
POLITECNICO DI TORINO

College of Computer Engineering, Cinema and Mechatronics

Master’s Degree Thesis

Improvement of a system for retrieving
and displaying systematic aircraft data

Supervisors
Prof. Bartolomeo Montrucchio
Dr. Antonio Costantino Marceddu

Candidate

Ahmad El Zein

December 2021

Summary

The aim or goal of this graduation thesis (Improvement of a system for retrieving and displaying
systematic aircraft data) is the improvement of PhotoNext project.
The core of the project is the middleware created, that can be hosted in a Raspberry Pi 3 Model B
board. The improvement is done by creating a middleware independent of the type of interrogator
used. This independence will make the middleware support all types and sizes of interrogators
that will be used on different sized airplanes.

The project is a collaboration between two departments of the Politecnico di
Torino: DAUIN (Department of Control and Computer Engineering) and DIMEAS
(Department of Mechanical and Aerospace Engineering).

Taking a general look on the project, three components can be seen:

1. FBG Sensing System.
Where data is derived from, captured, analysed and collected.

2. Cloud Network.
Where the collected data is stored.

3. Viewer.
Where the collected data is simply displayed in real time and non-real-time mode.

The FBG Sensing System comprises the interrogator, the middleware and a set of FBG sensors
that keep track of the unity (physical system).

The Physical System represents a unity being monitored by a set of FBG sensors, which they
are a sort of distributed Bragg reflectors made up of short fiber segments that reflects specific
wavelengths while transmitting all others.
The Interrogator is a device that can acquire information about the behavior of the optical fiber
by sending laser beams to the Bragg grating and evaluating its response. The data collected may
relate to different physical quantities depending on the interrogator used. They can provide infor-
mation about wavelength, strain, temperature or pressure to which the fibers and thus the Bragg
sensors are exposed. In this thesis a SmartScan© interrogator from SmartFibres© is used.
The Middleware is software that enables one or more kinds of communication or connectivity be-
tween two or more applications or application components in a distributed network. By making
it easier to connect applications that weren’t designed to connect with one another and providing
functionality to connect them in intelligent ways. In this thesis the middleware is a C++ appli-
cation that is used to retrieve data from sensors attached to the interrogator.
The Cloud Network is a computer network that connects cloud-based or cloud-enabled applica-
tions, services, and solutions over the internet. MongoDB is used to build the cloud network, it is
an open source NoSQL database management program that doesn’t require predefined schemas.
It stores any type of data. This allows users to create any amount of fields in a document, allowing
MongoDB databases scale more easily than relational databases.
The Viewer is a Desktop/AR Application developed in Unity, useful for displaying real-time and
non-real-time data. The primary purpose of the viewer is to present data in a logical and under-
standable manner;however, the ultimate goal is to enable both real-time and offline data analysis
using various methods. It reads data from a MongoDB instance or from the middleware directly

i

over TCP-IP, allowing it to work with a variety of configurations.

Previously, middleware was a dependent application with a monolithic architecture, which meant
that it only worked with a single interrogator and that the functionally distinct aspects (e.g.,
data listening and parsing, data storage, error handling, and user interface) were all interwoven
rather than being separated into architecturally distinct components (lack of Modularity). It is
improved by making it independent of the type of interrogator used and removing the ability to
send data directly to the viewer through TCP-IP connection. Other sub-improvements included
overcoming various issues with the data preservation structures (buffer, queue, etc.) and figuring
out how to reduce mongoDB server traffic, or how to interface with mongoDB once a specific
amount of gathered items has been reached.

ii

Acknowledgements

I’d like to extend my sincere gratitude to Professor Bartolomeo Montrucchio who trusted me and
gave me the opportunity being his thesis candidate.

I’d like to sincerely thank Dr. Antonio Costantino Marceddu for his helpful and constructive
recommendations, as well as his ongoing support and direction, patience, motivation, and exten-
sive knowledge during the planning and implementation of this research project.

I’d like to express my grateful thanks to Eng. Matteo Dalla Vedova and Dr. Alessandro Aimasso
for all of their support and assistance over the last few months.

I’d like to express my appreciation to the Department of Mechanical and Aerospace Engineering
DIMEAS for allowing me utilize their equipment.

Finally, I’d like to express my heartfelt thanks to my family for their everlasting love, support,
and assistance. My parents will always be responsible for providing me with the opportunities
and experiences that have helped me become the person I am today.

iii

Contents

List of Figures vi

1 Introduction 1

1.1 Overview . 1

1.2 MongoDB Technology . 2

1.2.1 MongoDB Definition . 2

1.2.2 MongoDB Architecture . 3

1.2.3 How It Works . 3

1.2.4 MongoDB Platforms . 3

1.2.5 MongoDB Pros and Cons . 4

1.3 Real-Time Technology . 4

1.3.1 Definition Of Term ”Real-Time” . 4

1.3.2 Definition Of Real-Time Application . 4

1.4 Internet Communication Protocols . 4

1.4.1 Transmission Control Protocol/Internet Protocol (TCP/IP) 4

1.4.2 User Datagram Protocol (UDP) . 6

1.5 Binary JavaScript Object Notation BSON Technology 7

1.5.1 Definition Of BSON . 7

1.5.2 Understanding BSON . 7

1.5.3 BSON VS JSON . 7

1.5.4 Disadvantages . 8

2 System Architecture 9

2.1 System Overview . 9

2.2 FBG Sensing System . 9

2.2.1 Physical System Monitored By FBG Sensors 9

2.2.2 Interrogator . 12

2.2.3 Middleware . 13

2.3 Cloud Network . 14

2.4 Viewer . 15

iv

3 Proposed Solution 16

3.1 Overview . 16

3.2 Physical System . 17

3.3 Interrogator . 18

3.4 Middleware . 19

3.4.1 Middleware Classes Architecture . 20

3.4.2 Middleware Files Hierarchy . 22

3.4.3 Middleware CMake Files . 24

3.4.4 Middleware Client Class Modifications . 26

3.4.5 Middleware SmartScanInterrogator Class Modifications 28

3.4.6 Middleware MongoDAO Class Modifications 31

3.4.7 Middleware Data Models . 34

3.5 MongoDB Cloud . 37

3.5.1 What Is CRUD In MongoDB? . 38

3.5.2 How To Perform CRUD Operations. 38

3.6 Viewer . 41

3.6.1 Real-Time Mode . 42

3.6.2 Non-Real-Time Mode . 43

3.6.3 Simulation’s Outcome . 43

4 User Guide 45

4.1 MongoDB Compass . 45

4.1.1 What Is MongoDB Compass? . 45

4.1.2 What MongoDB Compass Can Do? . 45

4.1.3 Connect To MongoDB Using Compass . 48

4.1.4 Compass Home . 49

5 Test And Evaluation 51

5.1 Test Tools and Equipment . 51

5.1.1 Sensors . 51

5.1.2 SmartScan Interrogator . 52

5.1.3 Raspberry Pi 3 Model B . 53

5.1.4 Portable Computer . 54

5.2 Test Scenarios . 54

5.2.1 Connection Availability . 55

5.2.2 Middleware Memory Usage . 55

5.2.3 Data Rate And Middleware Stability . 57

5.2.4 Viewer Real Time Data Analysis . 59

6 Conclusion 62

6.1 Future Work . 62

6.1.1 Missing Features . 62

6.2 Conclusion . 63

Bibliography i

v

List of Figures

1.1 Architecture of the system [1]. 2

1.2 Collection hierarchy [12]. 2

1.3 MongoDB architecture [11]. 3

1.4 Process of establishing a TCP connection (three-way handshake) [21]. 5

1.5 UDP communication [24]. 6

1.6 BSON format of storing data [32]. 7

1.7 BSON encoding and decoding structure [32]. 8

2.1 The Air Cargo Challenge aircraft launched by ICARUS [14]. 10

2.2 Fiber Bragg grating sensor structure [15]. 10

2.3 Fiber Bragg grating sensor [30]. 11

2.4 FBG sensor embedded inside an ICARUS aircraft wing. 11

2.5 SmartScan© from SmartFibres© [16]. 12

2.6 SmartScan© with active FBG sensors connected [18]. 12

2.7 SmartSoft Application Software. 13

2.8 Raspberry Pi 3 Model B - 1GB RAM Board [19]. 14

2.9 Cloud database and network [1]. 14

2.10 Viewer graphical user interface. Import Model, HeatMap Color, Server/Network
Configuration and Sensor Configuration menus are marked in red, green blue and
orange respectively [3]. 15

3.1 Monolithic architecture [26]. 16

3.2 Physical system [1]. 17

3.3 Aircraft by ICARUS team [27]. 18

3.4 FBG interrogator [1]. 18

3.5 SmartSoft Application Software. 19

3.6 Middleware layer [1]. 20

3.7 Old middleware architecture. 21

3.8 New middleware architecture. 22

3.9 Old middleware files hierarchy. 23

3.10 New middleware files hierarchy. 24

3.11 Piece of code of the old middleware CmakeLists.txt file. 25

vi

3.12 Piece of code of the new middleware CmakeLists.txt file. 25

3.13 Functions used by the old middleware Client class. 26

3.14 Functions used by the new middleware Client class. 27

3.15 A piece of code of the main function of the new middleware Client class. 27

3.16 Functions used by the old middleware SmartScanInterrogator class. 28

3.17 Functions used by the new middleware Listener class. 30

3.18 Functions used by the new middleware Parser class. 31

3.19 CleanPeakData structure. 31

3.20 Functions used by the Old Middleware MongoDAO Class. 32

3.21 MongoDAO’s InsertUnityData() function. 32

3.22 Functions used by the New Middleware MongoDAO Class. 33

3.23 MongoDAO’s insertMultipleData() function. 33

3.24 RawData structure. 34

3.25 PeakData structure. 35

3.26 CleanPeakData structure. 35

3.27 Configuration data structure. 36

3.28 CleanPeakData data document model. 37

3.29 Configuration data document model. 37

3.30 Return object of insertOne() operation. 39

3.31 Return object of insertMany() operation. 39

3.32 Return object of updateOne() operation. 40

3.33 Return object of updateMany() operation. 40

3.34 Return object of replaceOne() operation. 40

3.35 Return object of deleteOne() operation. 41

3.36 Return object of deleteMany() operation. 41

3.37 Home view of the Desktop application . 42

3.38 Real-Time Server/Network Configuration menu . 43

3.39 Non-Real-Time Server/Network Configuration menu. 43

3.40 Example of a Log file with three active sensors [3] 44

3.41 Example of a line graph image with 64 active sensors [3] 44

4.1 Importing data from CSV file [35]. 46

4.2 Querying on data [35]. 46

4.3 Creating aggregation pipelines [35]. 47

4.4 Running commands in a shell [35]. 47

4.5 Pasting the connection string [35]. 48

4.6 Filling connection fields [35]. 48

4.7 Hostname dialog fields. 49

4.8 Compass home screen [35]. 50

vii

5.1 Thermometric probe. 51

5.2 Tension bar. 52

5.3 ICARUS aircraft wing. 52

5.4 4 active channels SmartScan© interrogator. 53

5.5 Raspberry Pi 3 Model B. 53

5.6 Portable computer launching the viewer and MongoDB Compass. 54

5.7 Timestamps stored during the simulation [3] . 54

5.8 Connection established between the interrogator and the middleware. 55

5.9 Raspberry Pi 3 Model B memory usage without launching the middleware. 56

5.10 Raspberry Pi 3 Model B memory usage after launching the old middleware. 56

5.11 Raspberry Pi 3 Model B memory usage after launching the new middleware. . . . 56

5.12 Total data sent in a 4 hours and a half period of time. 57

5.13 Total data stored in a 4 hours and a half period of time. 58

5.14 Full system under test. 59

5.15 Raspberry Pi 3 Model B. 60

5.16 Model with 8 active gratings under real-time mode test. 61

6.1 Microsoft© HoloLens AR system [36]. 63

6.2 AR/VR visualisation and analysis [1]. 63

viii

Chapter 1

Introduction

The following chapter provides an overview of the proposed framework as well as a brief description
of the system architecture and the relevant technologies used.

1.1 Overview

The aim or goal of this graduation thesis (Improvement of a system for retrieving and displaying
systematic aircraft data) is the improvement of PhotoNext project. The project was created to
study and monitor an aircraft constructed by the Politecnico di Torino’s Innovation Center for
Amateur Rocketry and Unmanned Ships (ICARUS) team as part of their ”ANUBIS” project.

The project is a collaboration between two departments at Politecnico di Torino,
DIMEAS (Department of Mechanical and Aerospace Engineering) and DAUIN (De-
partment of Control and Computer Engineering), as part of the POLITO Inter-
Departmental Center for Photonic technologies (PhotoNext).

The core of the project is the middleware created, that can be hosted in a Raspberry Pi 3
Model B board. This improvement is done by creating a middleware independent of the type of
interrogator used. This independence will make the middleware support all types and sizes of
interrogators that will be used on different sized airplanes.

Taking a general look on the project, three components can be seen:

1. FBG Sensing System
Where data is derived from, captured, analysed and collected.

2. Cloud Network
Where the collected data is stored.

3. Viewer
Where the collected data is simply displayed in real time and non-real-time mode.

The FBG Sensing System comprises the interrogator, the middleware and a set of FBG sensors
that keep track of the unity (physical system).

A Cloud Network is a computer network that connects cloud-based or cloud-enabled applica-
tions, services, and solutions over the internet.

A Viewer is a Desktop/AR Application developed in Unity, useful for displaying real-time and
non-real-time data.

1

Introduction

Figure 1.1. Architecture of the system [1].

1.2 MongoDB Technology

1.2.1 MongoDB Definition

MongoDB is an open source NoSQL database management program. Traditional relational
databases are replaced by NoSQL databases. NoSQL databases are quite useful for working
with large sets of distributed data. MongoDB is a tool that can manage document-oriented in-
formation, store or retrieve information.
MongoDB can handle a wide range of data types. It’s one of numerous non-relational database
technologies that arose in the mid-2000s under the NoSQL banner, usually for use in big data
applications and other processing operations involving data that doesn’t fit well in a conventional
relational paradigm. MongoDB’s design is made up of collections and documents rather than
tables and rows, like in relational databases.[10]

Figure 1.2. Collection hierarchy [12].

2

Introduction

1.2.2 MongoDB Architecture

There are three main parts to the MongoDB technology:

1. MongoDB Server
It is commonly known as mongod daemon, the primary process which handles data requests,
manages data format, and performs background management operations. There can be
many mongod daemons running as primary secondary instances.

2. MongoDB Mongos
It is the routing controller service that routes information and data in the cluster.

3. MongoDB Shell
It is the interactive interface. By using JavaScript to command, the developer can examine
results of queries and check test cases.

Figure 1.3. MongoDB architecture [11].

1.2.3 How It Works

MongoDB works using records, which are documents that contain a data structure made up of field
and value pairs. MongoDB’s basic data unit is the document. The documents resemble JavaScript
Object Notation, although they employ a binary JSON variation (BSON). The advantage of
utilizing BSON is that it can handle a wider range of data formats. These documents have
fields that are similar to columns in a relational database. According to the MongoDB user
documentation, the values contained can be a number of data formats, including other documents,
arrays, and arrays of documents. A main key will be used as a unique identifier in documents.
Collections are groups of documents that work in the same way that relational database tables
do. Collections can hold any form of data; however, the data in a collection cannot be dispersed
across many databases.

1.2.4 MongoDB Platforms

MongoDB is available in community and commercial versions through vendor MongoDB Inc.
MongoDB Community Edition is the open source release, while MongoDB Enterprise Server
brings added security features, an in-memory storage engine, administration and authentication
features, and monitoring capabilities through Ops Manager.

3

Introduction

A Graphical User Interface (GUI) called MongoDB Compass gives users a way to work with
document structure, conduct queries, index data and more. The MongoDB Connector for BI
allows users to connect the NoSQL database to their business intelligence tools to visualize data
and create reports using SQL queries.

1.2.5 MongoDB Pros and Cons

Like other NoSQL databases, MongoDB doesn’t require predefined schemas. It stores any type
of data. This allows users to create any amount of fields in a document, allowing MongoDB
databases scale more easily than relational databases.
One of the advantages of using documents is that these objects map to native data types in
a number of programming languages. Also, having embedded documents reduces the need for
database joins, which can reduce costs.
Though there are some valuable benefits to MongoDB, there are some downsides to it as well.
In a MongoDB cluster, a user only needs to put up one master node thanks to its automatic
failover method. If the master fails, another node will become the new master automatically.
This changeover ensures continuity, but it isn’t quick, taking up to a minute to complete.[10]

1.3 Real-Time Technology

1.3.1 Definition Of Term ”Real-Time”

It’s the same thing as stating something is happening ”live” or ”on-the-fly” when it happens in
real time. This means that the information is updated so quickly that the user does not notice
any delay.

1.3.2 Definition Of Real-Time Application

A Real-Time Application (RTA) is a program that operates in a time period that the user perceives
to be immediate or current. The latency must be under a certain threshold, commonly measured
in seconds. The Worst-Case Execution Time (WCET), or the highest amount of time a specific
task or collection of tasks required on a given hardware platform, determines whether or not an
application qualifies as an RTA.The use of RTAs is called Real-Time Computing (RTC).[13]

1.4 Internet Communication Protocols

A communication protocol is a set of rules that allows two or more entities in a communications
system to send data using any physical quantity variation. The protocol specifies the communica-
tion rules, syntax, semantics, and synchronization, as well as error recovery techniques. Hardware,
software, or a combination of both can implement protocols.[20]

1.4.1 Transmission Control Protocol/Internet Protocol (TCP/IP)

1.4.1.1 What is TCP/IP?

Transmission Control Protocol (TCP) is connection-oriented, meaning that data can be transmit-
ted in both directions once a link has been established. TCP contains built-in systems to check
for faults and ensure that data is delivered in the order it was transmitted, making it ideal for
transferring data such as still photos, data files, and web pages.
But while TCP is instinctively reliable, its feedback mechanisms also result in a larger overhead,
translating to greater use of the available bandwidth on the network.

4

Introduction

1.4.1.2 How a TCP/IP connection is established?

The following are the prerequisites for establishing a successful TCP connection: Both endpoints
must have a unique IP address (IPv4 or IPv6) and the necessary data transfer port assigned and
configured. The IP address is used as an identifier, whereas the port is used by the operating
system to assign connections to specific client and server programs.
The actual process for establishing a connection with the TCP protocol is as follows:

1. The requesting client sends the server a SYN packet or segment (SYN stands for synchronise)
with a unique, random number. This number ensures full transmission in the correct order
(without duplicates).

2. If the server has received the segment, it agrees to the connection by returning a SYN-ACK
packet (ACK stands for acknowledgment) including the client’s sequence number plus 1. It
also transmits its own sequence number to the client.

3. The client acknowledges the receipt of the SYN-ACK segment by sending its own ACK
packet, which in this case contains the server’s sequence number plus 1. At the same time,
the client can already begin transferring data to the server.

Since the TCP connection is established in three steps, the connection process is called a three-way
handshake [21].

Figure 1.4. Process of establishing a TCP connection (three-way handshake) [21].

1.4.1.3 Features of TCP/IP [22]

Here are some important features of TCP/IP:

• Delivery acknowledgements.

• Delays transmission when the network is congested.

• Easy error detection.

5

Introduction

1.4.2 User Datagram Protocol (UDP)

1.4.2.1 What is UDP?

The User Datagram Protocol (UDP) is a communications protocol that is mainly used on the
internet to establish low-latency and loss-tolerant connections between applications. UDP speeds
up transfers by allowing data to be transferred before the receiving party has agreed. As a
result, UDP is advantageous in time-critical communications such as voice over IP (VoIP), DNS
search, and video or audio playback. The User Datagram Protocol (UDP) is an alternative to the
Transmission Control Protocol (TCP) [23].

1.4.2.2 How UDP works?

UDP uses IP to get a datagram from one computer to another. UDP works by gathering data
in a UDP packet and adding its own header information to the packet. This data consists of the
source and destination ports on which to communicate, the packet length and a checksum. After
UDP packets are encapsulated in an IP packet, they’re sent off to their destinations.
Unlike TCP, UDP doesn’t guarantee the packets will get to the right destinations. This means
UDP doesn’t connect to the receiving computer directly, which TCP does. Rather, it sends the
data out and relies on the devices in between the sending and receiving computers to correctly
get the data where it’s supposed to go.

Figure 1.5. UDP communication [24].

1.4.2.3 Features of UDP [22]

Here are some important features of UDP:

• Supports bandwidth-intensive applications that tolerate packet loss.

• Less delay.

• It sends the bulk quantity of packets.

• Possibility of the data loss.

• Allows small transaction (DNS lookup).

6

Introduction

1.5 Binary JavaScript Object Notation BSON Technology

1.5.1 Definition Of BSON

BSON simply stands for “Binary JSON,” and that’s exactly what it was invented to be. BSON’s
binary structure encodes type and length information, which allows it to be parsed much more
quickly. Since its initial formulation, BSON has been extended to add some optional non-JSON-
native data types, like dates and binary data, without which MongoDB would have been missing
some valuable support. Languages that support any kind of complex mathematics typically
have different sized integers (ints vs longs) or various levels of decimal precision (float, double,
decimal128, etc.). Not only is it helpful to be able to represent those distinctions in data stored
in MongoDB, it also allows for comparisons and calculations to happen directly on data in ways
that simplify consuming application code [31].

1.5.2 Understanding BSON

BSON does not in any way replace JSON but in fact an Interchange Format is particularly used in
storage and as a network transfer format used in the MongoDB database. BSON can be thought
of as a super set of JSON, consisting of all properties that JSON has with some additional features:

• LightWeight
BSON is designed to have minimum space overhead which is preferred for any data repre-
sentation format over a network.

• Easily Traversable
This is one of its most important feature and the reason why MongoDB uses BSON,is that
query can be accessed in lesser time than before.

• Less Time Required For Encoding Or Decoding
The data types used by BSON are easy to encode and decode which ensures faster operation
capabilities [32].

1.5.3 BSON VS JSON

Binary JSON differs from JSON depending on many different categories like:

1. Type Of File
JSON is used to store files in a standard file format that include both human and machine
readable text, whereas BSON only stores binary files that can be read by machines.

2. Structure
BSON is made up of a list of ordered elements with fieldnames, field types, and field values.

Figure 1.6. BSON format of storing data [32].

7

Introduction

3. Encoding And Decoding Techniques
Since BSON is a serialization format, decoding BSON and re-encoding JSON is required.
BSON is constructed in such a way that it has a faster encoding and decoding technique
and uses more space than JSON for smaller integers, but it is still much faster to parse than
JSON.

Figure 1.7. BSON encoding and decoding structure [32].

4. Traversal
Unlike JSON, BSON does not scan through the entire file, but instead indexes the important
content and skips the rest.

5. Data Types
The availability of extra data types such as Date and BinData data types, in addition to the
basic data types like numbers, characters, and other Boolean values, is the main advantage
of BSON over JSON.
BSON offers a variety of data types, including:

(a) double (64-bit IEEE 754 floating point number)

(b) date (integer number of milliseconds since the Unix epoch)

(c) byte array (binary data)

(d) BSON object and BSON array

(e) MD5 binary data

1.5.4 Disadvantages

BSON has a slight disadvantage when it comes to memory efficiency as it requires some overhead
to create additional fields like field name, field value etc [32].

8

Chapter 2

System Architecture

This chapter delves into the system’s overall architecture.

2.1 System Overview

The purpose of this thesis is the enhancement of PhotoNext project. This enhancement is done
by creating a middleware independent of the type of interrogator used. This independence will
make the middleware support all types and sizes of interrogators that will be used on different
sized airplanes. Other enhancements were made to the middleware’s architecture, data filtering
and collection, and data transfer to the cloud server methods, which will be discussed later.

Examining the project’s system in deeper level, particularly the FBG Sensing System, three
sub-components will be added to the existing system architecture.

1. FBG Sensing System.

• Physical system monitored by FBGs sensors
Where data is derived from.

• Interrogator
Where data is captured.

• Middleware
Where data is analysed and collected.

2. Cloud Network.
Where the collected data is stored.

3. Viewer.
Where the collected data is simply displayed in real time and non-real-time mode.

The next sections will go over each component and its sub-components.

2.2 FBG Sensing System

2.2.1 Physical System Monitored By FBG Sensors

A network of fibre Bragg grating sensors or transducers embedded within or attached to the
structure being monitored.

9

System Architecture

2.2.1.1 Physical System

A physical system represents a unity being monitored by a set of FBG sensors. It may be any
system that requires continuous temperature (or displacement) measurements at specific points
in its structures.

Figure 2.1. The Air Cargo Challenge aircraft launched by ICARUS [14].

2.2.1.2 Fiber Bragg Grating Sensors

A fiber Bragg grating (FBG) is a sort of distributed Bragg reflector made up of short fiber seg-
ments that reflects specific wavelengths while transmitting all others. This is accomplished by
varying the refractive index of the fibre core on a periodic basis, resulting in a wavelength specific
dielectric mirror. To block certain wavelengths, a fiber Bragg grating can be utilized as an inline
optical filter.

Figure 2.2. Fiber Bragg grating sensor structure [15].

10

System Architecture

FBG sensors are a proven structural health monitoring technology utilized for the in situ monitor-
ing of advanced structures in aviation, aerospace systems, civil structures, and the petrochemical
industry. It can be easily cast, implanted, or surface mounted on a structure due to its lightweight,
micron-size transducers, and immunity to electromagnetic interference. To fulfill extreme envi-
ronmental conditions and structural criteria for a variety of applications, FBG sensors can be
manufactured in glass or plastic optical fiber. To resist difficult settings such as integrated in
fiber composite structures, transatlantic fiber cable installations, tow-array sonar, and missile
fiber guiding systems, the sensor fibers are wrapped in robust, durable materials.

Figure 2.3. Fiber Bragg grating sensor [30].

The fibre Bragg grating is a significant optical component that is gaining traction in a variety
of disciplines of optical technology, including optical fiber communication and sensing.[8] They
have gained rapid acceptance in aerospace and automotive structural health monitoring applica-
tions for the measurement of strain, stress, vibration, acoustics, acceleration, pressure, tempera-
ture,moisture, and corrosion distributed at multiple locations within the structure using a single
fiber element.

Figure 2.4. FBG sensor embedded inside an ICARUS aircraft wing.

The most prominent advantages of FBGs are: small size and light weight, multiple FBG trans-
ducers on a single fiber, and immunity to radio frequency interference.
A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating
interrogation systems are typically bulky and heavy bench top instruments that are assembled
from off-the-shelf fiber optic and optical components integrated with a signal electronics board

11

System Architecture

into an instrument console.

2.2.2 Interrogator

An interrogator is a device that can acquire information about the behavior of the optical fiber
by sending laser beams to the Bragg grating and evaluating its response. The data collected
may relate to different physical quantities depending on the interrogator used. They can provide
information about wavelength, strain, temperature or pressure to which the fibers and thus the
Bragg sensors are exposed. A SmartScan© interrogator from SmartFibres© is used in this work.

2.2.2.1 SmartScan© Description

SmartScan© is a dynamic interrogator for use with fiber Bragg grating (FBG) sensors. SmartScan©
interrogator provides both raw and peak data and can read 64 different FBGs (4 channels, 16 grat-
ings per channel). It also has an RJ45 Ethernet port, a serial connector for diagnostics/servicing,
and 2 USB ports.

Figure 2.5. SmartScan© from SmartFibres© [16].

2.2.2.2 SmartScan© Operation

SmartScan© has an electrically tuneable laser that generates light on multiple fibers at 400
distinct wavelengths with a 40 nm bandwidth. The light reflected from each fibre at each of the
400 laser wavelengths is then measured by optical detectors inside SmartScan©, resulting in a
spectrum of the connected FBGs.

Figure 2.6. SmartScan© with active FBG sensors connected [18].

12

System Architecture

2.2.2.3 SmartScan© Usage Benefits

SmartScan© most essential use advantages are:

1. Robustness

• The light source in SmartScan© is a widely tuneable semiconductor laser with active
optical elements packed in a small monolithic chip that is only a few centimetres long.
The rest of the components are optical and electrical passives. SmartScan© is therefore
much more resistant to heat and mechanical effects than sweeping laser or spectrometer-
based sensors. Several military flight demonstrations have shown the instrumentation’s
reliability.

2. Speed

• Data rates of 25 kHz are possible for sequentially sampled FBGs with SmartScan©’s
agile laser and specialized tuning circuits. Optical sensors can now be used to analyze
high-speed vibration and other similar phenomena.

3. Resolution

• At 2.5 kHz, SmartScan© achieves sub-picometer resolution per sample. This enables
remarkable resolution through oversampling and averaging [18].

2.2.2.4 SmartFibres© Software

SmartFibres also offers SmartSoft Application Software, a Microsoft Windows application that
interacts with the interrogator over UDP.

Figure 2.7. SmartSoft Application Software.

2.2.3 Middleware

Amiddleware is software that enables one or more kinds of communication or connectivity between
two or more applications or application components in a distributed network. By making it
easier to connect applications that weren’t designed to connect with one another and providing

13

System Architecture

Figure 2.8. Raspberry Pi 3 Model B - 1GB RAM Board [19].

functionality to connect them in intelligent ways. The middleware, which is a C++ application
running on a Raspberry Pi 3 Model B, is the core of the project.
The Raspberry Pi board will be connected to the interrogator over Ethernet after the middleware
has been deployed. The middleware will serve as a standby listener for any sensor data received
from the interrogator, filtering, collecting, and analyzing the data. A remote database server is
linked with the middleware. As a result, the middleware will only send useful and purposeful data
to the distant database server after gathering and processing them.
Considering useful and purposeful data implying that just the peak data is taken into account,
since raw data gathering and analysing is discarded in this improvement.

2.3 Cloud Network

MongoDB was used to build the cloud network, it is an open source NoSQL database management
program that doesn’t require predefined schemas. It stores any type of data. This allows users to
create any amount of fields in a document, allowing MongoDB databases scale more easily than
relational databases. MongoDB’s design is based on collections and documents rather than tables
and rows, as is the case with relational databases, which lowers the need for database joins, thus
reduces costs.

Figure 2.9. Cloud database and network [1].

14

System Architecture

2.4 Viewer

The primary purpose of the Viewer is to present data in a logical and understandable manner;
however, the ultimate goal is to enable both real-time and offline data analysis using various
methods. The Viewer is a Desktop/AR Application developed in Unity, that can read data from
a MongoDB instance or from the middleware directly over TCP-IP, allowing it to work with a
variety of configurations.

The upgraded middleware removes the ability to send data directly to the viewer through TCP-IP
connection. As a result, the viewer will interact directly with the MongoDB server in one of two
modes:

1. Real-Time
Using Change Stream on a MongoDB instance.

2. Non Real-Time
Reading data from a MongoDB instance that has already been recorded.

Figure 2.10. Viewer graphical user interface. Import Model, HeatMap Color,
Server/Network Configuration and Sensor Configuration menus are marked in red, green
blue and orange respectively [3].

15

Chapter 3

Proposed Solution

The main goal of this thesis was to improve the middleware, thus this chapter go over the modi-
fications introduced to its architecture, classes, methods, and variables.

3.1 Overview

Earliar, the middleware used to be a dependent application with a monolithic architecture, so
that, it works only with a particular interrogator and the functionally distinct aspects (e.g., data
listening and parsing, data storage, error handling, and user interface) were all interwoven rather
than containing architecturally distinct components (lack of Modularity).

What is a Monolithic Application?
A monolithic application is a single-tiered software application that combines the user interface
and data access code into a single program that runs on a single platform.
A monolithic application is self-contained and independent from other computing applications.
The design idea is that the application is responsible for not only doing a certain goal, but also
for performing all of the steps required to fulfill that task [25].

Figure 3.1. Monolithic architecture [26].

16

Proposed Solution

What is Modularity?
Modularity is desirable, in general, as it supports reuse of parts of the application logic and also
facilitates maintenance by allowing repair or replacement of parts of the application without re-
quiring wholesale replacement.

The middleware’s architecture is improved, and it is divided into different classes, each with
its own set of tasks to do in terms of listening, parsing, and storing data.
As upgrading the middleware, certain features are deleted and new ones are introduced.

• Added features:

– Interrogator independency.

– Storing only relevant configuration and peak data.

– Multiple data insertion into MongoDB database.

– A count of active gratings and the overall amount of data sent to MongoDB database.

• Removed features:

– Raw data listening, parsing and storing.

– The Viewer’s ability to read data from the middleware directly through TCP-IP.

– Single data insertion into MongoDB database.

3.2 Physical System

The physical system respresents the unity that FBG sensors are monitoring. It may be any sys-
tem that requires continuous temperature (or displacement) measurements at specific points in
its structures. These measurements may be required as part of a preventative plan to identify
structural concerns in a system or to get precise data on physical events occurring within the
monitored object.

Figure 3.2. Physical system [1].

Depending on the application, real-time data (within a few seconds of collection) or stored data
for additional off-line analysis may be required. For this thesis , the DIMEAS department will

17

Proposed Solution

integrate FBG sensors into an Unmanned Aerial Vehicle (UAV) created by the ICARUS team of
the Politecnico di Torino. In order to detect abnormalities and deviations, data from the sen-
sors must be retrieved at a high-speed rate. This test scenario necessitates the use of a specific
interrogator that is robust enough for aerospace operations.

Figure 3.3. Aircraft by ICARUS team [27].

3.3 Interrogator

As previously stated, this test scenario involves the employment of a particular interrogator ca-
pable of handling aircraft operations. SmartScan© interrogator is used because it has an elec-
trically tuneable laser that generates light on multiple fibers at 400 distinct wavelengths with a
40 nm bandwidth and because sequentially sampled FBGs can achieve data rates of 25 kHz with
SmartScan©’s agile laser. Optical sensors can now be used to analyse high-speed vibration and
other similar phenomena.

Figure 3.4. FBG interrogator [1].

SmartFibres also offers SmartSoft Application Software, a Microsoft Windows application that
interacts with the interrogator over UDP.

18

Proposed Solution

Figure 3.5. SmartSoft Application Software.

To a more efficient and appropriate interaction with the interrogator, two libraries were created
previously, one of which is responsible for reading data straight from the Ethernet connection.
The library allows to extract two sorts of data peakData and rawData (discarded in this thesis).

3.4 Middleware

The middleware client is designed to run in a multi-thread context and handle continuous peak
data at a high rate. The received packet must be processed into a new format that is compatible
with the cloud platform database. Each measurement is linked to a unique set of metadata (po-
sition of the sensors on the object, time-stamp, variation, etc.). Metatada is essential since data
in the cloud is used by several layers of the architecture. The AR/VR framework’s objective is
real-time visualization, while the analytical framework’s purpose is offline analysis.

The purpose of this thesis is to improve the middleware created, this middleware can be hosted
in a Raspberry Pi 3 Model B board. This improvement is done by creating a middleware that
is independent of the type of interrogator used, as well as filtering the data received from the
interrogator, saving only the useful and purposed data, and removing the ability to send data
directly to the viewer through TCP-IP connection. Other sub-improvements comprise resolving
some issues with the structures used to preserve the data (buffer, queue, etc.) and finding a way to
reduce mongoDB server traffic, in other words, to interact with mongoDB once a certain amount
of collected items has been reached. Rearchitecting the middleware’s classes and enhancing the
middleware folder hierarchy are two of the most significant enhancements made to the middle-
ware.
Every point of improvement will be discussed in further detail later.

19

Proposed Solution

Figure 3.6. Middleware layer [1].

3.4.1 Middleware Classes Architecture

Before going into the architecture of the middleware classes, let’s take a look at the various types
of messages that the smartscan sends to the client.
Messages can be divided into four categories:

• Diagnostic messages
These messages are used to set the interrogator’s operational condition and to check its
current status.

• Maintenance messages
These messages are used to set the interrogator’s configuration, such as transmission speed,
scan speed, and so on.

• Scan data
Raw data acquired by the interrogator.

• Continuous data
The peak data stream detected by the interrogator.

Each sort of message is routed through a separate UDP socket. To read and parse data from
the Smartscan interrogator, a C++ client library was created. It implements all of the abstract
class’s methods.

3.4.1.1 Old Middleware Architecture

The library has two methods: one that listens on the four UDP ports and another that parses
the messages received. The run method of the abstract class is used to run these functions as
independent threads. When a raw or peak data message arrives, the listen thread places it in
a queue, while the parse thread pulls it from the queue, parses the data, and stores it in the
appropriate vector. A custom C library implements the message queue, which uses a mutex to
enable efficient thread-safe queue operations, while a semaphore synchronizes the parsing and
listening threads.
The getPeakData and getRawData methods have been added to return to the caller a vector of

20

Proposed Solution

peakData or rawData structures. They’re synchronized with the parsing thread, which releases
them when a new UDP message is parsed. This allows all new data to be pushed to the remote
database during the idle period between two following UDP transmissions. A keep alive thread
function was also provided by the client library, which simply sends a diagnostic message at regular
intervals to verify if the interrogator is available. [1].
The middleware includes the primary client process as well as three initiated threads, for a total
of four threads running.

Figure 3.7. Old middleware architecture.

The closing signal sent to the client causes a break in the client class’s while loop, as well as
a break in all while loops in the smartscaninterrogator class, forcing the threads to join. The
MongoDAO object is one of the objects that will be destroyed while the client is closing.

3.4.1.2 New Middleware Architecture

In this improvement, the middleware architecture is totally overhauled. As a result of the splitting,
certain methods are also removed. The smartscaninterrogator class is split since it is responsible
for listening, parsing, and storing data. By dividing the work of this class and its three threads,
a new architectural approach is developed. The client will be initialized, create a listener object,
and then be that listener object. The listener object will create a parser thread and wait for it to
join in its destructor, and the parser thread will create a mongoDB insertion thread and wait for
it to join in its destructor.
So sequential thread generation, sequential thread joining, and object destruction in this manner.
In summary, the client will be the listener, and the listener will construct the parser thread, which

21

Proposed Solution

will then build the mongoDB insertion thread. When a closing signal is received, the parser thread
waits for the mongoDB thread to join, and the listener waits for the parser thread to join. The
client will close normally after thread joining is completed.

Figure 3.8. New middleware architecture.

3.4.2 Middleware Files Hierarchy

3.4.2.1 What is hierarchical file system ?

A hierarchical file system is how an operating system organizes and displays drives, folders, files,
and other storage devices. The disks, folders, and files in a hierarchical file system are shown in
groups, allowing the user to see the files they’re interested in [28].

3.4.2.2 Old Middleware Files Hierarchy

The source files and headers were not well organized in the old middleware hierarchy, and a mod-
ules folder was present, containing the smartscaninterrogator source files, headers file, and its own
cmake file. The middleware in this hierarchy was missing the two implemented libraries that are
responsible for communicating with the interrogator and retrieving two sorts of data from the
interrogator: peakData and rawData. These libraries had to be installed on the operating system
before the header files could import them.

22

Proposed Solution

As a result of this disorganization, the hierarchy was not well arranged and was not clear to
the user. By using the command ”tree” from the terminal, figure 3.9 reveals the file hierarchy of
the old middleware.

Figure 3.9. Old middleware files hierarchy.

3.4.2.3 New Middleware Files Hierarchy

The new middleware structure is well-organized in the sense that there will be an include file
inside the main middleware folder that will contain the header files arranged into sub-folders.
The CommonLibraries folder will contain the header files for the two libraries that are responsible
for communicating with the interrogator and retrieving two types of data: peakData and rawData.
The header files for the SmartScan interrogator source files will be found in SmartScanBlue folder.
As a result, header files for each interrogator are split in this way.
Similarly the src folder, which will have sub-folders containing the appropriate source files. The
source files for the two libraries required to communicate with the interrogator and get data will
be found in the CommonLibraries folder, while the source files for the SmartScan interrogator
will be found in SmartScanBlue.
There is no need to install libraries into the operating system because all of the required libraries,
from their header files to their source files, are contained within the middleware project folder.
Following the hierarchy update, both source and header files are updated in parallel to import
the required libraries with their new relative location in the middleware main folder.
As a result of this enhancement, there is no need to install libraries on the system, and middleware
directories are better structured and more easily accessible by the user.
By using the command ”tree” from the terminal, figure 3.10 reveals the file heirarchy of the new
middleware.

23

Proposed Solution

Figure 3.10. New middleware files hierarchy.

3.4.3 Middleware CMake Files

3.4.3.1 About CMake

CMake is an extensible, open-source system that manages the build process in an operating system
and in a compiler-independent manner. Unlike many cross-platform systems, CMake is designed
to be used in conjunction with the native build environment. Simple configuration files placed in
each source directory (called CMakeLists.txt files) are used to generate standard build files (e.g.,
makefiles on Unix and projects/workspaces in Windows MSVC) which are used in the usual way.
CMake can generate a native build environment that will compile source code, create libraries,
generate wrappers and build executables in arbitrary combinations. CMake supports in-place and
out-of-place builds, and can therefore support multiple builds from a single source tree. CMake
also supports static and dynamic library builds. CMake is designed to support complex directory
hierarchies and applications dependent on several libraries [29].

3.4.3.2 Old Middleware CMake Files

A main CMakeLists.txt file was present in the old middleware that would recure into all folders
and build any detected other CMakeLists.txt file. To make its build, the file was written in such
a way that it searches for installed libraries on the system, in addition to some included libraries.
The libraries were linked to the target project if they were installed on the system. As an example,
a piece of code is provided below.

24

Proposed Solution

1 find_library(LIBUTILS utils)

2 find_library(LIBSMARTSCAN smartscan) #smartscan utils library

3
4 if (NOT LIBUTILS)

5 message(FATAL_ERROR "utils library not found")

6 endif()

7 if(NOT LIBSMARTSCAN)

8 message(FATAL_ERROR "smartscan library not found")

9 endif()

10
11 include_directories(include

12 ${CMAKE_CURRENT_SOURCE_DIR}/src
13)

14 # Create a list with all .cpp source files

15 set(project_sources src/client.cpp src/mongoDAO.cpp)

16
17 add_executable(client ${project_sources})
18 target_link_libraries(client -lutils)

19 target_link_libraries(client -lsmartscan)

Figure 3.11. Piece of code of the old middleware CmakeLists.txt file.

3.4.3.3 New Middleware CMake Files

There is only one cmakefile in the new middleware. This file creates libraries by including all of
their header and source files, then linking them to the target project.

1 add_library(SmartScan

2 src/CommonLibraries/libsmartscan/data_queue.c

3 src/CommonLibraries/libsmartscan/msg_queue.c

4 src/CommonLibraries/libsmartscan/smartscan_utils.c

5 src/CommonLibraries/libsmartscan/socket.c

6)

7
8 target_include_directories (SmartScan PUBLIC

${CMAKE_CURRENT_SOURCE_DIR}/include/CommonLibraries/libsmartscan)
9
10 add_library(Utils

11 src/CommonLibraries/libutils/utils.c

12)

13 target_include_directories (Utils PUBLIC

${CMAKE_CURRENT_SOURCE_DIR}/include/CommonLibraries/libutils)
14
15 add_executable(client ${project_sources})
16 target_link_libraries(client SmartScan)

17 target_link_libraries(client Utils)

Figure 3.12. Piece of code of the new middleware CmakeLists.txt file.

25

Proposed Solution

3.4.4 Middleware Client Class Modifications

3.4.4.1 Old Middleware

The old middleware’s client class had the tcp/ip connection with the viewer; all of these methods
were discarded and removed, as were all variables related to this connection.
SmartscanInterrogator and mongoDAO objects were created using the class’s main function. The
second task was to either have the peak data parsed and saved so that it could be entered into the
mongoDB server, or to open a tcp/ip connection with the Viewer if the ”-noDB” command line
argument was inserted. If the case was a mongoDB insertion, three threads, listening, parsing,
and keeping alive, were initialized. In the case of a Viewer TCP/IP connection, two threads were
initialized, one for connecting with the viewer and the other for sending data it.
CTRL+C is the keyboard shortcut that can be used to close the client. Following the use of
this keyboard shortcut, an interrupt signal is generated and handled by a signal handler function,
which updates some variables that causes the return of the client main method.

1 //server tcp function

2 void server_tcp();

3
4 //client data thread

5 void send_tcp_datapacket();

6
7 //client connection

8 void send_tcp_packet(void*, uint32_t, bool);

9
10 //signal handling

11 void sigint_handler_mongo(int);

12 void sigint_handler(int);

13
14 //set up data structure for config packet

15 void set_up_confg(vector<bool> &);

16
17 //main function

18 int main(int, char **);

Figure 3.13. Functions used by the old middleware Client class.

3.4.4.2 New Middleware

The client will notice the name of the interrogator that will be inserted, and then it will proceed
according to the name of this interrogator. An error will occur if the interrogator name is incor-
rect or if the interrogator name is missing. The listener object is created at the beginning, then
initialized and prepared to listen the data arrival. To put it another way, the client will be the
listener. The client will also be in charge of naming the collection that will be inserted into the
MongoDB server. The name of the collection is set as a global variable since it will be used by
other objects when inserting data into MongoDB, particularly by the mongoDAO object.
In addition to the main function, the new client has only two functions: one for naming the
collection that will be created on the mongoDB server, and the other for signal handling.
CTRL+C and CTRL+Z are the keyboard shortcuts that can used to close the client. Following
the use of these keyboard shortcuts, an interrupt signal is generated and handled by a signal han-
dler function, which updates specifically the atomic boolean variables i running and i connected
causing a sequential joining of the executing threads.

26

Proposed Solution

1 //creating collection name

2 string create_collname(std::string);

3
4 //signal handling

5 void closing_client(int);

6
7 //main function

8 int main(int, char **);

Figure 3.14. Functions used by the new middleware Client class.

A piece of code of the new main function will be provided below.

1 if (argc == 2)

2 {

3 /***********************************

4 * Transform the argv to uppercase. *

5 ***********************************/

6 std::string str = argv[1];

7 transform(str.begin(), str.end(), str.begin(), ::toupper);

8
9 /**************************************

10 * Blue Box Interrogator: "SMARTSCAN". *

11 **************************************/

12 if(str=="SMARTSCAN")

13 {

14 signal(SIGINT, closing_client);

15 signal(SIGTSTP, closing_client);

16 collectionName = create_collname(str);

17 ssi.i_init();

18 ssi.i_running.store(true);

19 ssi.ssi_listen();

20 }

21
22 /***

23 * Single Board Interrogator: "SMARTSCANSBI". *

24 ***/

25 else if(str=="SMARTSCANSBI")

26 {

27
28 }

Figure 3.15. A piece of code of the main function of the new middleware Client class.

3.4.4.3 Conclusion

The main class is less coded in this new version, and the client is now interrogator independent,
as the main function may handle any name or type of interrogator supplied.

27

Proposed Solution

3.4.5 Middleware SmartScanInterrogator Class Modifications

3.4.5.1 Old Middleware

The interrogator interface is implemented by the SmartScanInterrogator class, which overrides its
functions.

1 //initializing the connection with the interrogator

2 int i_init();

3
4 //initializing the threads

5 void i_run();

6
7 //joining the thread

8 void i_stop();

9
10 //destroying mutex and semaphores created

11 void i_close();

12
13 //retrieving the rawData

14 void i_get_spectrum(vector<spectrumData> &);

15
16 //setting the speed for retrieving rawData

17 void i_set_raw_data_speed(int);

18
19 //retrieving peakData

20 void i_get_peak_data(vector<peakData> &);

21
22 //setting the speed for retrieving peakData

23 void i_set_peak_data_speed(int);

24
25 //setting the scan speed

26 void i_set_scan_speed(int,int,int);

27
28 //socket methods

29 int ssi_socket_init();

30 void ssi_socket_delete();

31
32 //thread functions

33 void ssi_parse_message();

34 void ssi_listen();

35 void ssi_keepalive();

36
37 //parse methods

38 int ssi_parse_diagnostic_msg(uint8_t*, size_t, uint8_t *);

39 int ssi_parse_maintenance_msg(uint8_t*, size_t, SSI_CONFIG *);

40 int ssi_parse_cont_data_msg(uint8_t*, size_t);

41 int ssi_parse_scan_data_msg(uint8_t*, size_t);

42
43 //send message methods

44 int ssi_send_maintenance_msg();

45 int ssi_send_timestamp();

Figure 3.16. Functions used by the old middleware SmartScanInterrogator class.

28

Proposed Solution

The class will initialize all locks, mutexes, semaphores, queues, and the log file at the beginning.
After all of the interrogator configuration has been concluded, socket initialization will take place.
The i init() function handles all these steps.
The listen th thread, which will handle the ssi listen() function, the parse th thread, which
will handle the ssi parse message() function, and the keepalive th thread, which will handle the
ssi keepalive() function, are all created in the i run() function. The ssi listen() function will begin
listing on the socket that was previously initialized with the interrogator; each socket handles a
specific type of message. Diagnostic messages, maintenance messages, scan data, and continuous
data are the four types of messages that will arrive, as previously stated. The listener thread will
then start filling the shared msg q queue with the parser function. When msg q is ready for the
parser to read it, the listener will notify it with a semaphore sem post(&lock s) that the parser is
already waiting for it using sem timedwait(&lock s,&wait timeout cont).
The parser thread will begin populating its queue (raw or peak data queue) based on the received
message by invoking the appropriate parsing functions. then the client will use one of the follow-
ing functions to get the data: i get spectrum or i get peak data; the data is then saved in a vector
and inserted into the mongoDB server by the help of the mongoDAO object and its functions.
When the client’s execution loop is broken, it will call the i stop() function, which will store a
false value in the the atomic boolean variables i running and i connected and wait for the threads
to join when their while loops have been broken.

3.4.5.2 New Middleware

The SmartScanInterrogator class is splitted into two classes: a Listener class and a Parser class.
As a result, the divided classes will be less coded and include fewer functions, making them more
readable to the user.
These two classes will be explained clearly, with their functions taken into account.

• Listener
At the beginning, the class will initialize all locks, mutexes, semaphores, queues, and the log
file. Socket initialization will proceed when all of the interrogator configuration has been
completed. All of these procedures are handled by the i init() function.
The ssi listen() function will create a parser object, with its constructor taking the ref-
erence of the listener synchronization variables, so that both classes’ variables will have
the same values on every update. The parser thread will then be initiated to handle the
ssi parse message() function found in the parser class.
The class will then begin listening in the same way as the old middleware, with one minor
difference: the addition of a write file descriptor (fd set write fds). The reason for introduc-
ing this descriptor is that the old middleware had a problem connecting to the interrogator
because it didn’t have this file descriptor to initialize the writing from the interrogator side
before reading could be done correctly. The atomic boolean variables will be set to false by
the listener constructor, but will be set to true after the connection with the interrogator is
established. Socket deletion and parser thread join will be done in the listener destructor.
So, after the parser thread has completed its task, it will join the listener object’s destruc-
tion. All used queues, mutex, and locks will be destroyed by the destructor itself.
In addition, the listener will have two extra functions for configuration and synchronization.
The first is ssi send maintenance msg(), which sends the initial configuration after the inter-
rogator connection is established for the first time while the second is ssi send timestamp(),
which is invoked during the initialization step of the i init(). A new variable, ”listenerIni-
tializedWell”, is introduced to the parser class. This variable is used to determine whether
the initialization step has been completed correctly. So, when the listener is launched, the
value of this variable is false, but after initialization, it will be set to true. This variable is
checked to prevent the destruction of uninitialized semaphores, mutexes, and locks, avoiding
dump core problems.
Some functions are discarded or removed, but they will be indicated at the end of this sec-
tion.
The listener class overall functions will be listed below.

29

Proposed Solution

1 //initializing the connection with the interrogator

2 int i_init();

3
4 //socket methods

5 int ssi_socket_init();

6 void ssi_socket_delete();

7
8 //listening function

9 void ssi_listen();

10
11 //send message methods

12 int ssi_send_maintenance_msg();

13 int ssi_send_timestamp();

Figure 3.17. Functions used by the new middleware Listener class.

• Parser
The listener object will create a parser object, which will be injected into the parser thread,
that will handle the ssi parse message() function. A new mongo thread will be created at
the start of this parse function, which will handle data insertion into the mongoDB server by
executing the ssi insert peak data function. The ssi parse message() function will then begin
retrieving the data that has already been saved in the msg q queue, as well as determining
the type of data in it, such as diagnostic, maintenance, or continuous data. One of the
parsing functions will be called based on the message type.
Reading frames will be processed according to the active channels and gratings inside these
data parsing functions. This data will then be filtered based on non-zero wavelength values,
and vectors will be filled in and inserted into the mongoDB server. When this vector achieves
a certain size of collected data, a notification will be given to the condition variable, which is
already waiting in the ssi insert peak data function, and then the insertion will be performed
using the mongoDAO object. Locks and condition variables are used to keep these two
threads synchronized. After insertion, this vector will be cleared to repeat the procedure
until the client receives a close signal. The configuration of the interragator, which only
includes the active gratings of the channels, and the filtered peak data will both be inserted
into the mongoDB server.
Insertion is accomplished by invoking two wrapper functions: one for configuration, which
is run just once, and the other for peak data, which is executed once the vector reaches
a specific size. When a closing signal is received and the atomic boolean variables are
updated, the parser and mongo threads will join simultaneously. Before joining, the parser
will perform a quick check on the collected peak data inside the vector, so if the collected
data are less than the required size, the remaining data will be inserted to the mongoDB
server as well, and this will be the final insertion. Following that, the mongo thread will join
in the parser destructor, and the parser thread will join in the listener destructor, resulting
in the client’s total closure. This successive joining will ensure a perfectly synchronized
working system. Together with the mongo thread join, log file closing will take place in
the parser destructor. Following this closing and joining, a short outline of the total active
sensors and the total saved total into the mongoDB server is outputed.
As a result, the parser will include all functions responsible for parsing the received message
and determining its type as well as analyzing and filtering them. After these procedures,
the vector that will be injected into the wrapper function responsible for communicating
with the mongoDB server will start to be filled up.

30

Proposed Solution

1 //Mongo Insertion Wrapper Functions

2 insert_config_mongo(mongodbDAO*,std::vector<bool>);

3 void insert_unity_data_mongo(mongodbDAO* ,int ,float ,uint64_t);

4 void insert_config_mongo_multiple(std::vector<bool>);

5 void insert_multiple_data_mongo(std::vector<cleanPeakData>);

6
7 //setting up the interrogator config

8 void set_up_confg(vector<bool> &);

9
10 //Parser main function

11 void ssi_parse_message();

12
13 //Mongo thread function

14 void ssi_insert_Peak_Data();

15
16 //Parsing Functions

17 int ssi_parse_diagnostic_msg(uint8_t*, size_t, uint8_t *);

18 int ssi_parse_maintenance_msg(uint8_t*, size_t, SSI_CONFIG *);

19 int ssi_parse_cont_data_msg(uint8_t*, size_t);

Figure 3.18. Functions used by the new middleware Parser class.

A new data structure is used by the parser, the name of the structure is cleanPeakData that
will be used to store the collected, cleaned, and filtered data.

1 struct cleanPeakData

2 {

3 int index;

4 float wavelength;

5 uint64_t timestamp;

6 };

Figure 3.19. CleanPeakData structure.

3.4.6 Middleware MongoDAO Class Modifications

A Data Access Object (DAO) is a design pattern that provides an abstract interface to a database
or other persistent storage system. The DAO supports some specific data operations without
revealing database information by mapping application calls to the persistence layer.
To connect to MongoDB, this class is responsible for setting the Server, Database, User, and
Password connection properties. MongoDB stores data in BSON format both internally, and over
the network. Since MongoDB was used as the storage database, the application must be able
to connect to it to execute CRUD operations. To accomplish this, the MongoDB community
has released mongocxx, a library that provides basic database management functionality to C++
applications, which depend on the C libmongoc library.

3.4.6.1 Old Middleware

The mongoDAO object will handle the insertion after the connection with the mongoDB server has
been established and the data has been prepared. When a single data is ready to be inserted, the

31

Proposed Solution

parser will invoke one of the insertUnityData() or the insertConfig() functions of the mongoDAO
object, which will then connect to the required collection and construct the document using BSON
with the values to be put into the server.

1 //Inserts peak/configuration data into the database

2 void insertUnityData(int, uint64_t, float, uint64_t);

3 void insertConfig(sensorConfig);

4
5 //Lists the databases available

6 void listDB();

7
8 //Prints all the documents in a selected collection

9 void showDB();

Figure 3.20. Functions used by the Old Middleware MongoDAO Class.

The insert one() function is performed on the collection when the document is ready, thus inserting
this document into the MongoDB server. In both insertUnityData() and insertConfig() functions,
insert one() is called.
The example code below shows how BSON prepares the document and how it is inserted in the
specific collection.

1 void mongodbDAO::insertUnityData(int index, uint64_t timestamp, float

wavelength, uint64_t curr_time){

2
3 mongocxx::collection coll = db.collection(collectionName);

4 long ts = timestamp;

5 long ct = curr_time;

6 auto builder = bsoncxx::builder::stream::document{};

7 bsoncxx::document::value doc_value = builder

8 << "type" << "peakData"

9 << "curr_time" << (int64_t) ct

10 << "index" << index

11 << "timestamp" << (int64_t) ts

12 << "wavelength" << wavelength

13 << bsoncxx::builder::stream::finalize;

14
15 bsoncxx::stdx::optional<mongocxx::result::insert_one> result =

coll.insert_one(doc_value.view());

16 }

Figure 3.21. MongoDAO’s InsertUnityData() function.

3.4.6.2 New Middleware

MongoDAO will only have two functions: one for the configurations insertion and the other for
the peak data insertion. The insertion is done in such a way that the mongoDAO object will
not take a single data to insert it, but rather a vector of data, and then bson will prepare the
documents inside the insert functions. BSON will start documenting the peak data vector data
by data after which every document will be pushed into a document vector created by BSON.

32

Proposed Solution

When all documents are pushed inside the vector and no more peak data to be read, the database
will call the insert many function to insert all of the documents inside this vector in one shot.

1 //Multiple peak data insertion into the database

2 void mongodbDAO::insertMultipleData(std::vector<cleanPeakData>, uint64_t);

3
4 //Multiple configuration data insertion into the database

5 void mongodbDAO::insertConfigMultiple(std::vector<sensorConfig>)

Figure 3.22. Functions used by the New Middleware MongoDAO Class.

The insert many() function is performed on the collection when all documents are ready, thus
inserting these documents into the MongoDB server. In both insertMultipleData() and insert-
ConfigMultiple() functions, insert many() is called.
The example code below shows how BSON prepares the documents and how it is inserted in the
specific collection.

1 void mongodbDAO::insertMultipleData(std::vector<cleanPeakData> data, uint64_t

curr_time)

2 {

3
4 mongocxx::collection coll = db.collection(collectionName);

5 cleanPeakData data_local;

6
7 std::vector<bsoncxx::document::value> documents;

8 while (!data.empty())

9 {

10 data_local = data.back();

11 data.pop_back();

12
13 documents.push_back(

14 bsoncxx::builder::stream::document{}

15 << "type" << "peakData"

16 << "curr_time" << (int64_t)curr_time

17 << "index" << data_local.index

18 << "timestamp" << (int64_t)data_local.timestamp

19 << "wavelength" << data_local.wavelength

20 << finalize);

21
22 }

23
24 bsoncxx::stdx::optional<mongocxx::result::insert_many> result =

coll.insert_many(documents);

25
26 }

Figure 3.23. MongoDAO’s insertMultipleData() function.

33

Proposed Solution

3.4.7 Middleware Data Models

The library provides the rawData and peakData data models, which are the two data models that
derive from sensors. The middleware decorates these data into Unity Peak Data and stores it in
the database. Configuration data, which is used to set up the viewer’s sensors, is another sort of
data stored in the database.

3.4.7.1 RawData

Raw data are the raw information coming from the interrogator. Raw data is encoded on a 2
bytes integer. Raw data was discarded in this thesis for reasons that will be explained later.

1 typedef struct rawData

2 {

3 uint32_t rd_timestamp_sc;

4 uint32_t rd_timestamp_fr;

5
6 uint16_t rd_data;

7 uint16_t rd_slot;

8
9 } rawData;

Figure 3.24. RawData structure.

• uint32 t rd timestamp sc
Represents the current raw data’s seconds in UNIX Epoch time.

• uint32 t rd timestamp fr
Represents the current raw data’s fractions of second in UNIX Epoch time.

• uint16 t rd data
Represents the value of the sensor data in its raw state.

• uint16 t rd slot
Represents the raw data’s metadata.

3.4.7.2 PeakData

The channel and grating indexes can be used to identify each peak value, which refers to a distinct
sensor within the fibre link. Interrogators commonly have multiple channels to connect multiple
optical fiber lines at once.

• uint32 t pd timestamp sc
Represents the current peak data’s seconds in UNIX Epoch time.

• uint32 t pd timestamp fr
Represents the current peak data’s fractions of second in UNIX Epoch time.

• uint16 t pd data
Represents the value of the simulation’s peak data.

• double pd wavelength
Represents the current peak data’s wavelength value.

34

Proposed Solution

• uint8 t pd channel
Represents the current peak data channel.

• uint8 t pd grating
Represents the grating of the FBG’s current channel

1 typedef struct peakData

2 {

3 uint32_t pd_timestamp_sc;

4 uint32_t pd_timestamp_fr;

5
6 uint16_t pd_data;

7 double pd_wavelength;

8 uint8_t pd_channel;

9 uint8_t pd_grating;

10
11 } peakData;

Figure 3.25. PeakData structure.

3.4.7.3 CleanPeakData

It’s the data structure that’ll be injected in mongoDAO functions.

1 struct cleanPeakData

2 {

3 int index;

4 float wavelength;

5 uint64_t timestamp;

6 };

Figure 3.26. CleanPeakData structure.

The cleanpeakdata structure will be used to enter the document into the database, and two
variables will be appended to it: one is a string, and the other is an uint64 t. As a result, the
overall document model will include the following variables:

• string type
Represents the document’s data type. ”peakData” or ”config” are the only two options for
the type.

• unit64 t curr time
Represents the UNIX Epoch timestamp (in seconds and fractions) at the moment that the
data was inserted. This data can be used to calculate the application’s elaboration time.

• int index
Represents the current sensor’s index. Since the system can hold 64 FBG sensors, it is
calculated as (channel ∗ 16 + grating).

• uint64 t timestamp
Represents the timestamp derived from the peak data detection.

• double wavelength
Represents the wavelength of the sensor derived from peakData.

35

Proposed Solution

3.4.7.4 Configuration Data

The configuration of the FBGs in the physical system is represented by this data. The interrogator
can handle 64 FBGs split across four channels, each with 16 gratings. 3.27, is designed for inter-
rogators that can give more information about the sensors. Unfortunately, the only information
retrieved from the library is the peakData of each sensor.

1 struct vec3 {

2 float x, y, z;

3 vec3(float _x, float _y, float _z) : x(_x), y(_y), z(_z) {};

4 };

5
6 struct sensorConfig {

7 uint8_t channel, grating;

8 bool is_active;

9 vec3 position;

10 float wavelength_idle;

11 float wavelength_var;

12
13 sensorConfig(uint8_t c, uint8_t g, bool ia, vec3 pos, float wi, float wv):

14 channel(c), grating(g), is_active(ia), position(pos),

15 wavelength_idle(wi), wavelength_var(wv) {};

16 };

Figure 3.27. Configuration data structure.

• uint8 t channel
Represents the current peak data channel. The system can have a maximum of four channels.

• uint8 t grating
Represents the grating of the FBG’s current channel. Each channel in the system can have
up to 16 gratings.

• bool is active
Represents a boolean indicating whether or not the present sensor (channel and grating) is
active. The FBG is active if the value is ”true,” otherwise ”false.”

• vec3 position
Represents the sensor’s tridimensional position on the 3D representation of an airplane. At
the time of acquisition, this data is filled with (0,0,0);

• float wavelength idle
Represents the sensor wavelength’s idle value. Unfortunately, this value cannot be obtained
from the interrogator; instead, it must be calculated in the Viewer.

• float wavelength var
Represents the sensor’s wavelength variance. Unfortunately, this value cannot be obtained
from the interrogator; instead, it must be calculated in the Viewer.

3.4.7.5 Document Data Model

This data model is a BSON document that represents the data injected into the database. It can
handle peak data as well as configuration data.

36

Proposed Solution

Figure 3.28. CleanPeakData data document model.

Figure 3.29. Configuration data document model.

3.4.7.6 Why Raw Data Is Discarded

The main reason for discarding raw data is that peak data is derived from it using a proper
algorithm, while the second reason is because strain and temperature measurements are performed
using the Brag-wavelength rather than directly from the intensity of the reflected signal. The
intensity of the reflected peak is used to test the efficiency of the FBG network; in other words,
a significant decrease in the amplitude of the intensity indicates that the FBG junction creates
attenuation of the signal, causing a decrease in the signal to be equal to noise.

3.5 MongoDB Cloud

MongoDB is an open source NoSQL database management program. MongoDB is a tool that can
manage document-oriented information, store or retrieve information.
MongoDB can handle a wide range of data types.MongoDB’s design is made up of collections and
documents rather than tables and rows, like in relational databases. MongoDB’s basic data unit
is the document. The documents resemble JavaScript Object Notation, although they employ
a binary JSON variation (BSON). The advantage of utilizing BSON is that it can handle a

37

Proposed Solution

wider range of data formats. Like other NoSQL databases, MongoDB doesn’t require predefined
schemas. It stores any type of data. This allows users to create any amount of fields in a document,
allowing MongoDB databases scale more easily than relational databases.
The basic methods of interacting with a MongoDB server are called CRUD operations. CRUD
stands for Create, Read, Update, and Delete. These CRUD methods are the primary ways to
manage the data in databases. This sub-chapter will define CRUD operations and explain how
to execute them in MongoDB using the MongoDB Query Language (MQL).
A brief CRUD definition will be provided before taking a look at how to manipulate data with
MongoDB CRUD methods.

3.5.1 What Is CRUD In MongoDB?

The user-interface patterns that allow users to view, search, and alter sections of a database are
referred to as CRUD operations. Connecting to a server, querying the appropriate documents, and
then changing the setting properties before sending the data back to the database to be changed
are all ways that MongoDB documents can be modified. CRUD is data-driven and follows HTTP
action verbs as a standard.
When it comes to the individual CRUD operations, they are as follows:

• Create
Is used to insert new documents in the MongoDB database.

• Read
Is used to query a database document.

• Update
Is used to modify the contents of existing documents in the database.

• Delete
Is used to remove documents from the database.

3.5.2 How To Perform CRUD Operations.

After that, the MongoDB CRUD operations are defined, and the next step is to explain how to
carry out the individual operations and manipulate documents in a MongoDB database. The
techniques of creating, reading, updating, and deleting documents will be detailed [33].

3.5.2.1 Create Operations

If the provided collection does not exist when MongoDB CRUD is executed, the create action will
create it. MongoDB’s create operations work on a single collection rather than several collections.
Insert operations in MongoDB are atomic on a single document level. To add documents to a
collection in MongoDB, there are two alternative creation operations available:

1. db.collection.insertOne()
InsertOne(), as the title indicates, allows you to add one document to the collection. A new
document is created if the create action succeeds. The function will return an object with
the value ”true” for ”acknowledged” and the value ”ObjectId” for ”insertID”.

2. db.collection.insertMany()
It’s possible to insert multiple items at one time by calling the insertMany() method on the
desired collection. Multiple items are passed into the chosen collection and separated by
commas in this example. Brackets are used within the parenthesis to indicate that a list of
several entries is passed. This is known as a nested method.

38

Proposed Solution

1 {

2 "acknowledged" : true,

3 "insertedId" : ObjectId("5fd989674e6b9ceb8665c57d")

4 }

Figure 3.30. Return object of insertOne() operation.

1 {

2 "acknowledged" : true,

3 "insertedIds" : [

4 ObjectId("5fd98ea9ce6e8850d88270b4"),

5 ObjectId("5fd98ea9ce6e8850d88270b5")

6]

7 }

Figure 3.31. Return object of insertMany() operation.

3.5.2.2 Read Operations

Special query filters and criteria can be supplied with read operations to indicate which documents
are desired. The MongoDB documentation contains more information on the available query
filters. Query modifiers can also be used to adjust the number of results returned.
There are two ways to read documents from a collection in MongoDB:

1. db.collection.find()
Simply use the find() function on the selected collection to get all of the documents from
it. All records presently in the collection will be returned if the find() function is called
without any arguments. The previously described filtering criteria are used to choose which
results should be returned in order to get more specific with a read operation and identify
a desired part of the data. Searching by value is one of the most prevalent techniques to
filter the results: db.collection.find({”key”:”value”})

2. db.collection.findOne()
Simply use the findOne() method on the specified collection to get one document that meets
the search parameters. If the query returns many documents, this function returns the first
one in natural order, which reflects the order of documents on the disk. The function returns
null if no documents match the search criteria.
The syntax for the function is as follows: db.collection.findOne({query}, {projection})

3.5.2.3 Update Operations

Update operations, like create operations, are atomic at the document level and operate on a
single collection. Filters and criteria are used in an update procedure to choose the documents
that need to be updated. Updates to documents should be done carefully, as they are permanent
and cannot be rolled back. This also applies to delete operations. There are three possible ways
to update documents in MongoDB CRUD:

1. db.collection.updateOne()
The updateOne() method is used on a chosen collection to update an existing record and
modify a single document by passing two arguments to the method: an update filter and
an update action. The update filter specifies which items should be updated, whereas the

39

Proposed Solution

update action specifies how those items should be updated. Use the ”$set” key to specify
the fields to be updated as a value, after passing in the update filter. The first record that
matches the provided filter will be updated using this technique.
The syntax for the function is as follows:
db.collection.updateOne({filter}, {$set:{Key: ”Value”})} item db.collection.updateMany()

1 {

2 "acknowledged" : true,

3 "matchedCount" : 1,

4 "modifiedCount" : 1

5 }

Figure 3.32. Return object of updateOne() operation.

UpdateMany() is similar to inserting multiple items in that it updates several items by pass-
ing in a list of items.The syntax for updating a multiple document is the same as for updating
single documents.
The syntax for the function is as follows:
db.collection.updateMany({filter}, {$set:{Key: ”Value”})}

1 {

2 "acknowledged" : true,

3 "matchedCount" : 3,

4 "modifiedCount" : 3

5 }

Figure 3.33. Return object of updateMany() operation.

2. db.collection.replaceOne()
The replaceOne() method replaces a single document in a collection. replaceOne() replaces
the entire document, therefore fields from the old document that aren’t present in the new
will be lost.
The syntax for the function is as follows:
db.collection.replaceOne({Key: ”value”},{Key:”Value”}

1 {

2 "acknowledged" : true,

3 "matchedCount" : 1,

4 "modifiedCount" : 1

5 }

Figure 3.34. Return object of replaceOne() operation.

3.5.2.4 Delete Operations

Delete operations, like update and create operations, operate on a single collection. For a single
document, delete operations are also atomic. Filters and criteria can be used to delete operations

40

Proposed Solution

to determine which documents should be removed from a collection. The read operations use the
same syntax as the filter options.
There are two ways to delete records from a collection in MongoDB:

1. db.collection.deleteOne()
On the MongoDB server, deleteOne() is used to remove a document from a specified collec-
tion. The object to be deleted is specified using a filter criteria. The first record that fits
the provided filter is deleted.
The syntax for the function is as follows: db.collection.deleteOne({”key”:”value”})

1 {

2 "acknowledged" : true,

3 "deletedCount" : 1

4 }

Figure 3.35. Return object of deleteOne() operation.

2. db.collection.deleteMany()
DeleteMany() is a method for deleting several documents from a specified collection in one
operation. As in deleteOne, a list is supplied into the method, and the individual items are
defined with filter criteria.
The syntax for the function is as follows: db.collection.deleteMany({”key”:”value”})

1 {

2 "acknowledged" : true,

3 "deletedCount" : 3

4 }

Figure 3.36. Return object of deleteMany() operation.

3.6 Viewer

The Viewer’s primary goal is to present data in a logical and intelligible manner, but the ultimate
goal is to enable real-time and offline data analysis using multiple methodologies. The Viewer is
a Desktop/AR application developed in Unity, that can read data directly from a MongoDB in-
stance or from the middleware through TCP-IP, allowing it to work with a range of configurations.

Reading data directly from the middleware through TCP-IP connection is no longer possible with
the upgraded middleware. As a result, the viewer can choose between two modes for interacting
with the MongoDB server:

• Real-Time
Using a MongoDB instance with Change Stream.

• Non Real-Time
Using a MongoDB instance to read data that is already been recorded.

The application’s home window is separated into two sections:

41

Proposed Solution

• Import Model Menu
It allows to import a model of the device to be monitored in .obj format, as well as a default
model of an airplane for simplicity.

• Configuration Menu
There are four subareas in this section:

– Change HeatMap Colors
A collection of preset colors as well as a plus sign option to add additional.

– Server/Network Configuration
It has a drop-down menu with three different modes: TCP-IP, Real-Time, and Non-
Real-Time, which can be used to configure the connection required to retrieve sensor
information. The input form will allow to customize the connection based on the
selection made in the drop-down menu.

– Measurement Configuration
It can be used to select the data type, such as temperature or displacement.

– Sensor Configuration
It can be used to get the sensor’s configuration from the database or the middleware
and change properties like their position on the model, idle time, and wavelength
variability.

Figure 3.37. Home view of the Desktop application

3.6.1 Real-Time Mode

The Real-Time option, which makes use of MongoDB’s ChangeStream capability, can be activated
by selecting it from the drop-down menu in the Server/Network Configuration menu. The user can
then configure the MongoDB instance’s IPV4 address, port, database and collection name. The
user can obtain the sensor configuration by clicking the {Get configuration from server/database}
option from the Sensor Configuration menu. The last collection will be read because it will
certainly be the one where the Middleware stores real-time data. The simulation view will be
active and the menu will be removed when you press the {Start Monitoring} button. It will also
begin reading from the ChangeStream feed.

42

Proposed Solution

Figure 3.38. Real-Time Server/Network Configuration menu

3.6.2 Non-Real-Time Mode

The Non-Real-Time mode, which can be selected in the Server/Network Configuration drop-down
menu, is an offline viewing of the sensors data from a previous simulation test. To retrieve the
simulation’s data, provide the IPv4 address, port, database and collection name in the appropriate
sections. After pressing the Save button, the program will check the connection to the server; if it
is successful, the user can receive the sensor configuration by pressing the {Get configuration from
server/database} button. The peak data is read asynchronously from the database at the start of
the simulation. Because of the poor performance of the selection query with a large amount of
data, asynchronous programming is required [3].

Figure 3.39. Non-Real-Time Server/Network Configuration menu.

3.6.3 Simulation’s Outcome

The application will create a log file and a line graph at the end of each simulation as a summary
of the simulation. The log file is a .csv file that contains all of the simulation’s wavelengths at
each timestamp.

43

Proposed Solution

Figure 3.40. Example of a Log file with three active sensors [3] .

Following that, all wavelength data is written to a .csv file, the file is closed, and a Python
script creates a line graph asynchronously from it.

Figure 3.41. Example of a line graph image with 64 active sensors [3] .

44

Chapter 4

User Guide

4.1 MongoDB Compass

MongoDB Compass is the official MongoDB GUI, which is developed by MongoDB. MongoDB
Compass assists users in making informed decisions about data structure, querying, indexing, and
a variety of other database operations. The main goal of this chapter is to show MongoDB users
how to utilize MongoDB Compass to perform database operations efficiently.

4.1.1 What Is MongoDB Compass?

MongoDB Compass is a graphical user interface for exploring, analyzing, and interacting with
content in a MongoDB database without having to know or use queries. Compass is a graphical
user interface for the Mongo shell.

4.1.2 What MongoDB Compass Can Do?

Compass can assist with a variety of tasks, such as data import and management, through an
easy-to-use interface.

• Importing data

1. Connect to a MongoDB deployment on MongoDB Atlas or a MongoDB deployment
hosted locally on the machine.
This method of importing will be discussed later.

2. Import data into the MongoDB database from CSV or JSON files.

• Querying data

1. Paste documents into the JSON view to add them to the collections, or use the field-
by-field editor to manually add documents.

2. Query data based on filtering the data with ad-hoc queries. Examine the collections
for commonalities and trends.

45

User Guide

Figure 4.1. Importing data from CSV file [35].

Figure 4.2. Querying on data [35].

46

User Guide

• Creating aggregation pipelines

1. Insert documents into the collections in two ways, JSON Mode and a Field-by-Field
Editor.

2. Write aggregation pipelines that allow documents in a collection or view to be processed
into a set of aggregated results at multiple stages.

Figure 4.3. Creating aggregation pipelines [35].

• Running commands in the shell

1. Connect to a MongoDB deployment on MongoDB Atlas or a MongoDB deployment
hosted locally on the machine.

2. Use Compass’s inbuilt MongoDB Shell to interact with the data in a JavaScript context.

Figure 4.4. Running commands in a shell [35].

47

User Guide

4.1.3 Connect To MongoDB Using Compass

When Compass is opened, an initial connection dialog appears. Compass offers two ways to
connect to a deployment: either by supplying the deployment connection string or by filling in
particular fields with the deployment information.

1. Paste the connection string
Paste the connection string for the deployment directly into the dialog box if it is available,
then click the Connect button to navigate to the Compass Home Page.

Figure 4.5. Pasting the connection string [35].

To obtain the connection string for an Atlas cluster:

(a) Navigate to the Atlas Clusters view.

(b) Click Connect for the desired cluster.

(c) Click Connect with MongoDB Compass.

(d) Copy the provided connection string.

2. Fill in Connection Fields Individually
Click Fill in connection fields individually to manually fill up specific connection fields.

Figure 4.6. Filling connection fields [35].

48

User Guide

A Hostname dialog will appear, with the connection field options as follows:

• Hostname
The machine’s hostname on which the deployment is running. This value is localhost
if the deployment is running locally, and if it is connecting to an Atlas cluster, the
hostname may be found in the Atlas cluster detail page.

• Port
Port on which the deployment is running. If SRV Record is used to connect to the
MongoDB deployment, it is not necessary. A standalone deployment uses port 27017
by default.

• SRV Record
Indicates whether the provided Hostname is an SRV Record. If this toggle is enabled,
no need to specify a port. SRV connection strings have a prefix of ”mongodb+srv:”. If
SRV connection string is used, no need to include ”mongodb+srv” in the Hostname.

• Authentication
Authentication to use if the deployment requires authentication. Username/Password
authentication is used in Atlas clusters.

Figure 4.7. Hostname dialog fields.

4.1.4 Compass Home

The Compass Home screen displays information about the MongoDB instance that Compass
is linked to, such as:

• The connection name if the connection is a favorite connection, or ”My Cluster” oth-
erwise.

• The type of deployment (standalone, replica set, sharded cluster). The number of
replica set members will be displayed if the deployment is a replica set and the replica
set name is supplied in the connection window.

• The MongoDB version, as well as the hostname and port.

• A list of the databases in the instance.

49

User Guide

• Memory utilization, operation counts, and slowest operations are all included in the
performance data.

The Compass Home screen can be accessed after connecting to a MongoDB instance by
clicking the cluster name in the upper left corner.

The Databases tab on the home screen displays a list of all the databases connected to
the current connection, along with their storage capacity, number of collections, and indexes.

The Performance tab displays real-time server performance information and graphs, in-
cluding which database collections are the most often used, which operations take the most
time to complete, and memory usage.

Figure 4.8. Compass home screen [35].

50

Chapter 5

Test And Evaluation

This chapter evaluates the proposed system’s performance. This analysis will look into a variety
of topics, but first it will examine the tools and equipment utilized in these topics.

5.1 Test Tools and Equipment

5.1.1 Sensors

In these tests, three different types of sensors are used.

• Thermometric Probe
The thermometric probe is designed by DIMEAS engineers, it has 1 FBG grating.

Figure 5.1. Thermometric probe.

• Tension Bar
The bar has 1 FBG grating , it can be bent in two directions: forward and backward, with
negative wavelengths achieved by backward bending and positive wavelengths achieved by
forward bending.

51

Test And Evaluation

Figure 5.2. Tension bar.

• ICARUS aircraft wing
The the aircraft wing’s mechanism of movement is similar to that of tension bar, in that it
can bend forward and backward. The aircraft wing has 5 FBG gratings integrated inside it.

Figure 5.3. ICARUS aircraft wing.

5.1.2 SmartScan Interrogator

The tests are performed using the SmartScan© interrogator from SmartFibres©.

52

Test And Evaluation

Figure 5.4. 4 active channels SmartScan© interrogator.

5.1.3 Raspberry Pi 3 Model B

The middleware will be hosted on the Raspberry Pi 3 Model B board, which will also be connected
to the interrogator via Ethernet and to internet through a 4G USB adaptor. In figure below extra
connections, such as a mouse, keyboard, and screen, are visible plugged to the board, which is
powered by a power bank.

Figure 5.5. Raspberry Pi 3 Model B.

53

Test And Evaluation

5.1.4 Portable Computer

The viewer and Mongodb Compass are installed on a Windows laptop that is powerful enough to
not slow down the whole system execution.

Figure 5.6. Portable computer launching the viewer and MongoDB Compass.

The overall delay from the middleware receiving the peak data to the visualization in the Desk-
top/AR application is used to compute the system latency. The program captures timestamps at
each phase of the simulation, particularly in the interrogator, middleware, and viewer, during the
flow.

Figure 5.7. Timestamps stored during the simulation [3]

5.2 Test Scenarios

Both a SmartScan© interrogator emulator and a real physical interrogator are used in the tests.
The emulator is a Linux application written in C that creates random UDP traffic in the same
way as the SmartScan© interrogator.
The emulator will be configured to generate random signals on the first two gratings of each
channel, giving us a total of eight active gratings, just like in the aircraft. While dealing with
the real physical interrogator, all of the previously listed sensors will interfere in the test, and 8
gratings will be attached to the SmartScan© interrogator’s 4 distinct channels in order to acquire
the same gratings number as the airplane.

54

Test And Evaluation

5.2.1 Connection Availability

5.2.1.1 Scenario

The test is to ensure that the middleware is properly connecting to the emulator or interrogator,
as well as closing without failure. After several attempts and shifting from emulator to actual
interrogator while considering the important variable ”EMU LOCAL” and initializing its value.

Figure 5.8. Connection established between the interrogator and the middleware.

5.2.1.2 Conclusion

The conclusion that can be drawn is that the new middleware has no problems connecting with
both the real interrogator and emulator as the old middleware did.

5.2.2 Middleware Memory Usage

5.2.2.1 Scenario

The purpose of the test is to see how much memory the middleware occupies after around an hour
of execution. Memory consumption is measured using the linux command htop, and a comparison
is done between the old and new middleware in this test. Before running either of the two version
middlewares, htop command is used to check memory usage.

What is htop?
Htop command in Linux system is a command line utility that allows the user to interactively
monitor the system’s vital resources or server’s processes in real time.

Following the htop command, a process name filter is performed. In the figure below, mid-
dleware is not launched since no client process is detected, and memory consumption is 176MB
of the total Raspberry Pi 3 memory of 923MB, as shown.

55

Test And Evaluation

Figure 5.9. Raspberry Pi 3 Model B memory usage without launching the middleware.

After that, the old middleware is launched to check its memory consumption and utilization,
and the consumption is calculated by detecting the total memory usage after launch and sub-
tracting it from the startup memory usage.
The old middleware is shown in the figure below launching three threads with its main process,
with a total memory usage of 470MB. So the old middleware memory consumption will be equal
to 470M-176MB, which is equal to 294MB.

Figure 5.10. Raspberry Pi 3 Model B memory usage after launching the old middleware.

The new middleware undergoes the same memory test, and as shown in the figure below, the new
middleware has two threads with its client main process, with a total memory usage of 255MB.
As a result, the new middleware’s memory consumption will be 255MB-176MB, which is equal to
79MB.

Figure 5.11. Raspberry Pi 3 Model B memory usage after launching the new middleware.

56

Test And Evaluation

5.2.2.2 Conclusion

The conclusion is that the new middleware consumes less memory than the old middleware since
it creates fewer threads and variables.

5.2.3 Data Rate And Middleware Stability

5.2.3.1 Scenario

The goal of the test is to verify the middleware’s stability by running it for a few hours and
comparing the total data stored in database to the total data sent and written on the standard
output. After that, a data rate check is performed, which may be calculated by dividing the total
data transmitted by the total time the middleware was executed. The middleware was executed
for four hours and a half, and the total amount of data sent and stored in the MongoDB server
was 887006.

• Stability Confirmed
The middleware ran for four hours and a half without introducing any errors or failures,
indicating that the middleware’s stability is validated in this test.

• Data Sent And Stored Equility Confirmed
After closing the client with CTRL-C or CTRL-Z, the total data sent will be written to the
standard output, separated into two types of data: configuration data and peak data. As
a result, after 4 hours and 30 minutes of execution, the total data sent is equal to 887006,
which is sent to the standard output as shown in the figure below.

Figure 5.12. Total data sent in a 4 hours and a half period of time.

MongoDB Compass is used to check the stored data into the MongoDB database. The
number of stored documents within the specific collection is checked, and as shown in the
figure below, the number of saved documents is equal to 887006.

57

Test And Evaluation

Figure 5.13. Total data stored in a 4 hours and a half period of time.

By comparing the data values in the two preceding figures, equality is verified; in other
words, it is checked and certified that all data transmitted from the middleware to the
MongoDB server is stored.

• High Data Rate Confirmed
What is meant by data rate?
The speed at which data is transferred within the computer or between a peripheral device
and the computer, measured in bytes per second.

In this test, data rate refers to the number of peak data sent per second by each active
grating. In order to determine this data rate, some calculations will be performed, taking
into account both old and new middleware. As previously stated, total data sent and stored
in a period of four hours and a half was equal to 887006. Four and a half hours will equal
270 minutes, that is equal to 16200 seconds. Then, in 16200 seconds, 887006 data are trans-
ferred; to determine how much data is sent every second, divide 887006 by 16200, which
equals around 55. If the total data sent from all active gratings is 55, divide that number
by the total number of active gratings (8 active gratings) to get a close estimate which is
equal to 7.
As a result, the new middleware can collect 7 peak data each second for every grating.
This is faster than the old middleware’s collection rate, which was 2 data per second for each
grating, taking in consideration that the total data sent/inserted by the old middleware in
4 hours and half was equal to 278100.

5.2.3.2 Conclusion

The conclusion that can be drawn is that the new middleware is a reliable program that does not
suffer data loss and has a high data rate of 7 peak data per second for each grating.

58

Test And Evaluation

5.2.4 Viewer Real Time Data Analysis

5.2.4.1 Scenario

In this test, the viewer will subscribe to the Change Stream’s real-time feed, reacting in real time
to the latest values entered into the MongoDB instance by the middleware.
The first goal of this test is to see if there is a delay while the viewer plots the wavelength variation
graph of the newly entered data into the MongoDB instance, and the second goal is to see if the
system returns to its initial working stability when the internet connection on the Raspberry Pi 3
is interrupted for a few seconds. After properly connecting all system components with 8 active
gratings on the 4 channels of the interrogator, the middleware is launched on the Raspberry Pi 3
model B, and data begins to transit via the middleware on its way from the interrogator to the
MongoDB server. The raspberry pi 3 model B is connected to the internet via a 4G USB adaptor;
the reason for this is that the ICARUS aircraft will fly at a height of around 100 meters, which is
still within the range of the 4G signal, thus it was chosen as the option to supply the board with
internet connection. The viewer is keeping an eye on the MongoDB instance in real-time for any
updates on the selected collection.
The figure below illustrates how all of the system’s components are connected.

Figure 5.14. Full system under test.

59

Test And Evaluation

• No Network Interruption

While the system is running, any disturbance caused on one of the connected gratings,
is directly recognized on the viewer graph, and the wavelength variation can be recognized
without any delay, confirming that the viewer is operating in perfect real time mode with a
delay of 1 or 2 seconds max depending on the connection of the portable computer on which
the viewer is installed. However, based on repeated testing and the use of a mobile hotspot
to provide an internet connection to the portable, the average latency can be considered
negligible.

• Network Interruption Occurs

Causing a network interrupt on the Raspberry Pi 3 means that the 4G USB adapter must
remain plugged in but the 4G signal must vanish, effectively disconnecting the board from
the internet and preventing the middleware from communicating with the MongoDB server
and adding new data to the collection.
Because the Raspberry Pi 3 has many cables attached to it, applying a Faraday cage to kill
the signal coming to the 4G USB adaptor is difficult.

Figure 5.15. Raspberry Pi 3 Model B.

Another option is to use a mobile’s USB tethering; in this case, the mobile will work simi-
larly to a 4G USB adaptor, with the additional option of disabling mobile data; in this case,
the network is not hardware disabled by unplugging the mobile, but is subject to an inter-
ruption by disabling and re-enabling mobile data. This method of interrupt is thought to
be the closest to the one required, which is interrupting the signal on the 4G USB adaptor.
The system will start, and then there will be a network interrupt, forcing the viewer graph
lines for all active gratings to remain at 0, indicating that no new data is received and hence
no wavelength variation. As a result, for all gratings activated, a straight line will remain
around the zero values until the middleware reconnects to the MongoDB instance and new
data is entered into the database, causing the graph lines to re-variate. After multiple tests,
the middleware’s reconnecting delay is averaged to reach a maximum value of 5 seconds.
So, if the Raspberry Pi 3 encounters a network interruption, the middleware can reconnect
in 5 seconds as a maximum delay.

The figure below shows a viewer graph of a test that the middleware starts inserting into the
collection and immediately a network interrupt occurs, with the mobile data disabled for

60

Test And Evaluation

around 30 seconds before being enabled. The viewer then begins reading the newly inserted
data, and some gratings are subjected to some disturbance, as seen in the graph.

Figure 5.16. Model with 8 active gratings under real-time mode test.

5.2.4.2 Conclusion

The conclusion is that if the middleware has a network outage, it can reconnect and insert data
into the MongoDB database in almost 5 seconds, after which the viewer will be re-updated with
the new added data, causing the wavelength variation in its graph to be re-plotted.

61

Chapter 6

Conclusion

This concluding chapter will outline some suggestions for future development enhancements as
well as conclusions on the work completed.

6.1 Future Work

This chapter outlines the planned platform’s enhancements and new features that may be deployed
in the near future. The project was built on the Git framework, which is the best choice for open
source development and allows for bug management and feature proposals. It also improves
collaboration by making it easier to track which modifications are done and making future work
by other developers easier.

6.1.1 Missing Features

The project as a whole is running smoothly, but there are a few new features that need to be
included. The most important feature that has yet to be built is the visualization and analysis
framework, which will allow users to observe real-time data superimposed on the monitored item
utilizing the AR/VR system. Taking into account that the Viewer (VR) system has already been
developed and is now being enhanced and improved. While moving to the middleware, the type
of interrogator is no longer a concern, and each new interrogator will demand the creation of new
interrogator libraries as well as new classes with methods specialized to the interrogator.

6.1.1.1 AR framework

The goal of the Augmented Reality framework is to overlay data from the interrogator on top of
the monitored physical system. You might be able to move around the object and watch how the
data changes over time.
A smart wearable device, such as the Microsoft© HoloLens, acts as the AR layer.

62

Conclusion

Figure 6.1. Microsoft© HoloLens AR system [36].

Figure 6.2. AR/VR visualisation and analysis [1].

6.2 Conclusion

The aim or goal of this graduation thesis (Improvement of a system for retrieving and displaying
systematic aircraft data) is the improvement of PhotoNext project. The plan was to develop and
implement a complete system that could retrieve data from any type of interrogator and display
it in real time. The proposed middleware enhancement is a result of a thorough examination and
analysis of the system’s components.
This thesis concludes in the development of a reliable and stable middleware that is independent
of the type of interrogator used, has a high data rate, requires less memory, and does not suffer
from data loss or connecting issues.

63

Bibliography

[1] Mauro Guerrera. Algorithms and methods for fiber bragg gratings sensor networks. Master’s
thesis, Politecnico di Torino, 2018.

[2] Maria Giulia Canu. Mixed Real-Time Visualization Framework for FGB IoT sensors. Master’s
thesis, Politecnico di Torino, 2019.

[3] Antonio Scaldaferri. 3D visualization and analysis of a large amount of real-time and non-
real-time data. Master’s thesis, Politecnico di Torino, 2021.

[4] Gioele Baima. Design and Development of a Test Bench for Frequency Analysis of FBGs Optic
Sensors for Prognostic Techniques for Aerospace Applications. Master’s thesis, Politecnico di
Torino, March 2019.

[5] Rod Stephens. Beginning Software Engineering. 2 March 2015. John Wiley & Sons. p. 94.
DOI:10.1002/9781119209515.

[6] IBM Cloud Education. What is middleware?. 5 March 2021. IBM.
https://www.ibm.com/cloud/learn/middleware.

[7] FBG Sensing System from SmartFibres©. https://www.smartfibres.com/technology.
[8] Patil,Gouri. A Seminar On Fiber Bragg Grating (FBG). Apr 2017.

https://www.slideshare.net/Poornimagugale/fbg-ppt. PowerPoint Presentation.
[9] Mendoza Edgar A. Miniature Fiber Bragg Grating Sensor Interrogator(FBG-Transceiver™)

System For Use in Aerospace and Automotive Health Monitoring Systems. Jan 2014,
https://www.researchgate.net/publication/237665755 Miniature fiber Bragg grating sensor
interrogator FBG-Transceiver TM system for use in aerospace and automotive health
monitoring systems - art no 67580B.

[10] Bridget Botelho, Jack Vaughan. MongoDB. Tech Target. August 2020.
https://searchdatamanagement.techtarget.com/definition/MongoDB.

[11] Madushanka, Tiroshan and Mendis, Laksheen and Liyanage, Dananji and Ku-
marasinghe, Chamath. Performance Comparison of NoSQL Databases in Pseudo
Distributed Mode: Cassandra, MongoDB & Redis. 09 2015. Research Gate.
https://www.researchgate.net/figure/Architecture-of-MongoDB fig23 281629653.

[12] Priya Pedamkar. What is MongoDB. Educba. https://www.educba.com/what-is-mongodb/.
[13] What Is Real Time Application?. all about computer solutions.

https://allaboutcomputersolutions.com/qa/what-is-real-time-application.html.
[14] Icarus - Polytechnic University of Turin. May 9. https://www.facebook.com/photo/?fbid=

149491263854065&set=a.149491273854064.
[15] Infibra Technologies. FBG sensors overview. http://www.infibratechnologies.com/technologies

/fiber-bragg-gratings.html.
[16] SmartScan© from SmartFibres©. https://www.smartfibres.com/products/smartscan.
[17] SmartSoft© from SmartFibres©. https://www.smartfibres.com/products/smartsoft-

software.
[18] Rigoberto Jess. © Smart Fibres Ltd SmartScan FBG Interrogator. 2015.

https://slideplayer.com/slide/3372740/. ppt presentation.
[19] Raspberry Pi 3. http://www.robo-dyne.com/shop/raspberry-pi-3/.
[20] Robert E. Hilpisch, Rob Duchscher, Mark Seel, Peter Soren, Kirk Hansen. Wireless commu-

nication protocol. 2004-12-01. https://patents.google.com/patent/US7529565B2/en.
[21] Ionos. TCP (Transmission Control Protocol) – The transmission protocol explained. 01.04.20.

https://www.ionos.co.uk/digitalguide/server/know-how/introduction-to-tcp/.
[22] Lawrence Williams. What is the Difference Between TCP and UDP?. October 7, 2021.

https://www.guru99.com/tcp-vs-udp-understanding-the-difference.html.

i

Bibliography

[23] Linda Rosencrance, George Lawton, Chuck Moozakis. User Datagram Protocol (UDP). Oc-
tober 2021. https://www.techtarget.com/searchnetworking/definition/UDP-User-Datagram-
Protocol.

[24] Tushar Panhalkar. Introduction to TCP and UDP. https://info-savvy.com/introduction-to-
tcp-and-udp/.

[25] Information Technology Services. Monolithic Application. 2007-09-02.
https://en.wikipedia.org/wiki/Monolithic application#cite note-1.

[26] Siraj ul Haq. Introduction to Monolithic Architecture and MicroServices Architecture.
May 2, 2018. https://medium.com/koderlabs/introduction-to-monolithic-architecture-and-
microservices-architecture-b211a5955c63.

[27] STUDENTS@POLITO. The Politecnico in flight with the ICARUS team. 17 August 2017.
https://poliflash.polito.it/en/students polito/the politecnico in flight with the icarus team.

[28] Computer Hope. Hierarchical file system. 11/16/2019.
https://www.computerhope.com/jargon/h/hierfile.htm.

[29] Cmake. About CMake. https://cmake.org/overview/.
[30] Idil Fibres Optiques. Fiber Bragg Gratings (FBG) summary. https://www.idil-fibres-

optiques.com/product/fiber-bragg-gratings/.
[31] MongoDN. JSON and BSON. https://www.mongodb.com/json-and-bson.
[32] Khushi Priya. Binary JSON (BSON). https://iq.opengenus.org/binary-json/.
[33] MongoDB. MongoDB CRUD Operations. https://www.mongodb.com/basics/crud.
[34] Shanika Wickramasinghe. MongoDB Compass: Using the Mongo GUI. October 14, 2020.

https://www.bmc.com/blogs/mongodb-compass/.
[35] MongoDB. What is MongoDB Compass?. October 14, 2020.

https://docs.mongodb.com/compass/current/.
[36] Microsoft. Microsoft HoloLens 2. https://www.microsoft.com/en-us/hololens

ii

	List of Figures
	Introduction
	Overview
	MongoDB Technology
	MongoDB Definition
	MongoDB Architecture
	How It Works
	MongoDB Platforms
	MongoDB Pros and Cons

	Real-Time Technology
	Definition Of Term "Real-Time"
	Definition Of Real-Time Application

	Internet Communication Protocols
	Transmission Control Protocol/Internet Protocol (TCP/IP)
	User Datagram Protocol (UDP)

	Binary JavaScript Object Notation BSON Technology
	Definition Of BSON
	Understanding BSON
	BSON VS JSON
	Disadvantages

	System Architecture
	System Overview
	FBG Sensing System
	Physical System Monitored By FBG Sensors
	Interrogator
	Middleware

	Cloud Network
	Viewer

	Proposed Solution
	Overview
	Physical System
	Interrogator
	Middleware
	Middleware Classes Architecture
	Middleware Files Hierarchy
	Middleware CMake Files
	Middleware Client Class Modifications
	Middleware SmartScanInterrogator Class Modifications
	Middleware MongoDAO Class Modifications
	Middleware Data Models

	MongoDB Cloud
	What Is CRUD In MongoDB?
	How To Perform CRUD Operations.

	Viewer
	Real-Time Mode
	Non-Real-Time Mode
	Simulation's Outcome

	User Guide
	MongoDB Compass
	What Is MongoDB Compass?
	What MongoDB Compass Can Do?
	Connect To MongoDB Using Compass
	Compass Home

	Test And Evaluation
	Test Tools and Equipment
	Sensors
	SmartScan Interrogator
	Raspberry Pi 3 Model B
	Portable Computer

	Test Scenarios
	Connection Availability
	Middleware Memory Usage
	Data Rate And Middleware Stability
	Viewer Real Time Data Analysis

	Conclusion
	Future Work
	Missing Features

	Conclusion

	Bibliography

