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Abstract

Nowadays, waste management is inefficient because of the inadequacy of the
waste differentiation and recycling process. This issue causes an increase in costs
in economic and especially in environmental terms. Indeed, since it is more
economically convenient to produce new objects by using raw materials instead of
recycled ones, the waste continues to increase, and so do the polluting emissions of
carbon dioxide.
This thesis work has been carried out in collaboration with ReLearn, an innovative
Italian startup whose mission is to optimize the waste treatment process and
consider waste no longer a problem but a resource. To simplify recycling and
improve waste management, they have developed a smart bin called Nando that is
able to automatically differentiate all the waste inserted inside it. By using robotics
and artificial intelligence, Nando recognizes the material of which the waste is
composed and then sorts it into the correct bin.
This thesis project aims to design a system to estimate the volume of objects placed
inside Nando. Volume measurements can be useful to monitor the bin fill level
and detect possible objects that get stuck falling into the appropriate container. In
order to avoid adding additional hardware that would entail additional costs, the
measurement has been performed using only the camera already present inside the
bin that was used to recognize the waste material.
Taking advantage of the recent progress in the field of depth estimation achieved
by deep learning methods, it has been possible, starting from a single RGB image
of the object captured inside the bin, to predict the corresponding depth image.F
The Deep Convolutional Neural Network (DCNN) used to estimate depth has been
trained on a dataset specifically built for the purpose of the thesis. Subsequently,
from the depth image obtained in the previous step, the volume of the waste has
been computed with an estimation algorithm specifically developed. Finally, the
outcome is a system able to estimate the volume of an object starting exclusively
from an RGB image that portrays it. The results of the performed simulations
show good scalability of the algorithm and reliable estimation results despite using
only a simple camera.
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Chapter 1

Introduction

Nowadays, producing any object using recycled material costs more than producing
a new one. This problem is due to the lack or inadequacy of waste separation and
recycling methods, which are based on inefficient processes that cause an increase
in costs both in economic and environmental terms. Indeed, waste is the fourth
cause of polluting atmospheric emissions. Moreover, waste management also affects
the daily health, productivity, and cleanliness of the communities. The expansion
of the world population leads to an increase in waste, which in turn causes a rise in
environmental pollution. This chain effect makes waste a significant global issue.

1.1 ReLearn
ReLearn is an innovative Italian startup whose mission is to improve waste manage-
ment with technology. ReLearn team develops novel solutions aimed at improving
the waste management process. Their objectives are to simplify the separate
collection processes, innovate using artificial intelligence, and reduce carbon dioxide
emissions due to unethical disposal practices.
Frequently, in our cities, waste separation is not accurately executed. As a conse-
quence, plastic, glass, metal, and paper are not correctly separated. The reasons
behind this are the lack of adequate recycling bins in public spaces and commercial
areas, as well as human irresponsibility. Due to these inefficient practices, recycling
significant amounts of waste is extremely difficult, and we lose the opportunity of
giving new value to these materials. This is why ReLearn has developed Nando.

1.1.1 Nando
Nando is a smart bin with a great mission: apply technology to automatize, simplify,
and improve waste collection. Its functioning is based on four milestones: image

1



Introduction

recognition, IoT sensor monitoring, machine learning, app and data collection.
Nando is able to automatically differentiate all the waste inserted inside of it.
Thanks to machine learning and image recognition techniques, it can recognize
the material of the object inserted and subsequently deliver it inside the correct
container. Specifically, it can automatically differentiate both the macro-categories
(paper, plastic, glass, and aluminum) and the micro-categories of waste (different
colors of glass, PET, HDPE, PVC, LDPE, PP, PS).
Moreover, by collecting data, Nando can obtain information on the typology and
quantity of waste produced in a specific area, as well as the carbon dioxide they
generate. Furthermore, through the IoT sensors, it is able to monitor its filling
level.

Working principle

Initially, the waste is placed in the appropriate insertion compartment on the top
of the device. Then, falling by gravity, the object is positioned on a rotating sorter.
Subsequently, the waste is rotated using the sorter, photographed with an RGB
camera present inside the bin, and once it is recognized, it is dropped into the
correct container. Moreover, thanks to the display near the insertion compartment,
Nando communicates the type of waste recognized and guides the user in correct
waste separation.

Figure 1.1: Nando smart bin structure.
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1.2 Thesis objective
The thesis has been carried out in collaboration with ReLearn with the aim of
enriching Nando’s functionality. Specifically, the main purpose of the thesis is the
design of a system to estimate the volume of objects placed inside the bin. Volume
measurements can be useful to monitor the bin fill level, adding more information
to the IoT sensors already present inside Nando. The real-time monitoring of the
fill level allows optimizing the logistic operations of the trash emptying. Moreover,
object recognition combined with the estimation of its volume can be helpful to
detect possible objects that get stuck falling into the appropriate container. In order
to avoid adding additional hardware that would entail additional costs, the volume
estimation has been performed exploting only the camera already present inside the
bin that is also used to recognize the waste material. The final outcome should be
a system capable of estimating the volume of any object starting exclusively from
an RGB image that portrays it. This type of algorithm could then be extended so
that it can obtain individual volume estimates from a single photo that portrays
multiple objects.

1.2.1 Thesis outline
The thesis is structured in seven chapters, organized as follows:

1. Introduction, presents the main objectives of the thesis, with a brief overview
of its general structure;

2. Machine Learning, provides the main tools to understand artificial intelli-
gence terms and concepts that will be used in the following chapters;

3. Optical 3D Reconstruction, analyzes and explains the main passive meth-
ods of 3D reconstruction;

4. Monocular Depth Estimation, classifies monocular depth estimation meth-
ods and presents the state-of-the-art CNN architectures able to perform this
task;

5. Volume Estimation Algorithm, studies the mathematical model of a
camera and applies it to define the strategy used to compute the volume of
an object starting from its depth image;

6. MDE Network Training, shows the steps involved to train a monocular
depth estimation network in order to obtain an accurate depth map starting
from a single RGB image;
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7. Conclusions, comments on the results and limitations of the developed
system and presents possible future developments of the work.
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Chapter 2

Machine Learning

Machine Learning is the science of programming computers so they can learn from
data [1]. In particular, the goal of the computer is to find out what relationship
binds the data and use this information to predict new instances.
In the classical programming method, the computer is programmed to produce
specific outputs in the presence of certain inputs. In the machine learning approach,
the computer is provided with input and output data, and it must find the function
that links them in order to be able to predict the output when a new input occurs.
Machine learning in this way allows solving complex problems for which it would
be challenging to develop a specific algorithm. The power of this tool has become
progressively greater mainly for three reasons: the availability of new algorithms
that advance every day thanks to the scientific community, the rise in data produced
and the exponential increase in the computing power of machines.

Tom Mitchel provides a more precise definition of ML in 1997:
"A computer program is said to learn from experience E with respect to some task
T and some performance measure P, if its performance on T, as measured by P,
improves with experience E" [2].

• The Task T can be basically of two types, regression or classification. A
regression problem arises when the output to be predicted is a continuous
quantity (e.g. house price). On the other hand, classification occurs when the
outcome is a discrete quantity (e.g. the house is cheap or expensive).

• The Experience E is the training data. In the ML approach, the available
data are divided into training and testing sets. The computer uses training
data to learn. Testing data instead are used to evaluate how the computer
behaves when it sees new instances.
The learning process can be essentially of two types, supervised if the dataset
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contains labels (desired output), unsupervised if the dataset does not contain
them, and it is up to the model to identify commonalities of data.

• The Performance P is, in general, the accuracy of the prediction, so the
difference between the generated output and the ground truth (desired output).
The performances are calculated on the testing data. Indeed, it is not so
important that the machine learns perfectly how to model the training data;
rather, it is important that the machine acquires the ability to generalize, thus
producing correct output on data it has never seen.

2.1 Deep Learning
Deep learning is a sub-field of ML which handles more complex problems using
algorithms inspired by the structure and function of the brain’s neural networks
[3]. Indeed, neural networks employed in deep learning, since they have similarities
with the actual biological neural networks, are also called artificial neural networks
(ANNs).

2.1.1 Artificial Neural Network
The structure of an ANN is shown in Figure 2.1. It consists of a collection of
connected neurons (also called nodes). Each neuron processes a received signal,
then transmits the results to other neurons through connections, like the synapses
in a biological brain. Neurons are organized into layers. Layers between the input
and the output layer are called hidden layers.

Figure 2.1: Structure of an Artificial Neural Network (left) and of a single neuron
(right).
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Each connection between two nodes has an associated weight, and each node is
described by an activation function (usually non-linear). Therefore, each neuron
outputs a value that is the result of a function applied on a linear combination of
samples xi, each one multiplied by a corresponding weight wi:

y = f
1Ø

wixi

2
(2.1)

Activation functions

"An activation function is biologically inspired by activity in our brains where
different neurons fire (or are activated) by different stimuli" [3].
One of the most adopted activation function is the sigmoid function, shown in
Figure 2.2.

Sigmoid(x) = ex

ex + 1 (2.2)

With most positive inputs, the sigmoid function outputs a number very close to 1,
and therefore that input activates that neuron. With most negative inputs, instead,
this activation function transforms the input into a number very close to 0, and
the corresponding neuron is not activated.
Another widely employed activation function is the ReLU (rectified linear unit)
function, shown in Figure 2.2. It is defined as follows:

ReLU(x) = max(0, x) (2.3)

With the rectified liner unit function, the more positive is the input the more
activated is the neuron.
Many other types of activation functions apply different transformations to the
input. Their choice mainly depends on the type of application and layer for which
the function is used.

2.1.2 Learning process
A neural network learns through the training process.
Training a Neural Network consists in resolving an optimization problem.
The problem’s variables are the network weights and the objective function, called
loss function in the ML field, accounts for the error between the correct and the
predicted output. Indeed, a loss function typically employed is the mean squared
error (MSE).
Therefore, the optimization problem consists of setting the network’s weights such
that the loss function is minimized.
One of the most adopted optimization algorithms, also called optimizer, is the
Stochastic Gradient Descent (SGD), and it is based on the following steps:

7
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(a) Sigmoid (b) ReLU

Figure 2.2: Sigmoid and ReLU activation functions.

1. The network weights are arbitrarily initialized;

2. The network is supplied with a training sample that propagates from the input
to the output (forward pass). The computed output depends on the weights
that have been assigned to the network connections;

3. Once the output is defined, the loss function can be calculated;

4. The network computes the derivatives of the loss function with respect to each
network weight (the gradient), through a process called Backpropagation, and
multiply them with a fixed number called Learning Rate:

5. Each weight is updated as follows:

wi = wi − (Learning Rate · ∂Loss

∂wi

) (2.4)

6. The process repeats starting from the updated weights.

Learning Rate

The Learning Rate parameter (LR) is a value which determines the size of the step
through which a parameter is updated.
A too big value of learning rate can lead to a problem called overshooting, where
too large steps are taken, and the minimum value of the loss function cannot be
reached, as shown in Figure 2.3. However, too small LR values cause too slow
convergence in the training process that can get stuck. Therefore, the proper choice
of this parameter can be challenging, and it is based on a trial and error process.
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(a) Small learning rate (b) Large learning rate

Figure 2.3: Comparison between small and large learning rate.

Optimizers and Batch size

With the Stochastic Gradient Descent optimizer, only one data per step is provided
to the network. Therefore, the model is updated as many times as the number of
samples contained in the training dataset. Frequently weights updates speed up the
training process. In addition, fewer memory resources are required to handle only
one sample per step. However, the constant change of the model causes constant
fluctuations of the loss function, which can continue to change even if the global
minimum has been reached. Therefore, typically in each training step, not only
one but multiple data are provided to the network.
When the model parameters are updated in each batch, the optimizer is called
Mini-Batch Gradient Descent. The batch size defines the number of samples of
the training dataset propagated through the network. After that, the error is
computed, the weights are updated, and another batch is provided to the network.
The more training samples are provided to the network, the more chances arise
to update the weights so that the model’s performance becomes better. However,
the larger the batch size, the more computational resources are required to process
the data. A graphical comparison between Stochastic and Mini-Batch Gradient
Descent optimizer is illustrated in Figure 2.4

Epochs

The number of epochs defines how many times the network processes the entire
training dataset. It must be large enough to allow the algorithm to minimize the
loss function.
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(a) Stochastic Gradient Descent (b) Mini-Batch Gradient Descent

Figure 2.4: Comparison between Stochastic and Mini-Batch Gradient Descent
optimizer.

2.2 Convolutional Neural Networks
Convolutional Neural Networks are ANNs, mainly used to analyze images and
solves problems such as image classification and segmentation.
Since taking each pixel of the image as input of the neural network would involve a
too high computational cost, the fully-connected layers used in classical artificial
neural networks are replaced with convolutional layers.
Convolutional layers consist of a certain number of filters able to detect patterns
in the image such as edges, shapes, textures and colors. The deeper the network
goes, the more sophisticated are the detected features. So, in later layers, rather
than edges and simple shapes, filters may detect higher-level features and specific
objects [3].
The typical structure of a CNN, especially for image classification tasks, is illustrated
in Figure 2.5. The first part of the network is used to learn and extract increasingly
complex features through repeated convolution and pooling operations. Features are
then combined, flattened and inserted one by one within a standard fully-connected
network where the image classification takes place.

2.2.1 Covolutional layer
Convolutional layers are the main building block of CNNs and consist of filters
capable of capturing increasingly complex features within the image.
Convolutional filters, also called kernels, applies a mathematical convolution op-
eration on the input. In particular, they work on a region of the input image at
time, called local receptive field. The filter matrix convolves a local receptive field
of the image and shifts until all the image is covered. This operation consists in
the sum of the element-wise multiplication between the kernel and the region of
the image processed. Then, the fixed window shifts of a quantity called stride and
all the results of the convolution operations are stored in another matrix known as
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Figure 2.5: Standard CNN architecture used for image classification.

feature map that becomes the input of the next convolutional layer.
Referring to Figure 2.6, the input is a grey-scale image, since it has only one channel,
the kernel dimension is 3 × 3, and the stride is equal to 1. Moreover, to the image is
also applied the zero-padding technique. It simply consists in adding zeros around
the image margin, increasing the image dimension such that the image borders will
be convolved the same number of times as the central pixels of the image. Taking
into account an RGB image, the complexity of the convolution operation is greater,
but the working principle is always the same; the only difference is that the kernel
will be composed of three channels.
Convolutional layers are often followed by pooling layers used to decrease the spatial
resolution of the convolved image. The most adopted one is the max pooling, which
reduces the size of the feature map (the convolutional layer output) by considering
only the most relevant features.
Specifically, the max pooling is a filter with a certain dimension and stride that
overlaps the feature map, obtained through the convolution operation, and selects
the maximum value within the feature map region covered by its window size.
Referring to Figure 2.6, it is used a 2 × 2 max pooling filter with a stride of 2.
Another widely adopted pooling layer is the average pooling which picks the average
value of the window instead of the maximum.

Dilated convolution

Besides the classical convolution, there are other types of convolution; one of
the most relevant is the dilated convolution, also called atrous convolution. It is
used to capture patterns and features with a wider field of view without adding
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Figure 2.6: Convolution and max pooling operations.

computational costs. A dilated filter is a standard filter in which are added zeros
between each kernel element. The amount of spacing between each filter element is
a parameter called dilation rate d.
In Figure 2.7, is shown as a 3 × 3 dilated convolution with dilation rate d = 2
has the same receptive field of a classical 5 × 5 convolution while using the same
number of parameters of a 3 × 3 convolution.

(a) 3 × 3 classical convolution (b) 3 × 3 dilated convolution with
d = 2

Figure 2.7: Comparison between classical and dilated convolution.

Transposed convolution

So far, the analyzed convolution and pooling operations cause a reduction in the
spatial resolution of the image called down-sampling. In certain applications, it
may be useful to map the extracted features in a larger dimensional space or to
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recover the initial resolution of the image (up-sampling).
An important type of convolution that allows for up-sampling is transposed convo-
lution, also called deconvolution. Usually, transposed convolutions are performed
through classical convolutions adding zeros to the input image.
An example is illustrated in Figure 2.8. The 2 × 2 input image is padded with a
2 × 2 border of zeros. After applying transposed convolution with a 3 × 3 kernel
and stride equal to 1, it is possible to obtain a 4 × 4 output image. In this way,
the resolution of the input image is doubled.

Figure 2.8: Example of a transposed convolution.

2.2.2 CNN architectures
This section briefly analyzes the evolution of the structure and building blocks of
the most relevant CNNs.

AlexNet & VGG-16

One of the first networks able to solve complex image classification problems
was AlexNet. It has a structure very similar to the one illustrated in Figure 2.5,
and in particular, it is composed of 8 layers, 5 of which are convolutional and 3
fully-connected. Subsequently, scientific researchers have noticed that to improve
CNN’s performance it was necessary "to go deeper". For this reason, VGG-16 was
developed, with a structure very similar to AlexNet but made up of 16 layers.

GoogLeNet

GoogLeNet is a 22 layer CNN that, with its fundamental building block called
inception module, has revolutionized the structure of CNNs, going wider rather
than deeper. Indeed, GoogLeNet was the first network to use convolution and
pooling operations no longer all in sequence but also in parallel, creating a "network
in the network".
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In previous works, there was the need to choose whether use the pooling or
convolution operation and the size of their filters. Thanks to the introduction of
the inception module, it is possible to apply all these operations in parallel, as
shown in Figure 2.9. The obtained results are then concatenated. This technique
allows to extract features at different levels and fuse them.

Figure 2.9: Inception module.

However, all these convolution operations are computationally expensive. To
solve this problem it has been introduced the 1 × 1 filters. As shown in Figure 2.10,
the 1×1 kernel allows to maintain the same resolution of the input feature map but
merging all the information distributed over multiple channels into a single output
channel; this effect is called dimensionality reduction. In this way, the subsequent
3 × 3 and 5 × 5 filters work on an image with fewer channels, which exponentially
lowers the required operations.

Figure 2.10: 1 × 1 kernel: dimensionaly reduction.
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ResNet

As mentioned earlier, increasing the number of layers within a CNN also increases
the accuracy of the prediction. However, once a certain number of layers is reached,
the performances saturate and at a certain point exponentially degrade. This
problem was solved by introducing the residual block, the fundamental block present
within ResNet. Residual block, also called identity block, uses skip-connection (or
shortcut connections, residuals), by which it is possible to insert more than 100
layers within a single CNN without reducing the network efficiency.
Referring to Figure 2.11, in traditional CNNs, the input x propagates through
convolutional layers and becomes H(x). Thanks to the residual block, instead of
directly calculating the transformation from x to H(x), it is only computed the
term that must be added to x in order to obtain H(x). This term is F (x) and is
called the residual. "It is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping" [4].

Figure 2.11: Residual block [4].
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Chapter 3

Optical 3D Reconstruction

The goal of optical 3D reconstruction is to capture the 3D geometry and structure
of objects and scenes. This task is fundamental to many applications such as
computer graphics, computer vision, medical diagnosis, and virtual reality.

3.1 Taxonomy
Reconstructing a model implies that all its coordinates in space have to be known
to define its profile; this procedure can be achieved either by Passive methods,
unlike active ones,

Figure 3.1: 3D shape acquisition techniques taxonomy.

16



Optical 3D Reconstruction

3.1.1 Active methods
Active methods are based on how the object interacts with the light rays emitted by
the sensor and usually require the adoption of complex and expensive technologies
such as rangefinders or lasers.
In particular, time-of-flight lasers measure the time taken by the wave to travel a
certain distance in a specific medium. They calculate the time needed by the wave
to go from the emitter to the receiver (Figure 3.2).

Figure 3.2: TOF sensor working principle.

On the other hand, structured light technologies are based on the projection
of known patterns on a scene. The projected image is deformed, as the light rays
hit the object, and through this information, the sensor can measure the object’s
depth and understand the surface features (Figure 3.3).

"Active approaches emit a signal and process how the scene reflects it, while
passive approaches rely on changes in the signal emitted by the scene itself" [5].

3.1.2 Passive methods
Passive methods are mostly image-based, so the object shape is recovered from one
or multiple 2D images. They do not require expensive sensors, just simple cameras.
While it is usually an easy task for a human to understand the 3D structure of
the objects shown in an image, it is not as simple for a computer because, when
the picture is taken, the projection process involves the loss of one dimension, so
estimating the proper 3D geometry becomes complex. For this reason, image-based
3D reconstruction is a so-called ill-posed problem, because many different 3D
surfaces may produce the same set of images [6].
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Figure 3.3: Structured light technology.

Passive methods can be divided essentially into two groups. The first generation
of methods approached the problem from the geometric perspective; they focus on
the projection process from a mathematical point of view and try to reconstruct
the object through well-calibrated cameras [7]. As shown in Figure 3.1, stereo
vision and shape from X methods belong to this category.
The second generation of methods tries to exploit our ability, as human beings, to
estimate the shape and size of an object represented in a picture. This is because,
over the years, we have built mental models and stored information that allows
us to understand how things look like. Therefore, in the second approach, such
methods try to rebuild this previous knowledge through deep learning techniques,
and the 3D reconstruction problem is formulated as a ML regression problem. So,
the depth estimation task is performed by means of CCNs without requiring a
complex camera calibration process [7].

3.2 Shape from X
In computer vision, the methods to recover the shape of the objects from one
or multiple images are called shape-from-X techniques, where X can be shading,
silhouette, texture, motion, etc.

3.2.1 Shape from Shading
As can be guessed from the method’s name, the objective is to infer the object’s
shape from one or more images with variable levels of darkness.
The Shape from Shading takes advantage of the fact that a grayscale image can
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give an idea of the 3D structure of the object, as can be observed from Figure 3.4.
However, it is an ill-posed problem since many shapes can generate the same image.

Figure 3.4: Shading gives a cue for the object’s 3D shape.

Since a smooth surface has a tangent plane at each point, the object’s shape
can be easily described by the surface normal at every point. Therefore, the shape
determination is based on the surface normals computation.

Surface radiance

There exists a relationship between the radiance (brightness) of a pixel (x, y) and
the surface shape:

I = ρ n · s (3.1)

Where:

• I is the observed intensity of a pixel;

• ρ is the surface albedo;

• n = (nx, ny, nz)T ∈ R3x1 is the surface normal;

• s = (sx, sy, sz)T ∈ R3x1 is the source direction (illumination direction), its
module represents the amount of light that falls on the surface.

As seen from the camera, the brightness of the surface is linearly correlated to
the amount of light falling on the surface.
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Figure 3.5: Shape from shading principle: determination of surface normals from
their appearance on the image [8].

Surface Albedo

The albedo is the fraction of light radiation that is reflected from the surface. It
gives an idea of the reflective power of the material, and, considering the same
material, it depends on the wavelength of the light radiation. The maximum albedo
is 1 when all the amount of incident light is reflected; on the other hand, when all
the amount of incident light is absorbed, the albedo is equal to 0.

Assumptions

To apply Equation 3.1 some assumptions must occurs:

• The light source s direction and intensity are known;

• Surface characteristics ρ are known;

• The surface is Lambertian and the albedo is uniform over the entire surface.

Lambertian surface

There are two types of reflection models, the specular reflection and the diffuse one.
In the first case, the light that affects the object is reflected in all directions of
space, and surfaces behaving in this way are called Lambertian.
On the contrary, in the specular reflection model, the incident light is reflected in
a single outgoing direction, symmetrical to the surface normal (Figure 3.6). This
behaviour is typical of specular surfaces (mirror-like).
So, a Lambertian surface appears equally bright from all viewing directions, and

20



Optical 3D Reconstruction

the observed intensity I is independent of the viewing position, as can be seen from
Equation 3.1.

Figure 3.6: Comparison between diffuse and specular reflection.

Surface normal

By describing the surface shape in terms of the surface normal, Equation 3.1 has
three unknowns (nx, ny, nz). So, in order to simplify the problem, the surface shape
can be described in terms of the surface gradient [9].
Surface orientation can be parameterized by the first partial derivatives of z:

p = ∂z

∂x
, q = ∂z

∂y
(3.2)

Figure 3.7: Surface parameterization.

Then, it is possible to express the surface normal as a function of the two normal
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directions p and q:

rx = (p,0,1) , ry = (0, q,1) (3.3)

And finally:

n = rx × ry = (p, q, −1) (3.4)

Nevertheless, the problem is not yet solved because Equation 3.1 becomes a
nonlinear equation with two unknowns. "Only one intensity value I(x, y) is available
per pixel, but two independent normal directions p and q have to be determined"
[8].

Reflectance map

The reflectance map is defined as a function R(p, q) proportional to the image
intensity I:

R(p, q) = n · s = 1 + psp + qsq
√

1 + p2 + q2
ñ

1 + p2
s + q2

s

(3.5)

Where (ps, qs, −1) is the illumination direction.
The reflectance map is a tool used to visualize the scene radiance as a function of
the surface orientation, and it based on a set of nested iso-contours corresponding
to the same observed brightness.

Figure 3.8: Reflectance map of a Lambertian surface.

Knowing the object features, the reflectance map provide, for each gray level,
all the compatible orientation (p, q, −1) of the surface.
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Solution of the problem

As mentioned before, there are two unknowns, p and q, but only one relationship,
so the only way to solve the SFS problem is to introduce additional constraints or
to use more images.
In the last case, the problem is also known as Photometric stereo, and it is based
on taking multiple images of the same object but with different lighting conditions.
In this manner, drawing the iso-brightness contour in the reflectance map for
a particular point of the surface and changing the illumination conditions, it is
possible to obtain an intersection of lines that defines the normal vector of the
surface in that point:

Figure 3.9: Photometric stereo approach: intersection of iso-brightness contours
define the surface normal.

3.2.2 Shape from Silhouette
The Shape from Silhouette problem consists in reconstructing the shape of an
object through silhouette images.
As illustrated in Figure 3.10, a silhouette image is a binary image where the
background is removed from the foreground, and it can be easily obtainable
through a segmentation mask.

The foreground mask, known as a silhouette or occluding contour, is the 2D
projection of the corresponding 3D foreground object.
The Shape from Silhouette method is based on multiple silhouette images, also called
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Figure 3.10: Comparison between the image (left) and the corresponding silhou-
ette image (right).

reference images, of the same object from different points of view. Considering the
camera intrinsic parameters and back-projecting the silhouette area, it is possible
to obtain a cone, the Visual Cone, in which it is known that the real object will lay.
Repeating the process for each reference image, Visual Cones intersect each other
obtaining a volume that contains the object to be reconstructed. It is an upper
bound of the volume of the actual object, and it is called Visual Hull.

Referring to Figure 3.11, suppose there are K fixed cameras Ck with k =
(1, ..., K) positioned around an head-shaped object O. Using the silhouette images
Sk

j with k = (1..., K) taken at time tj , an upper bound of the object’s shape, called
Visual Hull, can be built by intersecting the Visual Cones defined by the camera
intrinsic parameters. As K increases, the Visual Hull converges to the real shape
of the object.

As mentioned before, the Visual Hull always contains the object, and it provides
an upper bound on the shape of the actual thing. This conservative property is
advantageous in applications such as obstacle avoidance and visibility analysis.
"On the other hand, if there are only a few cameras, the Visual Hulls obtained
using Shape from Silhouette can be a very coarse approximation to the shape of
the actual object. This poses a big disadvantage for Shape from Silhouette in
applications such as detailed shape acquisition and realistic re-rendering of objects"
[10].
As previously stated, the number of cameras used is essential for good results; how-
ever, the intersection of many volumes can be a high computational cost operation.
As a result, Shape from Silhouette algorithms rely primarily on quantizing the 3D
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Figure 3.11: Shape from Silhouette working principle: intersection of Visual
Cones define a volume that certainly contains the object, the Visual Hull [10].

area or performing intersections in a 2D space to have a lower computational cost.
As an example, one of the most popular algorithms is the standard voxel-based
method. A voxel is the 3D equivalent of a pixel. As shown in Figure 3.12, the
algorithm is based on the following steps:

1. The space taken into consideration is discretized in many small voxels;

2. Back-projecting the silhouette images, Visual Cones intersect with voxels;

3. Only the voxels that lie inside all the Visual Cones will be part of the final
shape; the others are eliminated from the final volume .

The result, as can be observed in Figure 3.13, it is a quantized representation of
the Visual Hull according to the given volumetric grid.

Many more efficient algorithms are based on this method, such as Space-Carving
or Marching Intersections. These methods usually have large memory requirements
since they rely on a volumetric representation of the object. Other algorithms are
image-based, where all the computations are made in the "image space" coordinates
of the reference images. They reduce computation complexity and do not suffer
from limited resolution and quantization artifacts of the volumetric approaches
[11].
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Figure 3.12: Voxel-based algorithm: in
purple the object to be reconstructed, in
red the corresponding reconstructed vol-
ume.

Figure 3.13: Voxel representa-
tion example.

3.3 Stereo Vision
Stereo vision is a passive 3D reconstruction method; it relies on simultaneously
taking two photos with two different well-calibrated cameras separated by a baseline,
obtaining two views of the same observed scene. The object’s shape will be recovered
through geometric relationships between the right and the left picture. This process
takes inspiration from the human visual system, where images from the two eyes
combine and provide information on the depth of the observed scene.

3.3.1 Epipolar geometry
Stereo Vision leverages the epipolar geometry to estimate the depth of the image,
the task of inferring the distance of every point in a scene with respect to the
camera.
Referring to Figure 3.14, the goal is to understand how far object X is from the
camera. However, it is impossible to perceive depth with a single camera because
other objects belonging to the same line of sight, such as X1, X2, or X3, are
projected into the same left image point XL. Consequently, it is necessary to
add another point of view, the right camera OR, which, like the left camera OL,
points towards object X. The problem of estimating the depth turns into the
correspondence problem: finding which pixel that belongs to the right image more
looks like the XL pixel. In this way, object X is triangulated, and its distance can
be calculated. If the search for the pixel were to be done on the entire plane of
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the right image, it would be an operation with a too expensive cost. Thanks to
epipolar geometry, all the points belonging to the line of sight of X (X1, X2, X3,
...) are projected on the right image in a particular area of the plane. All points
belong to a specific line, the epipolar line (the red line in Figure 3.14). In this way,
the search for correspondence becomes more straightforward, from a 2D search to
a 1D one.

Figure 3.14: Epipolar geometry principle: all points belonging to the line of sight
of X are projected into the same line of pixel of the right image, the epipolar line.

3.3.2 Steps in a Stereo Vision process
As illustrated in Figure 3.15, the Stereo Vision process can be divided into the
following phases:

1. Calibration;

2. Rectification;

3. Stereo Correspondence;

4. Triangulation.

Calibration

Camera calibration is the process of relating the ideal camera model to the actual
physical device (internal calibration) and retrieving the cameras’ relative position
and orientation (external calibration) [13].
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Figure 3.15: Steps in a Stereo Vision process [12].

"This is a fundamental step for 3D reconstruction and, in particular, for stereoscopic
vision analysis. It allows not only for determining the geometry of the stereo setting
needed for triangulation but also for removing radial distortions provided by
common lenses" [13]. Moreover, both the correspondence problem and triangulation
assume to deal with an ideal model of the camera (pinhole model).
As mentioned before, the objective of the camera calibration process is to find the
camera calibration parameters, which can be divided into:

• Intrinsic (or internal) parameters, which describe the features of the camera,
such as focal length, parameters of lenses distortion and image center;

• Extrinsic (or external) parameters, which determine the position and orienta-
tion of the camera with respect to a world reference system.

Usually, the calibration of a stereo camera consists of calibrating the two cameras
separately and then applying the geometric transformations defined by the extrinsic
parameters to understand the geometry of the stereo settings.
OpenCV and MATLAB provide several algorithms to calibrate the stereo rig, and
they are based on acquiring and processing between 10 and 20 stereo images of a
known pattern (typically a checkerboard).
The pinhole camera model and the mathematical aspects of the camera calibration
process will be better investigated in Section 5.1.
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Rectification

As explained before, the objective of stereo vision algorithms is to infer the distance
of every point in a scene with respect to the camera.
In reference to Figure 3.16, the goal is to understand how far the P point is from
the baseline of the stereo rig. In order to triangulate the point P , the problem of
inferring the distance turns into the problem of searching on the right image (target
image) the pixel that more looks like the pixel p (the projection of the object P on
the left image plane) in the left image (reference image). Thanks to the epipolar
geometry, the pixel looked for belongs to a particular line in the target image, the
epipolar line. Once this information is known, the stereo rig can be virtually placed
in a more convenient configuration, the standard form, in such a way that the
two images are projected into a common image plane parallel to the line between
optical centers, and corresponding points will belong to the same image scan line y.

Figure 3.16: Stereo camera in the standard form [12].

Therefore, through the rectification process, epipolar lines of the images become
parallel and horizontal, conjugated points will lie on the same line, and the search
for the correspondent point in the other image can be limited only to points be-
longing to the same row of pixels (Figure 3.17). In this way, the correspondence
problem becomes easier to solve.
Moreover, the rectification process can compensate for camera imperfections re-
moving lens distortions.
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Figure 3.17: Images before and after the rectification process.

Stereo Correspondence

The correspondence problem involves finding, for each pixel of the reference image,
the corresponding pixel in the target image.
The algorithms developed to solve the correspondence problem take the rectified
image pair as input and produce a disparity map as output. The disparity map
contains a disparity value for each pixel of the image. This value is simply the
difference between the x coordinate of the analyzed pixel in the reference image
xR with the x coordinate of the corresponding pixel in the target image xT . The
disparity is typically encoded with a gray-scale image. Points near the camera are
brighter and have a higher disparity; on the contrary, points far from the camera
are darker and have a lower disparity (Figure 3.18).

Figure 3.18: Disparity is higher for points closer to the camera.

To determine corresponding points, it is crucial to measure the similarity of
those points. Taken any pixel in the reference image, the corresponding pixel in
the target image will be the one that most looks like the first and belongs to the
same image scanline.

Sometimes the search of conjugate points can be very challenging, and in the
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following cases, it does not produce correct results:

• Specular surfaces: a non-Lambertian surface does not reflect light uniformly.
Therefore, if the point of view changes, the surface looks different. Moreover,
specular surfaces are mirror-like, so when they are illuminated, some bright
spot of light appears on the surface.

• Occlusions and discontinuities: looking at the scene from different points of
view, the visibility of the objects inside it changes.

• Uniform regions: the scene may contain objects with uniform textures, such
as a white wall, or repetitive patterns, like in a chessboard. In these cases
finding the conjugate points may be very tricky.

An example of these unlucky situations is shown in Figure 3.19.

Figure 3.19: Difficulties in the correspondence problem [12].

Several stereo matching algorithms have been developed to limit one or more of
these problems.
They can be divided into two general classes, depending on the way they assign
disparities to pixels:

• Local algorithms: decide the disparity of each pixel according to the infor-
mation provided by its local, neighboring pixels [14]. They do not produce
particularly accurate disparity maps, but they are time efficient, do not require
high memory resources, and consequently can be applied in real-time.
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• Global algorithms: assign disparity values to each pixel depending on infor-
mation derived from the whole image [14]. On the contrary, global methods
are time-consuming but very accurate.

Moreover, stereo correspondence algorithms usually perform the following steps:

1. Matching cost computation
For each pixel taken into consideration in the reference image, a "cost" is calcu-
lated. This value measures how much the pixel is different from the candidates
in the target image. Examples of pixel-based matching cost functions are:

• Absolute differences (AD)

AD(x, y, d) = |IR(x, y) − IT (x + d, y)| (3.6)

• Squared differences (SD)

SD(x, y, d) = (IR(x, y) − IT (x + d, y))2 (3.7)

When costs are aggregated over a support region (window), the matching
functions become:

• Sum of Absolute differences (SAD)

SAD(x, y, d) =
Ø
x Ô S

|IR(x, y) − IT (x + d, y)| (3.8)

• Sum of Squared differences (SSD)

SSD(x, y, d) =
Ø
x Ô S

(IR(x, y) − IT (x + d, y))2 (3.9)

Where S is the support window.

2. Cost aggregation
Once costs have been defined for each point, they are aggregated. Usually, to
each cost is added those in the surrounding of its pixel (fixed windows). Costs
within the window are simply added up, or a weighted sum is applied where
different weights are assigned to the central pixels.
However, almost all state-of-the-art cost aggregation strategies assume that all
the points belonging to the support share the same disparity [12]. Consequently,
it is implicitly assumed that the surface is flat over the entire window and
that there are no depth discontinuities within the support. Windows are
usually square and small for performance reasons; nevertheless, other methods
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like adaptive algorithms change the shape and size of the window based on
the properties of the analyzed region. An ideal cost aggregation strategy
should include in the support only points with similar disparities, reducing the
support near discontinuities and expanding it near regions of similar depth
[12].

3. Disparity computation
Once a set of possible candidates for each pixel is built, a corresponding pixel
is chosen, and the disparity is computed.
Local methods usually use the "winner takes all" (WTA) selection, where the
pixel with the lowest cost is selected as the corresponding pixel.

4. Disparity refinement
Filters can be applied to improve the disparity map and, sometimes, a seg-
mentation process is applied to obtain more defined edges.

Local methods are area-based, whereas global ones are energy-based. Local
algorithms use the simple WTA disparity selection strategy and reduce ambiguity
by aggregating matching costs over a support window. On the other hand, global
algorithms search for disparity assignments that minimize an energy function which
combines data and smoothness terms, considering the whole image [12]. The goal
is to find the optimum disparity function d = d(x, y) which minimizes a global cost
function E:

E(d) = Edata(d) + λ · Esmooth(d) (3.10)

The smoothness hypothesis (no discontinuities in the analyzed region) is im-
plicitly assumed by local approaches while it is explicitly modeled by the global ones.

In order to better understand the different steps of the stereo matching algo-
rithms, it is possible to analyze the simplest local algorithm. This naive and unused
algorithm is based on the following steps:

Algorithm Naive approach
1: for each epipolar line do
2: for each each pixel in the left image do
3: ó compare with every pixel on same epipolar line in right image
4: ó pick pixel with minimum match cost
5: end for
6: end for
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To limit resources and increase performance, the disparity is not calculated
for all physically possible values in the epipolar line but within a narrower range
(Figure 3.20).

Figure 3.20: The simplest stereo matching algorithm [12].

As shown in Figure 3.21, the performed steps are:

1. Matching cost: is a simple pixel-based absolute difference between pixel
intensities;

2. Cost aggregation: is not performed;

3. Disparity computation: is a winner takes all (WTA), so, the pixel that
minimizes the matching cost will be considered as the corresponding pixel,
and the disparity can be calculated.

Once the stereo matching phase is completed, the pixel taken into consideration
is triangulated and its distance from the camera can be computed.

34



Optical 3D Reconstruction

Figure 3.21: WTA selection with an absolute difference matching function [12].

Triangulation

As it is possible to see from Figure 3.18, the POROT triangle is similar to the PppÍ

one. Consequently, it is possible to state that:

B

Z
= (B + xT ) − xR

Z − f
(3.11)

And finally:

Z = B · f

xR − xT

= B · f

d
(3.12)

Similarly:
X = Z · xR

f
Y = Z · yR

f
(3.13)

Where:

• xR − xT is the disparity d;

• f is the focal length of the camera;

• B is the baseline of the stereo rig;

• Z is the depth of the point P , its distance from the. baseline

Therefore, given the disparity map, the focal length and the baseline of the
stereo camera, the triangulation process allows computing the position of the
correspondence in the 3D space (X, Y, Z). Repeating the procedure for each pixel
of the disparity map, it is possible to obtain the corresponding depth map (Figure
3.22).
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Figure 3.22: Triangulation process [12].

3.4 Monocular depth estimation
Monocular depth estimation (MDE) is the last analyzed passive reconstruction
method and consists of inferring scene depth from a single RGB image.
The next chapter will be dedicated exclusively to the MDE approach. There will
be a classification and a state-of-the-art analysis, with a relative explanation of the
most used algorithms.
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Chapter 4

Monocular Depth
Estimation

Monocular depth estimation (MDE) is the task of inferring scene depth from a
single RGB image. Clearly, it is an ill-posed problem since an infinite number of
3D scenes may have the same 2D projection in the image plane, obtaining the same
RGB image.
The previously analyzed approaches require several observations of the scene of
interest, either in the form of multiple viewpoints (Stereo Vision, Shape from
Silhouette) or in the form of different lighting conditions (Shape from Shading).
On the contrary, MDE exploits only one cue to predict the depth.
As explained before, scene depth can be perceived through at least two viewpoints
of the scene. By employing only one camera, it is possible to exploit only one point
of view; consequently, artificial intelligence algorithms must be used to overcome
this limitation. Thanks to the rapid improvement of deep learning algorithms, the
field of image processing has achieved extraordinary progress. Scientific research
in the 3D reconstruction field has increasingly focused on MDE methods as they
only involve using a single camera and do not require a complex camera calibration
process.

4.1 Classification
Like classical machine learning techniques, depth estimation methods based on
deep learning can be classified according to the degree of supervision assigned to
the network during the training phase.
Deep learning MDE models can be divided in the following way:

• Supervised methods
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• Unsupervised methods

• Semi-supervised methods

4.1.1 Supervised MDE

"These methods attempt to directly predict the depth of each pixel in an image using
models that have been trained offline on large collections of ground truth depth
data" [15]. In the scientific community, several large datasets have been created to
meet the high demand for data, such as the KITTI dataset, which contains RGB-D
depth maps for outdoor environments, or the NYU-V2 dataset, which accounts for
indoor environments. So, supervised MDE techniques require the creation of wide
datasets where for each RGB image is also present the corresponding aligned depth
map used as ground truth during the training. The objective is to penalize the
network when the predicted depth map deviates from the ground truth through an
appropriate loss function.
Since depth is a continuous quantity, the monocular depth estimation problem can
be seen as a regression problem. The differences between the predicted and the
correct depth map are utilized as loss functions to supervise the network’s training.
In particular, since this is a regression problem, it is usually employed a standard
mean squared error (MSE) loss:

L2 (d, d∗) = 1
N

NØ
i

ëdi − d∗
i ë

2
2 (4.1)

Where:

• di is the predicted depth value for the pixel i and d∗
i the corresponding ground

truth value;

• N indicates the total number of pixel of the image.

Therefore, "depth networks learn the depth information of scenes by approxi-
mating the ground truth" [16].
However, the disadvantage of this method is the need to build a dataset with
depth images acquired by a high-level depth sensor. As explained above, there
exist datasets for indoor and outdoor environments. Nevertheless, if the scene is
different from those present in the existing datasets, it is necessary to acquire the
data personally and build a specific dataset for the application to obtain better
results in estimating depth.
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4.1.2 Unsupervised MDE
Since one of the biggest challenges of deep learning is the lack of enough datasets
with ground truth, especially in the field of MDE, a possible solution is to approach
the estimation problem in an unsupervised way.
In the unsupervised MDE, the data scarcity problem is no longer present since
the dataset used for training the network does not require depth images but only
monocular video.
Like this, the geometric constraints between video frames are regarded as the
supervisory signal during the training process instead of using ground truths, which
are expensive to acquire [16].
In particular, the training process consists of synthesizing a frame (target frame)
from the point of view of a neighboring frame (source frame).

In order to better understand this concept, it is possible to consider the frame
at the time instant n − 1 as the source frame and frame n as the target frame.
The objective is to obtain a synthesized frame În starting from the target frame In

such that the difference between the real and the synthesized frame is minimized.
So, this difference will be used as loss function to supervise the training:

Lvs = 1
N

NØ
p

---In(p) − În(p)
--- (4.2)

Where:

• N indicates the total number of pixels p in the image;

• In(p) represents a pixel p of the target view In;

• În(p) is a pixel p of the reconstructed target view În.

This problem is also known as novel view synthesis: given one input view of a
scene, synthesize a new image of the scene seen from a different camera pose [17].
However, to synthesize a target frame from a neighboring frame, it is necessary to
know the geometric transformations between the two frames in consecutive time
instants. Consequently, in addition to predicting depth, the network has also to
estimate the camera pose between frames. "This estimated camera pose is only
needed during training to help constrain the depth estimation network" [18].

The general framework of the unsupervised MDE is illustrated in Figure 4.1.
The depth network takes only the target view In as input, and outputs a per-pixel
depth map D̂n. The pose network takes both the target view In and the nearby
source views (In−1 and In+1) as input, and outputs the relative camera poses (
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Tn→n−1 and Tn→n+1).

Figure 4.1: Unsupervised MDE: general framework [16].

As can be observed from Figure 4.2, the frame In (target frame) can be synthe-
sized starting from the nearby frame In−1 (source frame), and the reconstructed
frame will be În.

Figure 4.2: Image warping process [16].

There exist a relationship to understand, for each pixel of the target image In,
what is the corresponding pixel in the source image In−1:

pn−1 ∼ KT̂n→n−1D̂n(pn)K−1pn (4.3)

Where :

• pn is a pixel of the of the target image In, and pn−1 refers to the corresponding
pixel in the source image In−1;
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• K indicates the camera intrinsic matrix, accounting for the camera intrinsic
parameters;

• D̂n(pn) is the depth value of the pixel pn, predicted from the depth network;

• T̂n→n−1 represents the geometric transformation between In and In−1. It is
the relative transformation matrix predicted by the pose estimation network.

Hence, once D̂n and T̂n→n−1 are estimated, the correspondence between pixels
on different images (In and In−1) is established by projection function [16].

Once the projection relationships between In and In−1 are established, then In

is reconstructed by the image warping process, by sampling pixels from the source
view In−1. In particular, the warping consists in a bilinear sampling mechanism that
linearly interpolates the values of the four neighboring pixels (top-left, top-right,
bottom-left, and bottom-right) [17].
The whole process is illustrated in Figure 4.2; each point pt of the target view
is projected onto the source view through the estimated depth and camera pose.
After that, the point is reconstructed by bilinear interpolation.
Once the target view is synthesized, it is finally possible to compute the reconstruc-
tion loss to supervise the training (Equation 4.2). It is an L1 distance in the pixel
space between the target and the reconstructed image, also known as photometric
reconstruction error.
The overall goal is to predict a depth map such that the synthesized image mini-
mizes the photometric error.

A possible problem of the unsupervised MDE occurs when the camera transfor-
mation matrices between frames (Tn→n−1 and Tn→n+1) are equal to zero.
This event, when it occurs, causes the presence of holes of infinite depth in the
predicted depth map.
Hence, the estimation method fails when the assumption of moving camera and
static scene is not respected. In this way, the only video that can be used during
the network training are those in which there is sufficient motion between frames
and which portray static scenes.
Godard et al. [18] solve the problem by introducing a simple auto-masking method
that filters out pixels which do not change appearance from one frame to the next
in the sequence, such that the loss function will not be contaminated.

4.1.3 Semi-supervised MDE
As explained before, it is hard to collect high-quality depth datasets accounting for
all the possible background conditions. Semi-supervised MDE methods, as well as
unsupervised ones, were developed to solve this problem.
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Unlike unsupervised approaches, semi-supervised ones exploit rectified stereo images
captured simultaneously to build the dataset used for training the network.
However, the two methods are very similar. The main difference is that the
geometric transformation between the two frames (left-right images) is known since
the stereo camera has to be well-calibrated, so there is no need to insert a pose
estimation network in the system.

As illustrated in Figure 4.3, the goal is to reconstruct the stereo pair’s left image
(target image) starting from the scene viewpoint of the right image (source image).
In particular, the training process is developed through the following steps:

1. The left image IL is taken as input;

2. The disparity map d (inverse depth map) of the left image is predicted through
the depth estimation network;

3. The predicted inverse depth map is used to reconstruct the left image from
the right image IR by the inverse warping algorithm;

4. The error between the real image IL and the synthesized one IW is used to
supervise the training:

Lrecons =
Ø

p

ëIL(p) − IW (p)ë2 =
Ø

p

ëIL(p) − IR(p + d(p))ë2 (4.4)

Figure 4.3: Semi-supervised MDE pipeline [16].

A significant improvement was achieved by Godard et al. [15], where the
disparity map is computed both for the left image and the right image. Then the
depth is calculated by considering both values. They introduce a novel training loss
that emphasizes left-right depth consistency inside the network achieving better
results on object boundaries.
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4.1.4 Comparison between MDE methods
Since training the depth estimation network on stereo image pairs is very similar
to the case of monocular video, it is important to point out that some studies
regard both methods as either unsupervised or semi-supervised (also called self-
supervised).
The most important thing to underline is that all three methods work in the same
way during the inference phase: they take an RGB image as input and output a
depth image. What differentiates them is the training phase: supervised methods
need depth maps as ground truth, self-supervised ones require stereo images and
unsupervised approaches involve collecting monocular video, enabling the gathering
of training data through regular camera sensors.
Obviously, since there is no need for ground truth during training, the performance
of unsupervised methods is still far from the supervised ones. Moreover, unsuper-
vised methods also suffer from various problems, like scale ambiguity and scale
inconsistency [16]. Semi-supervised methods are born to overcome these problems,
to get higher estimation accuracy while reducing the dependence on the expensive
ground truth. Besides, since the stereo camera must be well-calibrated, the scale
information can be learned from the semi-supervised signals.
However, the unsupervised and self-supervised methods offer a better generalization,
whereas the performance of the supervised ones depends a lot on the matching
between the scenes present in the training dataset and those used in the inference
phase.

4.2 Depth estimation network
The following section presents the most relevant architectures used as depth
estimation networks. Specifically, it will be showed CNN-based structures employed
mainly in the supervised monocular depth estimation problem. The exposition will
be done chronologically, from the beginning methods (2014) to the state-of-the-art
methods (2021).

4.2.1 State-of-the-art
Humans, over the years, have built mental models and stored information that
allows them to perceive the depth information from a single image, exploiting
features such as perspective, scale relative to known objects, appearance in lighting
or occlusion, and more. Inspired by this, initial works perform single image depth
estimation by combining some a-priori information, like the relationship between
geometric structures, object sizes, and texture information [16].
With the popularity of deep learning, especially in the field of image processing,
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some works try to solve the depth estimation problem using deep convolutional
networks and achieved outstanding performance.
Eigen et al. [19] have been the first to exploit CNNs for regressing dense depth
maps from a single image, expiring the modern trends of depth estimation. They
introduce the approach of using multi-scale information and features captured at
different levels of the deep neural network. Combining feature maps of different
layers or aggregating them allows fusing information from multiple scales obtaining
a better prediction of depth maps. They propose a two-scale architecture; the
first stage estimates the global structure of the scene, the second stage refines the
original prediction using local information [20]. The depth estimation network
consists of the following blocks:

1. The Global Coarse-Scale Network: which produces a coarse depth map using
a global view of the scene. The network focuses on important features such as
vanishing points, object locations, and room alignment.

2. The Local Fine-Scale Network: which has the task of refining the coarse depth
map produced from the first stage of the depth estimation network. The
coarse prediction is aligned with local details such as objects and wall edges.

The architecture of the multi-scale network is illustrated in Figure 4.4.
The coarse stage contains five feature extraction layers of convolution and max
pooling, followed by two fully connected layers. The resolution of the network
output image is reduced by 1/4 with respect to the input image. This procedure is
called down-sampling and is used to capture features at different levels.
The fine-scale network consists of convolutional layers with one pooling stage for
the first layer, and a coarse feature concatenation to restore the resolution of the
input image.

The important thing to remark is that the refinement from low spatial resolution
to high spatial resolution is done in a network independent from the global coarse-
scale one, which is trained separately at first.
Future works combine together the down-sampling stage with the recovering phase
of the input resolution of the image (up-sampling) through an encoder-decoder
network.
The classical framework of monocular depth estimation based on deep learning is
an encoder-decoder network, with the RGB image taken as input and depth map
produced as output, as shown in Figure 4.5.
The encoder part has to capture depth features, and it is usually composed of
convolutional blocks and pooling layers. In this phase, the resolution of the input
image is progressively decreased, through the convolution and pooling blocks,
giving to the higher-level neurons large receptive fields, thus capturing more global
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Figure 4.4: The architecture of the multi-scale network for MDE proposed by
Eigen et al. [19].

information. Instead, the decoder network consists of deconvolutional layers, and
it has to restore the estimated pixel-level depth map to the same spatial size
of the input image. Additionally, in order to exploit features at each scale, the
corresponding encoder and decoder layers are concatenated with skip-connections
[21]. Skip-connections allow combining low-spatial resolution depth maps in deeper
layers with high-spatial resolution depth map in lower layers.

Figure 4.5: The general pipeline of the depth estimation network based on deep
learning [21].

Laina et al. [22] are the first to adopt this kind of architecture, where the
fully-connected layers used by [19], typically employed in classification networks,

45



Monocular Depth Estimation

are replaced by up-sampling blocks to improve the resolution of the predicted depth
map, obtaining a fully-convolutional residual network. Moreover, fully-connected
layers are very expensive with respect to the number of parameters. So, if the
network allows input images with higher resolution (networks with higher receptive
field) the fully-connected layer would cause the need for a very high number of
parameters, and the network would be unfeasible with the current hardware.
In particular, they decide to employ ResNet, a deeper network than the ones
employed in previous works, having a larger receptive field. By introducing skip-
layers and batch normalization after every convolution it is possible build much
deeper networks avoiding problems like vanishing gradient or degradation, which
hamper convergence during training. Moreover, fully-connected layers in ResNet
are replaced by their novel up-sampling blocks. In this way, the network contains
fewer weights, and in addition, it generates more accurate depth maps.

Also Cao et al. [23] decide to follow the recent success of the deep residual
network ResNet in a fully-convolutional manner (removing fully-connected layers).
Previous existing algorithms formulate depth estimation as a regression problem
due to the continuous property of the depth. However, it is very complex to regress
the depth value of input data to be precisely the ground-truth value [23]. For
humans, it is more difficult to estimate the exact distance of a specific object in an
image than to give a rough distance range of that object. In general, it seems to
be easier to estimate the depth range of a point rather than to estimate its exact
depth value. Motivated by this, they formulate the depth estimation problem as a
pixel-wise classification task by discretizing the continuous depth values into several
discrete bins labeled according to their depth ranges [23]. So, the depth estimation
network is trained to predict the depth range rather than the exact depth value.
Moreover, by reformulating the depth estimation problem as a classification problem,
they can obtain a confidence level of the prediction. In a standard classification
problem, if the predicted label is different from the ground truth label, the prediction
is considered wrong and does not update the model parameters. In this type of
classification problem, instead, if the predicted label is wrong but close to the
ground-truth one and with a high level of confidence, it can still be used to update
the model parameters.
Besides, the confidence level in the form of probability distribution is also useful
for a potential post-processing. In particular, as shown in Figure 4.6, Cao et al.
employ the fully-connected conditional random fields (CRF) through which pixel
depth estimation with low confidence can be improved by other pixels that are
connected to it. Thereby, the estimated depth maps are refined by considering the
depth information of neighboring pixels, but the network cannot be trained in an
end-to-end fashion.

The discretization of the depth space into several bins is also adopted by Fu
et al. [24]. When the depth estimation task is addressed as a standard regression
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Figure 4.6: Depth estimation network as classification problem with post-
processing [23].

problem, loss functions like mean squared error (MSE) are usually chosen. However,
the minimization of MSE during training suffers from slow convergence and local
optima solutions.
Moreover, previous works usually employ deep CNN in a fully-convolutional manner
to extract features. In this stage, repeated pooling operations significantly reduce
the spatial resolution of feature maps, which is an undesirable effect. To recover
back the original resolution of the image and incorporate multi-scale information,
networks combine higher-resolution feature maps through multi-scale networks
[19], decoder networks [22], or skip-connections [19] [23], which complicate network
training and consume much more computations.
Motivated by this, they decide to discretize continuous depth into several intervals
and address the monocular depth estimation as an ordinal regression problem.
Since the uncertainty of the predicted depth values increases along with the ground
truth depth values, it is convenient to allow larger estimation errors when predicting
larger depth values. So, the training loss is down-weighted in regions with larger
depth values to avoid that these predictions significantly influence the training
process. To realize this kind of concept, they adopt a space-increasing discretization
(SID) strategy instead of the classical uniform discretization (UD) strategy. In this
way, as depth increases, the intervals become wider.
The designed architecture, as illustrated in Figure 4.7, basically consists of three
main parts:

• The dense feature extractor, which is basically a deep CNN without the last few
down-sampling operators that decreases the spatial resolution of depth maps.
Specifically, down-sampling operators are replaced by subsequent dilatated
convolutional layers to enlarge the field-of-view of filters without reducing the
spatial resolution or increasing the number of parameters.
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• The scene understanding modular, which is composed of three parallel compo-
nents:

– An atrous spatial pyramid pooling (ASPP) module, which extracts features
from multiple large receptive fields through three dilated convolutional
layers (with dilatation rates 6, 12 and 18, respectively);

– A 1 x 1 convolutional branch to learn complex cross-channel interactions;
– A full-image encoder that captures global features, similar to the ones
seen in previous works but with fewer parameters.

Subsequently, the obtained features are concatenated to achieve a comprehen-
sive understanding of the input image. A 1x1 convolutional layer is inserted at
the end to reduce the dimension of the features and learn complex cross-channel
interactions.

• An ordinal regression optimizer that transforms features into multi-channel
dense ordinal labels.

Figure 4.7: The depth estimation architecture proposed by Fu et al. [24].

Lee et al. [25] take up the latest architecture presented but apply some changes
in the decoding phase. The main idea of their work is to define direct and explicit
relations in recovering back the full resolution of the image for more effective
guidance of densely encoded features to the desired depth prediction. The initial
structure composed by the dense feature extractor is maintained but in the decoding
phase, where the resolution of the input image has to be restored, up-sampling
layers and skip connections are replaced by novel local planar guidance layers which
guide features to the full resolution with the local planar assumption.
Fu et al. [24], in all the decoding phase, work with a fixed resolution of the image
(1/8 of the input image resolution) and, at the end, recover the final resolution
through a simple up-sampling operation. Instead, Lee et al. [25] work with different
spatial resolutions of the image (1/8, 1/4, and 1/2 of the input image) and, at
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each decoding stage, a local planar guidance layer is placed to recover the final
resolution of the image, as can be observed in Figure. So, the main difference
with [24] is that the final resolution of the image H is obtained at each decoding
stage, not only at the end, and all these predictions are combined together in full
resolution. This process allows a direct relation between internal features and the
final prediction. The final architecture is composed by:

• A dense feature extractor that reduces feature map resolution to H/8;

• A denser version of atrous spatial pyramid pooling layer (ASPP) with various
dilation rates (3,6,12,18,24) as contextual information extractor;

• The decoding phase previously explained.

Figure 4.8: The depth estimation architecture proposed by Lee et al. [25].

4.2.2 Training Loss
For a depth map with N pixels, where di indicates the depth value of the pixel i
and d∗

i is the corresponding ground-truth depth value, the most used loss functions
for the supervised monocular depth estimation task are the following:

• L1 Loss
L1(d, d∗) = 1

N

NØ
i=1

ëdi − d∗
i ë1 (4.5)
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• L2 Loss (mean squared error)

L2(d, d∗) = 1
N

NØ
i=1

ëdi − d∗
i ë

2
2 (4.6)

• Scale-invariant mean squared error

L(d, d∗) = 1
N

NØ
i=1

y2
i − λ

N
(

NØ
i=1

yi)2 (4.7)

where y2
i = log(di) − log(d∗

i ), and λ is a balance factor.
It is introduced by Eigen et al. [19] and it measures the relationship between
points in the scene, irrespective of the absolute global scale.

• Berhu Loss
LBerhu(d, d∗) =

I
|d − d∗| if |d − d∗| ≤ c
|d−d∗|2+c2

2c
if |d − d∗| > c

(4.8)

where c is a threshold.
It is introduced by Laina et al. [22].
If |d − d∗| ≤ c the Berhu loss is equal to L1, otherwise, if |d − d∗| is outside
the range, the Berhu function is equal to L2.
It puts high weight towards samples (pixels) with a high residual because of
the L2 term, and at the same time, L1 accounts for a greater impact of smaller
residuals than L2 would.

4.3 Datasets and evaluation metrics
This section introduces some common datasets and evaluation metrics used in
deep learning methods for monocular deep estimation, especially for the supervised
training.

4.3.1 Datasets
There exist various datasets for supervised monocular depth estimation. Some
of these can also be used for unsupervised and semi-supervised monocular depth
estimation, if they collect RGB images through monocular video or with a stereo
camera.
The objective of the supervised training is to estimate depth maps that approximate
ground truth depth images as closely as possible. For this reason, the presented
datasets consist of both RGB and depth images. Specifically, each RGB image is
associated with the corresponding aligned depth map, which is used as ground-truth
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during the training process.
They differ in several aspects, such as the captured environment (indoor and
outdoor scenes), the depth range of the images, the depth map accuracy, the
camera settings and the dataset size.
The most used datasets are certainly NYU Depth V2 for indoor environments and
KITTI for outdoor environments.

NYU Depth V2

The NYU Depth dataset is provided by Silbereman et al. at the New York University.
It is composed of 464 indoor scenes captured by a Microsoft Kinect camera (RGB-D
camera). These indoor scenes are split into 249 ones for training and 215 ones for
testing. It is mostly used for supervised monocular depth estimation. The depth
of the dataset ranges from 0.5 m to 10 m.
The images are acquired through monocular video, and in total, the dataset contains
407024 video frames with a resolution of 640 x 480 pixels.
The RGB-D camera is composed of an RGB sensor and a depth camera, respectively
acquiring RGB and depth images. Since the depth and RGB cameras operate at
different variable frame rates, there is no one-to-one correspondence between depth
maps and RGB images. So, each depth image is associated with its closest RGB
image in time. Then, the camera projections provided by the dataset are used
to align depth and RGB pairs. Frames, where one RGB image is associated with
more than one depth, are not considered, obtaining a total of 1449 aligned RGB
and depth images. These last selected images are pre-processed: missing depth
values, always present in the images acquired by the depth camera, are filled with
a colorization algorithm and are manually labeled with the semantic information.
In summary, the dataset is made up of:

• The Raw Dataset: 407024 unlabeled frames directly coming from the Microsoft
Kinect camera, without any processing;

• The Labeled Dataset: 1449 densely labeled pairs of aligned RGB and depth
images pre-processed to fill in missing depth labels. It is a subset of the Raw
Dataset.

KITTI

The KITTI dataset is composed of 56 outdoor scenes, and in particular, it includes
five categories of environments: "Road”, "City”, "Residential”, "Campus”, and
"Person”. These outdoor scenes are split into 28 ones for training and 28 ones
for testing. The maximum measuring distance is 120 m. It is the largest and
most commonly used dataset, especially in the unsupervised and semi-supervised
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monocular depth estimation, but also in other tasks like visual odometry, object
detection, and tracking.
Unlike the NYU Depth V2 dataset, which collects ground-truths with an RGB-D
camera, the KITTI dataset takes sparse depth maps with a rotating LIDAR scanner.
RGB images instead are acquired by a stereo pair with e a resolution of 1224 x 368.
All the scenes are captured through a moving car equipped with RGB cameras,
the LIDAR depth sensor, and a GPS localization system.

Make3D

Make3D dataset is another outdoor dataset. It is provided by Saxena et al. in
Stanford University and includes daytime city and natural scenery. It contains a
total of 534 depth images, 400 of which are used for training, and 134 are used for
testing.
The depth ranges from 5 m to 81 m, and depth maps are collected through a laser
scanner. RGB images are acquired with a resolution of 2272 x 1704. They are not
in the form of stereo images or monocular video frames, so, this dataset cannot be
applied for unsupervised or semi-supervised monocular depth estimation.

4.3.2 Evaluation metrics
Evaluation metrics are tools used to evaluate the performance of a model, hence
the accuracy of the prediction.
During the training phase, a specific loss function has to be minimized, whereas,
during the testing phase, the results obtained through the training process are
evaluated with the following metrics.
The most common indicators are:

• Root Mean Squared Error

RMSE =
öõõô 1

|N |
Ø
i ∈N

ëdi − d∗
i ë

2 (4.9)

• Root Mean Squared Logarithmic Error

RMSLE =
öõõô 1

|N |
Ø
i ∈N

ëlog(di) − log(d∗
i )ë

2 (4.10)

• Absolute Relative Error

AbsRel = 1
|N |

Ø
i ∈N

|di − d∗
i |

d∗
i

(4.11)
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• Squared Relative Error

SqRel = 1
|N |

Ø
i ∈N

ëdi − d∗
i ë

2

d∗
i

(4.12)

• Threshold Accuracy

Accuracy = % of di s.t. max( di

d∗
i

,
d∗

i

di

) = δ < thr (4.13)

Where N indicates the total number of pixels in the depth image, di is the
predicted depth value of the pixel i, and d∗

i the corresponding ground-truth depth
value.
For the accuracy rate metrics, the only one for which bigger values are better,
the term thr denotes a predefined threshold. Usually it is used δ < 1.25n where
n = 1,2,3.
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Chapter 5

Volume Estimation
Algorithm

This thesis project aims to design a system for estimating the volume of objects
placed inside the smart bin Nando using only a simple RGB camera. Taking
advantage of the recent progress in the field of depth estimation achieved by deep
learning methods, it is possible, starting from a single RGB image of the object
captured inside the bin, to predict the corresponding depth image.
The following chapter initially introduces the ideal model of the camera used to
map real-world quantities into camera sensor quantities. Subsequently, the camera
model is applied to transform the number of pixels covered by the object in the
image into world units. Then, two estimation strategies are presented and compared
to calculate the volume of an object starting from its depth image. Finally, volume
estimation algorithms are tested through different procedures.

5.1 Pinhole camera model
Human vision begins when a source emits light rays that strike a particular object.
Some of the rays are absorbed, the others are reflected. The reflected light rays hit
the eye, go through the pupil and then project onto the retina, where the image
is reduced and upside down. Finally, the image is processed by the brain, which
straightens the image. A simple model of how this happens is the pinhole camera
model.
The pinhole camera can be seen as a barrier with a small hole in the center. Only
light rays that pass through the tiny hole hit the photographic film and are projected
onto the image plane, as it is shown in Figure 5.1.

Where:
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Figure 5.1: Pinhole camera working principle.

• f is the focal length of the camera and represents the distance between the
image plane (also called screen, sensor, film) and the pinhole aperture C that
behaves as the center of projection;

• X indicates the length of the object in the real world, and x is the corresponding
length on the image plane;

• Z denotes the distance of the object from the camera.

Moreover, the intersection between the optical axis and the image plane is called
principal point.
As can be observed form Figure 5.1, thanks to the presence of similar triangles,
the following relation holds: −x/f = X/Z.
Usually, it is common to consider the virtual image plane instead of the real one.
Since it is geometrically equivalent to consider the real image (inverted) or the
virtual one (not inverted), symmetrical with respect to the pinhole, it is possible to
state that:

x = f
X

Z
(5.1)

And similarly:

y = f
Y

Z
(5.2)

The minus sign is no longer present since the image on the virtual plane is no
longer upside down.
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The objective of the pinhole camera model is to describe the mapping between
coordinates of a point in 3D space and its projection onto the image plane.
The problem, as it is shown in Figure 5.2, can be divided as follows [26]:

• World coordinates are transformed into camera coordinates through the ex-
trinsic matrix (rigid transformation);

• Camera coordinates are mapped into the image plane through the camera
intrinsic matrix (projective transformation).

Figure 5.2: Pinhole camera model pipeline [26].

Intrinsic camera matrix

The goal is to compute the matrix connecting the camera points to the image points.
In Figure 5.3 are illustrated all the reference systems that need to be considered
for this problem. The camera reference system CXY Z is positioned in the pinhole
aperture with the Z axis along the optical axis, pointing towards the image plane
and intersecting with the principal point. The image reference system Oxyz has
its origin on the principal point, and its z axis coincides with the Z axis of the
camera reference system.

By means of Equations 5.1 and 5.2, 3D points expressed with respect to the
camera reference system are mapped on the image plane through the following
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Figure 5.3: Reference systems in the pinhole camera model.

relationship:

(XC , YC , ZC) → (f XC

ZC

, f
YC

ZC

) (5.3)

However, in most cameras, the pixel with coordinates (0,0) is at the top left of
the image and not at the center. Thus, 2D points in the image plane are offset
by a translation vector [cx, cy]. Moreover, pixels on a typical low-cost imager are
rectangular rather than square, so two focal length values are present.
The result is that a point PC in the real world with coordinates (XC , YC , ZC) with
respect to the camera reference system, is projected onto the screen at some pixel
location given by (x, y), according to the following equations [27]:

x = fx

3
XC

ZC

4
+ cx

y = fy

3
YC

ZC

4
+ cy

(5.4)

As it is possible to notice, the function mapping real-world points onto the screen
is nonlinear due to the division by Z. A possible solution to the problem is to
transform the euclidean coordinates into homogeneous coordinates. In homogeneous
coordinates, the space is augmented introducing a new coordinate. Point p =
(x, y) becomes (x, y,1) and similarly PC = (XC , YC , ZC) becomes (XC , YC , ZC ,1).
Moreover, all points having proportional values in the projective space are equivalent,

57



Volume Estimation Algorithm

so the point p can be expressed in homogeneous coordinates as follows:

p =

x
y
1

 =


fx

1
XC

ZC

2
+ cx

fy

1
YC

ZC

2
+ cy

1

 =

fxXC + cxZC

fyYC + cyZC

ZC

 (5.5)

3D points in camera coordinates are mapped into the image plane as follows:

p =

fxX + cxZ
fyY + cyZ

Z

 =

fx 0 cx 0
0 fy cy 0
0 0 1 0



XC

YC

ZC

1

 −→ p = MPC (5.6)

Matrix M can be decomposed as:

M =

fx 0 cx 0
0 fy cy 0
0 0 1 0

 =
è
K 0

é
= K

è
I 0

é
(5.7)

where I is a 3 × 3 identity matrix and K is the camera intrinsic matrix:

K =

fx 0 cx

0 fy cy

0 0 1

 (5.8)

Extrinsic camera matrix

The objective is to relate points from an arbitrary world reference system to the
camera reference system. This transformation can be achieved by a simple rotation
matrix R and a translation vector T .
Therefore, given a point in a world reference system P = [X, Y, Z]T , its camera
coordinates PC = [XC , YC , ZC ]T can be computed as follows:

PC =
C
R T
0 1

D
P (5.9)

where the term [R, T ; 0,1] is the 4 × 4 rototranslation matrix.
Substituting this relationship into Equation 5.6, it is possible to find the final
mapping between coordinates of a point in 3D space and its projection onto the
image plane:

p = MPC = K
è
I 0

é
PC = K

è
R T

é
P = CP (5.10)

Where:
C = K

è
R T

é
(5.11)

is the final 3 × 4 camera matrix linking intrinsic to extrinsic parameters.
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5.1.1 Lens distortions
However, the pinhole camera model is an ideal camera model that can only be used
as a first approximation of the mapping from a 3D scene to a 2D image.
Due to the very narrow aperture of the pinhole camera, not enough light is collected
to take the picture quickly. Real cameras manage to collect enough light through
the use of a lens. The lens gathers light rays and bends them so that they all
converge at the same point. However, lenses introduce distortions, in particular,
radial and tangential distortions.
The cheaper the camera is used, the more its behavior differs from the pinhole
model.
Radial distortion arises from the shape of the lens and occurs when light rays bend
more near the edges of a lens than they do at its optical center. The effects of
radial distortion can be seen in Figure 5.4, and it can be modeled as follows:

xD = x
1
1 + k1r

2 + k2r
4 + k3r

6
2

yD = y
1
1 + k1r

2 + k2r
4 + k3r

6
2 (5.12)

where (xD, yD) are the real coordinates of a point in the image (distorted), (x, y)
are the ideal coordinates (not distorted), r2 = x2 + y2 represents the distance of
the point from the center of the image and k1, k2, k3 are the the radial distortion
coefficients of the lens.

Figure 5.4: Radial distortion introduced by the lens [26].

Tangential distortion, instead, arises from the assembly process of the camera
and occurs when the lens and the image plane are not exactly parallel. It can be
characterized as follows:

xD = x +
è
2p1y + p2(r2 + 2x2)

é
yD = y +

è
p1(r2 + 2y2) + 2p2x

é (5.13)
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where p1, p2 are the coefficients accounting for the tangential distortion, and the
other quantities are the same described above.
Taking into account also the distortion effects, the camera intrinsic matrix becomes
more complicated.

5.1.2 Camera calibration
The camera calibration process aims to estimate the extrinsic and intrinsic camera
parameters, therefore the camera matrix of the Equation 5.11. It consists in
pointing the camera towards a known structure with many identifiable points, like
a chessboard. By viewing this structure from different angles, it is possible to
compute the (relative) location and orientation of the camera at the time of each
image as well as the intrinsic and lens parameters of the camera [27].
The knowledge of these parameters is important for several reasons; they can be
used, for example, to correct the camera’s behavior from the distortions introduced
by the lens or to estimate the size of an object in world units.

5.2 Volume estimation
In this section, firstly, the strategy used to recover the object’s height from the
depth map is deeply analyzed. Then, two different volume estimation formulas to
be applied to the reconstructed object are compared. Finally, the pinhole camera
model is employed to transform the number of pixels covered by the object in the
image along the x and y direction into world units.

5.2.1 Object reconstruction strategy
The strategy developed to reconstruct the object within the depth map is simple
and essentially consists of three fundamental steps. The following reasoning is done
assuming:

• To have a neural network capable of estimating depth from a single RGB
image. The network takes the RGB image as input and produces a depth
map as output, where each pixel of the depth image contains the distance in
meters between the camera and the scene depicted in that pixel.

• To take into account static scenes with a fixed working environment.
In particular, the considered working environment is the scenario inside the
bin, and it is based on:

– A stationary camera with a top-view of the object;
– A fixed background that is the same in all the photos taken by Nando
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Therefore, the distance between the camera and the background is always
constant. The only thing that changes from one photo to another is the object
that is present inside it.

The basic idea used to isolate the object within the image is shown in Figure 5.5
and is based on the following three steps:

1. Take a picture of the background and estimate the depth.
If a flat background is considered, such as a table, and the distance between
the table and camera is 10 meters, the depth map produced by the network
should contain a value of 10 in each pixel.
The depth image just described is the "background depth image" illustrated
in Figure 5.5.

2. Take a photo of the object whose volume has to be estimated, positioned
above the background previously selected, and estimate the depth.
Supposing to estimate the volume of a cuboid object with a height of 2 meters,
the computed depth map should contain:

• A value of 10 in each pixel not covered by the object; since the background
is at a distance of 10 meters from the camera.

• A value of 8 in each pixel covered by the object; since the object will be
10 minus 2 meters away from the camera, where 2 meters represents the
object’s height.

The depth image obtained in this step will be called the "back+obj depth
image", as illustrated in Figure 5.5.

3. Make the difference between the "background depth image" and the "back+obj
depth image".
Therefore, to each depth value in the background depth image is subtracted
the corresponding depth value in the "back+obj depth image". In the following
way, the resulting depth map should contain:

• A value of 0 in all the pixels that have not changed depth once the object
was inserted into the background;

• A value of 2 (the object’s height in meters) in all the pixels that have
changed depth once the object was inserted into the background.

The depth image resulting from the subtraction operation will be called the
"object depth image", as shown in Figure 5.5.

Thanks to the object reconstruction strategy, it is possible to estimate the
object’s height in each pixel covered by the object in the image.
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Figure 5.5: Object reconstruction strategy.

5.2.2 Volume estimation algorithms
Once the object is reconstructed within the image, its volume can be computed by
adding the product between each depth value in the "object depth map", which
represents the object’s height in the various points of the image, and the area of
the corresponding pixel:

V =
NØ

i=1
(diAi) (5.14)

where:

• V represents the volume of the object;

• di is the depth value of the pixel i in the "object" depth map (the object’s
height);

• N indicates the total number of pixels in the image;

• Ai denotes the area of the pixel i expressed in world units.

In the particular example of the cuboid object (Figure 5.5) the volume will be:

V = 2Ai + 2Ai + 2Ai + 2Ai (5.15)

To verify the correctness of the first proposed method, another possible approach
is developed to estimate the volume of an object.
In order to compare the two techniques, it is possible to consider the same example
of the cuboid object presented before, but in 2D. So, instead of the volume, the
area has to be estimated. In particular, the second row of the "object" depth map
is taken into account, and it is converted into an xz profile, as shown in Figure 5.6.
Where xi terms represent the pixels of the examined row with fixed length L, and
z = f(x) values indicate the height of the object.

The true area defined under the graph is the integral of the profile and is equal
to:

AT RUE =
Ú x8

x1
f(x)dx = 4L (5.16)
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Figure 5.6: From pixel raw to xz profile.

The algorithm explained before approximates the area by adding the product
between each depth value in the "object" depth map and the area of the corre-
sponding pixel. In 2D, the area of the pixel becomes its length; the depth values,
instead, can be seen as the function values in the discrete intervals representing
the pixels. So, the integral is approximated as follows:

Ú x8

x1
f(x)dx ≈

8Ø
i=1

xif(xi) (5.17)

Substituting the values provided by the example, it is possible to obtain:

A1 = x4f(x4) + x5f(x5) = 2L + 2L = 4L (5.18)

The second algorithm, instead of considering the height of the pixel understudy,
takes the mean value between that pixel and its adjacent. Therefore, in this second
proposed approach, the integral is approximated as follows:

Ú x8

x1
f(x)dx ≈

7Ø
i=1

xi

A
f(xi) + f(xi+1)

2

B
(5.19)

Applying the estimation algorithm to the example, the correct result can be
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achieved:

A2 = x3

A
f(x4) + f(x3)

2

B
+ x4

A
f(x5) + f(x4)

2

B
+ x5

A
f(x6) + f(x5)

2

B

= 2 + 0
2 L + 2 + 2

2 L + 0 + 2
2 L = 4L

(5.20)

The graphical representation of the two volume estimation methods is illustrated
in Figure 5.7.

Figure 5.7: Comparison of the two estimation methods on a flat surface.

As demonstrated in previous computations, both algorithms provide the correct
area value. However, it seems that the first evaluation method provides a better
estimation of the area. This is because a flat surface object is considered. The
real advantage in the second approach can be observed when a not flat surface is
considered, as it is illustrated in Figure 5.8.

When dealing with curved surfaces, the second estimation algorithm seems to
approximate better the area defined under the function, thus providing improving
performance. However, both the estimation methods converge to the proper area
when the total number of pixels N goes to infinity.
The depth maps that will be obtained from the neural network are made up of
many pixels. Therefore, as it will be possible to see in the chapter dedicated to the
algorithm test, the two methods will provide similar volume estimates and close to
the correct volume value.

5.2.3 From pixels to world units
In Equation 5.14, representing the volume estimation formula of the first approach,
di indicates the depth value of the pixel i in the "object depth map", which
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Figure 5.8: Comparison of the two estimation methods on a curved surface.

coincides with the object’s height. This quantity is known because it is obtained
by subtracting depth maps produced by the neural network. The term Ai instead
indicates the area of the pixel i expressed in world units, and for now, it is not yet
known.
As explained in Section 5.1, in most cameras, the shape of the pixel is rectangular
rather than square. Therefore, Equation 5.14 can be rewritten as follows:

V olume =
NØ

i=1
(mmPerPixx(i) · mmPerPixy(i) · ObjHeight(i)) (5.21)

where mmPerPixx(i) is the transformation in millimeters, along the x direction,
of what is represented in the pixel i. Similarly, mmPerPixy(i) is the transformation
in millimeters, along the y direction, of what is represented in the pixel i.
This concept is of fundamental importance, and to understand it better, it is
possible to think that, within a photo, objects closest to the camera are represented
larger than objects further away with the same real size. In other words, the further
an object is from the camera, the fewer pixels it will cover in the photo.
Therefore, the more the distance from the camera increases, the greater will be
the conversion into millimeters of what is represented in pixel i. For example, a
5 millimeters long object is 4 meters away from the camera, and it covers 1 pixel
in the photo. It is wrong to think that a pixel is 5 millimeters long because the
same object, if placed 2 meters from the camera instead of 4, occupies 2 pixels.
Therefore, according to this reasoning, it should be 10 millimeters long.
Hence, the conversion into millimeters of what is inside the pixel i will be directly
proportional to the distance from the camera of what is represented inside the pixel
i. So, the quantity mmPerPix(i) is directly proportional to di, the depth value of
the pixel i.
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In order to recover the complete relation between these two quantities, it is possible
to consider the pinhole camera model. Objects in the real world are mapped into
the image plane according to the Equations 5.1 and 5.2 that can be rewritten as
follows:

x = f
X

d
y = f

Y

d
(5.22)

where:

• X, Y are respectively the sizes of the 3D object in the world along the x and
y directions;

• x, y are respectively the sizes of the 3D object projected in 2D on the image
plane along the x and y directions;

• f indicates the focal length of the camera;

• d represents the distance of the object from the camera, previously indicated
as Z.

The size of the 3D object projected in 2D on the image plane can be calculated
through the camera specifications. Multiplying the ratio between the sensor length
and the image resolution with the number of pixels covered by the object, it is
possible to compute the length of the object in world units on the image plane.
For example, the iPhone 11 camera sensor size is: 5.6mm × 4.2mm and it takes
photos with a resolution of 4032 × 3024 pixels. Considering the y direction,
4.2mm/3024px ≈ 1.389 · 10−3mm/px is the size of a pixel in millimeters.
Therefore, an object 1000 pixels long has a length of 1.389mm on the sensor.
It is important to underline that the value 1.389 · 10−3mm/px is the size of the
pixel in millimeters. This quantity is constant and should not be confused with
the term mmPerPix(i) in Equation 5.21, which is not constant and represents the
transformation in millimeters of what is inside the pixel i.
Hence, the sizes of the object on the image sensor can be rewritten as:

x = SensorLengthx(mm)
ImageLengthx(pix) · ObjLengthx(pix)

y = SensorLengthy(mm)
ImageLengthy(pix) · ObjLengthy(pix)

(5.23)

Substituting this result into Equation 5.22, and rewriting the sizes of the object
in the real world X, Y respectively as ObjLengthx(mm) and ObjLengthy(mm), it
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is possible to obtain:

ObjLengthx(mm)
ObjLengthx(pix) = d · SensorLengthx

fx · ImageLengthx

ObjLengthy(mm)
ObjLengthy(pix) = d · SensorLengthy

fy · ImageLengthy

(5.24)

Where the ratio in the first term of the equality defines the correspondence
between the size of the object in millimeters in the real world and its size in the
image plane. Moreover, it is directly proportional to the distance of the object d.
Multiplying this ratio by the number of pixels covered by the object in the image,
the real size of the object can be found. Therefore, it is possible to state that:

ObjLengthx(mm)
ObjLengthx(pix) = mmPerPixx

ObjLengthy(mm)
ObjLengthy(pix) = mmPerPixy

(5.25)

Since in general, the distance of the object from the camera changes in each
pixel of the image, if a not flat surface is considered, the quantity d becomes d(i)
and mmPerPix becomes mmPerPix(i), the transformation in real world units of
what is inside the pixel i.

Therefore the complete volume estimation algorithm of the first method is:

V olume =
NØ

i=1
(mmPerPixx(i) · mmPerPixy(i) · ObjHeight(i))

mmPerPixx(i) = d(i) · SensorLengthx

fx · ImageLengthx

mmPerPixy(i) = d(i) · SensorLengthy

fy · ImageLengthy

(5.26)

5.3 Algorithm tests
In the following section will be presented different types of tests applied to the
volume estimation algorithm. In particular, three distinct kinds of procedures have
been developed, taking into account less and less ideal situations.
Initially, the behavior of the volume algorithm is analyzed by constructing ideal
depth maps representing the object whose volume has to be estimated. Assuming
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to know the real sizes of the object under consideration, it is possible to manually
build the "object depth image" (Figure 5.5). After that, manually constructed
depth images are replaced with real depth maps acquired with a depth camera.
Finally, the volume estimation algorithm is tested with depth images predicted by
a monocular depth estimation network. In this way, it will be possible to estimate
the volume of an object starting from a single RGB image that portrays it.

5.3.1 Test with ideal depth maps
The volume estimation algorithm is firstly tested with matrices representing ideal
depth maps. The constructed matrices would ideally be those obtained by sub-
tracting the depth map of the background from the depth map of the object placed
above the background, as explained in Section 5.2.1. Therefore, each matrix is
an ideal "object depth map" where in each pixel of the image is stored the height
of the object whose volume has to be estimated. Hence, each matrix represents
a certain shape in the 3D space. For example, supposing to have depth maps in
millimeters, the matrix representing a pyramid 90 millimeters high is illustrated in
the Figure 5.9.

Figure 5.9: Ideal depth map of a pyramid 90mm high.

Construction of the ideal depth map

In order to construct ideal depth maps some assumptions have to be done. The
tests are performed assuming to have:

• An iPhone 11 camera sensor, which has:

– fx ≈ fy ≈ 4.25mm

– SensorLengthx ≈ 5.6mm

– SensorLengthy ≈ 4.2mm

• Depth maps with:
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– ImageLengthx = 160pix

– ImageLengthy = 128pix

• A flat background at a distance of 470mm from the camera

Choosing sizes of a shape in world units, it is possible to compute the corre-
sponding sizes in the image plane.
For example, taking into account a cuboid object with the following sizes:

• ObjLengthx(mm) = 150mm

• ObjLengthy(mm) = 120mm

• ObjHeight = 80mm

The corresponding sizes in the image plane can be computed as follows:

ObjLengthx(pix) = fx · ImageLengthx · ObjLengthx(mm)
d · SensorLengthx

≈ 47pix

ObjLengthy(pix) = fy · ImageLengthy · ObjLengthy(mm)
d · SensorLengthy

≈ 40pix

(5.27)

In each of these 47 × 40 pixels is stored the height of the object, equal to 80mm.
Taking into account all these information, it is possible to build the three depth
maps of the object reconstruction strategy that are illustrated with all values in
centimeters in Figure 5.10.

Figure 5.10: Ideal depth maps of a cuboid object 8cm high placed on a flat
background 47cm away from the camera.

Test Results

Once the object is reconstructed, it is possible to apply the two algorithms described
in Section 5.2.2.
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By running the Python code reported in Appendix A, the following numerical
results can be obtained:

V1 = 1454.47cm3

V2 = 1454.47cm3 (5.28)

where V1 and V2 are the estimated volume computed through the first and second
presented algorithm.
And the correct volume of a cuboid is:

V = ObjLengthx · ObjLengthy · ObjHeight = 1440cm3 (5.29)
Following this reasoning, the algorithm is tested with other 3D shapes and some

results are reported in Table 5.1.

Shape Size[cm] Estimated V1[cm3] Estimated V2[cm3] Correct V[cm3]

Cube l = 6.00 219.32 219.32 216.00

Cuboid
lx = 15.00
ly = 12.00
h = 8.00

1454.47 1454.47 1440.00

Pyramid
lx = 6.58
ly = 6.17
h = 9.00

111.31 111.49 121.79

Cylinder
rx = 7.90
ly = 7.41
h = 15.00

2755.01 2755.01 2758.58

Table 5.1: Test of the volume estimation algorithm with ideal depth maps.

As can be noticed, the results obtained by the two volume algorithms are
different only when the surface considered is not flat. However, even when a curved
surface is taken into account, the two outcomes are very similar. Increasing the
number of pixels towards infinity, they will converge to the same number. For this
reason, only the results obtained through the first volume estimation method will
be analyzed in the following sections.

5.3.2 Test with acquired depth maps
In this type of test, manually constructed depth images are replaced with real
depth maps acquired with an RGB-D camera. The RGB-D camera, also called
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depth camera, is a camera capable of acquiring not only the RGB image of the
depicted scene but also its corresponding depth image.
In particular, the volume estimation algorithm is tested with the Intel Realsense
D435i camera. Through its D430 module based on stereoscopic technology, this
RGB-D camera can detect depth in a range from 0.3 meters to over 10 meters,
generating very accurate depth maps up to 3 meters away. The left and right
cameras of the D430 module capture the scene and send data to the processor,
which calculates depth values for each pixel in the image by correlating points on
the left image to the right image [28]. Moreover, there is also an Infrared (IR)
Laser Projector System to improve depth accuracy in scenes with low texture.
The tests are carried out using through following steps, visible in Figure 5.11.
Initially, the depth map of the background is acquired with the Intel camera. Also
in this case a flat surface is taken as the background. After that, the background
depth image is saved since it is always the same; what changes is the object placed
on top of it. Once the background depth image is stored, several images are
captured with different objects placed one at a time over the selected background.
By making the difference between the depth map of the background and the one
of the object positioned above it, it is possible to reconstruct the object. So, it is
possible to obtain the "object depth map", where each pixel contains the object’s
height in the various points of the image.

Figure 5.11: Object reconstruction strategy by acquiring the RGB image (on top)
and the corresponding aligned depth image (on bottom) with the Intel Realsense
D435i camera. Depth values are expressed in millimeters.

Once the object is reconstructed, it is possible to apply the volume estimation
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algorithm (Equation 5.26) by taking into account the Intel Realsense D435i camera
intrinsic parameters.
Some results of the volume estimation applied to different objects are illustrated in
Table 5.2. The column "object depth image" represents the depth image obtained
through the object reconstruction strategy, with depth values expressed in millime-
ters according to the depth range shown in Figure 5.12. The correct volume V is
approximated to the volume of liquid contained in the object; otherwise, for items
that do not contain liquids, it is computed using the ruler.

Figure 5.12: Fixed depth range with values expressed in millimeters.

The performed simulations show a good behaviour of the algorithm and a nice
consistency between computed volumes of the same object placed in different
positions. Some volume estimation errors occur when infrared rays emitted by the
Intel Realsense camera are parallel to the object’s surface, and due to this, the
surface is not detected by the camera.
Since the final goal is to obtain a depth map using only an RGB image, the next
step is to test the algorithm with a depth estimation network able to perform this
task.

5.3.3 Test with estimated depth maps
The following test aims to understand how the algorithm behaves in the final
system, where there is not a depth camera but a simple RGB camera. Consequently,
monocular depth estimation networks must be used to obtain a predicted depth
image by means of a single RGB image.
To test the algorithm with estimated depth maps, it is used the state-of-the-art
convolutional neural network of Lee et al. [25], in order to take advantage of recent
improvements in the depth estimation. The model is called BTS, and among
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the different backbone structures proposed to extract the features, the DenseNet-
161 network is chosen, since it represents a good trade-off between accuracy and
complexity. The estimation network takes an RGB image of resolution 640 × 480
and produces as output the corresponding predicted aligned depth map with the
same resolution of the input image. In Figure 5.13, is shown the result of the object
reconstruction strategy, capturing the RGB image with the Intel Realsense D435i
camera and estimating the corresponding depth map through the BTS model.

Figure 5.13: Object reconstruction strategy by acquiring the RGB image with the
Intel Realsense D435i camera (on top) and estimating the corresponding aligned
depth image (on bottom) with the BTS model already trained on NYU Depth
Dataset V2. Depth values are expressed in millimeters.

As it is possible to see from Figure 5.13, the prediction of the depth map of the
background and of the object placed above the background are completely wrong.
The correct estimation would be the one represented in Figure 5.11.
Since by using the already trained BTS model (on NYU Depth Dataset V2 ), the
object cannot be reconstructed properly, the network must be retrained on a specific
dataset built for this type of application.
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Object Estimated V[cm3] Correct V[cm3] RGB image Object depth image

Rubik’s
cube 216.17 216.00

Rubik’s
cube 210.78 216.00

Monster 504.09 500.00

Monster 433.33 500.00

Coca-Cola 264.62 250.00

Coca-Cola 231.54 250.00

Table 5.2: Test of the volume estimation algorithm with depth maps acquired
through the Intel Realsense D435i depth camera.
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Object Estimated V[cm3] Correct V[cm3] RGB image Object depth image

Beer 334.13 330.00

Beer 325.28 330.00

Red Bull 262.89 250.00

Red Bull 242.48 250.00

Table 5.3: Test of the volume estimation algorithm with depth maps acquired
through the Intel Realsense D435i depth camera.
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Chapter 6

MDE Network Training

The volume estimation algorithm previously described can be applied starting from
the depth map of the reconstructed object, which contains in each pixel the actual
height of the object. The algorithm has to be run inside the intelligent bin Nando,
which does not contain an RGB-D camera able to produce dense depth maps, but
only a simple RGB camera. The only way to obtain a depth map starting from
a single RGB image is to perform monocular depth estimation. As mentioned
before, among all the MDE networks created by the scientific community, it is
adopted the one proposed by Lee et al. [25] called BTS and previously explained
in Section 4.2.1. Among all the various base networks proposed, DenseNet-161 has
been chosen since it provides a good trade-off between complexity and performance.
As shown in Section 5.3.3, the BTS model already trained on NYU Depth Dataset
V2 does not achieve satisfactory results, and as a consequence, the object cannot be
reconstructed properly. Therefore, it is necessary to repeat the training process on
a specific dataset built for this type of application. It means to train the network
with images very similar to those used in the inference phase, with similar portrayed
scenes and depth values. In order to obtain better results, the training of the MDE
network has been performed in a supervised way, acquiring both RGB and depth
images with the Intel Realsense D435i depth camera.

6.1 Training parameters
The code used to train the BTS model on the PyTorch framework [29], an open-
source machine learning framework, needs some arguments to be run, which are
passed to the training function in file format. The adopted training parameters
are reported in Figure 6.2, and the most important ones are discussed below. The
customize dataset specifically built for the volume estimation application will be
called "My dataset".
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Figure 6.1: Training code arguments.

• The total number of epochs is set to 100 with batch size equal to 4.

• It is adopted an Adam optimizer with Ô = 10−3, and a base learning rate
of 10−4. It is used to update network weights and, unlike classical methods,
it computes individual learning rates for different parameters. The Adam
optimizer achieves good results faster than the classical stochastic gradient
descent method.

• The weight decay technique is applied to avoid the exploding gradient problem.
By means of this method the final loss function is:

Loss = Loss + weigth decay parameter · L2 norm of the weights (6.1)

This technique allows minimizing not only the loss function but also the
parameter weights. As loss function, it is employed the scale-invariant error
described in Section 4.2.2 and as loss decay parameter is used the value 10−2.

• Images before input to the network are randomly cropped to a resolution
of 544 × 416. Moreover, to avoid over-fitting, input images are augmented
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by using random contrast, brightness and randomly rotated in a range of
[−2.5,2.5] degree.

• The model is evaluated every 500 steps, and the best model for each evaluation
metric is saved.

• In the dataset path there must be a directory with the training samples and a
directory with the testing ones. Both training and testing samples have to be
listed in a separate txt file according to the following template:

Figure 6.2: Txt file snippet used to list the training/testing samples.

Both training and testing txt files must contain in the same line:

1. The file name of the RGB image in JPG extension;
2. The file name of the corresponding depth image in PNG extension;
3. The focal length of the camera used to capture the images, in this case,

the Intel Realsense D435i depth camera.

Software setup

Once all the directories are created and the paths are defined, the training code is
run on Google Colab, an online service allowing to write Python code using the
computational power provided by Google’s virtual GPUs. This service is especially
useful in machine learning, where the computational power provided by the physical
GPU of the computer would not be enough to train very large datasets.
PyTorch and its related libraries are installed from pip following the compatibility
indications provided on the PyTorch website [30]. In particular, the following
library versions are chosen and are installed on Colab through the line of code
reported below:

1 ! pip i n s t a l l torch ==1.7.0+cu110 t o r c h v i s i o n ==0.8.1+cu110 torchaudio
==0.7.0 −f ht tps : // download . pytorch . org /whl/ torch_stab le . html
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6.2 Data acquisition
RGB images and the corresponding aligned depth data are acquired with the Intel
Realsense D435i depth camera. In order to obtain depth maps as accurate as
possible for the type of environment in which the dataset is built, the following
actions are applied:

• The ShortRangePreset in JSON format is loaded into the camera since the
dataset will contain images such that the scene depicted is very close to the
camera. It is available in the Intel Realsense documentation [31], and it is
recommended to optimize depth data accuracy when acquiring depth maps
with a depth range lower than 1 meter.
Subsequently, the cross-platform library Intel RealSense SDK 2.0 is down-
loaded, and by means of theIntel Realsense Viewer application, some advanced
settings have been fine-tuned. So, the ShortRangePreset has been slightly
modified to obtain even better performance, and before starting the data
acquisition phase, the customized preset is loaded into the camera.

• Both RGB and depth images are captured with a resolution of 640 × 480
according to the demands of the BTS model.

• Since the color and the depth sensor have different fields of view in the Intel
Realsense D435i camera, the depth frame is aligned to the color frame in order
to obtain depth maps aligned to the corresponding RGB images.

• After each data acquisition, depth maps are post-processed to enhance depth
data quality and reduce noise levels by using the following filters suggested by
the Intel Realsense documentation [32]:

1. Depth maps are transformed into disparity maps;
2. Spatial Edge-Preserving filter is used to improve the smoothness of the

reconstructed data;
3. Temporal filter is employed to enhance consistency between frames;
4. Disparity maps are transformed into depth maps.

The Python code related to the data acquisition and storage is reported in
Appendix B.
Once RGB and depth data are acquired, the dataset can be divided into training
and testing samples, which must be listed in two separate txt files as described in
Section 6.1. The Python code related to the data split and the txt generation is
reported in Appendix C.
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6.3 Dataset
In order to obtain satisfactory results from the training process, the dataset must
contain images as similar as possible to the images that will be acquired during
the inference time, therefore to the images taken from the Nando smart bin. The
camera inside Nando takes photos from the top, with a distance of about 40
centimeters from the background. Moreover, the captured images mainly depict
waste (e.g. cans, bottles or pieces of paper)
Taking into account these information, two datasets has been built with the Intel
Realsense D435i depth camera. The first one has been constructed to see if the
training process would have improved the accuracy of the depth maps predicted
from the network. Instead, the second dataset has been created taking photos
inside a Nando prototype, simulating the working environment inside the real
Nando.

6.3.1 First working environment
The first dataset is built with a flat and white background in which objects are
placed once a time, with the Intel Realsense camera positioned at the top, at a
distance of 40 centimeters from the background. This background has been chosen
to make objects stand out and avoid light reflections since lighting spots create
problems in predicting depth. The lighting conditions are controlled and kept
constant for all the acquisition time.
Once RGB and depth data are acquired, the BTS model is trained on the customize
dataset. The estimation network is tested with the same images used in Figure
5.13, and the results are shown in Figure 6.3.

As it is possible to notice, the depth maps estimated by the BTS model trained
on the customized dataset are much more accurate than those estimated by the
BTS model already trained on NYU Depth Dataset V2, and the object can be
reconstructed properly. This means that the training process on the customize
dataset is efficient, and, to obtain even better results, an even more application-
specific dataset can be built.

6.3.2 Second working environment
The second dataset is built acquiring RGB and depth data with the Intel Realsense
camera in an environment as similar as possible to the one present inside Nando.
In particular, it is used a Nando prototype simulating the working environment
inside the real Nando. Both systems and the corresponding images taken inside
them, are illustrated in Figure 6.4.

The final dataset is obtained appending the data captured in the first working

80



MDE Network Training

Figure 6.3: Object reconstruction strategy by acquiring the RGB image with the
Intel Realsense D435i camera (on top) and estimating the corresponding aligned
depth image (on bottom) with the BTS model trained on the customize dataset.
Depth values are expressed in millimeters.

Figure 6.4: Comparison between the real Nando (left) and the Nando prototype
(right).

environment with the ones acquired inside the Nando prototype. It consists of
about one thousand and five hundred RGB photos with the corresponding aligned
depth maps.
Laslty, the training process of the BTS model is repeated on the final dataset, and
the evaluation results are reported in Figure 6.5. Every 500 steps, the best model
for each evaluation metric is saved. Once the training process ends, the model
with the best RMSE is chosen to test the final system. Similar volume estimation
results can be obtained using the best models on the other evaluation metrics.
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Figure 6.5: Evaluation metrics evolution during the training process.
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6.4 System test
The final system is tested by taking images with the Raspberry Pi Camera since
it is the hardware used by Nando to recognize the material of which the waste is
composed.
As it is possible to notice from Figure 6.6, the object depth map obtained through
the reconstruction strategy has some problems. In particular, around the object,
there are some depth values different from zero. Even if they do not belong to the
object, they make a contribution to the computation of its volume, and therefore
they must be removed.
Since the diameter of the bin is constant and known, it is possible to create a
simple filter to eliminate depth values outside the diameter of the bin.

Figure 6.6: Object reconstruction strategy by acquiring the RGB image with the
Raspberry Pi Camera (on top) and estimating the corresponding aligned depth
image (on bottom) with the BTS model trained on the customize dataset. Depth
values are expressed in millimeters.

Once the object is reconstructed, it is possible to apply the volume algorithm
by taking into account the Raspberry Pi Camera intrinsic parameters. The corre-
sponding Python code is reported in Appendix D.
Some results of the volume estimation applied to different objects are illustrated in
Table 6.1. The column "object depth image" represents the depth image obtained
through the object reconstruction strategy (after post-processing), with depth
values expressed in millimeters, according to the depth range shown in Figure 5.12.
The correct volume V is approximated to the volume of liquid contained in the
object; otherwise, for items that do not contain liquids, it is computed using the
ruler.
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Object VE[cm3] V[cm3] Error(%) RGB image Object depth image

Rubik’s
cube 220.41 216.00 2.04

Rubik’s
cube 226.29 216.00 4.76

Rubik’s
cube 205.93 216.00 4.66

Alexa 209.82 223.00 5.91

Alexa 402.99 223.00 80.71

Monster 475.14 500.00 4.97

Monster 496.82 500.00 0.64

Table 6.1: System test results, where V represents the correct volume and VE the
estimated one.
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Object VE[cm3] V[cm3] Error(%) RGB image Object depth image

Monster 420.87 500.00 15.82

Beer 621.25 330.00 88.26

Beer 646.07 330.00 95.78

Beer 337.19 330.00 2.18

Estathé 243.07 200.00 21.53

Estathé 215.06 200.00 7.53

Estathé 344.81 200.00 72.40

Table 6.2: System test results, where V represents the correct volume and VE the
estimated one.
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Object VE[cm3] V[cm3] Error(%) RGB image Object depth image

Pills 102.65 128.00 19.80

Pills 117.83 128.00 7.94

Pills 117.29 128.00 8.37

Red Bull 247.89 250.00 0.84

Red Bull 281.93 250.00 12.77

Box 342.27 550.00 37.77

Box 356.47 550.00 35.19

Table 6.3: System test results, where V represents the correct volume and VE the
estimated one.
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Conclusions

The presented work aims to design a system able to estimate the volume of an
object placed inside the smart bin Nando, starting exclusively from an RGB image
that portrays it. The performed simulations show a fine consistency in the estimates
obtained on the same object positioned in different ways. The estimation results
are satisfactory, even though the only hardware tool needed to obtain volumetric
estimates is a simple RGB camera. Moreover, the developed algorithm is scalable
since it can be applied with any camera by only knowing the intrinsic parameters of
the sensor. However, predicting the depth of a scene, having only one point of view,
thus having only one camera, is a very difficult task, especially if it does not exist
in the scientific community large datasets containing the scenes specific to your
application. In addition, the volume algorithm is very sensitive to the predicted
depth maps, and therefore its effectiveness depends significantly on the accuracy
with which the depth is estimated. So, as can be seen from the tests conducted,
some estimation results are not particularly accurate. Specifically, errors on volume
estimation can essentially be divided into two types:

• Errors due to the depth estimation

• Errors due to the volume algorithm

Errors due to the depth estimation

A critical situation arises when trying to calculate the volume of objects not present
in the training dataset. In this case, it is unknown whether the monocular depth
estimation network will predict the correct depth, and the final result may be
right or wrong. A wrong result on the volume calculation occurs when the depth
map obtained from the object reconstruction process is wrong, so when the object
is reconstructed with a height lower or higher than the real one. Furthermore,
the depth map obtained from the object reconstruction process is wrong when
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the depth map of the object positioned above the background is not accurately
estimated since the neural network cannot recognize the object in the photo.
For example, Alexa is an object that has not been inserted inside the dataset.
Indeed, as can be seen in Table 6.1, the first volume estimate of Alexa is quite good,
but when it is upside-down, in the second sample, the estimated volume is wrong.
The object is reconstructed with a height much greater than the real one. This
issue occurs because the estimation network has never seen this type of object, and
maybe it thinks that Alexa is another object with a greater height present within
the dataset. The same phenomenon occurs in calculating the volume of the Box
in Table 6.3 since it is not an object that has been inserted into the dataset. In
this case, however, the object’s height is underestimated, probably because it is
mistaken for another box present within the dataset but with a lower height.

Another problem occurs when transparent objects, such as plastic bottles are
placed inside the bin. In this case, the depth estimation is not accurate. Neverthe-
less, this kind of problem arises in all passive methods of 3D reconstruction and it
is even difficult to accurately acquire depth with RGB-D cameras.

Errors due to the volume algorithm

The volume computation also fails whenever the camera, positioned at the top of
the bin, cannot see that there are some void spaces between the surface of the
object and the background. As a result, the camera thinks these empty spaces are
part of the object, and the volume is overestimated.
This kind of problem is visible in Table 6.2 when trying to estimate the volume of
the Estathè. In the third sample, the Estathè is standing upright. The camera does
not see empty spaces between the upper surface of the object and the background.
As a consequence, the volume is overestimated.
The same type of problem occurs when large objects are placed inside the bin.
These objects, having a height greater than the diameter of the basket, when they
fall inside it, do not go entirely into contact with the background and are positioned
obliquely, generating empty spaces. Indeed, as can be seen in Table 6.2, in the first
two Beer samples, the estimated volume is greater than the correct one. A 2D
representation of the problem is illustrated in Figure 7.1.

Estimating the volume of large objects that fall obliquely involves another type
of error. As explained in Section 6.4, only depth values within the bin diameter
are taken into account; the others are filtered out. Large objects, having a height
greater than the diameter of the bin, are cut by the filter, and therefore the object is
not entirely reconstructed. A possible solution to this problem is that the elliptical
filter does not completely eliminate depth contributions outside the diameter of the
bin but gives them a smaller weight. In this way, the object would be completely
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Figure 7.1: Volume estimation problems due to the algorithm. The camera on the
top does not see empty spaces (in yellow) between the object and the background.
As a consequence the volume is overestimated.

reconstructed. However, the algorithm would go even further to overestimate the
object’s volume because of the empty spaces problem. Consequently, it is accepted
that the object is cut so that this kind of error goes a little bit to compensate for
the error due to the void spaces.

Moreover, it is important to remark that, for objects which are drinks, the
correct volume V is approximated to the volume of liquid contained in the object.
However, sometimes the volume of liquid is less than the volume of the object that
contains it. For this reason, the algorithm may overestimate the computed volume.

7.1 Future works
Some significant improvements that can be made in this work could be:

• To obtain a more precise depth estimation, inserting further images within
the dataset or exploring the results achieved through other state-of-the-art
MDE networks;

• To get a more accurate object reconstruction, transforming depth maps into
point clouds. After that, once outliers are removed, it is possible to partition
the surface into Delaunay triangles or create a simple convex-hull and then
compute the volume.

Possible development of this work could be to extend the algorithm so that it
can obtain volume estimates starting from an RGB image that contains several
objects. For example, it would be possible to insert a segmentation network to
isolate all the objects in the image and calculate their volume separately.
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Appendix A

Standard volume estimation
algorithm

Below is reported the Python code of the volume estimation algorithm applied to
the example presented in Section 5.3.1.

1 import numpy as np
2

3 rows=128 #c o i n c i d e s with ImageLength_y
4 columns=160 #c o i n c i d e s with ImageLength_x
5

6 #background matrix
7 background=[ [ 470 f o r i in range ( columns ) ] f o r j in range ( rows ) ]
8 background=np . array ( background )
9 background=background . astype ( ’ f l o a t 6 4 ’ )

10

11 #back+obj matrix
12 back_plus_obj=background . copy ( )
13 ObjHeight=80 #80mm
14 f o r i in range ( rows ) :
15 f o r j in range ( columns ) :
16 i f i <47 and j <40: #ob j e c t cover s 47 p i x e l a long x and 40 along y
17 back_plus_obj [ i ] [ j ] = back_plus_obj [ i ] [ j ] − ObjHeight
18

19

20

21 #ALGORITHM −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22

23 #Object matrix
24 obj = [ [ 0 f o r i in range ( columns ) ] f o r j in range ( rows ) ]
25 obj=np . array ( obj )
26 obj=obj . astype ( ’ f l o a t 6 4 ’ )
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27 obj=np . subt rac t ( background , back_plus_obj )
28

29 #IPhone 11 camera senso r parameters
30 f =4.25 #4.25 mm
31 SensorLength_x =5.6 #5 .6mm
32 SensorsLength_y =4.2 #4 .2mm
33

34 #mmPerPix
35 mm_pix_x = [ [ 0 f o r i in range ( columns ) ] f o r j in range ( rows ) ]
36 mm_pix_x=np . array (mm_pix_x)
37 mm_pix_x=mm_pix_x . astype ( ’ f l o a t 6 4 ’ )
38

39 mm_pix_y = [ [ 0 f o r i in range ( columns ) ] f o r j in range ( rows ) ]
40 mm_pix_y=np . array (mm_pix_y)
41 mm_pix_y=mm_pix_y . astype ( ’ f l o a t 6 4 ’ )
42

43 f o r i in range ( rows ) :
44 f o r j in range ( columns ) :
45 i f obj [ i ] [ j ]==0:
46 mm_pix_x [ i ] [ j ]=0 #to avoid u s e l e s s computations
47 e l s e :
48 mm_pix_x [ i ] [ j ]=( back_plus_obj [ i ] [ j ] ∗ SensorLength_x ) /( f ∗columns )
49

50 f o r i in range ( rows ) :
51 f o r j in range ( columns ) :
52 i f obj [ i ] [ j ]==0:
53 mm_pix_y [ i ] [ j ]=0 #to avoid u s e l e s s computations
54 e l s e :
55 mm_pix_y [ i ] [ j ]=( back_plus_obj [ i ] [ j ] ∗ SensorLength_y ) /( f ∗ rows )
56

57 #Transformation in cent imete r s
58 obj=obj /10
59 cm_pix_x=mm_pix_x/10
60 cm_pix_y=mm_pix_y/10
61

62 #Volume es t imat i on a lgor i thm 1
63 volume1=0
64 f o r i in range ( rows ) :
65 f o r j in range ( columns ) :
66 volume1 += cm_pix_x [ i ] [ j ] ∗ cm_pix_y [ i ] [ j ] ∗ obj [ i ] [ j ]
67 pr in t ( volume1 )
68

69 #Volume es t imat i on a lgor i thm 2 ( app l i ed only in the c e n t r a l p i x e l s
covered by the ob j e c t )

70 volume2=0
71 f o r i in range ( rows ) :
72 f o r j in range ( columns ) :
73 i f obj [ i ] [ j ] !=0 and obj [ i +1] [ j ] ! = 0 :
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74 volume2 += cm_pix_x [ i ] [ j ] ∗ cm_pix_y [ i ] [ j ] ∗ ( obj [ i ] [ j ]+ obj [ i +1] [ j
] ) /2

75 e l i f obj [ i ] [ j ] !=0 and obj [ i +1] [ j ]==0:
76 volume2 += cm_pix_x [ i ] [ j ] ∗ cm_pix_y [ i ] [ j ] ∗ obj [ i ] [ j ]
77 pr in t ( volume2 )
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Intel Realsense D435i data
acquisition

Below is reported the Python code relative to the data acquisition process described
in Section 6.2.

1 import cv2
2 import py r ea l s en s e2 as r s
3 import numpy as np
4 from PIL import Image as im
5 import matp lo t l i b . pyplot as p l t
6 import os
7 import j son
8

9 # Setup :
10 pipe = r s . p i p e l i n e ( )
11 c f g = r s . c o n f i g ( )
12 pipe l ine_wrapper = r s . p ipe l ine_wrapper ( pipe )
13 p i p e l i n e _ p r o f i l e = c f g . r e s o l v e ( pipe l ine_wrapper )
14 dev i c e = p i p e l i n e _ p r o f i l e . get_device ( )
15 device_product_l ine = s t r ( dev i c e . get_info ( r s . camera_info . product_l ine

) )
16

17 # Customize p r e s e t
18 jsonObj = j son . load ( open ( " My_preset . j son " ) )
19 j s on_st r ing= s t r ( jsonObj ) . r e p l a c e ( " ’ " , ’ \" ’ )
20 advnc_mode = r s . rs400_advanced_mode ( dev i c e )
21 advnc_mode . load_json ( j s on_st r ing )
22

23 # Streaming r e s o l u t i o n
24 c f g . enable_stream ( r s . stream . depth , 640 , 480 , r s . format . z16 , 30)
25 c f g . enable_stream ( r s . stream . co lo r , 640 , 480 , r s . format . bgr8 , 30)

93



Intel Realsense D435i data acquisition

26

27 # Star t streaming
28 pipe . s t a r t ( c f g )
29

30 # Create an a l i g n ob j e c t
31 # The " a l ign_to " i s the stream type to which we plan to a l i g n depth

frames .
32 a l ign_to = r s . stream . c o l o r
33 a l i g n = r s . a l i g n ( a l ign_to )
34

35 # Skip 10 f i r s t frames to g ive the Auto−Exposure time to ad jus t
36 f o r x in range (10) :
37 pipe . wait_for_frames ( )
38

39 # Store next f rameset f o r l a t e r p ro c e s s i ng :
40 f rameset = pipe . wait_for_frames ( )
41

42 # Align the depth frame to c o l o r frame
43 al igned_frames = a l i g n . p roc e s s ( f rameset )
44 color_frame = al igned_frames . get_color_frame ( )
45 depth_frame = al igned_frames . get_depth_frame ( )
46

47 # Cleanup :
48 pipe . stop ( )
49 pr in t ( " Frames Captured " )
50

51

52 #POST−PROCESSING −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53 #F i l t e r s parameters are chosen through a f i n e −tuning proce s s
54

55 # Dept2Dispar ity
56 depth_to_disparity = r s . d i spar i ty_trans fo rm ( True )
57 depth_frame=depth_to_disparity . p roc e s s ( depth_frame )
58

59 # S p a t i a l f i l t e r
60 s p a t i a l = r s . s p a t i a l _ f i l t e r ( )
61 s p a t i a l . set_opt ion ( r s . opt ion . f i l t e r_magnitude , 5)
62 s p a t i a l . set_opt ion ( r s . opt ion . f i l ter_smooth_alpha , 1)
63 s p a t i a l . set_opt ion ( r s . opt ion . f i l t e r_smooth_delta , 50)
64 s p a t i a l . set_opt ion ( r s . opt ion . h o l e s _ f i l l , 4)
65 depth_frame = s p a t i a l . p roce s s ( depth_frame )
66

67 # Temporal f i l t e r
68 temp=rs . t e m p o r a l _ f i l t e r ( )
69 depth_frame=temp . p roce s s ( depth_frame )
70

71 # Disparity2Depth
72 dispar ity_to_depth = r s . d i spar i ty_trans fo rm ( Fal se )
73 depth_frame=disparity_to_depth . p roc e s s ( depth_frame )
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74

75

76 #PLOTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77

78 depth_array=np . asanyarray ( depth_frame . get_data ( ) )
79 co lor_array=np . asanyarray ( color_frame . get_data ( ) )
80

81 rows=depth_array . shape [ 0 ]
82 columns=depth_array . shape [ 1 ]
83

84 #F i r s t depth frame p lo t
85 p l t . f i g u r e (1 )
86 p l t . imshow ( depth_array )
87

88 # I n v a l i d depth va lue s are s e t to zero
89 f o r i in range ( rows ) :
90 f o r j in range ( columns ) :
91 i f depth_array [ i ] [ j ] >400:
92 depth_array [ i ] [ j ]=0
93 #s i n c e the d i s t ance between the camera and the bottom o f the

bin i s maximum 400mm
94

95 #Second depth frame p lo t
96 p l t . f i g u r e (2 )
97 p l t . imshow ( depth_array )
98

99 # RGB frame p lo t
100 p l t . f i g u r e (3 )
101 p l t . imshow ( cv2 . cvtColor ( color_array , cv2 .COLOR_BGR2RGB) ) #convert

image from BGR to RGB
102 p l t . show ( )
103

104

105 #DATA BACKUP −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
106

107 n_color=0
108 n_depth=0
109

110 dataset_dir= r ’C: \ Users \ Gabr i e l e \Desktop\My_dataset ’
111 path , subdir s , f i l e s = next ( os . walk ( dataset_dir ) )
112 f o r i in range ( l en ( f i l e s ) ) :
113 i f f i l e s [ i ] . endswith ( ’ . jpg ’ ) :
114 n_color=n_color+1
115 e l i f f i l e s [ i ] . endswith ( ’ . png ’ ) :
116 n_depth=n_depth+1
117 e l s e :
118 pr in t ( ’ERROR: Some data are not in jpg or png format ’ )
119

120
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121 os . chd i r ( dataset_dir )
122 #rgb
123 cv2 . imwrite ( ’ c o l o r ’+s t r ( n_color+1)+’ . jpg ’ , co lor_array )
124 #depth
125 cv2 . imwrite ( ’ depth ’+s t r ( n_depth+1)+’ . png ’ , depth_array )
126

127 #working d i r
128 os . chd i r ( r ’C: \ Users \ Gabr i e l e \Desktop\ Pro j ec t ’ )
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Appendix C

Data split and TXT
generation

Once the dataset is built, data can be divided randomly into training and testing
samples, as described in Section 6.1.

1 import os
2 from sk l ea rn . mode l_se lect ion import t r a i n _ t e s t _ s p l i t
3 import na t so r t
4 import s h u t i l
5

6 dataset_dir= r ’C: \ Users \ Gabr i e l e \Desktop\My_dataset ’
7 t ra in_d i r=r ’C: \ Users \ Gabr i e l e \Desktop\ t r a i n ’
8 t e s t_d i r=r ’C: \ Users \ Gabr i e l e \Desktop\ t e s t ’
9

10 f o c a l=’ 1 .93 ’ #I n t e l Rea l sense f o c a l l ength in m i l l i m e t e r s
11

12 d a t a s e t _ l i s t =[ ]
13 c o l o r _ l i s t =[ ]
14 depth_l i s t =[ ]
15

16 f o r path , subdir s , f i l e s in os . walk ( dataset_dir ) :
17 f o r f i l ename in so r t ed ( f i l e s ) :
18 d a t a s e t _ l i s t . append ( f i l ename )
19

20 f o r i in range ( l en ( d a t a s e t _ l i s t ) ) :
21 i f d a t a s e t _ l i s t [ i ] . endswith ( ’ . jpg ’ ) :
22 c o l o r _ l i s t . append ( d a t a s e t _ l i s t [ i ] )
23 e l i f d a t a s e t _ l i s t [ i ] . endswith ( ’ . png ’ ) :
24 depth_l i s t . append ( d a t a s e t _ l i s t [ i ] )
25 e l s e :
26 pr in t ( ’ERROR: Some data are not in jpg or png format ’ )
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27

28 c o l o r _ l i s t=nat so r t . nat so r t ed ( c o l o r _ l i s t )
29 depth_l i s t=nat so r t . nat so r t ed ( depth_l i s t )
30

31 i f l en ( c o l o r _ l i s t ) != l en ( depth_l i s t ) :
32 pr in t ( ’ERROR: number o f data mismatch ’ )
33

34

35 # TRAIN/TEST SPLIT −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36

37 X_train , X_test , y_train , y_test = t r a i n _ t e s t _ s p l i t ( c o l o r _ l i s t ,
depth_l i s t , t e s t _ s i z e =0.25)

38 #t e s t s i z e r e p r e s e n t s the propor t ion o f the datase t to in c lude in the
t e s t s p l i t

39

40 X_train=nat so r t . nat so r t ed ( X_train )
41 X_test=nat so r t . nat so r t ed ( X_test )
42 y_train=nat so r t . nat so r t ed ( y_train )
43 y_test=nat so r t . nat so r t ed ( y_test )
44

45 f o r path , subdir s , f i l e s in os . walk ( dataset_dir ) :
46 f o r f i l ename in na t so r t . nat so r t ed ( f i l e s ) :
47 i f any ( f i l ename in s f o r s in X_train ) :
48 s h u t i l . c o p y f i l e ( os . path . j o i n ( dataset_dir , f i l ename ) , os . path

. j o i n ( tra in_dir , f i l ename ) )
49 e l i f any ( f i l ename in s f o r s in y_train ) :
50 s h u t i l . c o p y f i l e ( os . path . j o i n ( dataset_dir , f i l ename ) , os . path

. j o i n ( tra in_dir , f i l ename ) )
51 e l i f any ( f i l ename in s f o r s in X_test ) :
52 s h u t i l . c o p y f i l e ( os . path . j o i n ( dataset_dir , f i l ename ) , os . path

. j o i n ( tes t_dir , f i l ename ) )
53 e l i f any ( f i l ename in s f o r s in y_test ) :
54 s h u t i l . c o p y f i l e ( os . path . j o i n ( dataset_dir , f i l ename ) , os . path

. j o i n ( tes t_dir , f i l ename ) )
55 e l s e :
56 pr in t ( ’ERROR: Se l e c t ed f i l e in dataset_dir does not

belong to t r a i n s e t or t e s t s e t ’ )
57

58

59 # TXT GENERATION −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60

61 t r a i n _ f i l e = open ( " My_train_fi le . txt " , "w" )
62 t e s t _ f i l e = open ( " My_test_fi le . txt " , "w" )
63

64 f o r i in range ( l en ( X_train ) ) :
65 i f i==len ( X_train ) −1:
66 t r a i n _ f i l e . wr i t e ( s t r ( ’ / ’+X_train [ i ]+ " "+’ / ’+y_train [ i ]+ " "+f o c a l )

)
67 e l s e :
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68 t r a i n _ f i l e . wr i t e ( s t r ( ’ / ’+X_train [ i ]+ " "+’ / ’+y_train [ i ]+ " "+f o c a l )
+ ’ \n ’ )

69

70

71 f o r i in range ( l en ( X_test ) ) :
72 i f i==len ( X_test ) −1:
73 t e s t _ f i l e . wr i t e ( s t r ( X_test [ i ]+ " "+y_test [ i ]+ " "+f o c a l ) )
74 e l s e :
75 t e s t _ f i l e . wr i t e ( s t r ( X_test [ i ]+ " "+y_test [ i ]+ " "+f o c a l ) + ’ \n ’ )
76

77 t r a i n _ f i l e . c l o s e ( )
78 t e s t _ f i l e . c l o s e ( )
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Extended volume
estimation algorithm

Below is reported the volume estimation algorithm applied to depth maps estimated
by the BTS model trained on a customized dataset. RGB images captured by the
Raspberry Pi Camera inside the smart bin Nando are sent to the monocular depth
estimation network that predicts the corresponding aligned depth maps.

1 import cv2
2 from numpy . core . de f chara r ray import asar ray
3 import py r ea l s en s e2 as r s
4 import numpy as np
5 from PIL import Image as im
6 import matp lo t l i b . pyplot as p l t
7 import os
8

9 # Open Pred ic ted depth images
10 d i r e c t o r y= r ’C: \ Users \ Gabr i e l e \Desktop\ Pro j ec t \ Predicted_depth ’
11 os . chd i r ( d i r e c t o r y )
12 back_image=im . open ( ’ back . png ’ )
13 back_plus_obj_image=im . open ( ’ p r ed i c t i on19 . png ’ )
14 # Open RGB images
15 d i r e c t o r y= r ’C: \ Users \ Gabr i e l e \Desktop\ Pro j ec t \Rgb_images ’
16 os . chd i r ( d i r e c t o r y )
17 rgb=im . open ( ’ rgb19 . jpg ’ )
18

19 # Image2Matrix
20 background=np . asar ray ( back_image , dtype=np . f l o a t 3 2 )
21 back_plus_obj=np . asar ray ( back_plus_obj_image , dtype=np . f l o a t 3 2 )
22

23 rows=back_plus_obj . shape [ 0 ]
24 columns=back_plus_obj . shape [ 1 ]
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25

26 # Object matrix
27 obj = [ [ 0 f o r i in range ( columns ) ] f o r j in range ( rows ) ]
28 obj=np . array ( obj )
29 obj=obj . astype ( ’ f l o a t 6 4 ’ )
30 obj=np . subt rac t ( background , back_plus_obj ) #per−p i x e l ob j e c t ’ s

he ight
31

32 # Depth image o f the background
33 f i g=p l t . f i g u r e (1 )
34 p l t . t i t l e ( ’ Estimated Background ’ )
35 p l t . imshow ( background , cmap=’ plasma ’ )
36 # Depth image pf the ob j e c t p o s i t i o n e d above the background
37 p l t . f i g u r e (2 )
38 p l t . t i t l e ( ’ Estimated Back+obj ’ )
39 p l t . imshow ( back_plus_obj , cmap=’ plasma ’ )
40 # Depth map o f the ob j e c t without the background
41 p l t . f i g u r e (3 )
42 p l t . t i t l e ( ’ Estimated Object ’ )
43 p l t . imshow ( obj , cmap=’ plasma ’ )
44

45

46 #ALGORITHM−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
47

48 # I n v a l i d depth va lue s and depth n o i s e s are s e t to zero
49 f o r i in range ( rows ) :
50 f o r j in range ( columns ) :
51 i f obj [ i ] [ j ]<5 or obj [ i ] [ j ] >400:
52 obj [ i ] [ j ]=0
53

54 # E l l i p s o i d a l f i l t e r to i s o l a t e the ob j e c t
55 x0=330
56 y0=260
57 rx=200
58 ry=180
59 f o r i in range ( rows ) :
60 f o r j in range ( columns ) :
61 e l l i p s e =(( j−x0 ) ∗∗2) / rx ∗∗2 + ( ( i−y0 ) ∗∗2) / ry ∗∗2
62 i f e l l i p s e >1:
63 obj [ i ] [ j ]=0
64

65 # Object depth image post−proce s sed
66 p l t . f i g u r e (4 )
67 p l t . t i t l e ( ’ Estimated Object ’ )
68 p l t . imshow ( obj , cmap=’ plasma ’ )
69 # Object RGB image
70 p l t . f i g u r e (5 )
71 p l t . t i t l e ( ’RGB’ )
72 p l t . imshow ( rgb , cmap=’ plasma ’ )
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73 p l t . show ( )
74

75 # Raspberry Pi camera senso r parameters
76 f =3.6 #3 .6mm
77 SensorLength_x =3.76 #3.76mm
78 SensorLength_y =2.74 #2.74mm
79

80 #mmPerPix
81 mm_pix_x = [ [ 0 f o r i in range ( columns ) ] f o r j in range ( rows ) ]
82 mm_pix_x=np . array (mm_pix_x)
83 mm_pix_x=mm_pix_x . astype ( ’ f l o a t 6 4 ’ )
84

85 mm_pix_y = [ [ 0 f o r i in range ( columns ) ] f o r j in range ( rows ) ]
86 mm_pix_y=np . array (mm_pix_y)
87 mm_pix_y=mm_pix_y . astype ( ’ f l o a t 6 4 ’ )
88

89 f o r i in range ( rows ) :
90 f o r j in range ( columns ) :
91 i f obj [ i ] [ j ]==0:
92 mm_pix_x [ i ] [ j ]=0 #to avoid u s e l e s s computations
93 e l s e :
94 mm_pix_x [ i ] [ j ]=( back_plus_obj [ i ] [ j ] ∗ SensorLength_x ) /( f ∗columns )
95

96 f o r i in range ( rows ) :
97 f o r j in range ( columns ) :
98 i f obj [ i ] [ j ]==0:
99 mm_pix_y [ i ] [ j ]=0 #to avoid u s e l e s s computations

100 e l s e :
101 mm_pix_y [ i ] [ j ]=( back_plus_obj [ i ] [ j ] ∗ SensorLength_y ) /( f ∗ rows )
102

103 #Transformation in cent imete r s
104 obj=obj /10
105 cm_pix_x=mm_pix_x/10
106 cm_pix_y=mm_pix_y/10
107

108 #Volume computation
109 volume=0
110 f o r i in range ( rows ) :
111 f o r j in range ( columns ) :
112 volume += cm_pix_x [ i ] [ j ] ∗ cm_pix_y [ i ] [ j ] ∗ obj [ i ] [ j ]
113

114 pr in t ( ’ \n ’ )
115 pr in t ( ’ Estimated volume : ’ , volume , ’cm^3 ’ )
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