quaternion q = q1 ⊗ q2 ⊗ · · · ⊗ qn, where each qi corresponds to the rotation Ti,
and the inverse of a rotation defined by q is q−1 = q∗.

4.3 Attitude kinematics
The first step towards obtaining a dynamic model for attitude control is studying
the attitude kinematics. A satellite can be described as a rigid body moving respect
to an inertial frame of reference, where this movement is given by a combination
of

• a translation of the body center of mass,

• a rotation about an axis passing through the center of mass.
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Applying a moment M to the body, an angular velocity w will be generated,
according to the dynamic equations that will be described later. What is of interest
in this section is the relationship between the angular velocity w, generated by
M, and the resulting evolution of the orientation, described by the kinematic
equations.
Let us consider two reference frames,

• an inertial Observer frame (OF) with versors (i1, i2, i3) and axes X, Y, Z,

• a rotating Body frame (BF) with origin on the body CoM, versors (b1,b2,b3)
and axes x, y, z; the rigid body rotates with angular velocity ω = ω1b1 +
ω2b2 + ω3b3.

Since we are going to use the quaternions to describe the attitude, the goal will
be to describe the time evolution of q, the rotation quaternion of the rigid body,
in function of ω1, ω2, ω3.
Both q and ω are a function of time: q ≡ q(t) and ω ≡ ω(t). From time t to time
t+ ∆t, a rotation ∆q(t) happens, starting from the initial orientation q(t), so that
at time t+ ∆t the new orientation is the composition of the two rotations, i.e.

q(t+ ∆t) = q(t)⊗∆q(t).

To mathematically express ∆q(t), let u be the versor of the rotation axis, and let
ω = |ω| be the magnitude of the angular speed. We have that ω = ωu. Also,
for a small ∆t, the rotation angle is ω∆t. This means that for a small ∆t we can
write

∆q ≈
[

cos ω∆t
2

u sin ω∆t
2

]
≈

[
1

uω∆t
2

]
=

[
1
ω∆t

2

]
(4.1)

We can finally write the quaternion derivative as

q̇ = lim
∆t→0

q⊗∆q − q

∆t = lim
∆t→0

q⊗ ((1,w∆t/2)− (1,0))
∆t =

= lim
∆t→0

q⊗ (0, ω∆t
2 )

∆t = 1
2q⊗ (0,ω)

and, defining the matrix

Q :=


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 , (4.2)

this is equivalent to the following kinematic equation:

q̇ = f(q,ω) = 1
2Qω. (4.3)
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4.4 Attitude dynamics
In the previous section, a dynamic relationship between the angular velocity ω
and the orientation quaternion q was found. In this section it is instead described
how to derive a dynamic relationship between the input moment M = M1,M2,M3
and the angular velocity ω.
Let us consider again two reference frames,

• an inertial Observer frame (OF) with versors (i1, i2, i3) and axes X, Y, Z,

• a rotating Body frame (BF) with origin on the body CoM, versors (b1,b2,b3)
and axes x, y, z; the rigid body rotates with angular velocity ω = ω1b1 +
ω2b2 + ω3b3.

Now, considering a point of the body with mass mi, we can see in Figure 4.3
that:

R0 = X0i1 + Y0i2 + Z0i3 (4.4)
Ri = Xi1 + Y i2 + Zi3 = R0 + ri (4.5)

Ṙi = Ṙ0 + RiB + ω × ri (4.6)
ri = xb1 + yb2 + zb3 (4.7)
ṙiB = ẋb1 + ẏb2 + żb3 (4.8)
ω = ω1b1 + ω2b2 + ω3b3 (4.9)

Figure 4.3. Representing a body point with respect to two different reference frames

Now, the angular momentum of the point can be defined as
Hi := ri ×miṘi = ri ×mi(Ṙ0 + ṙiB + ω × ri) (4.10)
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and, observing that ṙiB = 0 since the body is rigid and there is no deformation,
we have that

Hi = ri ×mi(Ṙ0 + ω × ri) = −Ṙ0 ×miri + ri ×mi(ω × ri). (4.11)

For mi → dm, the angular momentum of the entire body is

H = −Ṙ0 ×
∫∫∫

B
r dm+

∫∫∫
B
r× (ω × r) dm (4.12)

and, since the body frame has origin on the center of mass, so that
∫∫∫

B r dm = 0
by definition, we have that

H =
∫∫∫

B
r× (ω × r) dm (4.13)

Performing the calculations and using the linearity of the integral operator, and
being r = xb1 + yb2 + zb3 = (x, y, z) we can write H as (H1, H2, H3), where

H1 =
∫∫∫

B
(y2 + z2)ω1 dm−

∫∫∫
B
xyω2 dm−

∫∫∫
B
xzω3 dm (4.14)

H2 = −
∫∫∫

B
xyω1 dm+

∫∫∫
B

(x2 + z2)ω2 dm−
∫∫∫

B
yzω3 dm (4.15)

H3 = −
∫∫∫

B
xzω1 dm−

∫∫∫
B
yzω2 dm+

∫∫∫
B

(x2 + z2)ω3 dm (4.16)

so that we can write

H =

J11 J12 J13
J21 J22 J23
J31 J32 J33


ω1
ω2
ω3

 = Jω, (4.17)

where

J11 =
∫∫∫

B
(y2 + z2) dm (4.18)

J22 =
∫∫∫

B
(x2 + z2) dm (4.19)

J33 =
∫∫∫

B
(x2 + y2) dm (4.20)

are called the moments of inertia and

J12 = J21 = −
∫∫∫

B
xy dm (4.21)

J13 = J31 = −
∫∫∫

B
xz dm (4.22)

J23 = J32 = −
∫∫∫

B
yz dm (4.23)
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are called the products of inertia. The matrix J is symmetric and it is called the
inertia matrix, or also inertia tensor.
It is known from linear algebra (the spectral theorem) that not only every symmet-
ric matrix J′ is always similar to a diagonal matrix J, so that it exists an invertible
matrix M such that J = M−1J′M, but, since J′ is symmetric, M is orthogonal,
so we can always find a diagonal J starting from a non-diagonal J′ , given

J = MTJ′M. (4.24)

This corresponds to rotating the body frame so that the three axes correspond to
the principal inertia axis.
If a moment M = M1b1 +M2b2 +M3b3 is acting on the body, it is known by the
second law of dynamics for a rotating body that

Ḣ = M, (4.25)

and, being Ḣ = Jω + ω ×H, the Euler moment equation is obtained:

Jω̇ = M− ω × Jω. (4.26)

4.5 Attitude control
On a spacecraft, the Attitude Control System (ACS) is of fundamental impor-
tance to accurately control the orientation of the spacecraft during a mission. To
achieve this goal, sensors are needed to determine the attitude of the spacecraft.
Furthermore, the control algorithms produce a command input, so actuators are
needed to exert the necessary command torques.

4.5.1 Sensors
Sensors can be classified in two categories:

• Absolute attitude sensors: by observing some celestial body like the Sun,
the Earth and the stars, they determine the orientation of the spacecraft
with respect to that body. Some examples are horizon sensors, star trackers
and magnetometers. In Figure 4.4 the HYDRA-M star tracker by Sodern is
shown.

• Relative attitude sensors: they are used to measure the angular speed
and, by integration, they can be used to calculate the orientation. However,
this leads to larger errors, so an absolute sensor is needed for higher accuracy.
An example of these sensors are the gyroscopes.
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Figure 4.4. Sodern’s HYDRA-M star tracker (Author: Christian Lafont, CC-BY-SA)

4.5.2 Actuators
The actuators are needed not only to actuate the command input, but also to
contrast the perturbing torques acting on the spacecraft (for instance the magnetic
field, the solar radiation etc.). The actuators can be divided into the following
classes:

• momentum exchange: for this purpose, thrusters are the most common
example, together with reaction wheels and control moment gyros (CMG);

• environmental: solar sails, for instance, produce thrust as a reaction force
induced by incident light; another example is the gravity gradient stabiliza-
tion, that exploits the fact that when an axis of the spacecraft is much longer
than the other two then the spacecraft spontaneously orients itself so that the
long axis points towards the planet center of mass;

• dissipative: they are used to reduce the nutation and the torque distur-
bances.

It is important to know that each actuator type has a torque range (expressed in
Nm). Reaction wheels, for instance, can exert a torque from 0.1Nm to 1Nm.

4.5.3 Control approaches
Attitude control can be passive (when it uses environmental forces such as the
gravity gradient), semi-active (for instance when reaction wheels or the magnetic
field of the Earth is used) and active (when thrusters are used). The case consid-
ered in the next chapter is a form of active control where thrusters are used as
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actuators for the command input. Active control is useful for maneuvering and
stabilizing the attitude with precision and speed, and it is also necessary when
dealing with external perturbances with non-zero mean.

4.6 State equations
So far, two different dynamics were described: the attitude kinematics, that express
a relationship from ω and q, i.e.

q̇ = 1
2Qω.

and the attitude dynamics, that express a relationship from M to ω, i.e.

ω̇ = J−1M− J−1ω × Jω.

Overall, if we imagine to connect in series the two resulting nonlinear systems, we
obtain a nonlinear system where M is the input and q is the output. In such a
system, the following variables are of interest:

• w = (w1, w2, w3)

• q = (q0,q) = (q0, q1, q2, q3)

• x = (w, q)

• u = (u1, u2, u3)

The purpose of attitude control is making the attitude quaternion q converge to a
reference quaternion qr, and the angular velocity w converge to wr.

The state equations of the system that we wish to control are the following:

q̇ = 1
2Qw (4.27)

ẇ = −J−1w× Jw + J−1u (4.28)

where

Q :=


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 , w× :=

 0 −w3 w2
w3 0 −w1
−w2 w1 0


We are interested in particular in attitude regulation, i.e. when
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qr = const and wr = 0.

The angular velocity tracking error is defined as

w̃ := wr −w,

whereas the quaternion tracking error is

q̃ := q−1 ⊗ qr = q∗ ⊗ qr.

We can use a simple linear control law such as the following:

u = kpq̃− kdw (4.29)

with kp > 0, kd > 0. Using this law, the state equations of the closed-loop system
become

˙̃q = −1
2w

q ⊗ q̃, (4.30)

ẇ = J−1(−w× Jw + kpq̃− kdw). (4.31)

There are two equilibrium points, (q̃0, q̃,w) = (±1,0,0), and both signs corre-
spond to the same attitude. The Lyapunov function

V = 1
4w

TJw + 1
2kpq̃

T q̃ + 1
2kp(1∓ q̃0)2 (4.32)

can be used to prove that, for any initial condition (q̃0(0), q̃(0),w(0)),

lim
t→∞

(q̃0(t), q̃(t),w(t)) = (±1,0,0).
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Chapter 5

Design of a DVS for
attitude control

5.1 Case specifications

The considered case consists of a spacecraft on an Earth orbit, with inertia tensor

J =

10000 0 0
0 9000 0
0 0 12000

 kg m2. (5.1)

Two disturbances, du ∼ N3(0, σ2) and dy ∼ N4(0, σ2) act on the input moment
and on the system output respectively, with σ = 0.0001. The angular velocity ω
is supposed not to be measurable, so the system output only consists of q. Non-
inertial effects, gravity gradient moment, third body gravity, atmosphere drag and
solar radiation are neglected. The three thrusters are assumed to be able to give a
maximum input moment magnitude |Mi,max| = 1. The task to be accomplished is
to be able to track any reference quaternion qr by means of a controller that takes
as input both q (measured) and ω (unmeasurable), so a state observer needs to be
deployed. The common way to solve this problem is by using an Extended Kalman
Filter (see Appendix), which is a nonlinear extension of the Kalman Filter. The
variance of the estimation error obtained with the EKF is compared to the one of
a DVS. It is supposed that, when hooking debris, the inertia tensor can reach 3J,
so the observer must be robust for any matrix kJ, k ∈ [1,3]. Finally, the controller
is obtained by choosing kp = 10 and kd = 200.
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5.2 Training phase

The training set is built performing 50 simulations on the open-loop system. Of
these 50 simulations, 25 are done using J as the inertia tensor, and 25 are done
using 3J. The simulations are done for 10000s (long enough to capture the dynam-
ics of the system, as shown from the angular speed in the open-loop simulation
in Figure 5.1) using the Simulink scheme in Figure 5.2 and then are merged. A
random input u ∼ U3(−1,1) is used to stimulate the dynamics of the system (the
interval (−1,1) is chosen since the thrusters saturate at 1Nm).

Figure 5.1. Angular speed behaviour in open-loop with uniform random input

The DVS is designed this time using not the System Identification Toolbox
but the Deep Learning Toolbox, as the training algorithms are faster and more
adapt to the dimension of the problem, but equivalent in the results. The neural-
network used is a Time-Delay Neural Network (TDNN). The TDNN follows the
same principle of the neural networks used so far, i.e. it models the dynamic
behaviour by using delayed values of the input. The TDNN designed for the DVS
is shown in Figure 5.3. The hidden layer uses the tansig, i.e. the Hyperbolic
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Figure 5.2. Open loop Simulink scheme used for training

tangent sigmoid, as activation function. The tansig is defined as

tansig(x) = 2
1 + e−2x − 1 (5.2)

and is very similar to the sigmoid function. The second layer uses instead a linear
activation to produce the output. The structure is therefore equivalent to the
sigmoid network in the System Identification Toolbox.

Figure 5.3. Time Delay Neural Network used for the DVS

To optimize the accuracy, a DVS for each ωi was built, instead of a single DVS
for ω. This design choice is due to the fact that, in the latter case, the solver
would try to train the neural network to find a tradeoff for the accuracy of the
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three outputs, whereas with 3 distinct neural networks we can optimize each one
at predicting a single output.

The DVS is designed considering:

• the input moment M and the corrupted measured quaternion q as the filter
input u = (M, q) = (u1, u2, u3, u4, u5, u6, u7)

• the real ω = (ω1, ω2, ω3) as the filter output y = (y1, y2, y3)

• a TDNN with 10 sigmoid units

• a sampling time Ts = 1s

• a regularization factor λ = 1e− 8

• the Levenberg-Marquardt algorithm as training function

• the values u1(t − τ), u2(t − τ), . . . , u7(t − τ), τ = 1, . . . ,3 as regressors (the
absence of the current values is due to the nature of the state equations,
where it is evident that the current values of q and M are not important to
the current values of ω.

• the first 8000 samples of each experiment as training set, and the last 2000
samples as validation set

• ω0 ∼ N3(0,0.0001) and q0 ∼ N4(0,1) (q0 is then normalized).

Using a validation set in the training allows the optimizer to automatically avoid
overfitting, by stopping the training when the training accuracy either exceeds the
validation accuracy by far or stops improving, as in Figure 5.4.

The plots in Figure 5.2 show as an example the nonlinearity of the output of
the first filter varying M1(t − 1) and M2(t − 1) (left) or q0(t − 1) and q1(t − 1)
(right). The plot on the left is a plane, that is coherent with the linear dependency
from w and M in the state equations; the plot on the right is instead evidently
nonlinear, which is coherent too with the state equations.

The three neural networks obtained with this procedure constitute together a
filter that will be referred to as T-DVS (TDNN DVS).
A second architecture is then proposed, where the DVS is designed using a more
complex neural network, i.e. using two hidden nonlinear layers instead of just one.
Using a TDNN also in this case, 10 sigmoid units are chosen in the first layer
and 5 in the second layer. The hyperparameters are the same of the T-DVS. The
architecture is shown in Figure 5.6. The filter obtained with this structure will be
referred to as DT-DVS (Deep TDNN DVS).
Finally, the last architecture proposed uses a TDNN with just one layer, like the
TDNN DVS, but here also the current values of u1, . . . , u7 are used. This choice
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Figure 5.4. Training and validation error during training for the first DVS

(a) y1(M1(t− 1),M2(t− 1)) (b) y1(q0(t− 1), q1(t− 1))

Figure 5.5. Plot of the nonlinearity of the DVS (Spacecraft)

requires however to use more sigmoid units; 15 units were therefore chosen. The
filter obtained with this structure will be referred to as CT-DVS (Current TDNN
DVS). A remark has to be done about the fact that, in Simulink, an algebraic
loop occurs when the DVS estimate is fed back to the controller. When using
a fixed-step simulation in Simulink, this does not constitute a problem when the
DVS does not use current values; using the CT-DVS, instead, the simulation can
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fail (since what is happening is that the DVS is using current values to produce
outputs that are fed back in the loop in the same time instant). This problem
was solved by putting a unit delay (z−1) on the DVS output, so that the algebraic
loop is broken. This is taken into account when measuring the variance of the
estimation error, that for the CT-DVS is defined as yDV Si(t− 1)− ωi(t), whereas
for the T-DVS and the DT-DVS it is defined as yDV Si(t)− ωi(t).

Figure 5.6. Deep Time Delay Neural Network used for the DVS

5.3 Closed-loop and open-loop performance
The variances of the estimation error of the three DVS architectures and the
extended Kalman filter are compared, first with k = 1 and then with k = 3. 50
experiments are done for 100000 seconds. The EKF takes as input the commandM
and the corrupted measurement of the quaternion, and estimates the state (ω,q).
However, only the estimate of ω is used, and the real quaternion is used for the
controller instead of the estimated one, so the quaternion estimate is ignored; this
is done to make the comparison fair and equal, since the DVS only estimates ω.
First, the performance in closed-loop (i.e. on the controlled system) is calculated.
The average variance over 50 experiments is shown in Table 5.1.

k ωi T-DVS DT-DVS CT-DVS EKF
1 ω1 1.6e-6 5.2e-7 7.1e-7 2.7e-4
1 ω2 1.7e-6 4.3e-7 5.8e-7 1.2e-3
1 ω3 1.5e-6 6.1e-7 6.9e-7 2.7e-3
3 ω1 8.6e-6 5.1e-6 6.5e-6 3.3e-4
3 ω2 9.3e-6 4.8e-6 6.7e-6 7.1e-4
3 ω3 7.1e-6 5.5e-6 6.1e-6 1.4e-3

Table 5.1. Average error variance of DVS and EKF in closed-loop

Then, the performance in open-loop (without control) is calculated. The results
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are shown in Table 5.2.

k ωi T-DVS DT-DVS CT-DVS EKF
1 ω1 8.2e-5 7e-5 8.7e-5 2.2e-4
1 ω2 5.2e-5 4.1e-5 5.3e-5 1.7e-4
1 ω3 2.2e-5 1.2e-5 2.4e-5 1.6-4
3 ω1 2e-5 1.8e-5 2.2e-5 7.2e-5
3 ω2 1e-5 9.9e-6 1.4e-5 5.5e-5
3 ω3 2.8e-6 2.7e-6 3.9e-6 2.9e-5

Table 5.2. Average error variance of DVS and EKF in open-loop

All the three DVSs perform better than the EKF, both when k = 1 and k = 3,
which is surprising. Furthermore, the DT-DVS is always the best, both in open-
loop and in closed-loop. However, it is evident that the performance is not much
higher than the one of the T-DVS, that is less complex. It is also interesting to note
that, for almost any initial conditions, using the EKF in closed-loop does not make
the quaternion ever converge to the reference; using a DVS, instead, guarantees the
convergence. In Figure 5.7, for instance, the satellite attitude in closed-loop when
k = 3 is shown when using a T-DVS and an EKF, with a quaternion reference
qr = [−0.18, 0.16,−0.53,−0.99] and random initial conditions.

In Figure 5.8, finally, the estimation error for the three angular speeds with
k = 3 when using a T-DVS and an EKF is shown.
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Figure 5.7. Spacecraft attitude in closed-loop with k = 3 using a T-DVS
(top) and an EKF (bottom)
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Figure 5.8. Estimation error in closed-loop with k = 3 using a T-DVS
(top) and an EKF (bottom)
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Chapter 6

Conclusions

The experiments performed on the two examples of linear systems proved that
an observer designed with the one-step procedure and using a neural network can
outperform other robust filters found in the literature, when the system is different
than the nominal one; furthermore, the use of a neural network proves that the
observer can be nonlinear even when the system to filter is linear. In the case
of nonlinear systems, the experiments performed on the spacecraft example show
with strong evidence than the one-step approach is better than the state of the art
used in the industry, since it outperforms the EKF even on the nominal system
and does not fail where the EKF fails instead. This presents a double advantage:
not only the DVS is easier to implement and does not require to have any prior
knowledge on the system to filter or on the uncertainty structure, but it is even
better than more complicated filters that are used nowadays in the industry. The
method explored in this work, therefore, has consequences of relevant importance
for the domain of robust filtering, and it can be used instead of all the other
approaches because, even though they are still the standard, the one proposed in
this thesis is evidently superior, more robust and better performing.
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Appendix A

Linear Kalman Filter

It is known that, for linear systems, linear Kalman filters obtain the best perfor-
mances (i.e. minimum error variance) on the nominal system. However, when the
system is uncertain, the performance may decrease substantially.

In discrete-time, we can build two different types of linear Kalman filters: the
current one and the delayed one. In both cases, we have that, when the plant is
in this form:

xk+1 = Axk + Buk + Gwk

yk = Cxk + Duk + Hwk + vk

where w and v are noises that satisfy:

E(wkwT
k ) = Q

E(vkvTk ) = R
E(wkvTk ) = N

then the discrete-time Kalman filter has this state equation:

x̂k+1|k = Ax̂k|k−1 + Buk + L(yk −Cx̂k|k−1 −Duk)

where the gain matrix L is the solution of the discrete Riccati equation:

L = (APCT + N)(CPCT + R)−1

with

R = R + HN + NTHT + HQHT

N = G(QHT + N)

Now, in the case of delayed filtering, we just have that[
x̂k|k−1
ŷk|k−1

]
=

[
I
C

]
x̂k|k − 1 +

[
0 0
D 0

] [
uk
yk

]
(A.1)
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In the case of current filtering, the state estimate x̂k|k−1 is updated using the new
measurement yk:

x̂k|k = x̂k|k−1 + Mx(yk −Cx̂k|k−1 −Duk)

and ŷk|k−1 is updated too:

ŷk|k = Cx̂k|k−1 + Duk + My(yk −Cx̂k|k−1 −Duk).

Mx and My are the innovation gains, defined as

Mx = PCT (CPCT + R)−1

My = (CPCT + HQHT + HN)(CPCT + R)−1.
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Extended Kalman Filter

It is known that, for linear systems, the linear Kalman filter is the optimal (mini-
mum variance) filter. In the case of nonlinear systems, however, the linear Kalman
filter cannot be used since it does not model the nonlinearities and cannot therefore
perform an accurate estimation of the states. The extended Kalman filter is
used instead, which is based on a step-by-step linearization of the system equations
along the trajectory. Since in a real-world application a filter is implemented on
a digital device, let us consider a discrete-time formulation. If we have a discrete-
time nonlinear system in the form

xk+1 = f(xk,uk) + dk, yk = h(xk) + dyk, k ∈ N (B.1)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the input, yk ∈ Rny is the
output, dk ∈ Rnx is the disturbance and dyk ∈ Rny is the measurement noise. It
is supposed that only yk, uk are measurable.
State estimation, as usual, consists in computing a prediction xpk of xk

xpk = f(x̂k−1,uk−1), (B.2)

and finally improve it using the current output measurement

x̂k = xpk + Kk∆yk, (B.3)

with ∆yk = yk − h(xpk).
If the system was linear, we could write

f(xk,uk) = Fkxk + Gkuk, h(xk) = Hkxk. (B.4)

(the linear Kalman filter, for instance, computes Kk from Fk,Hk and in such a
way that E(‖xk − x̂k‖2

2) is minimized).
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Since the system is nonlinear instead, the matrices are recomputed at each step,
linearizing the system equations:

Fk := Jf (xk,uk) =


∂f1
∂x1

. . . ∂f1
∂xnx

∂f1
∂u1

. . . ∂f1
∂unu

. . . . . . . . . . . . . . . . . .

∂fnx
∂xnx

. . . ∂fnx
∂xnx

∂fnx
∂u1

. . . ∂fnx
∂unu

 (xk,uk) ∈ Rnx,nx+nu

(B.5)

Hk := Jh(xk) =


∂h1
∂x1

. . . ∂h1
∂hnx

. . . . . . . . .

∂hny
∂xnx

. . .
∂hny
∂xnx

 (xk) ∈ Rny ,nx (B.6)

Defining the following quantities:

• xpk: prediction of xk computed at step k − 1

• x̂k: corrected estimate of xk computed at step k

• Pk := E((xk − x̂k)(xk − x̂k)T ): covariance matrix of xk − x̂k

• Qd := E(dkdTk ): covariance matrix of dk

• Rd := E(dyk(d
y
k)T : covariance matrix of dyk

the first step is choosingQd andRd. They are typically chosen as diagonal matrices
with the variances of dk,dyk on the diagonal.
Then, x̂0 (estimated initial state) and P0 (estimated initial covariance matrix) are
initialied, typically with values 0 and I (identity matrix).
The algorithm consists in the following two steps:

• Prediction:

xpk = f(x̂k−1,uk−1) (B.7)
Pp
k = Fk−1Pk−1FTk−1 + Qd (B.8)

• Update:

Sk = HkPp
kHT

k + Rd (B.9)
Kk = Pp

kHT
kS−1

k (B.10)
∆yk = yk − h(xpk) (B.11)
x̂k = xpk + Kk∆yk (B.12)

Pk = (I−KkHk)Pp
k. (B.13)
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In the prediction step, the nonlinear model equations are used to obtain a first
prediction of the future step. In the update step, then, the prediction is cor-
rected using the current output measurement. Pk is recomputed at each step by
linearizing the system equations along the trajectory, making Kk change too.
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