
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Quantum Key Distribution in
softwarised infrastructures

Supervisors
prof. Antonio Lioy
dott. Ignazio Pedone

Candidate

Lorenzo Pintore

December 2021

A mio padre

Contents

1 Introduction 7

2 Quantum Key Distribution 9

2.1 Channels and devices . 9

2.2 Errors and privacy amplification . 10

2.3 QKD protocols . 10

2.3.1 BB84 . 11

2.4 QKD criticalities and attacks . 12

2.4.1 Classical channel . 12

2.4.2 Quantum attacks . 13

2.4.3 Real implementation criticalities . 14

3 QKD networks and initiatives 15

3.1 QKD network implementation . 15

3.1.1 QKD Network types . 15

3.1.2 Routing inside QKD networks . 16

3.1.3 Key forwarding in multi-link scenarios . 18

3.1.4 Software defined networking for QKD . 19

3.1.5 Integration in the network stack . 19

3.1.6 QKD trusted repeater network vulnerabilities 20

3.2 QKD network projects . 21

3.2.1 DARPA QKD Network . 21

3.2.2 SECOQC QKD Network . 22

3.2.3 Tokyo UQCC QKD Network . 22

3.2.4 China Wide Area QKD Network . 22

3.2.5 Recent initiatives and projects . 23

4 QKD standards 26

4.1 ETSI standard . 26

4.1.1 Use cases . 27

4.1.2 Application Interface . 29

4.1.3 REST-based key delivery API . 31

4.2 ITU standard . 33

4

5 Cloud-native applications 34

5.1 Containers . 34

5.1.1 Containers security . 36

5.2 The microservice pattern . 36

5.2.1 The twelve-factor application . 37

5.3 Kubernetes . 38

5.3.1 Kubernetes architecture and components 38

5.3.2 Custom resources and operators . 40

5.3.3 Security of Kubernetes clusters . 41

5.4 Beyond cloud-computing . 42

6 Quantum Key Server 43

6.1 Design and architecture . 44

6.1.1 Key Streams management . 45

6.2 Interfaces . 45

6.3 QKD Module . 46

6.4 QKD Simulator . 46

6.5 Criticalities . 47

7 Quantum Key Server 2.0 49

7.1 Overview . 49

7.2 Architecture . 49

7.3 Interfaces . 52

7.3.1 Northbound interface . 52

7.3.2 Southbound interface . 53

7.3.3 External interface . 54

7.4 Components details . 55

7.4.1 Asynchronous pattern . 55

7.4.2 Data model . 55

7.4.3 Secret engine . 57

7.4.4 Redis . 57

7.5 Routing module . 59

7.5.1 Routing algorithm . 59

7.5.2 Routing packet . 60

7.5.3 Cost function . 62

7.5.4 Routing tables . 63

7.6 QKD Module 2.0 . 63

7.6.1 Interfaces . 64

7.6.2 Database description . 65

7.7 Workflow . 66

7.8 Future works . 69

5

8 QKS integration in a Kubernetes cluster 70

8.1 Cluster configuration . 70

8.2 Custom resources and Operator . 71

8.2.1 Implementation details . 73

8.2.2 Key exchange workflow . 74

8.3 Future works and alternative approaches . 76

9 Test and validation 77

9.1 Key-exchange tests . 78

9.2 Routing tests . 81

10 Conclusions 83

Bibliography 84

A User’s manual 89

A.1 QKS deployment in Kubernetes . 89

A.2 Kubernetes Operator integration . 92

A.3 QKS deployment in Docker . 93

B Developer’s reference guide 95

B.1 Quantum Key Server . 95

B.1.1 QKS core . 95

B.1.2 Routing module . 97

B.2 QKD Module . 99

B.3 Kubernetes integration . 100

6

Chapter 1

Introduction

Quantum computing (QC) is one of the main concerns of information security in recent years.
With its different computational logic to classical computers, it carries the capability of breaking
the most used cryptographic algorithms exposing the entire IT infrastructure to threats.

Asymmetric cryptography (also known as public-key cryptography) is one of the building
blocks of our systems: it is widely used for encryption, digital signature and key agreement
algorithms (e.g. RSA [1], DSA [2] and ECDH [3]) and these algorithms are embedded in the most
widely used protocols in internet communication (as TLS [4]). These cryptosystems rely on the
assumption that some problems, such as prime factorization and discrete logarithms problems, are
complex to solve in a reasonable amount of time using conventional computing: they were known
to be secure thanks to this “computational” security and the lack of an efficient known algorithm
able to break them. Quantum computing leverages quantum physics, providing a completely
different environment and as consequence new algorithms capable of solving hard problems in
polynomial time (e.g. Shor’s algorithm for prime factorization [5]). So far there are not quantum
computers powerful enough to be a real threat for those cryptosystems but research is proceeding
faster and faster with a lot of contributors such as Google1 and IBM2, pushing up the state of the
art. Discussions on breaking time for some algorithms have already been performed [6], reaching
a result of 8 hours to factor 2048 bit RSA. Alternative solutions to classical cryptosystems are
needed to overcome this threat.

So far two different approaches to reach “quantum-safe” protocols have been proposed: Post-
quantum Cryptography (PQC) and Quantum Cryptography. The PQC idea is to use classical
cryptographic techniques and to develop new quantum-resistant algorithms to replace weak ones.
The main advantage of this solution is that it is compatible with the infrastructures already in
place that will only require an update for the supported algorithms without affecting the upper
structure. On the other hand, its biggest disadvantage is being only computationally secure: it
still relies on the assumption that attacker’s resources are limited, thus these systems will be
secure only until new algorithms able to break them will be found. Several PQC algorithms have
been proposed both for key exchange and for digital signature functionalities (e.g. NTRU3 and
SPHINCS+4); and some of them have already been implemented successfully in some existing
protocols (as Google did with TLS 5). Quantum cryptography instead takes advantage of quantum
mechanics laws to build a cryptosystem that doesn’t rely on assumption about attacker’s resources
to establish its security. Quantum Key Distribution (QKD), which is the most promising appli-
cation, allows to securely share secret keys among peers. It prevents interception of messages to

1https://research.google/research-areas/quantum-computing/

2https://www.research.ibm.com/quantum-computing/

3https://ntru.org/

4https://sphincs.org/

5https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

7

https://research.google/research-areas/quantum-computing/
https://www.research.ibm.com/quantum-computing/
https://ntru.org/
https://sphincs.org/
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

Introduction

any eavesdropper and is proven information-theoretical secure [7]: it provides long term security
despite the advances in classical or quantum computing. Even if experts account QC to become
a real threat in a few decades 6, migrating from current cryptosystems to quantum-safe ones is
neither a fast nor easy task: procedures to develop new standards have already started both for
PQC algorithms from the National Institute of Standards and Technology (NIST) 7 and for QKD
devices and APIs from European Telecommunications Standards Institute 8 (ETSI).

Cloud computing is a paradigm that is growing extremely fast and its adoption is spreading
in several fields of the IT world: a lot of old infrastructures are currently migrating to this new
paradigm that can ensure scalability and can dynamically adapt to the user needs, reducing the
costs and increasing the flexibility. It shifts the infrastructure from private data centers to shared
ones, often sparse over different physical nodes and even in different locations. The security
aspect of the communications among instances is an emerging concern that requires policies and
protocols to protect them.

This work proposes a QKD software stack for key management able to deliver keys from the
physical devices to high-level applications. It is compliant with the ETSI standard in terms of
interfaces and communication protocols, guaranteeing wide compatibility with devices. It has
been designed embracing the microservices pattern to work in a cloud-native environment, to
prove that QKD can be integrated into already deployed scenarios. Despite a first solution has
already been proposed by Pedone et al. [8], this new version overcomes its issues about speed
and reliability, introducing a new asynchronous programming pattern and faster technologies.
Moreover, it now supports long-distance key exchanges through intermediate nodes (e.g. trusted
repeaters) in a hop-by-hop manner. Routing functionalities have been implemented adapting
communication routing techniques to the QKD networks. Another relevant contribution is the
integration of the stack in a Kubernetes cluster. Kubernetes is nowadays one of the most used
orchestrators for containerized environments, providing the possibility to integrate the software
into other applications. The operator pattern has been used to simplify the stack integration in
the cluster automating the key retrieval process. Tests performed showed that the stack adds
an overhead compatible with the current communication protocols, that it can support current
QKD device rates without issues. The QKS proved to be able to work consistently in networks
composed of dozens of nodes.

6https://globalriskinstitute.org/publications/quantum-threat-timeline-report-2020/

7https://csrc.nist.gov/projects/post-quantum-cryptography

8https://www.etsi.org/committee/qkd

8

https://globalriskinstitute.org/publications/quantum-threat-timeline-report-2020/
https://csrc.nist.gov/projects/post-quantum-cryptography
https://www.etsi.org/committee/qkd

Chapter 2

Quantum Key Distribution

Quantum Key Distribution is the most relevant application of QC in information security. It
allows two peers to exchange keys securely, replacing the need for a public key cryptography
infrastructure. Qubits are sent over a quantum channel from a peer to another, carrying infor-
mation about each bit of the key in their polarization state: at the end of the channel they are
measured and the information is decoded. QKD takes advantage of quantum mechanics laws to
guarantee that the presence of an eavesdropper during the key exchange will be spotted thanks to
the no-cloning principle and the Heisenberg uncertainty principle. Heisenberg principle ensures
that any qubit can’t have its unknown quantum state measured without forcing it to collapse to a
certain state: a third party can’t look at a qubit without modifying it. The no-cloning principle [9]
ensures that it is impossible to make a perfect copy of a qubit in an unknown quantum state:
there is not any possibility for an eavesdropper to store qubits for following attempts to gain
information without being spotted. These two principles combined allows two peers to securely
send qubits in clear without the need to encrypt them in any way. As Shannon’s theory [10]
said a theoretical secure communication is possible if and only if a one-time pad cryptosystem is
used and the key has the same length as the message, each key is used only once and the key
is random. QKD meets the first two requirements and easy to build quantum random number
generators [11] allows meeting the third one. With this principle in mind is clear that QKD key
exchange security completely depends on the implementation of quantum devices and the security
of the upper application only depends on how the key is used.

2.1 Channels and devices

As already said QKD protocols require different channels to establish secret keys: both quantum
channels and classical ones. Classical channels are required to transmit information on how to
measure qubits after their transmission and to check about interference presence. They don’t
require encryption of transmitted information but they require authentication to avoid man-in-
the-middle attacks from an eavesdropper. Here is where PQC needs to be integrated with QKD:
standard non-quantum resistant authentication techniques would rapidly become unusable and
algorithms able to provide secure authentication are required.

Quantum channels are used to transmit qubits, encoded as photons, between peers. Trans-
mission can be performed both through optical fiber cables both through free space (as between
satellites), with different performances in bitrate, maximum distance and error rate. The way
light is treated and qubit encoded leads to two different approaches: Discrete Variable QKD (DV-
QKD) if each qubit is encoded into a single photon emitted with very weak laser pulses, granting
higher transmission rate; Continuous Variable QKD if qubits are encoded into the amplitude or
the phase of light waves [12].

In DV-QKD the information carried by each photon is often described as its polarization over
one of two orthonormal bases. Quantum channels of this type are composed of a laser emitter
to produce photons, an encoder device to polarize qubits over a basis, a decoder at the other

9

Quantum Key Distribution

end to perform the same process and a photon detector that transforms polarization data into
electrical signals. Decoding qubits means measuring their polarization against a basis. If the
chosen basis for the measurement is not the one the photon is polarized over the detection results
will be completely random. This principle is what allows to spot the presence of any intruder: if
he tries to measure qubits randomly guessing the correct basis it will introduce a perturbation
in the system. QRNG are used to randomly select bases for measurement. A simple QKD
system is described in figure 2.1: it is possible to observe at the sender side both the photon
emitter (the signal source) and the encoder, both connected to the QRNG and at the receiver the
decoder connected to two detectors (one for each basis). At both ends, the control electronics are
responsible for managing different protocol phases. Observe that also the classical channel can be
implemented with optical fiber.

Figure 2.1. Simple QKD system (source: ETSI GR QKD 003).

2.2 Errors and privacy amplification

Even if theoretically QKD can provide perfect security [7] its real devices are not safe from
errors: polarization defects, decoding errors, loss due to distance and interferences. Peers cannot
understand if errors during transmission are due to this type of physical problem or generated by
a third party intruder who wants to steal information. Quantum Bit Error Rate (QBER) is the
parameter used to track these errors, whatever their cause is. If QBER exceeds a certain threshold
(11% is the value often used) the exchange is considered insecure and peers can decide to discard
the key and repeat the process. If the error rate is below that an error correction procedure is
applied to reach a common set of bits. To reduce any information gained by the eavesdropper
privacy amplification techniques should be implemented after the qubit exchange phase: starting
from the received set of bits hashing functions are used by both peers to produce a more robust
key (even if shorter) and without any correlation with the original one [13].

2.3 QKD protocols

Since the publication of the first QKD protocol in 1948 a lot of others have been proposed. QKD
protocols can be divided into two families: “prepare and measure” and “entanglement based”. In
the former category, photons are encoded by the sender in given states and the receiver should
measure them with the same basis to obtain the correct information. In the latter two photons
are put into an entanglement relationship before transmission: thanks to this relationship photons
are bound to each other and any measurement on one particle will affect the other despite the
distance.

10

https://www.etsi.org/deliver/etsi_gr/QKD/001_099/003/02.01.01_60/gr_QKD003v020101p.pdf

Quantum Key Distribution

Table 2.1 report a list of currently developed QKD protocols [14]:

Protocol name Type Family
BB84 DV prepare and measure
E91 DV entanglement
B92 DV prepare and measure

BBM92 DV prepare and measure
SSP DV prepare and measure

SARG04 DV prepare and measure
T12 DV prepare and measure

MSZ96 CV prepare and measure
COW CV prepare and measure
DPS DV prepare and measure

KMB09 DV prepare and measure
AE17 DV entanglement

Table 2.1. Current QKD protocols. Source: [14]

2.3.1 BB84

BB84 is the first developed QKD protocol, proposed by Charles H. Bennett and Gilles Brassard
in 1984 [15]. It is the simplest protocol from which many others in the previous list derive. It
is a discrete variable prepare and measure protocol and exploits photons polarization to encode
information and the no-cloning theorem to ensure security.

Alice Bob

Eve

Photon
source Photon

detector

Classical channel

Quantum channel

Figure 2.2. BB84 schema.

This section describes how the BB84 protocol work. Two peers, the sender (Alice) and the
receiver (Bob), wants to exchange a secret key, an eavesdropper (Eve) tries to steal information.
Eve has access both to the quantum channel both to the authenticated (and not encrypted)
classical channel 2.2. The protocol requires a set of two orthonormal bases for polarization and
an encoding rule: often the chosen basis are the rectilinear and the diagonal one, and the four
polarization states are 0➦, 45➦, 90➦ and 135➦ to the horizontal axis, but any other set of basis and
encoding is possible.

In the first phase, Alice generates a random key of the desired length and encodes each bit over
one randomly chosen basis; then she sends qubits over the channel. After receiving a qubit Bob
immediately measures it over one randomly chosen basis and repeat the process for each one, due
to the technical difficulties of reliably storing quantum information, then Bob communicates the

11

Quantum Key Distribution

Basis / bits 0 1
+ → ↑
× ↘ ↗

Table 2.2. Encoding schema

set of used bases over the classical authenticated channel. The next phase is the sifting procedure:
chosen bases are compared bit by bit and if they used the same basis that bit is kept, otherwise if
Bob chose a different basis the obtained result is random and therefore that bit must be discarded.
The remaining bits are known as “sifted key” An example of these phases is reported in table 2.3.

Alice’s key 1 1 0 0 0 1 0 0
Alice’s bases × + + × + × × +

photons ↗ ↑ → ↘ → ↗ ↘ →
Bob’s bases + + × × + × + ×

Bob’s measurement → ↑ ↗ ↘ → ↗ ↑ ↘
Bases match ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗

classical channel sifting procedure

Sifted key - 1 - 0 0 1 - -

Table 2.3. BB84 exchange and sifting procedure

Sifted keys are then randomly sampled and compared over the classical channel to compute
the QBER: differences in samples are due to transmission errors or introduced by Eve’s actions.
If QBER is higher than the threshold the key is considered not sufficiently secure and therefore
discarded and the protocol restarts, otherwise they continue with the error correction process to
obtain two equal keys and apply privacy amplification techniques.

If Eve tries to intercept and resend photons, measuring them over a random guessed basis,
she modifies them. If we consider only bits where Alice and Bob used the same basis, Eve will
choose the correct one only half of the times, passing them to Bob who now has a 50% chance
of getting the wrong result even if he used the same basis as Alice. This 25% QBER introduced
if Eve intercepts every photon is easily detectable in the sampling phase, leading to a restart in
the process. Due to randomly chosen bases errors should be evenly distributed over a sufficiently
long key: thanks to this fact also sampling results should match the QBER of the entire key. An
example with Eve is reported in table 2.4.

Differences in the base choice reduce the number of usable bits: when the key length is
established the number of bits to send should consider this reduction factor.

2.4 QKD criticalities and attacks

Quantum key distribution has the capability of providing theoretically proven security [7] but its
implementations are not free from defects and flaws that can lead to attacks and have issues with
real/world uses. Some of these attacks and criticalities are described in this section.

2.4.1 Classical channel

As seen in previous sections all currently developed QKD protocols require both a quantum and
a classical channel and the latter must be an authenticated one. Authentication ensures that
the two peers who are performing the exchange can be sure that messages come from the other
peer: if this doesn’t happen it’s easy for an eavesdropper who can read the channel to perform a
man-in-the-middle (MITM) attack, replacing data with other without being noticed. In a MITM
attack, in a scenario where Alice and Bob want to securely exchange a key, if the eavesdropper

12

Quantum Key Distribution

Alice’s key 1 1 0 0 0 1 0 0
Alice’s bases × + + × + × × +

photons ↗ ↑ → ↘ → ↗ ↘ →
Eve’s bases + × + × × + × +

Eve’s measurement ↑ ↗ → ↘ ↗ ↑ ↘ →
Bob’s bases + + × × + × + ×

Bob’s measurement ↑ → ↗ ↘ ↑ ↗ → ↘
Bases match ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗

classical channel sifting procedure

Bob’s sifted key - 0 - 0 1 1 - -
Error - ✓ - ✗ ✓ ✗ - -

Table 2.4. BB84 exchange and sifting procedure with eavesdropper.

Eve pretends to be Bob, without an authentication schema Alice can not distinguish between
her and Bob and the same happens from Bob’s point of view. When Alice sends a message to
Bob she encrypts it with her key, which is a completely valid key but in reality, shared with Eve
(keyAE), Eve can decrypt it, read it and then forward it to Bob encrypting the message with Bob’s
key (keyBE) without being noticed not by Alice not by Bob who thinks they are communicating
securely.

Alice

Eve

Bob

Figure 2.3. Man-in-the-middle attack schema.

In addition to authentication also integrity is required: peers need to know that transmitted
data have not been modified, otherwise Eve can modify messages even if she can not decrypt them,
altering the communication. Common authentication schemas (which also grant integrity) relies
on public-key cryptosystems, with the signer that uses its private key to perform the signature
and allowing the receiver to check it with the public one. Their problematics in a quantum
environment have already been discussed: they can’t provide security anymore and therefore it’s
required to substitute them with PQC algorithms that are quantum-safe. It is important to
say that authentication needs to be verified only during the protocol execution: if the security
gets broken after protocol completion it is not an issue because the eavesdropper can’t steal any
information about the key.

2.4.2 Quantum attacks

Any real device is not a perfect implementation of the theoretical one, therefore its behaviour
can divert from what is expected: this can lead to errors which can reduce protocols efficiency
but can also expose to attacks. A lot of them have been studied, exploiting defects in multiple
components. Some of them exploit photons detectors, which have a narrow window of detection
to intercept photons forwarding them later breaking the required synchronization between emitter

13

Quantum Key Distribution

and detector (time-shift attack), others exploit defects in photos emitter which sometimes produce
more than one photon allowing the eavesdropper to intercept and measure one of them without
modifying the other (photon-number-splitting attack) and others exploit the required calibration
procedure of the quantum channel (channel calibration attack) [13]. A list of currently known
attacks is reported in table 2.5

Attack name Target Year
Photon-number-splitting Source 2000
Detector fluorescence Detection 2001

Faked-state Detection 2005
Trojan horse Source and Detection 2006
Time shift Detection 2007

Time side-channel Detection 2007
Phase remapping Source 2010
Detector blinding Detection 2010
Detector control Detection 2011
Faraday mirror Source 2011
Wavelength Detection 2011
Dead-time Detection 2011

Channel calibration Detection 2011
Intensity Source 2012

Phase information Source 2012
Memory attacks Detection 2013
Local oscillator Detection 2013
Laser damage Detection 2014
Laser seeding Source 2015

Spatial mismatch Detection 2015
Detector saturation Detection 2016
Covert channels Detection 2017
Pattern effect Source 2018

Polarization shift Detection 2019

Table 2.5. Know quantum hacking attacks. Source: [13]

2.4.3 Real implementation criticalities

Today biggest limitations of QKD implementation are not related to security problems but more
to the technical difficulties that it introduced. Even if some companies as MagiQ1, ID Quantique2,
Toshiba3 and many others have already produced some functioning QKD systems over quantum
fiber for the market they are not cheap and not highly available. Even if the research progresses
year by year quantum channels enforce limitations in the distance between peers: optical fiber
links can reach a maximum length of about 100 km while free-space channels require a visible light
path and good atmospheric conditions. Even with short channels and reduced losses the average
key exchange rate over a link is not very high, reaching a few hundreds of kbit/s [16] only in the
most recent implementations. Moreover, QKD protocols only allow a point-to-point (PTP): this
is a big limitation in a real environment where PTP links are not sufficient and are also unfeasible
to build between each couple of peers who wants to securely communicate.

Due to these reasons, quantum key distribution networks, which allows communication over
multiple peers and over longer distances are required: their implementation, defects and currently
active projects will be described in the next chapter.

1https://www.magiqtech.com/

2https://www.idquantique.com/

3https://www.toshiba.co.jp/qkd/en/

14

https://www.magiqtech.com/
https://www.idquantique.com/
https://www.toshiba.co.jp/qkd/en/

Chapter 3

QKD networks and initiatives

QKD networks allow to overcome the limitation imposed by single point-to-point QKD links and
to extend the communication range by building an infrastructure composed of several intercon-
nected nodes and multiple links among them. This chapter analyzes their implementation, then it
describes some real use cases that can take advantage of them and in the end discusses currently
deployed networks.

3.1 QKD network implementation

QKD networks are composed not only of QKD devices and quantum channels but also more
general components to solve other functions are required. They can be described as a composition
of several layers [17], where each one has its own specific set of responsibilities:

❼ the Quantum Layer, build from QKD devices and quantum channels, responsible only for
key exchange;

❼ the Management Layer, build from nodes (classical computer considered secure and trusted)
and classical communication channels, to solve tasks as routing, ensuring quality of service
(QoS) and managing key storage;

❼ the Communication Layer, where exchanged keys are used by applications to perform en-
cryption and exchange data securely.

It is important to say that to use resources in the most efficient way quantum devices have to
perform key exchanges in a no-stop manner: delegating nodes to securely store key material and
avoiding waste of time allows to mitigate limits in key-exchange rate.

3.1.1 QKD Network types

As it happens in classic networks with data, qubits need to travel over several links before reaching
their destination, in a hop-by-hop manner. There are two ways to implement this process: optical
switches and trusted repeaters. In switched networks nodes are interconnected via a completely
optical network with some optical switches that allow creating new optical paths establishing
required point-to-point QKD connections between each peers couple. To allow links to be estab-
lished between each couple of nodes the latter can act both as the sender and as the receiver in the
QKD protocol. Even if this solution allows to solve the problem of single PTP links, adding optical
switches causes losses in signals, intensifies distance limitations and reduces network range [18].
Moreover, these devices can only manage fiber connections and there are not switches able to
commute from free-space signals to fiber ones, therefore it is not possible to combine these two
technologies.

15

QKD networks and initiatives

Figure 3.1. QKD network layers. Source: [17]

In trusted repeater networks communication are established between an optically connected
couple of peers, and data are forwarded hop-by-hop to the destination by nodes themselves.
This solution does not have any limitation in distance or implementation technology because
qubits are measured and then re-emitted at each intermediate node. The main drawback is that
the security of the whole exchange depends on the security of each traversed node: in theory
nodes are considered secure, but this is not guaranteed in real implementations therefore if an
eavesdropper can break into a node, which is a classical computer, he can gain full access to key
information and can modify routing behaviour controlling routing messages [19].

A

C D

B

Optical
Switch

C

D

EA FB

(a) Switched network topology (b) Trusted repeater network topology

Figure 3.2. Network types

To overcome the weakness of both these categories quantum repeaters are required. They are
quantum devices that work by exploiting photons entanglement and entanglement swapping to al-
low communication over multiple links [20], forwarding qubits without causing signal deterioration
but also without security issues of trusted repeaters, Although several theoretical research works
have been proposed, the real implementation of these devices is still unreachable with current
technologies mainly because they require quantum memories and the fidelity of the entanglement
state decrease with the distance [21].

Currently developed QKD networks are mainly built with trusted repeaters [22] [23], accepting
their security limitations, but some experimental switched networks have been proposed too [24].

3.1.2 Routing inside QKD networks

As said in the previous section there are multiple strategies to build the QKD network quantum
layer but in all of them the management layer is required to perform routing and to create links

16

QKD networks and initiatives

between peers not directly connected. In the management layer information are exchanged over
a classical network managed by one or more Internet service providers (ISPs). The management
layer network is therefore an overlay network build on top of the classical one, which is independent
of the ISP and that use the latter to encapsulate its packets inside standard internet packets.
This allows nodes in the management layer to execute their routing algorithm, analyzing network
parameters that may differ from the classical ones. Packets are exchanged on the overlay network
performing routing without even considering routing domains and ISP paths, but in a hop-by-hop
manner among QKD network nodes, which receive and forward packets to other nodes. This
allows to compute paths based on the quantum layer information and to provide the required
QoS, even choosing paths that are not optimal for the ISP point of view or performing multipath
routing to increase security.

Figure 3.3. An overlay network build of top of the classical one. Source: [17]

To perform routing over multiple nodes the first developed QKD networks choose to use
the Open Shortest Path First (OSPF) routing protocol [25] already developed and largely used in
classical networks, based on the link-state algorithm. In OSPF each node has its routing tables and
database about the other nodes and links and the metric of each one; information is exchanged with
link state advertisement (LSA) packets sent by each node to its neighbours and then forwarded
hop-by-hop to the whole network; each node computes its tables executing Dijkstra’s algorithm. It
allows usage of different metrics to compute the best path, and different modified versions of this
algorithm working with different metrics and cost functions have been developed to specifically
work inside QKD networks. In the DARPA QKD network [22], researchers developed an OSPFv2
personalized version [26] that uses as metric the amount of key material stored and available at
each node:

m =

(
100 + 1000

q−t , q > t,

∞, q ≤ t.

where m is the link cost, q is the amount of key material expected to be available over that
QKD link and t is a threshold for the minimum amount of key material to keep at each link.
This metric allows to avoid paths that can be shorter in terms of hop but where there are no
sufficient keys to satisfy the request, but it only takes into account QKD links status and not the
management channel one.

Also in SECOQC a modified version of OSPFv2 that supports multiple routing paths between
nodes is used, computing a routing table for each quantum link it has and merging them [23].
The cost Li(t) for the link i at time t is computed as follows:

Li(t) = (1− 1

w
) · Li(t− 1) +

1

w
· li(t)

17

QKD networks and initiatives

where li(t) is the instant load of the link i and w is a constant. The instant load li(t) is the
number of transmitted bits in the previous unit time.

In the Chinese HCW network [27] a different approach was proposed, where the OSPF al-
gorithm is used in combination with a reservation protocol called Quantum Key Reservation
Approach: the best path is computed with a hop count metric with OSPF, then all nodes in the
path are reached by a reservation request from the starting node to reserve keys for that multi-
link communication. This technique avoids any error due to insufficient key material available on
the path but often chooses a path that is sub-optimal because hop count alone is not sufficient
to guarantee QoS. In general, each routing algorithm that wants to reach the best performances
in a QKD network should take into account both the quantum channel and the management
channel state [28] and should limit the number of exchanged packets to reduce key consumption
due to management purposes (even if packets are not encrypted, they require authentication and
integrity checks to avoid man-in-the-middle attacks)

3.1.3 Key forwarding in multi-link scenarios

As seen in previous sections trusted repeaters networks require a hop-by-hop key forwarding
strategy to build a multi-link secure path between two not directly connected nodes. Several
strategies have been adopted in different networks, here the two main ideas are presented.

Figure 3.4. “Store and forward” key forwarding technique. Source: [17]

The first approach is the simplest one, known as “store and forward” and it has been adopted
in the SECOQC network [23]. In a multi-link path the first node generates the key for the end
peer and forwards it encrypted with a shared key to the next hop, the latter receives the message,
decrypts it and then re-encrypts the received secret with a key shared with its next hop; the key
proceeds in this way until the destination. An example of this technique with an exchange of the
key n from node A to node D is reported in figure 3.4

Figure 3.5. BBN’s Key repeater protocol. Source: [17]

The second one is called “BBN’s Key Repeater Protocol” and it has been used in the DARPA
network [26] When a multi-link connection is required the source node execute the routing protocol

18

QKD networks and initiatives

and defines the connection path, then it reaches all other nodes and asks them to reserve a key
with their predecessor in the path. The last block sends to the first one the secret key XORed
with the key established with its predecessor while each intermediate node sends to the first the
XOR results of the key established with its successor and predecessor. To retrieve the original
key the source node performs a XOR operation among all received blocks. An example of this
protocol is reported in figure 3.5 with an exchange of key n from node A to node D : figure 3.5(a)
shows the reservation phase, figure 3.5(b) shows the key retrieving procedure.

Despite their differences each of these approaches suffers from the security issue of trusted
repeaters networks: each node has to be secure and trusted to ensure the key security.

3.1.4 Software defined networking for QKD

The adoption of QKD on a large scale has in the requirement of quantum devices and dedi-
cated quantum channels one of its biggest limitations, both in terms of costs and complexity:
it is unfeasible to completely modify the current network. Some recent research works explored
the possibility of integrating QKD inside a Software Defined Networking (SDN) pattern [29] to
overcome these difficulties. SDN technologies allow the integration inside the existing network of
new types of communications, leading to an efficient configuration of existing devices and flexible
management of the network itself, avoiding the need for new dedicated channels. The main idea
behind the SDN pattern is to decouple the data plane of the network from the control plane, mov-
ing management responsibilities from decentralized and multiple nodes to a centralized controller
(the SDN controller). The network can be seen as a composition of three layers (as in figure 3.6),
that communicates through well-defined interfaces (e.g. OpenFlow1):

❼ the application plane that abstract the underlying layer to users and allows them to require
network resources (and, in the case of QKD networks, secret keys);

❼ the control plane where a centralized SDN controller knows the whole network status, accepts
requests from the upper layer and dynamically configures network devices and set up paths
to fulfil them;

❼ the data plane, where devices forward packets following rules received by the control plane.
In the case of QKD networks here quantum devices exchanges qubits to generate secret
keys.

This allows QKD devices to be connected to the standard telecommunication network over
optical fiber exploiting wavelength division multiplexing (WDM) techniques [31] and not to a
dedicated quantum network and allows users to take advantage of QKD security even without
having physical access to a quantum device, via standardized APIs. Embedding QKD inside the
telecommunication network has some advantages not only for users but even from the point of
view of network security: any communication over the data plane or the control plane can be
secured thanks to QKD derived keys [32].

3.1.5 Integration in the network stack

Quantum key distribution by itself is a key distribution protocol that has to be used with other
cryptosystems or embedded in other protocols to be useful. It can be integrated into multiple
levels of the network stack, as it happens for other primitives because it does not enforce any
requirements on the key usage. Following the OSI network model [33], it is possible to integrate
QKD in the Data Link layer (L2), in the Network layer (L3), in the Transport layer (L4) and in
the Application layer (L7):

1https://opennetworking.org/sdn-resources/customer-case-studies/openflow/

19

https://opennetworking.org/sdn-resources/customer-case-studies/openflow/

QKD networks and initiatives

Figure 3.6. A QKD network enabled by SDN. Source: [30]

❼ at L2 it can be integrated into the Encryption Control Protocol (ECP) [34] to provide
security for frames exchanged with the Point to Point Protocol (PPP), or it can provide
keys for the IEEE 802.1 MACsec [35] protocol, both widely used in LANs;

❼ at L3 it can provide pre-shared secret keys for the Internet Key Exchange (IKE) protocol [36]
which is used to set up security associations for Internet Protocol Security (IPSec) as shown
in [22]

❼ at L4 security is provided by the Transport Layer Security (TLS) protocol [4]; QKD can be
integrated into the handshake phase to substitute asymmetrical algorithms with pre-shared
keys to be used as session keys (as shown in [37]);

❼ at L7 QKD can be used to establish shared keys among applications that use them for their
specific protocols both for encryption and for authentication.

3.1.6 QKD trusted repeater network vulnerabilities

Trusted repeater networks are the most adopted network technology, but they are not free from
defects. As already said the entire network security is based on the security of every single node,
therefore they are called “trusted”: if a node is compromised, all the traffic coming from and
traversing that node is no more secure. Nodes are classical computers that can communicate
with all other network nodes to exchange routing and control information and with the quantum
devices to retrieve exchanged keys. As with any other computer they can suffer from several
vulnerabilities, know and yet unknown: it is essential to protect them from attacks coming from
the network and keep them physically inaccessible to unauthorized people. To limit risks caused
by the hijacking of a node, multipath routing for keys is required: if the key does not travel over
a single path, but over several and disjoint paths, an attacker must take control over multiple
nodes to obtain key information [19]. In addition to nodes security, a QKD network is subject
to links attacks both to the quantum channel and the classical one, as described in section 2.4.
Denial of service (DOS) attacks on links can threaten the network security too: saturating the
bandwidth of a link cause the traffic to be redirected over other links, therefore attackers can
force some paths overloading specific links. A robust network should also provide advanced
routing functions that can exclude compromised nodes and links from the path, redirecting the
traffic over other trusted nodes. The network topology highly influences network security: the

20

QKD networks and initiatives

presence of redundant disjoint paths must be kept into consideration during the design phase as
much as other parameters [38].

3.2 QKD network projects

In recent years a lot of effort was put into QKD research, leading to the development of the first
QKD networks both for experimental purposes and for real use. In this section, the main networks
are described, while a summary of the obtained results is reported in table 3.1.

3.2.1 DARPA QKD Network

The Defense Advanced Research Projects Agency (DARPA) QKD Network was the first ever built
QKD network in the world, started with collaboration among BBN Technologies and Harvard and
Boston Universities in December 2002 [22]. It started with four nodes (two transmitters and two
receivers) interconnected with a passive optical switch that allows point-to-point communication,
then three free-space links by different producers have been added and connected to the main
network with other QKD links (figure 3.7). With its hybrid solution between trusted repeaters
and optical switches, the DARPA QKD network demonstrated the advantages and disadvantages
of both solutions. Because this was the first-ever developed QKD network there were no available
schemas or protocols for routing and key agreement, therefore BBN proposed its protocol. Due
to the slow key generation rate, it aimed to reduce as much as possible the number of exchanged
messages to avoid more slowdowns over the channel. QKD generated keys were used to secure
communication over channels, firstly as pre-shared keys for IKE protocol with an IPSec tunnel
due to very slow key exchange rate, later for an OTP schema when better and faster QKD devices
and channels were available [26]. To overcome this slow key rate a key reservoir approach was
proposed: available keys were put in this storage and picked by nodes when required. Only
network nodes have access to keys: DARPA network did not provide any key access directly
to final users, but only to network nodes. The network never exceeds a key generation rate of
400 bit/s [22], but despite its limitation, the DARPA network is a milestone in QKD development:
it laid the foundation for the other networks produced in the following years, both in terms of
infrastructure and protocols. It was shut down in 2006.

Figure 3.7. DARPA network topology at its last stage. Source: [17]

21

QKD networks and initiatives

3.2.2 SECOQC QKD Network

The Secure Communication based on Quantum Cryptography (SECOQC) Network was a QKD
Network promoted by the European Commission to push forward research on quantum cryptogra-
phy: 13 countries took part in the project, with several industrial partners [23]. When the project
started, in 2004, some results from the DARPA network were available and have been taken as
starting point. A six nodes network, the “Quantum Backbone” was built in Vienna, with seven
fiber channel links that extend for several kilometers and one short free space channel (figure
3.8). Thanks to its multiple partners, different technologies and different QKD protocols have
been used and tested in different links. Thanks to DARPA results here only a trusted repeater
structure was used, ditching optical switches, and a similar key reservoir approach was adopted
for key management. Differently from the DARPA idea, here nodes were seen as access-point for
the end-users, the effort was put into the development of a more complex and efficient routing
algorithm (section 3.1.2) and more software modules to manage the network. Thanks to the
advances achieved in the key exchange rate and in the stability of the network, which reached
a maximum of 3.1 kbit/s, in October 2008 a public demonstration of the network capabilities
was given: an encrypted telephone call and a video conference both with symmetric encryption
and with OTP encryption have been shown [23]. SECOQC network also demonstrates, with its
longest link of 82 km, that long-distance QKD communication is possible. The project was shut
down in 2010.

Figure 3.8. SECOQC network topology. Source: [17]

3.2.3 Tokyo UQCC QKD Network

In 2010 the building of a new QKD network was started, under the “Updating Quantum Cryp-
tography and Communications” (UQCC) project, joining efforts of Japan and European Union
researchers. The network consists of six nodes that are part of the “Japan Giga Bit Network 2
plus” (JGN2plus) in Tokyo, connected by six QKD links built by different partners [39]. The
main difference with the previously built network was that the Tokyo network uses a central-
ized Key Management Server (KMS) to manage keys, while on each node a Key Management
Agent was installed that respond to it, shifting toward an SDN based approach (section 3.1.4).
The links supported incredibly high speeds compared to the previous results, reaching a key rate
of 304 kbit/s. Public demonstrations of the network capabilities have been performed, showing
the KMS capability to detect eavesdroppers on links based on statistical data received by nodes
agents.

3.2.4 China Wide Area QKD Network

In recent years China pushed forward in the development of QKD networks not only for research
projects but also for real use. Several metropolitan QKD networks have been built, and they

22

QKD networks and initiatives

Figure 3.9. Tokyo UQCC network topology. Source: [17]

have been connected by a large QKD backbone network allowing secure communication over
high distances [40]. The Beijing-Shanghai Backbone QKD Network is the longest QKD network
in the world, with a 2000 km span and connects multiple metropolitan QKD networks. It is
composed of 32 nodes connected by fiber links, of which 6 are access points and the other are only
intermediate nodes necessary to perform communication over that distance (figure 3.10). The
network is supported by two to eight links between each couple of nodes for redundancy reasons,
for a total of 135 QKD links, combined to at most 4 links over the same fiber cable with WDM
techniques [41]. In 2018 it was broadened and connected to the Wuhan Metropolitan Area QKD
network and there are plans to connect it to other smaller networks over the country.

Figure 3.10. Beijing-Shanghai backbone network topology. Source: [17]

Remarkable results in terms of node and access point numbers have been achieved in metropoli-
tan QKD networks. In Jinan, the government private QKD network counts 23 end-user nodes, 8
trusted repeaters and a central management node for a total of 32, and 33 links [42]. In Wuhan,
the network is composed of a central node, 10 trusted repeaters and 60 end-user nodes, with
74 QKD links and a central ring topology have been built to improve disaster tolerance. Their
topology is reported in figure 3.11

3.2.5 Recent initiatives and projects

In addition to the projects presented in the sections above, there are a big number of other
initiatives that are currently working and researching about QKD; here some of them are reported.

Regarding free space QKD communication, the most remarkable project is the Chinese Quan-
tum Experiments at Space Scale project: a satellite named Micius equipped with QKD devices
was sent in space in 2016 [43]. It was used both as a trusted repeater, allowing communication
between labs in Beijing and Vienna in 2017, and as a source of entanglement photons for ground
stations in Delingha and Nanshan that uses them as input for entanglement-based QKD protocols.

23

QKD networks and initiatives

(a)

(b)

Figure 3.11. Jinan (a) and Wuhan (b) metropolitan area network topologies. Source: [17]

DARPA SECOQC Tokyo UQCC
Beijing-
Shanghai

Jinan

Year 2002-2006 2004-2008 2010 2014-2017 2017

Country USA Austria Japan China China

Nodes 10 6 6 32 71

Network
type

Switched &
trusted
repeater

Trusted
repeater

Trusted
repeater

Trusted
repeater

Trusted
repeater

Max key rate 400 bit/s
3.1 kbit/s over

33 km
304 kbit/s over

45 km
250 kbit/s over

43 km
141 kbit/s over

16.5 km

Most used
protocols

BB84
BB84,

SARG04,
COW

BB84, BBM92
Decoy state

BB84
Decoy state

BB84

Table 3.1. QKD networks summary. Source: [17]

In Europe quantum computing research is led by the Quantum Flagship initiative2: born
in 2016, funded by the European Commission, it is a large project which goal is to promote
research works to consolidate European knowledge in this area and to kick-start the industry in
quantum technologies. About QKD the OPEN QKD European consortium3 has the goal to allow
cooperation among the academic world and the industry, uniting 38 partners from 13 countries,
to deploy open testbed sites for QKD, to increase awareness and to develop an ecosystem for

2https://qt.eu/

3https://openqkd.eu/

24

https://qt.eu/
https://openqkd.eu/

QKD networks and initiatives

quantum communication devices and technologies.

In the US market, the company QuantumXChange4 sells a software solution for enterprise cus-
tomers ready for use that offers a key-delivery architecture that combines QKD over a QKD trusted
repeater network and PQC algorithms to securely exchange keys over the internet. IDQuantique,
a leader in the QKD devices market, recently partnered with Fortinet to commercialize a quantum-
safe VPN solution that provides L3 encryption with QKD-generated keys based on the Fortinet
FortiGate firewall and the IDQ Cerberis device5.

In Italy, a recent agreement between the TOP-IX consortium, Italtel and CSI Piemonte6

made it possible to test the Italtel Quantum Secure Network in the TOP-IX network to provide
QKD functionalities over a fiber link.

In recent years telecommunication companies show their interest in the QKD technology and
started some trials about QKD integration in their networks, like Verizon 7 and SK Telecom8

4https://quantumxc.com/

5https://www.idquantique.com/id-quantique-partners-with-fortinet-to-commercialize-a-quantum-safe-vpn-solution/

6https://www.italtel.com/quantum-technology-makes-data-and-services-safer/

7https://www.verizon.com/about/news/verizon-achieves-milestone-future-proofing-data-hackers

8https://www.idquantique.com/idq-sk-telecom-nokia-secure-optical-transport-system-using-qkd/

25

https://quantumxc.com/
https://www.idquantique.com/id-quantique-partners-with-fortinet-to-commercialize-a-quantum-safe-vpn-solution/
https://www.italtel.com/quantum-technology-makes-data-and-services-safer/
https://www.verizon.com/about/news/verizon-achieves-milestone-future-proofing-data-hackers
https://www.idquantique.com/idq-sk-telecom-nokia-secure-optical-transport-system-using-qkd/

Chapter 4

QKD standards

In recent years different entities started working on the standardization process of QKD. Being
QKD a multidisciplinary technology, it requires standardization not only at the software and at the
protocol level but also for devices and their components and on how software and devices should
communicate among them. Standards should guarantee interoperability between products of
different companies and help in reducing bugs and defects in implementations. Here the standards
ETSI and ITU are working on are presented.

4.1 ETSI standard

ETSI is a European standards organization1 that produce standards in the fields of telecommuni-
cations networks and services. Since 2010 ETSI Industry Specification Group (ISG) is working in
the standardization process of QKD, proposing several Group Specification (GS) documents not
only about software and devices but trying to provide a complete view on the QKD ecosystem.
Here the document list with a summary of their content is reported:

❼ Use Cases (ETSI GS QKD 002) [44] provides an overview of possible application scenarios
in which QKD systems can be used as building blocks for ICT systems and the mechanisms
to drive development towards a security certification of QKD systems;

❼ Components and Internal Interfaces (ETSI GS QKD 003) [45] describes properties and
details for quantum devices required in a QKD system;

❼ Application Interface (ETSI GS QKD 004) [46] specifies an Application Program Interface
(API) between a QKD Module called “key manager” that is in charge of securely managing
keys produced by QKD devices and delivering them to applications;

❼ Security Proofs (ETSI GS QKD 005) [47] explains the QKD security claim and specify the
role of QKD devices and their implementation defects in the security of a QKD system;

❼ Vocabulary (ETSI GS QKD 007) [48] collects QKD related definitions and abbreviations
used in the other documents;

❼ QKDM Security Specification (ETSI GS QKD 008) [49] describes the specifications for a
QKDM to protect it from unauthorized physical access and known attacks and the reaction
processes required in case of penetration;

❼ Component characterization: characterizing optical components for QKD systems (ETSI
GS QKD 011) [50] gives the specification for the optical components required in a QKD
system, with examples of specific tests to perform to check their configuration;

1https://www.etsi.org

26

https://www.etsi.org

QKD standards

❼ Device and Communication Channel Parameters for QKD Deployment (ETSI GS QKD
012) [51] describes the main communication resources involved in a QKD system and the
possible architectures that can be chosen for the deployment over an optical fiber network
infrastructure;

❼ Protocol and data format of REST-based key delivery API (ETSI GS QKD 014) [52] specifies
a communication protocol and its data format for a QKD network to allow applications to
communicate via REST API to the network node;

❼ Control Interface for Software Defined Networks (ETSI GS QKD 015) [53] describes the
management interfaces for the integration of QKD in the network with SDN, modelling the
communication between the QKD node and the SDN controller.

The standardization process is not completed yet, therefore some of these documents are
updated with new versions when changes are required.

4.1.1 Use cases

The ETSI GS QKD 002 document [44] describes some common use cases for QKD, the most
significant ones are reported here below.

In a PTP scenario, QKD can be used in combination with a link encryptor, which is a system
able to encrypt and decrypt all the traffic exchanged between two nodes at the data link layer (L2),
using QKD keys and acting transparently for the upper layers. The easiest use case is the one
described in figure 4.1: a company owns a primary site where business operations happen, a backup
site where data are saved periodically and a private point-to-point classical and quantum link.
Backup data, that can be used to recover data due to a disaster at the main site, are confidential
therefore they must be encrypted when they are outside the corporate network perimeter. With
keys obtained by the QKD system, link encryptors can encrypt the traffic with a symmetric
algorithm, freeing the application from this task. Due to the large amount of data to be transferred
an OTP schema can become unfeasible and symmetric key algorithms are more appropriate, key
renewal policies can be set to match the required security level until they remain below the QKD
link generation rate.

Figure 4.1. QKD link encryptor for secure backup procedure. Source: [44]

This use case can be extended to several nodes and data centres, connected by several en-
crypted links and multiple QKD channels, over a larger area (figure 4.2(a)). Link encryptors can
be an alternative solution to L3 or L4 Virtual Private Networks (VPNs) where available thanks
to the fact that they are transparent to the application and does not require any change at upper
levels. When distances among nodes are too high to support single QKD links, a private QKD
network can be built (figure 4.2(b)). In this case, link encryptors can be substituted by higher-
layer security protocols, allowing a single encryption operation for the whole packet life instead
of hop-by-hop management, using the key received from the QKD exchange over the network.

QKD is not limited to optical fiber transmission but it can be used also through free-space
connections from the ground to satellites to cover long haul connections where fiber links are
unfeasible. A low-orbiting satellite that passes over two very distant sites can exchange a key
with the first one (figure 4.3(a)), then later exchange a key with the second one (4.3(b)) and

27

QKD standards

(a) (b)

Figure 4.2. Enterprise Metropolitan area network using QKD link encryptors (a) and Wide area
network using a QKD network (b). Source: [44]

(a) C and A exchange a secret a (a) C and B exchange a secret b

(c) C sends encrypted secret (a xor b) to B (d) A and B share a common secret a

Figure 4.3. Key exchange with the use of a low-orbiting satellite. Source: [44]

send to it the first key encrypted with an OTP schema (4.3(c)), allowing the two sites to share
a secret key without using the ground infrastructure.

QKD can be integrated into the existing optical network, it can provide secure keys between
the ISP and the end-users. Common telecommunication networks are Passive Optical Networks
(PONs) that connects one Optical Line Terminal (OLT) installed at the ISP facility with several
Optical Network Units (ONUs) near end users. Information is broadcasted from the OLT to users
over the same optical fibre cable, therefore each ONU can see the whole traffic while upstream
traffic is transmitted with a WDM schema. Encryption is required to protect downstream traffic
from the eavesdropping of other ONUs and QKD can be employed in the substitution of standard
asymmetric-key techniques using the same optical path used for standard data. The OLT can send
quantum information encoded in single photons over the optical fibre, knowing that each photon
can reach one and only one ONU thanks to the no-cloning principle, and these received qubits
can be used to set up a secret key. Even if the OLT must provide keys for multiple end-users the
short distance in PON structures allows a high key rate. With current technology, where detectors
are more expensive than photon sources, the opposite scenario where ONUs are equipped with
photons emitter and the OLT can detect qubits is also viable. An example of this architecture is
shown in figure 4.4

28

QKD standards

Figure 4.4. PON architecture. Source: [44]

4.1.2 Application Interface

The ETSI GS QKD 004 document [46] describes the APIs between the QKD Key Manager and
applications. The Key Manager is a software component that manages the secure keys produced
by a QKD protocol and delivers them in identical pairs to an application at the upper level
through these APIs. The Key Manager is part of a QKDM (QKDM), composed by itself and the
quantum module which is responsible for the QKD protocol execution. A simple architectural
schema is presented in figure 4.5, where two applications in two different sites can communicate
using keys produced by a QKD protocol received from the Key Manager.

Figure 4.5. QKD Application Interface and peer relationships. Source: [46]

The interface is composed of three functions, OPEN_CONNECT, GET_KEY and CLOSE, which syntax
is the following:

fun OPEN_CONNECT (source, destination, QOS, Key_stream_ID) -> (QOS,

Key_stream_ID, status)

fun GET_KEY (Key_stream_ID, index, Metadata) -> (index, Key_buffer,

Metadata, status)

fun CLOSE (Key_stream_ID) -> (status)

To provide high compatibility between products of different companies, the standard proposes a
core limited in functionalities that can be expanded by each vendor according to their needs.

OPEN_CONNECT reserves an association for a set of future keys at both ends of the QKD link,
identified by the Key_stream_ID parameter. Key_stream_ID is a unique identifier for the asso-
ciation, whose type is an UUIDv42, that must be derived independently from the key material,
shared by both Key Manager peers. The function must be invoked in both peers to create a valid

2https://tools.ietf.org/html/rfc4122

29

https://tools.ietf.org/html/rfc4122

QKD standards

association, with the same Key_stream_ID. If the function is invoked with the Key_stream_ID set
to NULL a new identifier is generated by the peer itself. Applications are responsible for sharing
the id with their peer. A required QoS level can be specified in the request, on return, the applied
QoS is the best that the system can provide. The source and the destination parameters are
URIs that identify the peer applications. Meanings for the return parameter status are reported
in table 4.1 and are shared with the other functions in the interface. More information about
parameters can be found in the original document [46].

GET_KEY returns a key that belongs to the specified Key_stream_ID, together with its position
index. The function can be called with a specified index to retrieve a specific key, as should be
done by the peer application to retrieve the same key as the first one. Metadata parameter carries
more information about the key, such as the number of traversed trusted nodes or the age of the
key.

CLOSE terminates the association established for the received Key_stream_ID, no further keys
will be exchanged for this association but the already present key can still be retrieved. It should
be called at both peers.

Each couple of applications can manage several and independent associations with different
Key_stream_IDs. Thanks to the high flexibility of this API it is possible to implement an upper
level of API where a centralized Key Server can control multiple Key Manager, building an
architecture where the application can contact a single manager for the entire node and not one
for each link, as described in ETSI GS QKD 014 (section 4.1.3).

The document does not specify how two Key Manager peers should communicate to exchange
Key_stream_IDs or other information, nor how internal operations are accomplished. Implemen-
tation choices like the programming language or the interface architectural style are left to the
developer.

Value Meaning

0 Successfull

1 Successful connection, but peer not connected

2 GET_KEY failed because insufficient key available

3 GET_KEY failed because peer application is not yet connected

4 No QKD connection available

5 OPEN_CONNECT failed because the Key_stream_ID is already in use

6 TIMEOUT_ERROR. The call failed because the specified TIMEOUT

7
OPEN_CONNECT failed because requested QoS settings could not be
met, counter proposal included in return

8
GET_KEY failed because metadata field size insufficient. Returned
Metadata_size value holds minimum needed size of metadata

Table 4.1. Status parameter meaning. Source: [46]

A sequence diagram of the workflow is reported in figure 4.6, where two apps (APPA and APPB)
want to retrieve a shared key retrieved from QKDA and QKDB. APPA starts calling OPEN_CONNECT()

with the source and destination application as parameters and NULL as Key_stream_ID (KSID).
The generated KSID is sent from the QKDA peer to QKDB and APPA communicates its KSID

to APPB over the public channel (functions NewAPP() and Send_KSID() are not described in the
ETSI document). To complete the association APPB invokes OPEN_CONNECT() with the received
KSID. Both APPA and APPB can retrieve keys calling GET_KEY() function until they need keys.
The association is closed calling the CLOSE() function both in QKDA and QKDB, even at different
moments.

30

QKD standards

Figure 4.6. Workflow of two applications to require a key. Source: [46]

4.1.3 REST-based key delivery API

The ETSI GS QKD 014 document [52] describes the REST-based API required in a trusted node
to deliver keys to applications in a QKD network. This API allows communication between a Key
Management Entity (KME) and a Secure Application Entity (SAE): the former is the system in
charge of managing keys in the network synchronizing with other KMEs, the latter is the entity
that requires keys to the KME. The KME retrieves from one or more QKD Entity (QKDE) which
are the QKDM described in ETSI GS QKD 004 document (section 4.1.2). When two SAEs wants
to share a key the one that starts the communication is called master SAE and the peer is called
slave SAE. Each SAE and each KME has an identifier that is unique not only at the node level
but in the entire QKD network.

This API consists of three functions compliant with the REST architecture, that must be
accessed by SAEs through specific URLs (table 4.2), using the HTTPS protocol3. Data are sent
and received in the JSON format4, the structure of the JSON object for each request and response
is described in figure 4.7. Some data are optional and some of them are not currently used in the
standard, but they are there for future use. The standard put some requirements on the security
of the involved entities: mutual authentication between SAE and KME is required, each request
must use the HTTPS protocol (at least with TLS in version 1.2), and each entity is considered
secure and the node securely operated.

Get status is the method that returns information about the keys that can be requested by
the master SAE for the slave SAE specified in the URL, in terms of number and characteristics.
The access URL contains all the information needed for the request because GET requests do not
have a body, while return information is contained in a JSON object described in figure 4.7.
The KME_hostname URL parameter is the hostname or the IP address of the KME, while the
slave_SAE_ID is the URL encoded identifier of the peer SAE.

Get key returns a key container JSON object that contains keys with their respective identifier
that the master SAE shares with the slave SAE and, if requested, additional information on the

3https://tools.ietf.org/html/rfc7230

4https://tools.ietf.org/html/rfc8259

31

https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc8259

QKD standards

Method name URL Access Method

Get status
https://{KME_hostname}/api/v1/keys/
{slave_SAE_ID}/status GET

Get key
https://{KME_hostname}/api/v1/keys/
{slave_SAE_ID}/enc keys

POST (or GET)

Get key with key IDs
https://{KME_hostname}/api/v1/keys/
{master_SAE_ID}/dec keys

POST (or GET)

Table 4.2. REST-based interface methods.

returned keys. This request can be performed with the GET method only if there are no additional
parameters besides the key number and size, which can be in this case embedded in the URL as
a query parameter. If supported by the implementation this method allows retrieving keys that
can be shared with more than one peer with a key multicast operation.

Get key with key IDs allows the peer SAE (slave SAE) to retrieve the key delivered to the
master SAE specifying the IDs received from it. This request can be performed with the GET
method only if one single key is requested, in that case the key identifier is embedded in the
URL as a query parameter. With this method, the slave SAE does not need to specify the key
size or any other information besides the identifier, because they have already been specified in
the Get key request from the master SAE. The return JSON object is shared with the Get key

method. The master_SAE_ID URL parameter is the URL encoded identifier of the master SAE.

Figure 4.7. Interface methods JSON objects.

As for the Application Interface described in the previous section, this interface is kept very
minimal, both as methods both as information carried in JSON objects and allows the developer
to improve it as required. Neither implementation details nor restrictions on the programming
language to be used are given by the standard.

32

QKD standards

A schema of the interface workflow is reported in figure 4.8, where SAE A and SAE B want to
retrieve a shared key retrieved from KME A and KME B. SAE A, which is the master SAE in this
example, calls Get key and retrieve keys with their identifier, then it sends those ids to SAE B

that can retrieve the same keys calling Get key with key IDs specifying the ids received from its
peer. The standard does not describe how the two KMEs should exchange information about the
received request or the connected SAEs, nor how the SAEs should exchange the key identifiers.

Figure 4.8. Example of the interface workflow. Source: [52]

4.2 ITU standard

The International Telecommunication Union (ITU) is the United Nations specialized agency for
ICTs. In 2019 the ITU begin the QKD standardization process5, publishing the first overview
document. Documents from Y.3800 to Y.3999 are reserved for QKD network topics, and the
already available ones are summarized here:

❼ Overview on networks supporting quantum key distribution (Y.3800) [54] gives an overview
on QKD networks focusing on technologies, network capabilities and conceptual network
structure;

❼ Functional requirements for quantum key distribution networks (Y.3801) [55] describes re-
quirements for quantum, key management and control layers in QKD networks;

❼ Quantum key distribution networks - Functional architecture (Y.3802) [56] specifies the
functions that are required inside a QKD network, by each layer and each device;

❼ Quantum key distribution networks - Key management (Y.3803) [57] describes the key for-
mat and how keys should be managed inside nodes regarding their life cycle and their
forwarding over nodes;

❼ Quantum key distribution networks - Control and management (Y.3804) [58] specifies func-
tions and procedures required in the upper layer of the network for the management and
the orchestration as routing and QoS.

5https://news.itu.int/new-itu-standard-networks-support-quantum-safe-encryption-authentication/

33

https://news.itu.int/new-itu-standard-networks-support-quantum-safe-encryption-authentication/

Chapter 5

Cloud-native applications

In the last decades, the market shifted from an on-premise infrastructure, where each company has
its servers in private data centers, to cloud-based infrastructure as a Service (IaaS) architecture
where shared data centers host several applications from different customers on virtual machines.
Using cloud-hosted servers allows companies to get computing resources at request, without the
need of managing the physical hardware and the overall infrastructure, enabling easy scalability
for applications. With the continuous growth of applications, both in complexity and in scalability
requirements, it was clear that the common “monolithic” architecture was no more viable and
alternative solutions have been proposed, leading to the development of lightweight virtualization
solutions as containers and microservices architectural pattern.

5.1 Containers

Containers are a form of lightweight virtualization that allows overcoming some of the main
drawbacks of virtual machines (VMs), leading to faster and easier management of virtualized
instances. In an environment where several processes run on the same host, strong isolation
between them is required, ensuring that data can not be shared and that a vulnerability in one
service is not able to affect the others or the host itself. VMs are in theory a viable solution, but
they are slow to start, require a lot of resources and provide features like hardware virtualization
or the possibility to run different operating systems (OSs) that is often not required. Containers
implement strong process isolation in the OS kernel without much overhead, leveraging features
like cgroups and namespaces that are already built in the Linux kernel (which is the standard OS
for server environment). The formers allow to limit resource consumption of each process in terms
of memory and CPU usage, the latter provides isolation primitives to define what each container
can see about the host and other containers in terms of network, processes and file system. This
OS-level virtualization does not require a hypervisor on top of the host OS kernel, but it is the
kernel itself that provide structural support for the containers: they share the same kernel of
the host and can build their service (with its libraries) on top of it and therefore require fewer
resources. Figure 5.1 describes layers both in containers and in VM architectures.

The first basic project to implement containers was Linux Containers1, based on the standard
Linux kernel, then other solutions like Docker2 and rkt3. Docker is by far the most used container
environment. It is mainly focused on containers as applications, providing an environment where
it is easy to deploy them in a lightweight and self-contained form, solving the problem of depen-
dencies: Docker containers can run anywhere there is the Docker engine installed, with the same
exact behaviour, because they are not dependent from the underlying OS version or its installed

1https://linuxcontainers.org/

2https://www.docker.com/

3https://cloud.redhat.com/learn/topics/rkt

34

https://linuxcontainers.org/
https://www.docker.com/
https://cloud.redhat.com/learn/topics/rkt

Cloud-native applications

Container 1

Applications

Libraries

Container 2

Applications

Libraries

Host operating system Kernel

Hardware

VM 1

Applications

Libraries

Host operating system Kernel

Hardware

Guest OS

Virtual
Hardware

VM 2

Applications

Libraries

Guest OS

Virtual
Hardware

Hypervisor

Figure 5.1. Containers architecture compared to VMs.

packages. Through images, Docker allows the developer to easily build an application from a
sequence of commands written in a file (the Dockerfile) and containers can be deployed from their
images in multiple copies and different places. The Docker platform also provides simplified man-
agement of the network requirements, allowing both to connect containers over a virtual network
and to reach them from the host OS via port forwarding with few settings. Despite their lightness,
spawning multiple several containers can require a lot of storage space, because its container has
its own file system. To solve this issue Docker adopts a layered file-system structure: the final
file-system is composed of a set of read-only layers that can be shared with other containers (like
for libraries and static data) and a single private read-write layer that contains private data and
modified files. There is also the possibility to map the host file-system to container one, with vol-
umes, allowing an easy way to share data. More information on how to use, deploy and manage
Docker containers can be found at the Docker documentation website4. Nowadays containers are
always more often used to build portable applications, especially in the cloud environment due to
their lightness and their ease of use.

Figure 5.2. Example of a Dockerfile to build an image for a simple Flask webserver

4https://docs.docker.com/

35

https://docs.docker.com/

Cloud-native applications

5.1.1 Containers security

Despite their speed and agility, containers involve some security problems that in VMs can be
avoided: sharing the kernel with the host means that there is one less protection layer with
respect to VMs architecture [59]. Both the other containers and the host require protection
from a potential malicious container, but attacks to the host kernel can lead to major damages
because they can harm the whole system. This is the reason for resource limits and isolation
requirements: the former is essential to limit damages due to Distributed Denial of Service (DDoS)
attacks that a container can try to perform exploiting all resources, the isolation properties are
required both between containers to prevent the leak of sensitive information from the file system,
from network scanning or resource usage analysis but also between a container and the host to
prevent unauthorized access or, in the worst-case scenario, privilege escalation and container
escape attacks that allow the container application to get control over the whole system. Keeping
resources and privileges of a container to the minimum necessary is a primary requirement in
a container architecture. To reach the security goal the security of the container itself is an
extremely important factor: container images that come from untrusted sources should not be
used because they can contain malicious code or backdoors and even trusted images should be
checked against known vulnerabilities to reduce both the attack surface from the outside of the
system and attack risks from other containers running on the same hosts.

A survey of 2017 showed that 90% of the images hosted on Dockerhub (which is the main
repository for Docker container images) suffers from high severity issues [60], and despite the
security improvement that can be achieved, side channels attacks remain an unsolved problem
in host security: hardware vulnerabilities can lead to undetected information leaking. To reduce
security risks in containers environment several guidelines have been proposed, like the ones from
NIST [61].

5.2 The microservice pattern

The main idea of the microservices pattern is to decompose an application into multiple and
smaller loosely coupled components, each one with a single basic function, called “microservice”,
that together compose the application. This pattern provides a lot of benefits, leading to an
application better suited for working in a cloud environment. Each component can use the more
appropriate programming language for its tasks, it is small and with a single job, therefore it is less
affected by bugs and it is easy to maintain and develop. Inside the application environment, each
microservice can be deployed in multiple instances, removing the single point of failure caused by
a crash that can harm the entire app; this also allows the system to be scaled up or down in case
of traffic variations, simply spawning more copies of the same service, even over different machines
and balancing the traffic among the copies. This scaling can be performed independently for each
component, reducing resource waste. Thanks to lightweight virtualization technologies often each
microservice is allocated on a different container because they allow fast and easy spawning and
restarting, without introducing too much overhead on the hosts, and they are by default isolated
from the host. Having multiple copies of the same service allows to upgrade it to a new version
and test it seamlessly without blocking the production environment, slowly migrating from the
previous version to the new one and redirecting traffic when needed, allowing a faster reaction to
requirements changes.

Working in a microservices environment require some significant changes in the application
architecture: the interaction between services has to be performed over the network because a
service can not access data or functions of another one. The communication should be performed
over well defined interfaces both in a synchronous way, via REST APIs over HTTP protocol
or gRPC5, or asynchronously via messages queues likes Apache Kafka6 or RabbitMQ7, where a

5https://grpc.io/

6https://kafka.apache.org/

7https://www.rabbitmq.com/

36

https://grpc.io/
https://kafka.apache.org/
https://www.rabbitmq.com/

Cloud-native applications

DATA ACCESS LAYER

BUSINESS LOGIC

USER INTERFACE

DATABASE

MICROSERVICE

USER INTERFACE

DATABASE

MICROSERVICE

DATABASE

MICROSERVICE

DATABASE

MICROSERVICE

MONOLITHIC MICROSERVICES

Figure 5.3. Monolithic and microservices architecture compared

service posts a message over a topic the receiver previously subscribed to and that can receive and
react to that message. Due to the replacement of containers and their scalability, the application
should run only stateless processes, which does not share anything with other instances and all
information required must be persisted in a database outside of the container, allowing subsequent
requests by the same user to be served by different instances of the service in a transparent way.

Despite its benefits, the microservice pattern is not free from defects. Having an applica-
tion over multiple containers require careful management of the network, not only to guarantee
communication among services even in case of crashes but also to ensure the necessary security
requirements. Security should be an important phase of the design process: having multiple
components that must be isolated and can access only information belonging to them require
customized security policies inside the data center, while access from the outside world require
a dedicated service that manages authentication and authorization process of requests. Despite
having simpler components drastically simplify the testing and debugging process of every single
function, which can be performed independently from the other services and that does not suffer
from the entangled nature of the modules of a monolithic application, testing a microservices ap-
plication at the system level require interaction between components over the network, therefore
it is more complex to track and identify the source of a bug.

The management at run time of such a complex architecture is not a feasible task for humans,
therefore ad-hoc software platforms called “orchestrators“ that can automatically manage both
the containers and the network configuration, dealing with failures and scaling, are used for this
purpose. Some of the most used solutions are Kubernetes8, Docker Swarm9 and Mesos10

5.2.1 The twelve-factor application

In 2011, Adam Wiggins with others Heroku developers proposed a set of twelve principles11 that
describe how to build cloud-native “Software as a Service” application based on microservices,
easy to scale, reliable and maintainable. The proposed principles are here described.

Codebase the code and the required files for the deployment is stored in a single repository
under a version control system and only this repository is used for deployments;

8https://kubernetes.io/

9https://docs.Docker.com/engine/swarm/

10http://mesos.apache.org/

11https://12factor.net/

37

https://kubernetes.io/
https://docs.Docker.com/engine/swarm/
http://mesos.apache.org/
https://12factor.net/

Cloud-native applications

Dependencies all external dependencies are explicitly declared in a file, not stored in the code-
base and without implicit reliance;

Config the application is agnostic to the environment where it is executed, therefore configuration
data is injected as environment variables and it is not written in the code files;

Backing services external systems as databases or message brokers are treated as attached
resources reached through the network and managed independently from the application;

Build, release, run there is a strict separation between build, release and run stages and each
stage is independently replicable;

Processes the app is executed as one or more stateless processes and no session data is kept
inside the instance execution environment;

Port binding the service is exposed to the outside via port binding on a well-defined port, it is
not dependent on an external webserver;

Concurrency services are separated by purpose and each service can be scaled up or down
independently from the others when required, allowing horizontal scaling;

Disposability the application can start fastly and can stop gracefully, without affecting the user
and keeping a coherent state when shut down;

Dev/Prod parity the gap between development and production environment is kept as minimal
as possible therefore it is easy to move a version of the application from the former to the
latter environment;

Logs logs data generated by services are print on the standard output as a stream and are not
written in a file, the execution environment collects and aggregates them and another service
can perform processing;

Admin processes admin and management tasks are treated as part of the application, therefore
they are kept in the same codebase and are executed as automated one-off processes when
required.

5.3 Kubernetes

Kubernetes is an open-source orchestrator to automatically deploy, scale and manage containers.
It was designed by Google, derived from its Borg project, in 2015; it reached version 1.22 and the
release of version 1.23 is expected for December 202112 and since version. Since its first release,
it has been managed by the Cloud Native Computing Foundation13 (CNCF) which Google is
part of. It is currently one of the most used orchestrators, several customized versions have been
developed both for private users and for the enterprise world (e.g. Red Had OpenShift14) and
Kubernetes clusters are offered in the cloud by all the main cloud provides. The following sections
describe Kubernetes architecture components and working logic [62].

5.3.1 Kubernetes architecture and components

A kubernetes installation is called cluster. Each cluster is composed of a set of machines called
nodes and a control plane. Nodes are the base components of the cluster, they run containerized
applications and report their status to the control plane, the latter manages worker nodes in the
cluster and make decisions reacting to events. Kubernetes supports several container runtimes,

12https://www.kubernetes.dev/resources/release/

13https://www.cncf.io/

14https://www.redhat.com/en/technologies/cloud-computing/openshift

38

https://www.kubernetes.dev/resources/release/
https://www.cncf.io/
https://www.redhat.com/en/technologies/cloud-computing/openshift

Cloud-native applications

not only Docker but also any other that supports the Kubernetes Container Runtime Interface
(CRI) such as cri-o15. The cluster behaviour is managed through a set of control loop processes:
each controller watches the state of a resource and performs action trying to shift the current
state toward the desired state for that object. Figure 5.4 describes the main components of a
Kubernetes cluster:

Controller manager is the control plane components the runs the controller processes. All
controllers are compiled into a single binary file that runs in this component;

Cloud controller manager is the control plane component that manages cloud-specific control
logic, linking the cluster to the cloud provider’s API. This component is not present in
clusters that do not belong to any providers. Its work logic is the same as the controller
manager, but watching different resources;

API server is the front-end component that exposes the API: it receives REST requests, man-
ages them and provides replies. It can scale horizontally, deploying multiple instances of
this component;

Etcd is a distributed key-value store used as backing store for cluster data and to share data
among cluster members;

Scheduler is the control plane component that watches for new pods (a set of containers) and
assigns them to a node to run on based on several parameters like resource requirement,
policies and hardware constraints;

Kubelet is an agent that runs on each node in the cluster, it checks the status of containers
running on the node and reports problems to the API server;

Kube-proxy is a network proxy that runs on each node, managing network rules on its node to
enable the required communication.

Figure 5.4. A Kubernetes cluster with its main components. Source: Kubernetes documentation

All the configuration elements in a Kubernetes cluster are called resources. Each resource,
despite its function, is described and deployed in the same way, via its .yaml configuration file,

15https://cri-o.io/

39

https://kubernetes.io/docs/concepts/overview/components/
https://cri-o.io/

Cloud-native applications

which contains the apiVersion and the kind fields that uniquely identify the object, the spec

field that describes the expected object state and the metadata field that contains other additional
information. Each resource can be reached via its corresponding endpoints in the Kubernetes API,
which allows retrieval of related information. Figure 5.5 reports an example Kubernetes cluster
schema with some resources allocated that can help in visualizing how they are related to each
other. Here the main pre-defined resources are described:

Namespace is the “logical cluster” resource that allows introducing scope for objects names and
limits access and visibility of components inside the same physical cluster;

Pod is the minimum and basic element in Kubernetes. It is composed of one or more highly cou-
pled containers and volumes, it will be spawned and executed on a single node. Additional
containers over the main one are called sidecars and should be placed in the same pod only
if they extend and enhance the main one. Containers in the same pod share the same net-
work stack and can reach each other on localhost address. Pod supports init containers,
specialized containers that run in the pod before the main one, for setup purposes;

Replica Set is the resource that specifies the static number of replica required to run at the
same time for a specified pod;

Deployment is the object that allows managing pods version and their replicas at a higher level
of abstraction;

Horizontal Pod Autoscaler is the object that allows defining scaling rules for another object
(like a deployment) based on metrics like resource usage or custom application metrics and
performs automatic scaling;

Service is the object that exposes a single stable access point for an application that may run on
multiple pods, decoupling the exposition of a service from its execution units. The service
can be of type ClusterIP (reachable only from within the cluster, over a cluster-internal
IP), NodePort (reachable also from the outside on a static port), LoadBalancer (reachable
from the outside using a cloud load balancer) and ExternalName to map the service to a
DNS record;

Ingress is the object that exposes the cluster to the outside and manages external access via
routing and filtering rules;

Config Map is a set of key-value pairs that can be injected into pods as files or environment
variables;

Secret is an object used to inject into pods secret information (e.g. passwords), that is stored
encrypted in etcd storage;

Network Policy is the object that implements firewall policies across pods to limit access among
them. Filtering rules can be specified with IP address, pod name or namespace;

Resource Quota is the resource that allows to limits the amount of objects that can be created
in a namespace, defining limits is computing and memory resources;

Limit Range is the resource that defines resource limits for each pod or each container in a pod.

5.3.2 Custom resources and operators

Kubernetes allows extending its standard behaviour via the definition of custom resources: re-
sources that are not available by default in the cluster and that provide customized communication
with objects of some kind. They are defined as a set of available HTTP methods with a corre-
sponding path that may go over the standard communication pattern of REST APIs. In this
way, the cluster admin can easily implement communication patterns with any kind of object
that can consume requests and react to API calls. Custom resources are defined via objects of
CustomResourceDefinition (CRD) kind, which are handled by the built-in API server that is able

40

Cloud-native applications

Figure 5.5. An example of a Kubernetes cluster with some allocated resources. Source: GitHub

to understand and serve custom requests, freeing the developer from writing its own API server.
If the functionalities offered by the build-in API server are not sufficient for a specific purpose,
Kubernetes can be also extended with a custom API server that serves those API calls with
custom logic.

To exploit the full capability of custom resources they are often used in the Operator pattern.
Operators are applications designed to watch and react to specific CRD manipulations, following
the standard “control loop” behaviour of the control plane, used to automate some actions on
the cluster such as the deployment of custom resources or periodical backups of application data.
The easiest way to build an operator is to add a custom Controller that runs on the cluster,
associated with a CRD. Despite controllers can be implemented in any programming language,
because indeed they are simple API consumers, most of the code can be generated with some tools,
because is often similar between several operators, simplifying a lot the development process.

More information on these concepts is available in the Kubernetes official documentation, in
the “Extending Kubernetes” section16.

5.3.3 Security of Kubernetes clusters

Kubernetes takes full advantage of all security advantages derived from the microservices pattern:
pods guarantee, by default, isolation among different application components from the OS point
of view and built-in resources like limit ranges and resource quota can limit malicious behaviour
in resource consumption. Security should also be addressed at the cluster level, not only at the
container level [63]: a cluster is way more complex than a single containerized application and can
expose a higher attack surface, that should be carefully analyzed. Regarding security from inside
the cluster, namespaces and network policies resources can provide limitations on the components
that can be seen and reached, moreover, Kubernetes supports encryption through TLS protocol
for communication between the control plane and worker nodes agents to keep it private and
authenticated.

A big threat for any cluster comes from the outside: exposing not only services but also the
cluster administration API to the outside require them to be carefully protected through strong
authentication and authorization mechanisms. Kubernetes provides a small number of built-
in mechanisms for authentication, only suitable for not production environment or very basic
configurations as basic HTTP authentication or x509 certificates, and more secure options like

16https://kubernetes.io/docs/concepts/extend-kubernetes/

41

https://github.com/kubernetes/community/tree/master/icons
https://kubernetes.io/docs/concepts/extend-kubernetes/

Cloud-native applications

OpenID Connect token received by external identity providers or any other protocol that can be
integrated via an authenticating proxy or the authentication webhook feature17 such as LDAP,
SAML or Kerberos. Authorization can be managed either with role-based access control (RBAC)
or with attribute-based access control (ABAC) mechanism, in both cases defining policies for each
role or attribute as cluster resources.

5.4 Beyond cloud-computing

The research about virtualization technologies and the growth in devices computing power lead to
the development of new technologies in the cloud world that exploit the knowledge acquired with
microservices applications and container management to introduce cloud-computing concepts in
several fields.

In the network world, the main advance is the Network Function Virtualization paradigm [64].
It proposes to take advantage of the virtualization capabilities of modern computers to run the
required network functions not on specialized hardware (NATs, routers, firewalls) but on its
virtualized copies. In this way, ISPs can drastically reduce devices and operation costs, using
common off the shelf hardware, and improving scalability because they can remotely deploy new
virtual devices when required in a fast and easy way and a more reliable manner.

The spread of cheap but powerful hardware and the ubiquity of internet connection leads to
the development of more and more connected objects: the “Internet of Things” (IoT) [65]. These
IoT devices can be deployed in several everyday life objects, such as smart speakers, cars, home
appliances, thermostats or medical equipment: they obtain data to share among them or with a
cloud server that processes them to provide useful information to users. This paradigm is strictly
related to the idea of fog and edge computing [66]: these paradigms extend the concept of cloud
computing, moving part of the application from the cloud node to the edges of the network.
Devices can obtain data from other sensors and devices and pre-process and store them before
transmitting them to the data center. This is crucial both for high traffic applications, which can
reduce the amount of data transmitted over the network by aggregation and filtering processes
and for applications that are highly sensitive to latency, which can have a faster response from
nearer nodes. Both fog and edge computing follow the same principle of moving computation at
network edges and the two words are often erroneously interchanged but fog computing differs
for a hierarchical and seamless structure that spans from the edges to the cloud and that is not
limited to a single level of external nodes.

All these paradigms can be referenced as “Softwarized infrastructures”: infrastructures that
strongly relies on virtualization paradigms and an internet connection to solve complex tasks in
a scalable, efficient and reliable way.

17https://kubernetes.io/docs/reference/access-authn-authz/authentication/

42

https://kubernetes.io/docs/reference/access-authn-authz/authentication/

Chapter 6

Quantum Key Server

The Quantum Key Server (QKS) is an implementation of a node in a QKD trusted repeater
network, compliant with the ETSI GS QKD 014 standard [52] described in section 4.1.3, whose
main purpose is to securely distribute QKD-derived keys from the underlying layer to authorized
applications even in multi-hop scenarios typical of QKD networks.

A single QKS can be connected to multiple QKDMs (section 4.1.2) and can be reached by
several authorized SAEs. Figure 6.1 describes the software stack architecture of a network node,
composed of a single QKS, its attached QKDMs and the SAEs registered to it. This allows SAEs
to only communicate with their QKS, asking it keys and information despite the location of their
peer SAE, without any knowledge about the network or the QKDMs implementation and without
managing the synchronization aspects of the exchange.

Pedone et al. in 2021 proposed a first implementation of the stack, developing the QKS, the
QKDM and a simulator for QKD protocols to provide a complete working solution of a QKD
network node. This chapter analyzes the QKS design and its architectural components, describes
the interfaces, presents the QKDM and the simulator implementation and analyze the criticalities
of this first version, while chapter 7 propose an updated version that tries to overcome these
limitations.

Quantum Key Server
(QKS)

Security
Application Entity

(SAE)

QKD Module
(QKDM)

Security
Application Entity

(SAE)

Northbound Interface

Southbound Interface

Quantum Key Server
(QKS)

Security
Application Entity

(SAE)

Security
Application Entity

(SAE)

Northbound Interface

Southbound Interface

Sync interface

External interface

TCP/IP connection

Quantum channel

Infrastructural nodeInfrastructural node

QKD device
(or simulator)

Classical channel

QKD Module
(QKDM)

QKD device
(or simulator)

QKD Module
(QKDM)

QKD device
(or simulator)

QKD Module
(QKDM)

QKD device
(or simulator)

Figure 6.1. QKD software stack architecture

43

Quantum Key Server

6.1 Design and architecture

The QKS has been designed trying to follow the microservices pattern presented in section 5.2:
for this reason, different modules interact only over the network and that can run on different
hosts. The ETSI does not provide any details on how the QKS should be implemented, neither
regarding the language nor the architecture, therefore this solution is designed trying to keep each
component as less coupled as possible, allowing it to be substituted with any other component
from different manufacturers. The following paragraphs present the components of the QKS,
while figure 6.2 describes how they are connected and which interfaces are used to communicate.

Database QKD Manager
(Core component)

External Interface
(QKS to QKS)

Northbound Interface (ETSI GS QKD 014 Extended)

Southbound Interface (ETSI GS QKD 004 Extended)

Secret manager
(Vault)

SAEs

QKDMs

QKSs

IAM
(Keycloak)

Figure 6.2. QKS components and interfaces

QKD manager (core)

The QKD manager is the core component of the system. It is the one that implements ETSI
API to provide keys to SAEs (ETSI GS QKD 014), that communicates with QKDMs to ask them
keys (over interface presented in ETSI GS QKD 004 described in section 4.1.2) and communicates
with other nodes over an “External Interface” to manage active key exchanges. It is designed to
be scaled up and down when needed, working in a completely stateless way: no information is
saved in memory, everything is stored in the database. It can aggregate different fixed-size keys
received from QKDMs into a single key of any arbitrary length, as requested by SAEs.

Identity and Access Manager

An identity and access manager (IAM) component is required to guarantee authentication and
authorization for SAEs and QKDMs. Regarding SAEs this is essential to guarantee that the
SAEs that try to access the QKS have the right to do it and to ensure that some operations are
performed only by system administrators; while regarding QKDMs authentication is required to
guarantee that the connected QKDM is a trusted one. When an entity performs a request to the
QKS, both over the Northbound and the Southbound interfaces, it is redirected to the IAM server
through and the request is handled by the QKS only if this operation is completed successfully.

44

Quantum Key Server

Database

The database component is used to store information about the other QKS in the network,
the QKDM registered to the node and the active key exchanges. There is only one DBMS
for each node, that contains information for the core component and all the attached QKDMs
With a stateless workflow, all information must be saved in the database and the latter acts as
the synchronization platform, therefore queries are performed to guarantee integrity even with
multiple instances of the QKD manager.

Secret manager

Keys are exchanged by underlying components and managed by QKDMs. These data require
secure storage, because they should not be saved in clear and accessible by everyone, therefore
this component has been introduced. There is a single secret manager in the node, that stores
keys belonging to different QKDMs. The QKS does not use directly Vault because it receives
keys from QKDMs but must manage their access and the secret engines life cycle.

6.1.1 Key Streams management

This implementation of the QKS diverges from the idea proposed by ETSI about the management
of SAEs and key streams. A key stream is a key exchange process between two connected QKDMs;
that in the ETSI standard is associated with a SAE pair, that are the only actors allowed to access
its keys. In this solution each couple of SAEs has its private key stream, leading to an exponential
growth in the number of streams with respect to the number of SAEs in the network, the QKS is
a middle layer that only allows SAEs to reach different QKDMs in a centralized way. The solution
adopted in this work follows a more flexible approach, where the QKS is the only one in charge of
managing the QKDMs and their streams, regardless of the binding between SAEs. A single key
stream is created between each QKDM pair and the keys are continuously exchanged until the
storage capacity is saturated, even if no SAEs required keys on that link: this allows to efficiently
use the QKD link, avoiding dead times and growing up storage to deal with high loads in the
network, and simplify the management of QKDMs that only has to work on a single stream.

6.2 Interfaces

The QKS communicates with other actors with three different interfaces: a Northbound interface
used to receive requests by SAEs, a Southbound interface to talk to QKDMs and an External
interface to communicate with other QKS in the network. Each interface is accessible through
a web server on the core component, which is the only component directly accessible from the
outside.

Northbound interface is the interface that maps the ETSI REST-based API [52] described in
section 4.1.3 and extend it with new functionalities to support not only the key delivering
process but also the management of QKDMs and key streams and the registration of the
SAEs, directly through the QKS that acts as the only component to interact with both for
SAEs and administrators.

Southbound interface is an extension of the ETSI Application Interfaces described in the ETSI
GS QKD 004 [46]. While the main functions are exposed by the QKDM with a web server,
which is controlled by the QKS itself, this interface extension is required to support the
registration process.

External interface is the interface in charge of supporting the communication between QKS
nodes in the network. The ETSI standard does not describe it in detail but give some
hints on the required functions: it is used to manage the key streams life cycle and the
synchronization of the keys.

45

Quantum Key Server

6.3 QKD Module

The QKDM is an implementation of the QKD Key Manager described in the ETSI GS QKD
004 standard [46] that manages the QKD devices and provides keys to applications or upper-level
entities like QKSs.

It is composed of only one module, the Key Manager which handles requests from the upper
layer through the Southbound Interface and synchronizes itself with the peer QKDM through the
Sync Interface, both managed through a web server. The QKDM controls the QKD device and
uses it to continuously perform key exchanges, saving the received key in the secret manager,
through an interface class. The device is the component that performs the key exchange, which
must implement the QKDcore interface to deliver keys of predefined length to the QKDM. It can
be both a physical device or, as in this implementation, a software simulator.

Besides the core module, the QKDM requires two additional components: a database and a
Vault secret manager instance. It can receive their access data from the QKS it is attached to,
or directly in the configuration file if it operates without an upper layer. Figure 6.3 describes the
components and interfaces of a QKDM.

Database

Key Manager
(Core component) Sync Interface

(QKDM to QKDM)
Secret manager

(Vault)

QKSs

QKDMs

Southbound Interface (ETSI GS QKD 004 Extended)

QKD device
(or simulator)

Quantum channel

Public channel

Figure 6.3. QKDM architecture and interfaces

The QKDM supports the Southbound application interface proposed in the ETSI GS QKD
004, extending it with new functionalities and implementing a new interface not described by
ETSI, called Sync Interface, to communicate with the peer QKDM for synchronization purposes.
The QKDM has been drawn as a simple component that only transfers keys from the physical
device to the upper layer, that can be operated both alone both in combination with the QKS,
therefore it does not implement any networking functionalities, that are instead managed by the
QKS, and the extension of the ETSI interface only helps in the synchronization tasks but does not
introduce any new functionality. Because the key manager is associated with a physical device
(or its simulator) in a one-to-one relationship it has not been developed as a component able to
scale up or down responding to traffic loads.

6.4 QKD Simulator

The simulator is a module developed to complete the stack that composes a QKD node in a
network, allowing a complete testing process on the QKS and QKDM functionalities even without
real QKD devices. It is composed of several elements:

46

Quantum Key Server

QKD node is the core component that models the QKD device. It contains the software to
simulate a QKD exchange and to manipulate qubits

Quantum channel and Eve is a QKD node that reproduces an eavesdropper behaviour over
the quantum channel

Entanglement pairs generator is a component used to generate and provide to the nodes
pairs of entangled qubits

QKD simulator manager is a central management unit that collects data and provides an
interface for system management.

Container Engine

Alice

Entanglement
pairs generator

Bob

QKD
node

QKD Simulator
manager

Docker container

Docker +
Qiskit framework

Docker + Qiskit +
Quantum channel + Eve

Public auth channel
(Key sifting)

Encoded qubits

Entanglement pairs
exchange

Management channel

Figure 6.4. QKD simulator architecture. Source: [8]

Quantum phenomena and qubit manipulation are performed using the Qiskit Python frame-
work, which allows simulating quantum operations and measurements through the description of
quantum circuits and algorithms, treating sets of qubits as Python objects. that can be serialized
to send them over the network. To reproduce a malicious actor that intercepts communications
on the quantum channel a container that acts as an eavesdropper has been introduced: because
it is impossible to mimic quantum channel properties on a TCP/IP communication, packets are
diverted to Eve that can deserialize and manipulate them as common objects.

Currently, the simulator supports BB84 and E91 protocols, but thanks to its modularity it
can be extended to other overriding methods of an abstract class that is used to manage the life
cycle of key exchanges. This class is the one imported into the QKDM QKD core component
to perform key exchanges. Devices are deployed as Docker containers, that communicates over
HTTP requests handled with a web server: the basic setup is composed of two devices (Alice
and Bob) but an eavesdropper entity can be deployed in a new container (Eve) and in the case
of entanglement-based protocols the relative component can be added in the same way. The
high-level architecture of the simulator is represented in figure 6.4

The public classical channel required by each protocol is implemented as a standard TCP/IP
channel and two different strategies have been proposed to provide authentication: SPHINCS+
and AES with Galois/Counter Mode (AES-GCM) algorithms. More information about the im-
plementation details and the obtained results can be found in the reference paper [8].

6.5 Criticalities

This implementation, despite being fully functional and providing a first solution in the de-
ployment of QKD in a softwarised infrastructure presents some major criticalities. In terms of

47

Quantum Key Server

functionalities, it does not support multi-hop key exchanges setting a not negligible limitation
in the usability, especially in a scenario where QKD is being gradually adopted and therefore
a large number of QKD devices is not available from the early stages. Moreover, it does not
support networking functionalities and the SAEs location is discovered through a polling process
(a QKS ask all the other QKS in the network if the requested SAE is registered on their node)
that generates a lot of network traffic and a slow convergence time.

Regarding performances this version does not reach a sufficient speed to be used in a real-
world scenario with several SAEs and nodes: on average it requires a couple of seconds to share
a key of proper length between two peers. This is caused by the not optimal management of the
interactions between components, which are synchronous and therefore block the system while
waiting for a response, and the usage of locks to prevent race conditions among QKS replicas.

From the security point of view the presence of a single database and a single secret engine
shared by all components, that does not provide any form of isolation and assigns to each element
the same credentials and the same authorizations is a major vulnerability that should be addressed:
if a QKDM gets compromised an attacker can see all the keys stored in the secret engine and
all the data in the database and can perform administration task tanks to the credential shared
with the QKS received in the module registration process. Some other relevant security issues
have already been identified in the reference paper [8], regarding the communication between
components and network nodes Communications that travel outside the infrastructure borders
(horizontal communication) require both authentication and encryption: the former because peers
must be sure that their peer is trusted, the latter because even if no keys are exchanged in clear
over these interfaces they can leak data about the network topology and its status. Currently,
the QKS-to-QKS messages are not protected and, even if it is extremely easy to set up a channel
secured with TLS, it is essential to consider that in a quantum scenario using algorithms that are
not quantum-safe does not provide real security, therefore the only viable options are the one that
relies on post-quantum cryptography or that directly uses keys obtained by QKD devices. Despite
the ETSI standard proposes TLS 1.2 as the minimum requirement for communications between
components on the same logical network node (vertical communication), a similar approach to the
one proposed for horizontal communication should be considered, also because keys are exchanged
over the Southbound and the Northbound interfaces and in a cloud environment there is no
guarantee that components are deployed on the same physical machine.

48

Chapter 7

Quantum Key Server 2.0

The Quantum Key Server 2.0 is the core element of this work. This new version aims to overcome
the issues of the first version in terms of speed with the use of new components and a change
in the programming pattern and implements support for long-distance key exchange thanks to
the development of a new routing module. This chapter describes the enhancements, focuses on
interfaces and implementation details and shows a standard workflow for the application.

7.1 Overview

In the early adoption stages of QKD, networks will have small amounts of QKD devices, hence
not all nodes will be able to share keys with PTP exchanges. Moreover, in real scenarios, PTP
exchanges are limited by a distance of hundreds of kilometres: the development of multi-hop key
exchanges procedure allows distant peers to share keys broadening the usability of the system.
The new routing module build paths to reach other peers and managing dynamic scenarios where
QKDMs and SAEs are registered and removed frequently, enabling the support for long distance
exchanges in a large network. The workflow of this exchange process is described in section 7.7,
while a detailed description of the routing module can be found in section 7.5

The first QKS version does not ensure a response time that is compatible with current protocols
and does not provide a key retrieval rate that reaches the one provided by physical devices.
These issues are caused by synchronous calls interacting with other modules and a not efficient
management of the concurrency, thus a new asynchronous approach has been used to overcome
them and a new strategy has been used to guarantee data consistency among multiple QKD
manager instances without using any lock that can keep the whole system in a waiting state.
Detailed information on the asynchronous behaviour is shown in section 7.4.1 Regarding secure
access, the database and the secret engine management have been improved allocating a private
database and a secret engine for each QKDM during the registration phase: in this way, each
QKDM can only access its information and its keys and is completely isolated from the others.

7.2 Architecture

This version keeps a similar architecture to the first one presented in the previous chapter because
it demonstrated high flexibility and has been designed to be integrated into a cloud-native scenario.
Two new components have been added to improve the networking functionalities, keeping the
separation of duties of the microservices pattern: the routing module and a distributed cache.
This section shows the chosen products, while figure 7.1 present the QKS architectural schema.
The architecture is not bound to specific products, hence components can be replaced with others
that accomplish the same tasks. Each component has a corresponding Docker image that is used
for the deployment.

49

Quantum Key Server 2.0

Distributed cache
(Redis)

Database
(MongoDB)

QKD Manager
(Core component)

External Interface
(QKS to QKS)

Northbound Interface (ETSI GS QKD 014 Extended)

Southbound Interface (ETSI GS QKD 004 Extended)

Routing module

Secret manager
(Vault)

SAEs

QKDMs

QKSs

IAM
(Keycloak)

Figure 7.1. QKS 2.0 components and interfaces

QKD manager (core)

The QKD manager extends the one in the previous version with support to multi-hop key streams
and exploiting the asynchronous pattern. While the core functionalities for key retrieval have been
kept unchanged, changes have been performed in the code to produce a faster and more reliable
API server that can handles REST calls received over all three interfaces. In the case of long-
distance peers, it performs multi-hop exchanges generating a key that is forwarded encrypted
with QKD keys in a hop-by-hop manner to the destination. It is responsible for the creation of
QKDM databases and secret engines, and their deletion when the modules are unregistered from
the node.

Identity and Access Manager

An identity and access manager (IAM) component is required to guarantee authentication and
authorization for SAEs and QKDMs. Keycloak1 is an open-source IAM that can simplify the
management of both authentication and authorization policies in an environment with a high
number of actors. When an entity performs a request to the QKS core, either over the Northbound
or the Southbound interfaces, it must be authenticated with the OpenID Connect2 protocol. Each
SAE, administrator and QKDM has a corresponding user and the QKS is described as a client.
Before performing requests actors should require an access token logging into Keycloak with their
credentials. The core components receive the token embedded in the request headers and forwards
it to Keycloak which performs validation. The username and the roles of the sender are used to
determine if the request is valid or not. Administrators must register SAEs and QKDMs before
initializing them, providing them credentials and configuration data needed to require their token.

1https://www.keycloak.org/

2https://openid.net/connect/

50

https://www.keycloak.org/
https://openid.net/connect/

Quantum Key Server 2.0

Database

MongoDB3 has been chosen for this module because it is a fast and distributed database with
native support to replicas, hence it can easily scale up when needed. A NoSQL document-based
database is a crucial choice for this application: each action performed by the QKD manager
require a lot of information, hence saving them in a single document and not sparse over multiple
tables allows to reduce query complexity and optimize the transfer rate reducing the number of
transactions. Moreover it simplifies the data management at application level because MongoDB
objects can be easily manipulated in Python with dictionaries. A detailed description of the
MongoDB collections and how data are organized can be found in section 7.4.2.

Secret manager

Vault4 is an open-source secret manager developed and distributed by Hashicorp that allows to
securely store structured data, allowing data to keep the same structure used for MongoDB,
accessible via REST API. The QKS uses Vault to temporarily store secret keys obtained through
multi-hop exchanges that are not managed by QKDMs, over than managing the secret engines
life cycle when QKDMs are registered or removed. Each QKDM uses it private secret engine
to store data retrieved from the corresponding QKD device. A detailed description of the data
organization can be found in section 7.4.3.

Routing module

The routing module is the component that manages the information about the network topology
and the status of each QKD link. This component sends and receives information over TCP
connections from its neighbours in the network through a customized routing protocol based on
OSPF [25]. The module updates the network topology based on data received from its peers
and on messages from the core component over Redis topics, then it pushes routing tables to the
distributed cache, allowing fast access for the QKD manager. This module is not designed as a
scalable component: it is not a stateless application, the network topology is stored in the main
memory and the received packets are not saved anywhere, therefore multiple instances can not
share the same data guaranteeing consistency. Despite this pattern does not respect the guidelines
for cloud-native applications, it drastically reduces the complexity of the module, removing the
need for a distributed graph structure, without a high impact on performances: with the current
size of QKD networks of hundreds of nodes and tens of neighbours at most, a single instance can
easily manage the routing work by itself, as demonstrated in the tests 9. This module is described
in detail in section 3.1.2

Cache and message queue provider

The core component requires fast access to routing tables generated by the routing module,
while the latter requires updates from the former when change happen in the registered SAEs
or QKDMs. Redis5 is an open-source in-memory data store that is used both as distributed
cache and as a message broker. It has been chosen because it is faster than a common database,
which helps in the management of routing tables that are updated and accessed frequently and
because it supports message queues and hence avoids the need for another component, keeping
communication between the core and the routing component in a single element. The routing
module writes routing tables on Redis cache, while each QKD manager instance publishes updates
on the message queue on a shared topic, exchanging information asynchronously. This pattern
ensures data consistency in presence of multiple instances of the core component and avoids any

3https://www.mongodb.com/

4https://www.vaultproject.io/

5https://redis.io/

51

https://www.mongodb.com/
https://www.vaultproject.io/
https://redis.io/

Quantum Key Server 2.0

time loss due to unavailability of the peer if a crash occurs. Detailed information on Redis can
be found in section 7.4.4

7.3 Interfaces

The three interfaces presented in the previous chapter are kept in this QKS version, but they
have been extended to support new functionalities or to simplify the management of the system
for the administrators. This section describes in detail the methods of each interface and their
enhancements to the ETSI standard.

7.3.1 Northbound interface

The Northbound interface has been extended to support multi-hop key streams and the related key
exchanges, that is performed by the QKS, and provide better management of QKDMs regarding
QKDMs key streams avoiding the need for administrators to directly interact with the underlying
modules. All the methods in this interface require authentication: they must be called by a
user with sae or admin role, that must authenticate himself against Keycloak, embedding the
returned token in the Authorization header. The functions are described here below, while
table 7.1 summarizes them and their access URL.

getStatus is a function of the ETSI standard. It is used to retrieve information about the avail-
able keys that can be shared with the SAE specified in the slave_SAE_ID path parameter.

getKey is the ETSI function called by the first SAE to retrieve keys of any length and their
corresponding identifier. If there are not enough keys all the available ones are returned,
trying to satisfy the request as close as possible. In the case of long-distance exchange, this
function generates the key and forwards it to the next-hop through the forwardData function
of the external interface, matching the size and number in the request. During the execution
of this method, a reserveKeys request is sent to the peer QKS and keys are returned only
if it is successful. This version supports only one extension, the require_direct that can
force the QKS to return nothing if there is not a direct QKD link. The response body always
contains a field to specify if the returned keys are retrieved from a direct or a multi-hop
stream. Keys are returned encoded in base64 [67].

getKeyWithKeyIDs is the ETSI function called by the peer SAE to retrieve keys with the
identifiers received from the first SAE. Because SAEs does not know stream details, this
method can retrieve keys from different streams. It returns all the available keys among the
requested ones: if some are not available the methods successfully returns only the available
ones, matching the getKey behaviour. Keys are returned encoded in base64.

getQKDMs returns the list of the QKDMs connected to this QKS, along with their information
such as the protocol, the standard key size and the peer QKDM. It is not part of the ETSI
standard and can be called only by admins.

registerSAE is the method used by SAEs to register themselves to the server. It saves the
SAE identifier and sends it to the routing module through Redis so that the SAE can be
discovered in the other network nodes. The SAE identifier must be unique not only in the
node scope but in the entire network. It is not part of the ETSI standard. If called by a
SAE it can register only itself, an administrator instead can register any SAE.

unregisterSAE is the method opposite to the previous one: it is used to unregister a SAE from
the QKS, deleting its information and notifying the routing module about that. After the
unsubscribe process the SAE can be registered to any other QKS in the network. If called
by a SAE it can unregister only itself, an administrator instead can operate on any SAE.

52

Quantum Key Server 2.0

startQKDMStream is the method called to start a new direct stream between a pair of
QKDMs. This QKS implementation only supports one stream between each QKDM pair,
therefore this function fails if a stream is already present. The QKS invokes open_connect
on the QKDM and then informs the destination QKS calling the createStream function of
the external interface, therefore the synchronization is managed automatically by the QKS
and it is not required to call this function on the peer. When the stream has been created
successfully the information is pushed to Redis and the routing module shares it with the
other nodes. It is not part of the ETSI standard and can be called only by administrators.

deleteQKDMStream is the method opposite to the previous one. It is used to delete the key
stream between a pair of QKDMs. It should be called before the unsubscribe process of the
connected QKDM, to safely remove it. The QKS invokes the close method on the QKDM
and informs the destination QKS calling the closeStream function of the external interface,
therefore the method should be called on one QKS only. The information is pushed to Redis
so that can be shared through the network and the link will be considered inactive until
a new stream is opened. It is not part of the ETSI standard and can be called only by
administrators.

registerQKS is a method used to register a QKS in the network. This process is required only
once when a new QKS is connected to the network for the first time, and it should be
registered to the peer QKS it will be connected to with a QKD link: its information will be
spread by the routing modules reaching all the other nodes after the first stream has been
created, but a QKS will refuse a connection with a QKDM that allows reaching an unknown
QKS. It is not part of the ETSI standard and can be called only by administrators.

Method name URL Access Method

getStatus /api/v1/keys/{slave_SAE_ID}/status GET

getKey /api/v1/keys/{slave_SAE_ID}/enc keys POST

getKeyWithKeyIDs /api/v1/keys/{master_SAE_ID}/dec keys POST

getQKDMs /api/v1/qkdms GET

registerSAE /api/v1/saes POST

unregisterSAE /api/v1/saes/{SAE_ID} DELETE

startQKDMStream /api/v1/qkdms/{QKDM_ID}/streams POST

deleteQKDMStream /api/v1/qkdms/{QKDM_ID}/streams DELETE

registerQKS /api/v1/qks POST

Table 7.1. QKS Northbound interface methods summary.

7.3.2 Southbound interface

The Southbound interface does not provide any new functionalities but allows delivering private
access data for each QKDM to access their database and secret engine. The two functions are de-
scribed here below, while table 7.1 summarizes them and their access URL. Both methods require
authentication: they must be called by a user with qkdm or admin role, that must authenticate
himself against Keycloak, embedding the returned token in the Authorization header.

registerQKDM is called by the QKDM that want to start the registration process. It is the
function that manages the registration by saving QKDM information received in the request
body and that creates the new database and secret storage accessible only to the subject
QKDM, returning them in the response body. The registration process does not create any
stream by default. If this method is not called by an admin the module identifier must
match the username retrieved from the authentication token.

53

Quantum Key Server 2.0

unregisterQKDM is the function that performs the opposite job with respect to the preceding
one: it deletes the QKDM database and secret engine, if and only if there are no active
key streams for that module. This function is not called by the QKDM itself but by an
administrator.

Method name URL Access Method

registerQKDM /api/v1/qkdms POST

unregisterQKDM /api/v1/qkdms/{qkdm_ID} DELETE

Table 7.2. QKS Southbound interface methods summary.

7.3.3 External interface

The External interface is the interface in charge of supporting the communication between QKS
nodes in the network. The ETSI standard does not describe it but give some hints on the main
functions: it is used to manage the synchronization of streams and extend the previous version
with support to multi-hop key streams required when two nodes are not directly connected by a
QKD link. Despite there were faster alternatives, such as messages exchanged over TCP sockets,
the REST interface has been kept to guarantee consistency among every interface exposed by the
QKS and because it does not introduce relevant overheads in the requests execution time.

createStream is used to notify the destination QKS about the creation of a new key stream,
both for streams over single and multiple QKD links. Tt calls the open_connect function
on the underlying QKDM. The creation of a new stream is signalled to the routing module
through Redis.

closeStream is used to notify the closure of a key stream. The QKS invokes the close method
on the QKDM and notifies the routing module through Redis.

reserveKeys is the function used to synchronize the key retrieving procedure. It notifies the
destination that the master one has delivered a set of keys to a SAE, and their identifiers
are sent in the request body: in this way, the peer QKS can reserve those keys for the right
SAE and will not allow any other application to retrieve them.

forwardData is the function that allows sending encrypted data in a hop-by-hop manner. Data
received through this function are decrypted and, if the destination is not the current QKS,
encrypted again with a new key and sent to the next hop in the path. If an error occurs in
the forwarding chain the error is notified back in the response body. It is used to forward
keys for multi-hop exchanges to the end peer.

Method name URL Access Method

createStream /api/v1/streams POST

closeStream /api/v1/streams/{key_stream_ID} DELETE

reserveKeys /api/v1/keys/{master_SAE_ID}/reserve POST

forwardData /api/v1/forward POST

Table 7.3. QKS External interface methods summary.

54

Quantum Key Server 2.0

7.4 Components details

The QKS has been designed as a cloud-native application, following the microservices pattern,
to create a scalable and maintainable software stack. Each component is developed as a separate
service, hence it interacts with the others only through the network, can run on a different physical
host and can be substituted with a new version (or a new product, in the case of components by
external vendors) without affecting the system. To reach this goal each component corresponds
to a separate Docker container, either built from a custom image or the official image provided by
the component developer, and all the interactions are carried over the network. The QKS code is
available on GitHub 6, where also a Docker compose file can be found to simplify the deployment.
This section describes why and how the asynchronous pattern has been used and the details of
the components chosen.

7.4.1 Asynchronous pattern

The first QKS version has some limitations in terms of parallelism that slow it down remarkably:
the software has been developed in Python 3 following a multithreaded synchronous approach
that does not efficiently exploit the CPU resources. Multithreading in Python is limited by
the Global Interpreter Lock7 (GIL), a mutex lock managed by the interpreter itself that blocks
concurrent access to the same object preventing multiple threads from executing Python bytecodes
at once. Despite it ensures the absence of race conditions, it forbids the program to run on
multiple processor cores. While the use of other interpreters that have removed the GIL, is
indeed possible, the standard CPython interpreter has been preferred also in this new version
due to its compatibility with tools and libraries and its average speed. The asynchronous pattern
has been introduced since Python 3.4 to provide an event loop and non-blocking version of I/O
functions: tasks are assigned to the event loop, that pauses them until they are not completed,
and only at that moment they are resumed and the computation can continue. Because the event
loop knows which tasks are ready to be resumed it can avoid time wasted on operations in a
waiting state. Tasks are not spawned in a new thread, but a fixed number of threads is allocated
at the event loop creation and tasks are assigned to a thread when the previous one is completed,
to reduce the time spent for the context switching procedure to swap out the currently active
thread.

The two components that have been coded in this project are the routing module and the
QKD manager. Both have been developed in Python, version 3.9. The QKD manager exposes
the REST APIs through the Quart8 framework which supports asyncio standard library over the
Hypercorn9 asynchronous web server to handle incoming requests, while the routing modules di-
rectly utilizes asynchronous sockets for TCP connections. Each operation that can be parallelized
is executed in a task and pushed in the main event loop; the interactions with MongoDB, Vault
and Redis and the requests to QKDMs and other QKSs are performed through asynchronous
drivers and libraries. To allow multiple replicas of the QKD manager working in parallel the
locking access to the database of the first version has been removed, ensuring consistency through
checks inside queries and not by blocking the other instances.

7.4.2 Data model

This section wants to describe how data are organized and managed inside the QKS application
and in the MongoDB database. Each QKS and QKDM has a separate database that is used only
by itself, even if they are hosted on the same MongoDB instance for performance and memory

6https://github.com/ignaziopedone/qkd-keyserver/tree/async

7https://wiki.python.org/moin/GlobalInterpreterLock

8https://gitlab.com/pgjones/quart

9https://gitlab.com/pgjones/hypercorn

55

https://github.com/ignaziopedone/qkd-keyserver/tree/async
https://wiki.python.org/moin/GlobalInterpreterLock
https://gitlab.com/pgjones/quart
https://gitlab.com/pgjones/hypercorn

Quantum Key Server 2.0

reasons. The QKS creates the database for the QKDMs during the registration phase, along with
the users and roles required to access them privately.

The data structure inside the database takes full advantage of the No-SQL document-based
architecture of MongoDB: in such architecture tables are replaced with collections and data are
stored in JSON documents that do not have a fixed structure, but can be organized in any way.
Each object is identified by its _id field, which must be unique in the collection. Documents are
retrieved and inserted through asynchronous drivers that provide a non-blocking behaviour and
are managed in Python as dictionaries.

Figure 7.2. Structure of the collections in the QKS database

The QKS database has 3 collections:

quantum key servers contains information about the other QKS in the network, how to reach
them, which SAEs are connected and which other QKS they can reach. SAEs and links
information are not managed by the core component but are used by the routing module as
a backup store to recreate the network graph when the system is initialized.

qkd modules contains information about the QKDMs connected to the QKS: their name, their
address, which QKDM they can reach, the QKD protocol used and some QoS parameters.
Information in this collection is inserted during the registration phase and are used for the
key stream creation process.

key streams describes active key streams between the QKS and a peer which are connected
through a QKDM pair. Taking advantage of the free structure of MongoDB objects, data
about the QKDM and the destination QKS are replicated here to avoid expensive join
operations between collections: the core component can retrieve the key_stream object to
obtain all the information needed with a single lightweight query. To synchronize requests
between the two QKSs, keys that have been retrieved in one peer are marked as reserved in
the other: their identifiers and the SAE they belong to are saved in this collection, allowing
the core component to check for their presence before interacting with the QKMD or Vault.

Figure 7.2 shows the document structure of the QKS collections, while tables 7.4, 7.5 and 7.6
describe the fields of the corresponding collection.

56

Quantum Key Server 2.0

Name Type Description

_id String name of the QKS described by the object

address Object address of the QKS, contains both the IP and the port

connected_sae Array list of names (strings) of SAEs registered to the QKS

neighbor_qks Array
list of names (strings) of QKSs connected with this node though
QKDM pairs

Table 7.4. Description of the quantum_key_servers collection in the QKS database

Name Type Description

_id String name of the QKDM described by the object

address Object address of the QKDM, contains both the IP and the port

reachable_qks String name of the QKS which the other peer is connected to

reachable_qkdm String name of the QKDM this one is connected to

protocol String name of the QKD protocol used by the module

parameters Object set of parameters for the QKDM, they can be of any type

Table 7.5. Description of the qkd_modules collection in the QKS database

7.4.3 Secret engine

Vault is used as a secret engine both for the QKS and the QKDMs: keys retrieved by QKDMs from
QKD devices or by QKSs from multi-hop exchanges are securely saved into it in an encrypted form.
It supports several types of secret engines that allows storing different types of data, according to
the scenario; the QKS and the QKDM use the standard Key/Value secret engines which support
key-value objects. The interaction with Vault is performed in an asynchronous and non-blocking
way through a REST interface exposed by the Vault server. Information are organized in a folder
structure and they are accessed through a path specified in the HTTP request. When an object
is accessed it is not possible to retrieve a subset of its field, but only the complete retrieval is
supported, hence each key is saved as a separate object.

Keys can be accessed through the path

/{secret_engine}/{key_stream_ID}/{key_ID}

where:

secret engine is the name of the secret engine used, which corresponds to the name of the user
(the QKDM or the QKS)

key stream ID is the identifier of the stream that the key belongs to when the requests come
from QKDMs while QKSs must use the string “indirect” for multi-hop exchanges

key ID is the identifier of the key

Keys are returned as a key-value pairs where the former is the key_ID converted to string and
the latter is the base64 encoded key. Keys and values in the Key/Value secret engine have to be
strings, hence base64 representation is required to store the set of bytes of each secret key.

7.4.4 Redis

Redis is an in-memory fast database used for the communication between the routing and the
core module. It allows the former to push the routing tables that can be accessed by the core

57

Quantum Key Server 2.0

Name Type Description

_id String identifier of the key stream described by the object

dest_qks Object
object containing name and address of the QKS the stream
connects to

qkdm Object
object containing name and address of the QKDM which
manages the stream

standard_key_size Integer standard size for the key retrieved by the stream, in bits

reserved_keys Array
array of objects that describes the reserved keys with their
identifier, their size and the SAE they are reserved for

Table 7.6. Description of the key_streams collection in the QKS database

component when it must check for known SAEs and the path, working as a distributed cache,
faster than a database. Redis supports message queues, thus it is used to send notifications about
new SAEs and new QKD links attached to the corresponding QKS through its PubSub module.
Such centralized management of these communications is essential when the core component runs
in several replicas, removing the complexity of sharing routing tables among them all. These
communications are asynchronous and do not require an immediate interaction from the receiver,
therefore pushing routing tables or sending messages neither lead the system to a waiting state
nor require any synchronization between the core and the routing module.

Routing tables are saved as HashSets: a set of key-value pairs identified by a primary key
used to retrieve them. As for MongoDB and Vault, they are managed in Python as dictionaries.
One entry in the routing tables is generated by the routing algorithm for each SAE and pushed
to Redis, deriving the information from the network graph. The SAE_ID is used as the primary
key of the objects; the structure of each object is described in table 7.7.

Name Type Description

SAE_ID String name of the SAE, used as a key to retrieve the table

next_hop String ID of the QKS which is the next node in the path to reach the SAE

dest String ID of the QKS in which the SAE is registered

cost Integer cost of the entire path from the current node to the destination

length Integer number of nodes in the path to reach the destination

Table 7.7. Description of the routing table entries in Redis

Three different message topics are used for the communication from the core to the routing
module:

sae for information related to SAEs registration or removal

qks for the registration of a new QKS in the network

link for the creation or closure of a key stream between a QKDM pair

A dedicated task in the routing algorithm waits for messages over these topics and reacts when
one is received. Data stored into Redis are ephemeral: they are not saved on persistent storage,
therefore they are deleted when the component is restarted. This behaviour is possible because
routing tables are recomputed frequently and the information only depends on messages received
through the network. Data related to SAEs and QKDMs attached to the QKS the module is
running on are persisted in the database. More details on how messages are formatted to describe
events and on the used libraries can be found in appendix B.

58

Quantum Key Server 2.0

7.5 Routing module

The routing module is the component in charge of receiving information from other nodes, noti-
fying them about new SAEs and active QKDMs on its QKS and computing the routing tables
for its node. It is an essential component of this QKS version because it guarantees interaction
in a truster repeater network and allows QKSs to know how to reach their peers. This section
describes the routing algorithm used, the format of the packets exchanged, the function used to
compute the costs of each path and the structure of the routing tables.

7.5.1 Routing algorithm

The routing module adopts an approach similar to the one chosen in the DARPA [26] and the
SECOQC [68] networks: it uses a protocol similar to OSPF [25], in a simplified form that does not
support routing over different Autonomous Systems (AS) nor QoS based on physical properties of
the link (e.g. error rate or jitter), based on the Link State algorithm. A distributed solution like
this one has the advantages of avoiding a single point of failure and letting each node be free of
taking its decisions, but concerning a centralized solution like SDNs (described in section 3.1.4) it
is slower in reacting to changes in the topology and has not the possibility to take global decision
to ensure a higher QoS. A routing module sends Link State Advertisement (LSA) packets each
time there a timer expires or after any change in the connected SAEs or the active QKDMs.
Each module has a task waiting for packets on a network socket, which receivers and decode data
from. Packets are sent only to neighbour QKSs, which are the QKSs reachable with a direct
QKD link over a pair of QKDMs; when a node receives packets it forwards the packets to all
its neighbours except the sender one: in this way packets reach each node in a hop-by-hop way.
Each packet contains a timestamp parameter that contains the exact creation time of that packet,
useful to block packets that for any reason reach their destination not in order or too late: if a new
packet carrying the same information about link status or the connected SAEs has already been
received the old information is discarded and not forwarded. Each link or SAE is marked with
its receiving time and if no updates are received in the last three timer periods the information
is discarded because too old: this ensures that the network graph at each node converges to the
current topology and thus that broken links, due to a crash or some networking issues, are not
used until they do no notify their presence again. Five events can trigger the LSA packet to be
sent: the registration and the removal of a SAE, the opening of a new key stream and the closure
of it and the expiration of a timer. Despite the first four events can in theory be enough to share
all the changes in the topology, the timer is required in static situations when there are no updates
and a mechanism to refresh the routes and to notice when a QKS (or its routing module) is no
more active is required. At the timer expiration, two packets are sent, one for SAEs and one
for the QKD links. By default, the timer is set to 10 second, but it can be changed adapting to
channels characteristics and the QoS required.

Figure 7.3 is an example of two possible packets: packet pA is created after the registration of
SAE A1 and carries information about SAEs connected to QKS A, packet pB is created due to the
opening of a key stream between a pair of QKDMs at QKS B and QKS C and carries information
about the link and their costs. When SAE A1 is registered the corresponding routing module
receives a notification on the Redis topic and triggers the packet creation procedure: the list of all
SAEs connected to the source node is encoded in a packet of type S, the timestamp is added and
the packet pA is sent to each QKS which has a direct QKD connection with the source (QKS B and
QKS C in the figure). When the peers receive the packet they decode it, look at the timestamp and
check if they have received newer updates or not. If the packet is not discarded it is forwarded to
the neighbours except for the one which has sent it (in the example QKS B forwards packet pA to
QKS C and QKS D), then the other information is processed: if there are new SAEs or known SAEs
are not found in the packet the network graph is updated and the routing tables are renewed.
QKSs that receives the same packet more than once (like QKS C that receives pA from QKS A and
QKS B) will discard the following looking at the timestamp. When a key stream is opened or
closed between two QKDMs the routing modules which are listening for any event get triggered
and a packet of type K is generated at both ends and sent to their neighbors. The cost of each
QKD link is computed and appended to the corresponding QKS ID in the packet. The packet is

59

Quantum Key Server 2.0

QKS A

SAE A2

SAE C1

QKS B

QKS C

QKS D

SAE A1

SAE B1

5

10

3 7

pB

pA

Figure 7.3. Routing algorithm example: packets created after the connection of SAE A1 (pA) and
the QKD link between QKS B and QKS C (pB).

forwarded and processed following the same logic of the S packets, but the update of each link
in the graph is performed also for changes in the cost and not only based on the presence or
absence of the information. QKSs at both ends send the link information because the graph can
be disconnected and thus this is required to ensure all nodes are reached, the timestamp is used to
ensure that the information is processed only once even if two packets from two different sources
are received (in the example QKS A will receive the same information about link B-C both from
QKS B and QKS C and both packets are processed because they come from different sources, but
the information on the same link does not trigger the graph update twice). Algorithm 1 describes
the logic of the module main functionalities.

7.5.2 Routing packet

Packets can be sent over the network both as serialized JSON objects or as a set of fields encoded
into a byte array, encapsulated into TCP packets. Two versions have been developed to adapt
to the different systems the QKS is deployed on: the JSON one guarantees large interoperability
among programming languages and simple management in the code, allowing developers to extend
the routing functionalities more easily, while the raw byte-array can be managed also by simpler
devices that work at a lower level. The module uses Python asyncio standard library to send and
receive them, working in an asynchronous and thus more efficient way than standard blocking
sockets. Figure 7.4 shows the packet structure, both in the JSON and in the raw encoded version,
and the fields are here described:

version is an integer value that describes the version of the algorithm used, to support future
updates in the structure. By default, it is set to 1.

type is a character that indicates which information the packet carries. The two possible values
are S for SAEs and K for QKD links. In this way, all packets exchanged by the routing
module follow the same structure, independently from their data.

source is an object that contains the identifier of the source QKS, its address and the port it
exposes. This is required because when a node discovers a new QKS it has to save in the
database the information on how to reach it, allowing the core component to interact with
it. In the raw encoded version, the field is split into three separate components:

60

Quantum Key Server 2.0

Def receiver:
data = socket.read()
packet = decode(data)
if packet.timestamp > old timestamp then

old timestamp = packet.timestamp
forward(packet)
network graph.update(packet)
newtwork graph.compute paths()

end

Def sender(packet):
packet = new Packet(type, neighbors, link costs)
for neighbors do

socket.send(packet)
end

Def forward(packettype):
for neighbors do

if neighbor != packet.forwarder then
socket.send(packet)

end

end

Def wait for changes:
while true do

event = wait event()
network graph.update(event.type, event.subject)
newtwork graph.compute paths()
sender(event.type)

end

Def timer(time):
while true do

wait(time)
network graph.compute paths()
sender(S)
sender(K)

end
Algorithm 1: Routing algorithm pseudocode.

routing contains the address and the exposed port of the routing modules of the source QKS.
This is required because the routing module exposes a different port and can be deployed
on a different node with respect to the core component. In the raw encoded version, the
field is split into two components:

forwarder contains the ID of the last QKS which forwarded the packet, it is used to avoid
sending the packet to nodes that already received it.

nAdj is an integer value used only in the raw encoded version, which specifies the number of
items in the neighbors list.

neighbors is an array that contains the identifiers of the SAEs connected to the sender QKS in
the case of a S packet and, in the case of a K packet, the other QKSs reachable from the
source through QKDM links and their costs. The cost field is not present in the case of an
S packet in both packet versions.

timestamp contains the timestamp at which the packet has been created, encoded as a string.

61

Quantum Key Server 2.0

authentication contains the information used by the routing module to validate the identity
of the sender and the integrity of the packet information. In the JSON version bytes are
encoded in a base64 string because raw bytes are not supported in JSON.

Despite the presence of the authentication field, this version currently does not implement an
authentication mechanism, but it can be extended easily without changes to the packet structure.
Authentication is required in a real scenario because routing modules have to be sure about the
identity of the packet sender and that data has not been modified, to avoid building a wrong
network graph and thus choosing wrong paths. All routing modules in the network must use the
same packet version to work properly, the coexistence of both versions is currently not supported.
To ensure that all data have been correctly received before decoding a packet, its structure is
always preceded by its size in bytes: if the amount of received data does not match the size the
packet is immediately discarded. Table 7.8 summarizes the packets fields.

Figure 7.4. QKD LSA packet structure in JSON (left) and raw encoded (right) versions

Field name Description

version version of the packet. 1 by default

type type of information carried, S for SAEs and K for QKDM links

source QKS source ID, address and port

routing source routing module address and port

forwarder ID of the last QKS which forwarded the packet

neighbors list of connected SAEs or active QKDM links, based on the type field

timestamp packet creation time

authentication data for authentication and integrity checks

Table 7.8. QKD LSA packet summary.

7.5.3 Cost function

To compute the best path from a point to another is necessary to define a cost function for each
link, which allows choosing the better option between two alternatives in a deterministic way.
The cost of the path is a crucial aspect of the routing algorithm and for the QKD network: it
drives the path choice and thus all the multi-hop exchanges between distant QKSs. The chosen
path to a specific destination changes accordingly to the amount of key material available in each

62

Quantum Key Server 2.0

node over the path, allowing QKSs to choose always the path with the highest success rate for a
key request. Weighing the cost on the variation of available key material is a strategy that allows
adapting in advance to QKD links which are overloaded by too many exchanges. The cost of each
QKD link is computed with the following formula:

costi(t) = a0 + a1
avk(t)

avtot
+ a2

avk(t)− avk(t− 1)

avtot
(7.1)

where costi(t) is the cost for the link i at time t, a0, a1 and a2 are fixed coefficients defined in
the configuration, avtot is the maximum number of keys that can be stored over the link i, avk(t)
and avk(t − 1) are respectively the number of available keys on the link at time t and the one
obtained in the previous computation. The number of available keys on each link is obtained by
the routing module querying the corresponding QKDM. The parameter a0 is a positive integer
number that defines the maximum cost for the link (by default is 100), a1 and a2 are negative
integer numbers (−50 and −25 by default) that weigh respectively the influence of the currently
available keys and the variation of available keys with respect to the preceding computation on
the link const.

The routing modules computes the routing tables executing the Dijkstra algorithm on the
graph that represents the network topology, obtaining the least costly path to reach each destina-
tion. Dijkstra algorithms guarantee to find the cheapest path to reach each node from a specified
starting point, if and only if there are no negative cost links; for this reason, the cost of a QKDM
link is limited to 0. The cost of the path is computed as the sum of the costs of each link it is
composed of:

costp(t) =
X
i

costi(t) ∀i ∈ path (7.2)

where costp(t) is the cost for the path p at time t while costi(t) is the cost of the link computed
as in equation 7.1. In this implementation, a linear equation has been chosen to compute the
cost but other alternatives can be easily implemented, considering not only the available keys but
also other parameters like the load on the public channel [28] or response time of the QKDMs
which may help in describing the load and thus react in advance. The current QKS core version
does not support multi-path routing and keys for a long-distance exchange are forwarded over a
single path, therefore the Dijkstra algorithm is configured to search for the cheapest path only
but in future versions it can be adapted to compute several paths ordered by cost allowing the
core component to use different paths for different exchanges based on some QoS parameter or to
split each key reducing the risk of attackers.

7.5.4 Routing tables

Routing tables are objects that describe the next hop in the path to reach each destination. They
are derived from the graph after executing the Dijkstra algorithm. To keep them up to date they
are recomputed after receiving any packet that causes a change in the network graph, both in
terms of nodes or in links costs. The routing modules pushes them to Redis, allowing the core
component to fastly access them. Their fields and detailed information about the interaction with
Redis can be found in section 7.4.4. Figure 7.5 shows an example of the information stored in the
routing tables: an entry is generated for each SAE, even if several SAE are registered on the same
QKS and thus they share the same path. This allows the core component to perform fast research
of a SAE without checking in the database the QKS where it is registered. If a destination is
known but currently unreachable the routing table is marked with an empty next-hop and the
core component can notify the calling SAE about this issue. In Redis tables are saved as hash
sets, hence there is not a real tabular structure and the figure is used only as an example.

7.6 QKD Module 2.0

The QKDM architecture has not been updated with respect to the previous version. The main
changes refer to the asynchronous pattern: the QKDM exploits it to improve its performances,

63

Quantum Key Server 2.0

SAE ID next hop destination cost length

Sae_2A qks1 qks2 120 2

Sae_2B qks1 qks2 120 2

Sae_3C qks4 qks7 300 4

Sae_8D qks8 qks8 50 1

Sae_9E - qks9 - -

Figure 7.5. Example of the entries of a routing table

which is even more relevant since the QKDM is not able to scale horizontally in case of high
loads. As for the QKS, the interfaces are implemented with the Quart framework and exploit
the Hypercorn web server. The simulator code has been adapted to work with the asynchronous
code too so the QKDM can manage it without spawning new threads, but relying completely on
Python tasks. It can be deployed in a Docker container, that contains both the Key Manager and
the QKD simulator. The code is available on GitHub10.

7.6.1 Interfaces

The Southbound and the Sync interfaces of the QKDM do not provide any new functionality,
trying to keep the QKDM as simple as possible and leaving all the complexity of managing the
network or the multi-hop exchanges to the QKS. Some methods have been slightly modified to
improve performances but the overall structure has not been changed, therefore the methods here
described are very similar to the ones proposed previously. Tables 7.9 and 7.10 summarize the
API of those two interfaces, while the methods of both of them are explained in detail in the
following paragraphs.

Southbound Interface

open connect is the function that maps the ETSI OPEN_CONNECT method. It allows creating
a key stream between the two peers and by consequence in this implementation between
two QKS. If it is called by the first QKS it generates the Key_stream_ID, communicates it
to the peer with open_stream and returns the identifier to the QKS. If it is called by the
second QKS it checks the presence of the requested identifier and if successful it signals with
exchange to the first peer that the key exchange can begin. This version does not support
QoS parameters.

get key is the function that maps the ETSI GET_KEY method. It receives a key_stream_ID and
a list of index that are used to find and return the required key, if indexes are not specified
it does not return any key. It does not provide any synchronization mechanism: it is up
to the QKS to signal to its peers the retrieved keys, the QKDM is not aware of the keys
already retrieved in its peer. This implementation does not support any metadata.

close is the function that maps the ETSI CLOSE method. It closes the key stream whose identifier
is received as a parameter, closing the exchange task that interacts with the QKD device (or
simulator) and removing all information and keys related to that stream. With this function
the stream is closed unilaterally, it does not communicate anything to its peer because this
task is managed by the QKS that has to call the close on the other end.

get key id allows retrieving available key identifiers for a key stream. It is possible to retrieve
the whole list, a list of specified length or just the count of the available indexes based on
the value of the count URL parameter. It is not a function described in the ETSI standard.

10https://github.com/ignaziopedone/qkd-module/tree/async

64

https://github.com/ignaziopedone/qkd-module/tree/async

Quantum Key Server 2.0

check key id receives a list of indexes and allows to check if they correspond to available keys
for the specified key stream. It is not a function described in the ETSI standard, is used
from the QKS for synchronization purposes.

attach to server is a function used by an administrator to trigger the registration process to
the specified QKS. The QKS returns access data for the database and the secret storage
and therefore this function is mandatory to be called for the module to work if it has not
been provided with access data through configuration files.

Sync Interface

open stream is used to notify the other peer about the creation of a new key stream and the cho-
sen key_stream_ID. It is called by the first peer during the execution of the open_connect.

exchange is used to communicate to the other peer that the key stream creation process has
been completed successfully and that the key exchange can begin. It is used by the second
peer during the execution of the open_connect.

Method name URL Access Method

open connect /api/v1/qkdm/actions/open connect POST

get key /api/v1/qkdm/actions/get key POST

close /api/v1/qkdm/actions/close POST

get key id
/api/v1/qkdm/actions/get ID/{key_stream_ID}
?count={count} GET

check key id /api/v1/qkdm/actions/check ID POST

attach to server /api/v1/qkdm/actions/attach POST

Table 7.9. QKDM Southbound interface methods summary.

Method name URL Access Method

open stream /api/v1/qkdm/actions/open stream POST

exchange /api/v1/qkdm/actions/exchange POST

Table 7.10. Sync interface methods summary.

7.6.2 Database description

As for the QKS, also the QKDM adopt MongoDB as the database in this version. It provides
the same advantages as for the QKS and allows to have a single database management system
(DBMS) in the entire stack. The QKDM database has only one collection, key_streams, which
describes the active key streams and keeps track of the available keys stored in Vault. Figure 7.6
shows the document structure of the collection, while table 7.11 describes its fields. Keys IDs
are saved in the database because it allows faster access than Vault and supports more efficient
queries, allowing the QKDM to perform checks without interacting with the secret engine. Thanks
to the document-based structure of MongoDB all the information related to each key stream can
be saved in the same collection, avoiding join operations.

65

Quantum Key Server 2.0

Figure 7.6. Collection structure in the QKDM database

Name Type Description

_id String identifier of the key stream described by the object

available_keys Array
array containing the identifiers (in string form) of the keys avail-
able in Vault for this stream

src_id String
name of actor who started the key stream; if the QKDM is
connected to a QKS this field correspond to its name

dest_id String
name of destination of the stream, at the other end; if the
QKDM is connected to a QKS this field correspond to the QKS
the peer module is connected to

qos Object object containing QoS parameters; they can be of any type

status String Status of the stream, it can be set to waiting or exchanging

Table 7.11. Description of the key_streams collection in the QKS database

7.7 Workflow

This section wants to describe in detail how the different component interacts with each other
in a fully configured network. Figure 7.7 describes the standard workflow for two nodes directly
connected with a QKD link, from the initialization phase to the key request, while figure 7.8
describes how a long-distance exchange is performed. In both cases, each element in the system
is assumed correctly configured and functioning, all the requests from SAEs and QKDMs to the
QKS are authenticated through Keycloak and possible network errors or component failures are
not considered here.

PTP exchange

Consider two nodes, Alice’s node and the Bob one. In each node, there are deployed a QKS, a
QKDM and a SAE, which is already successfully registered to the QKS. In both of them, the
management operations are carried on by an administrator, not shown in the figure to not thicken
the diagram. It is possible to define three different phases in the workflow: the module registration
(a), the key stream creation (b) and the key request (c).

The registration phase is started by an administrator that calls the attach_to_server func-
tion on the QKDM (1.1 and 1.4), sending in the request body the information on how to reach the
QKS. The QKDM perform the registration with the registerQKDM on the relative QKS sending
its information (1.2 and 1.5); the procedure ends with the response from the QKS (1.3 and 1.6)
that contains the access data to Vault and MongoDB. After the registration, the QKDMs are
connected but they are inactive: the creation of a key stream is not performed automatically but
requires an admin to start it, after ensuring that the modules in both nodes have been correctly
registered.

66

Quantum Key Server 2.0

Figure 7.7. Application workflow for QKDM registration (a), key stream creation (b)
and key request (c).

The key stream creation requires an administrator to start it only on one node: the QKS
performs the required synchronization by itself. The process is started on Alice’s nodes, when
an admin calls the startQKDMStream on Alice’s QKS, specifying the target QKDM (2.1). Alice’s
QKS receives the request and calls open_connect on the QKDM (2.2), without a key stream
identifier (KSID): Alice’s QKDM receives the request, generates a KSID and call create_stream
on Bob’s QKDM to synchronize the procedure (2.3). When Alice’s QKDM returns the KSID
(2.4, the QKS sends it to its peer through createStream (2.5), with direct as type parameter.
Bob’s QKS uses the received KSID to call open_connect(2.6) on its QKDM, which in this way
completes the key stream creation with exchange on Alice’s QKDM (2.7). At this point the two
QKDMs continuously exchange QKD keys (2.10) through their QKD devices (or simulators), until

67

Quantum Key Server 2.0

the storage buffer is full, to optimize resource usage.

To require a key shared with Bob’s SAE, Alice’s SAE calls getKey (3.1) to her QKS, with
the size, the number of keys and the destination in the request body. Alice’s SAE is the one that
starts the request, therefore she is the master SAE, while Bob plays the slave SAE role. Alice’s
QKS ask its QKDM for the list of available KSIDs for the key stream in use (3.2), selects the
required number among the available ones and notifies them to Bob’s QKS calling reserveKeys

(3.4). Because the size of the keys in the QKDM can differ from the one required by the SAE,
an Aggregate Key Identifier (AKID) that maps all the needed KIDs for each key is generated by
the master QKS: these are the only identifiers returned to SAEs, the QKDM KIDs are managed
internally by QKSs. Bob’s QKS checks if the received KIDs are available in its QKDM with
check_key_ID (3.5) and, in case of a positive answer, it marks the AKIDs and their KIDs as
reserved in its database. After a correct return status, Alice’s QKS can retrieve the KIDs from
its QKDM with get_key(3.8), aggregate them to build keys of the desired length and return both
the AKIDs and the keys to Alice’s SAE (3.10) Alice’s SAE can now share her AKIDs with Bob’s
SAE (how this is performed is out of the scope of this application) which can retrieve the same
key calling getKeyWithKeyIDs to his QKS. Bob’s QKS asks its QKDM for the required keys,
aggregates them and, in the end, returns them to Bob’s SAE.

Long distance exchange

Consider a network with three nodes (Alice, Bob and Carol) and two QKD links, one between
Alice and Carol and the other between Carol and Bob. Each node has its QKS and a connected
SAE, Bob and Alice have a single QKDM while Carol has two of them, one connected to each peer.
The QKDMs, which are not represented in the diagram to keep it more readable, are considered
already registered to their respective QKS and a key stream is supposed active on both of the
pairs.

Figure 7.8. Application workflow for an indirect key stream creation (a) and a key
request over it (b).

The key request starts in the same way as in the PTP scenario: from the SAE point of
view, there is no difference between the two situations. After the request from the master SAE,
Alice’s QKS looks at the routing tables and understands that the slave SAE is not reachable with

68

Quantum Key Server 2.0

a direct link, thus a multi-hop exchange is required. It generates new random keys matching
the request size and quantity, saves them into Vault and sends them to the next hop in the
path through forwardData (1.2). It retrieves a QKD derived key from its QKDM, acting like a
SAE in the workflow described in the previous section, uses this key to encrypt the data with
a symmetric encryption algorithm (e.g. AES256 [69]) obtaining the enc_data and sends them
to Carol specifying which is the destination of the forwarding process and the KID to decrypt
them. Carol receives this information, retrieve the key shared with Alice, decrypts the data and
performs the same sequence to forward the data again (1.3). This operation is repeated until the
data reach their destination, where Bob’s QKS decrypts them and securely stores the received
keys into Vault. Note that in this implementation if a hop in the forwarding process fails the
error is propagated back to the source QKS, that waits for a completion acknowledgement; but
other asynchronous approaches focused on speed are possible. The keys are then reserved calling
reserveKeys as in the previous section (1.6) and in case of a positive acknowledgement they are
retrieved from Vault and delivered to Alice’s SAE (1.8) As in the direct stream scenario Alice’s
SAE has to send the AKIDs to Bob’s SAE, which can retrieve them calling getKeyWithKeyIDs

(1.10) on its QKS.

In this implementation the keys generated for multi-hop streams have the correct key length,
hence the aggregation procedure for longer keys is unnecessary. This implementation of the long-
distance exchanges suffers from the security issues typical of trusted repeaters QKD networks
(section 3.1.6), therefore the exchange can be considered secure if and only if all the nodes in the
path can be trusted.

7.8 Future works

Despite this QKS implementation tries to solve some of the defects of the first version as well as
provide the support for a complex structure QKD network, it is not ready for a real scenario yet
and some issues should be addressed in future versions. Two main sets of issues can be pointed
out: security ones related to authentication and encryption of messages and ones related to trusted
repeaters.

The security aspects of communication inside and outside the node have not been addressed
with version 2.0 and they remain an issue as described in the previous chapter: external com-
munication must be secured and a careful analysis should be performed also for communication
among components in the same node. The routing module requires authentication in its commu-
nication with peer components, while currently these messages are exchanged in clear and without
authentication: this is a major issue because an intruder can easily manipulate the messages and
therefore the network topology that nodes see, hijacking the paths and redirecting the traffic
to specific nodes. Standard security protocols such as TLS 1.3 are not sufficient in a quantum
world hence quantum-safe solutions based on QKD derived keys or post-quantum cryptography
techniques must be integrated into the QKS.

The security aspects of a trusted repeater network can not be avoided until a reliable imple-
mentation of quantum repeaters is available thus the security of the network is limited by the
security of each node. For this reason, improvements related to the key management and the se-
curity of the long-distance exchange procedure can be considered. A multi-path approach for the
key forwarding can be implemented, splitting the encrypted data over multiple peers: this ensures
that if an attacker gains access to data in a single node he can not reconstruct the entire key,
because all the pieces are required. Regarding key management, both the QKS and the QKDM
should carefully consider how keys are saved in memory because currently no security measures
are taken, hence security memory regions (e.g. Intel SGX platform11) can be a viable solution to
provide secure access to keys.

11https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/

software-guard-extensions.html

69

https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html

Chapter 8

QKS integration in a Kubernetes
cluster

With the growth of cloud computing and the shifting of standard applications to cloud-native
ones, datacenters and orchestrators to manage them acquires more and more importance, and
with them their security aspects. In a future where quantum computing spreads, quantum-safe
cryptography must be available for cloud-native applications, and in scenarios where QKD has
been adopted its derived keys must be brought to applications without physical access to a private
QKD device that is not compatible with the microservices pattern where applications are split
into several independent components and where several applications can be deployed in the same
datacenter. For this reason, this work proposes an implementation of the QKS described in
the previous chapter inside a Kubernetes cluster, to allow QKD secured communication between
applications in two or more different clusters: each cluster can be described as a node of a QKD
network while applications running inside it are SAEs. The cluster contains a QKS instance with
all its modules and a specialized controller component that manages the interaction between SAEs
and the QKS in an automated way that does not require cluster administrator intervention. Each
SAE can require keys through Kubernetes resources, without the need to know QKS API’s, and
can receive keys asynchronously through cluster secrets. Figure 8.1 shows how two QKS stacks
can be deployed in Kubernetes with the corresponding operators, allowing SAEs to securely share
keys through them.

Section 8.1 describes how the QKS has been deployed inside the cluster and how the com-
ponents have been configured while section 8.2 describes how the key request process has been
handled with an operator.

8.1 Cluster configuration

The QKS has been deployed in a Kubernetes cluster exploiting its capabilities of providing redun-
dancy and scalability through its built-in resources. Figure 8.2 describe the cluster configuration
with a QKS deployed in it. The cluster is divided into different namespaces: the QKS run in its
namespace, while each SAEs and each QKDM have their own. This not only simplifies the re-
sources management for the administrators providing logical separation but also ensures resource
disjunction, avoiding components to access data, configuration files and secrets not belonging to
them. This is crucial in the QKD scenario where secret keys are constantly exchanged and stored
in memory and their security is a fundamental requirement. Each QKS architectural component
described in the previous chapter is here composed of different resources: a service to allow it to be
reachable and a set of pods running the code. The service is the resources that provide access to
the components from the cluster or from the outside: components that should be reached only from
the inside of the cluster (MongoDB, Vault, Keycloak and Redis) has a service of type ClusterIP
while the QKS core and the routing module has a service of type LoadBalancer allowing them
being reached from the outside to communicate with their peers in the QKD network. The QKS

70

QKS integration in a Kubernetes cluster

Sae_1

Operator

Qks_1

Qkdm_1

Sae_2

Operator

Qks_2

Qkdm_2

Cluster 1 Cluster 2

External
communication

Internal
communication

Figure 8.1. Configuration and communications of two QKS stacks deployed in different
Kubernetes clusters

core, the routing module, and Redis are stateless applications and therefore they are deployed as
Deployment resources: in this way, their pods are automatically restarted in case of failures and
there is no need to manage pods internal data because the information is saved in the database.
Stateful components like MongoDB, Vault and Keycloak are deployed with StatefulSet resources
and they have a PersistentVolumeClaims that allows mapping a PersistentVolume resources
to provide a not-ephemeral place where data can be stored: in this way even after a crash the
new pods don’t lose saved data. Both Deployments and StatefulSets allows the administrator
to define the number of replicas wanted, that should be defined based on the components loads.
The number of replicas can be dynamic based on some metrics if an HorizontalPodAutoscaler

resources are configured to manage the corresponding component. Configuration data are in-
jected into pods through ConfigMaps and Secrets resources that should be properly configured
by the cluster administrators. They can be consumed by the pod both as environment variables
both as configuration files, based on the application requirement. The QKDMs are deployed in
separate namespaces. The QKDM is a stateless application and therefore it is described with a
Deployment resources but the number of replicas is set to one because it has not been developed
to be scaled up. Kubernetes ensures that a pod is always running without spawning others until
the first one can not perform its job anymore. It has a corresponding Service resource of type
LoadBalancer to let it be able to communicate with its peer module to perform QKD exchanges
that exposes two ports: one for the QKD manager and one for the QKD device. Its configuration
data are injected through a ConfigMap that belongs to its namespace and is not accessible by
other components. It reaches the database and the secret storage through their services, which by
default are not bound to a specific namespace and allows their corresponding pods to be reached
from all over the cluster. SAEs are here described as simple pods for simplicity in their private
namespace but they can be any type of application with any type of resources and components.
The process in which they can register themselves to the QKS and can require QKD keys are
described in the next section.

8.2 Custom resources and Operator

To support a complete integration of the QKS inside Kubernetes, a set of Custom Resources has
been defined, and the Operator required to manage them has been developed. They free the
administrator from directly interacting with the QKS core and Keycloak, allowing it to deploy
a QKS instance inside a cluster without knowing the APIs details of the server. Two custom
resources has been defined: the Sae and the KeyRequest. The former is required to describe a

71

QKS integration in a Kubernetes cluster

Sae KeyRequest

SAE pod Key secret

SAE nsQKS ns

configuration data

Qks-operator

QKDM ns

Vault Mongodb Keycloak

Qks-core Qks-routing

Qkdm

Custom resources Persistent storage
config data

Redis

Figure 8.2. QKS deployment in a Kubernetes cluster

new Sae that should be registered to the QKS in the cluster. Each SAE is described by their name,
and an additional property called registration_auto which specify if the registration process to
Keycloak should be carried on by the operator or manually by the cluster administrator.

Figure 8.3. Example of a Sae resource

When a Sae resource is created in the cluster the operator is triggered: it retrieves the object
(figure 8.4.1), it perform the registration of the Sae as a user in Keycloak setting the name property
as username and with a random password (8.4.2). The Sae is then registered to the QKS with
the registerSAE method of the QKS northbound interface (8.4.3). If the process is completed
successfully, Keycloak credentials are stored in a secret in the SAE’s namespace (8.4.4). When a
Sae resource is deleted the operator reacts unregistering it from the QKS with the unregisterSAE
method. The resource can be extended in the future with additional properties that can trigger
other behaviours in the operator, such as the automated deployment of an application.

The KeyRequest resource should be used by SAEs to require QKD derived keys. Each KeyRe-
quest must have a master_SAE_ID and a slave_SAE_ID, which defines the two peers for the re-
quest. The resource must have size and number properties if it comes from the master SAE or
it must have a list of key identifiers in the ids parameter if it is a request coming from the slave
SAE.

When a KeyRequest object is created the operator is triggered: it checks the properties and
based on which are present and which are not understood if it is a request coming from the
master SAE or the slave SAE. If retrieves the SAE credentials from the relative secret in the SAE
namespace, perform the login to Keycloak and then require the keys from the QKS: if the resource

72

QKS integration in a Kubernetes cluster

Sae
Operator

QKS Core Keycloak

SAE credentials

2. Operator watches the
resource creation

1. A Sae resource
is created

3. SAE user is
registered in
Keycloak

4. SAE is registered
to the QKS

5. SAE Keycloak
credentials are
saved in a secret

SAE namespace QKS namespace

Figure 8.4. Sae resource workflow managed by the operator

Figure 8.5. Example of two KeyRequest resources

contains a list of identifiers the operator calls the getKeyWithKeyIDs, otherwise it calls the getKey
specifying the requested key number and size. The returned object is saved in a secret in the
SAE namespace, using the request name as the name for the secret. SAEs can retrieve their keys
asynchronously, watching for the corresponding secret, once the operator has completed its task:
differently from the usage of QKS APIs through direct HTTP calls, the creation of Kubernetes
resources does not return any object to the application. This asynchronous behaviour allows
preserving keys in a stateless scenario where pods can be restarted or substituted: even if the
SAE pod crashes after performing the request, the returned keys can be securely retrieved by
the new pod accessing the secret. The complete workflow of the KeyRequest resource creation is
described in figure 8.6

Even if it is possible to automate with the same operator pattern also the creation of QKDMs,
defining a custom resource for this task and extending the operator to watch also it, it should be
considered that QKDMs in a production scenario are bound to a physical device and they must
work in pairs: their initialization will fail until their peer is not up and running too, therefore
it is complex to synchronize the behaviours of two separate cluster that has to manage the two
peers. For this reason in this implementation QKDMs must be initialized manually by the cluster
administrator and the registration procedure to the QKS is not carried on automatically.

8.2.1 Implementation details

Operators are brought in Kubernetes as standard stateless application: because they only react
to operation on resources they do not have to keep a state in case of pod crash, therefore dey
are instantiated with deployment resources. To ensure consistency the replica number should be
set to one, avoiding duplicate actions triggered by the same resource. The operator runs outside

73

QKS integration in a Kubernetes cluster

SAE pod KeyRequest
Operator

QKS Core Keycloak

Key secret

1. SAE produces
a KeyRequest

2. Operator watches the
resource creation

3. SAE is
authenticated 4. Keys are requested

to the QKS core

5. Retrieved keys are
saved in a secret

SAE namespace QKS namespace

Figure 8.6. KeyRequest resource workflow managed by the operator

of the control plane, but it must have access to credential secrets of all SAEs and should be
able to create secrets in all SAEs namespaces, therefore it must have the proper rights and roles
to perform all the required actions in the cluster. Its deployment can run either in the QKS
namespace or in a separate one.

Despite Kubernetes having been developed with the Go programming language, the operator
code can be developed in any programming language that supports Kubernetes API. This operator
has been developed in Python 3 to use only one language for all the components in this work.
The interaction with the Kubernetes API is performed through the official client for Python1 and
to reduce the complexity of the operator code the Kopf 2 framework has been used: it allows to
reduce the required code only to functions that actively reacts to actions on resources and provide
the communication with the cluster.

The operator has a corresponding Docker image that is used to deploy it in the cluster. It is
currently set up in the cluster as a Deployment object, but it can be packaged to be deployed
using the Operator Lifecycle Manager3, a Kubernetes component that can automate the set up
of controller and custom resources. For security reasons, the operator deployment should run in
the same node as the control plane and the control loop, hence in the master node of the cluster.
More details on the operator development can be found in appendix B

8.2.2 Key exchange workflow

This section wants to describe in detail how key exchanges are performed between SAEs deployed
in different clusters and how the internal components interact among them. The QKS in each
cluster is considered correctly configured, both in its internal components and regarding the
Kubernetes resources.

Consider two SAEs, SAE A01 deployed into cluster A and SAE B01 into cluster B. Both of
them have been correctly registered both in Keycloak and to their QKS, with the creation of
the corresponding Sae resource as described in figure 8.3. When SAE A01 wants to exchange a
key with its peer it creates a KeyRequest resources with its name as the master_SAE_ID (fig-
ure 8.7.A1), its peer name as slave_SAE_ID and specifying the number and the size of needed

1https://github.com/kubernetes-client/python

2https://github.com/nolar/kopf

3https://github.com/operator-framework/operator-lifecycle-manager

74

https://github.com/kubernetes-client/python
https://github.com/nolar/kopf
https://github.com/operator-framework/operator-lifecycle-manager

QKS integration in a Kubernetes cluster

Figure 8.7. Sae resource workflow managed by the operator

keys in the other parameter as described in figure 8.5 on the left. The operator is triggered and it
looks at the new resources (A2), retrieves SAE A01 Keycloak credentials from the corresponding
secret, performs the login (A4) and uses the received token to authenticate to the QKS. The key
request is carried to the QKS, calling the getKey method with the resource parameters (A6).
The QKS performs the key exchange with the QKS where the slave SAE is registered (A7) as
explained in section 7.7 and there is no difference from the SAE point of view if the keys are
retrieved from a direct exchange or with a long-distance exchange that exploits multiple nodes in
the QKD network. When the QKS returns to the operator the keys and their IDs it generates a
new secret in the master SAE namespace and stores the data (A9), using as resource name the
request one. If there are not enough available keys and the getKey the operator does not create
the secret. SAE A01 retrieves the secret asynchronously and must send to its peer the received
key identifiers, in a way that is out of the scope of this work. SAE B01, to retrieve the same
keys must create a KeyRequest resource (B1) specifying the received IDs in the corresponding
field (figure 8.5 on the right). The operator in cluster B performs the same actions as the other
one but interacts with the QKS using the getKeyWithKeyIDs method (B6). After retrieving the
secret with the shared keys (B9) the two SAEs can communicate securely. Note that it is not
mandatory that the name of the two KeyRequest resources in the two clusters match.

75

QKS integration in a Kubernetes cluster

8.3 Future works and alternative approaches

To bring the QKS to a production scenario it should be considered that the deployment should be
plug and play and that the administrator could not have any knowledge on the QKS architecture
and how it works. For this reason, an operator able to deploy the complete QKS architecture
after the creation of a single resource can be implemented: defining a new resource type able
to describe the server and its properties the operator could deploy the different components,
managing all the initialization processes following the resource specifications. A similar approach
for the deployment of the QKDM can be adopted too, to solve the problem of synchronization
between module pairs without direct interaction with its APIs.

Currently, ConfigMaps are used to provide to the components their configuration files, but
they can be substituted with environment variables injected via Secrets and ConfigMaps keys,
not only to simplify the initialization procedure avoiding the need for volumes in containers but
especially to avoid the presence of sensitive information written in clear in ConfigMaps. It is
possible to shift the operator code to adopt the asynchronous pattern, in order to reach higher
performances that will avoid a possible bottle-neck in the key request procedure: the used kopf
library supports it, but alternative libraries must be used in place of the Kubernetes official client
that does not provide this type of functionalities.

This work relies on the operator to interact with the QKS and on Kubernetes secrets for the
key storage after they are retrieved, providing a middleware that interacts only with build-in
resources and that can be adapted to match all the use cases that the QKS supports; but it is
also possible to adopt different approaches such as using a third-party Key Management Systems
(KMS) to directly store and manage keys securely and efficiently. It is possible to develop a plugin
for a KMS that allows it to directly interact with the QKS through its APIs, which can in this
way avoid the need for the operator.

The solution proposed in this work focuses on securing the communication between applica-
tions deployed into different clusters but does not address the problem of communication among
nodes that are part of the same cluster. Large clusters can span over multiple nodes physical
nodes that can be placed in different locations and that communicate over the network: QKD
can be a solution to secure their communication in a scenario where quantum computing is a
threat to standard encryption protocols. To solve this problem a QKS can be deployed in each
node, bounding its components to the node, ensuring that each SAE can reach its QKS without
traversing the public network, and securing the communication with other peers with QKD keys.
The storage of keys should be addressed carefully: in the solution here proposed retrieved keys
are stored in secrets, which are managed in a centralized way by the control plane, but this is not
possible in a scenario where the standard communication between nodes is considered not secure
enough, therefore other approaches should be investigated.

76

Chapter 9

Test and validation

Tests have been performed to verify the stack functionalities and analyze the performances and
limitations of the proposed solution. Two different testbeds have been used, one to test the
performances of the entire stack and the other for the routing algorithm. The former is composed
of three machines: an HP EliteBook 8570p laptop and two Intel NUCs, each one with a Kubernetes
cluster deployed on. The laptop has the following characteristics:

❼ CPU: Intel(R) Core(TM) i7-3520M 2.90GHz

❼ RAM: 8 GB

❼ OS: Ubuntu 20.04.2 LTS (Focal Fossa)

❼ Kubernetes cluster: K3s 1 version 1.21.1

The two NUCs features the same specifications:

❼ CPU: Intel(R) Core(TM) i5-5300U 2.30GHz

❼ RAM: 16 GB

❼ OS: Ubuntu 20.04.3 LTS (Focal Fossa)

❼ Kubernetes cluster: K3s version 1.21.4

The testbed used for the routing algorithm is a virtual machine with:

❼ CPU: 16 cores

❼ RAM: 40 GB

❼ OS: Ubuntu 18.04.5 LTS (Bionic Beaver)

❼ Docker version: 20.10.5

1https://k3s.io/

77

https://k3s.io/

Test and validation

Cluster A

Qks_1

Qkdm_1

Cluster B

Qks_2

Qkdm_2a

Cluster C

Qks_3

Qkdm_3Qkdm_2b

External
communication

Internal
communication

Figure 9.1. Configuration of the 3 nodes network testbed

9.1 Key-exchange tests

Several tests have been performed to analyze the performances of the QKS and the Kubernetes
operator used to interact with it in the cluster. To test the key exchange and retrieval procedures
three QKS stacks have been deployed in Kubernetes, one in each of the 3 nodes, as shown in
figure 9.1 The three QKS have been connected with 2 pairs of QKDMs, which exchanged keys
through a fake QKD exchange simulated through the fakeKE Python module. This algorithm
exchanges random bits over two network sockets in blocks of fixed size without performing any
other action on them and, despite it does not simulate any real QKD protocol, allows to reach
speeds that are faster than what accurate simulations can guarantee. For all the tests performed
the standard key size exchanged by the simulator was fixed to 128 bits.

The QKDM performances have been analyzed to discover its limits in the key exchange process.
The fakeKE simulator has been set with no software limitation in the key exchange rate, hence
the only limit in the key exchange was to the network connection between nodes. With this
exchange in progress, the time required by the QKDM to exchange a key and save it into Vault
has been computed and the key rate has been derived from it. The QKDM requires about 5.6ms
to perform the operation, which leads to a key rate limit of 178 keys per second, corresponding to
a 22.8 kbit/s throughput with keys of 128 bits, with higher device speed the QKDM is not able
to process received data fast enough and some information would be discarded. The measured
throughput is enough to support the current QKD key rate of real commercial devices, which is
set in the order of a few kbit/s but can become a limitation in the future with faster devices. The
QKDM retrieves each key from the device and saves it into Vault, thus the latter is the bottleneck
of the system: despite the QKDM task can reach a higher speed, the interaction with the secret
engine limits it. To solve this issue it is possible to increase the number of Vault instances in
the stack spreading the load among them all and to develop a better parallelization of requests.
Because scaling Vault can be resource consuming and not always feasible, to support even higher
key rates it is possible to increment the size of each exchanged key and therefore reduce the number
of interactions with the secret engine. This operation should be addressed carefully because it can
lead to higher key consumption from high-level applications if the requested key size is smaller
than the new exchanged size: because each key returned by the QKS must be derived from at
least one Vault key, even if it is smaller than the standard size, parts of the exchanged material
can be unused and discarded.

78

Test and validation

0

500

1000

1500

2000

2500

1-128 1-1024 10-128 10-1024 100-128 100-1024

Ti
m

e
(m

s)

Request (number - key size)

Average execution time for a KeyRequest

Operator time QKS time

Figure 9.2. Average execution time for a KeyRequest resource with different parameter

To test the QKS and the operator different KeyRequests objects have been created on cluster
A which hosted the master SAE varying both the key size and the number of requested keys,
and the time required by the operator and the QKS to solve them have been retrieved. The key
exchange rate of the simulated QKD devices has been set to the maximum one hence for each
request enough keys were available in Vault and no failures have been encountered. The slave
SAE was hosted on cluster B directly connected with a QKDM pair to the notebook node, as
shown in figure 9.1. Figure 9.2 shows the average results obtained with different request types.
The total execution time for each request has been measured in the operator from the triggering
to the conclusion of its routine and for the QKS time from the getKey call to the response; the
Operator time has been computed as their difference. The time required by the QKS to solve
them varies depending both on the size and the number, with the same proportion: the execution
time depends on the number of fixed length keys required to the QKDM, therefore doubling the
key size or the key number does not change the QKS load. The QKS execution time grows with
the growth of keys requested to the QKDM but is below linear thanks to the parallelization of
calls both from the QKS to the QKDM and from the QKDM to Vault. For a small number of
requests the module can handle them all in parallel without any significant slowdown (as can be
seen for requests 1-128 and 1-1024 in the graph), but when the number grows over a certain
threshold some requests are handled sequentially and performances are limited (as can be seen in
the difference between requests 10-128 and 10-1024 in the graph) To reach the best performances
retrieving a large set of keys it is better to produce a single request with a bigger number than
generating several smaller requests that must be handled by the QKS as separate objects hence
requiring more synchronization calls between nodes. Table 9.1 reports the time required to serve
different requests and the corresponding retrieval rate per second. The operator overhead is
constant in the cluster and is not influenced by the request parameters, it is considerable when
requests are small both in size and in the number of keys but become less and less impacting
when requests grow. In comparison with the first version of the QKS, which reached an average
key retrieval rate of 1 key over 2 seconds, this version is faster than about an order of magnitude.

To test the QKS behaviour in a situation where the key exchange rate of the device is limited
the fakeKE has been set to 2 kbit/s and 4 kbit/s rate, leading to a QKDM key rate slightly smaller
due to the Vault overhead. Using the same setup of the previous paragraph different amounts
of requests of 1 key of 1024 bit length per second have been performed and the success rate has
been analyzed considering the number of Kubernetes secrets created by the operator. Keys saved
in Vault have been deleted before each test to ensure that the results could not be influenced by
data already stored. Figure 9.3 shows that the getKey success rate decrease with the number of
requests per second received from the QKS and falls below 100% when the rate is higher than
the device one and decrease proportionally to it. As expected the rate decreases faster when the

79

Test and validation

Key number -
size

Requested size
QKS execution

time (ms)
Retrieval bit
rate (kb/s)

1 - 128 128 bit 93 1.4

1 - 1024 1024 bit 97 10.6

10 - 128 1280 bit 140 90.9

10 - 1024 10.2 kbit 280 365.0

100 - 128 12.8 kbit 873 1464.9

100 - 1024 102.4 kbit 1824 5613.1

Table 9.1. Key retrieval bit rate with different requests parameters

device rate is smaller and can guarantee a slower key saving rate to Vault. Once the limit is
reached both the QKS and the QKDM can gracefully handle requests returning error messages
without failures.

0

0.2

0.4

0.6

0.8

1

1.2

1024 2048 4096 8192

Su
cc

es
s

ra
te

Requested bit per second

getKey success rate

2048 bit/s device rate 1024 bit/s device rate

Figure 9.3. getKey success rate with 2 and 4 kbit/s device exchange rate

Tests have been performed to analyze the behaviour of the system in a multi-hop scenario,
where SAEs in two different nodes want to share keys without being directly connected. Cluster
C has been connected to cluster B with a QKD pair, in a 3 nodes network where the latter is
connected to both the other peers as shown in figure 9.1. The master SAE has been registered
to cluster A while the slave SAE has been registered in cluster C, in this way requests between
these two SAEs are forwarded through cluster B. Exchanges have been performed asking for a
key of 128 bits, which is the standard size provided by the simulated device. Figure 9.4 shows the
average time required by the QKS to retrieve the keys both in the master and in the slave node,
compared with the results obtained for point-to-point (PTP) exchanges. The time required to
complete a getKey over 2 hops is higher than the PTP connection because all the operations for
the key exchange must be repeated for every hop. Despite it was not possible to test the multi-
hop behaviour over a higher number of hops, a linear increment is predictable because each hop
executes the same routine until the end peer is reached. The obtained results demonstrated that
the getKeyWithKeyIDs is not affected by the number of hops the exchanges spans over, and its
execution time only depends on the time needed for the QKS and the QKDM to retrieve keys saved
in Vault. For this reason, when requiring a lot of already received keys through getKeyWithKeyIDs

the retrieve rate is limited by Vault performances and it is not impacted by the key rate of the
QKD devices, thus increasing the number of Vault replicas can help in mitigating the issue. The

80

Test and validation

figure also shows that the time required by the operator to handle each request does not depend
nor on the number of hops neither on the request type (getKey or getKeyWithKeyIDs) because
it is completely unaware about how the QKS manages the requests it receives.

0

100

200

300

400

500

getKey - 2 hop getKey - 1 hop getKeyWithKeyIDs - 2 hop getKeyWithKeyIDs - 1 hop

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Request type

KeyRequest execution time with multi-hop exchange

QKS time Operator time

Figure 9.4. Average execution time for multi-hop requests compared with PTP ones

Tests performed on the key retrieval process showed that the QKS adds an overhead compatible
with the current communication protocol when the amount of requested keys is limited and that
it can support current QKD device rates in the PTP scenario without issues, but it does not scale
unbounded due to Vault limitations and can expose some issues with faster devices. In multi-
hop scenarios the execution time increases with the number of hops hence, despite long-distance
exchanges being possible and working correctly, they should be used carefully because they can
not guarantee the same speed as PTP ones.

9.2 Routing tests

To test the performances of the routing algorithm a different testbed have been deployed: it
was not possible to use a number of physical nodes relevant for the test, hence a test version
of the routing algorithm able to work independently, without the corresponding QKS core and
attached components, has been developed and packaged in a Docker image. This algorithm version
produces random events in the network, such as registration or removal of SAEs and QKDMs that
triggers packets creation, to simulate the behaviour of real nodes. A set of these containers have
been deployed on the virtual machine with some faked connection among them and the system
has let been running producing random events and therefore sending packets and updating the
network topology. Results proved that in a connected graph each node sees the same network
topology and store the same network graph and that in a situation where nodes are not reachable
any more links and SAEs are correctly removed from the graph after the specified threshold. The
time required for a node to receive a packet and the number of travelled hops has been logged to
produce data about the time required to analyze it with respect to the distance from the sender
to the receiver. As shown in figure 9.5 the convergence time of the algorithm increases linearly
with the number of nodes in the network, due to the transmission time hop-by-hop which has a
prevalent impact also in this simulated scenario where containers are connected through a virtual
bridge and thus packets do not travel over the network but are delivered at the software level. In
a real scenario where each QKS is deployed on a different node the transmission time over the
network will be higher and hence even more impacting concerning the algorithm execution time.
In the worst-case scenario, where two nodes are at the two opposite edges of the network, the
convergence time is nearly double the average one. With a network of 50 nodes, the average time

81

Test and validation

to update the graph executing the Dijkstra algorithm and to compute the routing tables is 13ms,
hence smaller than the convergence one of about one order of magnitude.

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Ti
m

e
(m

s)

Nodes in the network

Average convergence time

Figure 9.5. Average routing algorithm convergence time with several network sizes

Due to Dijkstra complexity of O((E + V) log V) (where V are the nodes and E is the number
of links in the graph), the algorithm may overgrowth the transmission time in large networks,
but it can support the current QKD network size of at most hundred of nodes. In the future,
it can be updated with support to routing over different autonomous systems as in OSPFv2,
reducing the complexity of the graph representation. The convergence time even in a network
of tens of nodes is smaller than the time required by the QKS to deliver a key over 2 hops and
this difference increases with the number of hops in the path, therefore the routing algorithm
execution time is compatible with the current performances of the QKS. In a real scenario where
nodes are deployed over different machines and the packet transmission requires more time the
convergence time will be greater, but because the same overhead will be applied also to the other
communication between nodes it will not exceed the key retrieval time. With a large network,
the timer period for the route invalidation should be defined considering the number of nodes,
ensuring that the worst-case convergence time is never higher than the longest path transmission
time, ensuring ensure that each node can always receive updated information even from distant
peers.

82

Chapter 10

Conclusions

This thesis work focused on the development of a complete software stack to bring QKD into real
scenarios, addressing issues such as performances and scalability.

Tests showed that the QKS reaches an operating speed greater than one order of magnitude
with respect to the previous version (QKS 1.0), thanks to its asynchronous behaviour and the new
faster components. The speed of PTP exchanges is compatible with protocols already in use in
real scenarios, especially if several keys are retrieved in the same request. Currently, performances
are not limited by the stack itself but by QKD devices exchange rates and either in presence of
faster devices the entire stack can be scaled horizontally adding replicas to support them without
much effort for system administrators.

The development of the routing algorithm and the management of trusted repeaters to perform
multi-hop key exchanges allows this solution to be integrated into a QKD network in its early
stages when not a lot of point-to-point links are available. Trusted repeaters networks are not free
from defects and the security of the exchange is preserved only if the middle nodes can be trusted,
but they are the only available option while waiting for the development of quantum repeaters.
Moreover, the speed of long-distance exchanges is significantly lower than PTP ones, hence keys
shared among distant hops can not be retrieved guaranteeing the same performances, thus their
effectiveness is limited.

The authentication of classical channels, both in the external interface and in the routing
modules packets, must be addressed carefully: standard algorithms do not provide security in a
quantum environment, hence quantum-resistant solutions are required. The same issue should
be considered with the encryption of internal communication between SAEs and the QKS and
between the QKS and the QKDM because they transmit sensitive data such as keys and credentials
that must not be sent in clear. This version does not solve these issues, and thus future developers
must address them before bringing the QKS into a production environment but the flexibility of
the architecture and the interfaces allows simple integration of different methods, either based on
PQC or QKD keys recycle.

The development of a first version of the Kubernetes operator shows that it is also possible
to integrate the software stack in a cluster, supporting interaction with the QKS only through
Kubernetes resources. This demonstrates that security applications can easily retrieve QKD
derived keys that can be used in their tasks. In the future, it can be easily extended to support
more functionalities and the automated deployment of the QKS and it can be packaged and
published as a free to use and plug and play solution.

83

Bibliography

[1] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-
key cryptosystems”, Communications of the ACM, vol. 21, February 1978, pp. 120–126, DOI
10.1145/359340.359342

[2] National Institute of Standards and Technology, “Digital Signature Standard (DSS)” FIPS
186-4, July 2013, DOI 10.6028/NIST.FIPS.186-4

[3] L. C. E. Barker and, A. Roginsky, A. Vassilev, and R. Davis, “Recommendation for pair-wise
key-establishment schemes using discrete logarithm cryptography” SP 800-56A Rev. 3, April
2018, DOI 10.6028/NIST.SP.800-56Ar3

[4] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3” RFC-8446, August
2018, DOI 10.17487/RFC8446

[5] P. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer”, SIAM Journal on Computing, vol. 26, October 1997, pp. 1484–1509,
DOI 10.1137/S0097539795293172

[6] C. Gidney and M. Eker̊a, “How to factor 2048 bit RSA integers in 8 hours using 20 million
noisy qubits”, SIAM Journal on Computing, vol. 5, April 2021, p. 433, DOI 10.22331/q-2021-
04-15-433

[7] H. Lo and H. F. Chau, “Unconditional security of quantum key distribution over
arbitrarily long distances”, Science, vol. 283, March 1999, pp. 2050–2056, DOI
10.1126/science.283.5410.2050

[8] I. Pedone, A. Atzeni, D. Canavese, and A. Lioy, “Toward a complete software stack to
integrate quantum key distribution in a cloud environment”, IEEE Access, vol. 9, August
2021, pp. 115270–115291, DOI 10.1109/ACCESS.2021.3102313

[9] W. Wootters and W. Zurek, “A single quantum cannot be cloned”, Nature, vol. 299, October
1982, pp. 802–803, DOI 10.1038/299802a0

[10] C. E. Shannon, “Communication theory of secrecy systems”, The Bell System Technical
Journal, vol. 28, October 1949, pp. 656–715, DOI 10.1002/j.1538-7305.1949.tb00928.x

[11] X. Ma, X. Yuan, Z. Cao, B. Qi, and Z. Zhang, “Quantum random number generation”, npj
Quantum Information, vol. 2, June 2016, DOI 10.1038/npjqi.2016.21

[12] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund,
T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel,
V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, “Advances in quantum cryptography”,
Advances in Optics and Photonics, vol. 12, June 2016, p. 1012, DOI 10.1364/AOP.361502

[13] F. Xu, X. Ma, Q. Zhang, H. Lo, and J. Pan, “Secure quantum key distribution with realistic
devices”, Reviews of modern Physics, vol. 92, May 2020, p. 25002, DOI 10.1103/RevMod-
Phys.92.025002

[14] A. Trizna and A. Ozols, “An overview of quantum key distribution protocols”, Information
Technology and Management Science, vol. 21, December 2018, pp. 37–44, DOI 10.7250/itms-
2018-0005

[15] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution
and coin tossing”, Theoretical Computer Science, vol. 560, 2014, pp. 7–11, DOI
h10.1016/j.tcs.2014.05.025

[16] M. Dusek, N. Lütkenhaus, and M. Hendrych, “Chapter 5 - Quantum cryptogra-
phy”, Progress in Optics (E. Wolf, ed.), vol. 49, pp. 381–454, Elsevier, 2006, DOI
https://doi.org/10.1016/S0079-6638(06)49005-3

84

https://doi.org/10.1145/359340.359342
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.17487/RFC8446
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.22331/q-2021-04-15-433
https://doi.org/10.1126/science.283.5410.2050
https://doi.org/10.1109/ACCESS.2021.3102313
https://doi.org/10.1038/299802a0
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1038/npjqi.2016.21
https://doi.org/10.1364/AOP.361502
https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.7250/itms-2018-0005
https://doi.org/10.7250/itms-2018-0005
https://doi.org/h10.1016/j.tcs.2014.05.025
https://doi.org/https://doi.org/10.1016/S0079-6638(06)49005-3

Bibliography

[17] M. Mehic, M. Niemiec, S. Rass, J. Ma, M. Peev, A. Aguado, V. Martin, S. Schauer, A. Poppe,
C. Pacher, and M. Voznak, “Quantum key distribution: A networking perspective”, ACM
Computing Surveys, vol. 53, September 2020, DOI 10.1145/3402192

[18] R. Alléaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin, M. God-
frey, P. Grangier, T. Länger, N. Lütkenhaus, C. Monyk, P. Painchault, M. Peev, A. Poppe,
T. Pornin, J. Rarity, R. Renner, G. Ribordy, M. Riguidel, L. Salvail, A. Shields, H. We-
infurter, and A. Zeilinger, “Using quantum key distribution for cryptographic purposes:
A survey”, Theoretical Computer Science, vol. 560, December 2014, pp. 62–81, DOI
https://doi.org/10.1016/j.tcs.2014.09.018

[19] P. S. S. Rass, “A unified framework for the analysis of availability, reliability and security, with
applications to quantum networks”, IEEE Transactions on Systems, Man, and Cybernetics,
Part C, vol. 41, January 2011, pp. 107–119, DOI 10.1109/TSMCC.2010.2050686

[20] D. Collins, N. Gisin, and H. D. Riedmatten, “Quantum relays for long distance quan-
tum cryptography”, Journal of Modern Optics, vol. 52, no. 5, 2005, pp. 735–753, DOI
10.1080/09500340412331283633

[21] W. Dür, H. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement
purification”, Physical Review A, vol. 59, January 1999, pp. 169–181, DOI 10.1103/Phys-
RevA.59.169

[22] C. Elliott, D. Pearson, and G. Troxel, “Quantum cryptography in practice”, Proceed-
ings of the 2003 Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communications, Karlsruhe (Germany), 2003, pp. 227–238, DOI
10.1145/863955.863982

[23] M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert,
E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J. Gautier, O. Gay,
N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger,
M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus,
O. Maurhart, L. Monat, S. Nauerth, J. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr,
L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T.
Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier,
H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC
quantum key distribution network in Vienna”, New Journal of Physics, vol. 11, July 2009,
p. 075001, DOI 10.1088/1367-2630/11/7/075001

[24] T. Chen, J. Wang, H. Liang, W. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W. Cai, L. Ju,
L. Chen, L. Wang, Y. Gao, K. Chen, C. Peng, Z. Chen, and J. Pan, “Metropolitan all-pass
and inter-city quantum communication network”, Optics Express, vol. 18, December 2010,
pp. 27217–27225, DOI 10.1364/OE.18.027217

[25] J. Moy, “OSPF Version 2” RFC-2328, April 1998, DOI 10.17487/RFC2328

[26] C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Current status of
the DARPA quantum network”, Quantum Information and Computation III (E. J. Donkor,
A. R. Pirich, and H. E. Brandt, eds.), 2005, pp. 138–149, DOI 10.1117/12.606489

[27] S. Wang, W. Chen, Z. Yin, H. Li, D. He, Y. Li, Z. Zhou, X. Song, F. Li, D. Wang,
H. Chen, Y. Han, J. Huang, J. Guo, P. Hao, M. Li, C. Zhang, D. Liu, W. Liang, C. Miao,
P. Wu, G. Guo, and Z. Han, “Field and long-term demonstration of a wide area quantum
key distribution network”, Optics Express, vol. 22, September 2014, pp. 21739–21756, DOI
10.1364/OE.22.021739

[28] M. Mehic, O. Maurhart, S. Rass, D. Komosny, F. Rezac, and M. Voznak, “Analysis of the
public channel of quantum key distribution link”, IEEE Journal of Quantum Electronics,
vol. 53, no. 5, 2017, pp. 1–8, DOI 10.1109/JQE.2017.2740426

[29] A. Aguado, V. Lopez, D. Lopez, M. Peev, A. Poppe, A. Pastor, J. Folgueira, and V. Martin,
“The engineering of software–defined quantum key distribution networks”, IEEE Communi-
cations Magazine, vol. 57, July 2019, pp. 20–26, DOI 10.1109/MCOM.2019.1800763

[30] H. Wang, Y. Zhao, and A. Nag, “Quantum-key-distribution (QKD) networks en-
abled by software-defined networks (SDN)”, Applied Sciences, vol. 9, May 2019, DOI
10.3390/app9102081

[31] Y. Cao, Y. Zhao, Y. Wu, X. Yu, and J. Zhang, “Time-scheduled quantum key distribution
(QKD) over WDM networks”, Journal of Lightwave Technology, vol. 36, May 2018, pp. 3382–
3395, DOI 10.1109/JLT.2018.2834949

85

https://doi.org/10.1145/3402192
https://doi.org/https://doi.org/10.1016/j.tcs.2014.09.018
https://doi.org/10.1109/TSMCC.2010.2050686
https://doi.org/10.1080/09500340412331283633
https://doi.org/10.1103/PhysRevA.59.169
https://doi.org/10.1103/PhysRevA.59.169
https://doi.org/10.1145/863955.863982
https://doi.org/10.1088/1367-2630/11/7/075001
https://doi.org/10.1364/OE.18.027217
https://doi.org/10.17487/RFC2328
https://doi.org/10.1117/12.606489
https://doi.org/10.1364/OE.22.021739
https://doi.org/10.1109/JQE.2017.2740426
https://doi.org/10.1109/MCOM.2019.1800763
https://doi.org/10.3390/app9102081
https://doi.org/10.1109/JLT.2018.2834949

Bibliography

[32] A. Aguado, V. Lopez, J. Martinez-Mateo, T. Szyrkowiec, A. Autenrieth, M. Peev, D. Lopez,
and V. Martin, “Hybrid conventional and quantum security for software defined and virtu-
alized networks”, Journal of Optical Communications and Networking, vol. 9, October 2017,
pp. 819–825, DOI 10.1364/JOCN.9.000819

[33] H. Zimmermann, “OSI reference model - the ISO model of architecture for open systems
interconnection”, IEEE Transactions on Communications, vol. 28, no. 4, 1980, pp. 425–432,
DOI 10.1109/TCOM.1980.1094702

[34] G. Meyer, “The PPP encryption control protocol (ECP)” RFC-1968, June 1996, DOI
10.17487/RFC1968

[35] M. Seaman, “802.1AE: MAC Security (MACsec)” IEEE Std. 802.1AE-2018, 2018, DOI
10.1109/IEEESTD.2018.8585421

[36] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen, “Internet key exchange protocol
version 2 (IKEv2)” RFC-7296, October 2014, DOI 10.17487/RFC7296

[37] F. T. Sufyan, “A novel extension of SSL/TLS based on quantum key distribution”, 2008
International Conference on Computer and Communication Engineering, Kuala Lumpur
(Malaysia), May 2008, pp. 919–922, DOI 10.1109/ICCCE.2008.4580740

[38] P. S. S. Rass, a. Wiegele, “Building a quantum network: How to optimize security and
expenses”, Journal of Network and Systems Management, vol. 18, September 2010, pp. 283–
299, DOI 10.1007/s10922-010-9162-0

[39] K. Shimizu, T. Honjo, M. Fujiwara, T. Ito, K. Tamaki, S. Miki, T. Yamashita, H. Terai,
Z. Wang, and M. Sasaki, “Performance of long-distance quantum key distribution over 90-
km optical links installed in a field environment of tokyo metropolitan area”, Journal of
Lightwave Technology, vol. 32, January 2014, pp. 141–151, DOI 10.1109/JLT.2013.2291391

[40] Z. Han, F. Xu, W. Chen, S. Wang, Z. Yin, Y. Zhang, Y. Liu, Z. Zhou, H. Li, D. Liu,
and G. Guo, “An application-oriented hierarchical quantum cryptography network test
bed”, Optical Fiber Communication Conference, San Diego (CA, USA), March 2010, DOI
10.1364/OFC.2010.OTuK4

[41] S. Wang, W. Chen, Z. Yin, Y. Zhang, T. Zhang, H. Li, F. Xu, Z. Zhou, Y. Yang, D. Huang,
L. Zhang, F. Li, D. Liu, Y. Wang, G. Guo, and Z. Han, “Field test of wavelength-saving
quantum key distribution network”, Optics Letters, vol. 35, July 2010, pp. 2454–2456, DOI
10.1364/OL.35.002454

[42] Q. Zhang, F. Xu, Y. Chen, C. Peng, and J. Pan, “Large scale quantum key distribution:
challenges and solutions”, Optics Express, vol. 26, September 2018, pp. 24260–24273, DOI
10.1364/OE.26.024260

[43] J. Yin, Y. Cao, Y. Li, S. Liao, L. Zhang, J. Ren, W. Cai, W. Liu, B. Li, H. Dai, G. Li,
Q. Lu, Y. Gong, Y. Xu, S-Li, F. Li, Y. Yin, Z. Jiang, M. Li, J. Jia, G. Ren, D. He, Y. Zhou,
X. Zhang, N. Wang, X. Chang, Z. Zhu, N. Liu, Y. Chen, C. Lu, R. Shu, C. Peng, J. Wang, and
J. Pan, “Satellite-based entanglement distribution over 1200 kilometers”, Science, vol. 356,
June 2017, pp. 1140–1144, DOI 10.1126/science.aan3211

[44] European Telecommunications Standards Institute, “ETSI GS QKD 002: Quantum key dis-
tribution (QKD) use cases” https://www.etsi.org/deliver/etsi_gs/qkd/001_099/002/

01.01.01_60/gs_qkd002v010101p.pdf, June 2010

[45] European Telecommunications Standards Institute, “ETSI GS QKD 003: Quantum key
distribution (QKD) components and internal interfaces” https://www.etsi.org/deliver/

etsi_gr/QKD/001_099/003/02.01.01_60/gr_QKD003v020101p.pdf, March 2018

[46] European Telecommunications Standards Institute, “ETSI GS QKD 004: Quantum Key Dis-
tribution (QKD) Application Interface” https://www.etsi.org/deliver/etsi_gs/QKD/

001_099/004/02.01.01_60/gs_QKD004v020101p.pdf, August 2020

[47] European Telecommunications Standards Institute, “ETSI GS QKD 005: Quantum Key
Distribution (QKD) Security Proofs” https://www.etsi.org/deliver/etsi_gs/QKD/001_

099/005/01.01.01_60/gs_QKD005v010101p.pdf, December 2010

[48] European Telecommunications Standards Institute, “ETSI GS QKD 007: Quantum Key Dis-
tribution (QKD) Vocabulary” https://www.etsi.org/deliver/etsi_gr/QKD/001_099/

007/01.01.01_60/gr_QKD007v010101p.pdf, December 2018

[49] European Telecommunications Standards Institute, “ETSI GS QKD 008: Quantum Key
Distribution (QKD) QKDModule Security Specification” https://www.etsi.org/deliver/
etsi_gs/QKD/001_099/008/01.01.01_60/gs_QKD008v010101p.pdf, December 2010

86

https://doi.org/10.1364/JOCN.9.000819
https://doi.org/10.1109/TCOM.1980.1094702
https://doi.org/10.17487/RFC1968
https://doi.org/10.1109/IEEESTD.2018.8585421
https://doi.org/10.17487/RFC7296
https://doi.org/10.1109/ICCCE.2008.4580740
https://doi.org/10.1007/s10922-010-9162-0
https://doi.org/10.1109/JLT.2013.2291391
https://doi.org/10.1364/OFC.2010.OTuK4
https://doi.org/10.1364/OL.35.002454
https://doi.org/10.1364/OE.26.024260
https://doi.org/10.1126/science.aan3211
https://www.etsi.org/deliver/etsi_gs/qkd/001_099/002/01.01.01_60/gs_qkd002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/qkd/001_099/002/01.01.01_60/gs_qkd002v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/QKD/001_099/003/02.01.01_60/gr_QKD003v020101p.pdf
https://www.etsi.org/deliver/etsi_gr/QKD/001_099/003/02.01.01_60/gr_QKD003v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/02.01.01_60/gs_QKD004v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/02.01.01_60/gs_QKD004v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/005/01.01.01_60/gs_QKD005v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/005/01.01.01_60/gs_QKD005v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/QKD/001_099/007/01.01.01_60/gr_QKD007v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/QKD/001_099/007/01.01.01_60/gr_QKD007v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/008/01.01.01_60/gs_QKD008v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/008/01.01.01_60/gs_QKD008v010101p.pdf

Bibliography

[50] European Telecommunications Standards Institute, “ETSI GS QKD 011: Quantum Key Dis-
tribution (QKD) Component characterization: characterizing optical components for QKD
systems” https://www.etsi.org/deliver/etsi_gs/QKD/001_099/011/01.01.01_60/gs_

QKD011v010101p.pdf, May 2016

[51] European Telecommunications Standards Institute, “ETSI GS QKD 012: Quantum
Key Distribution (QKD) Device and Communication Channel Parameters for QKD
Deployment” https://www.etsi.org/deliver/etsi_gs/QKD/001_099/012/01.01.01_60/

gs_QKD012v010101p.pdf, February 2019

[52] European Telecommunications Standards Institute, “ETSI GS QKD 014: Quan-
tum Key Distribution (QKD) Protocol and data format of REST-based key deliv-
ery API” https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_

QKD014v010101p.pdf, February 2019

[53] European Telecommunications Standards Institute, “ETSI GS QKD 015: Quantum Key Dis-
tribution (QKD) Control Interface for Software Defined Networks” https://www.etsi.org/
deliver/etsi_gs/QKD/001_099/015/01.01.01_60/gs_QKD015v010101p.pdf, March 2021

[54] Telecommunication Standardiztion Sector of ITU, “Recommendation ITU-T Y.3800 -
Overview on networks supporting quantum key distribution” https://www.itu.int/rec/

T-REC-Y.3800-202004-I!Cor1, April 2020

[55] Telecommunication Standardiztion Sector of ITU, “Recommendation ITU-T Y.3801 - Func-
tional requirements for quantum key distribution networks” https://www.itu.int/rec/

T-REC-Y.3801-202004-I, April 2020

[56] Telecommunication Standardiztion Sector of ITU, “Recommendation ITU-T Y.3802 -
Quantum key distribution networks - Functional architecture” https://www.itu.int/rec/

T-REC-Y.3802-202104-I!Cor1, April 2021

[57] Telecommunication Standardiztion Sector of ITU, “Recommendation ITU-T Y.3803 - Quan-
tum key distribution networks - Key management” https://www.itu.int/rec/T-REC-Y.

3803-202012-I, December 2020

[58] Telecommunication Standardiztion Sector of ITU, “Recommendation ITU-T Y.3804 - Quan-
tum key distribution networks - Control and management” https://www.itu.int/rec/

T-REC-Y.3804-202009-I, September 2020

[59] S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues, challenges, and
the road ahead”, IEEE Access, vol. 7, April 2019, pp. 52976–52996, DOI 10.1109/AC-
CESS.2019.2911732

[60] R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities on docker hub”, CODASPY
’17: Proceedings of the Seventh ACM on Conference on Data and Application Security and
Privacy, Scottsdale (AZ, USA), March 2017, pp. 269–280, DOI 10.1145/3029806.3029832

[61] M. P. Souppaya, J. Morello, and K. Scarfone, “Application container security guide”, Special
Publication (NIST SP), vol. 800, September 2017, DOI 10.6028/NIST.SP.800-190

[62] Cloud Native Computing Foundation, “Kubernetes documentation” https://kubernetes.

io/docs/

[63] M. S. I. Shamim, F. A. Bhuiyan, and A. Rahman, “XI commandments of kubernetes se-
curity: A systematization of knowledge related to kubernetes security practices”, 2020
IEEE Secure Development (SecDev), virtual conference, September 2020, pp. 58–64, DOI
10.1109/SecDev45635.2020.00025

[64] R. Mijumbi, J. Serratn, J. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba, “Network
function virtualization: State-of-the-art and research challenges”, IEEE Communications
Surveys Tutorials, vol. 18, September 2016, pp. 236–262, DOI 10.1109/COMST.2015.2477041

[65] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey”, Computer Networks,
vol. 54, October 2010, pp. 2787–2805, DOI 10.1016/j.comnet.2010.05.010

[66] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, and J. P.
Jue, “All one needs to know about fog computing and related edge computing paradigms:
A complete survey”, Journal of Systems Architecture, vol. 98, September 2019, pp. 289–330,
DOI 10.1016/j.sysarc.2019.02.009

[67] S. Josefsson, “The base16, base32, and base64 data encodings” RFC-4648, October 2006,
DOI 10.17487/RFC4648

[68] O. Maurhart, “QKD networks based on Q3P”, Applied Quantum Cryptography

87

https://www.etsi.org/deliver/etsi_gs/QKD/001_099/011/01.01.01_60/gs_QKD011v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/011/01.01.01_60/gs_QKD011v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/012/01.01.01_60/gs_QKD012v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/012/01.01.01_60/gs_QKD012v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_QKD014v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_QKD014v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/015/01.01.01_60/gs_QKD015v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/015/01.01.01_60/gs_QKD015v010101p.pdf
https://www.itu.int/rec/T-REC-Y.3800-202004-I!Cor1
https://www.itu.int/rec/T-REC-Y.3800-202004-I!Cor1
https://www.itu.int/rec/T-REC-Y.3801-202004-I
https://www.itu.int/rec/T-REC-Y.3801-202004-I
https://www.itu.int/rec/T-REC-Y.3802-202104-I!Cor1
https://www.itu.int/rec/T-REC-Y.3802-202104-I!Cor1
https://www.itu.int/rec/T-REC-Y.3803-202012-I
https://www.itu.int/rec/T-REC-Y.3803-202012-I
https://www.itu.int/rec/T-REC-Y.3804-202009-I
https://www.itu.int/rec/T-REC-Y.3804-202009-I
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1145/3029806.3029832
https://doi.org/10.6028/NIST.SP.800-190
https://kubernetes.io/docs/
https://kubernetes.io/docs/
https://doi.org/10.1109/SecDev45635.2020.00025
https://doi.org/10.1109/COMST.2015.2477041
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.17487/RFC4648

Bibliography

(c. Kollmitzer and M. Pivk, eds.), pp. 151–171, Springer, 2010, DOI 10.1007/978-3-642-
04831-9 8

[69] M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham, E. Roback, and J. F. D.
Jr., “Advanced encryption standard (AES)” Federal Inf. Process. Stds. (NIST FIPS) - 197,
November 2001, DOI 10.6028/NIST.FIPS.197

88

https://doi.org/10.1007/978-3-642-04831-9_8
https://doi.org/10.1007/978-3-642-04831-9_8
https://doi.org/10.6028/NIST.FIPS.197

Appendix A

User’s manual

This chapter wants to explain all the steps required to deploy the entire QKS stack presented in
this thesis work into a Kubernetes cluster. The first section describes how to deploy the stack
while the second shows how to integrate it with the operator. For each step a correctly deployed
K3s cluster is considered running on the used machine; refers to K3s official documentation 1 to
find out how to install it. Because the QKS can run on its own and is not bound to Kubernetes,
the last section of this chapter describes how to deploy the entire stack on Docker.

A.1 QKS deployment in Kubernetes

To deploy the stack on the K3s cluster a set of configuration files are required: an example set
can be found in the project repository, in the kubernetes folder 2. All the paths shown in this
section refer to this repository in the textiasync branch. First of all a namespace in which the
entire stack will be deployed must be choosen. To create a new namespace use the command:

kubectl create namespace <namespace_name>

To create any resource described in this chapter create the corresponding .yaml file and use the
command:

kubectl apply -n <namespace_name> -f <path/to/the/file>

To deploy the stack you must first create the resources related to MongoDB, Vault, Redis and
Keycloak and after that the QKS core and the routing module. Persistent volume resources are re-
quired both for Vault and for MongoDB and are the only resources that are not namespace scoped.
You have to create them assigning a size compatible with the size of the network you are going to
have. For the configuration proposed in the test chapter(9) 100Mbit for each one was enough. An
example file can be found in the GitHub folder at the path /config/persistent_volume.yaml

MongoDB

To deploy MongoDB create, in the corresponding namespace, a secret with two keys: mongo-root-username
and mongo-root-password with the admin credential required by the QKS to access the database
and to create users and databases for the QKDMs. Data in Kubernetes secret must be encoded in
the base64 format. An example file can be found in /config/mongo_secret.yaml. Now you have
to create the mongoDB statefulSet, the corresponding service and the persistentVolumeClaim
applying the resources in /resources/mongo.yaml. Because MongoDB database and collections
are created only after the first object insertion and objects do not have a fixed structure it is not
required to provide an initialization script.

1https://rancher.com/docs/k3s/latest/en/installation/

2https://github.com/ignaziopedone/qkd-keyserver/tree/async/kubernetes

89

https://rancher.com/docs/k3s/latest/en/installation/
https://github.com/ignaziopedone/qkd-keyserver/tree/async/kubernetes

User’s manual

Redis

To deploy Redis create in the namespace a configMap with the configuration file that should be
injected in the Redis container. Refer to the example file in /config/redis_configmap.yaml to
enable authenticated access and change the password at line 8. Redis deployment and service

can be created applying the file in /resources/redis.yaml The topics to be used for messages
and the database for routing tables are defined in the QKS core and routing configuration file.

Keycloak

Keycloak configuration requires both a configMap and a secret resources. The former should
contains the JSON representation of the realm that will be used: it must contains the client
object for the QKS and the roles for admins, saes and QKDMs as well as the mapping for the
data returned in the login token. The JSON object can be exported from an already running
instance and can be copied in the configMap. The secret object should contain admin credentials
both for the QKS admin user and for the Realm admin, the QKS client ID and its secret (that
should match the ones in the configMap). Keycloak deployment and service configurations can
be found in /resources/keycloak.yaml. The nodePort service type is not mandatory and it
can be converted into a clusterIP type if access from the outside is not necessary.

To retrieve the authentication token a user should interact with Keycloak with the following
HTTP call:

Method: POST

URL: http://<keycloak_host>:8080

/auth/realms/<realm>/protocol/openid-connect/token

Headers: Content-Type: application/x-www-form-urlencoded

Data: client_id=<client_id>&client_secret=<client_secret>&

grant_type=password&scope=openid&username=<username>&password=<password>

If the login procedure is completed successfully the access token will be placed in the access_token
field of the returned JSON object. With the proposed configuration the realm to be used is qks
and the client_id is qks, but they can be changed in the configuration file. The token must be
sent to the QKS in the Authorization header:

Authorization : Bearer <token>

Vault

The Vault container requires a configuration file to be injected to correctly set up the server.
An example configMap which contain this file can be found in /config/vault_configmap.yaml.
Deploy the Vault statefulSet and service through the file code/resources/vault.yaml Vault
requires both inizialization and unsealing procedure before being accessed by the QKS. Initialize
it executing the following command:

kubectl exec -n <namespace_name> --stdin --tty <vault_pod_name> -- vault

operator init

and unseal it with:

kubectl exec -n <namespace_name> --stdin --tty <vault_pod_name> -- vault

operator unseal

Use the parameters --key-shares and --key-threshold in the init command to specify the
total amount of unsealing keys and how many of them are required to unseal the system after a
reboot. Save the returned root token that must be injected in the QKS core configuration.

90

User’s manual

QKS core

The QKS core requires a configuration file containing the information on how to reach and ac-
cess all the other external modules. The .yaml file can be injected in the container through a
configMap as for the other components. The root token returned during the Vault initialization
phase has to be placed in this configuration file as well as MongoDB and Redis credentials. A
complete configuration example can be found in /config/qks_configmap.yaml, while figure A.1
shows an example of a section of a configMap for the core module. The deployment object and
the corresponding service can be created applying the file /resources/qks.yaml. The NodePort
used to expose the service can be changed to any other unused port or a LoadBalancer service
type if needed.

data:

qks-config: |

qks:

id: qks1

ip: qks-service # service name to reach the core from the cluster

port: 4000 # service port to reach the core from the cluster

max_key_per_request: 20

max_key_size: 512

min_key_size: 128

max_sae_id_count: 0

indirect_max_key_count: 20

mongo_db:

host: mongodb-service # MongoDB service name

port: 27017

user: rootuser

password: rootpwd

auth_src : admin # database used for authentication

db : qks # database to use for storing data

vault:

host : vault-service # Vault service name

port : 8200

token : s.KxoGNMbCu5Yvu7dImOvWlkjZ # root token

Figure A.1. Section of an example QKS core configMap.

QKS routing

As for the core component also the routing ones require a configuration file that can be injected
in the container through a configMap. In the qks and routing parameters, it must contain
the information on how to reach the core and the routing module from the outside of the cluster,
which are the information that will be spread by the routing algorithm: the ports must correspond
to the ones exposed through the NodePort services and the address must be public ones. The
redis and mongo_db parameters should match the ones in the QKS core module configMap.
Figure A.2 shows an example of a section of a configMap for the routing module. The module
can be deployed through the resources in /resources/routing.yaml. As for the core module
also the routing service can be changed to a LoadBalancer type if needed.

QKDM

The QKDM is the last component that should be deployed in the stack. Because it requires a
registration procedure its deployment is not as straightforward as for the other components. If

91

User’s manual

data:

routing-config: |

qks:

id: qks1

ip: core.qks1.cluster1 # cluster address

port: 30000 # node port

routing:

timer : 20

ip: routing.qks1.cluster1 # cluster address

port : 30500 # node port

Figure A.2. Section of an example QKS routing configMap.

the other peer the module is connected to is attached to a QKS which is not known in the current
QKS it must be registered with the corresponding API (POST /api/v1/qks). Because Keycloak
does not consider valid for interacting with the QKS tokens requested by users outside of the
cluster network a pod containing management script has been developed and its resource file can
be found in /QKDMmanagement/management-pod.yaml. To register the new QKS through the pod
script execute it with the argument 3 followed by the QKS data (an example can be found in
the pod file). You will need an account with the admin role on the QKS client to perform this
operation and all the other management operations: you can register it through the Keycloak
admin console or this pod script (with the argument 1) The QKDM can be registered to the
QKS either through its API (POST /api/v1/qkdm/actions/attach) or by an admin interacting
directly with the QKS. The second option is preferred because it allows you to save returned
information in a configMap; otherwise a persistent volume is required to safely store those data
even in case of crashes because the QKDM pod can not modify configMap objects. To register it
with the script launch the pod with argument 2 followed by the QKDM data; returned data will
be printed on the standard output and can be copied in the QKDM configMap (an example can
be found in /config/qkdm_configmap.yaml) The QKDM pod will fail if it controls the sender
device and if the other peer is not already up: instantiate first the receiver device and then the
sender. Pay attention to the fact that the sender in the device configuration parameter must
contain the information on how to reach the receiver in the other node, while the latter must
specify the containerPort it is listening on. Figure A.3 shows an example of a section of a
configMap for a QKDM. An example of the deployment and service resource can be found in
/resources/qkdm.yaml. A QKDM stream can be started by an administrator directly through
the corresponding API to the QKS (POST /api/v1/qkdms/<qkdm_id>/streams) or with the script
in the management pod (with argument 4)

A.2 Kubernetes Operator integration

The operator can be deployed in the Kubernetes cluster to provide an easier interaction with
the QKS from the SAEs point of view, but it is not mandatory: the QKS stack is completely
functional also on its own but requires interaction through its REST interface. The files re-
quired to deploy the QKD operator in the cluster are located in the /operator folder. The saes
and the keyRequests custom resources can be created applying the /operator/saeCRD.yaml

and /operator/keyRequestCRD.yaml files, they do not require the namespace parameter in the
command because resource definition is valid for the entire cluster even if the resources are names-
pace scoped. In an environment where Role-Based Access Control (RBAC) has been enabled the
operator must be granted access to the resources it has to manage with cluster-wide permission
because SAEs should operate in a different namespace from the operator. Apply the clusterRole,
the clusterRoleBinding and the serviceAccount describe in /operator/operatorRBAC.yaml

changing the clusterRole subjects:namespace parameter with the namespace the stack is run-
ning in. The operator can be deployed as a standard deployment object, which template can be

92

User’s manual

data:

qkdm-config: |

qkdm:

id: qkdm1 # ID of this module

dest_ID: qkdm2 # ID of the peer module

dest_IP: qkdm.qks2.cluster2 # address of the peer module

dest_port: 31000

ip: qkdm-service # service name to reach the QKDM from the cluster

port: 5000 # service port to reach the QKDM from the cluster

key_size: 128

max_key_count: 100

protocol: fake # name of the used QKD protocol

init: true

qkd_device:

role: sender # role of the device

host: device.qks2.cluster2 # address of the peer device

port: 32000

Figure A.3. Section of an example QKDM configMap.

found in /operator/operator-deployment.yaml. It is necessary to specify in the deployment
object the name of the namespaces where the operator can find the secret in used to access key-
cloak with admin role to create new SAEs users in the SECRET_NAMESPACE environment variable
as shown in the code reported here below:

spec:

serviceAccountName: qkd-operator

containers:

- name: qkd-operator

image: ignaziopedone/qkd:qks_operator

env:

- name: SECRET_NAMESPACE

value: qkdns

Once the operator is deployed, SAEs can be registered creating a sae resource specifying the
name and true in the registration_auto parameter. With the SAE correctly registered, its
Keycloak credentials can be accessed by administrators in the secret <sae_name>-credentials
in the namespace it is deployed into. To retrieve a key create a keyRequest object specifying the
master and the slave SAEs and the key requested. To retrieve keys already reserved insert their
IDs in the ids parameter. If the request is completed successfully a secret with the same name as
the keyRequests will be created in the SAE namespace, in case of failure nothing will be created
and the requests should be recreated; no retry behaviours have been implemented. Because
resource names in Kubernetes have to be unique in a namespace each SAE should identify a way
to produce unique names such as UUIDs.

A.3 QKS deployment in Docker

This section describes how to deploy the entire QKS stack in Docker. The same configuration
files described in the Kubernetes chapter are required with Docker, despite they are not deployed
through configMaps and secrets. For each pod that requires a configuration file injected through
a configMap, the configuration file should be injected through a volume in the same path as
the configMap. Environment variables injected through secrets here must be passed directly
as variables in the container arguments or through Docker secrets. There are no differences in

93

User’s manual

the parameters of the configuration files between the two deployment scenarios. To simplify
the deployment a docker-compose file can be used, but it does not solve the issues related to the
injection of configuration data and the required deployment sequence described in the Kubernetes
section. If a docker-compose is used each container can reach the others via their container name,
the mapping between the name and the IP address is performed directly by Docker when the
container is created through Docker networking functionalities, while services must be replaced
with the corresponding port mapping. An example docker-compose file can be found in the
GitHub repository.

94

Appendix B

Developer’s reference guide

This chapter wants to describe the main implementation choices, the libraries used to develop the
proposed code and how to modify and extend the functionalities.

B.1 Quantum Key Server

The QKS code can be found in the qkd-keyserver GitHub repository in the async branch1. The
QKS core code can be found in the qks_core folder while the routing module code in the routing
one. Both have been developed in Python 3.9 to take full advantage of the async patter and to
exploit type hints improving code readability. All the developed Docker images are available on
DockerHub2, tags have been used to describe them.

B.1.1 QKS core

The qks core folder contains the following Python files:

server.py is the file that contains the Quart server which receives and manages the incoming
HTTP calls, return formatted results and handles error messages. It can receive in the input
parameters the name of the configuration file to use.

api.py contains all the functions called from the server, it contains the main application logic
of the three interfaces and the management functions required to init the server.

asyncVaultClient.py is an asynchronous interface built to communicate with Vault which con-
tains all the methods required by the QKDM and the QKS to interact with Vault.

These files have been packaged in a Docker image to simplify the deployment of the app. The
Docker image can be built from the Dockerfile in the same folder as the code, with the command:

docker build -f <path/to/dockerfile> -t <image_name:image_tag>

Note that in a production environment the Quart web server should by run directly through the
Python file, but an ASGI webserver (e.g. Hypercorn3) should be used in front of it. To run the
server with Hypercorn use the command:

hypercorn server:app

The Docker image should be modified accordingly.

1https://github.com/ignaziopedone/qkd-keyserver/tree/async

2https://hub.docker.com/r/ignaziopedone/qkd/

3https://pgjones.gitlab.io/hypercorn/

95

https://github.com/ignaziopedone/qkd-keyserver/tree/async
https://hub.docker.com/r/ignaziopedone/qkd/
https://pgjones.gitlab.io/hypercorn/

Developer’s reference guide

Interaction with other components

The interaction with MongoDB is performed through the official motor4 library, which provides
support to asynchronous communication with the Python standard library asyncio.

The asynchronous interaction with Redis is carried on with the aioredis5 library; a version
equal or higher to the 2.0.0 is required to correctly perform all the operations.

The asyncVaultClient interface is built on top of the async_hvac6 libraries used to inter-
act with Vault. It contains all the methods required by the QKS and the QKDM, allowing to
substitute Vault with another product without significant changes in the api code. It provides
exceptions management and errors handling, returning empty values when the operation is not
completed successfully.

The interaction with Keycloak, to validate the authorization token received in the Authorization
header of requests over the northbound interface is performed through the verifyToken token
function which receives it and forward it to the Keycloak endpoint through the Keycloak REST
API with the following call:

Method: POST

URL: http://<keycloak_host>:8080

/auth/realms/<realm>/protocol/openid-connect/userinfo

Headers:

- Content-Type: application/json

- Authorization: Bearer <access_token>

Detailed information on the available methods in the API can be found in the official documenta-
tion7. The authentication is not bound to Keycloak or the OIDC protocol, therefore this function
can be modified to support any other validation techniques, either online or offline.

Logging

Loggin is performed with the standard Python library logging. The logger is configured before
the Quart app initialization with the code:

logging.basicConfig(filename=’qks.log’, filemode=’w’, level=logging.INFO)

and logs are perfomed executing the proper method on the app.logger object, for example for a
warning message:

app.logger.warning(message_string)

Data are both saved in the log file specified in the basicConfig method and printed on the stan-
dard output through the Hypercorn ASGI web server which runs with Quart. To save data persis-
tently a persistent volume should be added to map the folder /usr/app/qkd-keyserver/qks_core

APIs payloads

Figure B.1, B.2 and B.3 describe the body of REST requests and response respectively for the
methods of the northbound, the southbound and the external interface of the QKS. When a
request is received the server first checks if the sender is authenticated and then decode the
received payload and check if all fields are present. In case of errors or exceptions in the handling
of valid requests, a JSON payload is returned, with a message which describes the error.

4https://github.com/mongodb/motor

5https://github.com/aio-libs/aioredis-py

6https://github.com/Aloomaio/async-hvac

7https://www.keycloak.org/docs-api/15.0/rest-api/

96

https://github.com/mongodb/motor
https://github.com/aio-libs/aioredis-py
https://github.com/Aloomaio/async-hvac
https://www.keycloak.org/docs-api/15.0/rest-api/

Developer’s reference guide

Figure B.1. Northbound interface JSON bodies

Figure B.2. Northbound interface JSON bodies

B.1.2 Routing module

The routing folder contains the following Python files:

asyncRoutingApp.py is the file with the routing algorithm, that manages all the routing logic,
the interaction with Redis and the computation of the cost for each link. It can receive in
the input parameters the name of the configuration file to use.

lsaPacket.py contains the packet class, both in JSON and in the raw encoded version and the
functions to encode and decode them.

qkdGraph.py contains the graph class and the classes for nodes and SAEs. It is used to represent
the QKD network and the links between QKSs and to compute and return routing tables.

These files have been packaged in a Docker image that can be found in the routing folder, to
simplify the deployment of the app.

97

Developer’s reference guide

Figure B.3. Northbound interface JSON bodies

Cost function

The routing cost function can be found in the asyncRoutingApp file and computes the cost of
each link in the following way:

cost_param = {’c0’ : 100, ’c1’ : -50, ’c2’ : -25}

def routeCost(old: int, new: int, tot : int) -> int :

global cost_param

delta : int = (new - old)

cost : float = cost_param[’c0’] + cost_param[’c1’] * (new / tot) +

cost_param[’c2’] * (delta / tot)

return int(cost)

It receives the number of available keys in the QKDM at the previous interaction old, the current
number of available keys (new) and the maximum number of storable keys (tot). cost_parameter
is a global variable which contains the equation coefficients. This function can be updated and
extended with other parameters without requiring any other change to the code. The only re-
quirement is that the returned value must be greater than 0, otherwise, it can cause unexpected
behaviour in the Dijkstra algorithm.

Redis messages

The updates from the QKS are received from Redis PubSub topics, in the following way:

async def listenForChanges() :

pubsub : aioredis.PubSub = redis_client.pubsub()

await pubsub.psubscribe(f"{config[’redis’][’topic’]}-**")

while True:

message = await pubsub.get_message(ignore_subscribe_messages=True,

timeout = 0.1)

action, name = message[’data’].split("-")

handle the message

Three different topics with the same root word have been used: <config_name>-sae for in-
formation related to SAEs, <config_name>-qks for new QKSs added to the network from the
northbound interface method and <config_name>-link for added or removed QKD streams. The
topic name must be specified in the configuration file and must match between the QKS core and
the routing module. The received message is a string formatted with <action>-<name> where

98

Developer’s reference guide

action can be “add” or “remove” while “name” is the subject to which the action refers. Rout-
ing tables are produced by the graph object and are pushed into Redis executing a pipeline in
the updateGraph function, which allows performing several actions in a single call, reducing the
transmission overhead.

Routing packet parameters

The packet content can be updated and easily extended modifying the parameters list global
variable in the lsaPacket.py file:

element_list = ["version", "type", "source", "routing", "neighbors",

"timestamp", "auth", "forwarder"]

The encode and decode functions of the JSON version does not require any update even if there
are changes in the packet parameters, while the raw encoded version requires a code update to
correctly handle changes. The size of each element in the raw encoded packet is defined in the
dims dictionary global variable.

Logging

Loggin is performed with the standard Python library logging, and data are saved in the
/usr/app/qkd-keyserver/routing/routing.log file. In a containerized environment, the file
system of a container is not persisted by default, hence to keep logs after the pod destruction a
persistent volume should be added in the routing pod mapping the corresponding folder.

B.2 QKD Module

The QKDM code can be found in the qkd-module GitHub repository in the async branch8. The
code has been developed in Python 3.9 to take full advantage of the async patter as for the QKS,
using only one programming language for the whole project.

The qkdm_src folder contains the source code of the project, organized in the following Python
files and folder:

qkdm server.py is the file that contains the Quart server which receives and manages the in-
coming HTTP calls and returns results. It performs the mapping between error codes and
their meaning, returning human-readable messages in case of errors. It can receive in the
input parameters the name of the configuration file to use.

api.py contains all the functions called from the qkdm_server and the management function
required to exchange keys, initialize the module and handle the connected QKD device.

asyncVaultClient.py is an asynchronous interface built to communicate with Vault, equal to
the one used in the QKS.

QKD device is the folder that contains the QKDcore Python interface that should be extended
to handle QKD devices. The fakeKE.py file contains the fake simulated protocol used for
tests purposes.

These files have been packaged in a Docker image that can be found in the project root folder.
Because the QKDM can work both as a standalone module and connected to a QKS, the
qkdm_server file can receive the server input parameter, which is a boolean that defines if
the QKDM should wait for the registration to a QKS or if it must start with the data received

8https://github.com/ignaziopedone/qkd-module/tree/async

99

https://github.com/ignaziopedone/qkd-module/tree/async

Developer’s reference guide

in the configuration file. The reset input parameter can be used to delete any registration data
present in the configuration file, thus deleting the previous registration. Note that in a production
environment the Quart web server should by run through an ASGI webserver. You can run the
server with Hypercorn modifying the Docker image with the following command:

hypercorn qkdm_server:app

B.3 Kubernetes integration

The code of the operator can be found in the /kubernetes/operator/operator.py file in the
repository folder. Thanks to the kopf framework all the modules, components and configura-
tion required to interact with Kubernetes are automatically managed and the operator code is
developed in a single file.

There are three main functions related to action on resources in the operator:

keyreq on create is triggered when a keyRequest resource is created. It watches the param-
eters, perform the login for the master_SAE into Keycloak and then calls the getKey or
getKeyWithKeyIDs on the QKS. If the requests is completed successfully it creates the
corresponding secret.

sae on create is triggered when a sae resource is created. It perform login with QKS admin
credentials into Keycloak and calls the registerSAE method to the QKS. If the parameter
registration_auto is set to true it register the SAE into Keycloak. An error is returned
if a user with the same username as the SAE is already present; to register a SAE already
present in Keycloak the registration_auto parameter must be set to false

sae on delete is triggered when a sae resource is deleted. It calls the unregisterSAE method
to the QKS but does not delete the user from Keycloak.

The operator does not perform any action when a keyRequest object is deleted. In the
proposed solution it does not have the authorization to watch resource changes, therefore even if
a keyRequest gets modified after its creation the operator will not react. This ensures consistency
in secrets and avoids the risk of overwriting keys already returned.

To create a function that will be triggered after action on a resource an annotation should be
added on top of it specifying the group, the version and the name of the resource; e.g. for the
keyreq_on_create function:

@kopf.on.create(’qks.controller’, ’v1’, ’keyrequests’)

def keyreq_on_create(namespace, spec, body, name, **kwargs):

Authorization management

The operator must have access to the custom resources saes and keyRequests to watch their
creation, to event to discover when a new object has been created and to secrets to retrieve
SAEs credentials and to save retrieved keys. A basic implementation of the operator cluster role
is reported here:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

name: qkd-operator

rules:

- apiGroups: ["qks.controller"]

resources: ["keyrequests"]

verbs: ["*"]

- apiGroups: ["qks.controller"]

100

Developer’s reference guide

resources: ["saes"]

verbs: ["*"]

- apiGroups: [""]

resources: ["events"]

verbs: ["*"]

- apiGroups: [""]

resources: ["secrets"]

verbs: ["*"]

Image building

The code can be packaged in a Docker image using the Dockerfile provided in the operator folder.
The operator code must be run not as a standard Python file, but through the following command:

kopf run /path/to/the/operator.py

which allows the kopf framework to run the code required to interact with Kubernetes and to
load all the needed libraries, embedding the provided Python code into a controller loop.

101

	Introduction
	Quantum Key Distribution
	Channels and devices
	Errors and privacy amplification
	QKD protocols
	BB84

	QKD criticalities and attacks
	Classical channel
	Quantum attacks
	Real implementation criticalities

	QKD networks and initiatives
	QKD network implementation
	QKD Network types
	Routing inside QKD networks
	Key forwarding in multi-link scenarios
	Software defined networking for QKD
	Integration in the network stack
	QKD trusted repeater network vulnerabilities

	QKD network projects
	DARPA QKD Network
	SECOQC QKD Network
	Tokyo UQCC QKD Network
	China Wide Area QKD Network
	Recent initiatives and projects

	QKD standards
	ETSI standard
	Use cases
	Application Interface
	REST-based key delivery API

	ITU standard

	Cloud-native applications
	Containers
	Containers security

	The microservice pattern
	The twelve-factor application

	Kubernetes
	Kubernetes architecture and components
	Custom resources and operators
	Security of Kubernetes clusters

	Beyond cloud-computing

	Quantum Key Server
	Design and architecture
	Key Streams management

	Interfaces
	QKD Module
	QKD Simulator
	Criticalities

	Quantum Key Server 2.0
	Overview
	Architecture
	Interfaces
	Northbound interface
	Southbound interface
	External interface

	Components details
	Asynchronous pattern
	Data model
	Secret engine
	Redis

	Routing module
	Routing algorithm
	Routing packet
	Cost function
	Routing tables

	QKD Module 2.0
	Interfaces
	Database description

	Workflow
	Future works

	QKS integration in a Kubernetes cluster
	Cluster configuration
	Custom resources and Operator
	Implementation details
	Key exchange workflow

	Future works and alternative approaches

	Test and validation
	Key-exchange tests
	Routing tests

	Conclusions
	Bibliography
	User's manual
	QKS deployment in Kubernetes
	Kubernetes Operator integration
	QKS deployment in Docker

	Developer's reference guide
	Quantum Key Server
	QKS core
	Routing module

	QKD Module
	Kubernetes integration

