
POLITECNICO DI TORINO

Master Degree Thesis

Network topology description
language and communication

policy analysis in the
automotive scenario

Supervisors
Prof. Cataldo Basile
Prof. Antonio Lioy

Candidates
Umberto Fierro

matricola: s255434

Anno accademico 2020-2021

To my grandparents

Summary

In recent times, the automotive sector has undergone radical changes as
regards to cybersecurity problems, eventually becoming a sector of interest
for companies and researchers. Problems concerning automotive industry in
fact revolved mainly around the safety of vehicles themselves until few years
ago, whereas nowadays cybersecurity has to be also taken into account, since
vehicles contain from 30 up to 100 different Electronic Control Units (ECUs).
Each one of these ECUs control a specific module (from the brakes to the
steering wheel, to the managing of multimedia contents) reading data from
the sensors (e.g., wheel speed, tire pressure, etc.) and producing actions
through the actuators (e.g., pulling the brakes, turning on/off a lamp, etc.).
We can therefore affirm that the safety of a vehicle goes through the proper
implementation of cybersecurity of these computing units. A further crucial
aspect to underline is that these ECUs are interconnected, thus creating a
bigger attack surface that can be exploitable by attackers in order to conduct
attacks against vehicles. For these reasons Original Equipment Manufacturer
(OEMs) have to setup their objectives in order to deal with this issue and
be more competitive, thus applying security by design and being compliant
to the latest international regulations with regard to cybersecurity.

This thesis takes the inputs provided by these normatives (e.g., ISO/SAE
21434 and UNECE WP.29/R155) and describes the development of a pos-
sible topological representation of structural elements of an automotive ar-
chitecture, identifying assets of interest based on an ontology. Furthermore
a study of an access control model using communication policies follows;
this stage involves: High level policies formalization starting from design
constraint, through refinement process extract from them Low level policies
that should be used in order to configure filtering devices and in the end,
with the aim of avoid misconfiguration of filtering element, anomaly analysis
and reachability analysis are made.

Conclude this work an analysis of results obtained and how they can be
used in future development

I

Acknowledgements

This is the last act of my academic experience, a very hard path that gave me
the chance to grow as a person, enlarge my knowledge, and acquire technical
skills. It may seem reductive, but all the gratitude to the people that have
surrounded me is contained in a six-letter word that I have used unproperly
so many times in the last years: Ubuntu, which means ”I am what I am
because of who we all are.”

I would like to acknowledge my thesis supervisors: Prof. Basile and Prof.
Lioy. They gave me the honor to work with them in a very innovative and
interesting field. The virtual door to Prof. Basile’s office was always open
whenever I ran into a trouble spot or had a question about my research or
writing. I am so grateful for allowing me to take part in this project and for
your endless patience and willingness.

I would like to acknowledge Giuseppe and all the guys of Drivesec team, in
particular Nino and Andrea. They make me feel part of the Drivesec family
since the first day. I hope that our path together will be full of satisfaction.

My family played the most important role in these years, allowing me
to start this journey and being always by my side, no matter the distance
between us. Thus I would like to thank my dad, for bequeathing me with
the love and the passion for the project development, and my mum, for all
the common sense she gave me. Thank you for all the love and trust given,
if I am here to write this thesis is basically because of you. To my little
sister, thank you for coloring my everyday life with your smile. I would like
to thank my grandparents, the roots of my family. This work is dedicated to
you, thank you for the future you gave me.

I would thank all of my friends, no one excluded, lost and found, near and
far, boring and funny, thank you for all of your advice and the beers shared.
Thank you for all the very philosophical discussion above the maximum sys-
tems but also the rudest football comments. You allowed me to grow and to
overcome the darkest moments and be here now.

Dulcis in fundo, I would thank Sara, my diamond in the rough. Thank

II

you, baby, for the endless support, all the moments, words, and emotions
shared together, and for all who will be.

III

Contents

List of Figures VII

List of Tables VIII

1 Introduction 1
1.1 Open problem . 2
1.2 Thesis Outline . 3
1.3 Thesis Results . 4

2 Automotive Scenario 5
2.1 Automotive architecture . 5

2.1.1 Network . 6
2.1.2 ECU . 7
2.1.3 Security Gateway . 7

2.2 Network Protocol . 8
2.3 Standards for Automotive . 9

2.3.1 ISO/SAE 21434 . 9
2.3.2 UNECE WP.29/R155 10

3 Automotive cyber attacks 13
3.1 Attack surface . 13
3.2 Attack vector . 14
3.3 Typologies of attacks . 14

3.3.1 Direct physical access attack 15
3.3.2 Indirect attack . 15

3.4 Famous attacks . 18

4 Background and related works 19
4.1 Ontologies and libraries . 19

4.1.1 Ontology . 19

IV

4.1.2 Owlready2: a library for ontology manipulation 20
4.2 Communication Policy e Access Control 20

4.2.1 High-Level policy and XACML 21
4.3 Policy analysis in computer network 22

4.3.1 Anomaly Analysis . 22
4.3.2 Reachability analysis 23

4.4 Related Works . 24

5 Problem Statement 25
5.1 Requirements . 25
5.2 An overview of the proposed solution 27

6 Design of the solution 29
6.1 Model definition . 29
6.2 High-level policy design . 33
6.3 Policy refinement . 37
6.4 Policy analysis . 38

6.4.1 Anomaly analysis . 38
6.4.2 Reachability analysis 43

7 Implementation 45
7.1 Refinement algorithm . 45
7.2 Anomaly analysis . 46
7.3 Reachability analysis . 47

8 Evaluation 49
8.1 Proof-of-Concept . 49

8.1.1 Architecture . 50
8.1.2 Design . 50

8.2 Test scenarios . 52
8.3 Policy Analysis test . 55

9 Conclusion 59
9.0.1 Future work . 60

A Template of a communication Policy 63

B Refinement algorithm implementation 67

C WebApp: list of API 71

V

Bibliography 72

VI

List of Figures

1.1 Example of Automotive Architecture. 2

2.1 Evolution of Automotive Architecture 6

4.1 OwlReady2:Architecture . 21

5.1 ISO 21434: Requirement generation for cybersecurity relevant
items or components . 26

6.1 Automotive Ontology: Node 31
6.2 Automotive Ontology: Communication Interface 32
6.3 Automotive Ontology: Network Interface 33
6.4 Automotive Ontology: Message 34
6.5 Automotive Ontology: Asset 35
6.6 Policy Design workflow . 37
6.7 Policy Refinement workflow 38
6.8 Intra-Policy Anomalies workflow 43
6.9 Inter-Policy Anomalies workflow 43
6.10 Equivalent Firewall creation workflow 44

8.1 Tool for Item definition and Asset Identification: Architecture 51
8.2 Tool for Item definition and Asset Identification: Database

Design . 53
8.3 Complete Automotive architecture: Scenario 1 53
8.4 Complete Automotive architecture: Scenario 2 54
8.5 Complete Automotive architecture: Scenario 3 55

VII

List of Tables

2.1 Automotive architecture basic component 8

3.1 Attack classification . 17

C.1 WebApp: list of API . 71

VIII

Chapter 1

Introduction

In an open and connected world, the automotive scenario is a thriving area
for companies and researchers involved in cybersecurity. If the problems in
the automotive industry turned around the safety of vehicles themselves until
a few years ago, these aspects are now accompanied by cybersecurity issues
since the vehicles contain from 30 up to 100 different Electronic Control Units
(ECUs) [1]. Each one of them controls a specific module [2] from the brakes to
the streaming of multimedia content through a set of sensors and actuators,
that respectively read data from the environment (e.g., wheel speed, tire
pressure, steering angle, etc.) and produce a specific action (e.g., pulling the
brake, turning on/off a lamp, etc.). We can threfore affirm that nowadays
the safety of vehicle goes through the proper implementation of cybersecurity
of these computing units. A further crucial aspect to underline is that these
ECUs are interconnected, which means a bigger attack surface that can be
exploitable by attackers in order to perform attacks against vehicles. For
these reasons Automotive OEMs1, i.e. companies that produce parts and
equipments that may be marketed by another manufacturer [3], have to set
up their objectives to fix this issue and be more competitive. In particular,
they have to:

• Be compliant with standards and regulations [4] to address investment
in the proper direction

• Increase reliability of vehicles, security by design can in fact avoid the
detection of vulnerability after the vehicles are sold, thus preventing

1Original Equipment Manufacturer

1

Introduction

a potential negative impact generated by negative press coverage and
resulting recall campaigns [2]

• Apply cybersecurity principles to the entire production chain [5], it must
be included from the design phase to the software development and
maintenance until the end of the vehicle’s life. It shall also be integrated
into Hardware, Software, and protocols used for intra-vehicle and inter-
vehicle communications.

Figure 1.1: Example of Automotive Architecture.

1.1 Open problem
From a cybersecurity point of view, modern automotive architectures are not
so different from a computer network of the beginning of the century. In this
scenario, the main goal is in fact to keep the computing unit extremely simple
in order not to compromise their performances. This fact highlights the open
problems automotive cybersecurity is facing today, which will described in
the following sections.

Lack of security property in communication protocols

Messages in the automotive network are exchanged using different protocols,
but regarding security properties [6], none of them provides authentication
of packets, that is to say that anyone can write data on the bus pretending
to be a proper ECUs. Messages also lack of confidentiality because they are
sent in clear on the bus, making a sniffing activity of an attacker easy to
conduct.

2

1.2 – Thesis Outline

Lack of access control policies or misconfiguration

In Section 2.1.3 at page 7 we will focus on the structure and the role of
the Security Gateway in an Automotive infrastructure, but it is necessary to
state from now how this is a crucial element. Since communication protocols
do not guarantee security properties and most of them are broadcast, there
is the need for a filtering element that can assure a correct flow of admitted
packets, discarding the others. For this reason, a correct analysis of policy
and a deep refinement activity represent a fundamental step to assure the
safety of the vehicle through the correct implementation of cybersecurity

1.2 Thesis Outline
After this merely introductive chapter, the topic of my final work will be
presented, analyzing the background and then highlighting the problem and
its solution. In particular:

• In Chapter 2 I will introduce the basic concepts of the Automotive world
focusing on Architectural and normative aspects.

• In Chapter 3 I will introduce the research field of my thesis, explain-
ing which are the possible attacks an attacker can mount, underlining
possible attack surfaces, attack vectors, and typologies of attacks.

• In Chapter 4 I will discuss works and studies related to this Master
Degree Thesis and describe the theoretical background the solution to
the problem relies on

• In Chapter 5, I will concisely describe the problem by defining the re-
quirements and the scenarios in which it finds application.

• In Chapter 6, I will give details about the design of the solution, describ-
ing in detail all the sub-parts it is made of and which project choices are
considered.

• In Chapter 7, I will further analyse in the refinement algorithms and
policy analyzing functions, describing their implementation.

• In Chapter 8, I will propose a proof of concepts to test some use cases
scenarios, in order to demonstrate that the requirements have been met

3

Introduction

• In Chapter 9, I will evaluate the outcome obtained from this final work,
describing the results achieved and discussing possible future develop-
ment

1.3 Thesis Results
The goal that this thesis aims to reach is mainly to propose a description
language that allows to identify items of interest, from a cybersecurity point
of view, inside an automotive architecture and methods demonstrates that
the policy analysis used in a normal computer network is suitable for auto-
motive network as well, with minor changes imposed by the context. It tries
to give basic components to develop tools useful to be compliant with the
most recent automotive cybersecurity certification.

4

Chapter 2

Automotive Scenario

The goal of this chapter is to contextualize the problems highlighted in Chap-
ter 1 presenting the technical aspects that characterize a vehicle and more in
general the Automotive world. In this way, the reader can receive all the nec-
essary knowledge to understand the following chapters. In particular, I will
focus on two main aspects:Architecture (Section 2.1) and Network Protocol
(Section 2.2). At the end of the chapter a presentation of the most recent
standards about Automotive Cybersecurity can be found (Section 2.3).

2.1 Automotive architecture
In the automotive industry, there are no real design standards and some
architectural aspects can differ from OEM to OEM. In this section I will try
to describe them conceptually. First of all, we have to distinguish three main
models of automotive architecture (Figure 2.1):

1. Flat Architecture, it is the very first typology of architecture created
and it is characterized by a single level of ECU: each one of them are
interconnected to a Hub that propagated the CAN frame and there is
no filtering element (Figure 2.1a).

2. Gateway Architecture, the first evolution requires the presence of a
central gateway that filters packets that cross them, providing a network
separation (Figure 2.1b).

3. Domain Controller Architecture, it is the next-generation architec-
ture that can observed in the design of vehicles from 2022. It is based

5

Automotive Scenario

on a new component, i.e. the Domain Controller, which physically in-
tegrates more than a control function in the same ECU, reducing the
space needed to allocate more different ECU, but introducing Cyberse-
curity issues that must be taken into account to protect safety-critical
operation (Figure 2.1c)

(a) Flat Architecture

(b) Gateway Architecture (c) Domain Controller Architecture

Figure 2.1: Evolution of Automotive Architecture

In the following part, we will concentrate only on the second model, since
it is the currently most used architecture.

2.1.1 Network

Since Electronics components were introduced, different communication ar-
eas were defined to make a more rational design and a network segregation.
Historically the main networks are [7]:

6

2.1 – Automotive architecture

• Powertrain, here the safety-critical ECUs used for engine, transmission,
emissions control, fuel economy, and performance control can be found

• Chassis, another set of safety-critical ECU responsible for braking func-
tion, Airbag activation, steering lock, etc. belongs to this network

• Body, this area is filled for the most part with not safety-critical com-
ponents, that control for example door or lamp.

Sometimes a fourth network is introduced to classify other particular ECUs
like Telematic Unit, V2X, or Head Unit. In other cases, the Designer chooses
to attach them directly to a Gateway or rarely to insert them in one of the
previously presented networks.

2.1.2 ECU
After defining the macrostructure of the vehicle architecture, we will now
concentrate on the active elements that compose them, namely the ECUs.
Their structure is similiar [8], they have some sensors, actuators, various
interfaces, and microprocessors or a microcontroller. At the software level,
they have at least a firmware, some of them have a real Operating System
that runs on application [9]. ECU can be divided into two main categories:
Safety Critical and Not Safety Critical [7]. The former controls basic vehicle
functions, like braking and engine control, have a real impact on the safety of
the vehicle and on the health of the passengers, in case of impairment. The
latter control accessory functions instead, like Infotainment or light control.
Table 2.1 summarizes the functions of the main ECUs indicating the network
to which they belong.

2.1.3 Security Gateway
The Central element of Gateway Architecture is the Security Gateway (also
called Automotive Gateway), it is a particular ECU, that differs from the
others because it does not have any sensors or actuators and does not make
any "visible" action (like braking or accelerate). It securely and reliably
interconnects and transfers data across many different networks inside the
vehicle [10], providing physical isolation and protocol translation [11] to route
signals between functional domains [12]. For these reasons it has various
network interfaces like CAN, FlexRay, Ethernet, OBD-II. It has the same
role as a packet filter in a modern network because it contains access policies,
allowing only admitted communication between ECUs and networks.

7

Automotive Scenario

Table 2.1: Automotive architecture basic component

ECU Network Description

ECM Powertrain Engine Control Module controls the engine using information from sensors
to determine the amount of fuel, ignition timing, and other engine parameters.

TPMS Powertrain Tire Pressure Monitoring System sends tire pressure data to other ECUs

EBCM Chassis Electronic Brake Control Module controls motor pump and valves, preventing
brakes from locking up and skidding by regulating hydraulic pressure.

TCM Powertrain Transmission Control Module controls electronic transmissionusing data
from sensors and the ECM to determine when and how to change gears.

BCM Body Body Control Module controls various vehicle functions, provides
information to occupants, and acts as a firewall between the two subnets.

HVAC Body Heating, Ventilation, Air Conditioning controls cabin environment

ADAS Body
Advance Driver Assistance System is an ECU that groups different

functionality designed to assist drivers using sensors and
cameras (e.g., obstacles detection, lane assistant, ecc.)

TCU Other Telematic Control Unit enables data communication via LTE, BT, and Wi-Fi.

Infotainment Other In addition to regular radio functions, it allows BT/NFC/Wi-Fi connections
in order to stream multimedia content and shows some vehicle status

V2X Other Vehicle-to-everything, allows communication with external
entity of interest, like infrastructure (V2I) or vehicle (V2V)

2.2 Network Protocol
Regarding network protocol used in automotive, there are many different
standards. The most used is CAN, however OEMs use various network pro-
tocols to diversify network domains.

CAN

Controller Area Network (CAN bus) is the most common vehicle bus stan-
dard designed to allow microcontrollers and devices to communicate with
each other’s applications without a host computer [13]. Communication is
made by sending in broadcast messages that can be received by every ECUs
in the network but processed only by the interested ones and eventually fil-
tered by Security Gateway. A CAN message [14] has an identifier of 11 bits
and at most an 8 Bytes long payload. There is no authenticator fields, no
encryption, and just a CRC code to retrieve possible error in transmission.
Another peculiarity is that it does not include addresses in the traditional
sense and the CAN ID is used to indicate the packet type. There is also
an evolution of the standards called CAN-FD as an extension of ISO 11898,
which has an extended header of 29 bits.

8

2.3 – Standards for Automotive

FlexRay

FlexRay is a high-speed bus that can communicate at speeds of up to 10Mbps.
It’s geared for real-time communication, such as drive-by-wire, steer-by-wire,
brake-by-wire, and so on. FlexRay is more expensive to implement than
CAN, which is the reason why, it is used only for high-end systems [9].

Automotive Ethernet

Since MOST and FlexRay are expensive to implement the majority of newer
vehicles are moving towards Ethernet. The implementations can vary, but
substantially they are very similar to the one that can be found in a standard
computer network. Often, CAN packets are encapsulated as UDP. One of
the advantages of Ethernet is the possibility to transmit data at speeds up to
10Gbps, without using proprietary protocols and choosing arbitrary topology
[9].

2.3 Standards for Automotive
As it has been already stated at the beginning of Chapter 1, the automotive
world was mainly focused on the safety of the vehicles in the past, but now we
are currently witnessing a radical change. In the last two years, international
organizations have in fact formalized the first draft of standards going in the
direction of cybersecurity.

2.3.1 ISO/SAE 21434
It is a very innovative standard [15] proposed in 2016 and finally approved in
2021. It was elaborated by the ISO1 jointly with SAE2. It provides a series of
cybersecurity measures that must be followed and applied during the entire
development of a road vehicle’s lifecycle. Officially it will enter into force for
new vehicles from 2022 and for new homologation from 2024 (for vehicles
enrolled before 2022). So from that moment onwards, carmakers have to be
compliant with ISO/SAE 21434 to place their vehicles on the market.

ISO/SAE 21434 was born with three specific purposes:

1International Organization for Standardization
2Society of Automotive Engineers

9

Automotive Scenario

1. Defining cybersecurity policies and processes inside automotive industry
for road vehicles

2. Managing cybersecurity risks

3. Speeding up the dissemination of cybersecurity culture among OEMs in
the automotive sector

and it is threfore addressed to OEMs, managers and all those responsible
for the design, the development, and the implementation of hardware and
software systems in motor vehicles, and managers.

The main consideration regarding this normative is that it aims to be ap-
plied on every Cybersecurity relevant item and component inside the vehicle
perimeter including aftermarket and service parts. Moreover, it provides a
security in-depth approach, as the only way to mitigate threat scenarios and
risks. For these reasons the standards describe a multi-layered security ar-
chitecture, that must be implemented to improve the security controls and
mitigate eventual attacks to the entire automotive infrastructure.

2.3.2 UNECE WP.29/R155
It is a normative [16] produced by UNECE3, an international organization.
They jointly with EU published in 2019 this document intended to give
support to the ISO 21434, providing a possible interpretation and developing
a certification for a "Cyber Security Management System" (CSMS), which is
to be mandatory for the type approval of vehicles [17].

It has the objective to:

1. Focus on Cybersecurity, defining security aspects related to data protec-
tion and software updates

2. Guarantee vehicle safety in case of cyberattacks, addressing to vulnera-
bility assessment and cyber threat identifications

Unlike ISO 21434, UNECE WP.29/R155 has a more pragmatical approach,
trying to design an entire process to assess the key threats and vulnerabilities
inside the vehicle development perimeter and to propose possible mitigations.
Another vital aspect is that it provides a threat analysis model based on the
state of the art. The last important consideration regarding this normative

3United Nations Economic Commission for Europe

10

2.3 – Standards for Automotive

is that it refers to more concrete aspects of cybersecurity like the use of
cybersecurity control, asset identification, the discovery of potential target
of attacks and potential vulnerabilities, and possible mitigation. However,
both normative are focused on the proper configuration of the productive
process and on the principle of security in-depth as a golden rule to develop
a standard security framework for automotive cybersecurity.

11

12

Chapter 3

Automotive cyber attacks

The problems highlighted in chapter 1 are exploited by malicious users be-
cause they know how to use the various attack surfaces available to mount
dangerous attacks. In the following sections, I will describe the most studied
in the literature (these concepts are summarized in Table 3.1).

3.1 Attack surface
In their work Checkoway et al. [18] experimentally defined a threat model
of a car highlighting the attack surfaces that exposes. Although cars do not
have a command-line prompt or a keyboard, there is still the possibility to
interact with them through the huge variety of exposed interfaces.

• OBD II, it is the diagnostic port, used by car manufacturers or car
maintainers to update software or to analyze the vehicle status. It also
represents a privileged way for a malicious user that can directly "enter"
into vehicle network, reading/writing information.

• Multimedia connectivity, nowadays a lot of cars have a rich user
interface panel, used mainly to stream multimedia and entertainment
contents. To enrich the offer they have several other communication
interfaces, like Bluetooth, Wi-Fi, NFC, USB, in addition to the most
common cd player, which can be other exploitable points of access.

• V2X, it is used for communications which involve the vehicle and a
second party that can be other vehicles (V2V) or infrastructure (V2I).
Since it is the door to the external world it can catch the attention of

13

Automotive cyber attacks

malicious hackers. For these reasons, it requires security control to check
Authentication and Integrity.

• Telematic Unit, it is a fundamental component in a vehicle, since
it controls every kind of wireless communication, in particular Cellular
network. They expose a GSM and an LTE antenna, so the vehicle should
be reachable worldwide.

• TPMS, the ECU controlling the tire pressure contains a radio-frequency
sensor, that sends data to the other ECUs.

3.2 Attack vector
After the definition of attack surfaces, we have to illustrate how an attacker
can access these surfaces, in particular which mediums are needed. The
following list contains the most common ones:

• OTA Update, since we are describing vehicle architecture like a "nor-
mal" computer network, with hardware devices that run operating sys-
tem and apps, Over-The-Air updates are essential to correct a bug or
to fix vulnerabilities. On the other hand, wrong management of this
process, can make it extremely dangerous: software shall be signed in
order to install only legitimate software, otherwise a malicious user can
release fake updates and take control of the vehicle.

• External Infrastructure, this point is linked to the previous one, be-
cause aftermarket products, third partied products, or the car main-
tainer can be sources of insecurity just like a not proper update.

• External Devices, attack surfaces can also be exploited by using exter-
nal devices like OBD-II connectors or BT-receiver, as well as the cheapest
USB drive or even the old CD-ROM. An attacker can use these instru-
ments connected to a PC or another programmable board to read and
write data on the CAN bus, even remotely.

3.3 Typologies of attacks
Common classification of different typologies of attacks is made considering
the distance between the attacker and the target vehicle, namely distinguish-
ing if the attack is is conducted through an indirect access [18] or a direct
access to the vehicle [8].

14

3.3 – Typologies of attacks

3.3.1 Direct physical access attack
As it is stated in [8] the majority of the direct access attacks are conducted
by connecting to the CAN bus or the OBD-II port, highlighting how they
can easily attack a vehicle from inside and reach safety-critical ECUs [19]
causing severe damages.

• Message injection, it consists in writing on the bus forged messages
to the desired target ECU in order to force it to execute some action or
to alter the messages transiting on it.

• Message sniffing, it consists in reading the messages travelling on the
network, in order to discover what kind of messages a certain ECU can
send or receive, which are the answers of the destination target, which
are the possible structures of the payload, etc. In general, This phase
can generally be useful for reverse-engineering the automotive system
and maybe acquiring the knowledge needed to perform another kind of
attack.

• Denial of Service (DoS), like every normal network, it is possible
to make it to make it partially or totally unusable by sending a huge
number of messages, creating delays in receiving the correct ones, and
performing the correct actions. Sometimes this attack takes place using
some tool like CAN frame generator or fuzzer.

• Malware Injection, an attacker can try to exploit the vulnerability of
the network and also the lack of authentication and integrity check to
load malware on ECU. Moreover, a malicious user could flash a modified
version of firmware on this component, jeopardizing or taking control of
the functionality.

3.3.2 Indirect attack
The same research group that evaluated the direct access also investigated
the attack mounted using different attack surfaces so that it can be performed
through wireless interfaces or remotely [18].

Short-range wireless access

The attack in this section are mounted mainly using Bluetooth communi-
cation and therefore they are linked to the Telematic Unit and exploit the

15

Automotive cyber attacks

vulnerability of the Bluetooth stack. We can consider that an attacker can
use his smartphone in order to try to pair it with the vehicle in case of short
distances (about 10 meters). First of all, they sniff the car’s Bluetooth MAC
address and then they pair their devices trying to use Brute-Force in order to
retrieve the secret PIN used by Bluetooth in order to grant connection. At
this point, they could mount an attack against the car’s network by sending
malware.

Long-range wireless access

Even in this case the attack exploits the Telematics Unit in particular its
capabilities to be reachable from the outside. By using a signal analyzer it is
possible to exploit vulnerabilities in cellular Gateway and its Authentication
system demonstrated by Checkoway et al. [18] in their work :

• Authentication system, it is been observed that the random authen-
tication challenge uses a random generator that has been re-initialized
each time the Telematic Unit starts and uses always the same seed thus
observing multiple calls and properly forging the message it is possible
for an attacker to replay a response each time.

• Gateway, a buffer overflow vulnerability in protocol stack in particular
in Command Program is exploitable; the only gap following this path is
that authentication code is required. However, with a huge effort it is
possible to succeed.

Once one of these vulnerabilities has been exploited an attacker can then
inject messages on the Automotive network (e.g., 3.4).

Remote Control

Previous attacks can also be lead remotely by using receiver attached to the
following interfaces:

• Bluetooth, it can be conducted using two accomplices and a paired
device as a vector. In this way, the one inside the car pairs his de-
vice so that the second one can remotely attack the vehicle through the
connected device thus mounting an attack against the car’s network by
sending malware.

• TPMS, its RFID can be exlpoited in order to control it via Radio; in
this way, the code of TPMS can be reflashed or used in order to indirectly
reflash another ECU.

16

3.3 – Typologies of attacks

• OBD-II, as stated in Subsection 3.3.1, OBD-II port allows direct access
to the vehicle network; for this reason, an attacker can compromise it
by attaching by attaching a remote controller to this port that admits
to reading/writing CAN Frame remotely.

Table 3.1: Attack classification

Attack Surface Tipology Goal
TPMS Message Injection Send a arbitrary messages
TPMS DoS Causing fault in network
TPMS Near-range attack Track a vehicle based on the TPMS unique IDs
Cellular Near-range attack Access the internal vehicle network from anywhere
Cellular DoS Jam distress calls
Cellular Long-range attack Track the vehicle

Cellular Remote Control Use a cellular network to connect
g to the remote diagnostic system

Wi-Fi Long-range attack Access the internal vehicle network from up to 250m
Wi-Fi Malware Injection Install malicious code
Wi-Fi Message Sniffing Sniff communications
Wi-Fi Long-range attack Track the vehicle
USB Malware Injection Install malware on the infotainment unit
USB Malware Injection Install modified update software on the vehicle

Bluetooth Near-range attack Access the vehicle from close ranges (less than 90m)
Bluetooth Malware Injection Execute code on the infotainment unit
Bluetooth DoS Jam the Bluetooth device

OBD-II Remote Control Plug directly to the port a receiver
in order to control the vehicle from remote

OBD-II Message Injection Send a arbitrary messages
OBD-II Message Sniffing Read transit messages

V2X Message Injection Retransmit the V2X signal, delaying it, and
broadcasting the signal in the same frequency

V2X Message Sniffing Spoof V2X signal
V2X DoS Jam the signal

17

Automotive cyber attacks

3.4 Famous attacks
In this section I will report some of the most famous attacks conducted
against vehicles, describing the evolution and real applications of the typolo-
gies of attacks described above.

Jeep Cherokee attack

Perhaps the most known demonstration of Automotive System insecurity is
the famous attack conducted by two American computer security researchers,
Charlie Miller and Chris Valasek, who are involved in Automotive Penetra-
tion Testing [20] since 2009. The most famous experiment took place in 2015,
when they remotely hacked a 2014 Jeep Cherokee and took control of the
brakes, the steering wheel, and the accelerator [21]. They exploited the FCA
software installed in the Infotainment System of their model (Jeep Chero-
kee included) using the cellular network: all the people who know the car’s
IP address can in fact hijack the car, regardless of where they are. In the
demonstration, they assumed control of the vehicle by sending CAN frame
through the cellular network directed to different ECU, compromising the
brakes, transmission, and other safety-critical components1 from more than
10 miles away. In the end, Miller and Valasek signaled the flaws to FCA,
which was obliged to release a security update.

Tesla attack

Maybe the most recent attack was conducted by two German cybersecurity
researchers, who took control of a Tesla Model 3 using via Wi-Fi dongle
connected to a drone in October 2020 take control of . They exploited a vul-
nerability in the function of the internet connection manager of the vehicle.
They demonstrated that they could take control of the infotainment system
and and could do anything possible by simply pressing the button on it, for
example, locking and unlocking the doors, playing music, controlling the air
conditioning2. Researchers informed Tesla about the outcome of the exper-
iment, and the flaws were promptly fixed with a software update. However,
they also affirmed that other OEMs might have the same vulnerability in
their operating systems.

1https://www.dailymotion.com/video/x2yv2dl
2https://kunnamon.io/tbone/tbone-v1.0-redacted.pdf

18

Chapter 4

Background and related
works

The objective of this chapter is to introduce the concepts used to develop the
solution of my work, presenting technology used and discussing works and
studies related to this Master Degree Thesis (Section 4.4).

4.1 Ontologies and libraries
4.1.1 Ontology
An ontology [22] (in its purely computer science sense), means a way to
specify a domain of knowledge through an abstract model of it. This type
of model is obtained by highlighting its properties and how they are related
with each other. This process is done by defining concepts and categories
subject-specific. The constitutional elements of an ontology are:

• Classes or Concepts, they are used to describe the principal entities of
the application domain

• Roles or Relationships, they are used to describe the way classes and
individuals can be related to each other.

• Instances or Individuals, they are the concrete representation of what is
described in classes

• Attributes, An attribute of an individual can relate the individual to
aspects or parts. TThese aspects or parts are typically represented by
classes or instances.

19

Background and related works

However, the most innovative aspect of Ontology language is that start-
ing from classes and their relationships there is the possibility to retrieve
knowledge inferring new association automatically. This is possible using a
reasoner, a component that runs parallel to the model definition and uses
logic and semantical operations to deduce correlated concepts. As stated
in Section 4.4 ontology allows to categorize things belonging to a particular
domain, improving problem-solving; the major disadvantages deal with some
limitation in property constructs and in the way OWL employs constraints,
namely adding inconsistent data, which will not prevent from constraints,
due to the philosophy besides the ontology that relies on a-priori principle.

4.1.2 Owlready2: a library for ontology manipulation
To manage Ontology concepts, individuals, and properties inside my model,
Owlready2, a Python open-source library is used, developed by Lamy [23]
for biomedical ontologies. It takes advantage of the point in common be-
tween ontologies and objects of an Object-Oriented Programming language
and tries to connect them. The result is a Ontology-Oriented Programming
language that dynamically translate at runtime the former into the latter.
This approach is faster and more flexible compared to a statical generation of
entities in code but has the drawback of avoiding type checking. The devel-
oper has the essential to make CRUD1 operation on the model and construct
a powerful application. As far as it concerns the architecture shown in Fig.
4.1, it relies on an optimized RDF quadstore, implemented a SQL Database
stored in memory and disk, a lazy parser, for dynamically loading the enti-
ties from the quadstore on-demand and automatic update of RDF quadstore
when a modification is done.

4.2 Communication Policy e Access Control
A communication policy states whether two entities inside a network can
communicate or not. They are enforced in filtering devices and govern the
access. It is possible to formalize it in many languages and using a differ-
ent granularity. We can produce High-level policies or Low-level policies, the
former is the result of a specification design phase and they describe rules
that do not take into account physical details of the network upon which

1Create, Retrieve, Update and Delete

20

4.2 – Communication Policy e Access Control

Figure 4.1: OwlReady2:Architecture

they are used, but they underline admitted communication and specific at-
tributes and resources linked to it. The latter comes from the High-Level
Policies declined on the real topology network. The refinement is a process
that makes communication policies ”more concrete and fitted” on the real
interconnection.

4.2.1 High-Level policy and XACML

XACML [24]("eXtensible Access Control Markup Language") is a framework
made of a declarative attribute-based access control policy language, an ar-
chitecture, and a way to process access requests and evaluate the permission
according to the rules, and eventually to their attributes. It is a standard
and it was born to make uniform the terminology for access control policy.
Regarding the language, it is an XML-based language and the schema is open
source. The syntax is very powerful and easy to understand, providing the
basic blocks to write policy [25]. The root element can be a single Policy
or a group of them, PolicySet. Each policy can describe the set of requests
to which it is applied, defining a Target and contains Rules, that is boolean
expressions evaluated in isolation and then combined among them in order to
extract the aggregate result. It is carried out using one of the various Rule-
combining Algorithms like Deny overrides, Permit overrides, First applicable
rule, etc.

21

Background and related works

4.3 Policy analysis in computer network
Packet filters contain an ordered set of rules and since the cardinality of this
set is commonly very high, relations among rules bringing to misconfiguration
are very difficult to discover. The most common issues are:

• Rules that are exactly matching, when each selector of R1 is equal to
the homologous selector of R2

• Rules that inclusively matching, if each selector of R1 is contained into
a subset of the selector of R2

• Rules correlated, if they are not inclusively matching, but their selectors
are partially or completely overlapping

• Disjointness, when two rules are not inclusively matching, exactly match-
ing or correlated. It can happen completely or partially, if there is at
least a selector of R1 that is equal, a subset or correlated to a selector
of R2.

For these reasons policy analysis, examining the rules inside one or more
policies and makes an anomaly detection, is needed.

4.3.1 Anomaly Analysis
Al-Shaer et al. [26], in their works, define a possible taxonomy of policy
anomalies, in particular, the first distinction in two macro groups considers
if an anomaly occurs in the same filtering element (Intra-policy anomalies)
or in different ones (Inter-policy anomalies).

Intra-policy anomalies

We have this kind of anomaly when there are at least two rules that are
matched by a packet in the same filtering points. They can be of different
tipologies [27]:

• Exception anomaly, it occurs when two rules R1 and R2, with priority
of R1 > priority of R2, action of R1 != action of R2 and R2 ⊂ R1. If a
packet matches R1, then it will match R2 too. In this case R2 is more
specific and therefore should be applied.

22

4.3 – Policy analysis in computer network

• Redundancy anomaly, it occurs when two rules R1 and R2, with priority
of R1 > priority of R2, action of R1 = action of R2 and R2 ⊂ R1. In
this case R2 will match all the packets matched by R1, so R2 is redudant
and can be removed.

• Duplication anomaly, it occurs if two rules generate a Redundancy anomaly
and have an exact matching on each of their selectors.

• Irrelevance anomaly, it occurs regarding packets that can not exist on
the devices under test.

• Shadowing anomaly, it occurs when two rules R1 and R2, with priority
of R1 > priority of R2, action of R1 != action. If R1 matches every
packet which will match R2 too, we can state that R1 shadows R2.

• Correlation anomaly, it occurs when two rules R1 and R2, with action
of R1 != action of R2. If a packet matches both of them, the outcome
becomes ambiguous, and the resolution strategy has to determine which
is the most specific among them.

Inter-policy anomalies

In a real network, where we have more than a domain and more than a
filtering point, anomalies can occur between different policies, so an inter-
policy anomaly analysis is needed. Also in this case we can find Redundancy
and Correlation anomaly and other kinds of anomalies [27]:

• Shadowing anomaly, it assumes a different meaning in this context we
discover it when a policy of an upstream device discards packets admit-
ted by a downstream device.

• Spurious anomaly, it is the opposite case of the previous typology, that is
a policy of an upstream device allows packets rejected by a downstream
device.

4.3.2 Reachability analysis
Reachability analysis [28] in a distributed system context deals with the
solution of the reachability problem, which is the process of computing the
set of reachable states for a system. It consists of on-the-fly state graph
construction and then, starting with the initial state, it explores the next
states using a suitable graph-traversal strategy. The goal is retrieving which

23

Background and related works

global states can be reached by a distributed system made of a certain number
of nodes that exchange messages between them.

4.4 Related Works
In this section I will discuss the related work and the extensive research
literature on the matter.

Regarding the first aspect, namely the formalization of a reference model
for the classification of topological elements contained into an Automotive
architecture, it starts from the study of the work of various research groups
that devoted their energy to the formalization of ontology for the automotive
industry during the years. In particular Klotz et al. [29] approach the prob-
lem underlining the importance of a common semantics for studying ECU
signals and messages, point out different formats and reference architectures
to facilitate the development of application and connectivity of modern au-
tomotive standards. These concepts are shared with Feld and Müller [30]
that develop an ontology oriented to the design of complex HMI2, linking
therefore the user’s action to the vehicle context, producing personalization
in Graphical interface and a better user experience. Maier, Schnurr, and
Sure-Vetter [31] instead, demonstrate the high expressiveness of the ontol-
ogy regarding the organization of vehicle data and how easy the integration
without changing into the existing IT environment can be. Finally, a work,
with a more practical approach is [32]. This paper deals with a description
of automotive diagnostic, emphasizing however the aspect linked to the trou-
bleshooting process, describing possible issues and their solution, in order to
make easier the development of an automatic diagnostic tool.

The second aspect related to the access control model using communica-
tion policies, trying to supply to the necessity of stronger security controls
expressed in stardards [15] and [16], follows the work of Rumez et al. [33].
In fact, they use ABAC policy in a secure gateway, underlining the need for
well-organized protection against cyberattacks, defining a model of Autho-
rization based on attributes typical of automotive infrastructure. My work
follows this path but exploits the model developed in the first part and makes
further analysis to give robustness to the rules enforced into filtering devices,
avoiding misconfiguration.

2Human Machine Interaction

24

Chapter 5

Problem Statement

The objective of the chapter is to define the problems that this thesis tries
to solve, by describing the main requirements. There are three main aspects
to take into account:

1. Defining a language to describe the network topology of an automotive
architecture

2. Defining an Authorization language for allowed communication inside
the vehicle network

3. Reducing error in the configuration of filtering elements

Each one of them can be seen as an independent task to be solved properly,
but at the same time, they are tightly correlated, thus the output of a task
becomes the input of the following one.

5.1 Requirements
The first problem is directly linked to the certification process, in fact, in or-
der to be compliant with ISO 21434 [15] (sections 8: Risk assessment methods
and 9: Concept Phase) and UNECE WP.29 / R155 [16], OEMs have to pro-
duce an Item definition and an Asset identification. In these documents, they
have to identify architectural elements and functions that are cybersecurity
relevant. The distinction between internal components and the outside envi-
ronment shall be included in the description language since the interaction
between the vehicle and the external world shall be taken into account in
this analysis. Item definition is followed by an Asset Identification, so a clas-
sification of assets and a way to mark structural elements with them shall

25

Problem Statement

be done. A formal description of possible assets and structural elements can
ease this task and pave the way to the development of new tools designed to
make automatic the certification process.
Figure 5.1 shows the documents to produce to be compliant with ISO 21434,
those to which this thesis refers are in the red dotted box.

Figure 5.1: ISO 21434: Requirement generation for cybersecurity relevant
items or components

As far as it concerns the second and the third problems, they catch the
challenge thrown by the open problem in the automotive world. Vehicles
require a correct implementation of protocols and the introduction of more
security controls. So I try to give a partial solution to this task by imple-
menting access control for messages exchanged inside the vehicle, defining
Authorization policies for the Security Gateway. It shall implement filtering
functions since it has the same role as the normal firewall.

Finally, the last problem is linked to the configuration of the filtering point:
in this step, misconfigurations shall be avoided. In this phase, the solutions
produced by the previous task become the input of this one. Low-level poli-
cies and the network topology shall be used to perform analysis useful to
reduce the wrong configuration due to human error or wrong assumptions in
the design phase.

26

5.2 – An overview of the proposed solution

5.2 An overview of the proposed solution
The proposed solution, which meets these requirements, relies on the follow-
ing choices:

1. Analyses of Standards and Regulamentations, studying deeply
these documents inspired the topic to develop in this final work, helping
mainly in the elaboration of the first part of the solution, namely in the
Topology and Asset Definition.

2. Define an Ontology to describe automotive scenario, after the
study of much automotive architecture, the right choice to make deals
with a suitable language that could describe properly the scenario. In the
end, we decide to explore an Ontology because of its power to describe
reality in a precise and expressive way

3. Use XACML as Authorization Language to define High-Level
Policy, to design policies using positive authorization specification, so
that only admitted communication is allowed, denied all the others

4. Define a Refinement algorithm to traduce the High-Level Pol-
icy into Low Level to be used to configure devices, this choice
arises from the consideration that very often Design phase shall be dis-
tinguished from Device configuration, since these two phases are done
by different people, with different skills, so an algorithm that could allow
this differentiation shall be done.

5. Perform Anomaly analysis and reachability analysis on Low-
Level Policy, a library developed by TORSEC group is used in this
phase. It was born to analyze computer networks, but it was designed
to be agnostic, so with some customization, it has proved a very useful
tool to solve this part of the problem

All of these points shall be discussed more in detail in the following section.

27

28

Chapter 6

Design of the solution

In this chapter I will describe in detail the design choice made to solve the
problem stated in the previous chapter, describing all the workflow followed
and all the activities performed.

6.1 Model definition
The formalization of a description language for automotive topology is the
first outcome expected by this final work because it is the basic step upon
which the following steps rely on. Before the formalization, many architec-
tures have been analyzed, because there is not a real standard since every
OEM has its own network topology. It has been very challenging research
because they are protected by an industrial secret, so they are not easy
to retrieve, anyway opensource projects1 and some constructor whitepapers
helped in this projectual phase. What I have obtained from this analysis
is a possible generalization of components related to automotive so differ-
ent interfaces, ECUs, and protocols. This taxonomy is been validated by
a company involved in automotive cybersecurity. They gave their feedback
about the concepts followed by a fine-tuning phase in which ontology has
been improved.

After this period of data collection, I studied many languages used to
model data, in particular, I have considered UML, XML, and Ontology. All
of them are suitable to describe reality and are fully compatible with the

1https://github.com/commaai/opendbc

29

Design of the solution

majority of programming languages, so they are directly usable for tool de-
velopment. However, they have some peculiarities which have tended towards
the choice of Ontology rather than the others. UML2 is mainly used for com-
municating ideas to developers, using diagram for software design, instead,
XML3 is a language for storing and exchanging data in software, like passing
messages between applications. So no one of them can be used to have a real
formal taxonomy of components inside the Automotive architecture, in fact,
Ontologies try to remove, or at least reduce, conceptual and terminological
confusion in order to have a shared interpretation.

Regarding the formal language used to construct the Ontology, OWL has
been chosen. It is a declarative language, so the ontology is specified without
providing an algorithm that describes how the ontology should be constructed
or how the reasoning should happen. OWL is built on top of the RDF4 and
RDF Schema. RDF provides a way to express statements about resources in
the form of subject-predicate-object expressions (triples). RDF Schema pro-
vides mechanisms to describe RDF resources and the relationships between
them in terms of classes, properties, and values. OWL is a successor of RDF
Schema; it is a stronger language and has greater machine interpretability.

The main decisions taken to describe the application domain are shown
below. The design of the core components of ontology represents the critical
point of this phase. In fact, the main goal of this activity is to produce a
highly expressive model that can fit in the best way on the real domain. We
have followed a bottom-up approach, we have analyzed every single compo-
nent and then we have discussed and modeled their relationships.

The first, and the most crucial, task was how to model the single node, that
is to say the different types of hosts that can be present inside an automotive
architecture. The first consideration we made was to include two kinds of
elements: Network and PhysicalNode, the former represents the logical area
or domain of which the vehicle is made. The latter, instead, depicted in
Figure 6.1 is the class containing the set of components which are the active
parts of the vehicle, that runs applications and does the principal functions.
We can observe that some general-purpose devices like hub or switch belongs
to this Concepts, which are used in networking, especially domain-specific
units like Domain Controller, Gateway, and ECU. For this last typology,

2Unified Modeling Language
3eXtensible markup language
4Resource Description Framework

30

6.1 – Model definition

further classification is necessary in order to distinguish the safety-critical
ECUs from the non-safety-critical ones.

Figure 6.1: Automotive Ontology: Node

Since the ECUs and the other devices are interconnected, the taxonomy of
different interfaces is needed to better qualify them and to create a very ex-
pressive relationship between components. Figure 6.2 and Figure 6.3 shows
the "branch" of the ontology that describes all the possible communication
interfaces that are available on the automotive component. The principle
distinction to make is between CommunicationInterface and NetworkInter-
face, the former is used to transfer information inside/outside the vehicle, like
the interface on the Infotainment system(USB, NFC, etc) or the information

31

Design of the solution

about the position that comes from the navigator; the latter deals instead
with the network, since they are more domain-specific (e.g., CAN, MOST,
etc.). Behind these two macro-groups, we can find a further division in the
category, in particular between PhysicalInterface and WirelessInterfaces.

Figure 6.2: Automotive Ontology: Communication Interface

As regards to the Automotive infrastructure, another specific aspect to
model deals with the message exchanged by the internal/external compo-
nents. In Figure 6.4 the categorization of these concepts is depicted, it
descends from the decision taken from the definition of the previous com-
ponents. Messages are in fact the information that flows through the inter-
faces from a network domain to another, and it will be the core aspect of
the following design steps regarding the Authorization policy(Section 6.3 and
Section 6.2).

The most important aspect to consider from a cybersecurity point of view
deals with an asset definition. The design of Asset class descends to the input

32

6.2 – High-level policy design

Figure 6.3: Automotive Ontology: Network Interface

given by UNECE WP.29/R155, where a basic taxonomy of components and
function is done. Figure 6.5 describes the results of the normative analysis,
we have focused on the main characteristic of automotive components that
can have an economical value or can be significant for safety reason. So the
main subclasses that we have analyzed are Code, Function and Data.

6.2 High-level policy design
The study of different automotive architecture also helped in this phase,
in fact, the design activity that characterizes the formulation of High-Level
Policies starts from an analysis of components inside the network topologies
and messages they exchange. To analyze them, DBC files were studied.
They are text files that contain information for decoding raw CAN bus data,
converting signals into human-readable messages, each network domain has
its own DBC files, so with them, the architecture and data flow can be

33

Design of the solution

Figure 6.4: Automotive Ontology: Message

retrieved.
So at this point, we have to decide how to design the policy and how we

can link them to the description language, so the main hypothesis was:

1. Writing policy as an element inside the ontology, so formalizing them as
if they were entity

2. Using a specific language for policy definition, including information
about the structural element

Both of them solve the problem, but they bring a slightly different result.
The design of the first solution involves the creation of policy directly inside
the OWL ontology, modeling subject and resource with Class or Individuals,
and applying action-creating Relationships. The evaluation of authorization
request is in charge of the Reasoner that analyzing the formalized state-
ment can determine whether a request is legit or not. The second possibility
deals with the use of another paradigm so that the policy has to be writ-
ten in a specific Authorization language, that relies on a data structure to
be application-specific. Comparing the two solutions we observed that the

34

6.2 – High-level policy design

Figure 6.5: Automotive Ontology: Asset

former is more efficient because inherits the strength of ontology, resulting
however less scalable for the same reason. Regarding implementation, the
second is more straightforward because the specific language has a framework
useful to implement very powerful policies and it is extensible, including in-
side them an XML schema that describes the domain of application. For
these reasons, the latter was chosen.

35

Design of the solution

As I described in Chapter 2, XACML includes many resolution algorithms
and allows the possibility to insert not only policy definition but also restrict
the applicability of a policy defining the characteristics of Request. Be-
fore starting to design policy we have converted the Ontology into an XML
schema, in this way we can obtain a more compact representation, with some
minor loss linked to the ontology feature, but not indispensable for policy de-
velopment. This schema has been included directly inside the XACML model
schema5, in this way a policy can be validated against XACML schema and
Ontology schema.

In Appendix A I report the code of the template used to design policy,
it considers the most general situation for the automotive context and can
be customized to adapt to different needs. Now a description of the main
element of that template will follow. The approach used is based on the
description of a policy for each ECU and a rule for each message exchanged
with another entity. XACML allows to specify Subject-Action-Resource and
of optional Attributes, which qualify in a better way the policy or eventually
the rule itself. In the design of the template, both strategies have been used,
so that it can be very specific. In particular, in the first part, I have designed
the target of the entire policy, then the target of each rule.

The root element XACML is <Policy>, that contains namespace linked
with the policy itself and the RuleCombiningAlgId, that in our scenario is
Deny Overrides. Then the <Target> to which the policy refers has been spec-
ified by means of the triad Subject-Action-Resource, in particular a list of
elements for each of them. In our scenario, the subject is the ECU under
consideration, so in the <Subjects> are specified two different <Subject> repre-
senting its features. The first one specifies the subject-id, a unique identifier
for the component and the other is subject-type that represents the class de-
fined into the ontology designed for the ECU. The resource instead addresses
the destination ECUs, that will receive the messages sent by the subject, so
in the <Resources> are specified two different <Resource> definitions. Since
the source ECU can have multiple distinct destination ECUs, here we have
just set the basic requirement for them, so it has been defined the resource
type by means its structure inside the ontology xpath-node-equal and the rel-
ative position inside the XACML request resource:xpath. In this case the
xpath notation has been used to refer to node inside another XML schema.
Finally, a custom Action has been chosen: Authorize, to specify that the

5http://docs.oasis-open.org/xacml/3.0/xacml-core-v3-schema-wd-17.xsd

36

6.3 – Policy refinement

communication between Subject-resource is allowed.
The most specific part of the policy, regards the different <Rules>, each

policy can contain an arbitrary number of them, but each <Rule> is defined
always by means two attributes: the name of the Destination ECU, defined
by means of xpath-node-equal inside the request, and the resource:message-id
that contains the unique identifier of the CAN message.

High Level
Policies DesignTopology Design Specification

High Level Policies

Figure 6.6: Policy Design workflow

6.3 Policy refinement
Policy refinement is the transformation process that converts a more abstract
high level policy into a low-level, operational policy that a system can enforce.
The goal of this operation is to determine the resources that are needed to
satisfy the requirements of the policy, to analyze the underlying system upon
which the policies should be enforced, to extract a graph and compute the
solution. Verification of the correctness of the process is needed to validate
that the lower-level policies are compliant with the design specification of
high-level policy. After this process, a policy can be enforced on filtering
devices.

The workflow of this design phase is depicted in Figure 6.7, all the choices
taken are described in this chapter instead the implementative details are in
the following chapter (Chapter 7). This algorithm was designed to receive as
INPUT:

1. High-Level Policies, they are the result of the previous design phase and
they contain Subject-Action-Resource of the policy

2. the landscape, it is the representation of Individuals described through
the ontology

3. DBC files, one for each subnet inside the automotive network. They

37

Design of the solution

contain the list of nodes inside a particular subnet and the list of mes-
sages that can be received or sent by them. Each message is described by
a tuple with:messageId messageName sourceNode destinationNode. For
messages from/to different network source/destination nodes assume a
fictitious value.

The algorithm takes this INPUT and, as it is described in the pseudocode
Algorithm 1, it transforms the landscape in a graph, then parses DBC files
and High-Level Policies. It elaborates these data structures and extracts
the list of the path for each couple (source, destination), at this point every
single path is analyzed and if it contains one or more filtering elements, a
rule is created and inserted in a configuration file. At the end of the process,
each one of them has a configuration file, containing the Low-level policy of
the specific filtering element, composed by a set of rules. Each rule contains
the admitted message, the source network, the destination network, and the
destination node.

High Level Policies

Refinement

DBC Files Topology graph

Low Level Policies

Figure 6.7: Policy Refinement workflow

6.4 Policy analysis
6.4.1 Anomaly analysis
In order to perform this kind of analysis the "Policy tool library", developed by
TORSEC group, is used. It is integrated to detect all the inconsistencies and
rule anomalies. The security problems faced by the design are intra-policy
anomalies, which means there are misconfigurations in the same filtering

38

6.4 – Policy analysis

Algorithm 1 Refinement algorithm pseudocode
1: Input: O ▷ Ontology
2: Input: DBC ▷ List of DBC files
3: Input: HP ▷ High-Level Policies files
4:
5: Output: Configuration ▷ FilteringElement→ [rule]
6:
7: G=generateGraph(O)
8: FilteringElements=[]
9: for all e instances in O do

10: if e = ’Gateway’ then
11: FilteringElements.append(e)
12: end if
13: end for
14:
15: MessageSourceDest=DBCParse(DBC) ▷ msg → [source], [destination]
16: HLp=XACMLParse(HP) ▷ source → [destination]
17:
18: for all source,destination in HLp do
19: PathList=g.getShortestPaths(source, dest)
20: for all path in PathList do
21: if path contains a FilteringElement then
22: r=createRule(msg, source, destination)
23: Configuration.put(FilteringElement, r)
24: end if
25: end for
26: end for

39

Design of the solution

point and inter-policy anomalies that represent a more complex issue because
conflicting rules can be on different filtering devices.

Figure 6.8 and Figure 6.9 show the input and the output of the anomaly
analysis of security policies. the input are:

• Low-level policy

• Landscape

The Low-level communication policies are defined to be fully compatible
with the schema provided by the tool in order to reuse the library’s modules.
Moreover, XSD language was chosen instead of DTD one, since it is more
expressive and it is possible to define and establish more specific constraints
and references. In particular, all the policies are nested in a more general
node named EntityElement, which could express further information. In my
case, it is characterized by:

• Label: it is the uniquely identifier of the entity among all the entities;

• PolicyElement: it is the entity’s policy.

1 <complexType name="EntityElement">
2 <sequence>
3 <element name="Policy" type="PolicyElement" />
4 </sequence>
5 <attribute name="Label" type="string" use="required" />
6 </complexType>

Each policy is modeled as a “PolicyElement”, it expresses the security
behaviour that must be followed by all its instances. It is characterized by:

• PolicyName: it is the name of the policy;

• PolicyType: it is the type of the policy, in this thesis work the only useful
policy type is PolicyTypeElement = FILTERING, but this feature is
kept for compatibility and for additional future work;

• DefAction: it is the default action performed by this policy;

• Rule: it is the ordered filtering rule list.

1 <complexType name="PolicyElement">
2 <sequence>
3 <element name="PolicyName" type="string" />

40

6.4 – Policy analysis

4 <element name="PolicyType" type="PolicyTypeElement" />
5 <element name="DefAction" type="string" />
6 <element name="Rule" type="RuleElement" minOccurs="0"

maxOccurs="unbounded" />
7 </sequence>
8 </complexType>

The “rule” item is the last one modelled, it has the task to describe what
kind of traffic pattern it needs to be matched by this filtering rules and what
action has to be performed on it. It is defined as:

• Priority: it sets the rule priority in the policy;

• Selector list: it is the list of selectors, that is to say the fields in a packet
that need to be checked in order to be matched with the rules;

• Action: it represents the action to be performed on the matched traffic;

• Label: it is the unique identifier of the rule.

1 <xsd:complexType name="RuleElement">
2 <xsd:sequence>
3 <xsd:element name="Priority" type="PriorityElement" />
4 <xsd:element name="Selector" type="SelectorElement"

minOccurs="1" maxOccurs="unbounded" />
5 </xsd:sequence>
6 <xsd:attribute name="Action" use="required">
7 <xsd:simpleType>
8 <xsd:restriction base="xsd:string">
9 <xsd:enumeration value="Authorize" />

10 <xsd:enumeration value="DENY" />
11 </xsd:restriction>
12 </xsd:simpleType>
13 </xsd:attribute>
14 <xsd:attribute name="Label" type="xsd:string" />
15 </xsd:complexType>

As regards to the landscape, it is described through another XML schema
and it is characterized by:

1 <element name="Landscape">
2 <complexType>
3 <sequence>
4 <element name="Firewall" type="

FirewallElement" minOccurs="1" maxOccurs=
"unbounded"/>

41

Design of the solution

5 <element name="FilteringZone" type="
FilteringZoneElement" minOccurs="1"
maxOccurs="unbounded"/>

6 <element name="Host" type="HostElement"
minOccurs="1" maxOccurs="unbounded">

7 <element name="Link" type="LinkElement"
minOccurs="0" maxOccurs="unbounded"/>

8 </sequence>
9 </complexType>

10 </element>

• Firewall: it represents the filtering element where the policy will be
enforced, in our case they are the security gateway;

• FilteringZone: it represents a specific network domain;

• Host: it represents the different active component of the automotive
architecture, mainly ECUs;

• Link: it models the connection between Hosts and Firewall.

The Policy Tool Library has been designed to take these INPUTS and
produce as OUTPUT the list of single or distributed anomalies. These anal-
yses come from the representation of policies in a format that guarantees
policy semantics, but it abstractly transforms them, so that they can be eas-
ily managed by the tool. It is the concept of Semantics-Preserving Policy
Morphism, this translation of policy representation allows analyzing anoma-
lies independently from the resolution chosen by the administrator. From a
design point of view, the steps to follow are:

1. translating the policy in a generic intermediate representation called
Canonical Form;

2. translating the canonical form into any target resolution strategy.

Namely, theCanonical Form is a policy representation, useful for policy ma-
nipulation and based on the operation set to solve conflicts. It is formally
equivalent to the original one, but it has more rules, this permits easier
processing because all the possible combinations of conflict cases are pre-
computed with the resolution strategy. Now all the algorithms that work on
the Canonical Form of a policy do not have to consider the original, because
all the differences between the resolution strategies are removed.

42

6.4 – Policy analysis

Intra-Policy Conflict AnalysisLow Level Policy

Intra-Policy Conflict Report

Figure 6.8: Intra-Policy Anomalies workflow

Inter-Policy Conflict Analysis

Low Level Policy setTopology

Inter-Policy Conflict Report

Figure 6.9: Inter-Policy Anomalies workflow

6.4.2 Reachability analysis
The library used in the previous step is also suitable to perform Reachability
analysis (Figure 6.10), which allows elaborating all the paths or a subset
inside the landscape to verify whether two nodes are reachable or not. The
functions in charge of these work take the same input of reachability analysis
and produce in output an Equivalent firewall, which is an abstract repre-
sentation of a firewall that aggregates in a single point all the policies of
several firewall making some optimizations, where possible. In this way a
complex network can be simplified, particularly the path from a domain to
another can be summarized using these logical components, making easier
the discovery of admitted communication between entities belonging to the
domain under consideration. After this representation is produced, there is
the possibility to check its correctness by running anomaly analyses over it.

In order to do this all the firewall that are contained in the different
analyzed zone have to be collected. After that all the policies contained have
to be extracted and transformed. The result of this step is a data structure

43

Design of the solution

that represents the network analyzed and contains all the reconcilied policy.

Equivalent Firewall creation Low Level PolicyTopology

Equivalent Firewall

Figure 6.10: Equivalent Firewall creation workflow

44

Chapter 7

Implementation

This chapter aims to show the real implementation of the algorithm presented
in the previous section, describing the technology used and all the choices
that have characterized this step.

7.1 Refinement algorithm
The implementation of the refinement algorithm will follow the pseudocode
described in the previous chapter (the code is available in Appendix B). The
language used is Python, because of the high expressivity and the availability
of libraries. Our scenario is quite heterogeneous since it is made of different
kinds of input files (e.g., ontology, DBC, and XACML files) and it has to
handle graphs.

The main libraries used are:

• Owlready2 , to manage the ontology in OWL format. As I have described
in Chapter 4, it is very efficient also with a very huge ontology and it
suits perfectly in our context. It offers the basic functions to transform
the ontology in a python object with all the necessary member methods,
in this way the transformation in a graph becomes easier.

• cantools, it is a specific python library used to handle CAN messages,
and it allows to extract them from file and elaborate directly in the code.

• xmlschema, it is a general-purpose library used to extract all the ele-
ments contained in an XML file from the root element to every sub-node.
I have decided to include it in my implementation since XACML policies
are based on XML.

45

Implementation

• igraph, it is one of the most used library for graphs handling. It allows
to construct a graph object and then to apply all the basic operations
and algorithms used to retrieve paths to it or to make other kinds of
computations.

So after a setup phase, consisting in parsing input, the main operations
described in the previous chapter have been implemented step by step. Thus
a graph representing the topology is extracted from the ontology and all the
chains from destination to source have been extracted using the method to ex-
tract the shortest path. The time complexity of this operation is O(|V |+|E|),
so it is linear in the number of vertices and edges in the graph. Once I have
retrieved all the paths for each couple (source, destination), the discovery of
filtering elements inside them has been conducted. Finally, the configuration
file of every single element has been computed and written into the proper
configuration. The format used in our implementation reflects the model
used by many Security Gateway manufacturers, so a policy for each of them
has been created. They contain the list of rules with all the fields described
in Section 6.4.1. Since in our scenario the rules are not correlated, because
they regard distinct messages, each one of them has the priority set to the
same value.

7.2 Anomaly analysis
In this section, I have collected all the Data structures and the methods of
the library involved in this analysis. As already introduced in the previous
Chapter 6, policy tool library has been used in my project. It has been
developed by “TORSEC” security group in Politecnico di Torino for the
past EC-funded project SECURED. Originally it has been used to handle and
manage security policies, to resolve rules conflicts, and to analyze reachability
properties in a given landscape with servers, hosts, and firewalls, but with
proper changes and adaptations, it can be suitable also for other computer
network scenarios like the automotive one.

The core of the library is the module that implements what Section 6.4.1
explains, which is to say it bases its policy representation through the Canon-
ical Form. The library also provides all the tools to generate a Semilattice
representation and the possibility to translate a given policy into a Morphism
form. Different modules of the library were exploited to solve anomalies and
conflicts of the input policies.

46

7.3 – Reachability analysis

• Intra-policy conflict analysis: each policy is represented by the Java
object PolicyImpl that offers a “resolution strategy”, a “default action”
and a list of “filtering rules”. Starting from this class, the correspondent
closure is generated, and from those results, the canonical form is created
to have easy processing of the policy itself. After this operation the class
SemiLatticeGenerator allows the library to analyze the policy and to
discover all the rule anomalies which are solved by the FMRMorphism
object. It generates a morphism representation of the policy from which
a new policy could be defined with no conflicts.

• Inter-policy conflict analysis: this process is called “reconciliation” be-
cause it is done between policies. The first operation is to create a
ComposedPolicy that contains an ordered list of the policies to be rec-
onciled. After this step, the procedure to find all the anomalies and to
remove the conflicts is the same as the “intra-policy conflict analysis”
described in the previous point.

To apply the library methods to our scenario, SelectorType, a Java Class
that represents the field that characterizes each rule (e.g., Source/Destination
ECU, Message-ID, etc.) has been modified. For each one of them the proper
data type shall be defined and all the set operations useful to combine them.

7.3 Reachability analysis
As regards to the reachability analysis described in Section 6.4.2, the library
offers a method that allowing to retrieve a ComposedPolicy, and collecting
all the policies contained in the Filtering points that belongs to two different
Networks. A composition between rules is generated when two rules overlap,
it is made by the condition clause intersection of the two rules and the action
resulting by the application of the resolution strategy. Given this policy, it
is possible to define its closure as the set of all the possible composition of
the policy rules. In this way, it is possible to summarize them and to use
them as they were a single firewall. These operations simplify the analysis
of anomaly and it is used in the testing phase in order to verify whether a
path between two nodes exists or not. A proper method was implemented
to perform these operations. It takes the SourceNode and the Destination
node as input and it retrieves from them the network they belong to. So
the method getEquivalentFW is called and the path is verified. This method
returns TRUE or FALSE, respectively if the path is feasible or not.

47

48

Chapter 8

Evaluation

The objective of this chapter is to exploit solutions defined in chapter 6 and
7, thus implementing a Proof-of-Concept that aims to adapt to the use case
suggested in Chapter 5.

8.1 Proof-of-Concept
As the last task of the final work I have developed a tool that allows:

• To perform item definition and asset identification, using the description
language;

• To compute the configuration of the security gateways, if they are de-
scribed in the item definition.

It exploits the ontology and allows to draw the automotive architecture
under test by choosing the needed elements from a catalog containing all
the available items. At this point, it is possible to connect the different
components with the proper network interfaces (e.g., CAN, FlexRay, etc.)
or communication interfaces (e.g., USB, Bluetooth, NFC, etc.). So it is
possible to retrieve a graph representation of the architecture, in order to
have a complete visual of it and perform the asset identification as required
by the standard.

In the same window it is then possible to upload DBC files related to the
networks described and the High-Level policies specifically designed in order
to apply the refinement algorithm. In this way, the proper configuration file is
computed for each filtering element retrieved in the topology and associated
with the security gateway it belongs to.

49

Evaluation

It is possible from the tool to export the entire topology or the configu-
ration files, in order to use them as input for the Policy analysis developed
with the PolicyToolLibrary.

8.1.1 Architecture
The tool is implemented as a Web Application, thus the development is
results quick, powerful, and platform-independent. The development stack
used is Django+Angular+MySQL, so:

• Backend, it has been done in Python, exploiting the Django framework.
In order to manage the ontology, the owlready2 has been used as internal
components

• Database, the platform data are stored in a MySQL database, exploiting
an ORM1 to perform the association between the backend and the DB.

• Frontend, it has been used the latest version of Angular framework,
because of its flexibility and for the complete and clear documentation.

In Figure 8.1 is depicted the software architecture of the tool.

8.1.2 Design
Once the goal of this application has become clear, the main functional re-
quirements and the database design have been defined.

Functional requirements

The application shall show all the existing classes of items and present them
as they were in a catalog.

For each class, it shall be possible to create new individuals representing
the Node of the architecture under test.

Each one of them can be defined through a name and a set of interfaces
and shall be possible to update it or delete it.

The list of all created items shall be shown on the main page of the appli-
cation.

1Object–relational mapping

50

8.1 – Proof-of-Concept

Figure 8.1: Tool for Item definition and Asset Identification: Architecture

For each couple of individuals shall be possible to create a channel in order
to define the connection among them.

Each one of them can be defined through a name, the two endpoints, and
the type of connection and shall be possible to update it or delete it.

The list of all created channels shall be shown on the main page of the
application.

It shall be possible to extract a graph structure from the ontology repre-
sentation that represents the architecture under test.

The application shall show all the existing assets and present them as they
were in a catalog.

For each class of assets, it shall be possible to create new individuals
representing assets and use them to mark an element of the architecture
under test.

Each one of them can be defined through a name and shall be possible to
update it or delete it.

The list of all created assets shall be shown on the main page of the
application.

It shall be possible to create different scenarios, in order to describe mul-
tiple architectures separately.

51

Evaluation

Each one of them can be defined by a name and they can be listed, mod-
ified, or deleted.

The deletion of a scenario shall involve the deletion of all the elements and
assets that it contains.

It shall be possible to upload the High-Level policy and the DBC files for
each scenario, thus performing the refinement of High-level policy in order
to retrieve the configuration of the filtering points.

It shall be possible to export a file containing the landscape.
It shall be possible to export a file containing the configuration of the

single filtering points.
All of these requirements have been implemented through REST endpoints

inside the Django backend. The entire list of all endpoints is available in
Appendix C.

Database design

As regard to the database design, the Web application uses two different data
sources (Figure 8.2):

1. Platform dependent database

2. Ontology database
This choice comes from the requirements definition. The former database

is used by the backend to store information about the different Scenarios and
to associate to each one of them the proper elements. The latter is managed
by owlready2 independently by the former and it is completely transparent
to the developer that interacts with it directly through the API provided by
the library. As regard to the Platform dependent database, it has two Tables
Scenario and ScenarioElement. The former contains the information related
to every single Scenario, the latter on the other hand contains the association
between the ontology element and the Scenario they belong to. The Ontol-
ogy database instead has three tables Resource, PropFts, Objs. They are
mantained in order to make more efficient the internal operations. In partic-
ular, Objs, contains the individuals and Resource mantains the association
between a single element of the ontology with its iri.

8.2 Test scenarios
To verify if the functional requirements have been met, three different sce-
narios have been designed, they are depicted in Figure 8.3, Figure 8.4 and

52

8.2 – Test scenarios

Figure 8.2: Tool for Item definition and Asset Identification: Database De-
sign

Figure 8.5. They contain a reduct set of all the ECUs contained in a real
vehicle, but the focus is on the main architectural aspects in this phase.

Figure 8.3: Complete Automotive architecture: Scenario 1

53

Evaluation

Figure 8.4: Complete Automotive architecture: Scenario 2

They were described using the web app and then the refinement algo-
rithm was used above them. Thus the configuration of single filtering points
was made for each of them. The specific architectures are taken from the
opensource project and they allow to highlight the different levels of com-
plexity: in fact, the one in Figure 8.3 is the simplest because it has only a
security gateway and has complete segregation between different networks,
so the refinement algorithm has to discover and to configure rules for a single
firewall. The second architecture (Figure 8.4) instead has two interconnected
security gateways and disjoint networks, so the messages travelling from a
network to another have to cross both of them and thus the specific rule has
to be configured in both devices. The last scenario in Figure 8.5 is the most
complex because it is the evolution of the scenario in Figure 8.4 with the in-
troduction of another component such as the Body Computer. It is another
filtering point that is used for redundancy of the security gateway, so they
have a similar configuration in order to increase the performance avoiding
bottleneck in communications.

To perform the refinement phase and then the policy analysis, a set of
DBC files is used: they contain more than 100 messages each, exchanged
among all the different ECUs.

54

8.3 – Policy Analysis test

Figure 8.5: Complete Automotive architecture: Scenario 3

8.3 Policy Analysis test
Policy anomalies test

The Intra-policy analyses and Inter-policy analyses has been carried out on
the architecture depicted in Figure 8.3, Figure 8.4 and Figure 8.5. In this
section the results obtained will be discussed.

The Intra-policy analyses, which deal with the analysis of a single policy,
demonstrates for all of the scenarios under test that the configuration taken
in isolation is well-formed. This witnesses an intense design activity, that
excludes any misconfiguration.

The Inter-policy analyses, that deals with policy analyses in relation to
the landscape, shows different outcomes for the three scenarios. In fact, as
regards the scenario with a single filtering point (Figure 8.3), the outcome of
the analyses is trivial, because the result is the same as for the Intra-policy

55

Evaluation

analyses, since there is no other firewall. The scenarios depicted in Figure
8.4 and Figure 8.5 are more interesting because they contain more than a
single filtering point, thus two specific anomalies have been revealed. In both
scenarios, I have observed Shadow anomalies and Spurious anomalies. The
former deals with a rule that is accepted from the downstream device and
discarded from the upstream one, instead of the latter revealing the opposite
situation. At first these outcomes looked like a misconfiguration, but focusing
on the data analyses they resulted expected because these anomalies affect
the rules that refer to the networks directly attached to the filtering device.
In fact, in the Automotive scenario, the messages can be sent only from a
proper set of ECUs and sometimes they do not have to cross the filtering
zone they belong, thus the traffic of data can not be influenced by these
anomalies, and for some aspects, this represents also a sort of protection.

Reachability test

In order to test the reachability I created a function that has the follow-
ing prototype: public Boolean checkReachability(String NodeS, String NodeD
, String MsgId, String MsgName). It takes as parameters:

• the source Node;

• the destination Node;

• the message identification code;

• the message name.

and it recomputes the equivalent firewall between source and destination and
creates a rule with the given field. Then it checks whether if it is contained or
not inside the equivalent firewall and, in positive case, the function returns
true, otherwise false In our context it is also useful to add another function
to extract the reachability path: public List<String> getReachabilityPath(
String NodeS, String NodeD, String MsgId, String MsgName). It has the same
parameters as the previous function but it computes the list of firewalls
between the source and the destination instead of the equivalent firewall.
Then if the list is not empty, it is iterated checking whether the rule is
contained by all the firewalls in the list or not. If it is true the path is
created and returned, otherwise, the function returns null.

This function is been used to test if the refinement algorithm has been
properly designed and implemented, by launching it for each admitted mes-
sage between two nodes, described in the XACML files checking whether

56

8.3 – Policy Analysis test

they are reachable or not. In the testing phase, I reuse the Test Scenario of
the previous section, with the results that for the 100% of the messages they
are reachable.

57

58

Chapter 9

Conclusion

This thesis can be seen as a starting point for the development of a big-
ger framework for automotive cybersecurity, it contains concepts taken from
modern technology and design scenarios and it has been conducted to retrieve
the basic knowledge to perform more complex analysis and projects.

The first work that has been assigned to me dealt with the study of
software documentation and normative, useful to understand which are the
needed background notions. It has been an important and interesting task
because it allows to focus on the state-of-the-art of automotive cybersecurity
field. It also makes me to reflect on a real business case and the market
perspective that affects the field nowadays. Thus the research has not been
only theoretical, but it has involved also the development of a tool, as a final
product of this thesis, including all the solutions to the problems stated in
Chapter 5. In this perspective, every single workproducts has been validated
by cybersecurity companies, which have evaluated the expressivity of the
description language and the usability of the application developed for the
proof-of-concept. However, system testing has been carried out using the test
scenario provided in Chapter 8. They have to be considered as a simplified
example, but exhaustive at the same time because it contains the basic set
of ECUs that can be retrieved on an OEM testbed. However, it represents
the actual architecture and they do not cover other particular models made
with different network protocols and other typologies of nodes.

The software proposed in Chapter 8 has to be intended just as a proof-of-
concept, not as a complete and definitive tool, many upgrades can be made,
from the usability to the improvement of the core functions in order to better
adapt to the companies’ needs.

Since the requirements of this Application has come from discussion with

59

Conclusion

these companies, the tool can be considered ready to be integrated into a
bigger framework that can find applications in two main fields:

1. ISO/SAE 21434 Certification process, thus easing the task of a certifi-
cation entity providing a framework to conduct all the steps stated by
the standard

2. Enhancing the performance of security controllers, thus simplifying the
management of Automotive Security Gateway providing an automatic
configuration system starting from the landscape and Policy design re-
quirements

A framework for Certification process

The definition of a language that formally describes assets and structural ele-
ments inside a vehicle can ease the task of people involved in the certification
process because it provides a common terminology for item description and
asset identification.

It paves the way to the development of new tools designed to perform the
TARA1. The language developed for this final work can be the base upon
which software that makes this task automatic relies on.

In addition, the analysis done in this final work can be used in the sub-
sequent steps described by the ISO/SAE 21434 related to the risk response
phase where the proper remediations and mitigations have to be evaluated in
order to resolve cybersecurity risk arising with the TARA. In particular, the
definition of a High-level design policy and the anomaly analysis can be used
in relation to the threat introduced by the misconfiguration of the filtering
device.

The policy and the Ontology have been written using very flexible lan-
guages so they can be updated and extended to describe new automotive
architecture or to make the policy design more complex.

A tool for Security Gateway configuration

Another possible scenario in which this thesis finds application is strictly
related to the configuration process of filtering devices. It is linked to two
main problems:

1Threat Analysis and Risk Assesment

60

Conclusion

1. Mishandling of configurations, due to the company internal organization
which sees different people involved in the design and deployment of
policies.

2. Misconfigurations of device, thus the writing of wrong rules in filtering
devices mounted in automotive architecture

The refinement algorithm proposed in this thesis tries to solve both prob-
lems, because it automatically converts the policy designed in the abstract
with the real low-level representation and deployment. However, it describes
a very general scenario and it could not be directly applied by the OEMs.
So a future development starting from the refinement algorithm could be its
customization to adapt to carmaker’s needs. It can also be extended in order
to receive as input not only the DBC files which are strictly related to the
CAN network, but also other sources coming from FlexRay or Automotive
Ethernet. It is the same for policy language, it is designed to parse and
compute policies in XACML, but with minor changes, it can be modified for
another policy format.

The policy tool library can be further extended in order to suit to the
evolution of policy design. Since the model is XML-based it can be modified
and adapted to different cases. In particular, the selector type, linked to the
policy field can be customized in many different ways using the many classes
included in the library or even by creating new classes to model properly the
selectors.

61

62

Appendix A

Template of a
communication Policy

1 <?xml version="1.0" encoding="UTF-8"?>
2 <Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os" xmlns:ont="

http://www.example.com/onto" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" PolicyId="policy_alg" RuleCombiningAlgId="urn:
oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides" xsi:
schemaLocation="urn:oasis:names:tc:xacml:2.0:policy:schema:os␣
xacml_os_schema2.xsd">

3 <PolicyDefaults>
4 <XPathVersion>http://www.w3.org/TR/1999/REC-xpath-19991116</

XPathVersion>
5 </PolicyDefaults>
6 <Target>
7 <Subjects>
8 <Subject>
9 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string

-equal">
10 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string

">ECU_Source</AttributeValue>
11 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml

:1.0:subject:subject-id" DataType="http://www.w3.org/2001/
XMLSchema#string" MustBePresent="true" />

12 </SubjectMatch>
13 </Subject>
14 <Subject>
15 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string

-equal">
16 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string

">type(ECU)</AttributeValue>

63

Template of a communication Policy

17 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml
:1.0:subject:subject-type" DataType="http://www.w3.org/2001/
XMLSchema#string" />

18 </SubjectMatch>
19 </Subject>
20 </Subjects>
21 <Resources>
22 <Resource>
23 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:xpath

-node-match">
24 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string

">xpath_request(/ont:Ontology/ont:Node)</AttributeValue>
25 <ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:

xacml:1.0:resource:xpath" DataType="http://www.w3.org/2001/
XMLSchema#string" />

26 </ResourceMatch>
27 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:xpath

-node-equal">
28 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string

">type(ECU)</AttributeValue>
29 <AttributeSelector DataType="http://www.w3.org/2001/XMLSchema#

string" MustBePresent="false" RequestContextPath="//ont:
Ontology/ont:Node/@type" />

30 </ResourceMatch>
31 </Resource>
32 </Resources>
33 <Actions>
34 <Action>
35 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-

equal">
36 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string

">Standard_Action(Authorize)</AttributeValue>
37 <ActionAttributeDesignator AttributeId="urn:oasis:names:tc:xacml

:1.0:action:action-id" DataType="http://www.w3.org/2001/
XMLSchema#string" />

38 </ActionMatch>
39 </Action>
40 </Actions>
41 </Target>
42 <Rule Effect="Permit" RuleId="alg_rule">
43 <Target>
44 <Resources>
45 <Resource>
46 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:

xpath-node-equal">

64

Template of a communication Policy

47 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#
string">ECU_dest</AttributeValue>

48 <AttributeSelector DataType="http://www.w3.org/2001/XMLSchema#
string" MustBePresent="false" RequestContextPath="//ont:
Ontology/ont:Node/@name" />

49 </ResourceMatch>
50 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-equal">
51 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#

string">msg_id</AttributeValue>
52 <ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:

xacml:1.0:resource:message-id" DataType="http://www.w3.org
/2001/XMLSchema#string" />

53 </ResourceMatch>
54 <ResourceMatch>
55 </ResourceMatch>
56 </Resource>
57 <Resource>
58 </Resource>
59 </Resources>
60 </Target>
61 </Rule>
62 ...
63 </Policy>

65

66

Appendix B

Refinement algorithm
implementation

1 import igraph
2 import json
3 import sys
4 from owlready2 import *
5 from policy_parse import *
6 from dbc_parse import *
7 from record import record
8 from graph_lib import callGraph, confGeneration
9

10
11 nome_file, nome_scenario, topos, policy_schema, policy_dir, dbc_dir,

out_dir=sys.argv
12
13 onto = get_ontology(topos).load()
14
15 ####1####Graph Creation
16 g=callGraph(onto)
17
18 ####2####Filtering Element discovery
19
20 filtering_element=[]
21 conf={}
22 for e in onto.Gateway.instances():
23 filtering_element.append(e)
24 conf[e.name]=[]
25
26 ####3####HL Policy
27

67

Refinement algorithm implementation

28 #from_to={’from’:[to]}
29 from_to=XACMLpolicy(policy_dir, policy_schema)
30
31 ####4####DBC Parsing
32 #msg_SourceDest={’msg_id’:[[’from’],[’to’]]}
33 msg_SourceDest=parseNew(dbc_dir)
34 #ecu_net={’ecu’:’net’}
35 ecu_net=DBC_ECU_to_net(dbc_dir)
36 ####5####Path Extraction
37
38 for source in from_to.keys():
39 f=onto.search(iri="*"+source, is_a=onto.Node)
40
41 for dest in from_to[source]:
42 t=onto.search(iri="*"+dest, is_a=onto.Node)
43 path_l=g.get_shortest_paths(g.vs[’obj’].index(f[0]), to=g.vs[’obj’

].index(t[0]), weights=None, mode=’out’, output=’vpath’)
44
45 #path_list
46 for path in path_l:
47
48 sub_path=[]
49 pos_start=0
50 pos_end=0
51
52 #single path
53 for n1 in path:
54
55 if g.vs[’obj’][n1] in filtering_element:
56
57 pos_end=path.index(n1)
58 sub_path.append(path[pos_start:pos_end+1])
59 pos_start=pos_end
60 sub_path.append(path[pos_start:len(path)])
61
62
63 if len(sub_path)>1:
64 for k in msg_SourceDest.keys():
65 if source in msg_SourceDest[k][0] and dest in

msg_SourceDest[k][1]:
66 x=k.split("/")
67
68 #N chain to test
69 node_d=g.vs[’obj’][sub_path[len(sub_path)-1][-1]].

name
70 innet=ecu_net[g.vs[’obj’][sub_path[0][0]].name]

68

Refinement algorithm implementation

71 i=0
72 for sp in sub_path:
73 i=i+1
74 next_sp=sub_path.index(sp)+1
75 if next_sp<len(sub_path):
76 ef=g.vs[’obj’][sp[-1]].name
77 if g.vs[’obj’][sub_path[next_sp][-1]].name

not in conf.keys():
78 outnet=ecu_net[g.vs[’obj’][sub_path[

next_sp][-1]].name]
79 else:
80 outnet=g.vs[’obj’][sub_path[next_sp

][-1]].name
81 e=record(ide=x[0], name=x[1], dest=node_d,

nettin=innet, nettout=outnet)
82 conf[ef].append(e)
83
84 ####6####Export JSON
85 key=[’id_messaggio’, ’label_messaggio’, ’nodo_dest’, ’net_source’, ’

net_dest’]
86 for x in conf.keys():
87 f=open(out_dir+"/"+str(nome_scenario)+"_"+str(x)+"1.json","w")
88 c_l=[]
89 pointer=g.vs[’label’].index(x)
90 for y in conf[x]:
91 # print(y)
92 value=[]
93 value.append(y.identifier)
94 value.append(y.message_name)
95 value.append(y.node_dest)
96 value.append(y.net_in)
97 value.append(y.net_out)
98 c_l.append(dict(zip(key, value)))
99

100 g.vs[’conf’][pointer].append(c_l)
101 json.dump(c_l, f, indent=1)
102 f.close()
103
104 print(g.vs[’conf’][pointer][0])

69

70

Appendix C

WebApp: list of API

All the resources are under the root poc_api/

Table C.1: WebApp: list of API

Resource Method Path Description

Class
GET /classes Get all classes
GET /classes/{chid} Get info about a specific class

Node

GET /individuals Get all Nodes
POST /individuals Create a new Node
GET /individuals/{iid} Retrieve information related to a specific Node
PUT /individuals/{iid} Update the information related to a Node

DELETE /individuals/{iid} Delete a specific Node

Channel

GET /channels Get all channels
POST /channels Create a new Channel
GET /channels/{chid} Retrieve information related to a specific Channel
PUT /channels/{chid} Update the information related to a Channel

DELETE /channels/{chid} Delete a specific Channel

Asset

GET /assets Get all Assets class
GET /assets/{chid} Retrieve information related to a specific Asset class
PUT /assets/{aid} Update the information related to a specific Asset

DELETE /assets/{aid} Delete a specific Asset
Graph GET /graph Retrieve the graph representation of the landscape

Scenario

GET /scenarios Get all Scenario
POST /scenarios Create a new Scenario
GET /scenarios/{sid} Retrieve information related to a specific Scenario
PUT /scenarios/{sid} Update the information related to a Scenario

DELETE /scenarios/{sid} Delete a specific Scenario

71

72

Bibliography

[1] Stefan Seifert and Roman Obermaisser. «Secure automotive gateway
— Secure communication for future cars». In: 2014 12th IEEE Inter-
national Conference on Industrial Informatics (INDIN). 2014, pp. 213–
220. doi: 10.1109/INDIN.2014.6945510.

[2] Robert N Charette. «This car runs on code». In: IEEE Spectrum 46.3
(2009), p. 3.

[5] Jasmin Brückmann, Tobias Madl, and Hans-Joachim Hof. «An Analysis
of Automotive Security Based on a Reference Model for Automotive
Cyber Systems». In: Sept. 2017.

[6] Marko Wolf, Andre Weimerskirch, and Thomas Wollinger. «State of the
Art: Embedding Security in Vehicles.» In: EURASIP J. Emb. Sys. 2007
(Jan. 2007).

[7] D. Crolla et al. Automotive Engineering: Powertrain, Chassis System
and Vehicle Body. Elsevier Science, 2009. isbn: 9781856175777. url:
https://books.google.it/books?id=EwcRnwEACAAJ.

[8] Karl Koscher et al. «Experimental security analysis of a modern au-
tomobile». In: Security and Privacy (SP), 2010 IEEE Symposium on.
2010, pp. 447–462.

[9] C. Smith. The Car Hacker’s Handbook: A Guide for the Penetration
Tester. No Starch Press, 2016. isbn: 9781593277031. url: https://
books.google.it/books?id=Ao%5C_QCwAAQBAJ.

[11] Lee, Lin, and Liao. «Design of a FlexRay/Ethernet Gateway and Secu-
rity Mechanism for In-Vehicle Networks». In: Sensors 20 (Jan. 2020),
p. 641. doi: 10.3390/s20030641.

[14] ISO. «ISO 11898-1:2003 - Road vehicles - Controller area network». In:
International Organization for Standardization (2003).

73

https://doi.org/10.1109/INDIN.2014.6945510
https://books.google.it/books?id=EwcRnwEACAAJ
https://books.google.it/books?id=Ao%5C_QCwAAQBAJ
https://books.google.it/books?id=Ao%5C_QCwAAQBAJ
https://doi.org/10.3390/s20030641

BIBLIOGRAPHY

[15] ISO. «ISO 21434:2019 - Road vehicles - CyberSecurity Engineering».
In: International Organization for Standardization (2019).

[16] UNECE. «World Forum for Harmonization of Vehicle Regulations (WP.29)».
In: (2019), vi, 129 p. : url: http://digitallibrary.un.org/record/
3824138.

[18] Stephen Checkoway et al. «Comprehensive Experimental Analyses of
Automotive Attack Surfaces.» In: USENIX Security Symposium. 2011.

[19] A. Weimerskirch M. Wolf and C. Paar. «Security in automotive bus
systems». In: Proceedings of the Workshop on Embedded Security in
Cars. 2004.

[23] Jean-Baptiste Lamy. «Owlready: Ontology-oriented programming in
Python with automatic classification and high level constructs for biomed-
ical ontologies». In: Artificial Intelligence in Medicine 80 (2017), pp. 11–
28. issn: 0933-3657. doi: https://doi.org/10.1016/j.artmed.2017.
07.002. url: https://www.sciencedirect.com/science/article/
pii/S0933365717300271.

[26] E. Al-Shaer et al. «Conflict classification and analysis of distributed fire-
wall policies». In: IEEE Journal on Selected Areas in Communications
23.10 (2005), pp. 2069–2084. doi: 10.1109/JSAC.2005.854119.

[27] Cataldo Basile, Alberto Cappadonia, and Antonio Lioy. «Network-Level
Access Control Policy Analysis and Transformation». In: IEEE/ACM
Transactions on Networking 20.4 (2012), pp. 985–998. doi: 10.1109/
TNET.2011.2178431.

[29] Benjamin Klotz et al. «VSSo: A Vehicle Signal and Attribute Ontol-
ogy». In: Oct. 2018.

[30] Michael Feld and Christian Müller. «The automotive ontology: manag-
ing knowledge inside the vehicle and sharing it between cars». In: Nov.
2011, pp. 79–86. doi: 10.1145/2381416.2381429.

[31] Andreas Maier, Hans-Peter Schnurr, and York Sure-Vetter. «Ontology-
Based Information Integration in the Automotive Industry». In: vol. 2870.
Oct. 2003, pp. 897–912. isbn: 978-3-540-20362-9. doi: 10.1007/978-
3-540-39718-2_57.

[32] Axel Reymonet, Jérôme Thomas, and Nathalie Aussenac-Gilles. «On-
tology Based Information Retrieval: an application to automotive diag-
nosis». In: June 2009.

74

http://digitallibrary.un.org/record/3824138
http://digitallibrary.un.org/record/3824138
https://doi.org/https://doi.org/10.1016/j.artmed.2017.07.002
https://doi.org/https://doi.org/10.1016/j.artmed.2017.07.002
https://www.sciencedirect.com/science/article/pii/S0933365717300271
https://www.sciencedirect.com/science/article/pii/S0933365717300271
https://doi.org/10.1109/JSAC.2005.854119
https://doi.org/10.1109/TNET.2011.2178431
https://doi.org/10.1109/TNET.2011.2178431
https://doi.org/10.1145/2381416.2381429
https://doi.org/10.1007/978-3-540-39718-2_57
https://doi.org/10.1007/978-3-540-39718-2_57

BIBLIOGRAPHY

[33] Marcel Rumez et al. «Integration of Attribute-based Access Control
into Automotive Architectures». In: June 2019. doi: 10.1109/IVS.
2019.8814265.

75

https://doi.org/10.1109/IVS.2019.8814265
https://doi.org/10.1109/IVS.2019.8814265

76

Sitography

[3] OEM. url: https://en.wikipedia.org/wiki/Original_equipment_
manufacturer. (accessed: December 6, 2021).

[4] Daniel Kolb and Rafael Schmid. Cyber security- the next big challenge
for automotive OEMs. url: https : / / accilium . com / en / cyber -
security-the-next-big-challenge-for-automotive-oems. (ac-
cessed: December 6, 2021).

[10] STMicroelectronics. Automotive Gateway. url: https://www.st.com/
en/applications/body-and-convenience/automotive-gateway.
html#key-products. (accessed: December 6, 2021).

[12] Timo van Roermund. Secure connected cars for a smarter world. url:
https://www.nxp.com/docs/en/white-paper/SECURE-CONNECTED-
CARS-WP.pdf. (accessed: December 6, 2021).

[13] CAN bus. url: https://en.wikipedia.org/wiki/CAN_bus. (ac-
cessed: December 6, 2021).

[17] Cybersecurity standard. url: https : / / en . wikipedia . org / wiki /
Cybersecurity_standards#ISO/SAE_21434. (accessed: December 6,
2021).

[20] C. Valasek and C. Miller. A Survey of Remote Automotive Attack Sur-
faces. url: https://ioactive.com/wpcontent/uploads/2018/05/
IOActive _ Remote _ Attack _ Surfaces . pdf. (accessed: December 6,
2021).

[21] Andy Greenberg. Hacker remotely Kill A Jeep on the Highway- with me
in it. url: https://www.wired.com/2015/07/hackers-remotely-
kill-jeep-highway/. (accessed: December 6, 2021).

[22] Ontology. url: https://en.wikipedia.org/wiki/Ontology_(information_
science). (accessed: December 6, 2021).

77

https://en.wikipedia.org/wiki/Original_equipment_manufacturer
https://en.wikipedia.org/wiki/Original_equipment_manufacturer
https://accilium.com/en/cyber-security-the-next-big-challenge-for-automotive-oems
https://accilium.com/en/cyber-security-the-next-big-challenge-for-automotive-oems
https://www.st.com/en/applications/body-and-convenience/automotive-gateway.html#key-products
https://www.st.com/en/applications/body-and-convenience/automotive-gateway.html#key-products
https://www.st.com/en/applications/body-and-convenience/automotive-gateway.html#key-products
https://www.nxp.com/docs/en/white-paper/SECURE-CONNECTED-CARS-WP.pdf
https://www.nxp.com/docs/en/white-paper/SECURE-CONNECTED-CARS-WP.pdf
https://en.wikipedia.org/wiki/CAN_bus
https://en.wikipedia.org/wiki/Cybersecurity_standards#ISO/SAE_21434
https://en.wikipedia.org/wiki/Cybersecurity_standards#ISO/SAE_21434
https://ioactive.com/wpcontent/uploads/2018/05/IOActive_Remote_Attack_Surfaces.pdf
https://ioactive.com/wpcontent/uploads/2018/05/IOActive_Remote_Attack_Surfaces.pdf
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://en.wikipedia.org/wiki/Ontology_(information_science)
https://en.wikipedia.org/wiki/Ontology_(information_science)

SITOGRAPHY

[24] XACML. url: https://en.wikipedia.org/wiki/XACML. (accessed:
December 6, 2021).

[25] A Brief Introduction to XACML. url: https://www.oasis- open.
org/committees/download.php/2713/Brief_Introduction_to_
XACML.html. (accessed: December 6, 2021).

[28] Reachability analysis. url: https://en.wikipedia.org/wiki/Reachability_
analysis. (accessed: December 6, 2021).

78

https://en.wikipedia.org/wiki/XACML
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://en.wikipedia.org/wiki/Reachability_analysis
https://en.wikipedia.org/wiki/Reachability_analysis

	List of Figures
	List of Tables
	Introduction
	Open problem
	Thesis Outline
	Thesis Results

	Automotive Scenario
	Automotive architecture
	Network
	ECU
	Security Gateway

	Network Protocol
	Standards for Automotive
	ISO/SAE 21434
	UNECE WP.29/R155

	Automotive cyber attacks
	Attack surface
	Attack vector
	Typologies of attacks
	Direct physical access attack
	Indirect attack

	Famous attacks

	Background and related works
	Ontologies and libraries
	Ontology
	Owlready2: a library for ontology manipulation

	Communication Policy e Access Control
	High-Level policy and XACML

	Policy analysis in computer network
	Anomaly Analysis
	Reachability analysis

	Related Works

	Problem Statement
	Requirements
	An overview of the proposed solution

	Design of the solution
	Model definition
	High-level policy design
	Policy refinement
	Policy analysis
	Anomaly analysis
	Reachability analysis

	Implementation
	Refinement algorithm
	Anomaly analysis
	Reachability analysis

	Evaluation
	Proof-of-Concept
	Architecture
	Design

	Test scenarios
	Policy Analysis test

	Conclusion
	Future work

	Template of a communication Policy
	Refinement algorithm implementation
	WebApp: list of API
	Bibliography

