
POLITECNICO DI TORINO

Master of Science In Mechatronic Engineering

Master’s Degree Thesis

UAV precise ATOL techniques
using UWB technology

Supervisors
Prof. Marcello Chiaberge
Dott. Ing. Giovanni Fantin

Candidate
Gennaro Scarati

December 2021

Summary

Autonomous landing of a UAV on a mobile platform is currently one of the most
explored research areas. It emerges as a powerful solution in many sophisticated
civil and military applications where human intervention is not always available
or sufficiently responsive. Examples of this are continuous flight tasks or long
distances to be covered, where mobile charging stations are needed. It is therefore
clear that in all these operations the position accuracy of both UAV and mobile
platform is of vital importance.

This thesis examines the development of an autonomous landing system based
on ultrawide-band ranging sensors. A pose estimation filter and a robust control
algorithm are proposed, enabling precise tracking and autonomous landing both
on the stationary or moving platform. Firstly, they are tested in a large number of
simulated scenarios, where it is possible to model both UAV and UGV dynamics
and all sensors with their realistic noise. Finally, the algorithms are implemented
on the real embedded system, allowing a landing accuracy from 5cm to 10cm.

Ultrawide-band is a suitable technology for service robotics because of its
high ranging precision, obstacle penetration capabilities and robustness against
interference. It is in fact possible to accurately compute the relative position of both
UAV and UGV by installing UWB ranging sensors on the two systems. Positioning
is achieved through a least squares multilateration algorithm, which takes as input
the distances given by the UWB devices and returns the relative position of the
two systems in the rover reference frame. This information is very noisy and needs
to be rotated in the drone reference frame for control purposes. Therefore, it is
then fused with UAV sensors and UGV compass data in a loosely coupled Kalman
filter, allowing up to 5cm accuracy when the drone is within 1m from the rover.

The filtered relative position estimate is then passed to a gain scheduling PID
speed controller, which ensures fast tracking and acceptable overshoot in both
chase and landing phases. The first step is handled by a proportional control
algorithm, while the second by a proportional-integrative-derivative one. Since
the main problem of the proposed landing system is the misalignment between
the drone and rover compasses, this control algorithm is designed to be robust
with respect to orientation errors, allowing successful landings with errors up to

iii

40 degrees. Finally, a predictive control variant is proposed, in which the indirect
UGV speed estimate is used to compute at a 10Hz rate the optimal control setpoint
and allow autonomous landings at speeds above 3km/h.

iv

Acknowledgements

I would first like to thank professor Chiaberge and the entire PIC4SeR, for giving
me the opportunity to work on such a challenging yet so interesting project. In
particular, special thanks go to my friend Cosimo Conte, who made working on
this thesis much more enjoyable and without whose help this achievement would
probably not have been possible.

My heartfelt thanks to Davide for all these years of unforgettable experiences,
I am sure there will be many more to come. I wish to extend my thanks to the
Compagnia D’Alta Quota for all the amazing moments we lived together.

Particular gratitude goes to my girlfriend Paola, with whom I shared months
of incomparable adventure and complicity.

I would like to acknowledge Damiano Scibilia, Edoardo Fioriti and Stefan Tiberius
who made each lecture of these years unbelievably entertaining.

I would like to thank Gianmarco Carrabba, Marco Ratta, Edoardo Saggio and
Lorenzo Torcello for being with me during all these years of university, and particu-
lar gratitude goes to Marco, for his valuable help in writing my thesis. I also thank
Sergio Scalabrino, for the countless moments spent together in these five years and
Elisa Serafini, for all the laughs of the last months.

Finally, I wish to extend my special thanks to my family, who have uncondi-
tionally supported me in my studies and most importantly, in all my choices.

v

Contents

List of Figures ix

Acronyms xi

1 Introduction 1
1.1 Thesis objective . 1
1.2 Thesis organization . 1

2 PX4 Autopilot 3
2.1 Overview . 3
2.2 System architecture . 3

2.2.1 Controller architecture . 4
2.3 Offboard control via ROS2 . 5
2.4 Reference frames . 6

3 Ultrawide-band 9
3.1 Overview . 9

3.1.1 Definition . 9
3.1.2 Advantages . 9

3.2 Localization theory . 10
3.3 Multilateration . 12

3.3.1 Linear Least Squares . 14

4 System state estimation algorithm 17
4.1 Kalman Filter theory . 18

4.1.1 Prediction . 19
4.1.2 Update . 19

4.2 System model . 20
4.2.1 Prediction model . 20
4.2.2 Observation models . 23
4.2.3 Outputs . 25

vii

5 Autonomous takeoff and landing algorithm 27
5.1 System state machine . 27

5.1.1 Takeoff phase . 27
5.1.2 Chase phase . 28
5.1.3 Descent phase . 29
5.1.4 Landing phase . 30

5.2 Proposed control architecture . 30
5.2.1 Control algorithm . 31
5.2.2 Predictive control algorithm 32

6 Software-in-the-loop simulations 35
6.1 Models . 35

6.1.1 UWB model . 36
6.1.2 UAV model . 36
6.1.3 UGV model . 37

6.2 Landing system simulation . 37
6.2.1 UAV and UGV compasses misalignment effect 39
6.2.2 Derivative term effect . 42
6.2.3 Results . 45

7 Experimental testing 49
7.1 Instrumentation . 49

7.1.1 UWB . 49
7.1.2 UAV . 49
7.1.3 UGV . 50

7.2 Results . 51

8 Conlusions 57
8.1 Future work . 57

Bibliography 59

viii

List of Figures

2.1 PX4 system architecture . 4
2.2 PX4 controller architecture . 5
2.3 PX4 position controller . 5
2.4 PX4 velocity controller . 6
2.5 NED, FRD, ENU and FLU frames 7

3.1 Frequency interval of UWB compared to other radio communication
protocols . 10

3.2 List of indoor localization technologies with respect to accuracy and
coverage . 11

3.3 Ideal 2D positioning . 13
3.4 Real 2D positioning . 13
3.5 Proposed multilateration system . 14

4.1 Proposed system state estimation algorithm 18

5.1 Landing system state machine . 28
5.2 Descent constraint area . 30
5.3 Proposed system control algorithm 31
5.4 Gain scheduling PID logic . 31
5.5 Predictive descent constraint area 33

6.1 Simulated UAV model . 36
6.2 Simulated UGV model . 37
6.3 UAV chasing the UGV in simulation 38
6.4 UAV landed on the UGV in simulation 38
6.5 Positioning error given by compasses misalignment 39
6.6 System response with ∆θ̂ = 0◦ and D = 0.3 40
6.7 Positioning error with ∆θ̂ = 0◦ and D = 0.3 41
6.8 System response with ∆θ̂ = 25◦ and D = 0.3 41
6.9 Positioning error with ∆θ̂ = 25◦ and D = 0.3 42
6.10 System response with ∆θ̂ = 40◦ and D = 0.3 43

ix

6.11 Positioning error with ∆θ̂ = 40◦ and D = 0.3 43
6.12 System response with D = 0.0 and ∆θ̂ = 40◦ 44
6.13 System response with D = 0.1 and ∆θ̂ = 40◦ 44
6.14 System response with D = 0.3 and ∆θ̂ = 40◦ 45
6.15 Simulated UAV autonomous landing on a stationary UGV 46
6.16 Simulated UAV autonomous landing on a 1m/s moving UGV . . . 46
6.17 Simulated UAV autonomous landing on a randomly moving UGV . 47

7.1 Decawave EVB1000 evaluation board 50
7.2 Holybro X500 Kit . 50
7.3 Husky UGV . 51
7.4 First UAV autonomous landing on the stationary UGV - Complete

mission chart . 52
7.5 First UAV autonomous landing on the stationary UGV - Relative

position estimation . 53
7.6 Second UAV autonomous landing on the stationary UGV - Complete

mission chart . 54
7.7 Second UAV autonomous landing on the stationary UGV - Relative

position estimation . 54
7.8 UAV autonomous landing on the moving UGV - Complete mission

chart . 55
7.9 UAV autonomous landing on the moving UGV - Position estimation 55

x

Acronyms

UAV
Unmanned Aerial Vehicle

UGV
Unmanned Ground Vehicle

UWB
Ultra-wideband

ATOL
Autonomous Take-off and Landing

KF
Kalman Filter

EKF
Extended Kalman Filter

ROS
Robot Operating System

RTPS
Real Time Publish Subscribe

PID
Proportional Integral Derivative

SLAM
Simultaneous Localization and Mapping

xi

VO
Visual Odometry

FOV
Field of View

FCC
Federal Communications Commission

IEEE
Institute of Electrical and Electronics Engineers

LOS
Line-of-Sight

NLOS
Non-Line-of-Sight

GDOP
Geometric Dilution of Precision

TOA
Time of Arrival

TOF
Time of Flight

NED
North East Down

ENU
East North Up

FRD
Forward Right Down

FLU
Forward Left Up

xii

Chapter 1

Introduction

1.1 Thesis objective
The goal of this work is to propose an autonomous landing system of a UAV
on a moving UGV based on ultrawide-band technology and validate it through
software-in-the-loop simulations and experimental testing. Therefore, the estimation
algorithm, the control algorithm and the state machine regulating the UAV behavior
are defined first. Then, they are simulated using the SITL package provided by PX4
autopilot, ROS2 and the Gazebo simulator. Finally, the same code is implemented
on the embedded platform and tested on real flights.

1.2 Thesis organization
The thesis is divided in six main chapters, here concisely summarised.

1. PX4 Autopilot This first chapter introduces PX4 Autopilot, a powerful open
source autopilot flight stack which is used to perform both the simulations in
Gazebo and the experimental tests. Indeed, it provides a software-in-the-loop
package and all the necessary APIs to interact with the simulated vehicle in
Gazebo via ROS2. The same code is then implemented on a Raspberry Pi 4,
which is responsible of sending the computed setpoints to the PX4 Autopilot
board, that controls and stabilizes the drone.

2. Ultrawide-band This section briefly describes the ultrawide-band technology
and introduces the concept of multilateration. Moreover, the Least Squares
positioning method is presented and discussed in detail.

3. System state estimation algorithm In this chapter, the entire system
state estimation algorithm is explained and further investigated. To this end,

1

Introduction

first a brief overview of the Kalman Filter is given, then the entire system is
mathematically modeled using discrete differential equations.

4. System state machine The system state estimate is then managed by a
complex state machine and a suitably designed controller in order to define
the setpoints to be given to the autopilot.

5. Software-in-the-loop simulations In this chapter, the autonomous landing
system is verified by means of software-in-the-loop simulations using ROS2 and
Gazebo. Furthermore, the effect of some parameters on the system response
is illustrated and discussed.

6. Experimental testing In this last chapter, the proposed autonomous landing
system is validated through several experimental tests, that show excellent
results in both fixed and moving target landings.

2

Chapter 2

PX4 Autopilot

2.1 Overview
PX4 is a powerful open source autopilot flight stack that consists of many guidance,
navigation and control algorithms. In the proposed configuration, the UAV is
equipped with a board running the autopilot, that is in charge of estimating,
stabilizing and controlling its state.

Its relevant characteristics are:

• Many types of supported vehicles.

• Large number of interfaceable devices and hardware selection.

• Highly configurable and several flight modalities.

The PX4 board is then connected to a companion computer, in this case a
Raspberry Pi 4, which executes all the various flight algorithms and sends the
commands to the autopilot. Therefore, PX4 is mainly responsible for managing
the received commands and controlling the drone, as well as stabilizing it.

2.2 System architecture
The proposed architecture can be seen in picture 2.1.

It is noticeable that the system is composed of:

• Telemetry radios, necessary to communicate with the ground station.

• A power module, in charge of controlling the motors.

• Several sensors.

3

PX4 Autopilot

Figure 2.1: PX4 system architecture[1].

• A controller board running the PX4 flight stack, equipped with a compass, an
IMU and a barometer.

• Radio control antennas, in order to manually operate the UAV.

In the proposed solution, the ground station is a Linux computer that can
communicate (via wifi) with the companion computer. The latter is connected to
the flight control board through UART protocol.

The most important software that runs on the flight stack consists of estimators
and controllers. It includes an Extended Kalman Filter (EKF) that uses data from
several sensors to estimate the UAV state. In our case, the used sensor are: a
GPS-RTK module, a distance sensor, an accelerometer, a gyroscope, a barometer
and a compass.

2.2.1 Controller architecture
The PX4 UAV control system can be seen in figure 2.2. This control architecture
is composed of several PID controllers arranged in a cascade control fashion, where
the feedback estimates (internal to each block) are computed by an Extended
Kalman Filter. As can be seen in figures 2.3 and 2.4, the drone can be controlled
in both position and speed. It is noticeable that the velocity control scheme shows
the derivative term applied directly to the measurement, rather than to the error,
in order to avoid the derivative kick. Indeed, when the setpoint changes, the error

4

2.3 – Offboard control via ROS2

Figure 2.2: PX4 controller architecture[2].

derivative could reach extremely high values. Finally, the mixer is in charge of
transforming force commands into individual motor inputs, while properly taking
into account signals saturation.

Figure 2.3: PX4 position controller[2].

2.3 Offboard control via ROS2
PX4 provides several flight and control modes that can be managed via offboard
control. It is in fact possible to control the drone attitude, position, speed, and
acceleration or even manage the thrust of each motor.

The offboard control consists in controlling the drone using software that runs
on a companion computer, ground station or cloud. It requires that at least one
positioning method is available (GPS, Visual Odometry, etc), with an accuracy
above a minimum threshold. It is also possible to interface ROS2 and PX4 via
PX4-ROS2 bridge, necessary to translate ROS2 commands into the corresponding
UORB messages.

5

PX4 Autopilot

Figure 2.4: PX4 velocity controller[2].

The offboard control mode requires that the drone is armed and that the
autopilot receives a continuous stream of messages, with a frequency higher than
2Hz. Otherwise, a forced exit will occur. Moreover, any RC command will cause
the offboard control to be interrupted.

2.4 Reference frames

PX4 uses FRD (X Forward, Y Right and Z Down) and NED (X North, Y East, Z
Down) reference frames. The former is used for the body local frame, while the
latter for the fixed inertial frame. This one is aligned with the magnetic axis, given
by the compass, and is created by the autopilot at drone startup. Moreover, PX4
uses the NED convention to send and receive position and control commands in
the offboard control mode. Therefore, they must be first converted to this frame.

In contrast, Gazebo and ROS use FLU (X Forward, Y Left, Z Up) and ENU (X
East, Y North, Z Up) frames. This concept is summarized in table 2.1.

Reference frame PX4 ROS/Gazebo
Body FRD FLU
World NED ENU

Table 2.1: Reference frames in ROS/Gazebo and PX4[3].

By looking at the figure 2.5, it is trivial deriving the rotation matrix to switch
between ENU and NED frames. If both of them are aligned with the magnetic
axis, the rotation matrix can be written as:

6

2.4 – Reference frames

Figure 2.5: NED and FRD frames on the left. ENU and FLU frames on the
right[3].

RENU
NED =

0 1 0
1 0 0
0 0 −1

 (2.1)

The estimated UAV pose is posted on ROS2 topics by the autopilot. In particular,
it provides the drone position p̂NEDUAV and attitude R̂NED

UAV .

7

8

Chapter 3

Ultrawide-band

3.1 Overview

3.1.1 Definition
As defined in the IEEE 802.15.4a standard and FCC regulations, an Ultrawide-band
transmitter is any transmitter that has a fractional bandwidth equal to or greater
than 0.20 or a UWB bandwidth equal to or greater than 500MHz, whatever the
fractional bandwidth[4].

The UWB bandwidth is the frequency band bounded by the lower frequency fL
and the upper frequency fH in which the signal has a power spectral density of
10dB below its maximum.

This can be mathematically summarised as:

Bandwidth >= 500MHz

or

FractionalBandwidth = 2fH − fL
fH + fL

>= 0.2
(3.1)

The UWB technology exploits a wider frequency band (from 3.1 to 10.6GHz)
at lower power density than other technologies, which use narrow bandwidths and
high power densities. This can be noticed in image 3.1.

3.1.2 Advantages
The main reasons why it is decided to adopt UWB technology in this work are
range, accuracy, robustness, size and cost. In particular:

• UWB ranging sensors have been proven to work to ranges up to > 100m[6].

9

Ultrawide-band

Figure 3.1: Frequency interval of UWB compared to other radio communication
protocols [5, Figure 3.2].

• It allows a ranging accuracy around 10cm[7]. This depends very much on the
application (indoor or outdoor), the presence of obstacles and interference,
and on the tuning of the ranging antennas used.

• Its wide bandwidth ensures robustness against multi-path propagation, allows
obstacle penetration and high data rate transmission (up to 1Gbps).

• The low spectral power increases its resistance agains interference.

• This technology requires space-saving hardware with low power consumption.

• The cost of a single device ranges from around 12 to 200 euros.

UWB offers one of the best solutions when it comes to finding a compromise
between accuracy and coverage. This can be seen in the picture 3.2.

3.2 Localization theory
UWB ranging devices can be divided into tags or anchors.

• Anchors are emitters of known position, needed to determine the position of
each tag. In this landing system, all four anchors are mounted at the vertices
of the UGV.

• Tags are the devices to be tracked, installed on the target. In this specific
case the tag is fixed on the UAV underneath.

10

3.2 – Localization theory

Figure 3.2: List of indoor localization technologies with respect to accuracy and
coverage [8, Figure 1.1].

In this work, the proposed device is the Decawave EVB1000 board, which can
be easily programmed either as a tag or as an anchor. The detailed specifications
can be found in section 7.1.1. The firmware has been set to output the distance of
the tag from each anchor, at a given settable frequency.

If some conditions are met, the precise target position can therefore be calculated
by means of true range multilateration methods.

Number of anchors Let d be the number of physical tag dimensions to be deter-
mined, and m the number of available anchors, it is required that m ≥ d+ 1
Thus, at least three anchors are required to obtain the 2D position of the tag,
while a minimum of four are needed to achieve 3D positioning.
As the number of anchors increases, the redundancy of the system and therefore
the positioning accuracy improves. In general, it is advisable to have more
anchors than the minimum required in order to limit NLOS (non-line-of-sight)
effects.

Anchors placement In order to achieve a precise tracking, anchors should never
be placed on the same line, in the case of 2D positioning, or on the same plane,
in the case of 3D positioning.

11

Ultrawide-band

Let’s introduce the concept of Geometric Dilution of Precision (GDOP). It is
defined as:

GDOP = ∆(Output Location)
∆(Measured Data) (3.2)

It expresses how much an error in the calculated distances affects the error
in the target position. The higher the GDOP, the lower the reliability of a
calculated position.
In particular, it tends to infinity when placing the anchors on the same
line, in the case of 2D positioning, or on the same plane, in the case of 3D
positioning[9].
Another case of interest is when the UAV is not within the area delimited by
the anchors (e.g. in the chase phase). The greater the distance from it, the
higher the GDOP.
This means that in the presence of real measurements (i.e. non-ideal measure-
ments), the resulting positioning error will be extremely high.

In the proposed landing system it is impossible to install the anchors at signifi-
cantly different heights. For this reason, the UWB technology has only been used
to compute the relative 2D position between the UAV and the UGV, as its height
estimate zD would be extremely unreliable. Nevertheless, 4 anchors have been
chosen instead of 3 in order to allow positioning even if one device stops working
and increase the estimation accuracy.

3.3 Multilateration
Once the coordinates of the anchors and the distances between them and the tag
are known, it is possible to estimate the position of the tag. Let us consider the 2D
case with 3 anchors for simplicity, as the solution can easily be extended to higher
dimensions and larger number of UWB ranging devices.

In the ideal case (fig. 3.3), where the distances are not affected by errors, the
solution is given by the intersection of the circles whose centre is the position
of the anchors and whose radius is the distance between them and the tag. If
more anchors are available, the system is overdetermined and the solution does not
change. In the 3D case it is sufficient to intersect the spheres obtained following
the same procedure.

Unfortunately, in the real case (fig. 3.4) all measurements are affected by error.
This means that the circles will not intersect precisely at one point. A valid solution
consists in the minimization of a given cost function that depends on the error
between the estimated and true position. In this case, an increase in the number
of anchors (i.e. having overdetermined systems) leads to a more precise solution.

12

3.3 – Multilateration

Figure 3.3: Ideal 2D positioning[10].

Figure 3.4: Real 2D positioning[11].

Specifically, the multilateration algorithm that has been implemented in our system
is the Linear Least Squares (LS).

In the proposed landing system, the UGV is equipped with 4 anchors, while
the UAV mounts 1 tag. The mentioned algorithm provides the relative position
p̂UGVUWB between the UAV and the UGV in the UGV mobile frame, given the ranges
between the anchors and the tag. A simplified representation of the proposed

13

Ultrawide-band

multilateration system can be seen in image 3.5. A detailed explanation can be
found in the next paragraph.

Figure 3.5: Proposed multilateration system.

3.3.1 Linear Least Squares

In this section, the 3D case algorithm is shown and explained. It is trivial obtaining
the 2D solution by removing the terms that depend on the z component. The
accurate steps necessary to derive the formula can be found in [12]-[13].

Let (x̂T , ŷT , ẑT) be the estimated coordinates of the tag in the frame R.
Let (xi, yi, zi) with i = 1..m the known coordinates of the anchors in the frame R.
Let di with i = 1..m the known distance between the anchor i and the tag T .

It follows that:

Ax̂ = b (3.3)

Where:

14

3.3 – Multilateration

A =



1 −2x1 −2y1 −2z1
1 −2x2 −2y2 −2z3
1 −2x3 −2y3 −2z3
...
1 −2xm −2ym −2zm

 , (3.4)

x̂ =


x̂2
T + ŷ2

T + ẑ2
T

x̂T
ŷT
ẑT

 , (3.5)

b =



d2
1 − x2

1 − y2
1 − z2

1

d2
2 − x2

2 − y2
2 − z2

2

d2
3 − x2

3 − y2
3 − z2

3

...

d2
m − x2

m − y2
m − z2

m


(3.6)

The solution x̂ can be found as:

x̂ = (ATA)−1ATb (3.7)

The estimated tag position (x̂T , ŷT , ẑT) in the frame R is therefore given by the
last 3 components of x̂.

Similarly, in the proposed landing system we have:

x̂ =



(x̂UGVUWB)2 + (ŷUGVUWB)2 + (ẑUGVUWB)2

x̂UGVUWB

ŷUGVUWB

ẑUGVUWB


(3.8)

Where
x̂UGVUWB

ŷUGVUWB

 = p̂UGVUWB is the estimated relative position vector between the UAV

and the UGV in the UGV frame.

The advantages of this algorithm are:

15

Ultrawide-band

• its computational lightness. The only costly operation is the inversion of
the matrix (ATA) (eq. 3.7), which depends exclusively on the positions of
the anchors (fixed in the considered reference system), and therefore can be
performed just once.

• The stability of the algorithm in the presence of outliers and various starting
points.

The disadvantage is given by:

• the lower accuracy (with respect to other algorithms) of the obtained estimate,
since this method exploites a linearized version of the system.

16

Chapter 4

System state estimation
algorithm

In this section, a linear Kalman Filter approach is proposed as a valid method to
estimate the relative position and velocity of the UAV with respect to the UGV
in the NED reference frame. Exploiting the system dynamic model and noise
information and fusing together the information coming from UWB antennas, PX4
sensors and UGV compass, it is possible to compute an estimate that is better than
each of the collected measurements. The complete estimation scheme can be found
in figure 4.1, note that the orange blocks are provided by PX4 Autopilot. The
proposed Kalman Filter takes as input the multilaterated relative position between
the UAV and UGV in the UGV frame p̂UGVUWB, the UGV compass heading θ̂compass
and the UAV pose in the NED frame x̂NEDUAV , and outputs the relative position
p̂NEDrel and velocity v̂NEDrel estimates between the drone and the rover expressed in
the NED frame.

The Least Squares algorithm shown in 3.3 allows the computation of the relative
position of the drone with respect to the rover in its mobile reference frame. Hence,
it needs to be rotated in the NED reference frame for control purposes. For
this reason, the UGV is equipped with a compass that outputs the orientation
of the drone with respect to the NED reference frame. Unfortunately, the noise
affecting both orientation and position makes the directly rotated vector, and
hence its derivative, useless. The Kalman filter solves these problems: position
and angle are filtered separately, in a loosely coupled fashion. Each time the
multilaterated position is computed, it is firstly rotated in the NED frame using
the smoothed angle, and subsequently used to update the position estimate. A
detailed explanation of this algorithm can be found in this chapter.

17

System state estimation algorithm

Figure 4.1: Proposed system state estimation algorithm.

4.1 Kalman Filter theory
Let’s describe our system with the following state space model[14]:xk = Fkxk−1 +Bkuk +wk

zk = Hkxk + vk
(4.1)

Then:

• xk is the system state.

• Fk is the state transition model.

• Bk is the control-input model.

• wk is the process noise.

• zk is the observation.

• Hk is the observation model.

• vk is the observation noise.

Let’s assume that wk belongs to a normal distribution N with covariance Qk

and vk to be a Gaussian white noise with covariance Rk.
This can be expressed in the following way:

Qk : wk ∼ N (0,Qk) (4.2)

Rk : vk ∼ N (0,Rk) (4.3)
The sensor fusion algorithm is composed of two steps, which can occur succes-

sively or asynchronously. This depends on when the sensor data are available.

18

4.1 – Kalman Filter theory

Prediction In the prediction phase, the system model, the inputs uk and the
estimated states x̂k−1|k−1 are used to predict the value of the states at the
next instant x̂k|k−1. Usually this step is performed at the fastest sensor rate,
taken as input, or at a fixed rate, hereafter referred to as dt.

Update In the update phase the states x̂k|k−1 are corrected thanks to the ob-
servation zk. In this way, a more accurate estimate of xk can be computed.
Moreover, the number of update phases is the same as the number of asyn-
chronous sensors, each one with its specific observation model.

4.1.1 Prediction
Firstly, the predicted a priori state estimate x̂k|k−1 and a priori estimate covariance
Pk|k−1 are computed.

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk (4.4)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (4.5)

Here, the starting estimate covariance P0 and the state covariance matrix Qk

must be appropriately chosen. This is usually done through a trial and error
procedure or thanks to a deep knowledge about the real system.

4.1.2 Update
Lastly, the updated state estimate x̂k|k and updated covariance Pk|k are computed
exploiting the sensor data zk.

ỹk = zk −Hkx̂k|k−1 (4.6)

Sk = HkPk|k−1H
T
k +Rk (4.7)

Kk = Pk|k−1H
T
k S
−1
k (4.8)

x̂k|k = x̂k|k−1 +Kkỹk (4.9)

Pk|k = (I −KkHk)Pk|k−1 (4.10)

Here, the observation covariance matrix Rk must be appropriately chosen.

19

System state estimation algorithm

4.2 System model
Given the dynamics of the system, the UAV can be described by a constant
acceleration model, while the UGV by a constant velocity one. Since the landing
platform moves mainly in a straight line, the yaw speed can be approximated to
zero. These measurements are asynchronously published on different ROS2 topics.
Therefore, it is necessary to model several observation models. The prediction
phase is executed each timestep dt, while each update phase is executed whenever
the correspoding data are available.

4.2.1 Prediction model
Based on the assumptions listed above, the UAV and the UGV can be modeled by
the following sets of differential equations:



d

dt
xUAV (t) = ẋUAV (t)

d

dt
ẋUAV (t) = ẍUAV (t)

d

dt
ẍUAV (t) = 0

d

dt
yUAV (t) = ẏUAV (t)

d

dt
ẏUAV (t) = ÿUAV (t)

d

dt
ÿUAV (t) = 0

(4.11)



d

dt
xUGV (t) = ẋUGV (t)

d

dt
ẋUGV (t) = 0

d

dt
yUGV (t) = ẏUGV (t)

d

dt
ẏUGV (t) = 0

d

dt
θUGV (t) = 0

(4.12)

They can be discretized through the Euler method, as follows:

20

4.2 – System model



xUAV,k = xUAV,k−1 + ẋUAV,k−1dt+ 1
2 ẍUAV,k−1dt

2

ẋUAV,k = ẋUAV,k−1 + ẍUAV,k−1dt

ẍUAV,k = ẍUAV,k−1

yUAV,k = yUAV,k−1 + ẏUAV,k−1dt+ 1
2 ÿUAV,k−1dt

2

ẏUAV,k = ẏUAV,k−1 + ÿUAV,k−1dt

ÿUAV,k = ÿUAV,k−1

xUGV,k = xUGV,k−1 + ẋUGV,k−1dt

ẋUGV,k = ẋUGV,k−1

yUGV,k = yUGV,k−1 + ẏUGV,k−1dt

ẏUGV,k = ẏUGV,k−1

θUGV,k = θUGV,k−1

(4.13)

The constant acceleration state transition model can be written as:

F1 =

1 dt 1
2dt

2

0 1 dt
0 0 1

 (4.14)

On the other hand, the constant velocity one is given by:

F2 =
C
1 dt
0 1

D
(4.15)

Therefore, our system can be written in matrix form as:



xUAV,k
ẋUAV,k
ẍUAV,k
yUAV,k
ẏUAV,k
ÿUAV,k
xUGV,k
ẋUGV,k
yUGV,k
ẏUGV,k
θUGV,k



=


F1 03x3 03x2 03x2 03x1
03x3 F1 03x2 03x2 03x1
02x3 02x3 F2 02x2 02x1
02x3 02x3 02x2 F2 02x1
01x3 01x3 01x2 01x2 1





xUAV,k−1
ẋUAV,k−1
ẍUAV,k−1
yUAV,k−1
ẏUAV,k−1
ÿUAV,k−1
xUGV,k−1
ẋUGV,k−1
yUGV,k−1
ẏUGV,k−1
θUGV,k−1



(4.16)

Let’s choose the UGV and UAV pose in the NED frame as the system states.

21

System state estimation algorithm

x =



xUAV
ẋUAV
ẍUAV
yUAV
ẏUAV
ÿUAV
xUGV
ẋUGV
yUGV
ẏUGV
θUGV



(4.17)

Therefore, the state can be described by the following model:

xk = Fkxk−1 +wk (4.18)

Where the state transition model is equal to:

Fk =


F1 03x3 03x2 03x2 03x1
03x3 F1 03x2 03x2 03x1
02x3 02x3 F2 02x2 02x1
02x3 02x3 02x2 F2 02x1
01x3 01x3 01x2 01x2 1

 (4.19)

And the control-input model is:

Bk = 0 (4.20)

Adopting a discrete constant white noise model[15], we have:

Q1 = qUAV


1
4dt

4 1
2dt

3 1
2dt

2

1
2dt

3 dt2 dt

1
2dt

2 dt 1

 (4.21)

Q2 = qUGV

1
4dt

4 1
2dt

3

1
2dt

3 dt2

 (4.22)

Q3 = qθ (4.23)

The model covariance matrix can therefore be written as:

22

4.2 – System model

Qk =


Q1 03x3 03x2 03x2 03x1
03x3 Q1 03x2 03x2 03x1
02x3 02x3 Q2 02x2 02x1
02x3 02x3 02x2 Q2 02x1
01x3 01x3 01x2 01x2 Q3

 (4.24)

Whereas P0 is modeled as follows:

P0 = p0I11x11 (4.25)
qi represents how much one trusts the accuracy of the respective model, while

p0 how much reliable the initial state x0 is. Therefore, increasing pk leads to giving
less weight to the mathematical model and more importance to the measurements
zk. Increasing pk results in higher uncertainty about the initial state x0. These
parameters are chosen through a trial and error approach.

4.2.2 Observation models
As explained before, each observation model can be written as:

zk = Hkxk + vk (4.26)
We will have 3 different observation models, one for each sensor.

• Compass observation model
The compass mounted on the UGV directly returns the angle of the rover
with respect to the North.

zcompass,k = θUGV,k + vUGV,k (4.27)

zcompass,k =
è
01x10 1

é



xUAV,k
ẋUAV,k
ẍUAV,k
yUAV,k
ẏUAV,k
ÿUAV,k
xUGV,k
ẋUGV,k
yUGV,k
ẏUGV,k
θUGV,k



+ vUGV,k (4.28)

Hence:
Hcompass,k =

è
01x10 1

é
(4.29)

23

System state estimation algorithm

• PX4 sensors observation model

The PX4 Autopilot provides the entire UAV pose on a ROS2 topic.

zPX4,k =



xUAV,k
ẋUAV,k
ẍUAV,k
yUAV,k
ẏUAV,k
ÿUAV,k


+ vPX4,k (4.30)

zPX4,k =
è
I6x6 06x5

é



xUAV,k
ẋUAV,k
ẍUAV,k
yUAV,k
ẏUAV,k
ÿUAV,k
xUGV,k
ẋUGV,k
yUGV,k
ẏUGV,k
θUGV,k



+ vPX4,k (4.31)

Therefore:
HUAV,k =

è
I6x6 06x5

é
(4.32)

• UWB position observation model

The multilaterated position p̂UGVUWB,k is in the rover moving reference frame
RUGV , therefore it needs to be rotated in the NED one before it can be used
to update the system state.

p̂UGVUWB,k =
∆x̂UGVUWB,k

∆ŷUGVUWB,k

 (4.33)

This position can be rotated by left-multiplying the rotation matrix R̂NED
UGV .

p̂NEDUWB,k = R̂NED
UGV p̂

UGV
UWB,k = pNEDUWB,k + vUWB,k (4.34)

p̂NEDUWB,k =
C
xUAV,k − xUGV,k
yUAV,k − yUGV,k

D
+ vUWB,k (4.35)

24

4.2 – System model

Where R̂NED
UGV is directly constructed using the angle estimate θ̂UGV,k, returned

by the filter at each instant k.

R̂NED
UGV =


cos

1
θ̂UGV,k

2
− sin

1
θ̂UGV,k

2
0

sin
1
θ̂UGV,k

2
cos

1
θ̂UGV,k

2
0

0 0 1

 (4.36)

zNEDUWB,k = pNEDUWB,k + vUWB,k (4.37)

zNEDUWB,k =
C
1 0 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 0 −1 0 0

D



xUAV,k
ẋUAV,k
ẍUAV,k
yUAV,k
ẏUAV,k
ÿUAV,k
xUGV,k
ẋUGV,k
yUGV,k
ẏUGV,k
θUGV,k



+ vUWB,k (4.38)

Hence:

HUWB,k =
C
1 0 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 0 −1 0 0

D
(4.39)

As a final step, the covariance matrices RPX4,k, RUWB,k and Rcompass,k should
be suitably chosen based on the accuracy of each sensor. Increasing R leads to
less trust in the considered measure, while decreasing it results in giving it more
weight.

4.2.3 Outputs

The outputs returned by the Kalman Filter are composed of the UAV filtered
position, velocity and acceleration, the filtered UGV yaw angle and the indirect

25

System state estimation algorithm

estimate of the UGV position and velocity.

x̂ =



x̂UAV
ˆ̇xUAV
ˆ̈xUAV
ŷUAV
ˆ̇yUAV
ˆ̈yUAV
x̂UGV
ˆ̇xUGV
ŷUGV
ˆ̇yUGV
θ̂UGV



(4.40)

Then, the relative position estimate between the UAV and the UGV in the NED
frame is equal to:

p̂rel,k =
C
x̂UGV,k − x̂UAV,k
ŷUGV,k − ŷUAV,k

D
(4.41)

And the relative velocity is given by:

v̂rel,k =
Cˆ̇xUGV,k − ˆ̇xUAV,k

ˆ̇yUGV,k − ˆ̇yUAV,k

D
(4.42)

Finally, it is possible to indirectly estimate the velocity of the UGV in the NED
frame. This is equal to:

v̂UGV,k =
Cˆ̇xUGV,k

ˆ̇yUGV,k

D
(4.43)

These three vectors are used by the proposed control algorithm to make the
UAV autonomously land on the UGV.

26

Chapter 5

Autonomous takeoff and
landing algorithm

5.1 System state machine

The proposed landing system can be divided into 4 main phases, as shown in figure
5.1. Specifically, it is composed of: Takeoff, Chase, Descent and Landing. These
steps are not consequential and may alternate, depending on state variable values.

During the takeoff phase the drone is firstly armed, then it climbs to an altitude
called HovHeight. If a valid relative position p̂rel and velocity v̂rel estimate of the
UGV with respect to the UAV is available, then it is possible to switch to the chase
step. Here, a gain scheduling PID speed control algorithm takes care of bringing
the UAV close to the target, while keeping its height constant. The descent can
begin only if the relative position ëp̂relë2 is less or equal than a certain distance
DescDist(ẑrel) and if the relative velocity ëv̂relë2 is less or equal than a certain
velocity DescV el. If one of the two conditions is not met, the descent is aborted
and the drone returns to the chase mode. Finally, if the relative height ẑrel of the
drone with respect to the rover is less than a certain distance LandHeight, the
UAV attempts a landing by turning off the motors.

5.1.1 Takeoff phase

During this phase the drone is controlled in position. As explained in the paragraph
2.3, it is possible to give the UAV position setpoints via offboard control. These
are managed by the autopilot control algorithm shown in figure 2.3. By giving the

27

Autonomous takeoff and landing algorithm

Takeoff

Chase

Descent

Landing

ẑUAV ≈ HovHeight

ëp̂relë2 ≤ DescDist(ẑrel)
AND

ëv̂relë2 ≤ DescV el

ëp̂relë2 > DescDist(ẑrel)
OR

ëv̂relë2 > DescV el

ẑrel ≤ LandHeight

Figure 5.1: Landing system state machine.

takeoff command, the UAV receives a position setpoint equal to:
xUAV,k = 0
yUAV,k = 0
zUAV,k = HovHeight

(5.1)

Where the drone height estimate ẑUAV is returned by PX4 Autopilot. As soon as
the UAV reaches the desired height, it switches to the chase step.

5.1.2 Chase phase
During this phase a gaining scheduling PID speed control algorithm controls
ẋUAV and ẏUAV , while a position control algorithm keeps zUAV constant and equal
to HovHeight. The control algorithm switches from a proportional control to
a proportional-integral-derivative one depending on the relative position of the
UAV and UGV, in a gain scheduling fashion. At high distance, when ëprelë2 >

28

5.1 – System state machine

SwitchContrDist, the control is purely proportional, whereas at close distance,
when ëprelë2 ≤ SwitchContrDist, the control algorithm follows a proportional-
integral-derivative law. Therefore, the setpoint given to the PX4 Autopilot in this
step is equal to:

ẋUAV,k = P · x̂rel,k if ëprelë2 > SwitchContrDist

ẏUAV,k = P · ŷrel,k if ëprelë2 > SwitchContrDist

ẋUAV,k = P · x̂rel,k + I · qk
0 x̂rel,kdt+D · ˆ̇xrel,k if ëprelë2 ≤ SwitchContrDist

ẏUAV,k = P · ŷrel,k + I · qk
0 ŷrel,kdt+D · ˆ̇yrel,k if ëprelë2 ≤ SwitchContrDist

zUAV = HovHeight

(5.2)
Coupled with an anti-windup scheme, this control algorithm ensures precise

tracking and fast convergence with a really small overshoot. A detailed explanation
can be found in paragraph 5.2.1. If the UAV is close enough to the platform and
the relative velocity estimate is fairly small, the drone switches to the descent
phase.

5.1.3 Descent phase
In order to switch to this state, it is required that ëp̂relë2 ≤ DescDist(ẑrel) and
ëv̂relë2 ≤ DescV el. This to ensure that the drone starts descending only when
close to the target, and avoid descents in the presence of overshoots or sudden
stops of the rover, which could lead to crashes or instability. It is noticeable that
DescDist(ẑrel) depends on ẑrel, indeed the allowed area of descent is given by a
cone, as can be seen in image 5.2. After several simulations and real flights it has
been noticed that the UAV struggled to start its descent at high altitudes, while it
had no problems when closer to the target. This is due to a higher variance in the
relative position estimate due to the intrinsic geometry of the problem (i.e anchors
and tag). A cone-like descent constraint area is sufficient to solve this problem.
The constraint can be mathematically expressed as:

ëp̂relë2 ≤ DescDist(ẑrel) (5.3)

With:DescDist = DescDistCyl + ConeSlope · (ẑrel − CylHeight) if ẑrel > CylHeight

DescDist = DescDistCyl if ẑrel ≤ CylHeight

(5.4)
Where:

ẑrel = ẑUAV − ẑUGV (5.5)

29

Autonomous takeoff and landing algorithm

Note that zUGV can be approximated to a constant value, equal to the rover height.
If this constraint is not met, the descent is aborted and the drone returns to the
chase step.

The setpoint given to the UAV is equal to:
ẋUAV,k = P · x̂rel,k + I · qk

0 x̂rel,kdt+D · ˆ̇xrel,k
ẏUAV,k = P · ŷrel,k + I · qk

0 ŷrel,kdt+D · ˆ̇yrel,k
żUAV = DescV el

(5.6)

Figure 5.2: Descent constraint area.

5.1.4 Landing phase
As soon as the relative height between the UAV and the UGV ẑrel decreases under
a certain value LandHeight, then the landing command is sent to PX4 Autopilot,
making the drone turn off its motors. If the landing pad moves too fast (i.e more
than 3km/h), it is possible that the drone misses the platfrom during the free fall.
In order to solve this problem a predictive control variant is proposed, as can be
seen in subsection 5.2.2.

5.2 Proposed control architecture
Given p̂NEDrel and v̂NEDrel , the proposed tracking control algorithm computes, at a
dt rate, the velocity setpoint to be passed to the autopilot. The complete scheme
can be seen in image 5.3. Note that the orange blocks are already provided by PX4
Autopilot and shown in pictures 2.2-2.4.

30

5.2 – Proposed control architecture

Figure 5.3: Proposed system control algorithm.

5.2.1 Control algorithm
The control algorithm switches from a proportional to a proportional-integral-
derivative one, as can be seen in equation 5.2 and in state machine 5.4.

P control

PID control

ëp̂relë2 ≤ SwitchContrDistëp̂relë2 > SwitchContrDist

Figure 5.4: Gain scheduling PID logic.

The proportional control is given by:ẋUAV,k = P · x̂rel,k
ẏUAV,k = P · ŷrel,k

(5.7)

While the PID one is given by:ẋUAV,k = P · x̂rel,k + I · S(x̂rel,k) +D · ˆ̇xrel,k
ẏUAV,k = P · ŷrel,k + I · S(ŷrel,k) +D · ˆ̇yrel,k

(5.8)

31

Autonomous takeoff and landing algorithm

Where S(x̂rel,k), S(ŷrel,k) are the relative position discrete integrals over all time
instants k.

S(x̂rel,k) =
kØ
0
x̂rel,kdt =

k−1Ø
0
x̂rel,kdt+ x̂rel,kdt = S(x̂rel,k−1) + x̂rel,kdt

S(ŷrel,k) =
kØ
0
ŷrel,kdt =

k−1Ø
0
ŷrel,kdt+ ŷrel,kdt = S(ŷrel,k−1) + ŷrel,kdt

The smooth transition between the proportional control and the PID one is ensured
by the continuity of the function in the derivative, integral and proportional values.
Indeed, the proportional gain is the same in both control schemes, while the integral
and derivative ones start from 0 when the switch occurs. Note that the integral
contributions S(x̂rel,k), S(ŷrel,k) are reset everytime the control scheme changes,
i.e. from proportional to PID and viceversa.

In order to prevent high overshoots an anti-windup scheme is implemented. The
proposed solution consists in stopping the integration whenever the UAV speed
saturates to its maximum value. This can be mathematically expressed as:


S(x̂rel,k) = S(x̂rel,k−1) if

---ˆ̇xUAV --- > 0.8|ẋUAV,max|, S(x̂rel,k−1) · x̂rel,kdt > 0

S(x̂rel,k) = S(x̂rel,k−1) + x̂rel,kdt if
---ˆ̇xUAV --- ≤ 0.8|ẋUAV,max|

(5.9)
Note that the condition S(x̂rel,k−1) · x̂rel,kdt > 0 makes sure that integration is

denied only when the integral contribution and the new value have the same sign.
In this way, the integral contribution cannot saturate but only decrease.

5.2.2 Predictive control algorithm

One of the problems of landing at high speeds (i.e. more than 3km/h) is the
possibility of the UAV falling off the platform. Indeed, during the landing phase
the drone shuts down the motors and falls vertically, often causing the UAV to
miss the rover.

The proposed system state estimation algorithm shown in chapter 4 returns an
indirect estimate of the UGV velocity. This information can be used to predict,
at a dt rate, the position of the rover over the following time instants. Hence, the
above problem is solved by making the UAV chase the position given by the one of
the UGV center plus the predicted displacement of the rover over the drone fall
time. This control scheme can be mathematically expressed as:

32

5.2 – Proposed control architecture


x̂pred,k = x̂rel,k + LandHeight

LandV el
· ˆ̇xUAV,k

ŷpred,k = ŷrel,k + LandHeight

LandV el
· ˆ̇yUAV,k

(5.10)

Note that it corresponds to shifting the descent constraint cone along the moving
direction of the landing pad, as shown in figure 5.5.

Figure 5.5: Predictive descent constraint area.

Now, the proportional control is given by:ẋUAV,k = P · x̂pred,k
ẏUAV,k = P · ŷpred,k

(5.11)

While the PID one is given by:ẋUAV,k = P · x̂pred,k + I · S(x̂pred) +D · ˆ̇xpred,k
ẏUAV,k = P · ŷpred,k + I · S(ŷpred) +D · ˆ̇ypred

(5.12)

33

34

Chapter 6

Software-in-the-loop
simulations

Simulations are the only safe way to conduct preliminary tests of such systems
and perform a detailed risk and fault analysis. PX4 provides a SITL (Software-In-
The-Loop) package that allows to run the flight stack on a computer. Interaction
with the simulator and the simulated model is possible thanks to an offboard API,
with the advantage of using exactly the same code both in simulation and on the
real embedded system. In our case the chosen simulator is Gazebo, a powerful 3D
simulation environment that is typically used with ROS and ROS2.

Simulations allow us to stress the proposed system to failure, in order to
understand its limitations and test its robustness. This is done by conservatively
adding some offset to the sensors data or increasing their noise well above the
actual one, adding randomness to the UGV motion, or purposely removing one or
more anchors.

In order to simulate the landing system, the UAV, UGV and UWB antennas
models must be created. A realistic simulation requires that the right noise is
added to each sensor data, and that the simulated dynamics and scenarios are
similar to those in which the real system will be tested. For this reason, several
plugins are implemented so that the drone and the rover are equipped with all
necessary sensors.

6.1 Models

In this section we illustrate how to model and implement in simulation all necessary
sensors and devices.

35

Software-in-the-loop simulations

6.1.1 UWB model

Modelling the ultrawide-band technology is essential to obtain a valid simulation
and safely test all localization algorithms. To this end, both tag and anchor models
have been created. A specifically created plugin allows the objects defined as
anchors to send their position to the tag at a given rate, and the tag to publish on
a ROS2 topic the distance from each of them whenever it is received. Moreover it
is possible to add noise to these measurements.
The tag is mounted on left leg of the UAV (white box in figure 6.1), while 4 UWB
anchors are placed at the four vertices on the UGV surface (small white prisms in
figure 6.2).

6.1.2 UAV model

In order to simulate the UAV, we use a model already provided by the PX4 SITL
package. In particular, the proposed quadcopter is the 3DR IRIS (figure 6.1),
selected because of its similarity to the one used in real flights (section 7.1.2).
Indeed, its main features are: weight equal to 1300g and a 550mm wingspan.
This model has been further customized to include two legs, a UWB tag (the white
box on the left leg), a camera (the white box between the black propellers) and a
range sensor (the black box between the blue propellers).

Figure 6.1: Simulated UAV model.

36

6.2 – Landing system simulation

6.1.3 UGV model
The UGV is modeled as a three-wheel vehicle with differential drive. It is composed
of a square frame measuring 1m x 1m, equipped with 4 UWB anchors, a compass
and an AprilTag marker (figure 6.2). Its dimensions are the same as the UGV used
in real tests (section 7.1.3). Moreover, it can be controlled using ROS2 thanks to a
differential drive plugin.
The implemented compass publishes on a ROS2 topic the heading data at a
given rate. Additionally, there is the possibility to chose the noise affecting this
information, so that the sensor behaves as realistically as possible.

Figure 6.2: Simulated UGV model.

6.2 Landing system simulation
The performed simulations aim to replicate as much as possible the behavior of
the real system. For this reason, noise and performance characteristics have been
taken from datasheets and experimental tests and implemented on the simulated
models. Specifically:

• UWB antennas Each distance measurement is affected by white noise with
standard deviation σ = 0.1m, that is nearly twice as much as the real one[7].
This is done to test the system in the worst case scenario.

• UGV compass After measuring the real ones, an offset ∆θ̂compass = 25◦ and
a standard deviation σ = 0.75◦ have been selected.

37

Software-in-the-loop simulations

• UGV model The UAV landing has been simulated in three scenarios: sta-
tionary UGV, UGV moving at a 1m/s (maximum speed of the real rover
(section 7.1.3), UGV moving randomly. In this last case, both linear and
steering velocities are affected by noise. This means that the rover steers,
accelerates and decelerates randomly, with a top speed of 1m/s.

Simulation results can be found in paragraph 6.2.3, whereas 6.2.1 and 6.2.2
illustrate the UAV and UGV compasses misalignment problem and its solution
respectively. All control and estimation algorithms run at a frequency of 10Hz.

Figure 6.3: UAV chasing the UGV in simulation.

Figure 6.4: UAV landed on the UGV in simulation.

38

6.2 – Landing system simulation

6.2.1 UAV and UGV compasses misalignment effect
The main problem of the proposed landing system is the misalignment ∆θ̂ between
UAV and UGV compasses, which cannot be estimated using the implemented
estimation algorithm. Since all position information and control commands must
be referenced with respect to the NED frame, consistency between the two com-
passes is a critical issue. In this paragraph, we illustrate the effect of ∆θ̂ on the
autonomous landing performance.

Let p̂rel,∆θ̂=0 be the relative position estimate with ∆θ̂ = 0 and p̂rel,∆θ̂ /=0 the
relative position estimate when ∆θ̂ /= 0, then:

p̂rel,∆θ̂ /=0 = R(∆θ̂)p̂rel,∆θ̂=0 (6.1)

Where R(∆θ̂) is the rotation matrix around the z axis constructed using ∆θ̂.
The positioning error contribution given by ∆θ̂ is equal to:

epos,∆θ̂ =
...p̂rel,∆θ̂ /=0 − p̂rel,∆θ̂=0

...
2

= 2 ·
...p̂rel,∆θ̂=0

...
2

·

------sin
∆θ̂

2

------ (6.2)

It means that the further away the drone and rover are, the greater is the positioning
error contribution given by the misalignment error.
The above two formulas can be better understood by looking at figure 6.5. Note
that the point OUAV is the center of the UAV, while p̂rel,∆θ̂=0 is the position of
the UGV when ∆θ̂ = 0. The positioning error caused by ∆θ̂ is given by the length
of the line connecting p̂rel,∆θ̂=0 and p̂rel,∆θ̂ /=0.

OUAV

p̂rel,∆θ̂ /=0

p̂rel,∆θ̂=0

∆θ̂

Figure 6.5: Positioning error given by compasses misalignment.

In order to investigate how it affects the mission performance, we simulate the
autonomous landing of the UAV on a stationary platform placed at a relative

39

Software-in-the-loop simulations

distance of x = 5m, y = 0m. For simplicity, the misalignment can be modeled as
an offset affecting the UGV compass heading θcompass.

The ideal scenario is shown in pictures 6.6-6.7, where ∆θ̂ is equal to 0. Indeed, the
system shows a fast convergence without oscillations (figure 6.6), with the total
positioning error (figure 6.7) being extremely low and reaching a maximum of 30cm
when the drone is far from the rover and approximately 10cm when it is within the
area delimited by the anchors. It is also noticeable that the least squares position
estimate is really noisy when the UAV and the UGV are far away, and becomes
smoother when they get closer. This behavior highly depends on the geometry of
the system (equation 3.2).

Figure 6.6: System response with ∆θ̂ = 0◦ and D = 0.3.

Increasing ∆θ̂ to 25◦ leads to wider oscillations (figure 6.8) with amplitude ≈ 1m
and a really high total positioning error (figure 6.9). It is noticeable that this error
decreases rapidly as the UAV approaches the UGV (chase phase), since the ∆θ̂
contribution highly depends on the relative distance between the two (equation
6.2). It can also be seen that the initial position is rotated by 25◦ from the true
one.

Finally, a ∆θ̂ equal to 40◦ (6.10-6.11) causes the above described issues to be
even more pronounced, while still allowing a successful autonomous landing. In
the next paragraph (6.2.2) we will see how this is not obvious at all and highly

40

6.2 – Landing system simulation

Figure 6.7: Positioning error with ∆θ̂ = 0◦ and D = 0.3.

Figure 6.8: System response with ∆θ̂ = 25◦ and D = 0.3.

41

Software-in-the-loop simulations

Figure 6.9: Positioning error with ∆θ̂ = 25◦ and D = 0.3.

depends on the derivative term of the controller.

6.2.2 Derivative term effect
The robustness of the proposed landing algorithm with respect to the compasses
misalignment largely depends on the derivative term D of the controller (section
5.2.1). Increasing this constant leads to less oscillations and a faster convergence
time, but makes the system more sensitive to noise. Hence, D must be chosen as a
tradeoff between speed and noise rejection.

The effect of the derivative term on the system response is clearly noticeable in
pictures 6.12-6.13-6.14. The chosen parameters are: ∆θ̂ = 40◦ and D = 0, D = 0.1
and D = 0.3 respectively.

When D = 0 (figure 6.12), the system is characterized by very large oscillations
and a long settling time. It can be seen that the landing accuracy (last seconds of
the graph) is quite poor.

Increasing D to 0.1 (figure 6.13) largely improves the above descripted behaviour,
but the oscillations still cause a fairly inaccurate landing.

Finally, a D equal to 0.3 (figure 6.14) leads to an acceptable control response,
while providing a decent noise rejection. This is conservatively chosen as a valid
tradeoff, since the real system position estimate noise and spikes may be even more

42

6.2 – Landing system simulation

Figure 6.10: System response with ∆θ̂ = 40◦ and D = 0.3.

Figure 6.11: Positioning error with ∆θ̂ = 40◦ and D = 0.3.

43

Software-in-the-loop simulations

Figure 6.12: System response with D = 0.0 and ∆θ̂ = 40◦.

Figure 6.13: System response with D = 0.1 and ∆θ̂ = 40◦.

44

6.2 – Landing system simulation

pronounced. Also, a further increase in D does not lead to a noticeable performance
improvement, but rather makes the system more nervous.

Figure 6.14: System response with D = 0.3 and ∆θ̂ = 40◦.

6.2.3 Results
The simulated system shows very good performance in both stationary and moving
target landings, behaving similarly to the real one (section 7.2) and reaching a
landing accuracy of approximately 5cm.

The simulated landing on the stationary UGV is shown in picture 6.15. The blue,
red and green backgrounds represent takeoff, chase and descent phases respectively,
while the blue, red and black lines the relative x, y and absolute z estimates. It
can be also seen how the drone turns off its motors at t = 34s and lands on the
rover with an accuracy of about 5cm.

In the constantly moving target case (figure 6.16) the descent phase is less
smooth than the one in the first scenario. This is due to the UAV attempting the
descent only when the relative velocity and the relative distance are small enough.
Nevertheless, the convergence speed and the landing accuracy are excellent.

The last scenario is shown in picture 6.17. Here, the rover accelerates, decelerates,
and steers unpredictably. It is noticeable how the UAV takes longer to reach the
UGV and the descent is even slower, but the performance is still remarkably good.

45

Software-in-the-loop simulations

Figure 6.15: Simulated UAV autonomous landing on a stationary UGV.

Figure 6.16: Simulated UAV autonomous landing on a constant velocity moving
UGV.

46

6.2 – Landing system simulation

Figure 6.17: Simulated UAV autonomous landing on a randomly moving UGV.

47

48

Chapter 7

Experimental testing

In this chapter, the proposed landing algorithm is validated by means of experi-
mental tests. First, we report all the devices used and their specifications. Finally,
the experimental test data are shown and analyzed in detail.

7.1 Instrumentation

7.1.1 UWB
The chosen ultrawide-band device is the Decawave EVB1000 board (fig. 7.1). It is
one of the most precise devices on the market and can be programmed to work
both as an anchor or a tag. Furthermore, it has small dimensions (≈ 7cm x 12cm
x 1.3cm) and weight (≈ 40g), and the low power consumption (< 1W) allows it to
be powered with small batteries and work for days just with a regular power bank.
It has a ranging precision approximately equal to 2cm and an accuracy up to 5cm
in Line of Sight, with a maximum ranging distance nearly equal to ≈ 150m in the
absence of obstacles[16].

7.1.2 UAV
The used UAV has been self assembled using the Holybro X500 kit (fig. 7.2) and
further equipping it with a Raspberry Pi 4, GPS RTK, Lightware SF11/C range
sensor and a Decawave EVB1000 board programmed as a tag. The Raspberry Pi 4
is in charge of executing all the various flight algorithms (chapters 4 and 5) and
sending the commands to the autopilot. It is therefore connected via UART to the
PX4 flight control board, which manages the received setpoints and controls the
drone. Moreover the Raspberry Pi 4 is connected to a wifi network, which allows
it to receive commands (e.g. "land", "takeoff", "start autonomous landing") and
post and retrieve data (such as the UGV compass heading) from ROS2 topics. The

49

Experimental testing

Figure 7.1: Decawave EVB1000 evaluation board[17].

UWB tag is mounted on the left leg of the drone and connected via USB to the
Raspberry Pi 4. It returns the distance from the 4 anchors with a frequency of
about 20Hz.

Figure 7.2: Holybro X500 Kit[18].

7.1.3 UGV
The used rover is the Husky UGV by Clearpath Robotics, shown in picture 7.3.
It has a maximum speed of 1m/s, and dimensions equal to 990mm x 670mm x

50

7.2 – Results

390mm. The huge allowed payload of 75kg and the high torque powertrain allow
it to be used in all types of environment[19]. It is further equipped with a 1m x
1m custom wooden landing platform mounted on its top. This is composed of 4
UWB anchors installed on its corners and an electronic compass connected to a
Raspberry Pi 4, all powered by several powerbanks. Orientation data are sent to
the UAV via wifi, by posting them on a ROS2 topic. Finally, the rover can be
controlled either via bluetooth with a joystick or via wifi using a computer.

Figure 7.3: Husky UGV[20].

7.2 Results
Experimental tests succesfully validate the proposed landing system with excellent
results, also exhibiting strong similarity to the simulated scenarios. More precisely,
the described autonomous takeoff and landing scheme ensures an accuracy up to
5cm, both on fixed and mobile targets. In this paragraph we show three significant
tests, carried out within two weeks of each other. These ones have been necessary to
further define and improve both the state machine and the estimation and control
algorithms. Note that all estimation and control algorithms run at a frequency of
10Hz.

The first autonomous landing on the stationary platform is shown in figure 7.4.
It is noticeable that the descent is not smooth at all and the system response is
characterized by really large oscillations (amplitude ≈ 2m). Moreover, the landing
accuracy is quite poor, being equal to approximately 30cm. This is due to a whole
different autonomous landing algorithm. Its critical issues were:

• a faulty landing detection;

51

Experimental testing

• the derivative value of the controller being much lower than the optimal one
(D = 0.05 versus D = 0.3);

• a different state machine that allowed the drone to climb again as soon as the
descent conditions were no longer met;

By subsequently analyzing these data and comparing them with those of the sim-
ulations, it was noted that the oscillations were caused by a high misalignment
between the drone and rover compass (paragraph 6.2.1), and that the solution
was to increase the value of the derivative term of the controller (paragraph 6.2.2).
Figure 7.5 shows the position estimated with the Least Squares method as well as

Figure 7.4: First UAV autonomous landing on the stationary UGV - Complete
mission chart.

the one subsequently filtered by the Kalman Filter. As can be seen, the latter is
much smoother and robust with respect to outliers, while still showing no delay
compared to the raw multirated one. Moreover, the variance of the Least Squares
estimate is very high at the beginning, when the drone and rover are far away, and
visibly decreases when they get closer (t ≥ 32s). As explained earlier, this depends
very much on the system geometry and the GDOP value (equation 3.2).

The performance of the improved version of the autonomous landing algorithm can
be seen in figure 7.6. It is noticeable that both the descent phase and the chase one

52

7.2 – Results

Figure 7.5: First UAV autonomous landing on the stationary UGV - Relative
position estimation.

are visibly better than those of the first test, leading to a landing accuracy under
10cm. The increased value of the derivative term ensures very limited and quickly
damped oscillations, allowing the relative position to quickly converge to zero. The
descent is much smoother, but the landing detection remains flawed, causing the
drone to shut down its motors (t ≈ 112s) only a long time after landing (t ≈ 100s).
This problem has been subsequently solved, leading to the state machine, controller
and estimator described in this thesis.

Finally, from image 7.7 it can be seen that the spikes at the time instants t ≈ 75s
and t ≈ 86s are given by an interruption in the position multilateration. This
happens when the drone loses the signal of at least two anchors, since 2D position
computation is possible even without one of them.

The last experimental test is shown in figure 7.8. Unlike the previous ones, here the
UAV autonomously lands on the UGV moving at approximately vUGV = 1km/h.
It is noticeable that the results are quite satisfactory: the descent phase is smooth,
the relative position quickly converges to zero without oscillations, and the landing
detection algorithm works properly, allowing a well-timed shutdown of the motors
(t ≈ 45s) with a landing accuracy under 10cm.

53

Experimental testing

Figure 7.6: First UAV autonomous landing on the stationary UGV - Complete
mission chart.

Figure 7.7: Second UAV autonomous landing on the stationary UGV - Relative
position estimation.

54

7.2 – Results

Figure 7.8: UAV autonomous landing on the moving UGV - Complete mission
chart.

Figure 7.9: UAV autonomous landing on the moving UGV - Position estimation.

55

56

Chapter 8

Conlusions

In this thesis, an autonomous landing system based on ultrawide-band technology
has been proposed. Software-in-the-loop simulations and experimental tests validate
this work with excellent results, ensuring a landing accuracy below 10cm, both on
a stationary and moving platform. More specifically, UWB ranges, UGV compass,
and UAV sensors data are fused together by means of loosely coupled linear Kalman
Filter. The estimated relative position is then passed to a gain scheduling PID
controller that computes the setpoint to be given to the autopilot. The innovation
of this work therefore lies in its simplicity and in the low computational power
required to achieve an accurate autonomous landing.

8.1 Future work
This work is certainly a great starting point for the development of more robust and
high-performance autonomous landing systems. Positioning redundancy could be
increased by fusing camera, odometry and GPS data, in order to address the current
UWB signal loss or high noise issues. In addition, it may be beneficial using more
accurate UAV and UGV models together with a tightly coupled nonlinear filter, to
allow autonomous landings at higher speeds. Finally, more sophisticated control
architectures, such as nonlinear model predictive control, could be implemented in
order to predict the rover position and compute the optimal drone trajectory.

57

58

Bibliography

[1] PX4 Autopilot System Architecture. https://docs.px4.io/master/en/
concept/px4_systems_architecture.html (cit. on p. 4).

[2] PX4 Autopilot Controller Diagrams. https://docs.px4.io/master/en/
flight_stack/controller_diagrams.html (cit. on pp. 5, 6).

[3] PX4 Autopilot Reference Frames. https://docs.px4.io/v1.12/en/ros/
external_position_estimation.html (cit. on pp. 6, 7).

[4] G. Breed. «A summary of FCC rules for ultra wideband communications».
In: High Frequency Electronics (Aug. 2005), pp. 42–44 (cit. on p. 9).

[5] F. Lensund and M. Sjöstedt. Local positioning system for mobile robots using
ultra wide-band technology. 2018. url: http://urn.kb.se/resolve?urn=
urn:nbn:se:kth:diva-232506 (cit. on p. 10).

[6] Antonio Jiménez and Fernando Seco. «Comparing Decawave and Bespoon
UWB location systems: Indoor/outdoor performance analysis». In: Oct. 2016,
pp. 1–8. doi: 10.1109/IPIN.2016.7743686 (cit. on p. 9).

[7] Marko Malajner, Peter Planinšič, and Dušan Gleich. «UWB ranging accuracy».
In: 2015 International Conference on Systems, Signals and Image Processing
(IWSSIP). 2015, pp. 61–64. doi: 10.1109/IWSSIP.2015.7314177 (cit. on
pp. 10, 37).

[8] R. Mautz. Indoor positioning technologies. 2012. url: https://www.resear
ch-collection.ethz.ch/handle/20.500.11850/54889 (cit. on p. 11).

[9] Binghao Li, Andrew Dempster, and Jian Wang. «3D DOPs for Positioning
Applications Using Range Measurements». In: Wireless Sensor Network 3
(Jan. 2011), pp. 343–349. doi: 10.4236/wsn.2011.310037 (cit. on p. 12).

[10] Emanuele Goldoni, Alberto Savioli, Marco Risi, and Paolo Gamba. «Experi-
mental analysis of RSSI-based indoor localization with IEEE 802.15.4». In:
May 2010, pp. 71–77. doi: 10.1109/EW.2010.5483396 (cit. on p. 13).

[11] Maxim Shchekotov. «Indoor Localization Method Based on Wi-Fi Trilatera-
tion Technique». In: 2014 (cit. on p. 13).

59

https://docs.px4.io/master/en/concept/px4_systems_architecture.html
https://docs.px4.io/master/en/concept/px4_systems_architecture.html
https://docs.px4.io/master/en/flight_stack/controller_diagrams.html
https://docs.px4.io/master/en/flight_stack/controller_diagrams.html
https://docs.px4.io/v1.12/en/ros/external_position_estimation.html
https://docs.px4.io/v1.12/en/ros/external_position_estimation.html
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232506
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232506
https://doi.org/10.1109/IPIN.2016.7743686
https://doi.org/10.1109/IWSSIP.2015.7314177
https://www.research-collection.ethz.ch/handle/20.500.11850/54889
https://www.research-collection.ethz.ch/handle/20.500.11850/54889
https://doi.org/10.4236/wsn.2011.310037
https://doi.org/10.1109/EW.2010.5483396

BIBLIOGRAPHY

[12] Abdelmoumen Norrdine. «An Algebraic Solution to the Multilateration Prob-
lem». In: (Apr. 2015). doi: 10.13140/RG.2.1.1681.3602 (cit. on p. 14).

[13] G. Fantin. UWB localization system for partially GPS-denied robotic applica-
tions. 2019. url: https://webthesis.biblio.polito.it/10888/ (cit. on
p. 14).

[14] Kalman Filter. Kalman Filter — Wikipedia, The Free Encyclopedia. url:
https://en.wikipedia.org/wiki/Kalman_filter (cit. on p. 18).

[15] «Estimation for Kinematic Models». In: Estimation with Applications to
Tracking and Navigation. John Wiley & Sons, Ltd. Chap. 6, pp. 267–299. isbn:
9780471221272. doi: https://doi.org/10.1002/0471221279.ch6. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471221279.ch6.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/0471221279.
ch6 (cit. on p. 22).

[16] Decawave EVB1000 Evaluation Board Datasheet. https://www.decawave.
com/sites/default/files/resources/evb1000-product-brief_3.pdf
(cit. on p. 49).

[17] Decawave EVB1000 Evaluation Board Image. https://www.decawave.com/
product/evk1000-evaluation-kit/ (cit. on p. 50).

[18] Holybro X500 Kit. https://shop.holybro.com/x500-kit_p1180.html
(cit. on p. 50).

[19] Husky UGV Overview. https://clearpathrobotics.com/husky-unmanned-
ground-vehicle-robot/ (cit. on p. 51).

[20] Husky UGV Image. https://www.generationrobots.com/en/402177-
husky-a200-ugv-mobile-base.html (cit. on p. 51).

60

https://doi.org/10.13140/RG.2.1.1681.3602
https://webthesis.biblio.polito.it/10888/
https://en.wikipedia.org/wiki/Kalman_filter
https://doi.org/https://doi.org/10.1002/0471221279.ch6
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471221279.ch6
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471221279.ch6
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471221279.ch6
https://www.decawave.com/sites/default/files/resources/evb1000-product-brief_3.pdf
https://www.decawave.com/sites/default/files/resources/evb1000-product-brief_3.pdf
https://www.decawave.com/product/evk1000-evaluation-kit/
https://www.decawave.com/product/evk1000-evaluation-kit/
https://shop.holybro.com/x500-kit_p1180.html
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://www.generationrobots.com/en/402177-husky-a200-ugv-mobile-base.html
https://www.generationrobots.com/en/402177-husky-a200-ugv-mobile-base.html

	List of Figures
	Acronyms
	Introduction
	Thesis objective
	Thesis organization

	PX4 Autopilot
	Overview
	System architecture
	Controller architecture

	Offboard control via ROS2
	Reference frames

	Ultrawide-band
	Overview
	Definition
	Advantages

	Localization theory
	Multilateration
	Linear Least Squares

	System state estimation algorithm
	Kalman Filter theory
	Prediction
	Update

	System model
	Prediction model
	Observation models
	Outputs

	Autonomous takeoff and landing algorithm
	System state machine
	Takeoff phase
	Chase phase
	Descent phase
	Landing phase

	Proposed control architecture
	Control algorithm
	Predictive control algorithm

	Software-in-the-loop simulations
	Models
	UWB model
	UAV model
	UGV model

	Landing system simulation
	UAV and UGV compasses misalignment effect
	Derivative term effect
	Results

	Experimental testing
	Instrumentation
	UWB
	UAV
	UGV

	Results

	Conlusions
	Future work

	Bibliography

