
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Development and implementation of an
obstacle avoidance algorithm for an

Unmanned Aerial Vehicle

Supervisors

Prof. ALESSANDRO RIZZO

Prof. MARINA INDRI

Dr. STEFANO PRIMATESTA

Adv. ALESSANDRO MANCINELLI

Candidate

DAVIDE GRAZIATO

December 2021

Abstract

The forthcoming of the fourth industrial revolution drives the implementation of
autonomous systems and high collaborative robots inside the industrial environ-
ments. Flexibility and Adaptivity represent the keys to satisfy the increase of an
always faster and low-cost market demands. The FIXIT project main objective
is to provide an interactive support for the human operator in the industrial or
logistic environment, fitting the requirements of the industry 4.0.
The aim of the thesis is to develop and implement a collision avoidance system for
an UAV. The drone must not be intended as a single entity but must be able to
cooperate with an AGV, which constitute the landing base. The UAV’s architecture
is based on an open-source flight controller unit (FCU), the Pixhawk model 2.4.8,
a companion computer, the Jetson Nano, and the intel Realsense D435i depth
camera as main sensor.
The Collision avoidance system designed is based on a path planner which im-
plement an Informed-RRT* algorithm (Informed-Rapid-Exploring-Tree "Star") to
produce obstacles-free paths and avoid collision in both known static and unknown
dynamics environments. The point clouds produced by the depth-camera are
used to extract information from the surroundings of the drone and subsequently,
define a 3D occupancy map. In order to validate the obtained results, simulation
in virtual generated environment using Gazebo and real-life tests are performed.
Both the simulation and experimental results convincingly demonstrate how, the
implementation of this strategy, allows the UAV to generate a safe path, preventing
in this way any collision, and reaching the desired target position.

i

Acknowledgements

Grazie a mia madre e a mio padre,
per avermi reso la persona che sono

ed avermi sempre spronato ad inseguire i miei sogni.
Grazie ad Elisa, sempre pronta a consigliarmi

e ad aiutarmi nei momenti difficili.
Infine un grazie a tutti i miei amici,

per avermi insegnato il vero significato della parola amicizia.

ii

Chapters Index

List of Tables vi

List of Figures vii

Acronyms x

1 Introduction 2

2 Review of Collision Avoidance methodologies and techniques for
Unmanned Aerial Vehicles 5
2.1 Path Planning Algorithms . 7
2.2 Graph Traversal Planner Algorithms 9

2.2.1 Dijkstra’s Algorithm . 10
2.2.2 A* Algorithm . 12
2.2.3 D* - Dynamic A* search . 14
2.2.4 LPA* . 15
2.2.5 RRT - Rapid Exploring Tree 16
2.2.6 RRT* - Rapid Exploring Tree Star 18
2.2.7 Informed-RRT* . 21

2.3 Other Path Planning approaches 24
2.3.1 APF - Artificial Potential Field 24
2.3.2 VFH - Vector Field Histogram 26
2.3.3 Machine Learning Approaches 28

3 Hardware Implementation 29
3.1 Sensors for Collision Avoidance . 29
3.2 Intel Realsense D435i . 33
3.3 Companion Computer . 36

3.3.1 Raspberry Pi 4 . 36
3.3.2 Nvidia Jetson Nano . 37

3.4 Flight Controller - Pixhawk 2.4.8 38

iv

3.5 Outdoor Flight Sensors . 39
3.6 Indoor Flight Sensors . 41

3.6.1 DWM1001C - Ultra-Wideband 41
3.6.2 VL53L1X Tof sensor . 42

4 Software Implementation 43
4.1 Robotic Operating System - ROS 43

4.1.1 Nodes . 43
4.1.2 Topics . 44
4.1.3 Services . 44
4.1.4 Messages . 44

4.2 Gazebo . 45
4.3 Mavros . 45

4.3.1 PointCloud Library - PCL 46
4.3.2 OMPL - Open Motion Planning Library 47
4.3.3 FCL - Flexible Collision Library 48

4.4 Robot Localization in Indoor Environment 49
4.4.1 Visual Odometry - VO . 49
4.4.2 IMU . 50
4.4.3 UWB and VL53L1X Tof . 50
4.4.4 Robot Localization Package 50

4.5 Octomap 3D occupancy Map . 51
4.6 EKF - Ardupilot’s Parameters tuning 53
4.7 Algorithm implementation . 56

5 Virtual Simulation 61
5.1 SITL and Mavros implementation 61
5.2 Virtual Environments for Testing 63
5.3 Simulated Flight Analysis . 65

6 Experimental tests and results 70
6.1 Outdoor Flight . 70
6.2 Indoor Flight . 75

7 Conclusions and future Developments 76

v

List of Tables

3.1 Sensors selection for the CAS . 33
3.2 How the Resolution of the Camera modify the minimum depth . . . 34

vi

List of Figures

1.1 FIXIT UAV developed by the Team 3

2.1 Main path planning algorithm for UAV 9
2.2 Simple graph example . 10
2.3 Example of a Graph with Nodes and Vertices with relative cost . . 11
2.4 Graphical representation of the paths generated by RRT algorithm 18
2.5 Rewiring process in RRT* algorithm 19
2.6 Graphical representation of the paths generated by RRT* algorithm 20
2.7 Ellipsoid Sub-space used in Informed RRT* algorithm 21
2.8 Graphical comparison between RRT* and Informed-RRT* 22
2.9 Visualization of an application of Artificial Potential Field as path

planner . 25
2.10 Vector Field Histogram . 27

3.1 Different types of sensors and approaches to the Collision Avoidance
problem . 30

3.2 Graphical representation of the Cameras FOV 34
3.3 Intel RealSense D435i model . 35
3.4 Single Board Computer Raspberry Pi 4 (4GB) 36
3.5 Single Board Computer Nvidia Jetson Nano(4GB) 37
3.6 Pixhawk 2.4.8 Flight Controller . 38
3.7 Taoglass ZED-F9P GPS . 40
3.8 Decawave DWM1001 Development Board 41
3.9 Indoor Cage anchors configuration were the drone was tested 42

4.1 Visualization of the UAV in Gazebo from the CAD render 45
4.2 Filtering action on the Poincloud 47
4.3 Robot Localization scheme . 51
4.4 Octrees used in order to build the 3D Octomap 52
4.5 3D Octomap representation of a Tree in the Gazebo virtual environment 52

vii

4.6 Relative Position of the UAV in Outdoor condition, the Red Circle
is a Radius of 10 centimeters. 55

4.7 Relative Position of the UAV in Outdoor condition 55
4.8 Topic and Messages published in the Planner part of the Algorithm 57
4.9 Drone object seen in Rviz as a box 58
4.10 Rosgraph of all the Nodes implemented 60
4.11 Reference Frames dependencies . 60

5.1 SITL console with Mavros node launched 62
5.2 Two moving persons in front of the UAV during the flight 63
5.3 Map greatly populated of multiple obstacles 64
5.4 The CIM4.0’s Digital Line replicated in Gazebo 64
5.5 UAV’s relative altitude in time during the Simulation 65
5.6 Path and Waypoints during a mission 66
5.7 UAV’s Yaw angle during a mission 67
5.8 UAV’s Roll angle during a mission 68
5.9 UAV’s Pitch angle during a mission 68
5.10 The Planner is able to generate trajectory through narrow passages 69
5.11 Re-planning process of a given initial path 69

6.1 UAV’s relative Z position . 71
6.2 UAV’s relative XY position . 72
6.3 Rviz showing the Octomap and Tf-frame in real-time 72
6.4 UAV’s trajectory and waypoints during a flight test 73
6.5 Goal Point sent thanks to Rviz . 74
6.6 Multiple GPS tests to examine the accuracy of the position estima-

tion. In Red the actual path while in Blue the position obtained
through the GPS data. 74

viii

Acronyms

UAV
Unmanned Aerial Vehicle

AGV
Automated Guided Vehicle

SITL
Software in the Loop

CAS
Collision Avoidance System

FCU
Flight Controller Unit

CC
Companion Computer

ROS
Robot Operating System

UWB
Ultra-wideband

ToF
Time-of-Flight

GPS
Global Positioning System

x

RTK
Real-Time Kinematic

RRT
Rapid Exploring Tree

LPA*
Lifelong Planning A*

APF
Artificial Potential Field

VHF
Vector Field Histogram

VO
Visual Odometry

EKF
Extended Kalman Filter

IMU
Inertial Measurement Unit

OMPL
Open Motion Planning Library

PCL
Point Cloud Library

xi

Chapter 1

Introduction

Drones are a valuable asset within industry and logistics and are now employed
extensively to carry out inspections tasks, surveillance and mapping the terrain in
harsh or hazardous environments.
To comprehend how they fit within an industrial ecosystem, it is possible to consider
them as mobile sensors, able to complement all the emerging technology as IoT
and Big Data. Not only that, the development and continuous increase of their
power allows the movement of small objects and transport through different parts
of a company.
The objective of the thesis is the development and the implementation of a col-
lision avoidance algorithm for an autonomous unmanned aerial vehicle (UAV).
Autonomous navigation cannot do without obstacle avoidance systems to meet the
safety standards imposed in an industrial and logistical operating environment.
Thanks to CIM4.0, it was possible to work on the FIXIT project, which consists in a
combination of an AMR and a UAV, aiming to simplify all maintenance operations.
This idea is part of a bigger picture, where autonomous and collaborative robots
constitute the basis for the growth of the Industry 4.0.
The initial UAV model used during the development phase was the DJI F450 quad-
copter, an entry level open-source drone commercially available. Subsequently,
thanks to the collaboration of several members of the FIXIT-team, the framework
developed was exported over a custom-made drone model specifically designed for
the project itself, which includes both a customize frame and power board (figure
1.1). As constraints during the development phase, all the software used had to
be completely open-source. The deployment of the Pixhawk as flight controller
unit (FCU) allows the implementation of two different open-source operating sys-
tems, Ardupilot and PX4. In this case, the first one was used due to the great
customization provided and the integration with the ROS platform to control
the drone autonomously. ROS represents the base framework which enables the
communication between all the different functions in the developed algorithm, the

2

Introduction

Figure 1.1: FIXIT UAV developed by the Team

FCU and the ground computer.
The challenges provided by this project where not only at software level but also
at the hardware one. In order to improve initial performance, improvements were
made to the electronics, batteries and on-board computer throughout the progress
of the project, and these decisions are analyzed and described in detail in the
following chapters. The choice of the most suitable sensors to achieve an effective
obstacle tracking and maps generation, including an analysis on the sensors related
to the drone’s localisation for both indoor and outdoor environments. In this last
part of the introduction, a schematic breakdown of the thesis is given with a small
summary of the issues covered in each chapter:

• Chapter 1: Brief introduction on the FIXIT project and summary of the
most important topics addressed during the development of the project.

• Chapter 2: In this first chapter the obstacle avoidance algorithm’s state of
art is analyzed. A number of possible solutions to the planning problem are
described and their flaws highlighted. Subsequently, the one chosen for the
thesis’s application is reported and its basic functioning explained.

• Chapter 3: In this chapter all the hardware implemented in the UAV is
listed and their basic functioning principles explained. Additionally, after
a dissertation of the most widespread sensors for collision avoidance, the
motivation for the one used in this thesis is given.

• Chapter 4: In the third chapter instead the analysis of all the software
deployed in the creation of the script is listed. The different library and their
configuration in order to work with the main collision avoidance algorithm
are outlined.

• Chapter 5: Virtual simulation in order to determine the effectiveness of the
implemented system. In particular, SITL and Gazebo are used to estimate the
possible UAV’s real behavior. The results of these simulations are examined
and graphically represented.

3

Introduction

• Chapter 6: Real-life testing of the algorithm and the drone’s behavior
during flight. In the same way as the previous chapter, the gathered data are
graphically represented and analyzed to extrapolate useful information.

• Chapter 7: Conclusion and future developments are described. Possible
improvements and considerations on the technology used.

4

Chapter 2

Review of Collision
Avoidance methodologies
and techniques for
Unmanned Aerial Vehicles

In recent years the manufacturing and production industries are moving towards a
gradually increasing automation of various operations and tasks – which will be
performed by robots instead of human labors. In this class of automation robots
both Unmanned Ground Vehicle (UGV) and Unmanned Aerial Vehicle (UAV) are
included. While UGVs, whose mainly operate on the ground, have been widely
used for manufacturing tasks like part-feeding and material handling, UAVs, which
operate in the air, are emerging in various application domains such as surveillance,
logistics, and search–rescue missions.
UAVs domain of applicability is not only limited to outdoor environments, UAVs
can also be useful in indoor environments for manufacturing and services (hospitals,
greenhouses, production companies, and nuclear power plant). Equipped with
a camera sensor, UAV can be used for performing inspection and maintenance
tasks in harsh environment, both visual and sensorial inspection. Equipped with
a gripper, UAV can also be used for performing handling of light material in a
manufacturing environment.
In addition to these applications, the employment of UAVs in indoor environment
is also supported due to the superior freedom of maneuverability w.r.t. a ground
vehicle, such as 360° inspection angle of an object in a three-dimensional space
and moving in an empty upper-air space (which has been an idle area in the era of
UGV).

5

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

Due to the limited area in indoor, there is less flexibility in dodging when a potential
obstacle is found. Hence, flight during tasks execution must be scheduled in non-
colliding paths. The risks of damage on both UAVs and resources is higher and
human workers can be exposed to hazardous situations. Therefore, indoor UAV
application has more constraints and precise controls to be taken into account.
From these requirements, it is possible to deduce the key role represented by the
path planning algorithm implemented in the UAVs. A valid path is generated
by taking into account the mission constraints, vehicle characteristics, and the
surrounding environment and combining all these elements with the mission task.
The UAV class is important because different classes can have completely different
dynamic and kinematic characteristics. The same flight path may be unreliable
with another drone.
The basic concept of a Collision Avoidance System (CAS) involves monitoring the
surroundings for any possible encounter, sense and detect possible threats and
avoid them. In order to work efficiently and safely, a CAS is usually composed by
five different key functions:

• Sensing: the UAV’s ability to monitor the environment and collect appropri-
ate current state information for any possible encounter, i.e. aircraft position,
velocity and heading.

• Detection: system’s ability to acquire the sensed data, process it and extract
useful information discovering and managing incoming collision to the UAV.

• Awareness: generation of a map, graph or histogram containing the position
of the obstacles found and the aircraft.

• Escape trajectory: based completely on the path planning algorithm im-
plemented, it must be carefully chosen based on the environment and on the
future tasks in which the UAV will be deployed.

• Maneuver realizations: function through which the moving command are
sent to the flight controller to perform the required maneuvers in order to
avoid the obstacles.

In the following part of the chapter an extensive review of the existing method-
ologies and techniques used in obstacles avoidance is performed. This analysis
constitute a fundamental step in order to choose the best algorithm implementation
for the case scenario of the project and subsequently the right sensors and hardware
for the UAV.

6

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

2.1 Path Planning Algorithms
Collision avoidance systems are based on the implementation of a path planning
algorithm. A path is specific route in the 3D space which a UAV can follow without
colliding with obstacles. The route can be a smooth continuous curve generated
by considering the dynamics of flying or, in the most simple and basic form a
specific set of points through which the drone can move sequentially in a series
of straight lines until reaching the end point. A planner needs to take in account
the information about the physical environment, the position of the UAV and it’s
desired destination and extract a feasible and viable path using this data.
The development of path planning algorithms had been started by the attempt to
solve the shortest path problem which is the problem of finding a path between two
vertices (or nodes) in a graph such that the sum of the weights of its constituent
edges is minimized. Initially focused in solving a 2D problem, as the technology
progressed and the computational strength improved, were developed planners able
to solve this problem in 3D space. The way this is achieved varies greatly based
on the type of sensors and implementation, on how the space is mapped and how
the walls and obstacles are considered, but generally the path planning problem
boils down to represent the map as a weighted graph or occupancy grid that can
be searched for a path between two vertices.
The problem of finding the most optimal path between two points in space minimiz-
ing the total cost path becomes extremely relevant for aircraft and drones. Drones
and UAVs are usually small and can’t carry to much weight in order to fly effectively,
this constraint limits greatly the size of batteries that can be implemented on
the aircraft. Planners able to generate paths closer to the optimum assume great
relevance to fit the premise of conserve battery life in order to safely carry out the
assigned mission.
Usually a Planner is composed by two main functions, with different purposes and
based on different types of algorithm: a Global and a Local planner.

• Global Path Planner: A global path planner is a planner whose function is
to generate a path between the Starting position and the Goal position. These
kind of algorithms perform well in a known environment of which a map is
already present. In a Static environment the performance of these algorithms
are better than the local counterpart, but in presence of possible dynamic
encounters possible collisions can happen.

• Local Path Planner: A local path planner is designed taking into account
an unknown environment whereby dynamic obstacles can be present, the
planner needs to be fast to elaborate the incoming data from the sensor and
plan trajectory consequently.

7

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

In order for a planner to operate at full capacity, it must integrate these two
functions simultaneously. Once the initial path produced by the global planner is
defined and sent to the FCU through a list of waypoints, the local planner must
intervene, if necessary, taking in account both the dynamic of the aircraft with
its constraints and the information about the obstacles, by modifying the path
consequently to avoid any collision.
So, to recalculate the path at a specific rate, the whole map is reduced to the
surroundings of the aircraft and is updated as the vehicle is moving around. It is
not possible to use the whole map because the sensors are unable to update the
map in all regions, and a large number of cells would raise the computational cost,
increasing the energy consumption and the possibility of a crash for the Companion
Computer. Therefore, with the updated local map and the global waypoints, the
local planning generates avoidance strategies for new static and dynamic obstacles
and tries to match the trajectory as much as possible to the provided waypoints
from the global planner.
In extreme synthesis, the standard implementation in a CAS is a Global path
planner responsible for defining the initial route to the Goal point. Along it the
Local planner operates in case an obstacle is found; when this happens, the local
planner generates a new path avoiding the obstacle to continue the mission safely.
In the Figure 2.1 the main types of Path planners are represented in a scheme.
It is possible to notice two different approaches, one for known environments and
the second for unknown environments. The decision on which planner to choose
requires a deep analysis on the operativity conditions of the drone and on the
overall efficiency and computational cost due to the hardware used. In the following
pages an extensive review of these methods is carried out.

8

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

Figure 2.1: Main path planning algorithm for UAV

2.2 Graph Traversal Planner Algorithms

In order to understand how this kind of path-planning algorithms work is necessary
to introduce some key-concepts about graph theory and the resolution of the
shortest path problem.
In Graph theory a Vertex (or Node) is the fundamental unit of which graphs are
formed: an undirected graph consists of a set of vertices and a set of edges (or
Links) (unordered pairs of vertices), while a directed graph consists of a set of
vertices and a set of arcs (ordered pairs of vertices).
From Graph’s theory point of view, vertices are treated as featureless and indivisible
objects, although they may have additional structure depending on the application.
The two vertices forming an edge are said to be the endpoints of this edge, and
the edge is said to be incident to the vertices. In the application of path planning
the edges of a graph are usually associated with a given cost, which represents
the distance of a given pair of nodes. The various algorithms, based on this
methodologies, are distinguished by their ability to generate a path capable of
connecting various nodes taking into account the cost of each vertex. How this is
done sets the performance and efficiency of these systems by determining in which
areas they are best suited for an autonomous implementation. In the subsequent

9

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

sections an extensive review of approaches of planner based on solving the graph
search problem are analyzed.

Figure 2.2: Simple graph example

2.2.1 Dijkstra’s Algorithm
Dijkstra’s Algorithm represents one of the first attempts to solve the shortest path
problem. It was designed in 1956 by Edsger Dijkstra.
The algorithm achieves its goal by searching for all the possible paths between a
starting position and the end of one path and ordering them by their cost. For a
given source node, the algorithm finds the shortest path between that node and
every other.
In the original implementation, the algorithm was mainly used to find a path
between two points in the graph. But a common variant consists of fixing a single
node as a "source node" and finding the shortest path from the source to all the
other nodes in the graph, thus generating this way a shortest-path tree. Once the
algorithm finds the shortest path between the source node and another node, that
one is marked as "visited" and added to the path. The process continues until all
nodes in the graph have been added to the path. This way, we have a path that
connects the source node to all other nodes following the shortest path possible to
reach each node. The algorithm also keeps track of the currently known shortest
distance from each node to the source and can update these values if a shorter
path is found.
Another application consists of stopping the algorithm immediately once the
shortest path between a single node and a destination node has been determined,
reducing this way the time spent in searching for all the possible paths. Dijkstra’s

10

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

algorithm can work well as a basic path-finder algorithm for a whole set of nodes
but, when used to search for the shortest path to one specific target, it can be
extremely inefficient.
The main drawback for this type of algorithm resides in how it works. The
exploration of large portions of the map, which are searched aimlessly and don’t
bring any contribution to finding the path to the goal point or improvements to
the actual solution, increases the computational cost, time spent, and decreases the
overall efficiency of the implementation. The reactivity of the drone is the main
focus in order to obtain a reliable collision avoidance system, and the total time
spent on finding the solution to the path problem needs to be low for re-planning
operations in a dynamic environment. The use of this kind of algorithm for a UAV
as a local planner has to be avoided due to the slow responsive time and large
computational strain that reduces the autonomy of the aircraft.

Figure 2.3: Example of a Graph with Nodes and Vertices with relative cost

11

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

2.2.2 A* Algorithm
A* Algorithm was developed and proposed by Hart, Nilsson and Raphael in 1968.
It can be marked as an improvement on the Dijkstra’s, due to the fact that it
introduces a heuristic, consequently the algorithm gives a priority w.r.t. the distance
to the goal point in addition to the length path. At a fundamental level, A* works
as a Dijkstra’s which tries to explore only the nodes relevant to the search of the
path between two points.
Because of its simplicity,effectiveness and accuracy due to the heuristic A* algorithm
is one of the most typical implementations in robotics to solve path-finding and
graph traversal problems.
The A* is designed to follow the path which generates the lowest cost, to do that
it preserves a sorted queue composed by all the different paths found that are
useful when the robot has to change direction. In case an obstacle blocks the first
direction, a new direction is found by calculating which of the new path minimizes
the cost and shift to the lower path abandoning the previous one.
A* is based on the best-first search algorithm,this means it is a search algorithm
which explores a graph by expanding the most promising node chosen according to
a specified rule, in this case the least-cost path from two given points. At the base
reasoning the algorithm tries to minimize the function:

f(x) = g(x) + h(x)

Where f(x) is defined as "distance-plus-cost-heuristic" function, g(x) the cost function
and h(x) is the heuristic function.
While g(x) represents the cost from moving between the two points, the function
h(x) is an heuristic estimate of the distance to the goal point. The heuristic can
be calculated in different ways, thus giving to the A* algorithm flexibility in its
application, but the commonly employed heuristic for simplicity coincides with the
straight-line distance to the goal. This heuristic function represents the shortest
possible distance between two points
It is safe to assume that A* will always generate a valid path if possible, however
the algorithm has no guarantee that the path found will be the optimal one. The
generated path depends on different parameters. The resolution of the map used
plays a major role, higher resolution will lead to have an higher number of vertices
in the map, thus leading to better paths closer to the optimum but at the cost of
longer computational time. Lower resolutions will produce paths way quicker, but
at risk of producing paths way further from the optimum and closing off narrow
passages, increasing in this way the energy consumption of the aircraft. Since the
number of vertices in the map increases cubic to the increase of the resolution this
is a major factor.
A lower resolution map will generate paths way quicker, but at risk of producing

12

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

paths way further from the optimum and closing off narrow passages that cannot
be seen at too low resolution. Another obstacle that makes the path sub-optimal
is the fact that A* operating in a square or cube grid is limited to moving in a set
number of angles. This is solved in a variety of ways, usually by either checking for
optimal parts in a small area at a time while the planner is running, or by post
processing of the generated path.
In terms of performance, the main issue of the base A* algorithm is the fact
that it is designed to solve the problem only once, to get an updated path it is
necessary to run the algorithm continuously. This drawback may increase the
computational load and overall slow down the process of path-finding in a highly
dynamic environment due to the fact that many instances of the A* need to be
executed. In large extent plain A* has been replaced by updated version of itself
in order to avoid this problem.
The time complexity of this solution is linked to the chosen heuristic function, in
the best case it has a polynomial trend if the search space is a tree, in the worst
case it could be an exponential expansion of the nodes.
A* is an optimistic estimate of the cost of the path, in fact, the true cost of a
path from the node to the goal will be at least as great as the estimate, and
on the admissibility criteria which certified an optimal path thanks to an equal
examination of all the nodes. However, there is also the possibility to modify the
algorithm to find an approximated shortest path, in this way, it is possible to speed
up the search at the expense of optimality by relaxing the admissibility criterion.
Oftentimes we want to bound the relaxation criteria so that we can promise that
the solution path is no worse than (1 + Ô) times the optimal solution path.

13

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

2.2.3 D* - Dynamic A* search

D* was introduced in 1994 by Anthony Stentz, its behavior and basic functionality
is directly derived by A*. It is still designed to find the minimum path in a graph
but the main difference is that the procedure to search for the path starts from the
goal point and go backward to the original point, choosing at each time step to
less expensive arc until reaching the starting node.
The advancement w.r.t. the A* is that D* gives the possibility to update the path
every time a change in the surrounding environment is found, as soon the cost arc
is changed, an improved path is generated with a lower cost to avoid the obstacle.
So, it is mandatory that the robot is able to update its map and re-plan optimal
path each time a new information comes. For its qualities, the D* search algorithm,
letting re-planning to occur incrementally and optimally in real time, is suitable
for a partially known environment containing dynamic obstacles. However, this
procedure of continuing updating and re-planning the paths is computationally
onerous, compared to the A*, due to the fact that it tries to find a path not only
from the goal, but also for all the nodes that are about as far from the target. For
this reason, in some cases the A* has a higher efficiency, introducing the heuristic
estimate of the distance between the start and the arrival, is able to limit the node
that is analysed during the calculations.
In recent years, new iterations of the algorithm have been developed mainly
expanding on the type of heuristic used in order to generate the path. Focused D*
is an informed incremental heuristic search which tries to reduce the computational
cost and speed up the process of path-planning. While in standard D* as in the A*
algorithm the cost changes are propagated through the invalidated states without
considering which expansions will benefit the robot at its current location, in this
advanced implementation the search is focused so that new optimal paths are
computed considering the robot’s location w.r.t. the goal position. If, the robot
then moves to a new location and its sensors discover another arc cost discrepancy
the search should be focused on the robot’s new location. Due to the advantages
brought by Focused D*, this type of algorithm is replacing the standard D*.
Another variant is represented by Lite-D*, which is based on a combination of both
incremental and heuristic search for its application. Similarly to the implementation
of a LPA* algorithm, which is described in the following section, it repeatedly
determines shortest paths between the current vertex of the robot and the goal
vertex as the edge costs of a graph change while the robot moves towards the goal
vertex it does not expand any vertices whose g-values were already equal to their
respective goal distances. It does not make any assumptions about how the edge
costs change, whether they go up or down, whether they change close to the current
vertex of the robot or far away from it, or whether they change in the world or only
because the robot revised its initial estimates. In this way the computational load

14

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

and the overall lightness of the algorithm is improved maintaining an efficiency
equal to the standard D*.

2.2.4 LPA*
Lifelong Planning A* (LPA*) was first described by Sven Koenig and Maxim
Likhachev in 2001 and it is an incremental version of A* which repeatedly tries to
find shortest paths from a given start vertex to a given goal vertex while the edge
costs of a graph change or vertices are added or deleted. This type of algorithm
is implemented in those applications where the path-planning problem has to be
solved in known finite graphs whose edge costs increase or decrease over time.
LPA* is basically an incremental version of A*, which can adapt to changes in the
graph without recalculating the entire graph, given both a starting vertex sstart
∈ S and a given goal sgoal∈ Sthe algorithm defines the function g(s) (as heuristic)
to denote the distance between them. All the known costs from the previous
search are maintained and updated with the g(s) function only when necessary. So,
eventhough the first search has a behavior equal to that of a version of standard A*,
expanding the same nodes in the same order and breaking ties in favor of vertices
with smaller g-values, but many of the subsequent searches are potentially way
faster because it reuses those parts of the previous search tree that are identical to
the new one.
LPA* deals with this in the following way: when the occupation of a vertex changes,
that is, a wall vertex is added or removed, the surrounding vertices are checked to
see if the move distance from the start is consistent with those of the vertices that
surround them. This means that vertices look at their neighbours to check if their
data are up to date, or if they have been blocked off. For each vertex that was
found to have changed the neighbours of that vertex is then checked, forming a
wave that identifies all vertices whose data is now outdated, add them as potential
targets for exploration again. So, only the outdated information are discarded, and
the segments of the map which were explored stay that way for the next search,
making the re-planning more efficient.

15

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

2.2.5 RRT - Rapid Exploring Tree
A different type of approach to the graph traversal problem is provided by the
Rapid Exploring Tree algorithm family. While standard graph traversal (or graph
search) is focused on visiting each vertex in a graph (checking and/or updating),
the tree traversal (or tree search/walk) is a form of graph traversal which is focused
on visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure
exactly once. Tree traversal is defined as a special case of the graph traversal
problem.
RRTs were developed by Steven M. LaValle and James J. Kuffner Jr, they are
particularly effective to handle problems with obstacles and differential constraints
(nonholonomic and kinodynamic) and have been widely used in autonomous robotic
motion planning. RRTs can be viewed as a technique to generate open-loop
trajectories for nonlinear systems with state constraints. An RRT can also be
considered as a Monte-Carlo method to bias search into the largest Voronoi regions
of a graph in a configuration space.
An RRT grows a tree rooted at the starting configuration by using random samples
from the search space. As each sample is drawn, a connection is attempted between
it and the nearest state in the tree. If the connection is feasible (passes entirely
through free space and obeys any constraints), this results in the addition of the
new state to the tree. With uniform sampling of the search space, the probability
of expanding an existing state is proportional to the size of its Voronoi region.
As the largest Voronoi regions belong to the states on the frontier of the search,
this means that the tree preferentially expands towards large unsearched areas.On
average, an RRT is constructed by iteratively breaking large Voronoi regions into
smaller one.
The tree is constructed incrementally from samples drawn randomly from the
search space, the obtained benefits are similar to those achieved by other successful
randomized planning methods, and is inherently biased to grow towards large
unsearched areas of the problem.
The basic reasoning of this type of algorithm family can be summarized by the
following points:

• Start from a given point, which will be the Source of the tree for searching
the surrounding space in order to define a path to the goal point.

• Randomly select a position in a given region. From current position and
randomly selected point, find nearest node if present select that node as
current node. Else create a new node at predefined step-size distance from
current node.

• If the distance of a newly created node is less than a certain threshold to the
destination node, we can end our search for the destination. And traverse

16

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

back from the last node to the source node.

• Structure of each node stores its immediate parent and list of immediate
childrens. While travelling back from the destination we follow the parent
node. Loop runs for some already defined number of iterations, controlling
number of iteration more approximate path can be found, usually the greater
is the number of iterations the more approximate to the ideal path would be.

This application is not restricted to a grid like the previous A* algorithm, which
waste time in a direction-less search and probing every are frequently, instead RRT
rapidly explores new portions of the state space and the distribution of vertex
provided leads to a consistent behavior, RRT remains connected even if the number
of edges is minimal.
Although the RRT algorithm can be considered stable and probabilistically complete
under very general conditions, it is usually seen as a path planning module to
incorporate with another existing planning system. Entire path planning algorithms
can be constructed without requiring the ability to steer the system between two
prescribed states, which greatly broadens the applicability of RRTs.
It is possible to demonstrate that, the cost of the best path generated by a standard
implementation of RRT converges almost surely to a non-optimal value and the
algorithm can be slow due to the fact that tries to search all the state space. For
this reason, different improvement to the basic functioning of the algorithm were
performed during the recent years, mainly focused on providing a faster convergence
rate to the optimum, implementing different heuristic function to limit the area of
search or combining multiple tree generated by the starting and goal point.

Algorithm 1: RRT Algorithm Pseudocode
1 T .init(xinit); for k = 1 to K do
2 xrand ← RANDOM_STATE();
3 xnear ← NEAREST_NEIGHBOR(xrand, T);
4 u← SELECT_INPUT (xrand, xnear);
5 xnear ← NEW_STATE(xnear, u, ∆t);
6 T .add_vertex(xnew);
7 T .add_edge(xnear, xnew, u);
8 returnT

17

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

Figure 2.4: Graphical representation of the paths generated by RRT algorithm

2.2.6 RRT* - Rapid Exploring Tree Star
As mentioned in the previous section, improvements to the basic RRT algorithm
have been made. The most famous variant is called RRT* (Rapid Exploring Tree-
Star), which tries to obtain a path with a cost closer to the optimum as possible.
While RRT* inherits all the properties of RRT and works similarly, it introduces
two features called near neighbor search and rewiring tree.
As for the first function, with the neighbor search refers to the fact that to find the
next node to be inserted in the tree, this choice takes place within a well-defined
area, usually circular with a set radius.
The rewiring function instead, consists in changing the parent node if the cost of
the previous connection can be decreased. As the number of iterations increases,
RRT* keeps improving the solution and the path cost gradually comes close to
the optimum, whereas RRT does not improve and maintains a jaggy-lines and
sub-optimal path. Due to increased efficiency to get less jagged and shorter path,
features of rewiring and neighbor search are being adapted in recent revisions of
RRT*, therefore providing the basis for the development of new types of algorithms
capable of improving the weaker aspects of it. In fact, while RRT* greatly improves
the tree-based approach to the scheduling problem, because of its rewiring functions
the convergence slow down if the space is large with higher number of dimensions.
Another drawback consists in the uniform global sampling performed by the
algorithm, this will provide asymptotically the optimal solution but at the cost of

18

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

slow time response in case of a dynamic obstacles or fast objects traversing the
path.

Figure 2.5: Rewiring process in RRT* algorithm

Algorithm 2: RRT* Algorithm Pseudocode
1 T .init(xinit);
2 for k = 1 to K do
3 xrand ← RANDOM_STATE(χ);
4 xnear ← NEAREST_NEIGHBOR(xrand, T);
5 xnew ← EXTEND(xnear, xrand);
6 if COLLISION_FREE(xnear, xnew) then
7 T .add_vertex(xnew);
8 T .add_edge(xnear, xnew);
9 Xnear ← nearest_neighbors(T , xnew, radius)

10 for (xnear, Xnear) do
11 rewire_RRT ∗ (xnear, xnew);

12 returnT

19

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

Figure 2.6: Graphical representation of the paths generated by RRT* algorithm

20

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

2.2.7 Informed-RRT*
As stated in previous section, the improvements on the RRT* algorithm are nu-
merous and follow different strategies with the common aim of speeding up the
process and improve the converging speed and reliability.
The Informed-RRT-Star algorithm was developed by Jonathan D. Gammell, Sid-
dhartha S. Srinivasa, Timothy D. Barfoot and first published in 2014. The core
of the algorithm resumes the basic functioning of the RRT* retaining the same
probabilistic guarantees on completeness and optimality, but some changes have
been made in order to significantly shorten the total search time. Furthermore,
it can be shown experimentally that it outperforms RRT* in rate of convergence,
final solution cost, and ability to find difficult passages while demonstrating less
dependence on the state dimension and range of the planning problem.
Informed-RRT* behaves as RRT* until the first solution is found, after that the
algorithm will start sampling only in an area shaped as an ellipsoid nearby the
path (defined as X f̂). It can be shown that the optimal path resides inside this
area. The subset X f̂ is where the algorithm will directly sample for new states,
unlike path biasing no assumptions are made about the homotopy of the class of
the optimum path and differently to the heuristic biasing it does not explore states
that will not improve the solution.
Sampling only in the subset all the new states found are potentially improvements
regardless from the size of X f̂ w.r.t. the initial X. This allows it to work effectively
regardless of the size of the planning problem or the relative cost of the current
solution to the theoretical minimum, unlike sample rejection and graph pruning
methods.
The ellipse is built with both, the initial state, and the goal state as focal points,
following the equation 2.1; the eccentricity is given by the ratio between actual
best cost and the minimum one.

X f̂ = {x ∈ X | ë(xstart − x)ë2 + ë(x− xgoal)ë2 ≤ cbest} (2.1)

Figure 2.7: Ellipsoid Sub-space used in Informed RRT* algorithm

21

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

The creation of this subset implicitly balances both exploitation and exploration,
no additional parameters or tuning are required. While the use of an heuristic
may not always improve the search, in a real-world planning the practicality of
this method is demonstrated; in situations where no additional information are
provided by them, Informed RRT* is equal to RRT* but in any other case the
improvements can’t be neglected. In order to provide even better trajectories for
the drone, in addition to the main algorithm, a Smoother can be implemented in
combination to further reduce the search space.
As Informed RRT* uniformly samples the subset of the planning problem that can
improve the solution, a rewiring radius can be calculated from the measure of this
informed subset and the related vertices inside it. This updated radius reduces the
amount of rewiring necessary and further improves the performance of Informed
RRT*. At each iteration, the rewiring radius, rRRT* , must be large enough to
guarantee almost-sure asymptotic convergence while being small enough to only
generate a tractable number of rewiring candidates.

Figure 2.8: Graphical comparison between RRT* and Informed-RRT*

22

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

Algorithm 3: Informed RRT* Pseudocode given (xstart,xgoal)
1 V ← xstart;
2 E ← ∅;
3 Xsoln ← ∅;
4 T = (V,E);
5 for ∀xnear ∈ Xnear do
6 xbest ← minxsoln ∈ xsolnCost(xsoln);
7 xrand ← Sample(xstart, xgoal, cbests);
8 xnearest ← Nearest(T , xrand);
9 xnew ← Steer(xnearest, xrand);

10 cnear ← Cost(xneat);
11 cnew ← Cost(xnew + c · Line(xnew, xnear));
12 if cnew < cnear then
13 if CollisionFree(xnew, xnear) then
14 xparent ← Parent(xnear);
15 E ← E\{(xparent, xnear)};
16 E ← E ∪ {(xnew, xnear)};

17 if InGoalRegion(xnew) then
18 Xsoln ← Xsoln ∪ {xnew};
19 return(T);
20

23

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

2.3 Other Path Planning approaches
All the methodologies analyzed in the previous sections are usually referred as
global planner and useful in the definition of a set of waypoints to generate obstacles
free trajectory for the drones given a starting and goal point.
However, when the aircraft found himself in a complete unknown environment
without any previous information about the surrounding area the most part of
these algorithm fail to generate a solution to the planning problem. For this kind
of situations, local planner has been developed, while the basic concept is still that
to provide a safe path for the UAV these planners have to be able to process the
data coming from the sensors and elaborate escape trajectories in real-time.
Different type of approaches are subsequently analyzed in these last part of the
chapter, which draw their inspiration from physical laws and image processing
algorithm up to the most recent machine learning methods for UAVs.

2.3.1 APF - Artificial Potential Field
Artificial Potential Field (APF) is a methods first implemented in 2D application
for an easy autonomous navigation implementation, then became very widespread
for UAVs applications due to its properties and as a reactive collision avoidance.
At the base of this type of CAS, the navigation problem is expressed through
physics concepts. Way-points and the Goal point are treated as attractive points
with and attractive force while the obstacles generate repulsive one. Other types
of forces are essentially arbitrary, such as potential energy; it is considered higher
in points close to obstacles and lower in points near the way points. Therefore
using simple electrostatic equations it is possible to define a safe trajectory; the
one that has the lowest flux density becomes the new path for the UAV. Usually
the Goal point express the lowest value possible in the potential field and so exerts
the highest attractive force in order to move the UAV close to it.
Analysing the basic mathematical principles behind this method it is possible to
define q = (x, y)T as the position of the drone in the state space. Through the
equation 2.2 the potential field can be expressed as:

U(q) = Uatt(q) + U rep(q) (2.2)

Where U(q) is the APT, Uatt the attractive field and U rep the repulsive field. The
attractive force is given by the negative of the gradient of the attractive field, while
the repulsive force by the negative of the gradient of the repulsive field. The force
moving the aircraft to the goal position can be expressed including the Euclidean
Distance ρ from the goal point combining it with the gradient obtaining:

F att(q) = −∇ = 1
2kaρ

2
goal(q) (2.3)

24

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

However, there are drawbacks exist in APF such as: trap situation due to local
minima or saddle points, oscillation in the presence of obstacles, no passage between
closely spaced obstacles and oscillations in narrow passages. This can cause problems
as the loss of control of the aircraft or collision threat. Another difficulty that
can occur in practical application is that the dynamic limitations of the aircraft
have to be considered. If this does not happen, the vehicle will not be able to fly
the generated path. Moreover, considering the high importance of the availability
of state information for this type of methods, any deficiency in this information
may generate wrong field formation. It can cause aggressive control commands
that may affect aircraft performances. Finally, there are other criticism of using a
mathematical model to describe how the vehicle dynamics is affected by changes;
for example, the method collapses all forces into one singular resulting force. It
causes the loss of information about the obstacles location and consequently, even
if it would be physically possible to traverse some difficult passages, it couldn’t be
possible in the real space.
To address some of these criticalities, other types of methods have been studied
and developed as the vectorial field histogram.

Figure 2.9: Visualization of an application of Artificial Potential Field as path
planner

25

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

2.3.2 VFH - Vector Field Histogram
The Vector Field Histogram similarly to APF is a reactive real-time obstacle
avoidance method. It was first proposed by Johann Borenstein and Yoram Koren
in 1991 using a mobile robot. The VFH makes use of a 2-dimensional cartesian
histogram grid considering it as the world model. The model is frequently updated
by the data received by the sensors thanks to a two-stage reduction process. This
process manages to compute the desired direction of motion first by reducing a
constant size subset of the 2D histogram grid around the position of the robot in a
one-dimensional polar histogram and then selecting the most suitable sector of the
polar histogram. The process can be subdivide in three main steps:

• Creation of a bi-dimensional cartesian histogram grid representing the world
around the vehicle with obstacles;

• Selection of an active window around the robot position of the 2D histogram
grid and turn into a 1D polar histogram;

• Calculation of the steering angle and velocity from the 1D polar histogram
resulting from an optimisation process.

The creation of the 2D Cartesian histogram is made by all the data incoming
from the distance sensors on the aircraft and putting them into a grid map. This
process is independent from the type of sensor used for the obstacle detection (laser,
ultrasound, radar). For each range reading, the cell lying on the central axis and
corresponding on a fixed distance d is incremented. The certainty value of the cells
continuously updates during the vehicle motion.
The second phase transposes the bi-dimensional grid map in a one-dimensional
structure. To better threat information about an obstacle and avoid high computa-
tional load, rather than process the whole grid map the active window concept is
introduced. To restrict the 2D grid map, it is considered a constant dimensions
area centered on the vehicle position; consequently, it moves with the vehicle and
it represents a local area around it. The new grid is mapped in a one-dimensional
structure called polar histogram.
Finally, during the last phase, the required direction to avoid any collision for
the vehicle is evaluated. It is calculated by a given sector of the one-dimensional
histogram in which the vehicle velocity is adapted according to the obstacle polar
density. To choose the best sector of the active window to pass though it is necessary
to analyse the polar histogram. To evaluate the best path to pass around the
obstacle, is necessary to consider a various amount of factors, such as if the valley
is large enough to permit the motion of the vehicle. If consecutive sectors are all
defined as candidate valleys and considering other factors, like the alignment of the
vehicle to the target, the difference between the current and the desired direction

26

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

and the difference between the previously selected direction and the new one, the
new path is established.
The VFH overcomes some limitations of the potential field method. The influence
of a bad sensor information is minimized, the absence of attractive and repulsive
forces eliminates the problem of local minima of settle point. VFH can’t be used as
a global planner but only as a reactive local planner, it can’t generate waypoints in
its standard implementation but only provide the best direction for the drone to
follow in order to avoid an incoming obstacle.
For the type of sensor deployed, a depth camera providing only 3D information of
the world, the main drawback is the computing power required to generate and
traslate individual points from a 3D image to a 2D histogram.
The 3DVFH+ is an extension of the basic vectorial histogram but, in this case,
not only the dimension of the vehicle are considered, it will make a 2D polar
histogram from an Octomap of the environment in this way merging both 3D and
2D information for the navigation of the robot.

Figure 2.10: Vector Field Histogram

27

Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles

2.3.3 Machine Learning Approaches
Machine learning based approaches are gaining more popularity in recent years this
is due to the advancement regarding the computing power of companion computers.
In contrast to planners, these systems rely primarily on image analysis from sensors
such as stereo cameras or mono cameras. Their purpose is not to generate a global
or local trajectory, that because these systems are not using or constructing maps
or graphs. Instead, after the training phase the algorithm learns a control policy
that selects a steering direction as a function of the vision system’s output.
In order to train the algorithm real camera images or consisting set of synthetic
graphic images can be used. Labeling with ground-truth distances to the closest
obstacle enables the recognition of it and to direct the drone in the direction with
fewer obstacles or where the risk of a crash is lower.
The advantages of Reinforcement learnings and of policy search are then applied
within a simulator that renders synthetic scenes. This learns a control policy
that selects a steering direction as a function of the vision system’s output. The
great advantages are represented by the fact that the drone can be trained over
virtual simulations and synthetic scenes in order to train the algorithm to recognize
patterns of obstacles or to generate trajectories that can then be used in real-life
applications.

28

Chapter 3

Hardware Implementation

The choice of the hardware parts represents a crucial step in the subsequent
implementation of the collision avoidance system and in the drone’s localization in
space. Obtaining a stable and absolute position of it represents a challenging task
and requires the use of different sensors. Without a system to obtain the location
of the drone in a reliable way, any algorithm for the generation of a trajectory
could not be implemented; an error in the position would lead the aircraft not to
follow the points sent in the path and therefore in hazardous situations for workers
and industrial machinery.
In this chapter, therefore, the emphasis is not only on sensors for localization
purposes but also on the selection of the most suitable sensing elements for the
chosen collision avoidance system.

3.1 Sensors for Collision Avoidance
As mentioned earlier, the choice of a sensor should be weighted by considering a
set of arbitrary parameters chosen upstream. These criteria are mainly dictated
by the tasks performed by the drone, maintenance, and the physical limitations
of the vehicle. Not only that, but also the range of action of the device and its
applicability in a purely industrial context limits the choice of usable sensors. In
the subsequent list, these constraints are analyzed in more detail:

• The drone will be deployed in an indoor environment, mainly for maintenance
purposes. The light conditions are considered optimal in most cases due to
the indoor illumination. The sensor must, in any case, have a certain ability
to perceive the environment, even in the absence of lighting.

• The range of action of the sensor has to be wide enough in order to ensure
the effectiveness of the collision avoidance. The more the sensor is able to

29

Hardware Implementation

perceive the surroundings of the drone, the larger will be the map generated,
simplifying in this way the planning function.

• The weight of the sensor must not be too high to avoid overloading the aircraft,
running the risk overheating the rotors of the drone or increasing the total
energy consumption.

• The power consumption of the integrated sensor must be considered due to the
fact that it could reduce the UAV’s total time of flight and critically influence
the missions.

Sensing technology can be subdivided into two major types based on their basic
operation principles: active and passive sensors.

Figure 3.1: Different types of sensors and approaches to the Collision Avoidance
problem

Active sensors all work using the same basic principle. An active sensor is com-
posed by its own transmitter (source) and receiver (detector). A transmitter emits
a signal (light wave, acoustic signal, electrical signal) which bounces on an object,
the receiver then reads this reflected signal. Knowing the initial speed of the signal
and the time it took to return to the receiver, it is possible to obtain information
about the distance travelled.
Passive sensors are mainly designed to detect the energy discharged by the ob-
jects or the scenery under observation. Most part of these sensors are represented
by optical, depth cameras and Infrared detectors.

30

Hardware Implementation

Cameras

There are different types of cameras that operates on different wavelengths. Optical
or visual sensors are cameras such as monoculars or stereo cameras that work
by detecting the visible light. Thermal or infrared cameras have a longer wave-
length and work with the infrared light. While the traditional cameras have poor
performance in low lighting and bad weather conditions, IR cameras excel in such
conditions.
All cameras sensors rely heavily on image-processing algorithms in order to extract
information from the chunks of data provided by the sensor.
Special consideration should be given to stereo sensors, cameras that have two
sensors, spaced a small distance apart. A stereo camera takes the two images from
these two sensors and compares them. Particular cameras that attempt to emulate
human vision by using two cameras that fix the same scene at a fixed distance. The
images from these cameras are then used for extraction and matching procedures in
order to obtain a disparity map between them. Once the disparity map is obtained,
it is possible to extract important features like depth and Point clouds that can be
used for the construction of a depth-map or cost-map.

Lidar

Lidar sensors use laser beams to calculate the distance of objects around them
and generate a clear image of their nearby features. The use of laser beams gives
an upper notch over all other sensors that use the radio or sound waves. Lidar
sensors usually come with an in-built software which is able to process the images
at a great speed. This type of sensor can also work perfectly at night, ensuring no
limitations in poorly illuminated environments.
Lidar technology, due to its physical properties and extremely high range w.r.t. to
the other sensors is usually deployed to map out environments and large areas.
The basic principle of operation is extremely similar to that of sonar or radar. A
laser beam is emitted from the sensor transmitter while the receiver receives the
reflected one. Knowing the speed of light as a fixed value, it is possible to calculate
the delay between the two beams and estimate the distance to the object. The
use of a Lidar usually generates 2D maps and is not suitable for the generation of
a 3D environment with a fast response time, where the use of a camera could be
advantageous.

Time-of-Flight ToF

Time of flight sensors (ToF) and Lidar are essentially the same thing. They both
use infrared light to calculate the depth of the surroundings. However, ToF is
a camera that sends out a single laser pulse to get a reading of the depth of an

31

Hardware Implementation

environment, whereas a Lidar scanner usually sends out multiple pulses to get an
accurate reading of all the surrounding.
Therefore, they are not sensors used for map generation but to obtain information
about the distance quickly from a given direction.

Sonar/Radar

Sonar and Radar sensors behave similarly to the ToF ones, their operating principle
is capturing the bouncing waves and estimate the position of the obstacle by
comparing them with an already known fixed speed.
Ultrasonic sensors (Sonar) provide a cheap and reliable means for obstacles de-
tection. These sensors are amazingly accurate, though they may be thrown off
by a sound absorbing obstacle, like a sponge. Application for collision avoidance
systems specifically designed for drone already commercially exists. Usually, are
composed by a ring of these sensors which enables a 360° cover from approaching
obstacles. Another common application is for estimating the altitude of the aircraft
or defining potential zone in Force-field approaches.
Furthermore, due to their structure supersonic sensors are susceptible to electrical
noise, air turbulence and frame vibrations.

Event-based Cameras

Event-based cameras apply pixels that independently respond to change in bright-
ness, each pixel records only when a threshold value is exceeded. The output is a
sequence, an asynchronous stream of events. The main advantages over standard
cameras are the very high dynamic range, no motion blur and extremely low latency.
Due to the fact that the output of these sensors is not a series of frames, traditional
vision algorithms cannot be applied. This type of camera sensors represents the
future of camera application for collision avoidance systems, due to the fact that
these sensors can be implemented with machine learning approaches to obtain high
efficiency and safe systems which can be trained in a wide range of situations. The
availability of event-based sensors is still short in the market, and only experimental
models can be found.

32

Hardware Implementation

After this brief introduction on the types of sensors most commonly used in
the field of UAVs, a careful analysis has been conducted on the market to see
the main available products. In the table 3.1, the main characteristics of different
camera and Lidar sensors are reported. By keeping in mind the limitations listed
above, the possibility of implementation and the technical features provided by the
manufacturers, the Intel Realsense D435i camera has been picked as main sensor
for the CAS of the drone.

Name Dimensions(mm) Weight(g) Range(m) FoV (H-V-D)
Intel RealSense D455 124x26x29 82 0.52 to 6 57°×86°x95°(±3°)
Intel RealSense D435i 90x25x25 72 0.28 to 3 57°×86°x95°(±3°)
Intel RealSense D435 90x25x25 72 0.28 to 3 57°×86°x95°(±3°)
Intel RealSense D415 99x20x23 72 0.45 to 3 41°×64°x72°(±3°)
Intel LiDar L515 61x26 95 0.25 to 9 70°x43°(±3°)

Intel RealSense T265 108x25x13 60 / 163°(±5°)
Azure Kinect 126x39x103 440 0.25 to 5.5 120°x120°

Velodyne VLP-16 Lite 103x72 590 up to 100 30°(±2°)x360°(±0.1°)
Mynt Eye S1030 165x31x30 184 0.5 to 18 76°x122°x146°

Mynt Eye D1000-120 165x31x30 190 0.3 to 10 58°x105°x121°
SilkyEvCam 30x30x36 40 / /

Table 3.1: Sensors selection for the CAS

3.2 Intel Realsense D435i
Standard digital camera outputs images composed by a 2D grid of pixels. Each
pixel has a defined value associated with it, which define the combination of primary
color (RGB) for that specific pixel in a given time. On the contrary, a depth camera
has an output image defined as RGBD, where each pixel shows a combination
of 4 values; in addition to the 3 standard ones, the fourth expresses the "depth"
corresponding to each pixel. Since the distance between the sensors is known, these
comparisons give depth information. Stereo cameras work in a similar way to how
we use two eyes for depth perception.
The Intel Realsense Camera works exactly in this way, in addition a Infrared

sensor is added in order to improve the performance in low light condition and
maintain a high level of details improving the generated data.
Beneficial to this type of implementation is the fact that there are no physical limits
to how many camera sensors implements in a defined space, these camera don’t
interfere with each other like a pair of Lidar of ToF sensors would do. At the end
of the analysis of sensors suitable for obstacle detection, only one of them has been
selected. The most acceptable sensor has been chosen following an iterative analysis

33

Hardware Implementation

between the main features of the sensors and the search for collision avoidance
algorithms that supported them.
The Realsense D435i camera represents the best compromise, in terms of overall
dimensions, weight, operative range and cost. The field of view is sufficiently
wide to ensure optimum performance both at close and long range. In addition,
the Realsense allows to apply a specific resolution to the images, in this way it
is possible to directly act on the minimum radius of vision as reported in the
schematics of the sensor. In addition, automatic flight missions will be programmed

Resolution Minimum-Z Depth(mm)
1280x720 280
848x480 195
640x480 175
640x360 150

Table 3.2: How the Resolution of the Camera modify the minimum depth

to take UAVs always with the front facing the direction of flight, therefore it is not
necessary to have a 360-degree field of view coverage. Thus, the camera will be
integrated into the front of the vehicle.

Figure 3.2: Graphical representation of the Cameras FOV

34

Hardware Implementation

Figure 3.3: Intel RealSense D435i model

35

Hardware Implementation

3.3 Companion Computer
The Companion Computer (CC) is nothing more than a single board computer
(SBC) or a small computer, usually Linux-based, that can communicate directly
with the flight controller. CCs applications can be very complex, before the advent
of them, in order to integrate new feature on the aircraft it was necessary to modify
directly the autopilot code, greatly increasing the difficulty of programming.
The development of suitable libraries allows an effective, fast and reliable com-
munication via MAVLink protocol between the CC and the Flight controller. In
this way, functionality like computer mediated flight paths, collision avoidance
maneuvering or image processing algorithms are easily achievable; the only limit is
represented by the computational power of the computer.
During the development of the drone model, two SBC were used, initially a Rasp-
berry Pi model 4 but, due to the high workload of creating a three-dimensional
map and streaming video, the software platform was moved to a Nvidia Jetson.

3.3.1 Raspberry Pi 4
The Raspberry Pi 4 is a single board computer commonly used in an extremely
wide range of different applications due to the low price and high performance
provided comparable to an entry level PC system. The Raspberry Pi 4 can be
equipped with different sizes of RAM memory according to the required power, in
this case 4GB.
The CPU is a high-performance 64-bit quad-core processor which enables hardware

Figure 3.4: Single Board Computer Raspberry Pi 4 (4GB)

video decoding at up to 4K, the board has integrated dual-band 2.4/5.0 GHz wire-
less LAN, Bluetooth 5.0, Gigabit Ethernet and multiple USB 3.0 ports including
I/O pin.
The extreme flexibility of this type of micro-computer was the reason of the first
implementation of the hardware for the drone. The low power consumption and
the great compatibility with all the other hardware parts like the Intel Realsense,

36

Hardware Implementation

thanks to a large number of available open libraries, significantly speed up the first
phases of testing.
Although the performance for a basic design were acceptable, the type of imple-
mentation that the UAV used, required a more powerful and computationally
capable Companion computer. In fact, this card does not have enough power to
allow extensive machine learning tasks and applications with a certain workload.
In addition, due to the type of implementation used in this thesis, where a 3D
occupancy map is deployed, to obtain reactivity and accuracy a more powerful
companion computer should be used.

3.3.2 Nvidia Jetson Nano
NVIDIA Jetson Nano Developer Kit is a SBC designed with the purpose of being
able to run multiple neural networks in parallel for various type of applications like
image classification, object detection or segmentation.
Considering the computational power required by the drone’s Collision Avoidance
System, where it must be able to process the video stream, generate a 3D occupancy
map, and resolve and generate the path for the aircraft, the choice of this board is
more than necessary. Similar to the Raspberry Pi the power consumption is very
small, the maximum power consumption is around 5W, all without compromising
on the HW point of view being equipped with an ARM Cortex Quad-core processor
in combination with 128 CUDA core Maxwell GPU and 4GB of RAM.
In addition, counting on a possible future development of the project that will

Figure 3.5: Single Board Computer Nvidia Jetson Nano(4GB)

include machine learning algorithms for the recognition of objects or people within
the industrial environment, since the board is equipped with a discrete GPU, the
operation of such technologies can only benefit.
The connection to the Jetson Nano is fully supported by the FCU, simply utilize

37

Hardware Implementation

a Pixhawk’s Telemetry port and directly attach it with to the Nvidia’s I/O pins.
The baudrate and the communication speed can be settled afterward thanks to the
Ardupilot software.

3.4 Flight Controller - Pixhawk 2.4.8
The Flight Controller can be seen as the heart of the UAV and performs all the
basic functions for the proper operation of the drone. While the computing power
that these boards bring with them is not high as the one of the CC, they do enable
the communication with a range of sensors that detect movement of the drone, as
well as user commands. Using this data, then controls the speed of the motors to
make the craft move as instructed.
In this case, the flight controller adopted was the Pixhawk version 2.4.8, an open-
source autopilot developed by the collaboration of Holybro and PX4. This board
can mount different versions of operating system, one dedicated entirely on the
PX4 firmware and another one developed by the Ardupilot community. In addition,
on the board multiple sensors are already present dedicated to provide all the
basic data needed to localize and guide the aircraft : 3-axis gyroscope, 3-axis
accelerometer in combination with a magnetometer and a barometer to gather data
about the orientation, position and heading of the UAV.

Figure 3.6: Pixhawk 2.4.8 Flight Controller

38

Hardware Implementation

3.5 Outdoor Flight Sensors
A functioning and safe CAS needs at its core an effective and reliable localization
system, for this reason different sensors and solutions have been adopted also from
a hardware point of view to locate the UAV based on the environments in which it
can be used.
Focusing initially on drone flight in outdoor environments as a matter of greater
simplicity of sensor implementation, several types of GPS technology were investi-
gated. Since the Ardupilot firmware depends largely on the accuracy of GPS to
determine the position of the drone in space and control its stability, with this
notion in mind, sensor performance must be carefully analyzed to determine which
to use within missions as the primary GPS sensor.
Not only the quality of the sensor, but also the weather conditions and the location
chosen to accomplish the mission affect the quality of the signal. For these reasons
in the outdoor tests we tried to maintain an outdoor location clear of large obstacles
that could interfere with the reception of the signal and causing the multi-path
effect and to test the flight of the UAV on sunny and cloudless days.
Poor information from the GPS greatly influences the quality of the flight and
the precision of the drone to follow a described path, not only that, GPS glitches
represents a severe problem for the EKF integrated in the Ardupilot software which
can lead to crashes and loss of control of the vehicle.
The quality of the GPS signal is generally expressed through a set of parameters
indicating the Dilution of Precision (DOP), respectively HDOP, VDOP, PDOP and
TDOP (Horizontal, Vertical Position, Time), whose indicate the level of precision
in each dimension of the receiver measurements. The lower these values, the greater
the accuracy obtained by the GPS sensor in the real-time position estimate of the
aircraft. For this reason, before taking any mission, it was mandatory to read these
values and, if they were too high, change the starting point for more precise signal
reception.

M8N GPS

The first type of GPS sensor used was the stock one given with the default
configuration of the UAV. The NEO-M8 series of concurrent GNSS modules is
built on the u-blox M8 GNSS engine and integrate a new digital compass model
HMC5883L. The performance provided by this sensor were in line with the entry
level GPS sensors on the market, the maximum number of satellites visible by
it was around 10 giving a accuracy of the position between a five meters radius.
Although the casing provided a good shielding from magnetic interference the
ignition of the drone’s engines could cause interference on the signal, especially for

39

Hardware Implementation

the compass, during the most aggressive flight phases.

Beitian GPS

Another type of entry level GPS sensor deployed was the Beitian BN-880 which
should provide better performances than the M8N GPS. It comes with the same
compass sensor of the M8N GPS.
Although the ZED-F9P GPS was used as a main GPS sensor for the outdoor
localization of the drone, the Beitian GPS was still being used as an external
secondary compass for the drone. In fact, Ardupilot’s platform allows you to use up
to 3 compasses simultaneously, greatly improving the drone’s attitude estimation.
The communication is enabled thanks to an I2C splitter, where both the GPS and
Sensors signal are injected to the Pixhawk platform. In order to obtain a working
result, the baudrate of the communication was to be settled to the optimal value.

ZED-F9P RTK GPS

The ZED-F9P positioning module was the last GPS sensor implemented in the
UAV design, providing the best results in term of localization and position hold.
It features the new u-blox F9 receiver platform, a multi-band GNSS module
with integrated u-blox multi-band RTK technology with the possibility to achieve
accuracy in the range of centimeters. Despite that during our outdoor tests this
feature was not used, still the flight performance and stability were guaranteed due
to the fact that the number of satellites hooked up to 22.
The combination of this GPS sensor and the fusion between the compasses with
the Beitian’s one generates a stable attitude estimation and control of the yaw of
the UAV.

Figure 3.7: Taoglass ZED-F9P GPS

40

Hardware Implementation

3.6 Indoor Flight Sensors
Indoor flight adds complications regarding drone tracking, attitude management,
and limitations on mission safety. For these reasons, different kinds of sensors are
deployed in order to maintain stable performances close to the Outdoor scenario.
An experimental implementation of Ultra-Wideband technology is approached and
integrated in the flight stack in order to generate accurate coordinates to locate
the drone in the Space even in location where the GPS signal is completely absent.
The combination of this technology and a ToF sensor was used as substitute for
flying the drone in indoor environment. Exploiting a fake_gps plugin integrated in
the Mavros code, it was possible to force positioning information incoming from
external sensors directly in to the Flight Controller.

3.6.1 DWM1001C - Ultra-Wideband
Ultra-wideband is a radio technology that is seeing increasing use in various sectors
as target sensor data collection, precision locating and tracking applications due to
its cost-effectiveness and accuracy. It has low energy consumption and suitable for
short-range communication due to the high-bandwidth of the radio spectrum used
(the frequency range classified as Ultra-wideband is between 3.1 and 10.6 GHz).
As its core, the functioning is similar to Bluetooth but with vastly improved

Figure 3.8: Decawave DWM1001 Development Board

precision (up to 5 centimeters) and effectiveness. UWB transmits data across short
distances and precisely determines location by measuring how long it takes for a
radio pulse to travel between devices.
In the thesis project the sensor used is a DWM1001C Qorvo directly attached to the
center of the drone’s frame (called Tag node) and connected to the Companion Com-
puter exploiting a USB connection. The sensor is equipped with the DWM1001C
UWB module directly soldered to the PCB which is capable of producing a position
estimate by measuring the ranging from different Anchor nodes positioned in the
room.
In order to achieve the most encouraging results and consistent, reliable tracking,
it is crucial that the Anchor nodes are placed in precise geometric shapes and

41

Hardware Implementation

their relative location has to be known with low uncertainties. For simplicity
of application, usually a square shape is adopted, in our case scenario though
a rectangular cell was designed by combining two square ones. In this way the
environment can be subdivided in two separated cells improving the accuracy.

3.6.2 VL53L1X Tof sensor
The implementation of a Sonar, IR or ToF sensor was mandatory in order to
generate stable altitude coordinates for indoor navigation. Luckily, the Pixhawk
board comes with a wide predisposition for the deployment of many sensors of this
type, both from a hardware and software perspective.
For this reason, the choice was mainly made based on the maximum range provided
and the accuracy of the device. On the Frame of the UAV two VL53L1X ToF
sensor are applied, one facing upward and one downward, in this way the height
can be calculated both from the ceiling and from the floor according to different
conditions. If the drone is found to be flying close to the ceiling where most of the
lighting is present, the performance of the ToF would be greatly affected, in these
cases the height is only provided by the downward facing sensor. On the contrary,
in a standard flight situation both provide data for the height calculation to the
EKF present in the Autopilot Firmware, guaranteeing a very high accuracy.
The chosen model guarantees a maximum range up to 4 meters with a frequency
of sampling of 50Hz.

Figure 3.9: Indoor Cage anchors configuration were the drone was tested

42

Chapter 4

Software Implementation

On the software side, the requirement was to have a flexible and easily programmable
system based on an open-source platform. For this reason, the operating system used
by the companion computer is Linux Ubuntu version 18.04 in which ROS Melodic
(Robotic Operating System) has been installed. In this chapter, an exhaustive
analysis of all libraries and packages used in the writing and implementation of the
CAS algorithm is conducted. In particular, in the last part, an in-depth description
of the implemented code and its basic principles of functioning is given.

4.1 Robotic Operating System - ROS
Robot Operating System (ROS) is an open-source robotics meta-operating system.
It provides all the services expected by an operating system as hardware abstraction,
low-level control, implementation of commonly-used functionality, message-passing
between processes and packages management. All the ROS processes can be
represented as nodes in a graph structure, conneted by edges called topics. These
nodes can pass messages to one another communicating data thanks to these topics,
call new nodes, provide specific services or retrieve information from a communal
database called the parameter server.
ROS represents the heart of all the development and the implementation of the
collision avoidance, providing a platform where all the incoming data from the
different sensors, the flight controller and the camera are collected, shared and
elaborated in order to run efficiently the algorithm.

4.1.1 Nodes
In ROS a node is a defined process that is able to perform computation. Nodes
communicate with each other using messages passing via streaming topics, services

43

Software Implementation

or Parameter server. Each node can send or get data from the another one using
the publish/subscribe model. To manage this loosely-coupled environment, there
is a Master-Node in ROS which is responsible for name registration and lookup for
the rest of the system. Without the Master, nodes would not be able to find each
other or exchange messages. Usually, in a robotic application multiple nodes are
launched simultaneously, in this way each one of them can take care and control
one specific task. This kind of system is represented by the Node-Graph, a tree-like
structure containing all the active nodes and their links.

4.1.2 Topics
Topics are a core element of the ROS graph that act as a bus for nodes to exchange
messages and are one of the main ways in which data are moved between nodes
and therefore between different parts of the system. Topics have anonymous
publish/subscribe semantics, which decouples the production of information from
its consumption. In general, nodes are not aware of who they are communicating
with. Instead, nodes that are interested in data subscribe to the relevant topic;
nodes that generate data publish to the relevant topic. There can be multiple
publishers and subscribers to a topic. Topics are intended for unidirectional,
streaming communication. Each topic is strongly typed by the ROS message type
used to publish to it and nodes can only receive messages with a matching type.

4.1.3 Services
Not all the communication in ROS follows the subscribe and publish paradigm. For
all request and reply type of interactions, which are often required in a distributed
system, the Service communication is used instead. This is performed by a pair of
messages: one for the request and one for the reply. A providing ROS node offers
a service under a string name, and a client calls the service by sending the request
message and awaiting the reply. Client libraries usually present this interaction to
the programmer as if it is a remote procedure call.

4.1.4 Messages
Nodes communicate with each other by publishing messages to topics. A message
is a simple data structure, comprising typed fields. Standard primitive types
(integer, floating point, Boolean, etc.) are supported, as are arrays of primitive
types. Messages can include arbitrarily nested structures and arrays (much like C
structures). Having matching type of messages and topics is a must in order to
establish a communication between the ROS nodes.

44

Software Implementation

4.2 Gazebo
Gazebo is an Open source 3D dynamic simulator, that has the ability to accurately
and efficiently simulate robots in user-created virtual environments. Similar to a
game engine, it offers an accurate physic simulation capacity with an high level of
fidelity, a suite of already integrated sensors and different interfaces to analyze the
simulated scenario.
With the possibility to simulate the robot systems, sensors and test a given al-
gorithm in real-time it is an extremely useful tool to develop without risks or
damaging the hardware of the machine. In addition, Gazebo is integrated with
ROS, where it is possible to generate launch files able to pass directly relevant
parameters and speed up the development.
For the scope of the thesis, the generation of different maps in the Gazebo envi-
ronment enables the testing of the collision avoidance algorithm in every type of
situation and obstacle behaviors. In this way, the tuning of the parameters for
obtaining a working code becomes much easier.
To add a greater degree of realism, in all simulations a model of the actual UAV
used was imported directly into the simulation via the CAD file, as shown in Figure
4.1

Figure 4.1: Visualization of the UAV in Gazebo from the CAD render

4.3 Mavros
Among the numerous packages deployed in the thesis development, Mavros node
constitutes a key piece. The Mavros package enables MAVLink communication
between the Companion Computer, which is running ROS, the MAVLink enabled
Autopilot and the MAVLink enabled ground control station (GCS), in this case
the PC connected to the network. This package provides communication driver for
various autopilots with MAVLink communication protocol, directly translating the
command sent using ROS in MAVLink in order to maneuver the UAV. Not only

45

Software Implementation

that, the numerous plugins contained in the Mavros_extra package allow a huge
versatility in the implementation of additional external peripherals to the classic
Ardupilot firmware. This is the case for the Fake_GPS functionality which is used
for the indoor navigation of the UAV.
Moreover, the node considerably simplify the creation of Reference Frames for
estimating the position and the control of the aircraft, due to the fact that auto-
matically translates Aerospace NED coordinates used by the FCU in ENU frames,
the standard for ROS navigation.

4.3.1 PointCloud Library - PCL
The Intel RealSense camera is able to generate point cloud and depth images. To
use this kind of data a specific library needs to be implemented. The Point Cloud
Library (PCL) is a standalone, open source package for 2D/3D image and point
cloud processing.
Although the camera sensor is reliable, it can still pick up interference or errors.
These mistakes can accumulate and, once the mapping procedure is started, gen-
erate false information of the environment like non-existing obstacles or limit the
perception of small openings. To obtain cleaner data, it is mandatory to filter out
noises and perform images processing, for this tasks the PCL library is suited with
different type of filters:

• Filtering a PointCloud using a PassThrough filter

• Downsampling a PointCloud using a VoxelGrid filter

• Removing sparse outliers using StatisticalOutlierRemoval

• Removing outliers using a Conditional or RadiusOutlier removal

The filtering procedure not only reduces the possibility of retaining false informa-
tion, but increases the speed of the generation of the 3D occupancy map.
Before generating the Octomap, the incoming Pointcloud passes through a Sta-
tistical outliers removal, which removes all the sparse points that are spread over
a fixed threshold, a PassThrough filter, that remove all the points which are out
of a defined bounding box, and subsequently a Voxel Grid which merges multiple
points in a single entity. After all of these operations the total number of points
registered is reduced from the range of millions to thousands.
The result of all these passages can be seen in the Figure 4.2 The PCL was funda-
mental in the image processing part required in order to obtain cleaner Occupancy
map. In order to filter out the noise incoming from the camera and reduce the
number of total point generated from the depth frame. PCL includes a set of
different filters suited for the most common used: In this thesis application a

46

Software Implementation

combination of outliers filter in order to remove sparse points from the PointCloud
and a VoxelGrid application to greatly reduce and generate less point were used.
In the subsequent images is possible to understand the effect of this application:

Figure 4.2: Filtering action on the Poincloud

4.3.2 OMPL - Open Motion Planning Library
The planning part of the algorithm is carried out through the OMPL library, which
consists of many state-of-the-art sampling-based algorithms for planning. Unlike
other libraries, OMPL does not contain any explicit code related to collision checks
or visualization, thus all the planners are not tied to a particular collision checker
or visualization front end. In this way, any algorithm can be easily integrated into
systems that provide the additional needed components.
A sampling-based motion planning process computes a set of random robot configu-
rations that are bound to a certain motion constraints, derived by the aerodynamics
of the robot itself. Collision free paths are then computed connecting these samples.
Sampling-based planning is a very powerful tool for planning in high-dimensional
spaces or for system with complex dynamics.
It is useful to define key terms that allow to categorize standard objects used in
writing the algorithm.

• Work-space: The physical space that the robot operates in. It is assumed that
the boundary of the work-space represents an obstacle for the robot.

• State space: The parameter space for the robot. This space represents all
possible configurations of the robot in the work-space. A single point is called
a State.

• Free state space: A subset of the State Space in which each state corresponds
to an obstacle free configuration of the robot embedded in the work-space.

47

Software Implementation

• Path: A continuous mapping of states in the state space. A path is collision
free if each element of the path is an element of the free state space.

Thus, to correctly implement the OMPL for geometric motion planning, it is
essential to define and instantiate the State Space object for the robot, and provide
the Start and Goal configuration in that space to define the motion planning query.
The planner has to be obtain the subset of the Free State Space to define all the
possible configuration without any collision, in order to do so the additional library
needs to be used. Any planner defined in the geometric name-space can then be
employed to solve the motion planning query. OMPL provides implementations for
several common states spaces, including Rn for Euclidean spaces and SO(2) and
SO(3) for the space of rotations in 2D and 3D respectively.
In the motion planning literature, many variants of the classical planning algorithms
are present, that change only one component of a planning algorithm in order
to achieve benefits in certain instances, some of these also follow optimization
objectives. Due to the open source nature of the library is easy to modify and
highly customize the already present planners to derive new ones from the existing
base code.

4.3.3 FCL - Flexible Collision Library
As stated before, the OMPL library does not provide any code for collision checking
between the Robot and the State Space. For this reason the implementation of a
Collision checking library was mandatory for the algorithm to work as intended.
FCL is an open-source library able to perform different tasks, and achieve three
types of proximity queries on a pair of geometric models composed of triangles.

• Collision detection: detecting whether the two models overlap, and optionally,
all of the triangles that overlap.

• Distance computation: computing the minimum distance between a pair of
models, i.e., the distance between the closest pair of points.

• Tolerance verification: determining whether two models are closer or farther
than a tolerance distance.

• Contact information: for collision detection and continuous collision detection,
the contact information (including contact Normals and contact points) can
be returned optionally.

• Continuous collision detection: detecting whether the two moving models
overlap during the movement, and optionally, the time of contact.

48

Software Implementation

The main use of the FCL was to generate two separate objects: a Drone one,
representing the dimension of the UAV, and a Map object, directly taking the
information incoming from the Octomap node. Following this procedure it was
possible to perform collision checking between them and obtain as an output if one
was occurring in a define state space or not. The result of this operation is directly
sent to the Planner to generate a collision-free path.
In particular, the great flexibility of this library enables to choose the shape and
the dimensions of a defined object, e.g. the UAV, by doing so it is easy to transpose
the algorithm to work with different drone models. Additionally, choosing the
width and the length parameters accordingly the aircraft can be moved even in
tight corridor and passages.

4.4 Robot Localization in Indoor Environment
Flying the UAV in an Indoor configuration results problematic for a series of
reasons, the tighter tolerances for movements, GPS-less flight and more importantly
possible electromagnetic interferences that greatly reduce the accuracy on the
yaw-estimation and attitude estimate of the aircraft.
In order to solve these problems a different approach w.r.t the outdoor flight needed
to be implemented. While, the position estimate could easily be solved by the
UWB sensor implemented, to solve yaw estimation and attitude an additional
EKF was added in order to fuse the data generated from the IMU sensors on the
Pixhawk, the Visual Odometry provided by the Camera and the localization from
the UWB.
In spite of the sensor fusion, in order to obtain a working system it is necessary to
use some modifications on the covariance matrix, changing the weights based on
the reliability and accuracy of the various sensors fused.
Another issue that arises from indoor use is due to the Autopilot itself and the
functionality of the flight stack. Missing a GPS lock on the UAV disable the creation
of local and global reference and the Mavros node is unable to send coordinates to
a specific frame to navigate the drone. To solve this problematic it was mandatory
to create a fictional reference frame with a defined odometry generated by the EKF
implemented adopting the sensors fusion.

4.4.1 Visual Odometry - VO
Visual odometry refers to the process of extracting Odometry information, in
particular the position and orientation of a robot, by analyzing the sequential
camera images estimating the distance travelled. In this way, it is possible to define
the movements made and localize the system without using a GPS signal.
This technique is broadly used in standard wheeled robots, but for mobile ones

49

Software Implementation

with non-standard locomotion methods, such aircraft, the accuracy obtained is
extremely compromised. In addition, odometry used for navigation suffers from
precision, since slip and slide or simply the vibration of the system may cause
errors in the reading, thus generating a wrong position of the robot. Odometry
readings become increasingly unreliable as these errors accumulate and compound
over time.
For a Quadcopter the vibrations of the frame generates influence the image readings,
not only that, the aircraft is not stationary in a fixed position in the space but
keeps moving in the space with small movements. It is easy to understand why,
this method can’t be deployed alone but in conjunction with other localization
systems the accuracy can be increased significantly.

4.4.2 IMU
Both the Intel RealSense camera and the Pixhawk board are provided with an IMU.
While, the first one is not very precise, the latter can be used in the sensor fusion
in conjunction to the VO to generate better odometry messages. In reality an
arbitrary number of IMU sensors can be fused together to obtain better accuracy
on the measurements. The data coming from the Pixhawk, in fact, are generated
by the fusion of the two IMU soldered on the flight controller and very precise.

4.4.3 UWB and VL53L1X Tof
Thanks to the fake_GPS plugin provided by the Mavros it was possible to send
the local position of the drone as a GPS message directly to the FCU. In the
generated message, the X,Y coordinates sent were extremely precise thanks to the
Kalman Filter implemented as a separate process on the system while, the Z one,
was obtained directly from the ToF sensors. In this way, the message generated
contained the best possible array of positions to achieve an accuracy in the scale of
centimeters.

4.4.4 Robot Localization Package
After adding all the previous settings, using the Robot Localization package it
was possible to deploy an EKF and proceed with the sensor fusion. The extended
Kalman filter (EKF) is the nonlinear version of the Kalman filter which linearizes
about an estimate of the current mean and covariance.
The first step is to provide the topics to be used as input for sensor fusion like
the VO package, the UWB and Tof messages and the Mavros IMU messages.
Subsequently, it is possible to proceed by directly modifying the covariance matrix
of the filter, weighing which topics provide the most reliable measurements and

50

Software Implementation

which should have a lower weight.
The output of the Robot Localization can be used directly to create a fictional
odometry frame, stabilizing in this way the position of the UAV without requiring
any GPS signal.

Figure 4.3: Robot Localization scheme

4.5 Octomap 3D occupancy Map
Once the point cloud has been filtered and the total number of points reduced, the
generation of the map representing the drone’s surroundings can be started.
In order to perform the reconstruction, another open-source packet has been used.
An Octomap representation is a three-dimensional model of the environment,
providing a volumetric map of the space which can be used for a broad number of
applications.
This kind of mapping approach is based on octrees, figure 4.4, and exploits a
probabilistic occupancy estimation which can be set as needed, and it can represent
both occupied and unoccupied spaces. Due to the use of Octrees this method
implicitly provides a map compression which keeps the 3D models generated
compact. An octree is a tree data structure in which each internal node has exactly
eight children. Octrees are most often used to partition a three-dimensional space
by recursively subdividing it into eight octants. This kind of approach is able to
generate and update efficiently the map keeping memory requirement at a minimum.
To further speed up the rendering of the map, the resolution of the Octomap can
be chosen via a simple parameter, thus reducing the latency between the incoming
data and the obstacle revelation. Furthermore, this framework is completely ROS
integrated giving it a strong flexibility and interaction with the collision avoidance
algorithm. To decrease the memory consumption a bounding box can be created

51

Software Implementation

Figure 4.4: Octrees used in order to build the 3D Octomap

around the UAV’s frame to clear at each cycle the 3D map. By doing so, the
problem of dynamic obstacles generating a blurred trail during the mapping is
completely eliminated and the map is always updated to the most recent time
frame.
Due to the probabilistic nature, when generating a 3D map the measurements
are affected by uncertainties typically produced by the range of the sensor, the
reflection, dynamic obstacles or simply due to the noise. All these criticalities can
be taken into account probabilistically, multiple uncertain measurements are fused
together to form a robust estimation of the true state of the UAV’s surroundings.
In this way, even if multiple sensors are added in future the same package can be
deployed just by doing a sensor fusion of all the incoming data.

Figure 4.5: 3D Octomap representation of a Tree in the Gazebo virtual environ-
ment

52

Software Implementation

4.6 EKF - Ardupilot’s Parameters tuning
The latest changes are at the level of the Autopilot firmware parameters themselves.
Both the Ardupilot and the PX4 firmware provide an Extended Kalman Filter
(EKF) for Copter and Plane aircraft, which estimates the vehicle position, velocity
and attitude based on the fusion of all the available sensors. Merging all the
received measurements make possible to reject all that measures with significant
errors. In this way, the system becomes less susceptible to faults that can affect
one single sensor.
The filter in the Autopilot is deployed as multiple instances called lanes. Each one
of them is able to provide an estimate, the more accurate of them becomes the
primary lane and it is the one providing the drone’s state estimate. The Ardupilot
software enables a lane for each IMU sensor present. Additionally, each lane uses
the primary instance of the Airspeed, Barometer, GPS and Magnetometer sensors.
The primary sensor can be set as a parameter, but the FCU can later change it
autonomously, even in-flight, in case of a driver-level fault. Affinity is a way for the
EKF lanes to use non-primary sensors within any running lane. Statistically it can
be shown that this provides a consistent way to use multiple high quality sensors
and use lane-switching to select the lane which has best performing combination of
sensors.
The Ardupilot’s firmware provides multiple versions of EKF, simply called EKF2
and EKF3 which can be activated by modifying a single parameter. The different
filters are due to the version of the firmware installed on the FCU, in this case
using the Ardupilot 4.0.4 the UAV is limited to the EKF2, which is a 24-states
Kalman Filter especially indicated for the flight of a Copter.
The advantages of this kind of filter are:

• It can run a separate EKF2 for each IMU making recovery from an IMU fault
much more likely and is able to recover faster from bad sensor data.

• It provides slightly smoother output, in this way UAV’s behavior is less sudden
and abrupt in the maneuvers.

• It is an older implementation, more reliable with no bugs and with slightly
less computing power required.

In order to stabilize the outdoor and indoor flight of the UAV some changes on the
Ardupilot’s parameters needed to be made. Using the APM-Planner Software the
use of the Extended Kalman Filter type 2 was activated on the FCU, subsequently
the EKF2 parameters have been tuned to provide a compromise between accuracy
and robustness to sensor errors.

• EK2_MAG_CAL: This parameter is responsible for determine when the filter
will use the 3-axis magnetometer fusion model to estimate both the earth

53

Software Implementation

and the body frame fixed magnetic field states. This model can only be used
when the external magnetic field environment is stable and without any major
disturbances. In this case scenario, the activation was set after the Yaw reset
and In-air. In this way the electromagnetic disturbances generated by the
motors and the ESC controller was taken in account.

• EK2_ALT_SOURCE: This parameter impose which sensor use as a main
source for the Altitude of the Aircraft. For both Indoor and Outdoor flight,
due to the fact that the UAV was flew with low altitude to avoid any safety
hazards, the main altitude source was set to the Range Finder (Tof) sensor.

• EK2_POS_GATE: This parameter controls the number of standard deviations
applied to the GPS position measurement innovation consistency check. The
implementation of the ZED-F9P GPS, with its extremely high accuracy, allows
to set number of Standard Deviations very low to w.r.t the standard.

• EK2_POSNE_NOISE: This parameter sets the GPS horizontal position
observation noise. Following the same reasoning as before, the implementation
of a good GPS unit allows to lower this value to the minimum possible. Even
in Indoor flight, due to the fact that the UWB is implemented instead of the
GPS, this parameter can remain low.

To modify these parameters a trail-by-error procedure was adopted, although the
precision of the sensors was known from the data-sheets in a real-life scenario the
accuracy can be significantly different due to the various environmental conditions.
Thus, after each change in the parameterization the impact was tested directly on
the UAV to verify the effectiveness of it.
Using the implemented function of the Autopilot, which saves all the flight log
file, it is possible to obtain a representation with numerical data directly coming
from the FCU as output of the EKF. In particular, the focus in the localization to
provide a better stability arises from this data set as shown in the figure 4.7, where
the relative position extrapolated from the GPS localization (ENU coordinates) of
the UAV resides inside a circle of radius 10 centimeters.

54

Software Implementation

Figure 4.6: Relative Position of the UAV in Outdoor condition, the Red Circle is
a Radius of 10 centimeters.

Figure 4.7: Relative Position of the UAV in Outdoor condition

55

Software Implementation

4.7 Algorithm implementation
After all previous packages were installed within the ROS catkin workspace correctly,
the implementation of the collision avoidance algorithm could begin. The algorithm
can be subdivided into two parts, the first one composed of callback functions, in
which the ROS topics are read and translated into useful variables for the code
each time a new message get published, and the second one, where the resolution
of the problem of path planning takes place and all the operations to ensure the
validity of the route found and any eventual replanning.
In the following list the various callback functions are analyzed accordingly to their
purpose:

• Odometry Callback function: this function reads the nav_msgs::Odometry
directly generated by the Mavros topic /mavros/local_position/odom. This
kind of message contains both information about the odometry of the UAV and
its relative position in the space. The information regarding the localization is
saved and used to set the Starting point in the Planner function and to check
if the actual location of the Drone corresponds to the Waypoint sent.

• Goal Callback function: the name of the function is self-explanatory, it reads
the topic /move_base_simple/goal which send both the coordinates and the
desired attitude of a Point in the space. It is possible to publish in this topic
easily through the GUI provided by the Rviz software. All the information
are then saved and used to set the goal point in the planner function.

• State Callback: the State of the UAV corresponds on the modality in which
the FCU is settled. Different states are available in the Autopilot firmware
but, in order to remotely control the Drone and sending customize position it
is mandatory to set the GUIDED mode. The role of this callback is sorely to
read the information about the mode of the FCU and, if necessary, switch it
to the right one.

• Position Callback function: the behavior of it similar to the Odometry one, it
reads the actual position of the UAV in the Space without any information
about the Odometry. This function is useful when, in indoor navigation
condition, the Autopilot does not provide any information about the local
position due to the lack of GPS signal. To read the coordinates is necessary
to obtain the information directly from the fake_GPS plugin by reading the
/mavros/fake_gps/mocap/tf topic.

• Octomap Callback function: it is responsible to read the /octomap_binary
topic and extrapolate the informations necessary to construct and update
constantly the 3D occupancy map. Once the datum containing the occupied

56

Software Implementation

cells is saved it is stored inside the Map object used for the collision detection
through the FCL library. The update rate has to be chosen carefully, due to
the fact that these kind of messages represent a heavy computational load. A
trade-off between constantly updating the map and the responsiveness has to
be made.

Figure 4.8: Topic and Messages published in the Planner part of the Algorithm

Once all the informations required to start the planning procedure are collected,
the OMPL library is used to define the State Space in which the planner will have
to find a path. The state space dimensions can be defined in different ways, it
can follow the ones provided by the Octomap, by doing so the more the space
is explored and mapped the larger will be the Space available for planning, or a
more general approach in which the dimensions are fixed as a given parameter.
In this application, the second approach was used to simplify and speed up the
calculations. The 3D State space in which the UAV can move is defined as a Box
with dimension 20x20x4 meters.
Subsequently, the Drone object is created in order to perform the validity check
for each waypoints from the path. The easiest solution to define it without giving
up to the kinematic constraints thus incurring to an over simplification, was to
deploy the FCL library to generate a Box with precise length, width and Height
close to the real dimension of the drone. To get a margin of error and compensate
for a bad localization or vibration of the aircraft a safe margin has been established
by increasing the real ones of some centimeters. In the algorithm then, the UAV
is considered as a box moving in the Space with dimension equal to 80x80x50
centimeters. This can be easily seen by using the Rviz software to obtain a graphical
representation like in the figure 4.9.
Once the information regarding the size of the state space and the coordinates of

57

Software Implementation

Figure 4.9: Drone object seen in Rviz as a box

Goal and Start points are received, the planner can be called through the OMPL
library. In the definition of the object planner, it is mandatory to specify which
kind of algorithm has to be used by it between the ones contained in the library.
In addition, it is possible to modify the behavior by simply changing the standard
parameters.
The code developed deploys the standard Informed-RRT* algorithm as a planner,
the only changes have been made with a view to increasing the performance of the
planner from a speed point of view. The main alterations applied are summarized
below:

• setRange: this parameter greatly influences the run-time of the algorithm.
It represents the maximum length of a motion to be added in the tree of
motions. For this reason a proper value has to be set in order to obtain the
best performance achievable. By trial-by-error the best value was hard-coded
as 4 meters.

58

Software Implementation

• setKNearest: it enables if the states are obtained by using a k-nearest search
for rewiring. If disabled the speed of planning is greatly increased. For this
code this function was disabled and the standard rewiring was utilized.

• setRewireFactor : this parameter controls the radius in which the rewiring
action takes place. By definition, smaller rewiring neighbourhoods reduce
the overall computational cost of rewiring at each iteration improving the
performance of Informed RRT* while maintaining almost-sure asymptotic
optimality. For this application the range was defined at 1.5 meter.

• fixInvalidInputStates: define a range where the goal and starting point can be
redone.

Once the planner has resolved the path-problem, a for cycle is called in order to
publish the waypoints that form the trajectory to the ROS topic /mavros/set-
point_position/local to control the UAV and make it maneuvers to the desired
position.
To maintain a more precise control and prevent any conflict between the messages,
one point at a time is sent. Before sending the next one the algorithm checks the
UAV current position, if it is closer than a define euclidean distance then it will
proceed to send the next waypoint, otherwise it will keep waiting for the drone
to reach the previous one. This distance is fixed but can be changed by directly
modifying the code. By experience, the one which provides the better stability of
flight and security is 15 centimeters.
Additionally, each time the Octomap is updated or a waypoint is reached an
auxiliary function is called from the FCL library which examine the validity of
the generated path by searching for any collision between the object Drone and
the occupancy map. If a collision is detected the Replanning function is called, in
which the actual trajectory in erased and another instance of the Planner is called
to generate an updated one that avoid the incoming obstacle.
The algorithm will run indefinitely and can even accept another Goal point while
still proceeding to send all the trajectory for another one, this gives a certain
amount of flexibility in the application of the code for scheduling UAV’s missions.
The resolution of the map plays a major role in the reactivity and in localization
of any obstacles, this due to the onerous computational cost to generate a 3D
environment. To work around this problem, it was lowered until each Cube of the
Octomap represents in real-life a 10 centimeters block. This simplification affects
the collision avoidance, due to the approximation, slight vibrations during the flight
or the UAV not following correctly the trajectory not represent any problem due
to the wide tolerances taken into account.
With the Rqt software is possible to visualize the ROS-Graph generated by launch-
ing all the required ROS-nodes in order for the algorithm to work and the reference
frame dependencies (figures 4.10, 4.11).

59

Software Implementation

Figure 4.10: Rosgraph of all the Nodes implemented

Figure 4.11: Reference Frames dependencies

60

Chapter 5

Virtual Simulation

The virtual simulation of the robot’s behavior constitutes a critical step during the
development phase. The main advantage is to be able to freely test the code and
any changes without having to use directly the real UAV, avoiding in this way the
exposure to possible security risks, accidents or damage to the components.
Thanks to Gazebo is possible to generate maps able to represent approximately the
real world and its physic, but to obtain meaningful results from the simulation, it is
mandatory to use a special software able to recreate the real FCU’s real behavior.
These kind of development platforms are called in short SITL, which means Software
in the Loop. The Ardupilot community has already a working implementation of
SITL software able to operate in combination with ROS and Gazebo to create a
powerful tool in the development of open-source applications.

5.1 SITL and Mavros implementation
The SITL (software in the loop) is a simulator that allows to run Plane, Copter or
Rover without using any hardware. It is built entirely on the autopilot software
and allows to use Ardupilot on a computer virtually implementing all the flight
stack behind the FCU. In this way it is possible to emulate the Pixhawk even
though no hardware is used. When launched, SITL gather all the data incoming
from the flight simulator, in our case Gazebo, elaborate them through the Flight
Stack and returns a behavior close as possible to the real one.
In addition, SITL can be used together with the Mavros node, thus obtaining
directly the control of the drone through simple ROS commands and the possibility
to experiment and implement even complex codes exploiting the platform provided
by ROS.
To start a simulation therefore, it is necessary to initialize the Gazebo world
containing the UAV model, then SITL to start the virtual FCU and then connect

61

Virtual Simulation

to it via the Mavros node. The advantage of using Mavros is that it is not necessary
to express explicitly the various transformations between the reference frames used,
that’s because the links and transformation matrices are automatically generated
by the node, greatly simplifying the design and testing phase of the code.
Once all connections have been successfully established, it is possible to launch any
Ros-node to test its functionality with the drone and control the Ros-Topic and
Ros-Messages exchanged using the Rviz (ROS-Visualizer) software.
Thanks to the Gazebo environment it is possible to introduce errors on the

Figure 5.1: SITL console with Mavros node launched

measurements, the simulation can mirror in this way the same behavior in real-life
application. In order to do so, some tweaks and modification on the parameters of
the "virtual" drone have to be done:

• Ílib_gps_gazebo_plugin.soÍ: setting the Gpsnoise parameter to true enables
a Gaussian noise on the measurements of the GPS sensor in the simulation,
in this way the localization of the UAV in the Gazebo environment becomes
less precise and the drone might not follow with perfect accuracy the path
sent by the planner.

• SIM_WIND_SPD: operating on these parameters present in SITL allows to
generate a wind simulation on the drone flight, choosing intensity, direction
and type of wind decay. These parameters greatly influence the type of
response given by the flight stack.

After having carried out all the previous procedures, it is possible to send via Rviz
the desired goal point and enter the final height required after which the process is

62

Virtual Simulation

completely automated.
By reading the messages exchanged through the topics representing the UAV’s
position and the coordinates corresponding to the waypoints, the graphical repre-
sentation of these data allowed to directly see the influences due to the disturbances
introduced and the behavior of the script.

5.2 Virtual Environments for Testing

In order to test the collision avoidance’s accuracy and reliability, multiple virtual
environments were generated thanks to Gazebo. Starting with single obstacle map
and subsequently moving toward more complex situation with fully automated
dynamic obstacles in order to stress the performance of the replanning function
and fine tuning the parameters of the code.
In the first map presented in the figure 5.2, although the surroundings seems
empty, two people in movement with different speed are generated in front of the
UAV. This kind of environment was specifically designed to test the ability of the
Octomap to perceive the moving obstacles and set the best update speed for the
mapping.
The second map in figure 5.3, was intended to test the planner’s capability to

Figure 5.2: Two moving persons in front of the UAV during the flight

generate complex trajectory in a densely populated environment and the replanning
function.
Finally, to add an additional grade of realism, a model of the CIM4.0’s environment
was created to test the UAV’s indoor flight behavior (figure 5.4).

63

Virtual Simulation

Figure 5.3: Map greatly populated of multiple obstacles

Figure 5.4: The CIM4.0’s Digital Line replicated in Gazebo

64

Virtual Simulation

5.3 Simulated Flight Analysis

The SITL simulation can support the generation of Data Flight logs file. These
logs are stored and can be accessed and read using the standard APM planner or
Mission Planner software. By doing so, all the data from a virtual mission can be
retrieve and plotted using the implemented graphical tool.
However, despite this possibility, the application of software like MATLAB is
recommended due to the greater completeness and flexibility for data analysis
provided by it. For these reasons, a section of the collision avoidance algorithm is
dedicated to generate a simple text file containing all the required data, acquired
directly from the Mavros topics, to analyze the UAV’s behavior.
In the following images, the relative coordinates of the UAV are represented. In
this case, a simple mission was given setting the Goal Point around 15 meters
forward the drone’s starting position. The map used is the second one presented
before, the one including different kind of obstacles, for this reason the resulting
trajectory is not perfectly straight but presents some steering actions.
In the first figure 5.5, one must focus to the UAV’s behavior in the early stages
of flight. The TAKEOFF is one of the most crucial part of a flight, where the
drone’s motors goes full throttle in order to detach the aircraft from the ground.
In the graph the bouncing behavior during the simulation is extremely similar to
the one seen in real-life flight. This is generated by the "virtual" FCU, which tries
to decelerate accordingly to the perceived UAV position and maintain a stable
altitude. Still, after the achieved stability, the influence of the introduced noises on
the GPS can be seen as the relative position contains small variations of around 2
centimeters that afflict the signal.

Figure 5.5: UAV’s relative altitude in time during the Simulation

65

Virtual Simulation

Of greater interest, in the figure 5.6, the actual influence of the added noise is
clearly visible. In this image the UAV’s relative position in the plane XY at each
time frame is displayed. Additionally, all the waypoints generated by the script are
replicated too. The steering direction that can be seen is due to the replanning
function after the perception of an obstacle on the initial trajectory, for this reason
the path is not perfectly straight.

Figure 5.6: Path and Waypoints during a mission

The information are not only limited to the UAV’s position, the attitude of the
drone can be obtained by using the orientation quaternion (q) as odometry messages
output and transforming it to the corresponding RPY angles. A simpler approach
could be reading directly from the log files the angles information avoiding any
possible error during the conversion.
Due to the simulation, the data obtained are almost noiseless and precise and no
noteworthy behavior can be present. Focusing instead between the desired attitude
and the actual one it is possible to notice how the FCU operates during the flight,
sending a desired angle and compensating any possible discrepancy.
Focusing on the Yaw angle (figure 5.7), it is possible to see the steering action
performed by drone in order to avoid a collision.
The UAV’s heading changes multiple time in the first part of the graph with great
speed, due to the fact that at each replanning the local position is reset with the
initial heading. In reality the hardware remains stationary hovering while the
planner is calculating the next path. Once the route is defined, in the second part
of the graph, the behavior is more linear with small steering action. This is the
case of the drone following the waypoints. Regarding instead, the Roll angle, few
observations can be made. In fact, the navigation of the drone is so stable that
small variations of it are ensured. This can be seen in the figure 5.8. Also in this
case, the discrepancies between the desired Roll and the effective one are minimal
thanks to the virtual simulation.

66

Virtual Simulation

Of more interest, however, is the pitch angle’s data, which can be seen in the
figure 5.9. In this case, a sinusoidal behavior emerges from the graph. This small
oscillations are generated from the subsequent accelerations and decelerations
performed by the UAV while moving from a waypoint to another. While in the
simulated environment this kind of maneuvering does not represent any danger,
during the implementation in a real-life scenario it has to be taken into account.
In a real mission, due to the potential environment’s interferences, limiting the
drone’s speed of navigation and the acceleration directly from the Autopilot is a
mandatory requirement to fly safely and without losing control of it.
To stress the system, difficult pathways are generated to see the ability to perceive
trajectories within confined spaces or corridors and, eventually, react to incoming
collisions. Thanks to the Gazebo environment, the overall process of generating 3D
occupancy map is not suffering from loss of position or oscillation in the reference
frame. The more precise is the process of stabilizing the frame thanks to the drone’s
localization the better will be the map produced. An higher accuracy allows to
think about more dangerous missions with reduced maneuvering space. This is the
case in the figure 5.10, where the UAV is capable of navigate a pathway inside a
small corridor and avoid any collision.

Figure 5.7: UAV’s Yaw angle during a mission

67

Virtual Simulation

Figure 5.8: UAV’s Roll angle during a mission

In the following sequence of figures (figure 5.11), instead, the replanning process
of the trajectory is highlighted. As the map is generated and the presence of new
obstacles reported to the planner, the waypoints sent are modified in order to
operate evasive maneuvers.
Before the real-life implementation of the algorithm, as a final test, the study of
the drone’s behavior in an environment with multiple moving obstacles proved to
be the most complex and challenging one. While the dynamism of the various
obstacles is taken into account thanks to a continuous process of upgrading the
map, the rate at which this occurs requires a fine tuning.
Too high an update rate could erase important features during the planning phase
and not perceive an impending obstacle, it must be remembered that the creation of

Figure 5.9: UAV’s Pitch angle during a mission

68

Virtual Simulation

occupancy map takes time because of the reduced computational power of the CC.
Similarly, if the rate is too low, moving obstacles leave a trail that is treated as an
obstacle, where, in reality, the space is clear. Therefore, lengthening or modifying
the generated trajectory accordingly to a false information and increasing the cost.
The rate was set in a range of possible values based on the required responsiveness,
generally between 0.2Hz and 2Hz. Higher values may cause the ROS node to crash
and the system to fail. The continuous map upgrade feature can be disabled in
case the requirement is only to map the surroundings for other uses of the drone.
Thus, simplifying the operation of the system.
Once all of these tests were successfully completed, it was possible to transfer all
of the software architecture into the Jetson Nano and then proceed with real-life
testing.

Figure 5.10: The Planner is able to generate trajectory through narrow passages

Figure 5.11: Re-planning process of a given initial path

69

Chapter 6

Experimental tests and
results

In this last chapter, the analysis of the algorithm’s real life testing and the drone’s
flight are carried out. Flight in real life corresponds to an increase in difficulties
and issues due to noise and to an increase in errors and uncertainties. These issues
become even greater for indoor flight where, the lack of GPS signal and tight spaces
require increased accuracy. Safety measures should be taken such as activating the
fail-safe mechanisms to safeguard the drone from damage due to accidental falls or
impacts.
The testing procedures are performed in the two different environments in which
the UAV will be deployed. For the indoor flight, a cage that includes UWB anchors
while for the outdoor ones a wide open space in the CIM4.0’s surroundings is used.

6.1 Outdoor Flight
Outdoor flying constitutes the starting point for subsequently moving towards
indoor one. This flight mode is the most widespread and easily implemented in
the UAV’s industry. Thanks to the use of the GPS sensor, locating the drone with
accuracy is not regarded as a concern. The wide operating spaces also increase the
tolerance for interferences or possible manoeuvring errors.
Before actually using the algorithm for the collision avoidance, some tests to verify
the drone’s flight stability and its accuracy in holding a defined position have been
performed.
Initially the connection via UART port between the companion computer (CC)
and the flight controller (FCU) was established, then connecting through SSH to
the CC from the Ground Computer (any PC connected to the same network) it
was possible to initialize the Mavros node to control the drone remotely thanks to

70

Experimental tests and results

ROS. Once all these operations are completed, the command to reach a set altitude
is sent. In the following figures, the localization data obtained from the Log files
are represented graphically.
In the figure 6.1, the UAV’s relative altitude is shown. The drone’s ability to
maintain a predetermined altitude comes from the fusion of multiple sensors such
as IMU, GPS and Barometer. In this case, the given altitude of 1.2 meter was set
in order to detach from the ground the aircraft and subsequently submit a goal
position using Rviz.

Figure 6.1: UAV’s relative Z position

In this second image, figure 6.2, the relative longitude and latitude are reported.
Although the drone in Loiter mode should automatically attempts to maintain
the location, heading and altitude, it is possible to notice a shift caused by the
initial overshoot during takeoff and the subsequent damping attempt performed.
Despite these fluctuations, the aircraft stabilizes itself locking its position within a
tolerance range.

Thanks to the various connections previously established, it was possible to use
Rviz to read the ROS topics and visualize the different reference frames (Map,
Drone) and the octomap generated in real-time.
To start a mission the only requirement is to send a 2D navigation goal using the
software and subsequently, insert the desired final altitude in the Planner terminal
opened on the ground PC. Once the UAV has detached itself from the ground and

71

Experimental tests and results

Figure 6.2: UAV’s relative XY position

reached the desired altitude, a simple Goal position was given as shown in figure
6.5.
Although the waypoints were successfully generated by the planner, as shown
in the graph containing the waypoints sent to the FCU figure 6.4. The drone’s

Figure 6.3: Rviz showing the Octomap and Tf-frame in real-time

72

Experimental tests and results

high speed and its acceleration did not allow it to accurately follow the trajectory.
Additionally, the unstable frame and weight of the battery have accentuated the
effect of vibrations affecting the flight.
Unfortunately, the drone was unable to carry out the mission successfully due to a
strong impact against an obstacle before arriving to the goal position. As a result
of this damage, the practical tests were abandoned due to a series of problems on
UAV’s hardware side. Before proceeding with further tests, the platform must be
stabilised and flight reliability improved.
In spite of this, it can be stated that the entire designed software structure is
functional and the methodology fully applicable to the Pixhawk and ROS ecosystem.
In fact, the algorithm still generated an occupancy map and a trajectory in response
to the presence of an obstacle to prevent a collision. For this reason, by relying on
the results obtained from the simulation, where the software applied is exactly the
same as that on the UAV, it is possible, with a better drone model, to achieve the
same results in real life.

Figure 6.4: UAV’s trajectory and waypoints during a flight test

73

Experimental tests and results

Figure 6.5: Goal Point sent thanks to Rviz

To test the accuracy of the GPS in following a given trajectory and the repeata-
bility in traveling the same path over and over again, a given route was taken 20
consecutive times. As shown in the figure 6.6, the navigation’s data showcases how
the influence of vibration and the noises greatly impact the precision. For these
reasons, the integration of a RTK-GPS in future should be considered in order to
maintain a reliable UAV’s localisation.

Figure 6.6: Multiple GPS tests to examine the accuracy of the position estimation.
In Red the actual path while in Blue the position obtained through the GPS data.

74

Experimental tests and results

6.2 Indoor Flight
Indoor flight presents considerable challenges, especially in terms of spatial locali-
sation and determining the attitude of the drone.
In this condition no GPS signal is reliable, even if the correct number of satellites
and a low HDOP are achieved, due to the multipathing effect, the signal is reflected
to the antenna via walls, windows and other surfaces.
The implementation of UWB technology, exploiting several anchor nodes positioned
within the test cage, solves this issue completely with a good level of accuracy.
Thanks to the log files, it is possible to visualize the precision achieved in estimating
the UAV’s position.
Unfortunately, due to strong electromagnetic interference in the test room, some
problems arise on how the magnetometer works. For this reason, the attitude
and the heading of the UAV’s estimate are not accurate for the indoor flight. An
attempt to solve this problem was made by implementing a fictional reference
frame generated by the sensor fusion of the UWB, Visual odometry and IMU.
Generally, flying the drone in LOITER mode indoors generates the same widespread
issue present in drones without a good calibration. The UAV can’t maintain a
stable position in space but it starts moving in a circular motion, as the errors keep
accumulating the radius increases until the aircraft is unable to maintain a stable
flight and crashes.
Due to this issue, the testing of collision avoidance algorithm’s behavior in indoor
environment has not been extensively tested. The additional odometry generated
by the sensor fusion can be used thanks to the vision position messages and sub-
sequently sent to the flight controller. Disabling the Compass use in the EKF is
mandatory to ensure that the filter does not implement any data coming from the
compass.
This kind of implementation though generates a growth in complexity, due to
the setting of covariance matrix parameters and filter sampling rate, all including
possible sensor measurement errors. A fine tuning could provide a stable and
reliable system to navigate in indoor environment.
A possible easier solution could be represented by the implementation of a Nooploop
for Non-GPS Navigation. Still based on the UWB technology, this kind of system is
specifically designed to work with the Ardupilot firmware in order to provide both
a position and attitude estimate to substitute the GPS and Compass in indoor flight.

75

Chapter 7

Conclusions and future
Developments

The aim of the thesis is to develop an algorithm capable of instantly recognising
impending obstacles and reacting by generating safe trajectories for the drone to
enable autonomous flight can be said succeeded.
Although the real-life flight attempts were affected by the poor stability of the
UAV itself and the impossibility of carrying out extended tests, thanks to the use
of the open-source platforms like SITL and Mavros, the resulting framework can
be said to be fully functional for any drone capable of adopting the technologies
listed in the thesis.
Software in the loop emulates exactly the behaviour of Pixhawk FCU, for this
reason the methodology developed can be said to be perfectly applicable and
functional. Additionally, the highly flexible parameterisation adopted allows the
algorithm to be used on several UAVs with different sizes and dimensions, while
still maintaining all the reliability and the functioning principles untouched.
In the future, the implementation of a more powerful on-board computer would
also open up the possibility of considerably increasing the operating frequencies of
the entire framework, therefore enabling an even more reactive system capable to
cope to high-speed dynamic obstacles. Subsequent developments could integrate
better FCU from the Pixhawk’s family, such as the Cube Orange FCU, which
provides better performance, stability and flight accuracy.
The ease of use of the system allows it to be utilized by unqualified personnel.
With Rviz software, the user merely has to choose the end position with the mouse
and enter the required height. While, the use of libraries such as OMPL allows
extreme flexibility; the same methodology could be employed for a Rover, the only
modification is to remove the third dimension in the definition of the path planning
problem.

76

Conclusions and future Developments

To expand the opportunities, the implementation of machine learning algorithms
to recognise objects, people or any criticalities in a plant could bring this project
much closer to the products currently on the market. In order to achieve this, the
use of computers with a discrete GPU like the Nvidia Xavier or Intel Nuc could be
considered as possible alternatives.
The development of indoor flight, on the other hand, presents considerable criticali-
ties that could be resolved in numerous ways. The Ardupilot platform includes a
number of products already available on the market and integrated in the autopilot’s
firmware which have not been tested in this thesis, but could considerably increase
the stability of the drone. The use of camera solely designed for the visual odometry
in combination with the one already present, like the Intel Realsense T265, the
deployment of Vicon markers or the implementation of Optitrack systems; these
are just some examples of possible solutions applicable.
Thanks to the use of ROS as middleware, the possibilities of interfacing the UAV
with the AGV are manifold; cross-communication between the two platforms can
vastly simplify all maintenance phases. In fact, the development of an autonomous
landing does not require much effort, as the two systems are connected on the
same local network and can communicate their respective positions in real-time
and consequently locate each other in space.
The addition of UAV’s custom-made power-board, allows the continuous recharging
of the drone while it is attached to its base and not necessary to fly it; this feature
can be fully exploited imaging a swarm of drones capable of performing maintenance
and surveillance continuously 24 hours a day in a plant.
The framework developed can be fully converted to ROS2 and use a more recent
version of Ubuntu with updated libraries and security patch. The project foreseen
the use of voice control methodologies for the drone, as well the possibility of
adding customised sensors according to the required application, such as thermal
cameras or gimbal.
The future of the FIXIT project is in fact limited merely by the imagination of
the end user, the platform offers incredible potential and flexibility to meet the
most demanding requirements and it is more than capable of represent a glimpse
of what will be the future of the industry 4.0.

77

Bibliography

[1] Timothy D. Barfoot Jonathan D. Gammell Siddhartha S. Srinivasa. «Informed
RRT*: Optimal Sampling-based Path Planning Focused via Direct Sampling
of an Admissible Ellipsoidal Heuristic». In: 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems (2014), pp. 2997–3004.

[2] Jawad N. Yasin, Sherif A. S. Mohamed, Mohammad-Hashem Haghbayan,
Jukka Heikkonen, Hannu Tenhunen, and Juha Plosila. «Unmanned Aerial
Vehicles (UAVs): Collision Avoidance Systems and Approaches». In: IEEE
Access 8 (2020), pp. 105139–105155. doi: 10.1109/ACCESS.2020.3000064.

[3] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot.
«Informed RRT*: Optimal sampling-based path planning focused via direct
sampling of an admissible ellipsoidal heuristic». In: 2014 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. 2014, pp. 2997–3004.
doi: 10.1109/IROS.2014.6942976.

[4] Juraj Oršulić, Robert Milijas, Ana Batinovic, Lovro Markovic, Antun Ivanovic,
and Stjepan Bogdan. «Flying with Cartographer: Adapting the Cartographer
3D Graph SLAM Stack for UAV Navigation». In: 2021 Aerial Robotic Systems
Physically Interacting with the Environment (AIRPHARO). 2021, pp. 1–7.
doi: 10.1109/AIRPHARO52252.2021.9571065.

[5] Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys.
«PIXHAWK: A system for autonomous flight using onboard computer vision».
In: 2011 IEEE International Conference on Robotics and Automation. 2011,
pp. 2992–2997. doi: 10.1109/ICRA.2011.5980229.

[6] Yang Yu, Wang Tingting, Chen Long, and Zhang Weiwei. «Stereo vision
based obstacle avoidance strategy for quadcopter UAV». In: 2018 Chinese
Control And Decision Conference (CCDC). 2018, pp. 490–494. doi: 10.1109/
CCDC.2018.8407182.

[7] Claudio Sciortino and Adriano Fagiolini. «ROS/Gazebo-Based Simulation of
Quadcopter Aircrafts». In: Sept. 2018, pp. 1–6. doi: 10.1109/RTSI.2018.
8548411.

6

BIBLIOGRAPHY

[8] António Raimundo, D. Peres, N. Santos, Pedro Sebastião, and Nuno Souto.
«USING DISTANCE SENSORS TO PERFORM COLLISION AVOIDANCE
MANEUVRES ON UAV APPLICATIONS». In: ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences XLII-2/W6 (Aug. 2017), pp. 303–309. doi: 10.5194/isprs-archives-
XLII-2-W6-303-2017.

[9] J. Borenstein and Y. Koren. «Real-time obstacle avoidance for fast mobile
robots in cluttered environments». In: Proceedings., IEEE International Con-
ference on Robotics and Automation. 1990, 572–577 vol.1. doi: 10.1109/
ROBOT.1990.126042.

[10] Igor Shapovalov, Victor Soloviev, Valeriy Finaev, Evgeny Kosenko, and
Jury Zargaryan. «Research of graph-analytical methods for a vehicle motion
planning». In: Oct. 2015, pp. 585–591. doi: 10.1109/ICCAS.2015.7364986.

[11] Chunxi Cheng, Qixin Sha, Bo He, and Guangliang Li. «Path planning and
obstacle avoidance for AUV: A review». In: Ocean Engineering 235 (Sept.
2021), p. 109355. doi: 10.1016/j.oceaneng.2021.109355.

[12] Simon Vanneste, Ben Bellekens, and Maarten Weyn. «3DVFH+: Real-Time
Three-Dimensional Obstacle Avoidance Using an Octomap». In: vol. 1319.
July 2014.

[13] Rethnaraj Rambabu, Muhammad Bahiki, and Syaril Azrad. «Relative position-
based collision avoidance system for swarming UAVS using multi-sensor
fusion». In: Journal of Engineering and Applied Sciences 10 (Nov. 2015).

[14] Bo Wang. «Path Planning of Mobile Robot Based on A* Algorithm». In: 2021
IEEE International Conference on Electronic Technology, Communication
and Information (ICETCI). 2021, pp. 524–528. doi: 10.1109/ICETCI53161.
2021.9563354.

[15] Fahad Islam, Venkatraman Narayanan, and Maxim Likhachev. «Dynamic
Multi-Heuristic A*». In: 2015 IEEE International Conference on Robotics
and Automation (ICRA). 2015, pp. 2376–2382. doi: 10.1109/ICRA.2015.
7139515.

[16] Chunyu Ju, Qinghua Luo, and Xiaozhen Yan. «Path Planning Using Artificial
Potential Field Method And A-star Fusion Algorithm». In: 2020 Global
Reliability and Prognostics and Health Management (PHM-Shanghai). 2020,
pp. 1–7. doi: 10.1109/PHM-Shanghai49105.2020.9280929.

[17] Sertac Karaman, Matthew R. Walter, Alejandro Perez, Emilio Frazzoli, and
Seth Teller. «Anytime Motion Planning using the RRT*». In: 2011 IEEE
International Conference on Robotics and Automation. 2011, pp. 1478–1483.
doi: 10.1109/ICRA.2011.5980479.

7

BIBLIOGRAPHY

[18] Xiao-Huan Liu, De-Gan Zhang, Hao-Ran Yan, Yu-ya Cui, and Lu Chen. «A
New Algorithm of the Best Path Selection Based on Machine Learning».
In: IEEE Access 7 (2019), pp. 126913–126928. doi: 10.1109/ACCESS.2019.
2939423.

[19] Gazebo Simulator. url: http://gazebosim.org/.
[20] ROS Melodic. url: http://wiki.ros.org/melodic.
[21] Ardupilot. url: https://ardupilot.org/.
[22] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wol-

fram Burgard. «OctoMap: An Efficient Probabilistic 3D Mapping Framework
Based on Octrees». In: Autonomous Robots (2013). Software available at
https://octomap.github.io. doi: 10.1007/s10514-012-9321-0. url:
https://octomap.github.io.

[23] Ioan A. Sucan, Mark Moll, and Lydia E. Kavraki. «The Open Motion Planning
Library». In: IEEE Robotics Automation Magazine 19.4 (2012), pp. 72–82.
doi: 10.1109/MRA.2012.2205651.

[24] Jia Pan, Sachin Chitta, and Dinesh Manocha. «FCL: A general purpose
library for collision and proximity queries». In: 2012 IEEE International
Conference on Robotics and Automation. 2012, pp. 3859–3866. doi: 10.1109/
ICRA.2012.6225337.

8

http://gazebosim.org/
http://wiki.ros.org/melodic
https://ardupilot.org/
https://octomap.github.io
https://octomap.github.io

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Review of Collision Avoidance methodologies and techniques for Unmanned Aerial Vehicles
	Path Planning Algorithms
	Graph Traversal Planner Algorithms
	Dijkstra's Algorithm
	A* Algorithm
	D* - Dynamic A* search
	LPA*
	RRT - Rapid Exploring Tree
	RRT* - Rapid Exploring Tree Star
	Informed-RRT*

	Other Path Planning approaches
	APF - Artificial Potential Field
	VFH - Vector Field Histogram
	Machine Learning Approaches

	Hardware Implementation
	Sensors for Collision Avoidance
	Intel Realsense D435i
	Companion Computer
	Raspberry Pi 4
	Nvidia Jetson Nano

	Flight Controller - Pixhawk 2.4.8
	Outdoor Flight Sensors
	Indoor Flight Sensors
	DWM1001C - Ultra-Wideband
	VL53L1X Tof sensor

	Software Implementation
	Robotic Operating System - ROS
	Nodes
	Topics
	Services
	Messages

	Gazebo
	Mavros
	PointCloud Library - PCL
	OMPL - Open Motion Planning Library
	FCL - Flexible Collision Library

	Robot Localization in Indoor Environment
	Visual Odometry - VO
	IMU
	UWB and VL53L1X Tof
	Robot Localization Package

	Octomap 3D occupancy Map
	EKF - Ardupilot's Parameters tuning
	Algorithm implementation

	Virtual Simulation
	SITL and Mavros implementation
	Virtual Environments for Testing
	Simulated Flight Analysis

	Experimental tests and results
	Outdoor Flight
	Indoor Flight

	Conclusions and future Developments

