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Abstract

Because of the ever-so-complex challenges posed by Silicon in continuing the trend
of constant evolution that has characterized electronics for the past few decades,
in the recent years researchers have been increasingly interested on developing new
and promising technologies that can overcome the current CMOS scaling limits and
possibly offer unique features.

These technologies are referred to as Beyond CMOS technologies as they employ
innovative materials and techniques to construct digital circuits. On account of the
scattering in popularity and the development stage of the many candidates of this
field, the world of simulations is heavily fractured: the more popular entries already
feature custom simulators, some simply offer models compatible to other existing
simulators, others only come with mathematical models.

The objective of this thesis is to develop new tools to build a generic Hybrid
Simulator, a simulator not only able to support arbitrary technologies given the
right models, but also to handle circuits hosting more of these technologies that
coexist in the same design. The presented work was developed as an extension of

Figure 1: Overview of the devised workflow starting from the design of a component
in MagCAD to its simulation in ToPoliNano. This summarizes the most important
steps and the entities they interact with



the ToPoliNano framework with the objectives of generality, customizability and
ease of integration.

The first necessary step was to extend MagCAD to allow the user to design
hybrid circuits. Accordingly to the program structure I developed the Hybrid Plugin,
a plugin providing the interface and all the additional tools needed to place and
interconnect components designed in MagCAD featuring arbitrary technologies. On
top of this, the new plugin also supports the insertion of custom VHDL or Verilog
netlists in the design to represent classical CMOS digital components or testing
facilities.

In order to run the simulations managed by ToPoliNano, the choice fell on
offloading the work to ModelSim, an established and feature-rich simulator. This is
because not only does ModelSim have extensive and thoroughly tested support for
VHDL, Verilog, VerilogA and much more, but also because of its interesting Foreign
Language Interface (FLI). This feature offers a C API through which the user can
interact with the simulation and insert his own custom models developed in C.

To simplify the interaction with ModelSim and to adapt it with the modern
standards, a small C++ library called flipp was also developed. It adapts the most
relevant features from the FLI to C++ and adds some useful wrappers and helpers
and it can be used when designing custom models.

Finally, I developed a module to be inserted into ToPoliNano offering a set of
useful classes to build custom C++ models based on flipp plus the necessary infras-
tructure to manage and interact with the simulation.

The result of this work is a rich, fully customizable and easily extensible system
which enables the user not only to define or import models with varied descriptions
(VHDL, Verilog, VerilogA, C++), but also to freely design and simulate hybrid
circuits where more of these models are interconnected.
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Chapter 1

Introduction

1.1 Beyond CMOS

Silicon has been the very essence of electronics since the diffusion of the first tran-
sistor based ICs in commerce in the 1970s. Throughout the years, continuous efforts
and advancements in fabrication processes have been perfecting our devices: com-
pare the Intel 4004 chip, historically regarded as the first commercial microprocessor,
counting 2300, 10 µm transistors to the latest Apple chip counting 60 billion, 5 nm
transistors. These monumental improvements did not come without challenge: as
the scale of the transistors gets smaller, parasitic effects, losses and heat dissipa-
tion become harder and harder to control. The seemingly unstoppable trend that
shaped modern society through technological advancements may be close to a his-
torical turning point: what happens when the challenges become greater than the
benefits they promise?

(a) Layout of Intel 4004 chip (b) Layout of the Apple M1 Max chip

Figure 1.1: Comparison (not to scale) of the layouts of the first Intel chip and one
of Apple’s latest releases

This very question has inspired the birth of many Beyond CMOS technologies,
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Introduction

technologies based on innovative techniques, materials and physical phenomena that
promise a continuation to the trend of constant improvement in electronics. Some
Beyond-CMOS technologies have already seen the light and have real world appli-
cations: for instance, MTJ devices are currently gaining strong traction in Neural
Networks [8], MRAMs and logic-in-memory architectures [10]; not to mention the
increasing fame of Quantum Computing and the interest sparked in multiple indus-
tries such as telecommunications [2].

Even though research is increasingly active in these fields, it is unlikely that an all-
solving technology will suddenly replace silicon: each technology has its own benefits
and is best suited for some tasks, especially at this primordial stage. Moreover,
silicon has not only been the de-facto standard for the last 50 years, but it is also
extremely versatile and can be used in digital devices as well as in analog circuits and
even in optoelectronics. Based on this, a more likely scenario for the future is either
the affirmation or at least a transitory period of Hybrid Circuits: circuits composed
of multiple sub-parts featuring and interconnecting multiple technologies.

1.2 Simulations

The extremely high costs of fabrication make simulations a necessity in the devel-
opment of modern day electronics. Simulations allow engineers not only to check
the correct functionality of their design at every step of the development process,
but also to predict important parameters such as power consumption, area, speed,
emissions and EMC, fault tolerance and much more before ever producing a single
chip.

In generic terms, circuit simulators aim to represent the state of their parts over
time. At the most basic level, this translates into updating and tracking voltages
and currents throughout the circuit. The simulation algorithms can vary a lot as
simulators try to optimize as much as possible for their specific application, but the
one always present concept is the internal representation of time. Based on time
management, it is possible to identify two main families of simulators: analog and
digital simulators.

• Analog Simulators simulate continuous quantities whose details are infinitely
fine in the real world. The evolution of these quantities is determined by the
solution of a system controlled by the characteristic equations of the analog
components, a process that is often computationally expensive. On top of this,
computers can only handle finite and discrete quantities, so real world behaviors
must be approximated in discrete time steps and the job of a simulator is also
to decide how to step in time. A basic simulator may choose to advance the

2



Introduction

simulation time with fixed time steps which are small enough to approximate
the behavior of the simulated circuit. A more common and optimal technique
is to advance simulation time based on the variations of the tracked quantities,
dynamically adjusting the effort and increasing resolution when there are a lot
of variations while taking bigger leaps through times in stable conditions that
do not need as much resolution.

• Digital Simulators handle discrete quantities, implying that changes through
time are instantaneous: in any time instant, the tracked quantities are constant
and changes can be assumed to happen instantaneously. Moreover, there are
no equations to solve but defined high level behaviors to simulate. Thanks to
this, digital simulators are typically faster than analog simulators. For the same
reasons, they are event-based: they operate with an event queue from which
the next event is popped and handled, possibly spawning other events that are
pushed into the queue. In this scenario, time is no longer a controlling factor
as much as another quantity being tracked. It is important to underline how
despite this structural change, the concept of time resolution is still needed to
maintain the causality of certain events and it is useful in various cases such as
the representation of glitches.

Naturally, this distinction is purely conceptual and real simulators often work
in-between the two cases: for instance, simulating power consumption needs analog-
like simulations, and a digital simulator unable to do so is somewhat incomplete.
It follows that a Hybrid Simulator should also be based upon a hybrid approach,
both for a matter of necessity - some beyond CMOS technologies require analog
simulations - and, because given the novelty of these technologies, it is often de-
sirable to simulate their behavior in levels of detail unachievable by purely digital
simulations.

1.3 ToPoliNano Framework

ToPoliNano is an EDA tool developed by the researchers and thesis students of the
VLSI group in Politecnico di Torino. It offers two pieces of software: MagCAD and
ToPoliNano.

MagCAD MagCAD [6] is a Computer Assisted Design tool intended for the
graphical design of digital circuits. Choosing from a range of different technologies,
the user is able to pick-and-place components, form interconnections and customize
their properties. Designs can be saved, imported and exported and it is also possible

3
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Figure 1.2: ToPoliNano framework

to develop custom libraries of components to be re-used in multiple designs. De-
pending on the technology, it is also possible to convert layouts into VHDL netlists
to be used in conjunction with other VHDL files in any digital simulator.

ToPoliNano ToPoliNano [7] is a tool able to inspect and simulate designs. It
takes the output files from MagCAD and, together with other files that the user
imports (such as testbenches or other VHDL components), it runs the simulation
and reports the results. It also offers helpful tools such as the automatic generation
of testbench files which the user can customize by controlling the input stimuli
without having to worry about the rest of the VHDL strucutre.

4



Chapter 2

MagCAD

2.1 Introduction

MagCAD offers a customizable design environment where it is possible to con-
struct circuits and develop their layout based on a range of different technologies.
Figure 2.1 shows an example view of a circuit being interconnected with the Hybrid

Figure 2.1: Standard view in MagCAD

Plugin that will be introduced later in this chapter.
When launching the program, the Drawing Settings window of Figure 2.2 lets

the user choose the technology they want to design their circuit with. It lists all the
available technologies and allows the customization of some technological parame-
ters, some of which can also be locally overridden later on from the Item Picker.

5



MagCAD

Once the settings are filled, the user is met with the window of Figure 2.1 and can

Figure 2.2: Drawing Settings window

at this point proceed with his own design.
It is possible to observe that the main window is composed of four sections:

• Menus and Toolbars: on the top of the window, they offer an interface to
the standard functionalities such as saving, exporting and loading designs and
all the tools to interact with the scene;

• Drawing Window: in the middle of the window, this is the region where
items and components are placed and interconnected;

• Item Picker: on the left of the window, this bar presents all the standard
items available for the currently picked technology plus the context-specific,
per-item editable properties;

• Library: on the right of the window, lists all the saved components to be
re-used across multiple designs.

In alternative to creating a new design from scratch, the user can also choose
to load an already existing design and edit it. In this case, the Drawing Settings
are automatically imported from the saved file as well as all the whole content from
the original design, making it unnecessary to manually setup the technology and
simplifying the process of sharing and updating projects.

On top of saving a design, it is also possible to export it as a component and
to store it in the Component Library, meaning that the circuit can be instantiated
as a sub-unit in larger structures. Only components from the currently selected
technology can be inserted in a design. In order to place a component, the user can
Right-Click on its name in the Library and choose to:
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Figure 2.3: Component insertion

1. Open component to view the component in a read-only window;

2. Insert in drawing to insert the component as a black box in the design;

3. Flat insert in drawing to insert the exposed contents of the component as
if they were copy-pasted. This allows smaller tweaks in larger components
and it is also particularly helpful in layout-centered technologies where a whole
black-box may take up too much space.

Figure 2.3 shows a view of the insertion of a component, where both an insert (top)
and a flat-insert (bottom) operation of the same circuit were carried out. In order
to let the insides of a component interact with the outside world, the user can place
named pins in their designs, representing the input / output ports of the component.
When importing such a component, pins will will appear on the sides of its black box
as visible in Figure 2.3 and will be exported to VHDL (if the technology supports
it); on the other hand, flat-inserting the same component will not insert its pins as
they are unnecessary and may lead to errors.

2.2 Program Structure

MagCAD is developed in C++ using the Qt framework as the base for the GUI and
as a reference library supplying useful containers, fuctions and compiler definitions.
It is currently compiled using qmake even though a transition towards CMake is in
act due to the approaching end of support for qmake for newer versions of Qt.

Its core is divided into three parts:
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• MagCAD: the main executable itself. It initializes the QApplication (Qt’s
fundamental entity that represents an executable program) and the main win-
dow with all of its sub-parts, implying it is the manager of all the program-level
tasks such as managing its settings, opening and reading save files and popu-
lating the Components Library;

• qcalib: central library gathering all the concepts that are technology and design
related. For example, this library defines classes such as QcaTechnology and
QcaItem that are the bases for almost everything in a drawing scene;

• qcagraphicslib: graphical library responsible to handle the interactions with
the scene, including the placement, movement and interconnection of the items.

A particularly effective design choice employed by MagCAD is the extensive use
of plugins. Plugins are optional extensions that mainly represent a technology, its

Figure 2.4: MagCAD structure

items and its functions in MagCAD. They are compiled separately from the main
executable into shared libraries that need to be placed in a specific directory. During
its bootstrap, MagCAD will look into that directory and will load all the plugins
it finds. The Drawing Settings window from Figure 2.2 is showing the results of
that very operation: the entries on the left are none other than the names of the
technologies that MagCAD found in its plugin directory when launched.

The most important elements introduced from a plugin are:

• Technology: the top level entity in a plugin, it offers information about the
plugin itself and about the technology it represents. On top of listing relevant
information such as a list of the building blocks offered by the technology, it
also allocates and initializes other sub-parts of the plugin itself;

• Settings: settings collect the parameters mainly related to the drawing, such
as the grid size, and they offer some related methods useful to the drawing
classes;
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• Items: they are the basic building blocks of the design and are the elements
that are picked from the Item Picker.

section 2.3 describes the implementation of the Hybrid Plugin, where a more in-
depth analysis of the different parts of a plugin are explored in clearer details.
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2.3 Hybrid Plugin

The Hybrid Plugin is an extension that allows the design of Hybrid circuits con-
taining sub-elements from mixed technologies. As introduced in section 2.2, the
implementation of a new plugin for MagCAD starts from the inheritance of some of
the classes offered by qcalib.

The interface of a plugin is given by its Technology class. It provides some general
information about the technology itself such as its name and plugin version together
other methods needed during the design phase.

1 class HybridTechnology : public QObject , public QcaTechnologyInterface {
2 Q_OBJECT
3 // Macros used to define Qt plugins
4 #if QT_VERSION >= 0 x050000
5 Q_PLUGIN_METADATA (IID "it. polito . ToPoliNano . graphics . QcaTechnologyInterface "

FILE " hybrid_plugin .json")
6 # endif

7 Q_INTERFACES ( QcaTechnologyInterface )
8 public :
9 static const QString tech_name ;

10 HybridTechnology ();
11
12 QString name () const override ;
13 QString version () const override ;
14
15 QStringList providedElements () override ;
16 VhdlController * getVhdlController () override ;
17 QcaItem * createItem ( const QString &name , QcaTechSettings * settings = nullptr )

override ;
18 QList < QcaToolButton *> createTools ( QcaTechSettings * settings ) const override ;
19 QcaTechSettings * createTechSettings () override ;
20 };

Listing 2.1: HybridTechnology class declaration

The providedElements() method returns the list of names of the items that this
technology implements. In this case:

1 QStringList HybridTechnology :: providedElements () {
2 QStringList list;
3 list << " Component "
4 << "VHDL Netlist "
5 << " Verilog Netlist ";
6 return list;
7 }

Listing 2.2: Names of the items provided by the Hybrid Plugin

These are the items that are available to select from the Item Picker to place them
in the design window.

The createTools() method creates the buttons that can be seen in the Item
Picker from Figure 2.1 and in Figure 2.7. Each button corresponds to an item and
pressing it will put the scene in “insert item” mode so that the next clicks in the
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design space will place the component. Buttons derive from a base class called
QcaToolButton, but this specific type of buttons in fact derives from an extension
of that base class called QcaFactoryButton that specializes a generic button for the
creation of items.

1 HybridComponentFactoryButton :: HybridComponentFactoryButton ( QcaTechSettings *
settings , QWidget * parent ):

2 QcaFactoryButton (settings , parent ),
3 m_settings ( settings ),
4 m_component_properties_widget ( nullptr ) {
5 // Set button
6 setIcon ( QIcon (":/ images / component .png"));
7 setIconSize ( QSize (24 , 24));
8 setCheckable ( true );
9 setToolTip (" Component ");

10 m_component_properties_widget = new HybridComponentPropertiesWidget ( settings );
11 }

Listing 2.3: Example of a FactoryButton constructor

Buttons also have some other responsibilities. The behavior of a given button may
need some parametrization: as it will be more thoroughly explained in section 2.4,
this is the case for all Hybrid items since they act as wrappers for components or
netlists and it is necessary to have the user select the file that the item is supposed to
wrap. Clicking on these factory buttons opens a small widget below the Item Picker
called “Option Widget” that can be customized to enter the required parameters.
For example, a VHDL Netlist item will open the widget shown in Figure 2.5. This

Figure 2.5: The “Option Widget” for a VHDL Netlist item

is because a VHDL netlist is associated to a file stored in the filesystem that needs
to be specified before being able to insert the item, since it is necessary to parse
the file in order to understand the interface of the item. Trying to insert an item
before a VHDL Netlist is selected results in the error of Figure 2.6. In fact, all

Figure 2.6: Error shown when trying to insert an Hybrid item before selecting its
associated file
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Hybrid items share this Option Widget because they all share the same behavior,
the only difference being the type of file that can be selected and of course the text
in the widget, but the basic idea is the same. Listing 2.4 shows the creation of
a VHDL Netlist item with the checks to ensure that the path has been selected.
The exceptions thrown in this function are catched to populate the error window in
Figure 2.6.

1 QcaItem * HybridVHDLNetlistFactoryButton :: createQca () {
2 // Check if component path is selected
3 HybridTechnology * htech = ( HybridTechnology *) technology ();
4 HybridVHDLNetlistPropertiesWidget * pwidget = ( HybridVHDLNetlistPropertiesWidget

*) m_vhdlnetlist_properties_widget ;
5 if (! pwidget -> isPathSet ()) {
6 throw QCAItemError (" Component path is not selected ");
7 }
8 // Create item and set path
9 HybridItemVHDLNetlist *item = ( HybridItemVHDLNetlist *) htech -> createItem ("VHDL

Netlist ", m_settings );
10 if (item == nullptr ) {
11 throw QCAException (" Could not create item");
12 }
13 item -> setItemFilePath (pwidget -> getPath ());
14 item -> compile ();
15 return item;
16 }

Listing 2.4: Creation of an item through its factory button

The getVhdlController() method that appears in Listing 2.1 is used to return
the technology’s VHDL Controller, which is a separate class needed to generate
VHDL files for the technologies that support it. The Hybrid technology does not
currently support general VHDL generation, so it simply returns a nullptr that
will be recognized from the other functions trying to interact with it.

2.4 Hybrid Items

Items are the central entities of a design since they are the elementary building
blocks offered by a given technology. Another role of a plugin is to implement
classes that inherit from qcalib’s QcaItem that define the items that can be placed
in a design by managing their internal attributes, their appearance, their size and
all of the necessary parameters. The Hybrid Plugin has three basic items called
“Component”, “VHDL Netlist” and “Verilog Netlist”.

The item called “Component” is not to be confused with the Library Components:
even though their role is very similar, the item is in fact a wrapper for a library
component and this is needed to generalize the library component which is tightly
bound to its internals. Layout centered technologies such as iNML and pNML
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Figure 2.7: Hybrid Items icons from the Item Picker

need their library components to be correctly sized in order for the design to make
sense, so library components have to adapt their shape based on the placement
of their inner items. Since MagCAD was originally built for this type of design,
the generic library component classes are structured to follow this behavior. The
constraint on sizes does not apply to the Hybrid Plugin and unnecessarily placing
large components simply clutters the drawing, so a component item was chosen as
a solution since it can be fully customized without damaging the other parts of the
program. Similarly to the Component item, the VHDL Netlist and Verilog Netlist
items act as wrappers for their respective netlists and are needed to both implicitly
include CMOS circuits in the design as well as helpful testbench utilities.

It is already clear how all the described items are in fact similar in behavior:
they wrap some content described in a file, whether it is a saved library component
or a VHDL or Verilog netlist, and they need to adapt their appearance (namely,
the input/output pins) based on the contents of the file. For this reason there is a
common base class from which they all descend.

1 class HybridItemWrapperBase : public HybridItemBase {
2 public :
3 HybridItemWrapperBase ( HybridTechnology * technology , const QString & item_name );
4 ~ HybridItemWrapperBase () override ;
5
6 void draw( QPainter *painter , const QStyleOptionGraphicsItem *option , QRectF

cell) override ;
7
8 QString getItemFilePath () const ;
9 void setItemFilePath ( const QString &path);

10
11 virtual void compile () = 0;
12
13 const QString & getItemName () const ;
14
15 VhdlItem * copyAsVhdl () override ;
16
17 QList <QPointF > connectionPoints () const override ;
18
19 protected :
20 static QString getFileBaseName ( const QString &path);
21 QSize computeCellSpan ();
22 void updatePinPositions ();
23
24 protected :
25 QString m_item_name ;
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26 QList <QcaPin *> m_pins ;
27 };

Listing 2.5: HybridItemWrapperBase class declaration

The draw() method is an alias for Qt’s paint() method and it defines the opera-
tions needed to graphically draw the item once it is placed in the scene. Notice that
a QcaItem is not an object that can be directly placed in Qt’s QGraphicsScene (the
drawing window) because that requires to inherit from the QGraphicsItem class, but
QcaItem does not. The qcagraphicslib uses another class called QcaGraphicsWrapper
which, as the name suggests, wraps an item to place it in the scene and calls its
draw() method when it needs to be rendered. The reason for this is to keep the
graphical behavior separated from the functional behavior, if not for QcaItem::draw()
that is the only instance where an item runs graphical routines.

1 void HybridItemWrapperBase :: draw( QPainter *painter , const QStyleOptionGraphicsItem
*option , QRectF cell) {

2 ...
3 // Make drawing
4 painter -> drawRect (cell);
5 // Paint pins
6 for ( QcaPin *pin : m_pins ) {
7 QRectF pin_cell (pin ->pos ().x() * grid_size . width () ,
8 pin ->pos ().y() * grid_size . height () ,
9 grid_size . width () ,

10 grid_size . height ());
11 pin ->draw(painter , option , pin_cell );
12 painter -> drawText (pin_cell , Qt :: AlignCenter , pin ->name ());
13 }
14 // Write labels
15 QFont font = painter ->font ();
16 font. setPixelSize (( int) cell. width () / m_item_name .size ());
17 painter -> setFont (font);
18 painter -> drawText (cell , Qt :: AlignTop | Qt :: AlignHCenter , m_item_name );
19 ...
20 }

Listing 2.6: HybridItemWrapperBase draw() method

Listing 2.6 shows an extract of the draw() method that renders a simple rectangle
to represent the item, then draws its pins on top of it and finally writes the item
name. It can be helpful to remind that this method is defined in a class from which
all Hybrid items inherit, meaning this is used by all of them. The results of this
operations are visible in Figure 2.1 and Figure 2.9.

The most important method defined in this Item class is the pure abstract
virtual void compile() and it represents the action of opening the associated
file, reading its contents and extracting the useful information. Notice, for instance,
how the draw() method iterates through an item’s m_pins, a vector which needs to
be populated according to the content of the file: that is precisely what compile()
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does. Notice also that a call to it already appeared in Listing 2.4, since an item is
compiled immediately before placement.

1 void HybridItemVHDLNetlist :: compile () {
2 // Get name
3 QDir base = QDir :: home ();
4 base.cd(" MagCADFiles /lib");
5 QString path = base. filePath ( getItemFilePath ());
6 if (path. isEmpty () || ! QFileInfo :: exists (path))
7 throw QCAException (" Cannot compile item: path is invalid ");
8 m_item_name = getFileBaseName (path);
9 // Parse file

10 QFile file(path);
11 file.open( QIODevice :: ReadOnly );
12 VHDLEntityParser parser ;
13 if ( parser . parse (file) != Parser :: ParseResult :: Success ) {
14 ... [ Report problem with a message box] ...
15 }
16 // Process parsed data
17 VHDLEntityParser :: ParsedData parsed_data = parser . getParsedData ();
18 for ( const VHDLEntityParser :: PinData & pin_data : parsed_data .pins) {
19 m_pins . append (new QcaPin ( technology () , pin_data .name , QcaPin :: Direction (

pin_data . direction )));
20 }
21 // Update item shape
22 QSize span = computeCellSpan ();
23 cellRect .w = span. width ();
24 cellRect .h = span. height ();
25 ...
26 }

Listing 2.7: The compile() method

Hybrid wrapper items collaborate with a set of other classes inheriting from an
abstract base called Parser as shown in the diagram of Figure 2.8 that can be used
from the overrides of the compile() method.

Figure 2.8: Inheritance graph for Hybrid wrapper items and parsers and their rela-
tions

1 class Parser {
2 public :
3 enum class ParseResult {
4 Success ,
5 Fail
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6 };
7
8 class ParsingError ;
9 using Token = QString ;

10
11 public :
12 Parser ();
13 ParseResult parse ( QFile & qfile );
14 Parser & operator =( const Parser & parser );
15
16 const QList < ParsingError > & getErrors () const ;
17
18 static QList <Token > tokenize ( const QString &text , const QRegExp & regex =

QRegExp ("(\\b|\\s+)"));
19
20 protected :
21 virtual ParseResult runParse ( QFile & qfile ) = 0;
22 void reportError (int id , const QString &message , std :: size_t line = 0, bool

critical = false );
23
24 protected :
25 QString m_fname ;
26 QList < ParsingError > m_errors ;
27 };

Listing 2.8: Abstract Parser class

The typical objective of a parser is to determine the number of pins and their
direction, but for the sake of generality this base class only defines the actual parsing
methods, and it is up to the deriving classes to implement their data structures to
collect and return their custom results. Since this kind of parsers are supposed to
stay simple - a fully fledged compilation at the design stage would heavily slow down
the process -, all of its methods are kept simple as well. For instance, a Token does
not contain any metadata and directly corresponds to its text. According to the
same philosophy, the tokenize() method that can be used to split an input line
into a list of tokens is a one-liner that splits the input text with a simple regex.
More complex parsers will require a proper Token and tokenizer infrastructure.

More in-depth information about the Parser class is presented in section 2.5 that
shows how the VHDL parser reads data from a VHDL listing. Just as a final result
example, Figure 2.9 shows an instance of a successfully compiled component item
called “wire3” (the same that was placed as a library component in Figure 2.3), built
with iNML technology, together with a VHDL item called “fulladderpd”, described
in VHDL, placed in a design.
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Figure 2.9: Items placed in the scene

2.5 Parser Example: VHDL Parser

Let us take the VHDL parser as the main example to analyze, knowing that the
other parsers are organized quite similarly with case-specific adaptations. Given
that the target of this elaboration is not to generate a complete VHDL model nor
to check the correctness of the netlist, but simply to infer the shape of the item to
insert in the scene based on its number of inputs and outputs, it is sufficient to only
analyze the entity declaration. Notice that this is the reason why this procedure is
being referred to as “parsing” and not “compiling” (even though the central method
is called compile()). For simplicity, generics and data types other than std_logic,
std_logic_vector and real are not currently supported.

1 class VHDLEntityParser : public Parser {
2 public :
3 struct PinData {
4 QString name;
5 int direction ;
6 };
7
8 struct ParsedData {
9 QString name;

10 QList <PinData > pins;
11 };
12
13 public :
14 VHDLEntityParser ();
15 Parser :: ParseResult runParse ( QFile & qfile ) override ;
16
17 void reset ();
18
19 const ParsedData & getParsedData () const ;
20 static bool isIdentifierValid ( const QString & identifier );
21
22 private :
23 Token nextToken ();
24 QString readNextLine ();
25 ...
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26 };

Listing 2.9: VHDLEntityParser class

The VHDL parser reads the file word by word and feeds the inputs to a basic
state machine. The results of the parsing step are stored in a private member of the
custom type ParsedData, which can be accessed with getParsedData() as already
shown in Listing 2.7. ParsedData stores the name of the analyzed entity plus a list
of PinData, where each entry collects information about the parsed pins, specifically
their name and direction.

In order not to over-engineer this relatively small task, the tokens emitted while
scanning the file do not have any metadata as it is sufficient to only look at their
text. The parser is implemented like a state machine whose states and transitions
are shown in Figure 2.10. It is possible to observe that the behavior of this parser
is quite linear as the only branching happens when elaborating types; all other
instances show how a transition is either resolved into a unique and specific state
if the expected entry was met or results in an error otherwise. The model entity
declaration upon which the parser is based is the following, where spacing and
capitalization do not matter since VHDL is case insensitive:
entity <entity name> is

[generic (...)]
port (

<signal>[, <signal>[...]] : <direction> {<basic type> | <ranged type>(<start> <direction> <end>)};
[other signals]

);
end entity [<entity name>]

What the diagram in Figure 2.10 does not show is what happens inside of the
states. In order to also give an idea of how this is implemented, the general structure
of the parsing function looks like this:

1 ParseState state = WAITING_FOR_ENTITY_DECLARATION ;
2 while (! m_stream . atEnd ()) {
3 Token token = nextToken ();
4 switch ( state ) {
5 case WAITING_FOR_ENTITY_DECLARATION :
6 ...
7 case READING_ENTITY_NAME :
8 ...
9 ...

10 default :
11 reportError (1, " Unexpected internal state ", m_line_n );
12 return ParseResult :: Fail;
13 }
14 }

Listing 2.10: Structure of the VHDL parser loop

Where an example of a single case is
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Figure 2.10: VHDL parser state machine
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1 case ACCUMULATING_PORTS :
2 if ( cinsensitive_text == ",") {
3 state = ACCUMULATING_PORTS ;
4 } else if ( cinsensitive_text == ":") {
5 state = READING_DIRECTION ;
6 } else {
7 if ( isIdentifierValid ( token )) {
8 accumulated_ports << token ;
9 } else {

10 reportError (1, QString (" Invalid port name: ’%1’").arg( token ), m_line_n )
;

11 return Parser :: ParseResult :: Fail;
12 }
13 }
14 break ;

Listing 2.11: Example of the actions in a parser state

After succesfully parsing the type (either directly in “Read type” or “End read type
range” if the type is ranged), the parser finally collects the accumulated_ports
together with their type and dumps this information in the ParsedData.

1 case READING_TYPE :
2 ports_type = cinsensitive_text ;
3 if ( ports_type == " std_logic " || ports_type == "real") {
4 // Save ports and start reading the next bunch
5 for ( const QString & port_name : accumulated_ports ) {
6 PinData data;
7 data.name = port_name ;
8 data. direction = direction ;
9 m_parsed_data .pins << data;

10 }
11 state = END_ACCUMULATION ;
12 } else if ( ports_type == " std_logic_vector ") {
13 state = READING_TYPE_RANGE ;
14 } else {
15 reportError (1, QString (" Unknown type ’%1’").arg( token ), m_line_n );
16 return ParseResult :: Fail;
17 }
18 break ;

Listing 2.12: Collection of ParsedData

Both of these methods also show the reporting of an error. Notice that comments
and empty lines are automatically discarded by the nextToken() function so that
there is no need to handle them by this state machine.

In case of a successful parsing, the item can just be placed in the scene as shown
in Figure 2.9. Whenever an unexpected situation occurs, the parser can choose to
report the error and quit or to store the error and continue with the operation in
case it is possible to recover from it somehow, but this does not happen in this
implementation. The parsing function returns a ParseResult, an enumeration that
is either Fail or Success. Errors are reported through a class named ParsingError.
The class contains an optional error ID, a message and information about the error
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itself such as the name of the file that generated it as well as the line number. This
class has a method called toErrorString() that collects said information into a
formatted error string. With these classes, the typical parsing process looks like
this:

1 VHDLEntityParser parser ;
2 if ( parser . parse (file) != Parser :: ParseResult :: Success ) {
3 QMessageBox mbox;
4 QDir simple_path (path);
5 mbox. setText ( QString (" Compilation of file ’%1’ failed with %2 errors .")
6 .arg( simple_path . canonicalPath ())
7 .arg( parser . getErrors ().size ()));
8 mbox. setStandardButtons ( QMessageBox :: Ok);
9 QString compilation_errors ;

10 for ( const auto & error : parser . getErrors ()) {
11 compilation_errors += error . toErrorString () + "\n";
12 }
13 mbox. setDetailedText ( compilation_errors );
14 mbox.exec ();
15 throw QCAException (" Could not parse file");
16 }
17 // Process parsed data
18 VHDLEntityParser :: ParsedData parsed_data = parser . getParsedData ();

Listing 2.13: Usage of a Parser (the missing part from Listing 2.7)

To show an example of an error being generated, let us consider the following
VHDL listing containing a declaration that uses an undefined type:

1 entity ErrorExample is

2 port (
3 x, y, z: in std_logic ;
4 r: out MyNonexistantType ;
5 );
6 end entity ErrorExample ;

Listing 2.14: Example of a VHDL file with an error

When trying to import this entity into a design the compilation fails and opens an
error report window as in Figure 2.11. It is important to point out that this parser

Figure 2.11: Example of parsing error
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only considers one file at a time, implying that MyNonexistantType may in fact be
declared somewhere else but will be considered invalid nonetheless.

This is a design choice dictated by a distinction between the design phase and the
simulation phase: implementing such an extensive compilation would often require
to compile multiple interdependent VHDL files, possibly including packages and
other types of declarations. This would heavily impact performance and MagCAD’s
usability in larger designs. On top of this, this step is only looking to define input
and output ports of an item so most of this processing would be wasted and would
also be repeated at simulation time. The choice for this trade-off fell on a restrictive
behavior, since an alternative would be the allowance of arbitrary types at the cost
of letting more possible errors get to the simulation phase and thus requiring a longer
and more twisted back-and-forth process between design fixing and trying to run
the simulation.
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2.6 Wiring

Unlike the other standard plugins developed for MagCAD up to this point, the Hy-
brid Plugin does not have a direct connection to the circuit layout, as the positioning
of the components in the design does not have any implication at all. While other
plugins consider items to be connected when they are adjacent, the Hybrid Plugin
cannot follow this paradigm. Its higher level of abstraction requires another form of
representation for interconnections, and the classical wires are the best option.

Figure 2.12: A greeting from wires in MagCAD

Wires do not necessarily represent a physical wire or any specific physical entity
in general: at this level they only represent an interconnection. Interconnections can
be freely created between any set of components regardless of their meaningfulness.
For example, it is possible to connect an iNML component to a CMOS circuit even
though there is no way that this direct connection can exist in the real world. This
is because applying hard-coded rules to connections is in conflict with MagCAD’s
plugin philosophy as the user may want to make a meaningful connection between
two circuits from two separate plugins, but would be forbidden to do so if the plugins
do not know about each other’s existence. For this reason, it is up to the designer
to be careful about the connections they make, just like a programmer cannot rely
on the compiler for checking the code functionality.

For the sake of generality, wires have not been implemented as an Hybrid-Plugin-
only feature, instead they have been added as a standalone tool (as depicted in
Figure 2.13) to MagCAD itself so that any other technology can choose to use them.
Not all the technologies are supposed to interact with wires: in order for a technology

Figure 2.13: Icon for the wiring tool (the currently selected tool)

to be compatible with wiring, its Settings class which, as introduced in section 2.2,
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also collects generic parameters related to the drawing, must set a custom property
called “wiring”. This property is tested from the main window and, accordingly to
the currently operating technology, the icon from Figure 2.13 may be grayed out
and made unclickable if the “wiring” property is not enabled.

The complexity of this tool brought the concept of a QcaSceneTool to life in order
to organize the code, its functions and datatypes. The abstract QcaSceneTool and
its first implementation as a WiringTool are described in detail in section 2.7 and
the following sections; this section will instead introduce the general usage of the
tool.

The main actions desired from this tool are:

• Creating and deleting nodes

• Connecting and disconnecting nodes

• Moving nodes

Some of the concepts and approaches have been inspired by Blender, a famous and
beautiful 3D graphics creation tool, and especially from its interactions with vertices
in Edit Mode that closely resemble what this tool tries to achieve.

Selection Most of the functionalities of the wiring tool revolve around selection.
A node can be selected by Clicking on it: selected nodes appear orange in color.
Clicking on a node clears the previous selection, but Clicking while pressing Shift
instead selects the new node while maintaining the old selection. Right-Clicking on

Figure 2.14: Some nodes selected at random using Shift + Click

an empty spot clears the selection. Note that being so central for the usage, changing
the selection is an undo/redo-able action as will be further described in section 2.7.
Double-Clicking on a node selects its whole wire; simply pressing A is similar as it
selects the whole wire of the last selected node. As from common practice across
almost any program, Ctrl + A selects everything. Another interesting feature is the
path selection: selecting one node and then Alt + Clicking another one selects the
whole path between the two nodes as in Figure 2.15. Pressing Shift in all of the
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described actions still has the effect of not clearing any previously existing selection.

Figure 2.15: Example of path selection

Creating and Deleting Nodes To create a node, the user can simply Click
on an empty spot: the rule is that no other entity should be in the same grid cell,
including items or other wires. The only exceptions are item connectors, also intro-
duced in section 2.9, as they represent the connection point to an item. Creating
a node also automatically selects it and the same rules from before apply: simply
Clicking will select the new node and clear the old selection, pressing Shift keeps
the old selection. The placed node is automatically connected to the last selected
node, if any: this is the reason for automatically selecting the new node as it makes
it a lot simpler to draw a wire. If this behavior is not desired, the user should clear
the selection before placing a new node by right clicking on an empty spot.

There are two ways of removing nodes: deleting and dissolving. Selected nodes
can be deleted by pressing Del, having the effect of removing the nodes and cutting
the connections. Pressing Alt+Del instead dissolves the nodes, meaning the nodes
are removed but a new connection is formed between their immediate neighbors in
order to preserve the overall wire. This is only possible with nodes with two con-
nections: trying to dissolve endpoints or branching points has no effect. Figure 2.16
shows a comparison of the two methods.

Connecting and Disconnecting Nodes Nodes can be connected by selecting
them and then pressing C. The selection-based framework enhances this function-
ality: it is possible to interconnect multiple nodes at once. If there are more than
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Figure 2.16: Methods of deleting nodes: standard delete on the left, dissolve on
the right

two nodes currently selected, the tool will try to connect them in pairs accord-
ing to the order of selection: suppose that the selection currently contains nodes
[n0, n1, ..., nk], pressing C will attempt to form connections
[(n0, n1), (n1, n2), ..., (nk−1, nk)]. The keyword “attempt” is important because
there is a rule to form connections: wires cannot form closed loops - this is why
letters like ‘O’ and ‘D’ in Figure 2.12 are not closed. The reason for this is that
wired loops have no meaning in the design and are instead prone to introducing
errors. For a better user experience, a failed attempt to connecting a single pair of
node does not result in the failure of the whole connection operation and is simply
skipped.

Disconnecting nodes works slightly differently: pressing Shift + C will clear all
the connections of the selected nodes. This means that even if only two nodes
are selected, Shift + C not only deletes the arc n1 → n2, but also their other
connections.

Moving Nodes Selected nodes can also be moved around by pressing G. This
key toggles the “grabbing” mode in which selected nodes will follow the mouse
movements. To exit from grabbing mode, the user can press G again and the nodes
will be aligned with the grid and dropped. Just like when creating new nodes,
dropping nodes is also restricted to free cells only: if any of the moved nodes collides
with an item in the drawing, the movement is undone and nodes return to their
original position.

A context menu can be opened by pressing Shift + Right-Click for an overview
of some of the described functions plus some extra actions. For example, the simplify
geometry command is only available from the context menu and has the effect of dis-
solving redundant nodes. Specifically, nodes are dissolved if they form an angle close
to 180◦ to their neighbors, effectively flattening a wire that was already relatively
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Figure 2.17: Context menu from the wiring tool

flat. Branching nodes are simply ignored in this process. For reasons that are made

Figure 2.18: Effect of “simplify geometry”

clearer in section 2.10, this happens inside a class called SimplifyGeometryCommand,
from which an extract shows:

1 SimplifyGeometryCommand :: SimplifyGeometryCommand ( WiringTool &tool , QList <Node *>
nodes , QUndoCommand * parent ) :

2 WiringTool :: WTUndoCommand (tool , parent ) {
3 // Check for nodes to dissolve
4 for (Node *node : nodes ) {
5 if (node -> connectionDegree () == 2) {
6 Node * node1 = node -> connectedNodes () [0];
7 Node * node2 = node -> connectedNodes () [1];
8 if ( angleBetween (node1 , node , node2 ) >= SimplifyGeometryCommand ::

dissolve_threshold )
9 new DissolveNodeCommand (tool , node , this );

10 }
11 }
12 }
13
14 ...
15
16 qreal SimplifyGeometryCommand :: angleBetween ( const Node *node1 , const Node *node2 ,

const Node * node3 ) {
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17 QVector2D direction_21 = QVector2D (node1 ->pos () - node2 ->pos ()). normalized ();
18 QVector2D direction_23 = QVector2D (node3 ->pos () - node2 ->pos ()). normalized ();
19 qreal dot = QVector2D :: dotProduct ( direction_21 , direction_23 );
20 qreal angle = qRadiansToDegrees ( qAcos (dot));
21 return angle ;
22 }

Listing 2.15: Simplifying geometry

2.7 Wiring Tool

For a tidier organization and to pave the way for future expansions, the concept
of Scene Tool was introduced, first of which is the Wiring Tool, responsible for all
the features described in section 2.6. The base class for the scene tools is called
QcaSceneTool and it defines some pure virtual methods that descendants must
implement plus various utilities and helpers. For instance, there are some methods
to manage the activation of the tool:

1 class QcaSceneTool : public QObject {
2 ...
3 public :
4 ...
5 bool isEnabled () const ;
6 void setEnabled ( bool enabled = true );
7 void enable ();
8 void disable ();
9 ...

10
11 protected :
12 virtual void onEnable () = 0;
13 virtual void onDisable () = 0;
14 ...
15 };

Listing 2.16: Enable and disable handlers for QcaSceneTool

The pure virtual methods onEnable() and onDisable() are ran whenever the acti-
vation state of the tool is changed and allow it to perform some custom operations.
For instance the Wiring Tool uses these methods to enable and disable the com-
mands described in section 2.6 so that wires cannot be interacted with when other
tools are active.

The most important role of QcaSceneTool is the definition of some virtual event
handlers as interfaces to the drawing scene.

1 class QcaSceneTool : public QObject {
2 ...
3 public :
4 ...
5 virtual void mousePressEventFallback ( QGraphicsSceneMouseEvent * event );
6 virtual void mouseReleaseEventFallback ( QGraphicsSceneMouseEvent * event );
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7 virtual void mouseMoveEventFallback ( QGraphicsSceneMouseEvent * event );
8 virtual void keyPressEventFallback ( QKeyEvent * event );
9 virtual void contextMenuEventFallback ( QGraphicsSceneContextMenuEvent * event );

10 ...
11 };

Listing 2.17: QcaSceneTool event handlers

To understand why the methods are called “fallback”, it is necessary to briefly in-
troduce the Qt event system and how MagCAD’s DrawingScene class interacts with
it. A QGraphicsScene is a Qt class that collects QGraphicsItems and QGraphicsObjects,
the latters being just an extension of QGraphicsItems and will thus be treated in-
terchangeably in this discussion. At some point of Qt’s event handling system,
events arrive into the QGraphicsScene which, by default, forwards them to a spe-
cific QGraphicsItem that acts as a receiver. For instance, the receiver of a mouse
press event is the item below the mouse. The receiver may decide to either process
or ignore the event: in the former case the event is considered accepted and the
procedure is completed; in the latter the event is forwarded to the item’s parent (if
any). If an event is ignored from the whole parenting tree of the original item, it
goes back to the scene. Figure 2.19 shows a schematic of this system.

Figure 2.19: Overview of the Qt event system

With this in mind, the reason why the methods are fallbacks is because they are
called only if no item has accepted the event. MagCAD’s DrawingScene is simply
an extension of a QGraphicsScene that reimplements some of the event handlers
described before. For example, the mouse press event handler:

1 void DrawingScene :: mousePressEvent ( QGraphicsSceneMouseEvent * mouseEvent ) {
2 // Check if any tool wants to handle this event
3 if ( m_active_tool != nullptr ) {
4 QGraphicsScene :: mousePressEvent ( mouseEvent );
5 if (! mouseEvent -> isAccepted ())
6 m_active_tool -> mousePressEventFallback ( mouseEvent );
7 return ;
8 }
9 // Legacy actions not handled by a tool

10 ...
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11 }

Listing 2.18: Example of a DrawingScene event handler

The call in line 4 is the one that forwards the event to the relevant item in the scene,
so the fallback is called only if the item and its parents refuse the event or if there
was no item to receive the event to begin with (e.g. a click on an empty spot).

By default, QcaSceneTool’s fallbacks just ignore the events. For instance:
1 void QcaSceneTool :: mousePressEventFallback ( QGraphicsSceneMouseEvent * event ) {
2 event -> ignore ();
3 }

Listing 2.19: Default implementation of a QcaSceneTool event fallback

The derived classes such as the Wiring Tool can override them. Continuing with
the case of the mouse press event, upon receiving it the Wiring Tool attempts to
create a new node at the event location if the right conditions are met. The right
conditions require that the grid cell in which the event is located must be inside the
drawing region, free and no other actions like node moving must be ongoing.

1 void WiringTool :: mousePressEventFallback ( QGraphicsSceneMouseEvent * event ) {
2 Qt :: MouseButton mouse_button = event -> button ();
3 if ( mouse_button == Qt :: LeftButton ) {
4 // Check if user is not doing other stuff
5 if ( isGrabbing ()) {
6 event -> ignore ();
7 return ;
8 }
9 // Check if event position is valid

10 if (event -> scenePos ().x() <= 0 || event -> scenePos ().y() <= 0) {
11 event -> ignore ();
12 return ;
13 }
14 // Check if any other item is in the clicked cell
15 if (! isCellFree (event -> scenePos ())) {
16 event -> ignore ();
17 return ;
18 }
19 QUndoCommand * parent = new QUndoCommand ;
20 CreateNodeCommand * create_command = new CreateNodeCommand (* this ,

snapToCellCenter (event -> scenePos ()), parent );
21 // Implicitly select new node
22 bool clear_selection = ! WiringTool :: isKeyboardModifierPressed (Qt ::

ShiftModifier );
23 ChangeSelectionCommand :: selectNodes (* this , { create_command ->node ()},

clear_selection , parent );
24 if ( lastSelectedNode ())
25 new ConnectNodesCommand (* this , create_command ->node () , lastSelectedNode

() , parent );
26 undoStack ().push( parent );
27 } else if ( mouse_button == Qt :: RightButton ) {
28 if (! isGrabbing () && ! isKeyboardModifierPressed (Qt :: ShiftModifier ))
29 clearSelection ();
30 }
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31 }

Listing 2.20: Full implementation of WiringTool’s mouse press event fallback handler

Lines 4 to 18 implement the mentioned checks; lines 19 to 26 finally create the
new node. The usage of QUndoCommands is required for the standard undo / redo
functionalities in Qt and are discussed more in depth in section 2.10, at this point
it is sufficient to mention that they handle the allocation and deallocation of the
objects and that they run their function when they are pushed into the undo stack
(line 26). They are instantiated with new as Qt requires and will be automatically
deleted by the stack itself. Lines 22 and 23 show the check for clearing the previous
selection if Shift is not pressed and the update of the selection itself inserting the
newly created node; lines 24 and 25 instead show the automatic connection to any
previously selected node that happens when creating a new node.

On top of event handling, tools are also intended to organize the items in the
scene and the Wiring Tool collects all the information related to wiring. Terms such
as “node” and “wire” have been used loosely up to this point, but they have specific
meanings in the code. All the items managed by the Wiring Tool follow the hierarchy

Figure 2.20: Hierarchy of classes used in the Wiring Tool

from Figure 2.20 to group common functionalities. A Wire is mostly a container that
keeps track of its Nodes and offers graph-like algorithms that can be used in various
points of the program, for instance the Wire::pathConnecting() method returns
a path between two nodes passed as arguments used for selecting pahts as described
in section 2.6. Segments are looser entities that only bare graphical information.
All of these elements are better described in section 2.8.

By grouping elements this way, it is very simple to interact with the entities used
by a tool. A loop such as this one:

1 for (Wire *wire : wires ()) {
2 for (Node *node : wire -> nodes ()) {
3 ...
4 }
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5 }

Listing 2.21: Common loop throughout the Wiring Tool

is common throughout the methods of the Wiring Tools and is easily achievable
with this implementation.

2.8 Wiring Elements

As introduced in section 2.7, the Wiring Tool mainly works with the classes shown
in Figure 2.20.

Segments Segments are purely graphical elements that do not bear any informa-
tion about the connection graph. They are automatically constructed whenever the
connection between two nodes is created and they represent the line that is drawn
between them. In order to follow the movements of their nodes, they use Qt’s event
and slot system: whenever a node is moved, it emits a signal that the segment
receives through its updatePosition() slot.

1 class WiringTool :: Segment : public WiringTool :: WireElement {
2 ...
3 public :
4 Segment (Node *node1 , Node *node2 , WiringTool &tool , Wire *wire = nullptr );
5
6 public slots :
7 void updatePosition ();
8 ...
9

10 private :
11 ...
12 /* Inherited from QGraphicsObject */
13 void paint ( QPainter *painter , const QStyleOptionGraphicsItem *option , QWidget *

widget ) override ;
14 QRectF boundingRect () const override ;
15 ...
16 private :
17 std :: array <Node *, 2> m_nodes ;
18 };

Listing 2.22: Main methods of the Segment class

To simplify this procedure, segments also rely on Qt’s local transform system. Basi-
cally, Qt allows graphic items to refer to coordinates through an internal transform
of their own which is also inherited from parent graphics objects to child graphics
objects1. In this case, segments have a transform that allows them to consider their

1Graphics object parenting is not to be confused with class inheritance: in this case, parenting
refers to having a graphics object transform be dependent on another one.
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nodes as always at (-1, 0) and (+1, 0), greatly simplifying the implementation. This
transform is applied in the following method:

1 void Segment :: transformToNormalizeNodes () {
2 resetTransform ();
3 // Set position to midpoint between nodes
4 QPointF midpoint = ( m_nodes [0]-> pos () + m_nodes [1]-> pos ()) / 2;
5 setPos ( midpoint );
6 // Rotate and scale
7 QLineF line = QLineF ( m_nodes [0]-> pos () , m_nodes [1]-> pos ());
8 setRotation (-line. angle ());
9 qreal length = line. length ();

10 // Don ’t set the scale to 0!
11 setScale ( length / 2 + 1e -16);
12 }

Listing 2.23: Transform of a Segment

So that in the end they can implement methods such as Qt’s boundingRect() (used
for collision detection and for updating the scene) in a simplified manner:

1 QRectF Segment :: boundingRect () const {
2 qreal height = 2 * Node :: radius_max / scale ();
3 return QRectF (-1, -height / 2, 2, height );
4 }

Listing 2.24: Bounding rect of a Segment

Nodes Nodes act both as graphical elements and as interconnection graph ele-
ments. They are graphically represented as dots whose size and color may change
according to their status. As clearly shown across multiple pictures throughout
section 2.7, they become orange when selected and they also become larger when
the mouse pointer hovers over them for clarity and better aesthetics. On top of
graphical management, they also manage connections.

1 class WiringTool :: Node : public WiringTool :: WireElement {
2 ...
3 public :
4 Node( WiringTool &tool , Wire *wire = nullptr );
5 ...
6 private :
7 QHash <Node*, Segment *> m_connections ;
8 ...
9 };

Listing 2.25: Constructor and main attribute of a Node

Their most important attribute is m_connections which is a hash map that maps
any connected node to the segment that connects them. This serves not only to
track which nodes are connected to which, but also through which segments; addi-
tionally segments may easily be updated to carry some custom information about
the connection. As a small example, the list of connected nodes can be obtained
with:
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1 QList <Node *> Node :: connectedNodes () const {
2 return m_connections .keys ();
3 }

Listing 2.26: Retrieving the connections of a Node

When the connection between two nodes is requested, the caller (in this case a
Wire) creates a segment and adds the nodes to eachother’s map of connections both
referring to the same segment.

1 Segment *Wire :: connect (Node *node1 , Node * node2 ) {
2 // Create a segment and notify the nodes
3 Segment * segment = new Segment (node1 , node2 , tool () , this );
4 segment -> setZValue ( Segment :: layer );
5 node1 -> connect (node2 , segment );
6 node2 -> connect (node1 , segment );
7 m_segments << segment ;
8 return segment ;
9 }

Listing 2.27: A wire connecting two nodes

Wires Wires are containers that collect nodes and segments and are, for all intents
and purposes, a representation of a connected, loopless, undirected simple graph.
As such, they implement some graph-related methods such as pathConnecting()
that returns the path between two nodes. This method is used both for user-based
purposes such as path selections like in Figure 2.15 and for internal critical sections
such as the enforcement of the connected and loopless attributes.

1 QList <Node *> Wire :: pathConnecting (Node *node1 , Node * node2 ) const {
2 // If either node does not belong to this wire , no path can exist
3 if (node1 ->wire () != this || node2 ->wire () != this )
4 return QList <Node * >();
5 QSet <Node*> visited_nodes ;
6 return recursivePathConnecting (node1 , node2 , visited_nodes );
7 }
8
9 QList <Node *> Wire :: recursivePathConnecting (Node *node1 , Node *node2 , QSet <Node *>

& visited ) const {
10 QList <Node*> path;
11 Node * current = node1 ;
12 Node * target = node2 ;
13 visited << node1 ;
14 for (Node *node: current -> connectedNodes ()) {
15 if ( visited . contains (node))
16 continue ;
17 else if (node == target ) {
18 // Found target !
19 path << current << target ;
20 return path;
21 } else {
22 // Recursively look for paths starting from this new node
23 QList <Node*> subpath = recursivePathConnecting (node , target , visited );
24 if (! subpath . empty ()) {
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25 // Found in recursive call
26 path << current << subpath ;
27 return path;
28 }
29 }
30 }
31 return path;
32 }

Listing 2.28: Pathfinding in a Wire

2.9 Connectors

An additional small change applied to the qcagraphicslib are Connectors, the
contact point between the wires and items in the scene. Connectors were added
with the wires in mind, but they were implemented as an abstract concept that may
be re-used according to other needs.

1 class Connector : public QGraphicsObject {
2 Q_OBJECT
3 public :
4 explicit Connector ( QGraphicsItem * parent = nullptr );
5 virtual ~ Connector ();
6
7 void attach ( QGraphicsItem *item);
8 void detach ( QGraphicsItem *item);
9 const QSet < QGraphicsItem *> & attachedItems () const ;

10
11 protected :
12 virtual void mousePressEvent ( QGraphicsSceneMouseEvent * event ) override ;
13
14 signals :
15 void clicked ( Connector *connector , QGraphicsSceneMouseEvent * event );
16
17 protected :
18 QSet < QGraphicsItem *> m_attached_items ;
19 };

Listing 2.29: Base Connector class

Even though it is not immediately apparent, the base class is abstract because it
does not implement the required virtual methods paint() and boundingRect()
from QGraphicsObject because different connectors may have different shapes for
various reasons. By default a connector is useful because it emits a clicked signal
when the mouse is pressed so that some tool (such as the Wiring Tool) can receive
that signal and react. The event handling may include a call to the attach()
method that links a graphics item to the connector for later retrieval. In the case
of the Wiring Tool, the event is handled by creating a node on top of the clicked
connector and attaching the node to it and it is very similar to Listing 2.20.
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The specific connector used by the Wiring Tool is a PointConnector, that ap-
pears like shown in Figure 2.21:

1 class PointConnector : public Connector {
2 Q_OBJECT
3 public :
4 PointConnector ( const QPointF &position , const QSizeF &size , QGraphicsItem *

parent );
5 ~ PointConnector () override ;
6
7 void paint ( QPainter *painter , const QStyleOptionGraphicsItem *option , QWidget *

widget = nullptr ) override ;
8 QRectF boundingRect () const override ;
9

10 private :
11 QSizeF m_size ;
12 };

Listing 2.30: PointConnector class

Figure 2.21: PointConnectors appear yellow and round in shape

Connectors are generated by a QcaGraphicsWrapper based on the indications of
its wrapped item, which has a specifically created method called connectionPoints()
that returns a list of points expressed in local coordinates where connectors should
be placed. For instance, the generic Hybrid Wrapper item places its connectors on
top of its pins.

1 QList <QPointF > HybridItemWrapperBase :: connectionPoints () const {
2 QList <QPointF > points ;
3 for ( QcaPin *pin : m_pins ) {
4 // Set the connection point on the tip of the pin
5 QPointF offset ;
6 if (pin -> direction () == QcaPin :: INPUT ) {
7 offset = QPointF (0.0 , 0.5);
8 } else {
9 offset = QPointF (1.0 , 0.5);

10 }
11 points << pin ->pos () + offset ;
12 }
13 return points ;
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14 }

Listing 2.31: Listing the connection points of an Hybrid Wrapper item

Connectors were also manually added for pins, which are a specific instance of a
QcaItem, in order to be able to connect them to the items in the scene:

1 QList <QPointF > QcaPin :: connectionPoints () const {
2 QList <QPointF > list;
3 // Reference point ( normalized )
4 QPointF position ;
5 if ( direction () == INPUT ) {
6 position = QPointF (1.0 , 0.5);
7 } else {
8 position = QPointF (0.0 , 0.5);
9 }

10 QTransform transform ;
11 // Orientations must be as asserted below , otherwise this code needs to be

updated !
12 static_assert ( RIGHT == 0 && DOWN == 1 && LEFT == 2 && UP == 3,
13 " Orientations are assumed to be in counter - clockwise order ");
14 qreal rotation = -90.0 * orientation ();
15 // Rotate depending on orientation
16 transform . rotate ( rotation );
17 position = transform .map( position );
18 list << position ;
19 return list;
20 }

Listing 2.32: Listing the connection points of an Hybrid Wrapper item

Since connectors only make sense in technologies where wiring is supported, they
only appear under that condition.
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2.10 Undo Commands

GUI programming poses a lot of challenges as the interactions with the user are
greatly varied and edge cases or unpredicted actions are always behind the corner.
Among these challenges stands the undo / redo paradigm, greatly increasing the
quality of the user experience as much as the implementation complexity.

In Qt, undo functionalities are implemented through a QUndoStack and the
QUndoCommands. An undo command represents an atomic action that can be done
and undone repeatedly. To implement this behavior, the QUndoCommand class has
two virtual methods that subclasses need to override: undo() and redo(). The
method redo() is called both when the command has to be executed for the first
time - more specifically, it is automatically called when a new command is pushed
onto the stack - as well as when it has to be redone after being undone; undo()
is instead called upon user request, such as when clicking Ctrl+Z or selecting this
option from the Edit menu. The QUndoStack simply collects commands. When the
user undoes their last action, undo() is called on the top element of the stack and
the stack pointer is rolled back. At that point, the user can either redo the action
or perform a new one. In the former case, the stack pointer advances and redo() is
called; the latter case instead clears the stack from any undone actions (i.e. actions
that are still in the stack, but beyond the current stack pointer because they have
been rolled back) and pushes the new one, effectively overwriting the old actions
that can no longer be redone. Actions that are removed from the stack, whether it
is because new actions overwrite them or because the stack is manually cleared or
for any reason in general, are always destroyed.

Undo commands have two additional, very useful properties: parenting and the
ability to be merged. Parenting means that a certain command, typically an empty
command, can collect a number of child-commands and undoing or redoing the
parent means undoing and redoing the children (in order). An example of this has
already appeared in Listing 2.20: line 19 allocates the empty parent command and
the other commands, such as the one in line 20, are allocated by specifying parent
as their parent. It is then parent that is pushed on the stack in line 26. On the
other hand, merging commands is useful to unify similar commands: it often makes
more sense if some commands of the same type executed in succession are done
and undone all at once. This happens, for instance, in a text editor where despite
characters are typed one at a time, Ctrl+Z does not remove single letters but larger
text chunks. As an additional advantage, this also saves space on the undo stack
that is typically limited in size and would be easily filled by trivial commands.

The Wiring Tool defines the following commands:
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• CreateNodeCommand: to create new nodes

• DeleteNodeCommand: to delete nodes

• DissolveNodeCommand: to dissolve nodes

• ConnectNodesCommand: to connect nodes

• DisconnectNodesCommand: to remove connections between nodes

• ChangeSelectionCommand: to update the selection

• MoveSelectionCommand: to move nodes

• SimplifyGeometryCommand: to simplify the geometry

Which are generally written in a flexible way so that they can be combined and
adapted for more scenarios than their main purpose. There are two main chal-
lenges for this paradigm in Qt that can be referred to as “non-finality” and memory
management. By non-finality it is meant that undo commands must, by their very
definition, only apply changes that can be undone. As a small example, the undo
in a text editor cannot simply delete and just lose the recently typed text from the
document, because it must keep a local copy of it as well as the location where it
was removed from in order to be able to re-insert it. It will only be allowed to lose
these pieces of information when the command is outdated such as when the user,
after undoing the command, types something else and effectively re-writes history,
or when the command becomes too old and is simply removed from the stack, ef-
fectively becoming not undo-able anymore.
This introduces the second challenge, memory management, as Qt usually requires
the allocation of its objects on the heap and thus it is necessary to delete them at
the right time. The problem is that commands cannot blindly delete the things
they allocate because sometimes items must survive the deletion of the commands
that created them, some other times it is the opposite. To better understand this
problem, let us introduce a simplified case of the CreateNodeCommand.

The real CreateNodeCommand is slightly complicated by the attributes desired by
wires in the wiring tool: as already mentioned, wires are assumed to be connected,
loopless, undirected simple graphs. The problem lies in the fact that creating a new
node without connecting it to anything also implies the creation of a new wire and,
at the same time, undoing that same action needs to remove the wire from the scene.
So, for this example, let us only consider nodes and ignore wires and connections.
In such a scenario, a naive implementation of the command would look like this:
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1 class SimplifiedCreateNodeCommand : public QUndoCommand {
2 public :
3 SimplifiedCreateNodeCommand ( QGraphicsScene *scene ,
4 const QPointF &position ,
5 QUndoCommand * parent ) :
6 QUndoCommand ( parent ),
7 m_scene ( scene ),
8 m_node ( nullptr ),
9 m_position ( position ) {

10 }
11
12 void redo () override {
13 m_node = new Node( m_position );
14 m_scene -> insertItem ( m_node );
15 }
16
17 void undo () override {
18 m_scene -> removeItem ( m_node );
19 m_node -> deleteLater ();
20 }
21
22 private :
23 QGraphicsScene * m_scene ;
24 Node * m_node ;
25 QPointF m_position ;
26 }

Listing 2.33: Naive implementation of a CreateNodeCommand

There are two problems with the implementation in Listing 2.33:

1. The node’s internal state is lost after the first undo.

2. Any external reference to the node is invalidated after every undo / redo.

Both problems may be solved through small changes within the same setup: for
instance, the first problem may be faced by storing a local copy of the node before
deleting it, but this is more of a workaround than a clean and complete solution. A
better idea would be to ensure that the node is always actually the same node. For
instance, this would be a better - but yet incomplete - version:

1 class SimplifiedCreateNodeCommand : public QUndoCommand {
2 public :
3 SimplifiedCreateNodeCommand ( QGraphicsScene *scene ,
4 const QPointF &position ,
5 QUndoCommand * parent ) :
6 QUndoCommand ( parent )
7 m_node (new Node( position )) {
8 }
9

10 ~ SimplifiedCreateNodeCommand () {
11 m_node -> deleteLater ();
12 }
13
14 void redo () override {
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15 m_scene -> insertItem ( m_node );
16 }
17
18 void undo () override {
19 m_scene -> removeItem ( m_node );
20 }
21
22 private :
23 QGraphicsScene * m_scene ;
24 Node * m_node ;
25 }

Listing 2.34: Improvement on the naive implementation of a CreateNodeCommand

This is arguably a much cleaner implementation that solves both of the problems
mentioned above. The new problem in this case is that the node no longer survives
its command that may be deleted without actually intending it. This happens, for
instance, when the stack is too full so the oldest command is removed from the
stack (and deleted) to make room for the new ones: that will also remove the node
from the scene. There are multiple, equally valid solutions to this problem, but the
chosen solution has the advantage of automatically handling the deletion. A new
class was implemented:

1 class Kamikaze {
2 public :
3 Kamikaze ();
4
5 void takeOwnership ( QObject * object );
6 void restoreOwnership ( QObject * object );
7 bool owns( QObject * object ) const ;
8
9 private :

10 QObject m_deleter ;
11 QHash < QObject *, QObject *> m_original_owners ;
12 };

Listing 2.35: Class for automatic deletion of objects

This class takes advantages of the fact that objects in Qt may have parents that
automatically delete them in their destructor. For this reason, by passing an object
through takeOwnership(), the object’s original parent is stored and m_deleter, an
empty QObject created with this only purpose, is set as its new parent. At that
point, it is no longer necessary to explicitly delete the object because m_deleter’s
destructor will destroy it as from Qt’s parenting rules. The final implementation for
the node creator now becomes:

1 class SimplifiedCreateNodeCommand : public QUndoCommand , private Kamikaze {
2 public :
3 SimplifiedCreateNodeCommand ( QGraphicsScene *scene ,
4 const QPointF &position ,
5 QUndoCommand * parent ) :
6 QUndoCommand ( parent )
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7 m_node (new Node( position )) {
8 }
9

10 void redo () override {
11 m_scene -> insertItem ( m_node );
12 if (owns( m_node ))
13 releaseOwnership ( m_node );
14 }
15
16 void undo () override {
17 m_scene -> removeItem ( m_node );
18 if (! owns( m_node ))
19 takeOwnership ( m_node );
20 }
21
22 private :
23 QGraphicsScene * m_scene ;
24 Node * m_node ;
25 }

Listing 2.36: Final implementation of a simplified create node command

With this implementation, memory management is automatically handled by Qt,
references are always valid and the solution is not polluted with local copies of the
items or their properties.
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2.11 Saving

One additional feature to complete the development of the Hybrid Plugin is inte-
grating it in the saving and loading procedures. In general, Hybrid items do not
need particular changes as the saving / loading of a component is implemented as
a general feature that is inherited from the abstract class QcaItem. One addition
that was instead necessary is the compilation of the loaded item that must happen
before it is inserted in the scene. Wires, instead, require some bigger adaptations.

Design saving is implemented by qcalib’s DrawingSaver class. It exposes various
overloaded methods called saveQcaLayout() used to save the design as a layout
file (with a .qll file format) and a saveQcaComponent() to save the design as a
component (with a .qcc file format). There is a net distinction between the two
entities and their generation processes because while a design is “final”, meaning
that all of its items have definitive positions, sizes and properties; a component
is slightly more abstract: the actual positions of its items are thought of as local
coordinates inside of the component that may be arbitrarily placed in the design,
in a similar way sizes and properties cannot be hard-coded in a component because
they would otherwise clash with the settings of other designs where the component
is to be instantiated.

Designs are saved using the QXmlStreamWriter class, meaning their contents
follow the XML format. The stream writer automatically handles the generation of
the necessary tags and fields so that the drawing saver can only worry about what
to save instead of how. Listing 2.37 shows an example of a saved design from which
the component “wire3” inserted in Figure 2.3 was extracted.

1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <!--File describing the layout of a QCA circuit -->
3 <qcalayout >
4 <technologies >
5 <settings tech =" iNML">
6 <property name =" Height " value ="90"/ >
7 <property name =" Thickness " value ="10"/ >
8 ...
9 </settings >

10 </ technologies >
11 <components >
12 <item tech =" iNML" name =" Magnet "/>
13 </ components >
14 <layout >
15 <pin tech =" iNML" name =" DOUT" direction ="1" id ="1" x="4" y="0" layer ="0"/ >
16 <pin tech =" iNML" name =" DIN" direction ="0" id ="2" x="0" y="0" layer ="0"/ >
17 <item comp ="0" id ="3" x="3" y="0" layer ="0" >
18 <property name =" phase " value ="0"/ >
19 </item >
20 <item comp ="0" id ="4" x="2" y="0" layer ="0" >
21 <property name =" phase " value ="0"/ >
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22 </item >
23 <item comp ="0" id ="5" x="1" y="0" layer ="0" >
24 <property name =" phase " value ="0"/ >
25 </item >
26 </layout >
27 </qcalayout >

Listing 2.37: Contents of the save file from Figure 2.3

This file shows that the design contains three magnets in line and two pins called
DIN and DOUT. It is also possible to observe how a typical save file is structured and
what its main sections are:

1. Technologies: contains information about the technology in the design, specif-
ically its name and all of its settings;

2. Components: lists the name of the used items and the technology they belong
to;

3. Layout: describes the instancing and positioning of the items in the scene.

The separation between the Components and Layout sections was devised so that the
Components section can simply use an indexing pattern in order to avoid repeating
the same information about a given component multiple times by having the field
comp in the item tag refer to the entry number (counting from 0) of the item in the
Components section.

The new information about wiring is placed in the layout section. The choice
fell on implementing a new system of lists and hash map as a general solution for the
saving of newly implemented objects in the layout instead of having to update the
saveQcaLayout() method, which would otherwise need to be updated on every new
addition to MagCAD. To work with this system, a new interface called Exportable
can be inherited from in order to expose general saving and loading methods:

1 template <class StreamWriter , class StreamReader >
2 class Exportable {
3 public :
4 Exportable () = default ;
5 virtual ~ Exportable () = default ;
6
7 virtual StreamWriter & exportItem ( StreamWriter & writer ) const = 0;
8 virtual StreamReader & importItem ( StreamReader & reader ) = 0;
9 };

Listing 2.38: Exportable class

The drawing saver now also uses some additional type definitions:
1 class DrawingSaver {
2 ...
3 public :
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4 using LayoutExportable = Exportable < QXmlStreamWriter , QXmlStreamReader >;
5 using LayoutCollection = QList < LayoutExportable *>;
6 using LayoutSections = QHash <QString , LayoutCollection >;
7 ...
8 };

Listing 2.39: Type definitions from DrawingSaver

Thanks to these new types, additions to MagCAD such as wiring can simply define a
custom entry in the LayoutSections map that the program passes to saveQcaLayout()
when saving, preventing the loss of control of the number of parameters of that
method. On top of this, this approach abstracts the data types used in the design
from those needed to save it as circular dependencies could arise: it was the case in
an early development stage of the Wiring Tool, implemented in the qcagraphicslib
which, in turn, uses the qcalib that also defines the DrawingSaver class - to
put it more clearly, if the DrawingSaver directly used the Wiring Elements from
section 2.8, qcalib and qcagraphicslib would be cross-dependent. When export-
ing, the DrawingSaver can just iterate through the layout sections, write the section
name and call the exportItem() method of the passed items.

Combining this approach with the advantages of organizing the code through
QcaSceneTools makes the saving procedure very simple:

1 DrawingSaver :: save_state_t DrawingScene :: save( QFile *file) {
2 ...
3 DrawingSaver saver ;
4 DrawingSaver :: LayoutSections sections ;
5 if ( techSettings -> getProperty (" wiring "). toBool ())
6 sections . insert (" wiring ", m_wiring_tool -> collectExportableItems ());
7 return saver . saveQcaLayout ( globalOptions , this -> techSettings , this ->qcas () ,

sections , file);
8 }

Listing 2.40: Saving of a scene

Where the WiringTool::collectExportableItems() method exploits the fact that
Wires also inherit from the Exportable class. Their exportItem() method uses the
same indexing trick of MagCAD’s save files to represent nodes:

1 QXmlStreamWriter &Wire :: exportItem ( QXmlStreamWriter & writer ) const {
2 writer . writeStartElement ("wire");
3 // Assign indices to nodes
4 std :: size_t index = 0;
5 QHash < const Node*, std :: size_t > node_indices ;
6 for (Node *node : m_nodes )
7 node_indices . insert (node , index ++);
8 for (Node *node : m_nodes )
9 node -> exportItem (writer , node_indices );

10 writer . writeEndElement ();
11 return writer ;
12 }

Listing 2.41: Wire’s exportItem() method
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It is possible to observe how nodes are indexed with a first sweep and then exported
with a second. Indexing is required to simplify the description of connections. A
node can then save its index, its position and connections:

1 QXmlStreamWriter &Node :: exportItem ( QXmlStreamWriter &writer , const QHash < const Node
*, std :: size_t > indices ) const {

2 writer . writeStartElement ("node");
3 writer . writeAttribute (" index ", QString :: number ( indices [ this ]));
4 writer . writeAttribute ("x", QString :: number (pos ().x()));
5 writer . writeAttribute ("y", QString :: number (pos ().y()));
6 // Process connections
7 QString connections ;
8 for ( WiringTool :: Node * connection : connectedNodes ())
9 connections += QString :: number ( indices [ connection ]) + " ";

10 // Remove last space
11 connections . remove ( connections .size () - 1, 1);
12 writer . writeAttribute (" connections ", connections );
13 writer . writeEndElement ();
14 return writer ;
15 }

Listing 2.42: Node’s exportItem() method

A full example of a save file for a design containing items and wires in the Hybrid
technology is the following:

1 <?xml version ="1.0" encoding ="UTF -8"? >
2 <!--File describing the layout of a QCA circuit -->
3 <qcalayout >
4 <technologies >
5 <settings tech =" Hybrid ">
6 <property name =" wiring " value =" true "/>
7 <property name =" Layoutheight " value ="7"/ >
8 <property name =" Layoutwidth " value ="16"/ >
9 </settings >

10 </ technologies >
11 <components >
12 <item tech =" Hybrid " name =" Component "/>
13 </ components >
14 <layout >
15 <item comp ="0" id ="1" x ="14" y="4" layer ="0" >
16 <property name =" Path" value =" inml/ custom / wire3 .qcc "/>
17 </item >
18 <item comp ="0" id ="2" x="9" y="4" layer ="0" >
19 <property name =" Path" value =" inml/ custom / wire3 .qcc "/>
20 </item >
21 <item comp ="0" id ="3" x="5" y="4" layer ="0" >
22 <property name =" Path" value =" inml/ custom / wire3 .qcc "/>
23 </item >
24 <wiring >
25 <wire >
26 <node index ="0" x ="350" y ="275" connections ="1"/ >
27 <node index ="1" x ="450" y ="275" connections ="0"/ >
28 </wire >
29 <wire >
30 <node index ="0" x ="550" y ="275" connections ="1"/ >
31 <node index ="1" x ="700" y ="275" connections ="0"/ >
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32 </wire >
33 </wiring >
34 </layout >
35 </qcalayout >

Listing 2.43: Contents of the save file from Figure 2.3

2.12 Loading

The loading procedure instead requires a bit more attention. It is executed by the
DrawingReader class which, unlike the DrawingSaver, is not part of the qcalib
since it is a class of the top level MagCAD itself.

Also in this case, most of the operations are automatically executed thanks to the
inheritance patterns in MagCAD. The only difference with other items is that Hybrid
items need to have their compile() method called before they can be inserted in
the design. For this reason, they are intercepted while loading in order to compile
the content of the file they wrap:

1 DrawingReader :: parse_state_t DrawingReader :: parse ( QFile *file) {
2 ...
3 auto * hybrid_item = static_cast < HybridItemWrapperBase *>( currentItem );
4 if ( hybrid_item ) {
5 try {
6 hybrid_item -> compile ();
7 } catch ( const QCAException & exception ) {
8 QMessageBox mbox(
9 QMessageBox :: Critical ,

10 " MagCAD Error ",
11 QString (" Failed to parse file ’%1’: %2").arg(file -> fileName () ,
12 exception .what ()),
13 QMessageBox :: Ok);
14 mbox.exec ();
15 return PARSE_FAIL ;
16 }
17 }
18 ...
19 }

Listing 2.44: Interception of Hybrid items during loading

For the same reasons encountered when saving, Wiring data cannot use the Wire
Elements from section 2.8 because that would create a circular dependency between
qcagraphicslib and MagCAD, so the same trick of using hash maps with interme-
diate data was employed.

1 class DrawingReader {
2 public :
3 ...
4 using WiringNodeProperties = QHash <QString , QString >;
5 using WiringNodeCollection = QList < WiringNodeProperties >;
6 using WiringData = QList < WiringNodeCollection >;
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7
8 DrawingReader ( const QList < QcaTechnologyInterface *> & technologies ,
9 ComponentsWidget * componentWidget );

10
11 parse_state_t parse ( QFile *file);
12
13 DrawingSettings * parsedSettings () { return m_settings ; }
14
15 QList < QcaItem *> parsedItems () const { return m_itemList ; }
16 QList < QcaPin *> parsedPins () const { return m_pins ; }
17 const WiringData & parsedWiringData () const { return m_wiring_data ; }
18 ...
19 };

Listing 2.45: The DrawingReader class

The data coming from the wiring section of a save file is stored in the WiringData
map that explicitly contains the parameters as written in the file itself, so that the
Wiring Tool can handle this data on its own. Basically, the WiringNodeProperties
are a partially digested structure containing the properties from XML file and they
correspond to the properties of a single node, the WiringNodeCollection groups
properties from multiple nodes and will form a wire, finally WiringData collects a
list of to-be wires.

The structure of the parse() method is somewhat similar to the one used in
section 2.5, as it is based on a simple state machine. In order to add support for
wiring, a new state was added where all the wiring section is parsed and accumu-
lated in a local member called m_wiring_data whose reference can be accessed with
parsedWiringData().

Once the parsing procedure is successfully completed, it is possible to call
WiringTool::insertWiringElements() that accepts a reference to a variable of
type WiringData. It internally processes the data and generates the wires for the
design. This method is based upon the undo commands from section 2.10 to re-use
the already existing infrastructure. Once again, the same problem from the saving
procedure arises: connections are stored as indices, but nodes must be created before
being indexed. For this reason, this method creates the nodes first, then maps their
index to them, and finally creates the connections.

1 void WiringTool :: insertWiringElements ( const DrawingReader :: WiringData & wiring_data )
{

2 ...
3 // Create nodes and wires as QUndoCommands
4 QUndoCommand * parent = new QUndoCommand ;
5 ChangeSelectionCommand :: clearSelection (* this , parent );
6 for ( const DrawingReader :: WiringNodeCollection & node_collection : wiring_data )

{
7 QHash <QString , Node*> node_index_map ;
8 // Initialize nodes
9 for ( const DrawingReader :: WiringNodeProperties & node_properties :

node_collection ) {
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10 qreal x = node_properties . value ("x"). toDouble ();
11 qreal y = node_properties . value ("y"). toDouble ();
12 QPointF position ( QPointF (x, y));
13 auto * create_node_command = new CreateNodeCommand (* this , position ,

parent );
14 Node *node = create_node_command ->node ();
15 // Check if node was created on top of a connector
16 for ( QGraphicsItem *item : scene (). items ( position )) {
17 auto * connector = dynamic_cast < Connector *>( item);
18 if ( connector ) {
19 node -> bindToConnector ( connector );
20 }
21 }
22 ChangeSelectionCommand :: selectNodes (* this , {node}, true , parent );
23 node_index_map . insert ( node_properties . value (" index "), node);
24 }
25 // Form connections
26 for ( const DrawingReader :: WiringNodeProperties & node_properties :

node_collection ) {
27 QString current_node_index = node_properties . value (" index ");
28 QStringList connection_index_list = node_properties . value (" connections "

). split (" ", Qt :: SkipEmptyParts );
29 for ( const QString & connected_node_index : connection_index_list ) {
30 Node * node1 = node_index_map [ current_node_index ];
31 Node * node2 = node_index_map [ connected_node_index ];
32 /* Check if connection hasn ’t already been formed in the reverse

order (a.k.a. current_node was already
33 * met as a connected_node before )
34 */
35 if (! node2 -> isConnectedTo ( node1 )) {
36 new ConnectNodesCommand (* this , node1 , node2 , parent );
37 }
38 }
39 }
40 }
41 ChangeSelectionCommand :: clearSelection (* this , parent );
42 ...
43 }

Listing 2.46: Inserting loaded wires

Notice also that since there is no explicit information about nodes being placed on
connectors in the save file, that information is inferred based on the position of the
node in lines 16 - 21: this method goes through any items present in the scene below
the node - that, by the node creation rules, should only be connectors -, checks if
they are actually connectors and then records the association.
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Flipp

3.1 ModelSim FLI

ModelSim is an established digital circuit simulator widely used around the world
as a tool for the verification of digital designs. Among countless advanced func-
tionalities, ModelSim has a feature that is particularly interesting to the purpose of
this thesis: its Foreign Language Interface (FLI). This feature allows users to define
special modules whose behaviors are implemented in a foreign language, namely C.

The FLI opens a new world for the description of hardware, its representative
purpose being verification: it is common practice to compare the behavior of VHDL
modules to reference models, also called “golden models”, which are pieces of soft-
ware written in C, C++, Python or whatever the designer prefers in order to test
for the correctness of the design. In a simple implementation, this can be done by
supplying the same inputs to a VHDL simulation and to an execution of the golden
model, to then dump the outputs of both in two files to finally compare them. With
ModelSim FLI it is unbelievably easy to compare a VHDL model to a C program
in a testbench when the testbench itself is written in C.

When describing a VHDL component, it is possible to set the special foreign
attribute to an architecture to enable this functionality. The attribute specifies two
things: the name of a C function and the name of a compiled shared library that
contains that function. This already reveals how the FLI works: ModelSim comes
with a special C / C++ header in every installation that acts as an API that enables
C or C++ programs to interact with the FLI. These programs must be compiled
into a shared library that will be loaded by ModelSim when, while compiling, it
meets a foreign definition. Throughout this chapter, the main example will be of
an inverter for simplicity. With that as a reference, this is how a foreign architecture
is declared in VHDL:

1 library ieee;
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2 use ieee. std_logic_1164 .all;
3
4 entity Inverter is

5 port (
6 x: in std_logic ;
7 q: out std_logic
8 );
9 end entity Inverter ;

10
11 architecture ForeignArch of Inverter is

12 attribute foreign of ForeignArch : architecture is " inverter_init inverter .so";
13 begin

14 end architecture ForeignArch ;

Listing 3.1: A foreign architecture

Where line 12 is where the attribute is declared and inverter.so is a compiled
shared library in which the function inverter_init() is implemented. It is also
possible to set an optional textual argument to be passed to the function separated
by a semicolon from the rest of the attribute declaration, as in:

1 attribute foreign of ForeignArch : architecture is " inverter_init inverter .so; An
optional textual argument :)";

Listing 3.2: Optional arguments in a foreign declaration

To understand how ModelSim FLI works, it is best to do it step by step through
an example in section 3.2.

3.2 FLI Example: an Inverter in C

This section uses Listing 3.1, an example of a foreign declaration for a simple in-
verter, as the reference VHDL code which is assumed to be saved in a file named
inverter.vhd. The only other step before getting into the C code is to setup a
Makefile to simplify the development of this module:

1 CFLAGS := -Werror -Wall -Wpedantic -std=c11 -fPIC
2 LDFLAGS := -export - dynamic -shared -Bsymbolic
3
4 MTI_PATH = /eda/ mentor /2020 -21/ RHELx86 /QUESTA -CORE - PRIME_2020 .4/ questasim / include
5
6 inverter .so: inverter .o
7 $(LD) ${ LDFLAGS } -o $@ $^
8
9 inverter .o: inverter .c

10 $(CC) -c ${ CFLAGS } -I${ MTI_PATH } -o $@ $^
11
12 clean :
13 $(RM) *.o *. so

Listing 3.3: Makefile
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Line 4 defines the path to the so called “MTI” headers that expose the needed types
and functions. These headers are located in an include/ directory in ModelSim
installation path.

It is now time to move on to the C implementation. First, the creation of
inverter.c and its inverter_init() function:

1 # include "mti.h"
2
3 int inverter_init ( mtiRegionIdT region ,
4 char *arg ,
5 mtiInterfaceListT *generics ,
6 mtiInterfaceListT * ports ) {
7 // Inverter initialization
8 return 0;
9 }

Listing 3.4: Declaration of the inverter_init() function

This function is automatically called by ModelSim after the elaboration phase, that
is a phase between the compilation of the design and the start of the simulation.
It is very important to be aware that this phase may be passed through multiple
times, for instance when the simulation is restarted. ModelSim does not reset upon
restarting the simulation, so any reset of the custom module state must be performed
by hand. The only way to catch this scenario is through specific MTI functions that
reveal whether the inverter_init() function is being called for the first time or
not. To not over-complicate this example, this is ignored and it is assumed that the
simulation is never restarted.

The parameters of this function are:

1. region: an identifier for the region that represents the VHDL entity in the
simulation;

2. arg: the optional argument that can be passed as in Listing 3.2;

3. generics: a null terminated list containing information about the entity gener-
ics from Listing 3.1;

4. ports: a null terminated list containing information about the ports from
Listing 3.1.

The description of the region parameter reveals the core organization of MTI: all
the references to simulation objects are managed through their IDs and can be
interacted with through specific functions. For instance, it is possible to print the
name of the region with:

1 int inverter_init ( mtiRegionIdT region ,
2 char *arg ,
3 mtiInterfaceListT *generics ,
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4 mtiInterfaceListT * ports ) {
5 mti_PrintFormatted (" Region name: %s\n", mti_GetRegionName ( region ));
6 return 0;
7 }

Listing 3.5: Printing the region name

No special steps are required at this point: the file can be compiled and simulated
like any other VHDL file. It is the simulator that internally recognizes the need of
loading an external library and goes ahead to find it. After compiling the VHDL file
with vcom inverter.vhd and preparing the simulation with vsim work.inverter1,
ModelSim outputs:

1 vcom inverter .vhd
2 # QuestaSim -64 vcom 2020.4 Compiler 2020.10 Oct 13 2020
3 # Start time: 11:49:35 on Nov 21 ,2021
4 # vcom -reportprogress 300 inverter .vhd
5 # -- Loading package STANDARD
6 # -- Loading package TEXTIO
7 # -- Loading package std_logic_1164
8 # -- Compiling entity Inverter
9 # -- Compiling architecture ForeignArch of Inverter

10 # End time: 11:49:35 on Nov 21 ,2021 , Elapsed time: 0:00:00
11 # Errors : 0, Warnings : 0
12 vsim work. inverter
13 # vsim work. inverter
14 # Start time: 11:49:39 on Nov 21 ,2021
15 # Loading std. standard
16 # Loading std. textio (body)
17 # Loading ieee. std_logic_1164 (body)
18 # Loading work. inverter ( foreignarch )#1
19 # Loading ./ inverter .so
20 # Region name: inverter

Listing 3.6: ModelSim transcript

Where the last line shows the expected output.
In order to fully implement the desired model, it is necessary to introduce the

main actors in the FLI and how to interact with them. In a very close resemblance
to a pure VHDL description, the MTI is based upon the following concepts:

• Region: groups elements such as signals, processes and even other sub-regions
and roughly corresponds to a VHDL entity;

• Signal: a direct handle to a VHDL signal in the simulation;

• Variable: a direct handle to a VHDL variable in the simulation. The variable
may be a generic, a constant or a process variable;

1The foreign model does not need to be a top level design: all the foreign models are initialized
at this point regardless of where they are in the design hierarchy. This was the case simply because
there are no other files at this point.
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• Type: represents the type of a signal or a variable in the simulation;

• Driver: element used to write values on a signal;

• Process: a direct handle to a VHDL process, this can be the channel through
which the C code can implement its model.

In general, the MTI offers a strong yet simple interface with a high degree of control.
All of the described elements can both be retrieved from the simulation or manually
created and inserted in the design as if they were written in the VHDL description.
For instance, the ports of an entity are signals and, in order to be interacted with,
must be retrieved from the simulation. On the other hand, C can create and inject a
process to implement a custom behavior. On top of this, it is also possible to break
the standard setup of a simulation and force values on signals without processes or
drivers through specific MTI functions.

Entries created in the initializer function cannot live on the stack as they will be
deallocated when the function returns, so let us define a struct and allocate it in
the heap:

1 # include "mti.h"
2
3 typedef struct {
4 // Ports
5 mtiSignalIdT x;
6 mtiSignalIdT q;
7 // Drivers
8 mtiDriverIdT dq;
9 // Process

10 mtiProcessIdT process ;
11 } Inverter ;
12
13 void inverter_callback ( void *arg) {
14 // Callback for the inverter
15 }
16
17 int inverter_init ( mtiRegionIdT region ,
18 char *arg ,
19 mtiInterfaceListT *generics ,
20 mtiInterfaceListT * ports ) {
21 // Allocate inverter
22 Inverter *inv = ( Inverter *) mti_Malloc ( sizeof ( Inverter ));
23 // Initialize ports
24 inv ->x = mti_FindPort (ports , "x");
25 inv ->q = mti_FindPort (ports , "q");
26 // Create process and set its sensitivity list
27 inv -> process = mti_CreateProcess (" proc_inverter ", inverter_callback , inv);
28 mti_Sensitize (inv ->process , inv ->x, MTI_EVENT );
29 // Create driver and set its owner
30 inv ->dq = mti_CreateDriver (inv ->q);
31 mti_SetDriverOwner (inv ->dq , inv -> process );
32 return 0;
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33 }

Listing 3.7: Allocating the Inverter

The Inverter struct stores the handle IDs for later usage. After the sensitivity list
setup on line 28, the registered callback is executed upon every event on signal x.

In order to write the callback, it is necessary to understand how values are read
from and written to signals depending on the type of the signal. Types have a “kind”
that can be:

• Scalar for integer values;

• Real for real, floating point values;

• Enum for enumerations;

• Array for arrays;

• Time for time.

The original entity from Listing 3.1 declares x and q as std_logic which is an
enumeration. The simplest approach to interact with this type is to mirror the
same enumeration in C, being careful that the order of declaration is important:

1 typedef enum {
2 STD_LOGIC_U ,
3 STD_LOGIC_X ,
4 STD_LOGIC_0 ,
5 STD_LOGIC_1 ,
6 STD_LOGIC_Z ,
7 STD_LOGIC_W ,
8 STD_LOGIC_L ,
9 STD_LOGIC_H ,

10 STD_LOGIC_D
11 } StdLogic ;

Listing 3.8: C enum mirroring the std_logic type in VHDL

The final callback can use this enum to read the value of x and set q accordingly:
1 void inverter_callback ( void *arg) {
2 Inverter *inv = ( Inverter *) arg;
3 // Read input and prepare output value
4 StdLogic x_value , q_value ;
5 x_value = mti_GetSignalValue (inv ->x);
6 if ( x_value == STD_LOGIC_0 ) {
7 q_value = STD_LOGIC_1 ;
8 } else if ( x_value == STD_LOGIC_1 ) {
9 q_value = STD_LOGIC_0 ;

10 } else {
11 q_value = STD_LOGIC_U ;
12 }
13 // Schedule signal assignment with 1 delta delay
14 mti_ScheduleDriver (inv ->dq , ( long ) q_value , 1, MTI_INERTIAL );
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15 }

Listing 3.9: Allocating the Inverter

It is now possible to write a simple testbench to visualize the results:
1 library ieee;
2 use ieee. std_logic_1164 .all;
3
4 entity Testbench is

5 end entity Testbench ;
6
7 architecture Behavior of Testbench is
8 component Inverter is

9 port (
10 x: in std_logic ;
11 q: out std_logic
12 );
13 end component ;
14
15 signal x, q : std_logic ;
16 begin
17 comp_inverter : Inverter port map (x, q);
18
19 proc_testbench : process
20 begin

21 x <= ’0’;
22 wait for 10 ns;
23 x <= ’1’;
24 wait for 30 ns;
25 x <= ’0’;
26 wait ;
27 end process proc_testbench ;
28 end architecture Behavior ;

Listing 3.10: Testbench for the Inverter in C

Launching a simulation is no different from any standard digital simulation: it is
sufficient to launch the usual commands and everything, including the dynamic
linking of the custom functions, is handled automatically. In this case:

1 vcom inverter .vhd
2 vcom testbench .vhd
3 vsim work. testbench
4
5 add wave *
6
7 run 60 ns

Listing 3.11: FLI Simulation commands

Note that these commands, as standard practice, are saved in a simulate.do file
that may be launched with:

1 vsim -do simulate .do

Listing 3.12: Invoking a .do script
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Figure 3.1 shows the output waveform with the expected behavior, including the
small delay between the input and output.

Figure 3.1: Waveform of the Inverter in C

3.3 Flipp

Flipp is a C++ library built on top of the standard C ModelSim FLI developed to
offer a higher level access to the functionalities in a more modern approach, easily
adaptable to the ToPoliNano framework.

Flipp is completely compatible to the standard FLI in the sense that it does not
interfere with the original API in any way: a custom component can use calls from
both libraries without problems. This is especially thanks to the fact that ModelSim
MTI headers were developed to be compatible with C++ in the first place, so there
are no additional compilation or compatibility issues.

Since flipp is, at its core, an external collection of wrappers to the standard FLI
calls, ModelSim has no way of knowing about its existence if it is not somehow
included in the final shared object indicated in the foreign attribute definition. For
this reason, there are two possible approaches to use it: users can either directly
compile flipp’s sources together with their own functions describing a custom model
to produce a single shared object, or they can compile flipp as a separate shared
library and link it to their own models. The second approach is more helpful to
streamline the final shared object(s) since flipp will be shared among them. For this
reason, flipp was in fact developed with that approach in mind.

As discovered in section 3.2, the standard FLI revolves around the concept of
IDs that represent the various elements in the simulation and allow interactions
with them. In the same way, flipp revolves around its Handle classes.
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1 template < class IDType_ >
2 class Handle {
3 public :
4 using IDType = IDType_ ;
5 ...
6 public :
7 explicit Handle ( IDType id) : m_id(id) {};
8 Handle ( const Handle <IDType > & other ) = default ;
9 virtual ~ Handle () = default ;

10
11 [[ nodiscard ]]
12 IDType ID () const {
13 return m_id;
14 }
15
16 ...
17
18 virtual void print (std :: ostream &ostream , PrintMode mode) const {
19 UNUSED (mode);
20 ostream << " Handle (id=" << ID () << ")";
21 }
22
23 bool operator ==( const Handle <IDType > & other ) const {
24 return m_id == other .m_id;
25 }
26
27 bool operator !=( const Handle <IDType > & other ) const {
28 return m_id != other .m_id;
29 }
30 ...
31 private :
32 IDType m_id;
33 };

Listing 3.13: Snippet of the base Handle class in flipp

Handles are wrappers to simulation elements with IDs that offer some convenient
methods for the interactions with them. The base class is derived into classes that
reflect some of the different ID types in the FLI:

• Region

• Signal

• Type

• Process

• Driver

Other handles (such as variables) are not currently supported. As an example, the
Region specialization adds the following methods:

1 namespace flipp {
2 class Region : public Handle < mtiRegionIdT >{
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3 public :
4 explicit Region ( IDType id);
5 Region ( const Region & other );
6 ~ Region () override ;
7
8 static Region create ( const std :: string &name , const Region & parent );
9 [[ nodiscard ]] static std :: optional <Region > find( const std :: string &name);

10
11 [[ nodiscard ]] std :: string name () const ;
12 [[ nodiscard ]] std :: string primaryName () const ;
13 [[ nodiscard ]] std :: string sourceFileName () const ;
14
15 [[ nodiscard ]] std :: optional <Region > parent () const ;
16 [[ nodiscard ]] std :: vector <Region > children () const ;
17 [[ nodiscard ]] static std :: vector <Region > topLevelRegions ();
18
19 [[ nodiscard ]] std :: vector <Signal > signals () const ;
20
21 void print (std :: ostream &ostream , PrintMode mode) const override ;
22 void printTree (std :: ostream &ostream , unsigned depth = 8) const ;
23
24 private :
25 void printTree (std :: ostream &ostream , unsigned depth , std :: string && prefix )

const ;
26 };

Listing 3.14: Region Handle

Notice that it is not a coincidence that this class has no attributes: in fact, no
Handles ever have any attributes except for their ID. This is done to prevent data
incoherence: Handles are manually created through FLI IDs (as the constructor in
Listing 3.14 shows) and while their lifetime is determined by the scope where they
are created, the object they handle is not as it lives in the simulation. This means
that any information associated to a handle that cannot be written inside the object
it handles would have a limited lifetime. On top of this, it is perfectly legal to create
multiple handles to the same simulation object, but changes in one would not reflect
to others and this would lead to confusion. There could be countless workarounds
to this problem, but the most rigorous and generic one is to not use attributes at
all and let the user allocate custom data through hash maps or similar structures if
needed.

As a representative example of how flipp methods wrap the standard MTI, this
is Region::create()2:

1 Region Region :: create ( const std :: string &name , const Region & parent ) {
2 return Region ( mti_CreateRegion ( parent .ID () , const_cast < char *>( name. c_str ())));

2The const_cast() is needed because the MTI headers lack the const declarations in its
functions. This practice is a common workaround throughout flipp, but it is used only where
necessary and safe.
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3 }

Listing 3.15: Example of a wrapping function to create a region

Another interesting feature about flipp is its output management which is brought
to the standard of C++ through a global output stream called sout, inspired by
the classic cout but referred to the simulation. Also using this as a first example
for flipp, this is how Listing 3.5 would look like with flipp:

1 # include " flipp / Handles / Region .h"
2 # include " flipp /IO/IO.h"
3
4 extern "C" int inverter_init ( mtiRegionIdT region ,
5 char *arg ,
6 mtiInterfaceListT *generics ,
7 mtiInterfaceListT * ports ) {
8 flipp :: Region top_region ( region );
9 flipp :: sout << " Region name: " << top_region << std :: endl;

10 return 0;
11 }

Listing 3.16: Example of printing a Handle with flipp

Whose output is:
1 # Region name: Region (" inverter ", id =0 x7fefe80401d8 )

Listing 3.17: Output for Listing 3.16

All of flipp’s Handles offer other useful features that allow a back-and-forth in-
teraction with the simulation environment. For instance, it is possible to navi-
gate through the tree of regions in the design through the topLevelRegions() and
children() methods. It can also be interesting to print the full region tree with
printTree() to explore the design for debugging purposes.

In this case it can also be helpful to develop the same example from before with
the new library.

3.4 Flipp Example: an Inverter in C++

In reality, flipp offers multiple approaches to obtain the same result. It is possible to
either manually use the Handles described in the previous section, thus obtaining a
result which is quite similar to the original C implementation, or to use additional
classes that will be introduced in section 3.5.

Starting with a simple implementation, it is possible to follow the same structure
from C:

1 # include " flipp /IO/IO.h"
2 # include " flipp / Handles / Region .h"
3 # include " flipp / Handles / Signal .h"
4 # include " flipp / Handles / Process .h"
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5 # include " flipp / Handles / Driver .h"
6 # include " flipp / Handles / Value .h"
7 # include " flipp / Handles /Type.h"
8
9 using namespace flipp ;

10
11 struct Inverter {
12 Signal x;
13 Signal q;
14 Driver dq;
15 Process process ;
16 };
17
18 void inverter_callback ( Inverter &inv) {
19 Long x_value = inv.x. value (). interpretedData <Type :: Kind :: Enum >();
20 Long q_value ;
21 using namespace flipp :: standard_types ;
22 if ( x_value == StdLogicType :: STD_LOGIC_0 ) {
23 q_value = StdLogicType :: STD_LOGIC_1 ;
24 } else if ( x_value == StdLogicType :: STD_LOGIC_1 ) {
25 q_value = StdLogicType :: STD_LOGIC_0 ;
26 } else {
27 q_value = StdLogicType :: STD_LOGIC_U ;
28 }
29 inv.dq. schedule (q_value , 1);
30 }
31
32 extern "C" int inverter_init ( mtiRegionIdT region ,
33 char *arg ,
34 mtiInterfaceListT *generics ,
35 mtiInterfaceListT * ports ) {
36 // Allocate inverter
37 Inverter *inv = static_cast < Inverter *>( mti_Malloc ( sizeof ( Inverter )));
38 // Initialize signals
39 new (&inv ->x) Signal ( Signal :: fromPortsList ("x", ports ));
40 new (&inv ->q) Signal ( Signal :: fromPortsList ("q", ports ));
41 // Create process and set its sensitivity list
42 new (&inv -> process ) Process ( Process :: create (" proc_inverter ", [inv ](){
43 inverter_callback (* inv);
44 }));
45 inv -> process . sensitize (inv ->x);
46 // Create driver and set its owner
47 new (&inv ->dq) Driver ( Driver :: create (inv ->q, inv -> process ));
48 return 0;
49 }

Listing 3.18: Implementation of an Inverter in C++

Aside from the C++ adaptations and namespace management, this example tries
to keep the structure as close as possible to the reference one. Notice that, first of
all, in order to comply with MTI’s suggested allocation technique (which does not
appear to be required, but was used nonetheless), the slightly obscure placement
new operator is needed to construct in-place the fields of the struct. Alternatively,
it could be possible to overload the new operator.
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Handles have some convenience static methods used for their initialization, such
as Signal::fromPortsList() and Process::create(). Their methods also closely
resemble the functions they wrap, just compare Process::sensitize() to the orig-
inal mti_Sensitize().

The most notable difference is the retrieval of x’s value in line 19, whose complex-
ity is arguably higher than the standard MTI method. The reason for this higher
complexity is not particularly clear with this example, but could be the cause of mis-
takes in different scenarios. The problem is that the standard mti_GetSignalValue()
always returns a long when called in C, even when the corresponding signal is of
type real, time or array in the simulation. When the signal is an enum or scalar,
the value can be used as-is just like it happened in the example. In the other cases,
the returned value has to be interpreted as a void* that points to a location in
memory that contains data of the right type. It is left to the user to distinguish
between the two scenarios, to correctly cast to a pointer and to also correctly cast
to the correct data type. In order to offer a safer approach, flipp also implements an
additional Handler called Value which simply wraps these return values. In order to
read its data, it is either possible to use Value::rawData() that returns the same,
unhandled long from the MTI call, or to use Value::interpretedData<>() which
requires the user to insert the type kind in order to internally handle the conversions.
According to the C++ standards, flipp defines the follwing type-functions:

1 template <Type :: Kind kind > struct ktypes {};
2
3 template <> struct ktypes <Type :: Kind :: Enum > { typedef Int type; };
4 template <> struct ktypes <Type :: Kind :: Scalar > { typedef Int type; };
5 template <> struct ktypes <Type :: Kind :: Physical > { typedef Int type; };
6 template <> struct ktypes <Type :: Kind :: Real > { typedef double type; };
7 template <> struct ktypes <Type :: Kind :: Time > { typedef Time type; };

Listing 3.19: Flipp’s type-functions

By also recycling the previous testbench, it is possible to check that the output
waveforms are once again as expected in Figure 3.2. On a side note, observe how
easy it is to switch models: no VHDL file was touched for this second example; in
practice it is sufficient to simply swap the to-be-loaded shared object in the filesystem
for a new one to change the component’s behavior.

3.5 Model-Behavior Approach

An alternative approach to the same description problem can be solved with the
classes supporting a Model-Behavior approach. Notice that by trying to abstract
the steps happening inside the inverter_init() function from Listing 3.18, it is
possible to find a structure that holds in a general case:

62



Flipp

Figure 3.2: Waveform of the Inverter in C++

1. Read ports from the port list

2. Create processes

3. Create drivers

When developing such models, these parts should be handled automatically and
the designer should only worry about the model behavior. In this approach, a Model
represents a circuit with all of its physical elements in the simulation - basically,
it is the equivalent of an entity in VHDL -, while a Behavior is a collection of
Actions that interact with the model, with actions being higher level wrappers
to processes. This closely resembles the entity-architecture paradigm of hardware
description languages.

A model is created by passing it a name, a region and a vector containing all of
its ports.

1 # include " flipp /IO/IO.h"
2 # include " flipp / Handles /Type.h"
3 # include " flipp / Models / Model .hpp"
4
5 extern "C" int inverter_init ( mtiRegionIdT region ,
6 char *arg ,
7 mtiInterfaceListT *generics ,
8 mtiInterfaceListT * ports ) {
9 Region reg( region );

10 // Create model
11 Model *inv = static_cast < Model *>( mti_Malloc ( sizeof ( Model )));
12 new(inv) Model (reg.name () ,
13 reg ,
14 {
15 Signal :: fromPortsList ("x", ports ),

63



Flipp

16 Signal :: fromPortsList ("q", ports )
17 });
18 }

Listing 3.20: Allocation of a Model

Once the model has been initialized, it is time to set up its behavior. To do this,
the user create an arbitrary number of Actions to finally call generateHandles()
that automatically creates the process and driver handles to manage the action.

1 using namespace flipp ;
2
3 class InverterAction : public flipp :: Action {
4 public :
5 InverterAction ( Model &model ,
6 std ::set <std :: string > triggers ,
7 std ::set <std :: string > outputs ) :
8 Action (model , std :: move( triggers ), std :: move( outputs )) {
9 }

10
11 void run () override {
12 ...
13 }
14 };
15
16 extern "C" int inverter_init ( mtiRegionIdT region ,
17 char *arg ,
18 mtiInterfaceListT *generics ,
19 mtiInterfaceListT * ports ) {
20 Region reg( region );
21 // Create model
22 Model *inv = static_cast < Model *>( mti_Malloc ( sizeof ( Model )));
23 new(inv) Model (reg.name () ,
24 reg ,
25 {
26 Signal :: fromPortsList ("x", ports ),
27 Signal :: fromPortsList ("q", ports )
28 });
29 // Add actions and auto - generate their associated handles
30 inv -> behavior ().addAction < InverterAction >({"x"}, {"q"});
31 inv -> behavior (). generateHandles ();
32 }

Listing 3.21: Allocation of a Model

Each Action is a subclass of the abstract flipp::Action that must implement
at least its run() method, which is equivalent to the callbacks from the previous
example. In this case, indeed:

1 class InverterAction : public flipp :: Action {
2 ...
3 void run () override {
4 Int x_value = std ::get <Int >( readInput ("x"));
5 Int q_value ;
6 using namespace flipp :: standard_types ;
7 if ( x_value == StdLogicType :: STD_LOGIC_0 ) {
8 q_value = StdLogicType :: STD_LOGIC_1 ;
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9 } else if ( x_value == StdLogicType :: STD_LOGIC_1 ) {
10 q_value = StdLogicType :: STD_LOGIC_0 ;
11 } else {
12 q_value = StdLogicType :: STD_LOGIC_U ;
13 }
14 setOutput ("q", (Long) q_value , 1);
15 }
16 };

Listing 3.22: run() method for the InverterAction

Since this is a higher level description, it gets rid of the problem of interpreting the
data when reading a signal with a wrapper function that returns an std::variant in
which the signal value is written accordingly to its type. For the rest, the structure
of this function is similar to the original callback. Running the simulation once
again by using the same scripts, testbench and VHDL files from before produces the
expected output shown in Figure 3.3.

Figure 3.3: Waveform of the Inverter with the Model-Behavior approach

This alternative approach takes away the complexity of manually managing all
the handles by packaging and automating all of the cumbersome steps of creating
processes, drivers and linking them and the low level interactions required by the
standard approach. Of course, this simple scenario produces similar results in com-
plexity and size for both approaches, but this would not be the case for most larger
designs.

On top of this, the Model-Behavior approach also offers additional “quality of
life” features. For instance, an Action has a trigger() method that can be freely
called to run it just as if its corresponding process had been awakened from inside the
simulation, allowing more freedom in the interactions between actions. As another
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example, Actions also have the preRun() and postRun() virtual methods that are
empty by default but can be overridden, both called before and after run() when
the Action is triggered.

1 class Action {
2 public :
3 ...
4 void trigger ();
5 ...
6 private :
7 virtual void preRun ();
8 virtual void postRun ();
9 }

Listing 3.23: Some “quality of life” methods

These are mostly intended for debugging purposes, but they can be customized
arbitrarily and may be used to initialize simulation variables or similar purposes.
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Chapter 4

Simulation

4.1 Introduction

This chapter presents an example of a complete simulation of a dummy Hybrid
Circuit using the system presented by this thesis. Because of the early stage of
development of the complete system, it is going to be necessary to take some manual
steps in the process, but as the environment evolves, these steps are going to be
completely automated and handled by ToPoliNano itself.

A general introduction of the simulated circuit is presented in section 4.2; the
following sections go over and explain each component, the technology it is based on
and how its description works. This introduction will instead describe the simulation
environment and its setup.

All of the simulation files are assumed to be stored under a directory called
simulation/ anywhere in the file system. There are three subdirectories:

• simulation/src/ contains the source files for “physical” components;

• simulation/tb/ contains the source files for the top level testbench and all
the components that have no real physical meaning;

• simulation/sim/ is the folder where the simulation is run, so it contains all
the files generated by the simulator, the work/ directory and the custom au-
tomation scripts.

The simulation runs on a licensed version1 Questa ADMS version 2020.4. In
general, none of the features described by this thesis require an analog-capable
simulator: most of the testing and development was actually done under QuestaSim,

1This is required to be able to use the FLI.

67



Simulation

which does not handle analog simulations. Since this example includes an analog
component described in VerilogA - the analog extension of the standard, purely
digital Verilog -, this small change was required. In any case, the procedures are
always the same and the commands are almost identical in both cases, so this is not
a problem.

4.2 The Hybrid Circuit

The circuit presented in this example does not have any real-world counterpart or
meaning, but it is a relatively simple instance where multiple components collaborate
in a single simulation despite not only being based on different technologies, but also
differing in description style and provenience. This is a very important aspect since
real simulations will often use parts coming from different sources: in this case, some
are automatically generated by MagCAD, others are manually written by the thesis
author, others come from research.

Figure 4.1: Scheme of the Simulation

Figure 4.1 depicts a small scheme where the simulated components, a brief de-
scription and their characteristics are listed. Functionally speaking, the simulated
circuit will read data from an input file through a component that is assumed to be
digital, filter it and convert it into magnetic signals that propagate until they are
written in an output file. The components used by this circuit are quite varied and
each will be described in a small dedicated section in this chapter. At this point
it can be interesting to discuss the multiple levels of diversity shown in Figure 4.1
that this simulation embeds.

Starting from the most physical layer of the simulation, there are two technologies
at play: CMOS and NML - more specifically, iNML. The iNML is a technology
where signals are no longer voltages controlled by MOSFETs, but they are magnetic
fields held in nanoscopic magnets. It is the interaction of adjacent magents that
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determines the propagation and evaluation of signals. A single component, the
“Converter”, lives in between the two domains and is used as a bridge between
them. It is realized with an MTJ, a device whose magnetization is controlled by an
input current and vice versa. Two purely behavioral components, the File Reader
and File Writer, respectively read input data from a file to feed it to the circuit
and write the received data into another file. Having an abstract description, they
technically do not belong to any real technology, but they are used as placeholders
for a CMOS circuit generating input data and another iNML circuit digesting the
data.

Moving on to the simulation type, it is possible to observe how most components
are placed in the digital domain, while the converter lives in the analog domain.
That is mostly related to the desired descriptions for the various components: the
file readers and writers are mostly testbench utilities, so it makes sense they have a
behavioral description. The iNML wire also has a Behavioral description and is thus
simulated digitally. The converter, instead, is based on the solution of an analog
system and uses related tools to react to its inputs and control its output.

Finally, the sources and languages of these descriptions differ too: the file reader
and writer are developed in C through the FLI introduced in chapter 3; the iNML
wire was automatically generated by MagCAD in VHDL; the MTJ-based converter
description comes from a publication and is described through a Verilog wrapper of
a VerilogA netlist.

4.3 iNML Wire

The wire is a component built with iNML and exported from MagCAD. As briefly
introduced, iNML technology represents its states through the magnetization of its
nano-magnets.

The simplest possible component is a nano-magnet wire, where an input signal
is propagated by a domino-like chain effect that inverts the magnetostatic field of
every next element in line [14]. In order to obtain the most control over the change
of state in these devices - and also out of necessity for integrating them on a chip
-, these nano magnets are typically excited through a multi-phase clocking system
[12]. This is important to understand because MagCAD follows this principle and
its auto-generated VHDL would be unclear otherwise. The objective is to create
a short wire composed by three magnets in line, just like the one in Figure 4.2.
Observe from the figure how this will invert the input signal in the last magnet: this
will be important to keep in mind when observing the simulation results that will
manifest this input data inversion, which is otherwise simply propagated linearly
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Figure 4.2: Propagation of a signal in iNML technology

input-to-output.
To create this component, MagCAD is opened and “iNML” is selected from the

Drawing Settings window already met in Figure 2.2 with the standard settings.
From the Item Picker, the “Magnet” element is selected and the option “Use auto-

Figure 4.3: Selection of the iNML item to place

matic phase” is enabled - even though this example will use a single phase - as in
Figure 4.3. Three items are then placed in the design space as in Figure 4.4. Since
the objective is to generate a VHDL description, input and output pins are placed
by clicking on the “Pin” tool and setting their properties (Figure 4.5) under the
Item Picker. The final design is the one shown in Figure 4.6.
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Figure 4.4: Placing iNML magnets

Figure 4.5: Setting the input and output pins

Finally, clicking on File > Export Component opens a dialog to save the de-
sign, which is going to be saved under the name of “wire3”, and then the Export
Dialog from Figure 4.7 where, after making sure that the “Export VHDL” option is
checked, the component can be exported. Another window to setup some technolog-
ical parameters opens up, but this example uses the default values so no additional
customization is needed. The generated VHDL files are now saved in the default
MagCAD output directory, which in the case of a standard configuration corresponds
to the path ~/MagCADFiles/VHDL/wire3/. This directory contains the VHDL de-
scription of the generated component together with the generation log (wire3.log)
and other VHDL library files that contain the necessary definitions for the simula-
tion. Notice that there are also some auto-generated testbenches that may be used
directly in the case this was the top-level design, or simply as an inspiration for the
custom testbench in section 4.7. This is where ToPoliNano would read its input
files, but in this case these output files are manually copied into the source directory
simulation/src/.
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Figure 4.6: Final iNML design

Figure 4.7: Component exoprt dialog

The generated entity looks like this:
1 entity iNML_custom_wire3 is

2 port (
3 DOUT: out std_logic ;
4 DIN: in std_logic ;
5 CLK: in std_logic_vector (0 to 2));
6 end iNML_custom_wire3 ;

Listing 4.1: Wire3 entity

and the additional files upon which this is based that are also copied to the simulation
source directory are definition_inml.vhd and library_inml.vhd.

4.4 MTJ Converter

An MTJ is a device that connects its magnetic properties to the current that flows
through it. It is formed by two ferromagnetic layers called fixed layer and free layer
separated by a thin insulating layer as depicted in Figure 4.8. The resistance of
the insulating layer, through which current may flow thanks to quantum tunneling,
depends on the magnetization of the ferromagnetic layers and determines the high
impedance / low impedance state of the device [1]. It is possible to either program
the device by sending a current through it, consequently magnetizing its free layer,
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Figure 4.8: Structure of an MTJ, courtesy of Wikipedia

or to read its magnetic state through the resistance of the insulating layer.
As a small explanatory example, Figure 4.9 shows the activation of an MTJ in

an ad-hoc simulation ran with SPICE. A 100 µA current is sent through the device,

Figure 4.9: Activation of the MTJ

modifying the magnetic field inside of the free layer of which Figure 4.9 shows a
normalized version. The most significant component of the field is the Z component,
which is the one that determines the resistance of the insulating layer (and thus the
state of the MTJ), but it is possible to observe how the field moves through all
coordinates. In this case, the current is flipping the direction of the normalized field
that goes from -1 to 1. Note that, taking Figure 4.8 as a reference, the Z axis is
horizontal, and can be assumed to be going from left to right.
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An MTJ is used in the simulation to convert the input digital signal coming from
the file reader into a magnetic signal that can propagate through the iNML wire
described in section 4.3. The model is written in VerilogA and was developed by the
Nanoelectronics Research Laboratory at Purdue University [9]. This model solves
the characteristic equations of an MTJ, but since its interface is completely analog
and a bit complex, an additional wrapper written in VerilogA but with a purely
digital interface was also added.

The wrapper is called D2M (Digital To Magnetic) and its module has two ports:
din, the input digital signal, and mout, the output magnetic signal.

1 module D2M (
2 input din ,
3 output reg mout
4 );

Listing 4.2: D2M Wrapper

Notice that the output magnetic signal is technically of the same type of any digital
signal in Verilog, but this is only because the VHDL generated in section 4.3 is a
behavioral description of the magnetic wire and uses the 0 / 1 state of a digital
signal to represent the orientation of the magnetic field.

After setting up the parameters with the default values from the model from
Purdue University, an instance of the MTJ is created and connected to local signals.

1 // ... Parameters setup ...
2
3 electrical fl , pl , hx , hy , hz , th , ph , MX , MY , MZ;
4
5 PMAMTJ #(
6 .Ku2 (Ku),
7 .W (W),
8 .P_L (P_L),
9 .P_R (P_R),

10 .L (L),
11 .Tm (Tm),
12 .Ms (Ms),
13 . alpha ( alpha ),
14 . Lambda_L ( Lambda_L ),
15 . Lambda_R ( Lambda_R )
16 )
17 mtj(fl , pl , hx , hy , hz , th , ph , MX , MY , MZ);

Listing 4.3: MTJ instance

A VerilogA description is characterized by an analog block where its analog
properties are defined. Quantities in the analog section may have different types,
but this example only focuses on electrical quantities. It is not possible to use
an electrical by its name only, but two access functions are needed: V(x) and
I(x), representing the voltage or current of that given net. The analog section only
uses its specific <+ (contribution) operator, which, as the name suggests, marks a
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contribution to the selected quantity. Multiple contributions to the same signal
are obviously allowed. There is one additional rule to be considered: variables and
signals that live in the analog or digital domain can be read but cannot by written
in the other domain, where “digital domain” refers to anything that is described
outside of an analog block.

In its analog section, D2M’s module first sets the initial conditions of the MTJ
using the special initial_step event as suggested by the developers of its model.

1 analog begin

2 @( initial_step ) begin
3 V(th) <+ 1.75e -3;
4 V(ph) <+ 0.0;
5 end

6
7 V(pl) <+ 0;
8
9 @(din);

10 I(fl) <+ transition (din === 0, 0.5e -9) * (+ ‘ISW);
11 I(fl) <+ transition (din === 1, 0.5e -9) * (-‘ISW);
12 end

Listing 4.4: D2M analog section

It then fixes the voltage of pl (the pinned layer) to 0 V and controls the current
flowing through fl (the free layer) based on the input din, which is the port that
is going to be connected to the file reader in the final design. Lines 9 to 11 are
used to translate the digital input into the transitions of an analog quantity: line 9
is an empty event handler that is used to ensure that the analog solver is awoken
on events of din, which is digital and would otherwise be ignored; lines 10 and 11
use a small trick based on the transition() filter, a VerilogA call used to prevent
hard discontinuities on the signals to help and stabilize the analog solver, to set the
contributions on the current. The transition() filter takes as its first argument an
expression that, over time, resolves into a piecewise constant function; the second
argument is the transition time needed to travel from one value to the next. Using
a boolean check like the ones in lines 10 and 11 is valid because they correspond
to a piecewise constant functions whose values are either 1 or 0, depending on the
value of din on every instant. Notice that the two calls use complementary boolean
checks, so even though I(fl) has two contributions, only one is active at a time.
Multiplying by ±‘ISW has the effect of setting the contribution to ±‘ISW when its
expression evaluates to 1. So in this case, the current transitions to +‘ISW when din
is 0 with a rise time of 0.5 ns, and it goes to -‘ISW in 0.5 ns when din is 1. ‘ISW is
a macro to set the driving current to 500 µA.

Finally, outside of the analog block, the module checks the values of the magnetic
field and sets the output accordingly.
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1 always @( cross (V(MZ))) begin

2 if (V(MZ) > 0)
3 mout = 1’b1;
4 else
5 mout = 1’b0;
6 end

Listing 4.5: D2M output control

This block is triggered when MZ - the normalized representation of the magnetic field
of the free layer along the MTJ’s Z axis - crosses 0. When the field is positive, the
output is set to 1, otherwise it is set to 0.

Both of the descriptions used by this converter are saved in the sources directory
under the names simulation/src/pmamptj.va and simulation/src/D2M.va.

4.5 File Reader

The File Reader is a component responsible to read input data from a text file. The
proposed environment under flipp has been discussed and tested in chapter 3, but
since it is a very young alternative to an already established and in-house supported
feature of ModelSim, this section uses the standard FLI in C for a more solid example
that may be more of interest to the reader.

The input file contains one 1 or 0 per line that represent a bit stream. The role
of this reader is to read the input bits on every rising edge of the clock and filter the
input data with a sliding window before outputting it. The window has a width of
3 and acts as a majority voter, and it is filled with 0s at the beginning.

The first step is to initialize the VHDL file with the foreign architecture dec-
laration as in section 3.2. It is a standard declaration where the foreign attribute
specifies the name of the initialization function and the name of the shared library
that contains it. The shared library is called io.so because the File Writer is com-
piled there as well.

1 entity FReader is

2 port (
3 clk: in std_logic ;
4 dout: out std_logic
5 );
6 end entity FReader ;
7
8 architecture ForeignArch of FReader is

9 attribute foreign of ForeignArch : architecture is " freader_init io.so";
10 begin

11 end architecture ForeignArch ;

Listing 4.6: FReader VHDL description
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Moving on to the C description, the structure containing the component data is
the following:

1 # define WSIZE 3
2 _Static_assert ( WSIZE > 1, " Window size should be at least 1");
3 _Static_assert ( WSIZE % 2 == 1, " Window size should be odd");
4
5 typedef struct {
6 // MTI Data
7 mtiSignalIdT clk;
8 mtiSignalIdT dout;
9 mtiDriverIdT ddout ;

10 mtiProcessIdT process ;
11 // Custom data
12 FILE *f;
13 bool file_ok ;
14 int window [ WSIZE ];
15 } FReader ;

Listing 4.7: FReader’s struct in C

On top of the standard FLI IDs for the clk and dout signals, dout’s driver and its
process, this time there is some additional data. The reader keeps a pointer to a
FILE because it has to read one line per update of its callback, together with a flag
that signals whether the file is okay to prevent trying to read from it after the file
ends. Finally, the window is a simple array of WSIZE integers.

The initialization function allocates the described struct and initializes both the
simulator-specific data and the custom data.

1 int freader_init ( mtiRegionIdT region ,
2 char *arg ,
3 mtiInterfaceListT *generics ,
4 mtiInterfaceListT * ports ) {
5 // Allocate reader
6 FReader * freader = ( FReader *) mti_Malloc ( sizeof ( FReader ));
7 if ( freader == NULL) {
8 mti_PrintFormatted (" Could not allocate FReader \n");
9 return -1;

10 }
11
12 // Initialize simulation quantities
13 freader ->clk = mti_FindPort (ports , "clk");
14 freader ->dout = mti_FindPort (ports , "dout");
15
16 freader -> process = mti_CreateProcess (" proc_freader ", freader_callback , freader )

;
17 freader -> ddout = mti_CreateDriver (freader ->dout);
18 mti_SetDriverOwner (freader ->ddout , freader -> process );
19 mti_Sensitize (freader ->process , freader ->clk , MTI_EVENT );
20
21 // Initialize custom data
22 freader ->f = fopen ("data.txt", "r");
23 if (freader ->f == NULL){
24 mti_PrintFormatted (" Could not open file !\n");
25 return -1;
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26 }
27 freader -> file_ok = true;
28 for ( unsigned i = 0; i < WSIZE ; ++i) {
29 freader -> window [i] = 0;
30 }
31 return 0;
32 }

Listing 4.8: FReader’s init function

After initializing all the simulator-specific fields just like in section 3.2, it tries to
open the input file (and reports an error in case of failure) and initializes the window
to 0.

The callback associated to the process in line 16 is called freader_callback and
its implementation is the following:

1 void freader_callback ( void *arg) {
2 FReader * freader = ( FReader *) arg;
3 // Check if file is ok
4 if (! freader -> file_ok )
5 return ;
6 // Check if rising edge of clock
7 if ( mti_GetSignalValue (freader ->clk) != STD_LOGIC_1 )
8 return ;
9 // Read data

10 int num;
11 if ( fscanf (freader ->f, "%d", &num) == EOF) {
12 fclose (freader ->f);
13 freader -> file_ok = false ;
14 return ;
15 }
16 for ( unsigned i = WSIZE - 1; i > 0; --i) {
17 freader -> window [i] = freader -> window [i -1];
18 }
19 freader -> window [0] = num;
20 // Vote and set output
21 long dout = 0;
22 for ( unsigned i = 0; i < WSIZE ; ++i)
23 dout += freader -> window [i];
24 dout = (dout > WSIZE / 2 ? STD_LOGIC_1 : STD_LOGIC_0 );
25 // Schedule driver
26 mti_ScheduleDriver (freader ->ddout , dout , 0, MTI_INTERNAL );
27 }

Listing 4.9: FReader’s callback

Before making useless calls to the FLI, it checks if the file is still open and returns
immediately if it is not. The circuit has to work synchronously with the clock: the
equivalent in VHDL would have a process sensible to the clock and would check for
the rising edge with if clk’event and clk = ’1’ then .... The equivalent in
this C implementation is the sensitization to events on clk and the condition on line
7 to check if the clock is currently set to 1. After that, it inserts the new value in the
window by reading it from the file - and returning if the file is over - and shifting it
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into the window. Finally, it implements a simple majority voter and schedules the
output driver accordingly.

For ease of use, the following Makefile was also written:
1 CFLAGS := -std=c11 -Werror -Wall -Wpedantic -fPIC -I/eda/ mentor /2020 -21/ RHELx86 /

QUESTA -CORE - PRIME_2020 .4/ questasim / include /
2 LDFLAGS := -export - dynamic -shared -Bsymbolic -L.
3
4 io.so: freader .o fwriter .o
5 $(LD) ${ LDFLAGS } $^ -o $@

6
7 freader .o: ../ tb/ freader .c
8 $(CC) ${ CFLAGS } -c $^
9

10 fwriter .o: ../ tb/ fwriter .c
11 $(CC) ${ CFLAGS } -c $^
12
13 clean :
14 rm -f *.o io.so

Listing 4.10: Makefile for the FLI components

Notice that it also includes the file writer.

4.6 File Writer

The File Writer is very similar to the Reader: it is also a synchronous component,
except that it receives data from the simulation and dumps it into an output file.

1 entity FWriter is
2 port (
3 clk: in std_logic ;
4 din: in std_logic
5 );
6 end entity FWriter ;
7
8 architecture ForeignArch of FWriter is

9 attribute foreign of ForeignArch : architecture is " fwriter_init io.so";
10 begin
11 end architecture ForeignArch ;

Listing 4.11: FWriter VHDL description

The entity is almost identical to the reader’s.
1 typedef struct {
2 // MTI Data
3 mtiSignalIdT clk;
4 mtiSignalIdT din;
5 mtiProcessIdT process ;
6 // Custom data
7 FILE *f;
8 } FWriter ;

Listing 4.12: FWriter’s struct in C
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As depicted from the struct, this component is even simpler because it has no need
for any custom data outside of the FILE pointer and also has no output ports. For
this reason, the initialization function:

1 int fwriter_init ( mtiRegionIdT region ,
2 char *arg ,
3 mtiInterfaceListT *generics ,
4 mtiInterfaceListT * ports ) {
5 // Allocate writer
6 FWriter * fwriter = ( FWriter *) mti_Malloc ( sizeof ( FWriter ));
7 if ( fwriter == NULL) {
8 mti_PrintFormatted (" Could not allocate FWriter \n");
9 return -1;

10 }
11
12 // Initialize simulation quantities
13 fwriter ->clk = mti_FindPort (ports , "clk");
14 fwriter ->din = mti_FindPort (ports , "din");
15
16 fwriter -> process = mti_CreateProcess (" proc_fwriter ", fwriter_callback , fwriter )

;
17 mti_Sensitize (fwriter ->process , fwriter ->clk , MTI_EVENT );
18
19 // Initialize custom data
20 fwriter ->f = fopen (" output .txt", "w");
21 if (fwriter ->f == NULL) {
22 mti_PrintFormatted (" Could not open file !\n");
23 return -1;
24 }
25 return 0;
26 }

Listing 4.13: FWriter’s init function

Finally, its callback only needs to synchronize with the clock with the same technique
of the reader and dump the received data in the output file.

1 void fwriter_callback ( void *arg) {
2 FWriter * fwriter = ( FWriter *) arg;
3 // Check if rising edge of clock
4 if ( mti_GetSignalValue (fwriter ->clk) != STD_LOGIC_1 )
5 return ;
6 // Read data
7 long din = mti_GetSignalValue (fwriter ->din);
8 int fdata ;
9 if (din == STD_LOGIC_0 )

10 fdata = 0;
11 else if (din == STD_LOGIC_1 )
12 fdata = 1;
13 else

14 return ;
15 fprintf (fwriter ->f, "%d\n", fdata );
16 }

Listing 4.14: FWriters’s callback

Values that are neither a 0 nor a 1 are simply ignored.
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Both the file reader and writer’s VHDL entities and C programs were saved
in the simulation directory under the tb subfolder, having their complete names be
simulation/tb/freader.vhd, simulation/tb/freader.c, simulation/tb/fwriter.vhd
and simulation/tb/fwriter.c.

4.7 Testbench

A simple Verilog testbench was developed to interconnect the components and ob-
serve the behavior of their internal signals. This is another step that, in a future
implementation, can be generated automatically by the ToPoliNano system. It is
currently not implemented because a meaningful implementation of this system is
more complex than it may seem at a first glance.

For instance, a passage of section 4.4 explained that the interface of the wire
component is the same as any VHDL digital description since it is a behavioral
model. It is not simple to rule-out what this component can be connected to (and
how) and what not: a simple restriction based on some information about the
technology and its allowed connections provided by MagCAD is not sufficient and
this simulation brings an important example of why. Just like MagCAD can generate
behavioral VHDL models, so can other tools and developers, as was the case for
the MTJ and its wrapper - the problem being that outside modules do not follow
MagCAD standards or have its metadata. On top of this, there are various other
possibilities: for instance, users may need to connect a purely custom testbench
utility for testing purposes which may be ruled-out by too restrictive rules; complex
circuits may contain parts that can logically be connected but they are located deep
down in two different hierarchies. For this example, all of these problems were faced
with the attention of the developer.

Observing the testbench file:
1 ‘timescale 1ns /100 ps
2
3 module testbench ();
4
5 reg clk = 0;
6 wire multiclk [2:0];
7
8 wire fdata ;
9 wire converter_out ;

10 wire wire_out ;
11
12 always #15 begin
13 clk <= ~clk;
14 end

15
16 genvar i;
17 for (i = 0; i < 3; i = i+1)
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18 assign multiclk [i] = clk;
19
20 FReader freader (. clk(clk), .dout( fdata ));
21 D2M d2m (. din( fdata ), .mout( converter_out ));
22 iNML_custom_wire3 wire3 (. CLK( multiclk ), .DIN( converter_out ), .DOUT( wire_out ));
23 FWriter fwriter (. clk(clk), .din( wire_out ));
24
25 endmodule

Listing 4.15: Testbench

It is possible to see that the testbench also generates the clock to send to the
components. Observe that the multiclk signal, which is the one that is going to be
sent to the wire3 component, should in theory have three phases. For simplicity it
was assigned to the same clock phase since the component only uses one. The clock
has a period of 30 ns. After this, the testbench simply instantiates the components
and interconnects them.

This testbench was saved in the simulation folder under simulation/tb/testbench.v

4.8 Results

The simulation was run under a licensed version of Questa ADMS version 2020.4. To
simplify its development and management, a final folder simulation/sim/ that will
contain the work/ directory and all the simulator-related files was added together
with a simulate.do file that contains the commands to run.

1 # Set paths
2 set SRC_PATH "../ src"
3 set TB_PATH "../ tb"
4
5 # Set simulation parameters
6 set DURATION "500 ns"
7
8 # Compile sources
9 valog ${ SRC_PATH }/ pmamtj .va

10 valog ${ SRC_PATH }/ D2M.va
11 vcom ${ SRC_PATH }/ definition_inml .vhd
12 vcom ${ SRC_PATH }/ library_inml .vhd
13 vcom ${ SRC_PATH }/ wire3 .vhd
14
15 # Compile testbench
16 vcom ${ TB_PATH }/ freader .vhd
17 vcom ${ TB_PATH }/ fwriter .vhd
18 vlog ${ TB_PATH }/ testbench .v
19
20 vasim -cmd simulate .cir work. testbench -t 100 ps
21
22 add wave *
23
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24 run ${ DURATION }

Listing 4.16: Simulation commands

Notice that the vasim command is called with the -cmd flag that contains the
SPICE directives for the analog simulator. In this case, it simply sets the analysis
to a transient analysis with a maximum step of 1 ps. The simulation can be finally
ran by launching:

1 $ vasim -do simulate .do

Listing 4.17: Launching the simulation

After running a brief simulation, the output window shown in Figure 4.10 reveals
the waveforms. Notice that the output of the wire inverts the signal coming from

Figure 4.10: Simulation Waveforms

the converter as predicted in section 4.3. The behavior of the circuit appears to
be as expected: the values correctly propagate through the components with small
yet observable delays, they are correctly transformed by the elements and they are
finally written into the output file.

A small Python script internally computes the expected outputs and compares
them to the ones generated by this testbench to confirm the correct functionality.

1 def gen_reference_outputs ( fname : str):
2 WSIZE = 3
3 with open (fname , ’r’) as f:
4 window = [0] * WSIZE
5 for line in f:
6 # Skip empty lines
7 line = line. strip ()
8 if not line:
9 continue

10 # Convert value and push it in the window
11 value = int(line)
12 window = [value , * window [: -1]]
13 # Compute output considering the inversion
14 res = 0 if sum( window ) > WSIZE // 2 else 1
15 yield res
16
17
18 def read_sim_outputs ( fname : str):
19 with open (fname , ’r’) as f:
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20 for line in f:
21 yield int(line)
22
23
24 def compare (data , outputs ):
25 return all(x == y for x, y in zip(data , outputs ))
26
27
28 def main ():
29 model , sim = gen_reference_outputs (’data.txt ’), read_sim_outputs (’output .txt ’)
30 if compare (model , sim) is True:
31 print ("All results are matching .")
32 else :
33 print (" Results mismatch !")
34
35 if __name__ == ’__main__ ’:
36 main ()

Listing 4.18: Python script to check the outputs

This script uses generators to loop through the two files to finally call the compare()
function. The simulation output reader simply iterates through the lines and yields
the read data; the output generator reads the input data, executes the filtering
action and finally yields the results one by one also considering the data inversion
that happens in the real circuit. Figure 4.11 shows the console output of this script
that confirms the correctness of the results.

Figure 4.11: Output of the Python checker
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Chapter 5

Conclusion

5.1 Conclusion

The result of this work is a new toolset able to handle the simulation of Hybrid
Circuits, circuit where CMOS and Beyond-CMOS technologies collaborate to im-
plement the circuit behavior.

The updates on MagCAD allow the design of Hybrid Circuits thanks to the newly
developed Hybrid Plugin, a plugin gathering all the components and features needed
to design Hybrid Circuits in which components with heterogeneous descriptions can
be placed and interconnected in the same design space. The creation of the Hybrid
Plugin also required various updates to MagCAD itself, including the creation of a
new design tool called “Wiring Tool”, used to interconnect items in a scene, and
MagCAD’s save / load system to add support for the new features.

A new environment based on ModelSim and its Foreign Language Interface (FLI)
has been proposed in order to extend the range of possibilities for the description of
new models. The standard ModelSim FLI is an extension that allows the inclusion
of custom models programmed in C in a classic simulation. In order to simplify
the modeling process and to bring it closer to the standards of the ToPoliNano
environment, a wrapper C++ library called flipp has been developed. On top of
adapting some of the standard FLI features from C to C++, it also offers additional
simplifications and automatizations of the component description process in the form
of its Model-Behavior description that allows developers to focus on their models
instead of the low level minutia of interacting with the simulation imbued in the
standard approach.
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5.2 Future Works

Part of the proposed environment has been developed with the ToPoliNano frame-
work in mind, but is still presented under a prototype level since it is not ready to
handle user interactions in ToPoliNano’s GUI environment. Future developments
of these elements will fully integrate it in the framework by also managing the GUI
features. It is possible that during the process of integration or the development of
new models for the first time, some limitations or additional requirements for the
current environment may arise and need to be addressed and adapted.
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