
Automatic palletizing and
management systems of aluminum

cans through a robotic
manipulator

Alfonso Falcone

Supervisor

Alessandro Rizzo
Co-Supervisor

Marco Valentini
A thesis presented for the Master degree of

Mechatronic Engineering

DAUIN Department of Control and Computer Engineering

Politecnico di Torino

Italy, Turin

December 2020

Automatic palletizing and management systems

of aluminum cans through a robotic manipulator

A full automatic multi-domain system

Alfonso Falcone

Abstract

Nowadays the industrial demand for robotic applications is growing like never be-
fore. The increasing need of automation and fulfillment of higher standards for
production, precision and safety is one of the main reasons for such a demand.
Robotic applications can fit in a lot of different industrial process, in fact, there
exist many kinds of robots. In this project, the customer need is to obtain a full
autonomous system, that is able to withdraw aluminum cans and palletizing them
inside two chests of drawers. Although this seems a very simple task, the complexity
behind it is fairly high, since the entire mechanical structure as well as the electrical
and the programming logic ones have to be done from scratch. In order to meet
these requirements, we have chosen to use an architecture with an external Plc that
communicates with the robot PC, in order to make the manipulator work as just a
muscle. We are confident that this architecture can be safer and more stable with
respect to the one who uses just the robot PC and the embedded PLC simulator.

2

Contents

1 Hardware configuration 9
1.1 Introduction . 9
1.2 Manipulator . 14
1.3 PLC . 17
1.4 End Effector - Tool design . 18

1.4.1 Mechanical Failure Analysis 19
1.5 Distribution boards & data-sheets . 23

1.5.1 Power . 24
1.5.2 Signal . 24
1.5.3 Terminal box . 25

1.6 Pneumatic Circuit . 26
1.7 Safety . 28

1.7.1 SIL - Safety Integrator Level 28
1.7.2 Safety of human operators . 28
1.7.3 Safety regions . 29

2 Robotics basic concepts 30
2.1 Introduction . 30
2.2 Basics . 30

2.2.1 Elementary displacements . 30
2.2.2 Cardan angles . 33
2.2.3 Robot basic structure . 33
2.2.4 Basic Terminology . 34
2.2.5 Denavit-Hartenberg Convention 35
2.2.6 Direct Kinematics . 37
2.2.7 Differential Kinematics . 38
2.2.8 Singularity . 39
2.2.9 Inverse kinematics . 39
2.2.10 The Jacobian inverse technique 40
2.2.11 Heuristic methods . 42
2.2.12 Trajectory Planning . 42
2.2.13 Trajectory Planning Specifics 42
2.2.14 Trajectory Planning Algorithms 43
2.2.15 KUKA Motion Instructions 44
2.2.16 PTP : Point to Point . 44
2.2.17 PTP REL : Point to Point Relative 45
2.2.18 LIN : Linear . 45
2.2.19 LIN REL : Linear Relative . 45

3

Industrial Manipulator Application

2.2.20 CIRC : Circular . 45

2.2.21 CIRC REL : Circular Relative 45

2.2.22 Spline . 45

2.2.23 Spline . 46

2.2.24 SPLINE . 47

2.2.25 PTP SPLINE ... ENDSPLINE 47

2.3 Safety in Modern Robotics . 47

2.3.1 Tool Calibration . 48

2.3.2 4-point method . 49

2.3.3 XYZ Reference method . 49

2.3.4 ABC 2-point . 50

2.3.5 ABC World . 50

2.3.6 Numeric input . 50

2.3.7 Base Calibration . 51

2.3.8 ABC 3-point . 51

2.3.9 Configuring axis-specific workspace 51

2.3.10 Collision Detection . 52

2.3.11 Safety Planes . 54

2.3.12 Safety Barriers . 54

2.3.13 Safety Hardware . 54

2.3.14 Brake Test . 57

2.4 Teach Pendant . 58

2.4.1 Operating Modes . 59

3 Omron PLC 61

3.1 OMRON . 61

3.2 Computer Network . 62

3.2.1 Local Are Network . 62

3.2.2 Internet Protocol . 62

3.2.3 Public IP addresses . 63

3.2.4 IPV4 . 64

3.2.5 Subnet . 64

3.3 Ethercat Protocol . 64

3.3.1 Ethernet Communication . 65

3.3.2 Add on-the-fly process data 65

3.3.3 Ethercat P: data & power supply on one cable 66

3.3.4 Distributed Clock for Precise Synchronization 66

3.3.5 Diagnostic and Localization Errors 67

3.3.6 High Availability Requirements 68

3.3.7 Communication Profiles . 68

3.3.8 Transparent transmission of standard IT protocols 69

3.3.9 Services . 69

3.4 Sysmac . 69

3.5 Structure of the Code . 72

3.5.1 Mission Concept . 73

3.5.2 External PLC - Robot PC Communication 74

4 Chapter 0 Alfonso Falcone

Industrial Manipulator Application

4 Coding 75
4.1 Sysmac . 75

4.1.1 Ladder Main Program . 75
4.1.2 Structured Code . 78

4.2 WorkVisual . 80
4.2.1 Files Extensions . 80

4.3 Robot Program . 81
4.3.1 Normal Operations . 82
4.3.2 Special Operations . 88

4.4 Full Missions Code . 90

5 HMI Operator Panel 91
5.1 Common Uses of HMI . 92
5.2 Premium HMI . 92

5.2.1 Designed HMI . 94
5.3 Home Page . 95

5.3.1 Manual Operation Page . 96
5.3.2 Setup Page . 97
5.3.3 Alarm Pages . 98

6 Conclusions 101

A Appendix Title 103
A.1 Sysmac - Structured Language Code 103
A.2 Kuka - Missions Code . 106

A.2.1 Mission 100 . 106
A.2.2 Mission 200 . 109
A.2.3 Mission 300 . 110
A.2.4 Mission 400 . 112
A.2.5 Mission 500 . 115
A.2.6 Mission 700 . 122
A.2.7 Mission 800 . 123
A.2.8 Mission 1000 . 125

Chapter 0 Alfonso Falcone 5

List of Figures

1.1 Overview of the entire project . 11

1.2 Main Required Functions . 12

1.3 Full mechanical structure, particulars of drawer and rack 13

1.4 Technical Data written on the manipulator arm 14

1.5 Attachment flange for the design of a self designed tool 15

1.6 Nominal Weight vs Center of Mass Position 15

1.7 Range Space for the 5-th axis . 16

1.8 PLC Omron NX102-9000 . 17

1.9 supplementary power supply NX-PF0630 17

1.10 Tool Interconnection Holes Mechanical Drawing 18

1.11 Fragment Of The Tool Mechanical Drawing 19

1.12 Displacement of a generic point P of a beam 20

1.13 Stress Strain Ductile Material graph 21

1.14 Static Analysis - Yield stress . 22

1.15 Triangular mesh profile for static analysis purpose 22

1.16 First Reachability Analysis . 23

1.17 Fragment of the Total element list . 23

1.18 Fragment of the Power Zone . 24

1.19 Fragment of the Signal Zone . 25

1.20 Fragment of the Terminal box Zone 25

1.21 Air Treatment Group . 26

1.22 Complete Pneumatic Circuit . 27

1.23 Pneumatic Cylinder on the robot’s tool 27

1.24 SIL - Safety Integrity Levels . 28

1.25 Safety Planes activated when there is no drawer 29

2.1 Pure Translational motion . 30

2.2 Euler Identity . 31

2.3 Homogeneous Matrix structure . 32

2.4 RPY Angles . 33

2.5 Schematization of a robot - Links and Revolute Joints 34

2.6 Schematization of a robot - Open and closed chains, respectively on
the left and right . 34

2.7 Denavit–Hartenberg kinematic parameters 35

2.8 Kuka Kr220 schematization - Anthropomorphic arm with spherical
wrist . 37

2.9 Kuka Kr5, [2] singularities configurations 40

6

Industrial Manipulator Application

2.10 Inverse Kinematic Algorithms comparisons - NR vs NICCD - on two
different manipulator type : Stanford Arm and WAM 7R 41

2.11 Trajectory Planning - 3−rd order polynomial trajectory - Trapezoidal
velocity profile . 44

2.12 Interpolation of continuous function sin(x) with various method . . . 46
2.13 Elementary Motion Types - from left to right P2P, LIN,CIRC 48
2.14 TCP Calibration . 49
2.15 TCP Position Calibration - 4-point method 50
2.16 TCP Position Calibration - XYZ Reference method 50
2.17 TCP Orientation Calibration - ABC 2-point 51
2.18 TCP Orientation Calibration - ABC 3-point 52
2.19 Teach Pendant - Collision Detection Menu 53
2.20 Teach Pendant - Torque Monitoring Menu 53
2.21 Working Regions . 54
2.22 Teach Pendant - Safety Plane Menu 55
2.23 Safety Barriers all around the manipulator 55
2.24 Safety Risk Zones . 56
2.25 Safety Distance with respect to body parts 57
2.26 Brake Test - Faulty Brake . 58
2.27 Teach Pendant - Front View . 59
2.28 Teach Pendant - Rear View . 59
2.29 Operating Mode and Safety functions 60

3.1 Ethercat Protocol - Communication, Power supply, Services and Syn-
chronization . 70

3.2 Sysmac - Topological View . 71
3.3 Sysmac - Populated I/O Card . 72
3.4 Algorithm Flow Chart . 73
3.5 Fragment of I/O External PLC to Robot PC Mapping - Excel Sheet . 74

4.1 Plc Code - Ladder 1/5 . 75
4.2 Plc Code - Ladder 2/5 . 76
4.3 Plc Code - Ladder 3/5 . 77
4.4 Plc Code - Ladder 4/5 . 78
4.5 Plc Code - Ladder 5/5 . 79
4.7 Plc Code - Structured Language . 79
4.6 Plc Main - Flow Chart . 80
4.8 Robot missions set for normal Operations 82
4.9 Flow Chart Mission 100 - Home Position 83
4.10 Flow Chart Mission 200 - Withdraw Cans Approach 84
4.11 Flow Chart Mission 300 - Withdraw Cans 84
4.12 Flow Chart Mission 400 - Deposit Cans 85
4.13 Flow Chart Mission 500 - Close Drawer 86
4.14 Flow Chart Mission 600 - Cans Deposit 87
4.15 Robot missions set for special Operations 88
4.16 Flow Chart Mission 700 - Maintenance 88
4.17 Flow Chart Mission 800 - Quality Check Withdraw 89
4.18 Flow Chart Mission 1000 - Quality Check Deposit 89

Chapter 0 Alfonso Falcone 7

Industrial Manipulator Application

5.1 HMI - Human-Machine Interface . 91
5.2 Premium HMI IDE . 93
5.3 HMI - Home Page . 96
5.4 HMI - Manual Page . 98
5.5 HMI - Setup Page . 99
5.6 HMI - Alarm Page . 100

A.1 Property of MVQuadro S.r.L . 103
A.2 Property of MVQuadro S.r.L . 106

Images owned by MVQuadro S.r.l. dissemination and reproduction prohibited, the
company protects its rights by law

8 Chapter 0 Alfonso Falcone

Chapter 1

Hardware configuration

1.1 Introduction

The following thesis work is the result of work in a company specialized in industrial
automation and robotics, named ”Mvquadro S.r.l.”.For four months I was able to
follow the project of building from scratch an automatic plant for the palletizing of
aluminum lids. This project stems from the need of the customer, ”Crown”, which
is a tin factory, to increase the level of automation of their company and invest in
industry 4.0.
To this end, the company Crown has asked us the to create from scratch the entire
environment of the robotized island; so the racks, drawers, protective barriers, the
base on which rests the robot itself, as well as electrical control panels, sensors,
pneumatic system for opening and closing the robot gripper, the implementation of
the software and graphics of the PLC and HMI operator panel were designed and
programmed entirely by our company.
The robotized island consists of two racks on the left and right of the robot, which
resides in the center, each containing 15 drawers, which were designed specifically
for the housing of the batteries of aluminium lids that the company yet produces.
This set of elements is fenced on all sides, except behind the racks, see fig.1.1, in
order not to allow access to operators during normal operations of the robot. This
is a very common practice, as the speeds and strength that an industrial robot can
impress are remarkable and can easily cause injury or death in the event of a collision
between robot and an operator.
But, since it is necessary for an operator to empty the rack when it is full, each
rack has on board laser safety sensors, which detect the presence of operators in
the rack area, if human presence is detected in this area, the robot program stops
immediately to prevent collision.
The robot can be controlled by HMI operator panel or by physical control panel.
Every alarm signal or every emergency event is reported on the operator panel, as
well as the status code, that gives indications on the current state of operation of
the robot.
The task of this robotized island is as follows, see fig.1.2:

� At the exit of a machine already present in the company are produced alu-
minium lids.
They are conveyed on a slide, which thanks to its inclination allows the stack
of drawers to grow vertically.

9

Industrial Manipulator Application

Upon reaching a certain height, detected by a laser position sensor, decided
by the operators and with the possibility of modification through the operator
panel.

� The manipulator will pick up this battery and proceed, with the lids still held
by the gripper, opening a drawer and palletizing the stack of lids inside the
drawer.

� Once stacked the first stack continues so until it fills the entire drawer.

� Once the drawer is full, the robot has to close the full drawer and open an
empty one.
When all the drawers in a rack are full, the robot stops working on that rack
and starts working on the other, doing the same actions.

� When a rack is finished, an operator picks up the full racks and replaces them
with empty ones.1

� If both racks are occupied, the robot will stand still and wait.

When you buy a robot, you are not only buying a manipulator, but also the frame-
work of the robot, which contains a particular computer that is able to communicate
with the robot itself and in which you can simulate a PLC. Thus, in general it would
be possible to use such a computer to create both the robot program and simulate
the PLC behaviour to manage the signals coming from the field. However, the fun-
damental difference that there is between a PC and a PLC is the fact that a PLC is
built specifically to perform operations sequentially respecting a certain time cycle.
This guarantees a superior robustness compared to a traditional PC, but has the
disadvantage of not being able to perform loops, such as while and for. That’s why,
since the robotized island has a considerable number of sensors and signals in input
and output, we decided to use an external PLC and not the one emulated by the
software of the robot.
We opted for this choice also because we can use the manipulator as if it was just a
muscle at the service of the external PLC that is the mind.
The negative aspect of this choice, however, is the greater complexity of the general
system and the longer time required to program the Plc and the robot PC and also
to manage communications between them.
The gripper is designed to be able to open and close the drawers while at the same
time holding the stacks of aluminium lids, the obvious advantage is the reduction
of time cycle, that is the total time in which the robot completes all the operations
necessary to complete the full program. In fact, this tool performs the functions of
a double tool, avoiding automatic procedures of disassembling/assembling tools.
The electrical panel and the pneumatic circuit are simple elements that perform one
the function of feeding the PLC Omron, its remote boards, the robot board and the
safety modules and the other supplies the air needed to close and open of the robot
tool.

1Since the accuracy of the rack position is crucial, the racks are positioned with an objective
positioning system, thanks to the presence of two corners at right angles with a proximity sensor
that indicates that the rack position is the correct one. The same applies to drawers which are
properly opened if proximity sensors at the corners of their limit switch detect their edges. As for
the closure, instead, there are magnets that keep the drawers still and in position when the robot
closes them. Look at fig.??.

10 Chapter 1 Alfonso Falcone

Industrial Manipulator Application

Figure 1.1: Overview of the entire project

The working process began first with the creation of a team of four people,
consisting of a mechanical engineer, an electrical engineer and two automation en-
gineers, including myself.
This division was necessary to define the tasks of each figure, in fact at the next
stage each figure worked on a different area, in fact :

� The mechanical engineer has realized the design of the robot base, the racks,
the drawers and the robot tool, providing the verification of the structural
characteristics of the same through static analysis, as well as to design and
validate the pneumatic circuit.

� The electrical engineer has provided for the drafting of the electrical panel,
sizing the various components in accordance with the rules imposed by the
state of the art, with particular attention to safety standards

� Automation engineers have taken care of the choice of the architecture of the
program, deciding to divide the movements of the robot into categories and
such categories in sub-programmes also called ”missions”.

As long as the electrical panel and the mechanical structures were not built, most
of the work concerned the figures of mechanical and electrical engineers.
However, once the assembly phase of the robotic island: the connection of the
electrical panels and the pneumatic circuit, etc. was finished, the programming
work became the most consistent.
The full system we designed has the following shape: During this period we faced
several issues:

Chapter 1 Alfonso Falcone 11

Industrial Manipulator Application

Figure 1.2: Main Required Functions

� Communication between devices with different types of Protocols, Ethercat
and Profinet: this was due to the delays in shipments of Omron security mod-
ules, in fact we had to change safety devices and adapt to the more available
Sick, but as said before they use the Profinet protocol instead of the Ethercat.

� Configuration of the safety positions of the robot: in practice, while the robot
performs the movements necessary for the programmed functions, it happened
that the power cables and tires twisted dangerously on the body of the robot
with the risk of shearing. Therefore it was necessary to find intermediate
positions between the configurations that the robot must necessarily reach,
which we have defined ”Safe” because they will certainly not create problems
with the cables.

� Error Detection: In each programming project, errors occur, they can be obvi-
ous as an exchange of two positions, or not obvious as a variable that increases
slightly at each cycle, which interferes with the accuracy of the robot, or an
unexpected reset of the parameters via HMI, which starts the robot for a con-
figuration completely different from the expected one. For these reasons it is
always good to test your code at reduced speeds, even better without using
the automatic command, but proceeding line by line of code.

At the end of this third phase of programming, the customer was shown the operation
of the island and the changes they requested, which were all requests of little account,
mainly interested in the increase of the speed of the robot.
Finally, we can say that although this seems a very simple task, the complexity
behind it is fairly high.
This project contains several engineering figures, in fact there is need of mechanical
engineers, electrical and software in order to create such a robotic system.

12 Chapter 1 Alfonso Falcone

Industrial Manipulator Application

It is for this reason that it is interesting to go and see the design process element by
element, going to capture the various aspects of this small robotized island.

Figure 1.3: Full mechanical structure, particulars of drawer and rack

Chapter 1 Alfonso Falcone 13

Industrial Manipulator Application

1.2 Manipulator

The manipulator we have used in this project is a KUKA KR 22 R1610, according
to the technical data, fig. 1.4, it has the following main characteristics:

1. Weight = 263 Kg

2. Payload = 22 Kg

3. Range = 1612 mm

Figure 1.4: Technical Data written on the manipulator arm

The complete list of all robot’s parameter is available in the data-sheets provided
by KUKA, but the most important one are the ones written above. In particular,
we choose the robot basing on the load to be handled and on the available space, so
the payload and range parameters are indispensable to choose the correct machine.
Moreover we also need to know the robot’s weight in order to secure it on a self
designed base or to choose the proper fixing mechanisms.
This robot has 6 joints and each one of them has different characteristics, as shown in
table 1.1. In the data-sheets, we also find the mechanical drawing of the attachment

Table 1.1: Range and Speed of each joint

Position [degrees] Speed
[
degrees

s

]
±185 200
−185/65 175
−138/175 190
±350 430
±130 430
±350 630

flange needed for the housing of a self-designed end effector, fig. 1.5. It is very
important to understand, that a robot can sustain the maximum payload when the
center of mass of the self designed end effector is as close as possible to the robot
flange’s one. In fact, as we can see from fig.1.6, the more the distance between the
position of the center of mass of the sole flange and the new center of mass position
increases, the less weight the robot can sustain. Since the last joint rotation doesn’t

14 Chapter 1 Alfonso Falcone

Industrial Manipulator Application

Figure 1.5: Attachment flange for the design of a self designed tool

Figure 1.6: Nominal Weight vs Center of Mass Position

change the end effector tool center, in order to have a clear image of the robot full
range it is sufficient to look at just the range of the 5th axis,as shown in the fig. 1.7

Chapter 1 Alfonso Falcone 15

Industrial Manipulator Application

Figure 1.7: Range Space for the 5-th axis

16 Chapter 1 Alfonso Falcone

Industrial Manipulator Application

1.3 PLC

A PLC or Programmable Logic Controller is the component responsible to the syn-
chronization of all the tasks as well as the control unit of the system. It gives tasks
to the manipulator and receives in input all the signals coming from the plant. The
PLC that was chosen for this application is an Omron NX102-9000, fig. 1.8. Its
characteristics are indicated here:

� Processing Time : 3.3ns LD / >= 70ns Maths instructions

� Program Capacity : 5 MB

� Memory capacity for variables : Retain attribute 1.5MB / No retain 32MB

� Number of data types : 1000

� Number of Ethernet Ip Ports : 2

� Maximum transmission distance between Ethernet switch and node : 100 m

� Communication protocol : Ethercat

Figure 1.8: PLC Omron NX102-9000

The PLC receives/send signals from the plant thanks to the following cards:

� 4 Digital Input 16 bit PNP 24V DC NX-ID5442

� 4 Digital Output 16 bit NX-OD5256

� 4 Analog Input 2 Word NX-AD2603

This cards are powered up by a supplementary power supply, fig.1.9, that is the
NX-PF0630.

Figure 1.9: supplementary power supply NX-PF0630

Chapter 1 Alfonso Falcone 17

Industrial Manipulator Application

1.4 End Effector - Tool design

It is possible to connect a self-designed tool to every robot, thanks to special holes
placed on their flange. In the case of the KUKA kr 22, we find 8 holes. In order to
be able to precisely connect the end effector to this holes, we have chosen to design
seven holes which size’s 6.6 mm and just one of 6 mm, fig.1.10. This is because,
when the tool will be physically connected, it will always have some positions errors.
That’s why the tolerances to be chosen in this context should be all very stringent.
But in order to save money and reach the same result, it is common practice to
fabricate just one hole very precisely, so that the others will fit anyway into the
robot’ s flange. The tool is made entirely of aluminum, as it is a resistant but light
material and so its weight does not burden the robot. The part of the tool that
grabs the lids is coated with a layer of rubber that provides the right coefficient
of friction to grab the lids and also ensures that they are not damaged during the
gripping.
The structure of the tool is preferably symmetrical in the x and y coordinates2 in
order to evenly distribute the weight of the tool with respect to the center of the
robot flange, fig.1.11. Very important is to provide housing for the Safety Tool,

Figure 1.10: Tool Interconnection Holes Mechanical Drawing

which is an optional package sent by the robot constructor company, that is able to
ensure that the designed tool is not substituted or compromised.
In fact, every time the robot is powered up, it will reach a given point in the 3D
space. This point will make the safety tool touch a specific sensor that will enable
robot’s operations . If the sensor does not acknowledge its presence, the robot will
not be able to start the program cycle. For what concerns the pneumatic part, the
tool is equipped with six pneumatic cylinders, sized according to their strokes and
also after a trial and error procedure.
Of course, there is the possibility to carry out more precise mathematical analyses,
in order to better size the cylinders, but these analyses would cost more in terms of
money and time, than a trial and error solution. In the context of this application,
a total stroke of 10 mm was required and therefore we opted for cylinders that
guaranteed this specific. Their number is sized according to the tool’s weight. In
particular the sum of the payloads of the n cylinders,Pcyl, calling W is the total

2The reference frame we are referring to is the same as the robot base frame, and it will be
defined later.

18 Chapter 1 Alfonso Falcone

Industrial Manipulator Application

Figure 1.11: Fragment Of The Tool Mechanical Drawing

weight of the tool, must be at least:

Pcyl >= 1.5WTool (1.1)

In order to use a single tool both for the gripping of aluminum lids and for the
operations of opening/closing the drawers, a ”nail” has been designed, which has
the task of grabbing the drawer and exerting a force on it.
The first design operations of the tool concern of the static analysis of the structure,
those of reachability and of collision, fig.1.16.
Particular attention is given to static stress analysis, where we conducted a failure
analysis.

1.4.1 Mechanical Failure Analysis

With failure we intend different phenomena, for example: crack nucleation,crack
propagation, collapse, etc. Dealing with the possible failure causes of a generic
material, we can distinguish between:

1. Static Failure

2. Fatigue failure

3. Instability elastic failure

Furthermore, we can define an estimation of the failure risk, with the Safety Factor
quantity:

SF =
Limit

Work
(1.2)

That is the ratio between the limiting condition and the working condition

Static Analysis

In order to define a mathematical tool[8] that can help us modeling the component
mechanical behavior, we can consider the body to be approximated as a beam.
Moreover we will make this hypothesis:

Chapter 1 Alfonso Falcone 19

Industrial Manipulator Application

1. The beam is a swiped plane section along its normal vector’s direction

2. Load and constraints are concentrated at the beam ends

3. Stresses distribution are assumed to be uniform on the cross section

4. The beam material is linear,elastic,homogeneous and isotropic

Under these hypothesis, we can model the displacement of a point,fig. 1.12, accord-
ing to the eq.1.3.

Figure 1.12: Displacement of a generic point P of a beam


u
v
w

 =


u0

v0
w0




∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z



rx
ry
rz

 (1.3)

This equation, describes the shear and strain stresses due to both rigid displacement
and rotations of every point P of a beam. Since the material is assumed to be linear
we can use the Generalized Hooks law for isotropic materials, eq.1.4.

ϵxx =
σxx

E
− ν

E
(σyy + σzz + α ·∆T)

ϵyy =
σyy

E
− ν

E
(σxx + σzz + α ·∆T)

ϵzz =
σzz

E
− ν

E
(σxx + σyy + α ·∆T)

γxy =
1

G
τxy

γxz =
1

G
τxz

γzy =
1

G
τzy

(1.4)

Whenever we apply an external load, because of the equilibrium principle, there must
be some other kind of forces that tend to balance the external ones. Those forces are
called Internal Forces or Internal Actions. In general, we can derive the expressions
that link the stresses, strain and displacement with internal forces and geometrical
characteristics of the beam. For example in the presence of displacements along the
x axis, we have:

σxx =
N

A
ϵxx =

N

EA
w(x) =

N

EA
x (1.5)

20 Chapter 1 Alfonso Falcone

Industrial Manipulator Application

For Bending moments we have:

σxx =
M

Jzz
y (1.6)

For torques, we have:

τ =
Mt

Jp
r θ =

Cl

GJ
(1.7)

Clearly, every material has a different strain stress graph, but in general we can
define three main working regions:

1. Linear: every deformation is reversible

2. Non linear: the deformations are not reversible

3. Rupture point (UTS3): crack nucleation

Figure 1.13: Stress Strain Ductile Material graph

When a body reaches the UTS point, it will experience crack nucleation and therefore
permanent rupture. In order to be sure that the material we are working with will
not fail under static stress and because of the high complexity of the mathematical
model, we use to rely on the ideal equivalent stress σid.Thanks to this quantity we
are basically comparing a multi axial system with a uni axial one, simplifying the
calculus and obtaining a good approximation of the maximum and minimum stresses
that an object undergo to. If we call σ1, the maximum principal stress and σ3 the
minimum one, in order to be sure that the body will not fail, it must be:

|σ1 − σ3| < Rp02 (1.8)

Where Rp02 is a constant corresponding to the UTS limit. Since we are reducing
a multi axial problem with a uni axial one, we need to define the ideal equivalent
stress and this is usually done by choosing one of this three quantities:

σgalileo
id = σ1

σtresca
id = |σ1 − σ3|

σmises
id =

1√
2

√
(σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ3 − σ2)

2

(1.9)

3Ultimate Tensile Stress

Chapter 1 Alfonso Falcone 21

Industrial Manipulator Application

We have chosen the Von Mises equivalent ideal stress, because, computationally
speaking, it is the fastest one, moreover the difference between Tresca and Von
Mises result is at most 3%. To perform the static analysis, an object grid mesh
was generated through a simulation software (Solid Works), to which the Von Mises
criterion is applied systematically to every point inside the mesh. Then thanks to
further interpolation of the results, the program outputs a total stress map, that is
shown in fig. 1.14 As we can see from the following picture, fig. 1.15 the mesh has

Figure 1.14: Static Analysis - Yield stress

a triangular profile. It is possible to use other geometric shapes as a mesh matrix,
but the triangular one is often used because it is the one that is able to better
approximate the surfaces of an object, because for three points lies one and only
one plane. The precision of these meshes is excellent even in the presence of holes
or discontinuities in the object of study. The objective of this analysis, fig.1.14 is

Figure 1.15: Triangular mesh profile for static analysis purpose

to determine whether the designed tool is robust and the highest stress has a lower
modulus than the UTS point of the material used (in the case of aluminum it is
worth 9.5 · 1e7 N

mm2
). During the analysis of the deformations, as we can see in the

next figure, we want to ensure that the tool has a maximum deformation of less
than some tenths of mm. In order to properly setup the tool and the robot, we
also need to know its inertia matrix. This is, however, very difficult to calculate,
as we need to use of dedicated software to obtain reliable estimates (e.g. Ansys).
In addition, such simulations may take several days to produce a result. For this
reason, the programmer proceeds through a trial and error approach, following the
values of robot inertia, payload, linear and angular velocities reported on the robot

22 Chapter 1 Alfonso Falcone

Industrial Manipulator Application

Figure 1.16: First Reachability Analysis

data sheet and also basing on the position of the tool center of mass, that can be
obtained from a common cad software.

1.5 Distribution boards & data-sheets

When designing an electric panel, the first thing one wonder is how many electrical,
mechanical, pneumatic devices need to be driven and how much power should we
provide. So, once we have a list, fig. 1.17, of all the necessary components, we
begin to size the circuit according to the needs of the plant. In our case, we have
a three-phase power supply for the robot electrical panel and a single-phase power
supply (obtained from one phase of the previous one) to power up both the PLC and
the signal devices. It’s a good practice to separate the framework into two areas:

� power zone, where there are larger voltages and currents that are dangerous
for operator safety

� signal part, where there are smaller voltages and currents who represent a
minor problem to solve

The electric panel is therefore designed as shown in the figure:

Figure 1.17: Fragment of the Total element list

Chapter 1 Alfonso Falcone 23

Industrial Manipulator Application

1.5.1 Power

Figure 1.18: Fragment of the Power Zone

At the top, there’s the power zone, that provides power to the electric panel of
the robot. In it we find :

� Fuses

� Differential switches

� Isolator

Since the power part, fig.1.18, is the one that puts the safety of people more at
risk, it is necessary to calculate an estimate of the powers in play and use graphs,
in order to properly size the differential switches and the size of the fuses to be
adopted. The role of fuses and that of a differential switch is exactly the same, the
fundamental difference lies in the price, so often in the electrical panels are installed
more fuses than the differential switches. Conversely, fuses only dissect the circuit
when the internal metal conductor, connecting the two ends, fuses. So every time
a fuse dissects the circuit it has to be replaced. The isolator, instead, is a purely
mechanical contractor and therefore does not intervene in the event of over-current
or over-voltage. Its purpose is to make it possible for an operator to cut power to a
part of the circuit in order to carry out maintenance operations.

1.5.2 Signal

Below, fig.1.19, we find the PLC’s UPS power supply, the PLC itself, with its remote
boards and SICK safety modules. The UPS module is designed to ensure continuous
operation even in the event of a power failure, while the safety modules are special
devices that are required by IEC standards. Their task is to continuously monitoring
the status of the circuit and dissecting it in the event of failure. The problem we
faced when designing the framework, was the different network interface that the
PLC and the SICK module had. In fact, the former uses an Ethercat protocol, while
the latter uses a Profinet protocol. In a previous version of the same application,
the company had used as security modules of the same Omron brand, but because
of shipment delay caused by the pandemic, we had to search for another solution.
With this choice, there is no direct connection between PLC and safety modules,

24 Chapter 1 Alfonso Falcone

Industrial Manipulator Application

Figure 1.19: Fragment of the Signal Zone

but on the contrary the safety modules are completely independent from the PLC
and are connected to the same devices to which the PLC is connected. In order to
ensure both:

� effective operation of the security

� possibility of the PLC to read data

1.5.3 Terminal box

Figure 1.20: Fragment of the Terminal box Zone

In the lowest part of the electrical panel, we find the terminal block, fig.1.20, that it
is the electrical interface connecting the PLC panel to the robot and to the signals
coming from the field. Finally, the electrical classification of the system is TT, in
fact all the masses connected to the plant share the same earth terminal. This
is necessary to prevent that in occurrence of electrical failures, the foreign devices
masses become active parts and therefore cause of indirect contacts. The electrical
panel of the robot is an integral part of the manipulator and therefore does not have

Chapter 1 Alfonso Falcone 25

Industrial Manipulator Application

to be designed. Inside there are all the necessary components to be able to control
the brush-less motors of each joint of the robot, as well as the processors able to
control it, through algorithms of inverse kinematics, calculation of the trajectory,
safety management and much more.

1.6 Pneumatic Circuit

For what concerns the pneumatic circuit, its objective is to make the gripper be able
to open and close. Because of this, we have used six pneumatic cylinders, who are
able to exert the right amount of force in order to accomplish this operations. In
order to supply and treat the air needed for the correct functioning of the cylinders,
we designed an input circuit with the following elements:

1. Regulator-Filter Ref. PNEUMAX T171BEMAD is used to filter liquid or solid
particles and regulate the pressure of compressed air

2. Compressed Air Lubricators REF. PNEUMAX T171BL it is installed in a
compressed air line to lubricate pneumatic tools.

3. Electric Shut-Off Valve T171BVEB2 Automated shut-off valve with electric
controls and actuator

4. Progressive starter T171BAP The task of the air intake is to smooth the
transition from low pressures levels to highest ones, in order to not damage
the pneumatic equipment.

5. Electric Shut-Off Valve T171BVEB2 Automated shut-off valve with electric
controls and actuator

The complete air treatment group is shown in fig. 1.21.

Figure 1.21: Air Treatment Group

For what concerns the cylinders, we have used the following ones:

1. DPDM-6-5-P-PA

Who’s specifics are shown in table 1.2. The complete pneumatic circuit is shown in
fig.1.22. Finally, the pneumatic circuit for the gripping and releasing is shown in
fig. 1.23

26 Chapter 1 Alfonso Falcone

Industrial Manipulator Application

Table 1.2: Characteristics of the DPDM-6-5-P-PA cylinders

Parameter Value
Stroke 5 mm
Piston Diameter 6 mm
Cushioning Elastic cushioning rings/plates at both ends
Operating pressure 2.5÷ 8 bar
Theoretical force (in/out-stroke) 9 N

Figure 1.22: Complete Pneumatic Circuit

Figure 1.23: Pneumatic Cylinder on the robot’s tool

Chapter 1 Alfonso Falcone 27

Industrial Manipulator Application

1.7 Safety

1.7.1 SIL - Safety Integrator Level

IEC 61508, [3], is an international standard published by the International Elec-
trotechnical Commission consisting of methods on how to apply, design, deploy and
maintain automatic protection systems called safety-related systems.
It is titled Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems (E/E/PE, or E/E/PES). IEC 61508 is a basic functional safety
standard applicable to all industries. It defines functional safety as:

“Part of the overall safety relating to the EUC (Equipment Under Control) and
the EUC control system which depends on the correct functioning of the E/E/PE
safety-related systems, other technology safety-related systems and external risk re-
duction facilities.”

The calculation of the probability of failure on demand (PFD)[9] is a common en-
gineering task when designing an interlock in compliance with IEC 61511. The cal-
culation of the PFD is often done using approximate equations defined in the ISA
TR84.00.02 technical report. The PFD corresponds to one of four safety integrity
levels (SILs), where each level possesses a PFD that is one order of magnitude less
than the next. There are several methods used to assign a SIL. These are normally
used in combination, and may include:

1. Risk matrices

2. Risk graphs

3. Layers of protection analysis (LOPA)

Figure 1.24: SIL - Safety Integrity Levels

1.7.2 Safety of human operators

In order to prevent electrical shocks and damages to circuit’s components, there exist
some normative4, that define general rules to adopt for the design of an electrical
panel.
In particular, when an operator is working on an electrical circuit, it is possible to
define two main types of contacts:

� Direct contact: when the operator touches a live wire, or any other conductive
material, who is not isolated.

4The most important are the: IEC 61140, IEC 60364, EN 60204-1, CEI 64-8

28 Chapter 1 Alfonso Falcone

Industrial Manipulator Application

� Indirect contact: when the operator touches a part of the electric circuit, who
is normally not conductive, but in case of faults, it can be seat of current
flowing and/or have a not null voltage potential.

1.7.3 Safety regions

Industrial manipulator can reach very high speeds and accelerations and because also
of their consistent weight (e.g. a Kuka KR22 R1610 weights 263Kg) they represent
a risk for operator’s safety. For this reason it is needed to design special strategies
that are able to minimize the risk of human/robot collisions. So, it is very common
to use barriers in order to prevent operators from getting too close to the robot,
but it is also very common to use software solutions, like defining work zones. For
example, we can subdivide the whole working region of the manipulator as :

� Working Zone: the robot can reach full speed since no collisions human/robot
can happen

� Safe Zone: the robot can either stop or slow down in order to not cause damage
to operators

In our case we have defined three safety zones, where the robot has to stop immedi-
ately. In fact, when there is a missing drawer, it is possible for an operator to enter
inside the robotized area and be very close to the manipulator. In this case, as soon
as the manipulator enters in that region it must stop. In order to restart the cycle,
one has to acknowledge the alarm and then press the start cycle button present in
the electrical panel cabinet. A representation of the safety planes is shown in the
fig.1.25

Figure 1.25: Safety Planes activated when there is no drawer

Chapter 1 Alfonso Falcone 29

Chapter 2

Robotics basic concepts

2.1 Introduction

In order to properly describe a robot motion it is needed to obtain a mathematical
model who can simulate any desired trajectory. Since a robot is a device who
can move in the 3-D space, we need a model which is able to describe positions,
velocities and accelerations in the 3D space. Moreover, because the robot joints can
also rotate, we need to define three parameters that give us insight about the robot
’s orientation in the 3D space. Summing up our needs, we need three variables
for the position description and other three for describing the orientation. Let’s
start considering the problem of determining the position of an object in a three
dimensional space.

2.2 Basics

2.2.1 Elementary displacements

Each point in the 3D space has three coordinates and can be subject to translations,
rotations or roto-translations. When a body undergoes a translation its coordinate
only change in the same translation direction. Meaning that in order to describe this
simple motion is enough to get the direction of movement and sum this vector to
each of the body points. As shown in fig.2.1, we only need to know three variables.
For what concerns pure rotation, in order to describe how this operation affects

Figure 2.1: Pure Translational motion

30

Industrial Manipulator Application

a body position, we need to consider both the axis of rotation and the quantity
about which we rotate around it. So we need three variable to get the axis direction
and one variable, which describe the amount of rotation to be accomplished. But
once we find the axis direction, in what way will we rotate around it? Clockwise or
counterclockwise? It is a convention to choose always as positive rotation side the
counterclockwise one, according to the right hand rule. Intuitively, when a body

Figure 2.2: Euler Identity

rotates it follow a circular shape motion, so every one of its point will keep the same
distance from the center of rotation. Moreover, if we rotate with respect to some
axis, all the point which lies on the axis itself won’t rotate, so, mathematically, we
just need to consider the problem of a plane which rotates with respect to a axes
perpendicular to itself, which makes this problem kind of bi-dimensional. Consider
the equation of a circle

x2 + y2 = r2 (2.1)

This equation preserves the distance of each point of the circumference with respect
to the circle’s center. Let’s see this equation in another way :{

X = rcos(θ + ϕ)

Y = rsin(θ + ϕ)
(2.2)

where X,Y are the new coordinates obtained from rotation. By noticing that{
x = rcos(ϕ)

y = rsin(ϕ)
(2.3)

Applying the cosine and sine sum formula{
X = r (cos(θ)cos(ϕ)− sin(θ)sin(ϕ))

Y = r (sin(θ)cos(ϕ) + cos(θ)sin(ϕ))
(2.4)

Chapter 2 Alfonso Falcone 31

Industrial Manipulator Application

we can derive the following system{
X = xcos(θ)− ysin(θ)

Y = xsin(θ) + ycos(θ)
(2.5)

which can be written in matrix form, as in eq.2.6XY
Z

 =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 xy
z

 (2.6)

The last equation is known as the elementary rotation around the z axis. The other
two elementary rotation matrices can be found in a similar way and all of them are
written in eq.2.7. XY

Z

 =

 1 0 0
cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

 xy
z


XY
Z

 =

 cos(θ) sin(θ) 0
0 1 0

−sin(θ) cos(θ) 0

 xy
z


XY
Z

 =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 xy
z


(2.7)

Lastly rototranslational movement can be obtained summing up both this elemen-
tary displacements. In particular in order to fully describe the position of a point
which undergoes a rototranslational motion we use homogeneous coordinates and
we represent the position as a 4D vector. Moreover we embed the position and the
rotation in a matrix whose called homogeneous matrix which structure is indicated
in fig.2.3. A rigid body B can be represented by a reference frame RB associated

Figure 2.3: Homogeneous Matrix structure

to it, called ”body frame”. We call pose of a rigid body the set of parameters that
uniquely define its position and orientation (attitude) in R3. The pose can be ob-
tained from the homogeneous transformation T0B The body pose is formally defined
as

p(t) :=


x1

x2

x3

α1

α2

α3

 (2.8)

Where x is a geometrical vector, while α cannot be considered a vector since vector
operations are meaningless.

32 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

2.2.2 Cardan angles

Each rotation matrix R can built by the composition of three elementary rotations

R = Rot(u1, a1)Rot(u2, a2)Rot(u3, a3) (2.9)

The are twelve admissible combinations of rotations that form the set of Cardan

Figure 2.4: RPY Angles

angles.
Among the Cardan angles, one of the most common used are the Roll, Pitch, Yaw
(RPY) angles (qx; qy; qz), see eq.?? also known as Tait-Bryant angles, defined as
follows

R(qx; qy; qz) = R(k̂; qz)R(ĵ; qy)R(̂i; qx) (2.10) c(θy)c(θz) −c(θy)s(θz) s(θy)
s(θx)s(θy)c(θz) + c(θx)s(θz) −s(θx)s(θy)s(θz) + c(θx)c(θz) −s(θx)c(θy)
−c(θx)s(θy)c(θz) + s(θx)s(θz) c(θx)s(θy)s(θz) + s(θx)c(θz) c(θx)c(θy)


(2.11)

2.2.3 Robot basic structure

Every robot can be seen as modellized, as in fig.2.5, with the help of:

� Links/arms are idealized geometrical bars connecting two or more joints

� Joints are idealized physical components allowing a relative motion between
the attached links

� Joints allow a single “degree of motion” (DOM) between the connected links

� Joints may be of two types:

1. Revolute (or rotational) joints, they allow a rotation between the con-
nected links

2. Prismatic (or translation) joints, they allow a translation between the
connected links

� Other types are possible

The robot joints are moved by actuators and when they are not, they are called
passive joint Robots structures can be further classified, fig.2.6, as:

Chapter 2 Alfonso Falcone 33

Industrial Manipulator Application

Figure 2.5: Schematization of a robot - Links and Revolute Joints

� Open chains: when there is only one link between any two joints. The Kuka
kr 2210 has the three-like structure

� Closed chains: when there is more than one link between two joints.

Figure 2.6: Schematization of a robot - Open and closed chains, respectively on the
left and right

2.2.4 Basic Terminology

Let’s introduce some basic terminology that will be useful throughout this reading.

� The following terms mean the same thing: End effector, gripper, hand, end
tool. They identify last link ending structure, that is able to perform the
required task or can hold a tool.

� With TCP we refer to the ideal point on the end effector that the robot
software moves through space. It has an associated reference frame and moves
in a 3D cartesian/euclidean space called Task Space.

� The Task space is the subset of the cartesian space that can be reached by the
TCP

� The Joint Space is the mathematical structure whose elements are the joint
values.

Kinematics deals with the study of four functions (called kinematic functions or KFs)
that mathematically transform joint variables into cartesian variables and vice versa
:

34 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

1. Direct Position KF: from joint space variables to task space pose

2. Inverse Position KF: from task space pose to joint space variables

3. Direct Velocity KF: from joint space velocities to task space velocities

4. Inverse Velocity KF: from task space velocities to joint space velocities

The first step to approach kinematics is to fix a reference frame (RF) on each robot
arm

� In general, to move from a RF to the following RF, 6 parameters are required

� A number of conventions were introduced to reduce the number of parameters
and to find a common way to describe the relative position of reference frames

� Denavit-Hartenberg conventions were introduced in 1955 and are still widely
used in industry

2.2.5 Denavit-Hartenberg Convention

In order to represent the position of a n-link manipulator, we need to consider its
homogeneous transformation matrix, that relates the joints angular position and the
geometric manipulator characteristics, with the end effector tool position in space.
This matrix can be easily found thanks to the use of the Denavit-Hartenberg(DH)
rules. The latter are meant to simplify the computation of homogeneous matrices.
In particular, the rules are the following ones: With reference to fig.2.7, let axis i

Figure 2.7: Denavit–Hartenberg kinematic parameters

denote the joint axis connecting Link i− 1 to Link i; the DH convention is adopted
to define link Frame i:

1. Choose axis zi along the axis of Joint i + 1.

2. Locate the origin Oi at the intersection of axis zi with the common normal to
axes zi−1 and zi. Also, locate Oi at the intersection of the common normal
with axis zi−1.

3. Choose axis xi along the common normal to axes zi−1 and zi with direction
from Joint i to Joint i+ 1.

4. Choose axis yi so as to complete a right-handed frame.

Chapter 2 Alfonso Falcone 35

Industrial Manipulator Application

The Denavit–Hartenberg convention gives a non unique definition of the link frame
in the following cases:

1. For Frame 0, only the direction of axis z0 is specified; then O0 and x0 can be
arbitrarily chosen.

2. For Frame n, since there is no Joint n+1, zn is not uniquely defined while xn

has to be normal to axis zn−1.

Typically, Joint n is revolute, and thus zn is to be aligned with the direction of zn−1.
The common normal between two lines is the line containing the minimum distance
segment between the two lines.

1. When two consecutive axes are parallel, the common normal between them is
not uniquely defined.

2. When two consecutive axes intersect, the direction of xi is arbitrary.

3. When Joint i is prismatic, the direction of zi−1 is arbitrary.

Once the link frames have been established, the position and orientation of Frame i
with respect to Frame i− 1 are completely specified by the following parameters:

1. ai distance between Oi and Oi

2. di coordinate of Oi along zi−1

3. αi angle between axes zi−1 and zi about axis xi to be taken positive when
rotation is made counter-clockwise,

4. θi angle between axes xi−1 and xi about axis zi−1 to be taken positive when
rotation is made counter-clockwise.

Two of the four parameters (ai and αi) are always constant and depend only on
the geometry of connection between consecutive joints established by Link i. Of the
remaining two parameters, only one is variable depending on the type of joint that
connects Link i− 1 to Link i. In particular:

1. if Joint i is revolute the variable is θi,

2. if Joint i is prismatic the variable is di

At this point, it is possible to express the coordinate transformation between Frame
i and Frame i− 1 according to the following steps:

1. Choose a frame aligned with Frame i− 1.

2. Translate the chosen frame by di along axis zi−1 and rotate it by θi about axis
zi−1; this sequence aligns the current frame with Frame i and is described by
the homogeneous transformation matrix

Ai
i−1 =


cθi −sθi 0 0
sθi cθi 0 0
0 0 1 di
0 0 0 1

 (2.12)

36 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

Translate the frame aligned with Frame i by ai along axis xi and rotate it by αi

about axis xi; this sequence aligns the current frame with Frame i and is described
by the homogeneous transformation matrix

Ai
i−1 =


Ai = 1 0 0 ai

0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1

 (2.13)

The resulting coordinate transformation is obtained by post-multiplication of the
single transformations as

Ai
i−1(qi) = Ai

i−1Ai =


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

 (2.14)

The transformation matrix from Frame i to Frame i − 1 is a function only of the
joint variable qi, that is, θi for a revolute joint or di for a prismatic one. The Kuka
kr 2210 is a 6 dof manipulator, composed by 6 revolute joints, so by applying the
DH convention, we get the parameters in table 2.8

Figure 2.8: Kuka Kr220 schematization - Anthropomorphic arm with spherical wrist

2.2.6 Direct Kinematics

Computation of the direct kinematics function leads to expressing the position and
orientation of the end-effector frame as:

p60 =

a2c1c2 + d4c1s23 + d6c1(c23c4s5 + s23c5) + s1s4s5
a2s1c2 + d4s1s23 + d6s1(c23c4s5 + s23c5)− c1s4s5

a2s2 − d4c23 + d6(s23c4s5 − c23c5)

 (2.15)

Chapter 2 Alfonso Falcone 37

Industrial Manipulator Application

and the orientation

n6
0 =

c1left(c23(c4c5c6 − s4s6)− s23s5c6) + s1(s4c5c6 + c4s6)
s1(c23(c4c5c6 − s4s6)− s23s5c6)− c1(s4c5c6 + c4s6)

s23(c4c5c6 − s4s6) + c23s5c6

 (2.16)

s60 =

c1(−c23(c4c5s6 + s4c6) + s23s5s6) + s1(−s4c5s6 + c4c6)
s1(−c23(c4c5s6 + s4c6) + s23s5s6)− c1(−s4c5s6 + c4c6)

−s23(c4c5s6 + s4c6)− c23s5s6

 (2.17)

a60 =

c1(c23c4s5 + s23c5) + s1s4s5
s1(c23c4s5 + s23c5)− c1s4s5

s23c4s5 − c23c5

 (2.18)

2.2.7 Differential Kinematics

The goal of the differential kinematics is to find the relationship between the joint
velocities and the end-effector linear and angular velocities. In order to express the
end-effector linear velocity ṗ e and angular velocity ωe as a function of the joint
velocities q̇ . As will be seen afterwards, the sought relations are both linear in the
joint velocities, i.e.,

ṗe = JP (q)q̇ωe = JO(q)q̇ (2.19)

Here, JP is the (3 Ö n) matrix relating the contribution of the joint velocities q̇
to the end-effector linear velocity ṗe, while JO is the (3 Ö n) matrix relating the
contribution of the joint velocities q̇ to the end-effector angular velocity ωe. In
compact form :

ve =

[
ṗe

ωe = J(q)q̇

]
(2.20)

which represents the manipulator differential kinematics equation. The (6Ön) ma-
trix J is the manipulator geometric Jacobian

J =

[
JP
JO

]
(2.21)

which in general is a function of the joint variables In summary, the Jacobian in can
be partitioned into the (3 Ö 1) column vectors jPi

and jOi
as:

J =

jP1 ... jPn
...
jO1 ... jOn

 (2.22)

where:

[
jPi

jOi

]
=



[
zi−1

0⃗

]
for a prismatic joint[

zi−1 ∧ (pe − pi−1)

zi−1

]
for a revolute joint

(2.23)

The expressions in eq.2.23 allow Jacobian computation in a simple, systematic way
on the basis of direct kinematics relations. Finally, notice that the Jacobian matrix
depends on the frame in which the end-effector velocity is expressed. The above

38 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

equations allow computation of the geometric Jacobian with respect to the base
frame The Jacobian in the differential kinematics equation of a manipulator defines
a linear mapping

ve = J(q)q̇ (2.24)

between the vector q̇ of joint velocities and the vector ve =
[
ṗT ωe

T
]T

of end-
effector velocity.

2.2.8 Singularity

The Jacobian is, in general, a function of the configuration q; those configurations
at which J is rank-deficient are termed kinematic singularities, fig.2.9. To find the
singularities of a manipulator is of great interest for the following reasons:

� Singularities represent configurations at which mobility of the structure is
reduced, i.e., it is not possible to impose an arbitrary motion to the end-
effector.

� When the structure is at a singularity, infinite solutions to the inverse kine-
matics problem may exist.

� In the neighborhood of a singularity, small velocities in the operational space
may cause large velocities in the joint space.

Singularities can be further classified into:

� Boundary singularities that occur when the manipulator is either outstretched
or retracted. It may be understood that these singularities do not represent a
true drawback, since they can be avoided on condition that the manipulator
is not driven to the boundaries of its reachable workspace.

� Internal singularities that occur inside the reachable workspace and are gen-
erally caused by the alignment of two or more axes of motion, or else by the
attainment of particular end-effector configurations. Unlike the above, these
singularities constitute a serious problem, as they can be encountered any-
where in the reachable workspace for a planned path in the operational space

2.2.9 Inverse kinematics

Inverse kinematics is the mathematical process of calculating the variable joint pa-
rameters needed to place the end of a kinematic chain, such as a robot manipulator
or animation character’s skeleton, in a given position and orientation relative to the
start of the chain. Given joint parameters, the position and orientation of the chain’s
end, e.g. the hand of the character or robot, can typically be calculated directly
using multiple applications of trigonometric formulas, a process known as forward
kinematics. However, the reverse operation is, in general, much more challenging.
There are many methods of modelling and solving inverse kinematics problems. The
most flexible of these methods typically rely on iterative optimization to seek out
an approximate solution, due to the difficulty of inverting the forward kinematics
equation and the possibility of an empty solution space. The core idea behind sev-
eral of these methods is to model the forward kinematics equation using a Taylor
series expansion, which can be simpler to invert and solve than the original system.

Chapter 2 Alfonso Falcone 39

Industrial Manipulator Application

Figure 2.9: Kuka Kr5, [2] singularities configurations

2.2.10 The Jacobian inverse technique

The Jacobian inverse technique is a simple yet effective way of implementing inverse
kinematics. Let there be m variables that govern the forward-kinematics equation,
i.e. the position function. These variables may be joint angles, lengths, or other
arbitrary real values. If the IK system lives in a 3-D space, the position function
can be viewed as a mapping

p(x) : ℜm → ℜ3 (2.25)

Let p0 = p(x0) give the initial position of the system, and

p1 = p(x0 +∆x) (2.26)

be the goal position of the system. The Jacobian inverse technique iteratively com-
putes an estimate of ∆x that minimizes the error given by

||p(x0 +∆xestimate)− p1|| (2.27)

For small ∆x, the series expansion of the position function gives

p(x1) ≈ p(x0) + Jp(x0)∆x (2.28)

where Jp(x0) is the (3 Ö m) Jacobian matrix of the position function at x0.
Note that the (i, k)-th entry of the Jacobian matrix can be approximated nu-

merically
∂pi
∂xk

≈ pi(x0,k + h)− pi(x0)

h
(2.29)

where pi(x) gives the i-th component of the position function, x0,k + h is simply x0

with a small delta added to its k-th component, and hh is a reasonably small positive

40 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

value. Taking the Moore-Penrose pseudo inverse of the Jacobian (computable using
a singular value decomposition) and re-arranging terms results in:

∆x ≈ J+
p (x0)∆p (2.30)

where:

∆p = p(x0 +∆x)− p(x0) (2.31)

Applying the inverse Jacobian method once will result in a very rough estimate of
the desired ∆x. A line search should be used to scale this ∆x to an acceptable
value. The estimate for∆x can be improved via the following algorithm (known as
the Newton–Raphson method):

∆xk+1 = J+
p (xk)∆pk (2.32)

Once some ∆x has caused the error to drop close to zero, the algorithm should
terminate. Existing methods based on the Hessian matrix of the system have been
reported to converge to desired ∆x values using fewer iterations, though, in some
cases more computational resources.
The Newton–Raphson method (NR) is one of the oldest approach used to solve
inverse kinematics problem. There is still a lot of research going on in this field,
see for example the paper [10], in this work, the author have developed a differ-
ent inverse kinematic algorithm starting from NR, that is called Newton-improved
cyclic coordinate descent(NICCD) and they have shown that their method is more
accurate,see fig.2.10, robust and generalizable.

Figure 2.10: Inverse Kinematic Algorithms comparisons - NR vs NICCD - on two
different manipulator type : Stanford Arm and WAM 7R

Chapter 2 Alfonso Falcone 41

Industrial Manipulator Application

2.2.11 Heuristic methods

The Inverse Kinematics problem can also be approximated using heuristic meth-
ods. These methods perform simple, iterative operations to gradually lead to an
approximation of the solution. The heuristic algorithms have low computational
cost (return the final pose very quickly), and usually support joint constraints.

2.2.12 Trajectory Planning

One of the crucial ingredients in robotics is the trajectory and motion planning.
Those tools are meant to make us able to give commands to the manipulator in
order to make it move to a point a series of points or a trajectory in the space. It
is now needed to explain the difference between path and trajectory.

� A path denotes the locus of points in the joint space, or in the operational
space, which the manipulator has to follow in the execution of the assigned
motion; a path is then a pure geometric description of motion.

� a trajectory is a path on which a timing law is specified, for instance in terms
of velocities and/or accelerations at each point.

Moreover, when talking about motion planning, we mean planning motions for
robots to move from point A to point B (such as for mobile robots, etc.) or pose A
to pose B (such as for manipulators, etc.). In order to do so, a number of constraints
need to be taken into account: collision avoidance, joint limits, velocity/acceleration
limits, jerk limits, dynamic balance, torque bounds, and many more. In this sense,
not only the the robots is considered but also its environment. When talking about
trajectory generation, the scope can be narrower than that of motion planning. Of-
ten time, in trajectory generation, people really focus on generating a trajectories
with joint limits, velocity and acceleration constraints.

The geometric path can be defined in the work-space or in the joint-space. Usu-
ally, it is expressed in a parametric form as:{

p = p(s) work-space

q = q(σ) joint-space
(2.33)

The parameter s(σ) is defined as a function of time, and in this manner the motion
law s = s(t), (σ = σ(t)) is obtained. In the joint space, geometric paths are
obtained by assigning initial/final and/or intermediate values for the joint variables,
along with the desired motion law. Usually, polynomial functions a of proper degree
n are employed:

s(t) = a0 + a1t+ a2t
2 + ...+ ant

n (2.34)

In this way, a “smooth” interpolation of the points defining the geometric path is
achieved.

2.2.13 Trajectory Planning Specifics

Input data to an algorithm for trajectory planning are:

� data defining on the path (points),

42 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

� geometrical constraints on the path (e.g. obstacles),

� constraints on the mechanical dynamics

� constraints due to the actuation system

Output data are the trajectory in the joint- or work-space, given as a sequence (in
time) of the acceleration, velocity and position values:

a(kT), v(kT), p(kT)k = 0, ..., N (2.35)

being T a proper time interval defining the instants in which the trajectory is com-
puted (and converted in the joint space) and sent to each actuator. We can compute
a trajectory planning in both work or joint space:

� Work-space trajectories allow to consider directly possible constraints on the
path that are more difficult to take into consideration in the joint space.

� Joint space trajectories are computationally simpler and allow to consider
problems due to singular configurations, actuation redundancy, velocity/ac-
celeration constraints.

2.2.14 Trajectory Planning Algorithms

Trajectories are specified by defining some characteristic points directly assigned by
some specifications or by defining desired configurations in the work-space, which
are then converted in the joint space using the inverse kinematic model, [7]. The al-
gorithm that computes a function q(t) interpolating the given points is characterized
by the following features:

� trajectories must be computationally efficient

� the position and velocity profiles (at least) must be continuous functions of
time

� undesired effects (such as non regular curvatures) must be minimized or com-
pletely avoided.

In the most simple cases, a trajectory is specified by assigning initial and final condi-
tions on: time, position, velocity, acceleration. Then, the problem is to determine a
function q = q(t)orq = q(σ) ,σ = σ(t) so that those conditions are satisfied. This is
a boundary condition problem, that can be easily solved by considering polynomial
functions such as:

q(t) = a0 + a1t+ a2t
2 + ...+ ant

n (2.36)

The degree n = 3, 5, ... of the polynomial depends on the number of boundary
conditions that must be verified and on the desired smoothness of the trajectory.
Among many other combinations, a possible approach for planning a trajectory is
to use linear segments joined with parabolic blends. In the linear tract, the velocity
is constant while, in the parabolic blends, it is a linear function of time: trape-
zoidal profiles, typical of this type of trajectory, are then obtained. In trapezoidal
trajectories, fig.2.11, the duration is divided into three parts:

Chapter 2 Alfonso Falcone 43

Industrial Manipulator Application

1. in the first part, a constant acceleration is applied, then the velocity is linear
and the position a parabolic function of time

2. in the second, the acceleration is null, the velocity is constant and the position
is linear in time

3. in the last part a (negative) acceleration is applied, then the velocity is a
negative ramp and the position a parabolic function.

Usually, the acceleration and the deceleration phases have the same duration ta = td.
Therefore, symmetric profiles, with respect to a central instant

tf−ti
2

, are obtained.
The trajectory is computed according to the following equations:

q(t) =


qi +

1
2
q̈2c 0 ≤ t ≤ tc

qi + q̈ctc(t− tc
2
) tc < t ≤ tf − tc

qf − 1
2
q̈c(tf − t)2 tf − tc < t ≤ tf

(2.37)

Other functions can be obtained by properly composing segments defined with poly-
nomial functions of different degree (piece-wise, polynomial functions).

Figure 2.11: Trajectory Planning - 3− rd order polynomial trajectory - Trapezoidal
velocity profile

2.2.15 KUKA Motion Instructions

In this section, we are going to describe the practical implementation of motion
planning, in a coding point of view. Therefore, we will present the elementary
moving instructions, fig.2.13, given by the KUKA Kr2210 manual and provide a
little context for those type of motions.

2.2.16 PTP : Point to Point

This directive executes a point-to-point motion to the end point. The coordinates of
the end point are absolute. Example 1 End point specified in Cartesian coordinates.
PTP X 12.3,Y 100.0,Z 50,A 9.2,B 50,C 0,S ’B010’,T ’B1010’ Example 2 End point
specified in axis-specific coordinates. The end point is approximated. PTP A1 10,A2
-80.6,A3 -50,A4 0,A5 14.2, A6 0 C PTP Example 3 End point specified with only
2 components. For the rest of the components, PTP Z 500,X 123.6

44 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

2.2.17 PTP REL : Point to Point Relative

This directive executes a point-to-point motion to the end point, but the coordinates
of the end point are relative to the current position. Example 1 Axis 2 is moved 30
degrees in a negative direction. None of the other axes moves. PTP RELA2 -30
Example 2 The robot moves 100 mm in the X direction and 200 mm in the negative
Z direction from the current position. PTP REL X 100,Z -200

2.2.18 LIN : Linear

This directive executes a linear motion to the end point. The coordinates of the end
point are absolute. Example End point with two components. For the rest of the
components, the controller takes the values of the previous position. LIN Z 500,X
123.6

2.2.19 LIN REL : Linear Relative

This directive executes a linear motion to the end point. The coordinates of the end
point are relative to the current position.

2.2.20 CIRC : Circular

This directive executes a circular motion. An auxiliary point and an end point must
be specified in order for the controller to be able to calculate the circular motion.
The coordinates of the auxiliary point and end point are absolute. Example The
end point of the circular motion is defined by a circular angle of 260°. The end point
is approximated. CIRC X 5,Y 0, Z 9.2,X 12.3,Y 0,Z -5.3,A 9.2,B -5,C 20

2.2.21 CIRC REL : Circular Relative

This directive executes a circular motion. An auxiliary point and an end point must
be specified in order for the controller to be able to calculate the circular motion.
The coordinates of the auxiliary point and end point are relative to the current
position. Example The end point of the circular motion is defined by a circular
angle of 500°. The end point is approximated. CIRC REL X 100,Y 3.2,Z -20,Y
50,CA 500 C VEL

2.2.22 Spline

In mathematics, a spline, fig.2.12 is a special function defined piece-wise by poly-
nomials. In interpolating problems, spline interpolation is often preferred to poly-
nomial interpolation because it yields similar results, even when using low-degree
polynomials, while avoiding Runge’s phenomenon1 for higher degrees. Splines are
popular curves because of the simplicity of their construction, their ease and accu-
racy of evaluation, and their capacity to approximate complex shapes through curve

1Runge’s phenomenon is a problem of oscillation at the edges of an interval that occurs when us-
ing polynomial interpolation with polynomials of high degree over a set of equispaced interpolation
points.

Chapter 2 Alfonso Falcone 45

Industrial Manipulator Application

fitting and interactive curve design. The term spline comes from the flexible spline
devices used by shipbuilders and draftsmen to draw smooth shapes

Figure 2.12: Interpolation of continuous function sin(x) with various method

2.2.23 Spline

Spline is a motion type that is suitable for particularly complex, curved paths. Such
paths can generally also be generated using approximated LIN and CIRC motions,
but spline nonetheless has advantages. The most versatile spline motion is the
spline block. A spline block is used to group together several motions as an overall
motion. The spline block is planned and executed by the robot controller as a single
motion block. The motions that may be included in a spline block are called spline
segments. They are taught separately. A CP spline block can contain SPL, SLIN
and SCIRC segments. A PTP spline block can contain SPTP segments. In addition
to spline blocks, individual spline motions can also be programmed: SLIN, SCIRC
and SPTP. Advantages of spline blocks:

� The path is defined by means of points that are located on the path. The
desired path can be generated easily.

� The programmed velocity is maintained better than with conventional motion
types.

� There are few cases in which the velocity is reduced. Furthermore, special
constant velocity ranges can be defined in CP spline blocks.

� The path always remains the same, irrespective of the override setting, velocity
or acceleration.

� Circles and tight radii are executed with great precision.

Disadvantages of LIN/CIRC:

� The path is defined by means of approximated points that are not located
on the path. The approximate positioning ranges are difficult to predict.
Generating the desired path is complicated and time-consuming.

46 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

� In many cases, the velocity may be reduced in a manner that is difficult to
predict, e.g. in the approximate positioning ranges and near points that are
situated close together.

� The path changes if approximate positioning is not possible, e.g. for time
reasons.

� The path changes in accordance with the override setting, velocity or acceler-
ation.

2.2.24 SPLINE

SPLINE . . . ENDSPLINE defines a CP spline block. A CP spline block may contain:
SLIN, SCIRC and SPL segments (number limited only by the memory capacity)

� PATH trigger

� 1 time block (TIME BLOCK) or 1 constant velocity range (CONST VEL)

A spline block must not include any other instructions, e.g. variable assignments or
logic statements. A spline block does not trigger an advance run stop.

2.2.25 PTP SPLINE ... ENDSPLINE

PTP SPLINE, ENDSPLINE defines a PTP spline block. A PTP spline block may
contain:

� PATH trigger

� 1 time block (TIME BLOCK) or 1 constant velocity range (CONST VEL)

� SPTP segments (number limited only by the memory capacity)

A spline block must not include any other instructions, e.g. variable assignments or
logic statements. A spline block does not trigger an advance run stop.

2.3 Safety in Modern Robotics

As already pointed out, a manipulator can exert large forces and torques that can
be dangerous when a human operator is around. So in order to avoid robot human
collisions, it is necessary to create some kind of barriers, that can be either software
made(working ones) or hardware (physical barriers). A simple way to introduce
motion constraint is to avoid certain configurations by means of custom Software
limit switch. There are 2 ways of modifying the software limit switches:

� Enter the desired values manually.

� automatically adapt the limit switches to one or more programs.

The robot controller determines the minimum and maximum axis positions occurring
in the program. These values can then be set as software limit switches.

Chapter 2 Alfonso Falcone 47

Industrial Manipulator Application

Figure 2.13: Elementary Motion Types - from left to right P2P, LIN,CIRC

2.3.1 Tool Calibration

Robot calibration is the process of identifying certain parameters in the kinematic
structure of an industrial robot, such as the relative position of robot links, the
manipulator’s inertia matrix, etc. The calibration can be classified in three different
ways:

1. Level-1 calibration, also known as mastering only models differences between
actual and reported joint displacement values

2. Level-2 calibration, also known as kinematic calibration, concerns the entire
geometric robot calibration which includes angle offsets and joint lengths

3. Level-3 calibration, also called a non-kinematic calibration, models errors other
than geometric defaults such as stiffness, joint compliance, and friction

Often Level-1 and Level-2 calibration are sufficient for most practical needs. During
tool calibration, the user assigns a Cartesian coordinate system (TOOL coordinate
system) to the tool mounted on the mounting flange. The TOOL coordinate system
has its origin at a user-defined point. This is called the TCP (Tool Center Point).
The TCP is generally situated at the working point of the tool. Advantages of tool
calibration:

1. The tool can be moved in a straight line in the tool direction.

2. The tool can be rotated about the TCP without changing the position of the
TCP.

48 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

3. In program mode: The programmed velocity is maintained at the TCP along
the path.

A maximum of 16 TOOL coordinate systems can be saved inside the variable
TOOL DATA[1. . . 16]. This structure store the following data :

1. X, Y, Z : Origin of the TOOL coordinate system relative to the FLANGE
coordinate system

2. A, B, C : Orientation of the TOOL coordinate system relative to the FLANGE
coordinate system

Figure 2.14: TCP Calibration

In order to define the origin of the TOOL coordinate system, the following methods
are available:

1. XYZ 4-point

2. XYZ Reference

2.3.2 4-point method

The TCP of the tool to be calibrated is moved to a reference point from 4 different
directions, fig.2.15. The reference point can be freely selected. The robot controller
calculates the TCP from the different flange positions.

2.3.3 XYZ Reference method

In the case of the XYZ Reference method, fig.2.16, a new tool is calibrated with
a tool that has already been calibrated. The robot controller compares the flange
positions and calculates the TCP of the new tool. In order to define the tool’s
orientation, the following methods are available:

1. ABC 2-point

2. ABC World

3. Numeric input

4. Base Calibration

5. ABC 3-point

Chapter 2 Alfonso Falcone 49

Industrial Manipulator Application

Figure 2.15: TCP Position Calibration - 4-point method

Figure 2.16: TCP Position Calibration - XYZ Reference method

2.3.4 ABC 2-point

The axes of the TOOL coordinate system are aligned parallel to the axes of the
WORLD coordinate system, fig.2.17. This communicates the orientation of the
TOOL coordinate system to the robot controller. There are 2 variants of this
method:

1. 5D: Only the tool direction is communicated to the robot controller. By de-
fault, the tool direction is the X axis. The directions of the other axes are
defined by the system and cannot be detected easily by the user. Area of
application: e.g. MIG/MAG welding, laser cutting or water jet cutting

2. 6D: The directions of all 3 axes are communicated to the robot controller.
Area of application: e.g. for weld guns, grippers or adhesive nozzles

2.3.5 ABC World

The axes of the TOOL coordinate system are communicated to the robot controller
by moving to a point on the X axis and a point in the XY plane. This method is
used if it is necessary to define the axis directions with particular precision.

2.3.6 Numeric input

The tool data can be entered manually. Possible sources of data:

50 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

Figure 2.17: TCP Orientation Calibration - ABC 2-point

1. CAD

2. Externally calibrated tool

3. Tool manufacturer specifications

2.3.7 Base Calibration

During base calibration, the user assigns a Cartesian coordinate system (BASE
coordinate system) to a work surface or the work-piece. The BASE coordinate
system has its origin at a user-defined point. Advantages of base calibration:

1. The TCP can be jogged along the edges of the work surface or work-piece.

2. Points can be taught relative to the base. If it is necessary to offset the base,
e.g. because the work surface has been offset, the points move with it and do
not need to be retaught.

A maximum of 32 BASE coordinate systems can be saved inside the variable BASE DATA[1. . . 32].

2.3.8 ABC 3-point

The robot moves to the origin and two further points of the new base. These three
points define the new base, fig.2.18.

2.3.9 Configuring axis-specific workspace

Description Axis-specific workspace can be used to restricted yet further the areas
defined by the software limit switches in order to protect the robot, tool or work-
piece.

Chapter 2 Alfonso Falcone 51

Industrial Manipulator Application

Figure 2.18: TCP Orientation Calibration - ABC 3-point

2.3.10 Collision Detection

If the robot collides with an object, the robot controller increases the axis torques
in order to overcome the resistance. This can result in damage to the robot, tool
or other objects. Collision detection reduces the risk of such damage. It monitors
the axis torques. If these deviate from a specified tolerance range, the following
reactions are triggered:

1. The robot stops with a STOP 1.

2. The robot controller calls the program tm useraction. This is located in the
Program folder and contains the HALT statement. Alternatively, the user can
program other reactions in the program tm useraction.

The robot controller automatically calculates the tolerance range. A program must
generally be executed 2 or 3 times before the robot controller has calculated a
practicable tolerance range. The user can define an offset via the user interface for
the tolerance range calculated by the robot controller. There are though some major
Restrictions:

1. Collision detection is not possible for HOME positions and other global posi-
tions.

2. Collision detection is not possible for external axes.

3. Collision detection is not possible during backward motion.

4. Collision detection is not possible in T1 mode.

5. High axis torques arise when the stationary robot starts to move. For this
reason, the axis torques are not monitored in the starting phase (approx.700
ms).

6. The collision detection function reacts much less sensitively for the first 2 or
3 program executions after the program override value has been modified.
Thereafter, the robot controller has adapted the tolerance range to the new
program override.

52 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

Defining an offset for the tolerance range

An offset for the torque and for the impact can be defined for the tolerance range,
fig.2.19,. The lower the offset, the more sensitive the reaction of the collision detec-
tion. The higher the offset, the less sensitive the reaction of the collision detection.
The torque is effective if the robot meets a continuous resistance.
Examples:

� The robot collides with a wall and pushes against the wall.

� The robot collides with a container. The robot pushes against the container
and moves it.

Impact: The impact is effective if the robot meets a brief resistance.
Example:

1. The robot collides with a panel which is sent flying by the impact.

Figure 2.19: Teach Pendant - Collision Detection Menu

Torque monitoring

The maximum torque deviation, fig.2.20, that has occurred can be determined as a
percentage by means of the system variable TORQ DIFF[...].

Figure 2.20: Teach Pendant - Torque Monitoring Menu

Chapter 2 Alfonso Falcone 53

Industrial Manipulator Application

2.3.11 Safety Planes

Another important tool used for safety reasons, is the definition of work zones, safety
zones and stopping zones, thanks to the creation of planes inside the Workspace,
see fig.2.21. In this way we are able to define different types of behavior depending
in which area the robot is working in. For example, if we are sure that in a specific
portion of space, there are no obstacle as well as no people, the robot can move at
full speed without any problem. Instead if we know that in some regions, there can
be an operator who is close enough to robot, we may want to wither slow down the
robot or stop it immediately. Thanks to the introduction of these planes, we are
able to teach the robot where it can go fast, where it has to slow down and where
it must stop. In order to create a safety plane, we can use the Teach Pendant as

Figure 2.21: Working Regions

shown in fig.2.22

2.3.12 Safety Barriers

In general, robotic structures are provided with a series of physical barriers, that
prevents the operator entering inside the robot’s working zone as well as protect-
ing them from malfunctioning of the manipulator. This safety systems need to be
designed specifically for each project.

2.3.13 Safety Hardware

It is necessary to identify the safety distances necessary to reduce to zero the pos-
sibility of risk by the operator. The reference standard is EN ISO 120218:2-2011
which transposes the machinery directive to which must be added the standard EN
ISO 13857 which shows the values, tabulated, of the distances to be respected for
safety. It starts from the standard EN ISO 13857 that allows us to define the min-
imum distances to be respected, and then make an analysis of the risks due to the
actual working area of the Robot (DCS).

54 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

Figure 2.22: Teach Pendant - Safety Plane Menu

Figure 2.23: Safety Barriers all around the manipulator

1. a = height of the point nearest to the Danger Zone

2. b = height of protective structure

3. c = horizontal safety distance of the Danger Zone

4. 1 = Danger Zone

If regular openings exist, it is necessary to evaluate the size of this shape and to
adapt it according to the reachability of the limb In case it is not possible to limit the
movement of the limb or in case the distance of the Danger Zone is not necessary
for the reduction of the risk, special shelters will be made that prevent the limb
from being able to reach the area. With regard to the provisions provided by EN
ISO 10218-2:2011, it is necessary to first define the operating spaces of the robot.
The operating space is that part of the area needed for the robot to perform all the
functions required by the work program. The confined space is the maximum work
area reached by the robot, dictated by both operational constraints and constructive
constraints. The protected space is that area protected by fences where the operator
can be present for a limited time, with the robot switched off or set, according to
the standard, with a speed lower than 250mm

s
. The design shall be done bearing in

Chapter 2 Alfonso Falcone 55

Industrial Manipulator Application

Figure 2.24: Safety Risk Zones

mind that the operator must always be outside the protected area if the robot is
being executed. If the system is running automatically then:

1. access to the protected area, when the automatic cycle is active, shall cause
all equipment likely to cause hazardous situations to stop

2. Automatic cycle selection shall not cancel or reset any protective stop or emer-
gency stop

3. The automatic cycle can only be started from outside the protected area

4. Automatic cycle start-up shall be possible when all protective devices are
active

5. Personnel must be protected from rebooting the robotic system when they are
inside the protected space

For the last point, the following considerations may be made:

1. the reboot can be done by two people, introducing two remote reset buttons,
outside of the fences, and in places where you can see everything that happens
within the work area

2. The reboot can be performed via a timed pre-reset button inside the workspace
and an actual reset button outside the workspace. Non-compliance with timing
inhibits the restoration of the island.

If the system is running manually then:

1. local control shall be performed by a single portable control panel

2. the speed must not exceed a standard limit value (250 mm/s). It must be
possible to select lower speeds

Mobile control panels shall comply with the standards set out in EN ISO 10218:1.
Maintenance must be carried out when the installation is stationary and the oper-
ator must be given specific access to the areas concerned. If maintenance should

56 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

Figure 2.25: Safety Distance with respect to body parts

occur when the plant is in motion, it is necessary to inhibit access to the working
area of the robot with special systems, such as protections or capacitive platforms.
It is important to point out that in the design of the robotized island it must al-
ways be prevented that electromagnetic interference causes problems of interface
and operation such as to make the robot act independently, or differently from the
function for which it was designed. Every robot on the island must have its own
locking button and its own emergency button.
In our case, even if the entire working region is closed with physical barriers, there’s
still the possibility to get closer to the robot. This is because the customer need
to take off the full chest of drawers and then carrying it back the empty one again.
So, during this operations the operator can be dangerously close to the robot. So
in order to avoid collisions, we had to place a laser sensor, that is able to perceive
if a person is entering close to this area and consequently send a signal to the PLC,
that will immediately stop the robot. This types of laser sensor are very accurate
and can be tuned to acknowledge fingers, arms or people presence, fig.2.25.

2.3.14 Brake Test

Each robot axis has a holding brake integrated into the motor. The brake test checks
every axis at low speed and at the current temperature to see if the braking torque
is sufficiently high, i.e. whether it exceeds a certain minimum value. The minimum
value for the individual axes is stored in the machine data. (The brake test does not
calculate the absolute value of the braking torque.) The brake test is deactivated by
default. Exception: If the KUKA.Safe Operation or KUKA.SafeRangeMonitoring
option is installed, the brake test is activated by default. The user can activate and
deactivate the brake test. The cycle time is 46 h. It is deemed to have elapsed when

Chapter 2 Alfonso Falcone 57

Industrial Manipulator Application

the drives have been under servo-control for a total of 46 h. The robot controller
then requests a brake test and generates the following message: Brake test required.
The robot can be moved for another 2 hours. It then stops and the robot controller
generates the following acknowledgment message: Cyclical check for brake test re-
quest not made. Once the message has been acknowledged, the robot can be moved
for another 2 hours. The brake test checks all brakes one after the other.

� The robot accelerates to a defined velocity. (The velocity cannot be influenced
by the user.)

� Once the robot has reached the velocity, the brake is applied and the result
for this braking operation is displayed in the message window.

� If a brake has been identified as being defective, the brake test can be repeated
for confirmation or the robot can be moved to the parking position.

If a brake has reached the wear limit, the robot controller indicates this by means of
a message. A worn brake will soon be identified as defective. Until then, the robot
can be moved without restrictions. If a brake has been identified as being defective,
the drives remain under servo-control for 2 hours following the start of the brake
test (=monitoring time). The robot controller then switches the drives off.

Figure 2.26: Brake Test - Faulty Brake

2.4 Teach Pendant

A teach pendant device is needed to control an industrial robot remotely. The device
allows its controller to work with robots without the need for tethering to a fixed
terminal. Teach pendants offer a variety of settings to control robots and are also
utilized to design new capabilities and features. Within the robotics repair industry,
technicians not only repair the units themselves but use the device to test robotic
equipment. The teach pendant is an essential component for industrial robots and
utilized for application use, along with the repair and refurbishment process.
Thanks to the teach pendant, we can basically control everything that it’s related
with the manipulator. In fact, we can

1. Write an executable program and run it

58 Chapter 2 Alfonso Falcone

Industrial Manipulator Application

2. Create safety planes, calibrating tool, setting custom limit switches, etc.

3. Check the I/O signals that the robot exchange with the rest of the world

4. Monitoring speed, torques, current, etc.

5. Import/export program files, update robot firmware, etc.

6. Move the robot manually

7. Change operating modes

Figure 2.27: Teach Pendant - Front View

Figure 2.28: Teach Pendant - Rear View

2.4.1 Operating Modes

The industrial robot can be operated in the following modes:

1. Manual Reduced Velocity (T1)

2. Manual High Velocity (T2)

Chapter 2 Alfonso Falcone 59

Industrial Manipulator Application

3. Automatic (AUT)

4. Automatic External (AUT EXT)

5. CRR

In addition, the table in fig.2.29 indicates the operating modes in which the safety
functions are active.

Figure 2.29: Operating Mode and Safety functions

60 Chapter 2 Alfonso Falcone

Chapter 3

Omron PLC

3.1 OMRON

OMRON was founded in Japan in 1933 by Kazuma Tateisi as an electric manufac-
turing company. Since the beginning OMRON has presented itself as an innovative
industry leader in automation, sensing and control technology. Since then, many
everyday products and services were invented and introduced to society. OMRON
developed the world’s first automated traffic signal and the world’s first unmanned
train station, also OMRON was the first with face recognition technology for mobile
phones.
OMRON’s primary business is the manufacturing and sales of automation compo-
nents, equipment and systems, but it is generally known by the public for medical
devices.
Omron deals with:

1. Industrial automation: industrial robots, sensors, switches, industrial cam-
eras, safety components, relays, control components, electric power monitoring
equipment, power supplies and PLCs

2. Electronic components: relays, switches, connectors, micro sensing devices,
MEMS sensors, image sensing technologies,

3. Social systems: access control systems (building entry systems), road man-
agement systems, traffic signal controllers, security/surveillance cameras, au-
tomated ticket gates, ticket vending machines, fare adjustment machines

4. Healthcare: Personal use: blood pressure monitors, digital thermometers,
body composition monitors, pedometers, nebulizers

5. Healthcare : Professional use: blood pressure monitors, non-invasive vascular
monitors, portable ECGs, patient monitors

6. Power distribution and controls for drilling rigs

7. Environmental solutions[buzzword]

8. Electronic controls and automation for detention center systems

61

Industrial Manipulator Application

3.2 Computer Network

A computer network is a set of computers sharing resources located on or provided
by network nodes. The computers use common communication protocols over dig-
ital interconnections to communicate with each other. These interconnections are
made up of telecommunication network technologies, based on physically wired, op-
tical, and wireless radio-frequency methods that may be arranged in a variety of
network topologies. The nodes of a computer network may include personal com-
puters, servers, networking hardware, or other specialised or general-purpose hosts.
They are identified by network addresses, and may have hostnames. Hostnames
serve as memorable labels for the nodes, rarely changed after initial assignment.
Network addresses serve for locating and identifying the nodes by communication
protocols such as the Internet Protocol. Computer networks may be classified by
many criteria, including the transmission medium used to carry signals, bandwidth,
communications protocols to organize network traffic, the network size, the topology,
traffic control mechanism, and organizational intent. Computer networks support
many applications and services, such as access to the World Wide Web, digital
video, digital audio, shared use of application and storage servers, printers, and fax
machines, and use of email and instant messaging applications.

3.2.1 Local Are Network

LAN stands for local area network. A network is a group of two or more connected
computers, and a LAN is a network contained within a small geographic area, usually
within the same building. Home WiFi networks and small business networks are
common examples of LANs. LANs can also be fairly large, although if they take up
multiple buildings, it is usually more accurate to classify them as wide area networks
(WAN) or metropolitan area networks (MAN). Not all LANs connect to the Internet.
In fact, LANs predate the Internet: the first LANs were used in businesses in the
late 1970s. (These old LANs used network protocols that are no longer in use today.)
The only requirement for setting up a LAN is that the connected devices are able
to exchange data. This usually requires a piece of networking equipment for packet
switching, such as a network switch. Today, even non-Internet-connected LANs use
the same networking protocols that are used on the Internet (such as IP).

3.2.2 Internet Protocol

An IP address is a unique address that identifies a device on the internet or a local
network. IP stands for ”Internet Protocol,” which is the set of rules governing the
format of data sent via the internet or local network. In essence, IP addresses
are the identifier that allows information to be sent between devices on a network:
they contain location information and make devices accessible for communication.
The internet needs a way to differentiate between different computers, routers, and
websites. IP addresses provide a way of doing so and form an essential part of how
the internet works. An IP address is a string of numbers separated by periods. IP
addresses are expressed as a set of four numbers — an example address might be
192.158.1.38. Each number in the set can range from 0 to 255. So, the full IP
addressing range goes from 0.0.0.0 to 255.255.255.255. Internet Protocol works the
same way as any other language, by communicating using set guidelines to pass

62 Chapter 3 Alfonso Falcone

Industrial Manipulator Application

information. All devices find, send, and exchange information with other connected
devices using this protocol. By speaking the same language, any computer in any
location can talk to one another. The use of IP addresses typically happens behind
the scenes. The process works like this:

1. Your device indirectly connects to the internet by connecting at first to a
network connected to the internet, which then grants your device access to
the internet.

2. When you are at home, that network will probably be your Internet Service
Provider (ISP). At work, it will be your company network.

3. Your IP address is assigned to your device by your ISP.

4. Your internet activity goes through the ISP, and they route it back to you,
using your IP address. Since they are giving you access to the internet, it is
their role to assign an IP address to your device.

However, your IP address can change.

3.2.3 Public IP addresses

Public IP addresses come in two forms – dynamic and static.

1. Dynamic IP addresses: they change automatically and regularly. ISPs buy a
large pool of IP addresses and assign them automatically to their customers.
Periodically, they re-assign them and put the older IP addresses back into
the pool to be used for other customers. The rationale for this approach is
to generate cost savings for the ISP. Automating the regular movement of IP
addresses means they don’t have to carry out specific actions to re-establish
a customer’s IP address if they move home, for example. There are security
benefits, too, because a changing IP address makes it harder for criminals to
hack into your network interface.

2. Static IP addresses: in contrast to dynamic IP addresses, static addresses
remain consistent. Once the network assigns an IP address, it remains the
same. Most individuals and businesses do not need a static IP address, but
for businesses that plan to host their own server, it is crucial to have one. This
is because a static IP address ensures that websites and email addresses tied
to it will have a consistent IP address — vital if you want other devices to be
able to find them consistently on the web.

Within an IP network, each interface connected to the physical network is assigned
a unique address. The IP address is assigned to the interface itself (such as a
network card) and not to the host, because the host is connected to the network.
A router, for example, has several interfaces and each requires an IP address. The
connection protocols, at level 2 of the ISO/OSI model, direct the computers using
the MAC address. When on a local network you use IP, each computer must also
be assigned an IP address, to allow it to communicate with computers outside of
its local network. The correspondence between IP address and MAC address is
managed through the ARP protocol, which allows to know the MAC address of a
given computer its IP address through a distributed query. Assigning an IP address
to a computer can be manual, or automated by protocols such as DHCP

Chapter 3 Alfonso Falcone 63

Industrial Manipulator Application

3.2.4 IPV4

Internet Protocol version 4 (IPv4) is the fourth version of the Internet Protocol (IP).
It is one of the core protocols of standards-based internetworking methods in the
Internet and other packet-switched networks. The first header field in an IP packet
is the four-bit version field. For IPv4, this is always equal to 4. The IPv4 header
is variable in size due to the optional 14th field (options). The IHL field contains
the size of the IPv4 header, it has 4 bits that specify the number of 32-bit words in
the header. The minimum value for this field is 5,[30] which indicates a length of
20 bytes. As a 4-bit field, the maximum value is 15, this means that the maximum
size of the IPv4 header is 60 bytes.

3.2.5 Subnet

A subnetwork or subnet is a logical subdivision of an IP network. The practice
of dividing a network into two or more networks is called subnetting. Devices that
belong to the same subnet are addressed with an identical most-significant bit-group
in their IP addresses. This results in the logical division of an IP address into two
fields: the network number or routing prefix and the rest field or host identifier.
The rest field is an identifier for a specific host or network interface. For IPv4, a
network may also be characterized by its subnet mask or netmask, which is the
bitmask that when applied by a bitwise AND operation to any IP address in the
network, yields the routing prefix. Subnet masks are also expressed in dot-decimal
notation like an address. For example, 255.255.255.0 is the subnet mask for the pre-
fix 198.51.100.0/24.Traffic is exchanged between subnetworks through routers when
the routing prefixes of the source address and the destination address differ. A
router serves as a logical or physical boundary between the subnets. The benefits of
subnetting an existing network vary with each deployment scenario. In the address
allocation architecture of the Internet using CIDR and in large organizations, it is
necessary to allocate address space efficiently. Subnetting may also enhance routing
efficiency, or have advantages in network management when subnetworks are ad-
ministratively controlled by different entities in a larger organization. Subnets may
be arranged logically in a hierarchical architecture, partitioning an organization’s
network address space into a tree-like routing structure, or other structures such as
meshes.

3.3 Ethercat Protocol

The EtherCAT protocol is a communication protocol based on the industrial Eth-
ernet one, but with some modifications. The Ethercat master sends a telegram
through all the nodes, fig. 3.1. Each Ethercat slave reads the output data for it
and writes those produced by it in the frame ”on-the-fly”, while the latter spreads
to the next nodes. The delay suffered by the frame is equal to the only physical
crossing time of the slave. The last node in a segment or fall line redirects the
message to the master using full-duplex Ethernet communication. The actual rate
of use of telegrams rises to over 90%, and thanks to full-duplex communication the
theoretical data flow is even higher than 100 Mbit/s. The Ethercat master is the
only node in the network that can actively send an Ethercat frame; all other nodes

64 Chapter 3 Alfonso Falcone

Industrial Manipulator Application

do is forward those frames downstream. This principle prevents delays of variable
duration and guarantees deterministic performance. The master uses a standard
Media Access Controller (MAC) without any dedicated communication processor.
This allows users to implement a master device on any hardware platform with
a network port, regardless of the operating system or application software used.
Ethercat slave devices integrate a so-called Ethercat Slave Controller (ESC) capable
of processing on-the-fly frames and in a purely hardware way, which makes network
performance predictable and independent of the particular implementation of slave
devices. Ethercat uses standard Ethernet frames. Ethercat frames are identified by
Ether-type 0x88A4. Being Ethercat optimized for few cyclical process data, you can
avoid the use of bulky software stacks such as TCP/IP or UDP/IP.

3.3.1 Ethernet Communication

To enable classic Ethernet communication between nodes, TCP/IP telegrams can
be tunneled through an acyclic channel without impacting the deterministic data
exchange, fig.3.1. During the boot phase, the master configures and maps the cyclic
process data in the slaves. Each slave can exchange variable amounts of data, from
one bit to a few bytes, or even kilobytes of data. Each Ethercat frame contains one
or more Datagrams. The Datagram header indicates what type of access the master
device requires:
Read, write or read+write
Access to a slave server via direct addressing, or access to multiple slaves via logical
addressing (implicit addressing).
Logical addressing is used for the exchange of cyclic process data. Each Datagram
addresses a specific subset of the network process image, whose maximum overall
size can reach 4 Gbytes. During the initial configuration, each slave is assigned a
specific location in that global address space. Slaves allocated in the same range can
be addressed by the same Datagram. Since Datagrams contain all the information
related to data access, the master can decide when and to which data to access. For
example, the master can use fast cycle times to access servo data, and slower cycle
times to sample I/O. This simplifies the operation of the master compared to other
field buses, in which the data of each node must be read individually, ordered by a
processor, and copied to memory.
In Ethercat, the master only has to fill a single Ethercat frame with new output
data, and send the frame to the MAC controller via Direct Memory Access (DMA).
When a frame with new input data is received by the MAC, the master can always
transfer the frame via DMA to the controller’s memory - all without the CPU having
to actively perform any copying operation. In addition to cyclical data, additional
Datagrams can be used for asynchronous or event-based communication.

3.3.2 Add on-the-fly process data

In addition to logical addressing, the master can access a slave based on its position
in the network. This method is used at the initial configuration stage to determine
the network topology and compare it with the expected one.
After verifying the network configuration, the master can assign each node a precon-

Chapter 3 Alfonso Falcone 65

Industrial Manipulator Application

figured address and communicate with the node itself through that fixed address.
This allows you to access individual devices even if the network topology is changed,
as in Hot Connect applications. There are two solutions for slave to slave commu-
nication. A slave can send data directly to another node located downstream in the
network. Since Ethercat telegrams are processed only in the forward path, this type
of direct communication depends on network topology and is particularly suitable
for fixed machine architectures (e.g. printing or packaging machines). In contrast,
a fully flexible slave to slave communication passes through the master and requires
two communication cycles (not necessarily two controller cycles). Thanks to Ether-
cat’s excellent performance, this type of slave-to-slave communication is faster than
other field bus technologies.

3.3.3 Ethercat P: data & power supply on one cable

Ethercat P (P = power) is an extension of the Ethercat protocol described above.
It allows you to transmit not only data, but also the power supply voltage through
a single standard four-wire Ethernet cable.
From the point of view of the Ethercat protocol and Ethercat P are identical, as
the extension concerns only the physical level. Specific Ethercat Slave Controllers
are not required to implement Ethercat P. It could be said that Ethercat P has the
same communication advantages as Ethercat, but it also provides power through the
communication cable, which results in benefits and benefits for many applications.
The two independent and electrically isolated 24V voltage power the Ethercat P
devices, equipped with US dedicated to electronics and sensors and UP destined to
periphery and actuators. Both US and UP voltages are transmitted directly to the
100mbit/s Ethercat communication line. Thanks to this, users can cascade several
Ethercat P devices with a single cable. This allows for a simplification of cabling, a
reduction in costs and a reduction in the size of devices, equipment and machines.
Ethercat P is particularly advantageous for those independent and often isolated
machine parts, as they can now be accessed with data and power through a single
cable. Sensors of all types lend themselves perfectly to Ethercat P: a single M8
connector allows efficient integration of these devices into the high-speed network
and connects them to the power supply. Possible errors in the connection of the
devices are avoided thanks to the mechanical coding of the connectors.
Ethercat P can be used together with traditional Ethercat in the same network. Ded-
icated components transform the physical layer of traditional Ethercat into Ethercat
P while maintaining data encoding. Similarly, a device can be powered with Ether-
cat P but transmit standard Ethercat output.

3.3.4 Distributed Clock for Precise Synchronization

In applications with space-distributed processes and requiring simultaneous actions,
exact synchronization is particularly important, fig. refether. This is the case, for
example, with multiple drives performing coordinated movements. Unlike a fully
synchronous communication, the quality of which immediately suffers from commu-
nication errors, the synchronized distributed clocks have a high degree of tolerance
towards the communication jitter. Therefore, the Ethercat solution for node syn-
chronization is based on the distributed clock (DC) approach. Fully hardware syn-

66 Chapter 3 Alfonso Falcone

Industrial Manipulator Application

chronization with propagation delay compensation. The calibration of the clocks in
the individual nodes takes place at a completely hardware level. The time reference
of the first DC slave is cyclically distributed to all other devices in the system. With
this mechanism, the slave clocks can be synchronized precisely to that of the refer-
ence clock. The resulting sync jitter is much less than 1µs. Since the time reference
sent by the reference clock arrives at the other slaves with a certain propagation de-
lay, the latter must be measured and compensated for each slave in order to ensure
synchronicity and simultaneity. The delay is measured during the network startup
phase and, if necessary, even at full speed, which ensures a maximum deviation be-
tween the clocks of much less than 1µs.
If all nodes share the same time reference, they can activate their own outputs si-
multaneously or acquire their own inputs with a high-precision timestamp. In axis
control applications, cycle time stability is as important as synchronism and simul-
taneity. In such applications, the velocity is normally derived from the measured
position, so it is essential that position measurements are temporally equidistant:
even minimal fluctuations in the instant of position measurement can result in a
major error in the calculated speed, especially in case of fast cycle times. With
Ethercat, position measurements are triggered by the precise local clock and not by
the bus, which ensures much greater accuracy. In addition, the use of distributed
clocks also softens the specifications on the master device; since actions such as po-
sition measurement are triggered by the local clock instead of receiving the frame,
the master is not subject to special requirements regarding the sending of frames.
This allows you to implement the master completely software level on a standard
Ethernet hardware. Even a microsecond size jitter does not decrease the accuracy
of distributed clocks! Since this accuracy does not depend on when the clock is
adjusted, the exact moment of transmission of the frame becomes irrelevant. The
Ethercat master only needs to ensure that the Ethercat telegram is sent sufficiently
in advance of the moment when the DC signal inside the slave devices triggers the
implementation of the outputs.

3.3.5 Diagnostic and Localization Errors

Experience with conventional field buses has shown that diagnostic properties play
a key role in determining machine availability and commissioning times. In addi-
tion to identifying errors, it is also important to locate them when searching for
faults. Ethercat allows you to scan and compare the actual network topology with
that configured during the startup phase. Ethercat also inherently supports many
other diagnostic functions. The Ethercat Slave Controller in each node performs a
cyclic redundancy check on each frame. The data contained in it are forwarded to
the slave application only if the received frame is valid. If an error is detected, a
corresponding counter is incremented and subsequent nodes are informed that the
frame is corrupted. Even the master device will detect that the frame has been
corrupted and will discard the data. The master can locate where the frame was
originally corrupted by analysing individual slave error counters. This is a huge
advantage compared to conventional field buses, where errors spread over the entire
physical medium making it impossible to locate its source. Ethercat allows you to
locate and locate occasional disturbances before the problem impacts on machine
operation. Thanks to the efficient use of the Ethercat bandwidth, which is bet-

Chapter 3 Alfonso Falcone 67

Industrial Manipulator Application

ter orders of magnitude than industrial Ethernet technologies based on individual
frames, the probability of errors caused by disturbances is much lower at the same
cycle time. And, in the case of very fast cycle times - typical scenario for Ethercat
- the time required for rebooting the network following an error is much less. Inside
the frames, the Working Counter allows you to monitor the consistency of the data
in each Datagram. Each node addressed by a Datagram and whose memory is ac-
cessible automatically increases the corresponding Working Counter. The master is
therefore able to check cyclically if all nodes are working with consistent data. If the
Working Counter has a different value from the expected one, the master does not
forward Datagram data to the control application. The master can then determine
the cause of unexpected behaviour with the help of status and error information
from the nodes, as well as the state of the physical link.
Since Ethercat uses standard Ethernet frames, network traffic can be recorded via
free software such as Wire-shark, which comes with an Ethercat-specific protocol
interpreter.

1. Ethercat Diagnostics for Users

2. Ethercat Diagnostics for Developers

3.3.6 High Availability Requirements

For machinery and devices with high availability requirements, a cable outage or
a node malfunction shall in no way determine the nn attainability of a segment of
the network or the termination of the network. Ethercat allows cable redundancy
with simple devices. By connecting a cable from the last node to an additional
network port in the master, a line topology is extended into a ring topology. A
redundancy event, such as a cable interruption or a node malfunction, is detected
by a software supplement in the master device. That will be all! Slaves do not need
to be modified, and they are not even aware that they are working in redundant
network conditions.
Cable redundancy with standard Ethercat slave devices Physical link monitoring
in slaves automatically detects and resolves redundancy cases with reaction times
of less than 15 µs, so that at most a cyclic frame is lost. This means that even
axis control applications with very short cycle times can continue to operate when
a cable is interrupted. Ethercat also provides master redundancy with Hot Standby
functionality. Vulnerable network components, such as those connected via an cable
drag chain, can be connected as a branch of the network, so that even when the
cable is interrupted the rest of the machine continues to function.

3.3.7 Communication Profiles

For the purpose of configuring slave devices and extracting diagnostic information,
it is possible to access the variables through acyclic communication, fig. refether.
The latter is based on a reliable mailbox protocol with auto-recover functionality
in case of loss or corruption of messages. To support a wide variety of devices and
applications, the following Ethercat communication profiles have been defined:

1. CAN application protocol over EtherCAT (CoE)

68 Chapter 3 Alfonso Falcone

Industrial Manipulator Application

2. Servo drive profile, IEC 61800-7-204 (SoE)

3. Ethernet over EtherCAT (EoE)

4. File access over EtherCAT (FoE)

5. Automation Device Protocol over EtherCAT (ADS over EtherCAT, AoE)

Different communication profiles can coexist in the same device.
A slave does not necessarily support all communication profiles; on the contrary, it
is possible to decide which profile is best suited to specific needs. The master device
is informed about which communication profiles have been implemented in the slave
through the descriptive file of the slave.

3.3.8 Transparent transmission of standard IT protocols

Using the Ethernet over Ethercat (Eoe) protocol any Ethernet data traffic can be
transported within Ethercat datagrams. Ethernet devices are connected to the
Ethercat network through the so-called Switchports. Ethernet frames, as well as
internet protocols (e.g. TCP/IP, VPN, Pppoe (DSL), etc.) are transparently con-
veyed over Ethercat via tunnelling. The device with Switchports functionality takes
care of inserting TCP/IP fragments into Ethercat traffic and therefore prevents the
determinism of communication from being compromised. In addition, Ethercat de-
vices can support Ethernet protocols (such as HTTP) locally, and thus behave as
traditional Ethernet nodes external to an Ethercat network. The master behaves
like a level 2 switch, capable of sending the frames to the recipient nodes via Eoe
based on their MAC addresses. In this way, you can support all internet technologies
such as web servers, email, FTP transfer in an Ethercat context.

3.3.9 Services

The protocol defines interfaces and services for:

1. Data exchange between Ethercat Master devices (master-master communica-
tion),

2. Communication to man-machine interfaces (HMI),

3. A supervision controller to access devices belonging to the underlying Ethercat
segments (Routing),

4. Integration of tools for plant configuration, as well as for device configuration.

3.4 Sysmac

Sysmac Studio is a fully integrated development environment for machine automa-
tion that combines configuration, programming, simulation and monitoring in a
simple interface. Automation professionals across the globe use Sysmac Studio to
design next-generation control systems incorporating PLCs, motion, safety, robotics
and vision products. The Sysmac Studio Automation Software provides an inte-
grated development environment to set up, program, debug, and maintain SYSMAC

Chapter 3 Alfonso Falcone 69

Industrial Manipulator Application

Figure 3.1: Ethercat Protocol - Communication, Power supply, Services and Syn-
chronization

NJ/NX/NY-series Controllers and other Machine Automation Controllers, as well
as EtherCAT slaves. The Sysmac Studio provides an environment for program-
ming with variables and POUs. Programming is designed with POUs (programs,
functions, and function blocks). The programs are then assigned to tasks and the
program execution order is defined. This reduces the interdependence of the pro-
grams and therefore allows more than one programmer to easily work at the same
time. The assignments of variables to hardware and the definitions of the relations
between information that is shared between different programs can be set at any
time.
As any other type of PLC software programming, Sysmac decompose a project in
three main areas, that are:

1. Topological View: where it is defined how the multiple devices are connected
to each other

2. Input/Output Data: where it is defined all the I/O data that the system
utilizes

3. Program Files: where it is written the PLC program

4. Program Variables: where all the program variables are defined and stored

70 Chapter 3 Alfonso Falcone

Industrial Manipulator Application

In our case, the topological view is shown in fig. 3.2, where every component can
communicate with the PLC thanks to an unique IP address, who’s obviously be-
longing to the same subnet. In our case the local web ip address and subnet are:

192.168.100.x
255.255.255.0

Once every component has a unique IP address, we have to give a name to each I/O
data that every devices send to the PLC. This operation is also called I/O cards
population, see fig.3.3.
Data can be of four types:

1. Digital Input (DI)

2. Digital Output (DO)

3. Analog Input (AI)

4. Analog Output (AO)

Figure 3.2: Sysmac - Topological View

Each of these data can only be read by specific PLC cards that agree with the
data type.
Once population is done, it is yet possible to start programming the PLC. The
latter is mostly programmed in Ladder language, that is a very simple and low level
programming language that associate the state of a coil to the series or/and parallels
of contacts.
Those contacts can be seen as switches and their state can be set to be

� NO Normally Open contact, when the contact is not excited its state is said
to be low or 0, otherwise it is high or 1

Chapter 3 Alfonso Falcone 71

Industrial Manipulator Application

Figure 3.3: Sysmac - Populated I/O Card

� NC Normally Closed contact, when the contact is not excited its state is said
to be high or 1, otherwise it is low or 0

More complex bit operations are possible, among them it is worth recalling:

1. MOVE: move the data in input to the output bit,byte,word, double word, etc.

2. SHIFTL : shift the first bit of a byte towards left

3. SHIFTR : shift the first bit of a byte towards right

4. ADD : consist of two inputs, one is the data to be manipulated nd the other
is the quantity who has to be summed up to the latter

5. INC : increments of 1 the input data

6. SUB : : consist of two inputs, one is the data to be manipulated nd the other
is the quantity who has to be subtracted up to the latter

The ladder language is not the only possible choice to program an OMRON PLC,
in fact it is possible to use standard structured programming language, that is a
higher level programming language which provides the usage of for, while loops, as
well as if, end if statements.
The advantages of ladder language stand in its intrinsic simplicity and clarity, while
its main drawback is that loops are not possible and so the same logic for n-different
tag must be re written n-times. The advantages of the structured language stands
in the coding speed and it has theoretically no disadvantages.

3.5 Structure of the Code

We have chosen to implement the PLC logic, both in ladder and in structured
language. The ladder part will deal with all the signals that the PLC receives is

72 Chapter 3 Alfonso Falcone

Industrial Manipulator Application

input and send in output from/to the field as well as all the safety devices and HMI
communication. Instead the structured language part will only deal with the PLC
to ROBOT communication. In particular, our company its used to work with the
following framework:

1. the robot PC stores the robot program with all the movement and functions
the robot has to accomplish, but can not make it run

2. the external PLC stores all the I/O data from the field and sends enabling
signals in order to make the robot program start.

The advantage of this implementation is the separation between the robot and
the field, in this way it is possible to make the robot work just aa muscle, while the
external PLC works as the brain of the plant.

3.5.1 Mission Concept

As explained above, the external PLC sends a signal in order to enable the robot
program. In practice, the external PLC can enable both the entire robot program(all
the functions and movements that the robot was programmed to execute) or just
a subprogram(just the withdraw function or the palletizing one). Everyone of this
functions has an ID that specify itself univocally with respect to all other sub-
functions.We use to refer to this subprograms with the name of missions, and we
refer to the ID numbers as mission numbers.In practice, when the external PLC
wants to enable a mission, it sends the mission number to the robot PC through an
analog output variable and waits for the robot PC to answer back that same mission
number before enabling the robot to accomplish that mission. This mechanism
introduce a redundancy that is particularly important for the safe of safety. In fact,
without this mechanism if there was some kind of disturb in the communication
between the two PLC, it could be possible to activate another mission with respect
to the called one, while instead, with this method that we call ECO, this probability
is very low. We can sketch the program flow as in fig.3.4

Figure 3.4: Algorithm Flow Chart

Chapter 3 Alfonso Falcone 73

Industrial Manipulator Application

1. First the External PLC sends the enabling signal for the robot program to
start

2. Then the robot PC sends back the same mission code received

3. When the external PLC receives correctly the ECO from the robot PC it
enables the robot mission

4. The robot start the mission it was asked to and sends back in ECO the mission
number plus an increasing offset (i.e 300,305,310)

5. When the robot has finished its mission, it will send back to the PLC the
following ECO signal ECOend = MissionStart+ 99

6. The External PLC stops enabling the robot movements and th robot stand
still waiting for the next mission number to be executed.

Hazard events can not make the robot move because of enabling communication
redundancy (ECO). Safety inputs can stop the robot program everytime under any
condition. The safety modules are programmed in order to send the robot to the
Home Position, with open gripper, in case of safety issues.

3.5.2 External PLC - Robot PC Communication

The external PLC can communicate with the Robot PC thanks to EtherCAT com-
munication protocol. In particular there are areas of memory in both PLC dedicated
to the intercommunication. This data can be accessed by their address, (i.e. Vari-
able : Distance, Address: DI 3.0). So the two devices have to point to the respective
exchange memory area and therefore it is needed to track this variable’s name and
addresses. This is done with an excel sheet. In fig.3.5 there’s a fragment of this list.

Figure 3.5: Fragment of I/O External PLC to Robot PC Mapping - Excel Sheet

74 Chapter 3 Alfonso Falcone

Chapter 4

Coding

4.1 Sysmac

In this project we have used both the ladder and structured language for program-
ming the communications between the robot pc and the external plc. In particular
in the ladder part, we set some important bits and words in order to make the robot
start/stop a cicle, as well as to send data to the hmi, in order to give to the user
some insight about the state of the current working conditions.
Here, we are going to discuss about both the ladder and the structured text code
separately.

4.1.1 Ladder Main Program

The Main program is divide into 22 ranks, see fig.4.1 to 4.5.
In rank:

Figure 4.1: Plc Code - Ladder 1/5

75

Industrial Manipulator Application

1. we make the variable ciclo_on be true only if there are no alarms, emergency,
stop push-buttons pressed, etc. present

2. we have written the logic for handling the stopping signal for the cicle

3. same as in rank 2

4. if there are no alarms, emergency and the cicle is not in automatic mode we
move 1500 inside the robot mission number.

5. as soon as ciclo_on becomes true, we refresh the program and at the positive
edge of this signal, we move the number corresponding to the Home Position in-
side the variable robot mission number. If the robot has to deposit in the right
rank or in the left one then it has to reset the variable robot in attesa (waiting
robot). If cicle_on is not true, then we reset the robot_start_missione

variable as well as missione_acquisita (mission accomplished). When the
variable from robot ext is not true we set the refresh program variable. As
soon as there’s an error in a drawer we automatically make the robot go in
Home Position.

6. we can see that if ciclo_on is true and the robot asks the plc to send the open
gripper enabling signal, then the plc set that bit to 1

7. we can see that after 200ms that the robot sends the signal gripper open,
the plc resets the command bit for opening the gripper and sets to true the
variable gripper open.

8. we can see that if ciclo on is active and the mission 200 is over, then if
stack of aluminium cans height is lesser or equal to the specified quota in the
operator panel, the robot closes the gripper anyway. This happens also when
the plc receives the signal from the robot to close the gripper.

Figure 4.2: Plc Code - Ladder 2/5

76 Chapter 4 Alfonso Falcone

Industrial Manipulator Application

9. we can see that after 200ms that the robot sends the signal gripper closed, the
plc resets the command bit for closing the gripper and sets to true the variable
gripper close.

10. we can see that if there’s no emergency we will not set the bit dout_ev_generale_auto

11. we can see that if an operator asks to withdraw some cans in order to perform
a quality test, we set the corresponding bit to 1

12. we can see the same as in rank 11, but this time the input comes from the
push-buttons

13. we can see that if an operator asks to deposit some cans in order to perform
a quality test, we set the corresponding bit to 1

14. we can see the same as in rank 13, but this time the input comes from the
push-buttons.

Figure 4.3: Plc Code - Ladder 3/5

15. we can see that if the deposit mission for the Quality Test is over or we
get a request for withdrawing cans for quality test purposes, we set the bit
HMI_richiesta_Deposito_CQ to keep track of this request

16. we can see that if the withdrawing mission for the Quality Test is over or
we get a request for depositing cans for quality test purposes, we set the bit
HMI_richiesta_Prelievo_CQ to keep track of this request

17. we can see that if ciclo_on is true and there are no access request nor alarm
nor robot waiting signals, then we move 0 in the variable hmi_indicatore_stato

18. we can see that if ciclo_on is true and there is an access request but not alarm
nor robot waiting signals, then we move 0 in the variable hmi_indicatore_stato.

Chapter 4 Alfonso Falcone 77

Industrial Manipulator Application

Figure 4.4: Plc Code - Ladder 4/5

19. we can see that if there’s the alarm signal we move 2 inside the variablehmi_indicatore_stato.

20. we can see that if the robot is waiting and there are no alarms then we move
3 inside the variable hmi_indicatore_stato.

21. we can see that as soon as the home position mission is over we set the bit
to_robot_prima_home_ok to make it remember that the robot were there
before.

22. we can see that if the robot is not in ext operation mode then we reset the
previous to_robot_prima_home_ok bit.

In fig.4.6, we have depicted the Main function flow chart.

4.1.2 Structured Code

The goal of this part of the code is just to exchange data from the external plc and
the robot one, see fig.4.7. In this part of the code we have implemented the exchange
of data like:

1. mission numbers

2. data needed for the hmi visualization

3. gripper state

4. alarms state

5. status feedback

The full program code can be seen in the last pages, pag.A.1

78 Chapter 4 Alfonso Falcone

Industrial Manipulator Application

Figure 4.5: Plc Code - Ladder 5/5

Figure 4.7: Plc Code - Structured Language

Chapter 4 Alfonso Falcone 79

Industrial Manipulator Application

Figure 4.6: Plc Main - Flow Chart

4.2 WorkVisual

The WorkVisual(WV) software package is intended exclusively for the configura-
tion, programming and diagnosis of a KUKA industrial robot or customer-specific
kinematic system.

4.2.1 Files Extensions

The WV Editor can be used to edit the following file formats:

1. ADD

2. BAT

3. CONFIG

4. CMD

5. DEL

6. INI

7. KFD

8. KXR

9. LOG

10. REG

11. TXT

12. XML

But WV editor is used primarily to deal with the following files:

80 Chapter 4 Alfonso Falcone

Industrial Manipulator Application

1. .dat where WV stores all the positions of the robot program (i.e. HomePosi-
tion, Withdraw Position, etc.) as an array of n elements who can represent
axis angles or digital bit who indicate some particular configurations.

2. .src where it is written the source code that is the heart of the root program.
All the instructions and movement are defined here

3. .config where configuration parameters are defined

For the sake of this thesis work, it is important to deal wth the robot code and the
logic structure behind it, so we are going to deal with the robot program, taking it
for granted that the reader has programming experience.

4.3 Robot Program

The complete robot program is subdivided into 10 missions, that are:

1. Home Position 100 : The robot is sent to a safe position where it can wait for
next orders.

2. Approaching Cans 200 : The robot is sent to a point very close to the incoming
pile of cans, before the actual grabbing.

3. Withdraw Cans 300 : By closing the gripper, the robot is able to grab the
cans pile.

4. Open Drawer 400 : By using the end effector’s nail, the robot can open the
drawer while grabbing the cans.

5. Close Drawer 500 : By using the end effector’s nail, the robot can close an
opened drawer.

6. Cans Deposit 600 : The robot actuate all the needed movements to store the
cans on the right position inside the drawer.

7. Maintenance 700 : For safety reasons, when maintenance is needed, the robot
is send to a special waiting position.

8. Quality Check Withdraw 800 : In order to make an operator check the quality
of the produced cans, the robot will withdraw some of them.

9. Quality Check Deposit 1000 : In order to make an operator check the qual-
ity of the produced cans, the robot will deposit them in a special area for
supervisions.

10. Manual Control 1500 : When the robot is controlled manually, that means
through the teach pendant, the mission number that the plc sends to the
robot’s PC is 1500.

We can further distinguish between missions who are carried out automatically and
in loop(missions from 100 to 600, see fig.4.8) as the normal operations missions and
the ones who instead are called just in some specific situations(700-800-1000-1500),
called special operations, see fig.4.15. We are going now to see the code of each one
of these missions.

Chapter 4 Alfonso Falcone 81

Industrial Manipulator Application

4.3.1 Normal Operations

Normal Operations are the missions who are carried out automatically and in
loop(missions from 100 to 600, see fig.4.8)

Figure 4.8: Robot missions set for normal Operations

Mission 100 : Home Position

The Home Position is the robot configuration where it can stand still waiting for
inputs or the intermediate position between two different missions. This procedure
is needed in order to avoid tangling of robot’s cables, i.e. pneumatic air transmis-
sion. Although this mission should be very simple as it should consist of only one
movement, there are different scenarios to take into account. The full code is de-
picted in fig.4.9. Before programming the robot movements, it is needed to specify
the following configuration parameters:

1. The frames with respect to whom all the positions are computed, that are the
base and tool frames.

2. The speed of the movements, expressed in percentage.

Having specified the frames and speed, the cases that we needed to take care are
depicted in fig.4.9 and in particular:

1. Is the robot yet in Home Position?

2. If not it could be in : Left/Right Rack zone

Depending on this two cases, we can further distinguish the movements and direc-
tives needed to safely go into the Home Position. Moreover, during the computa-
tions, we may need to apply some corrections in order to not make the robot move
beyond certain limits of the z axis, so that it will not collide with the roof. The same
has to be done for the x axis, in order to not make the tool collide with the chest

82 Chapter 4 Alfonso Falcone

Industrial Manipulator Application

of drawers. By looking at fig.4.9, we can see that if the robot actual position tell us
that the robot is in the left rack zone, we can distinguish three different situations:

1. The robot is in the Deposit Cans area, so we need to increase the z axis current
value of 80mm and then perform two linear movements (LIN instruction) on
for x axis, x = 0 and the other for the y one, y = 1100, finally we can use a
point to point motion to bring the robot in the Home Position

2. The robot is in the Withdraw Drawer area, so we need to increase the z axis
current value 20mm and then perform two linear movements (LIN instruction)
on for x axis, x = 0 and the other for the y one, y = 1100, finally we can use
a point to point motion to bring the robot in the Home Position

3. The robot is in the Withdraw Cans area, so we need to check if the z axis
current value is greater than 1350mm and then perform two linear movements
(LIN instruction) on for y axis, y = 0 and the other for decreasing the x one,
but making sure that its value it’s not lower than 400mm, in order to not
collide with the Withdraw Cans structure, finally we can use a point to point
motion to bring the robot in the Home Position.

The exact same considerations can be applied to the right hand side. Instead if the
robot was already in Home Position or very close to it, we just perform a point to
point motion in order to remain in the Home Position.

Figure 4.9: Flow Chart Mission 100 - Home Position

Mission 200 - Withdraw Cans Approach

The goal of this mission is to prepare he robot to grab the cans pile. So in order to do
so, we make sure that the robot will reach a certain configuration , where it is very
near to the cans to be taken, so that in the next mission it can close the gripper and
withdraw the cans. In the first place, we open the gripper for safety reasons, then we
make the robot move to a safe position for withdrawing cans, where with safety we
mean a position who will not make the cables tangling up. After this, we make the
robot go into the actual approach position. For the sake of testing and programming
simplicity, it is possible to insert some corrections to this position quotes, thank to
the HMI panel. So during testing procedure, it is possible to modify in real time

Chapter 4 Alfonso Falcone 83

Industrial Manipulator Application

this approaching position in order to tune it to the best. Finally, we increase the z
axis, written in the tool’s frame, of 150mm, in order to reach the withdrawing cans
structure.
In fig.4.10, we find the complete flow chart of this simple mission.

Figure 4.10: Flow Chart Mission 200 - Withdraw Cans Approach

Mission 300 - Withdraw Cans

The goal of this mission is to grab the cans pile. Since the previous mission have
sent the robot to the right position to withdraw the cans, we make the robot close
the gripper and once it has grabbed the pile, we program it to first move outside
the withdrawing cans zone along the x axis, with a linear motion and then it is send
away from this point thanks to a linear motion along x and z axis. At the end of
this motion, the robot can safely return to the safe position defined in the variable
PositionSafePrelievo.
In fig.4.11, we find the complete flow chart of this mission.

Figure 4.11: Flow Chart Mission 300 - Withdraw Cans

Mission 400 - Open Drawer

The goal of this mission is to first decide in which box should the cans of pile be
deposited and then deposit it. Since the previous called mission has opened the
right drawer, this mission starts looking for the Plane number, that is the number of
drawer to be used, starting from the lowest one up t the highest one, 1-15. At first,

84 Chapter 4 Alfonso Falcone

Industrial Manipulator Application

we set the speed in percentage depending on plane number, then depending on the
left or right rack, we have to know in which drawer the robot has to operate and
basing on this, it will be at first sent to a safe position(low,middle or high).After
this the robot PC will load the final deposit position as well as the approaching
position. Now the robot can get to the approaching position and then to the final
one opening the gripper in order to allow the cans to be put in the right place. Once
this operation is done, it follow three linear motion that are intended to safely get
away from this position, each of this motion will involve movement along Y and Z
axis, with different slopes. Once this movements are accomplished, the robot is sent
to the Safe Left Rack position or the right one depending on the previous operations.
In fig.4.12, we find the complete flow chart of this mission.

Figure 4.12: Flow Chart Mission 400 - Deposit Cans

Chapter 4 Alfonso Falcone 85

Industrial Manipulator Application

Mission 500 - Close Drawer

Figure 4.13: Flow Chart Mission 500 - Close Drawer

The goal of this mission is to close an opened drawer. The robot has to know which
of the two rack is involved, the left or right one. After it has recognized where it has
to operate, it will be sent in a safe position called ”Safe Position Slide” and then,
depending on the height of the drawer to be closed, it will move into the next safe
position, called ”Safe Position Low/Middle/High”. At this stage, the robot PC will
load the approaching and final points. In particular, we have programmed the robot
to follow 6 approaches points before getting to the final one, in order to be sure
that the mission is correctly accomplished without collisions assuring repeatability.
Once the robot reaches the final position it starts to get away at first parallel to the
ground and then along a 3D line, instructions LIN Y-=8mm and LINZ+=300mm.
At this point the drawer is closed and the robot its far away from it, so depending
on the previous knowledge of the involved rack, left or right and on the height of
the drawer, the robot will be sent to the Safe Position Low/Middle/High and the
mission is completed.
In fig.4.13, we find the complete flow chart of this mission.

86 Chapter 4 Alfonso Falcone

Industrial Manipulator Application

Mission 600 - Cans Deposit

Figure 4.14: Flow Chart Mission 600 - Cans Deposit

The goal of this mission is to deposit cans in the right place inside a drawer. At
first we have programmed to close the gripper, in order to be sure the robot won’t
leave the pile of cans, moreover, the robot has to know which of the two rack is
involved, the left or right one. After it has recognized where it has to operate,
it will be sent in a safe position called ”Safe Position Slide” and then, depending
on the height of the drawer to be closed, it will move into the next safe position,
called ”Safe Position Low/Middle/High”. At this stage, the robot PC will load
the approaching and final points. In particular, we have programmed the robot to
follow 3 approaches points before getting to the final one, in order to be sure that the
mission is correctly accomplished without collisions assuring repeatability. Once the
robot reaches the final position it opens the gripper so that the pile of cans can be
correctly deposited. Then it starts to get away from them. At this point, depending
on the previous knowledge of the involved rack, left or right and on the height of
the drawer, the robot will be sent to the Safe Position Low/Middle/High and the
mission is completed.
In fig.4.14, we find the complete flow chart of this mission.

Chapter 4 Alfonso Falcone 87

Industrial Manipulator Application

4.3.2 Special Operations

Special Operations missions are called just in some specific situations(missions 700,800,1000
see fig.4.15)

Figure 4.15: Robot missions set for special Operations

Mission 700 - Maintenance

The maintenance mission is never called by the external plc, as this is a prediction
for future updates. It can happen that the operators have the necessity to operate
on the robot or on its tool and therefore that they need that the robot goes in a
particular configuration different from that of HomePosition. It is for this reason
that the maintenance function is important, however in our application it was not
requested, but it was still designed in case of future customer needs.
Anyway, in fig.4.16, we find the flow chart of this mission.

Figure 4.16: Flow Chart Mission 700 - Maintenance

Mission 800 - Quality Check Withdraw

The goal of this mission is to withdraw cans in a special place, so that an operator
can check the quality of the produced cans. At first, we have rogrammed to open
the gripper, for preparing the robot to take a a new pile of cans, the robot has to
go to the Quality Check position for withdrawing the cans. At this stage, the robot
will be sent first to an approach position and then to the final one, so that it can
easily and safely grab the cans. Once the robot reaches the final position it closes
the gripper so that the pile of cans can be correctly withdrawn. Then it starts to
get away from them and finally it returns to the Quality Check Safe Position.
In fig.4.17, we find the complete flow chart of this mission.

88 Chapter 4 Alfonso Falcone

Industrial Manipulator Application

Figure 4.17: Flow Chart Mission 800 - Quality Check Withdraw

Mission 1000 - Quality Check Deposit

The goal of this mission is to deposit cans in a special place, so that an operator can
check the quality of the produced cans. At first, the robot has to go to the Quality
Check position for withdrawing the cans. Then, it will be sent first to an approach
position and then to the final one, so that it can easily and safely bring the cans
with it. Once the robot reaches the final position it opens the gripper so that the
pile of cans can be correctly deposited. Then it starts to get away from this position
and finally it returns to the Quality Check Safe Position.
In fig.4.18, we find the complete flow chart of this mission.

Figure 4.18: Flow Chart Mission 1000 - Quality Check Deposit

Mission 1500 - Quality Check Deposit

This is not properly a mission, because the robot does not operate automatically.
But anyway, when the robot is controlled manually, through the teach pendant, the
mission number that the plc sends to the robot’s PC is 1500.

Chapter 4 Alfonso Falcone 89

Industrial Manipulator Application

4.4 Full Missions Code

The full missions code can be seen in the last pages pag.106

90 Chapter 4 Alfonso Falcone

Chapter 5

HMI Operator Panel

A Human-Machine Interface (HMI), see fig.5.1 is a user interface or dashboard that
connects a person to a machine, system, or device. While the term can technically
be applied to any screen that allows a user to interact with a device, HMI is most
commonly used in the context of an industrial process. Although HMI is the most
common term for this technology, it is sometimes referred to as Man-Machine In-
terface (MMI), Operator Interface Terminal (OIT), Local Operator Interface (LOI),
or Operator Terminal (OT). HMI and Graphical User Interface (GUI) are simi-
lar but not synonymous: GUIs are often leveraged within HMIs for visualization
capabilities. In industrial settings, HMIs can be used to:

� Visually display data

� Track production time, trends, and tags

� Oversee KPIs

� Monitor machine inputs and outputs

� And More

Figure 5.1: HMI - Human-Machine Interface

Similar to how you would interact with your air-conditioning system to check and
control the temperature in your house, a plant-floor operator might use an HMI to
check and control the temperature of an industrial water tank, or to see if a certain

91

Industrial Manipulator Application

pump in the facility is currently running. HMIs come in a variety of forms, from
built-in screens on machines, to computer monitors, to tablets, but regardless of their
format or which term you use to refer to them, their purpose is to provide insight
into mechanical performance and progress. HMI technology is used by almost all
industrial organizations, as well as a wide range of other companies, to interact with
their machines and optimize their industrial processes.
Industries using HMI include:

� Energy

� Food and beverage

� Manufacturing

� Oil and gas

� Power

� Recycling

� Transportation

� Water and waste water

� And many more

The most common roles that interact with HMIs are operators, system integrators,
and engineers, particularly control system engineers. HMIs are essential resources
for these professionals, who use them to review and monitor processes, diagnose
problems, and visualize data.

5.1 Common Uses of HMI

HMIs communicate with Programmable Logic Controllers (PLCs) and input/output
sensors to get and display information for users to view. HMI screens can be used for
a single function, like monitoring and tracking, or for performing more sophisticated
operations, like switching machines off or increasing production speed, depending
on how they are implemented. HMIs are used to optimize an industrial process
by digitizing and centralizing data for a viewer. By leveraging HMI, operators can
see important information displayed in graphs, charts, or digital dashboards, view
and manage alarms, and connect with SCADA and MES systems, all through one
console. Previously, operators would need to walk the floor constantly to review
mechanical progress and record it on a piece of paper or a whiteboard. By allow-
ing PLCs to communicate real-time information straight to an HMI display, HMI
technology eliminates the need for this outdated practice and thereby reduces many
costly problems caused by lack of information or human error.

5.2 Premium HMI

In order to be able to design an HMI, it is needed some programming interface.
There are various IDE for such a purpose. In our case, we have used Premium HMI,
see fig.5.2. Premium HMI, [6], offers the most advanced graphic technologies based

92 Chapter 5 Alfonso Falcone

Industrial Manipulator Application

on XAML standards and it is the only visualization solution supporting XAML
vector graphics also on Windows CE operating system.

� Premium HMI introduces a new 16 million colours graphic rendering engine
supporting XAML advanced graphic technologies

� Sophisticated management of transparency and shading effects

� Automatic re-Dimensioning of screens for devices with different graphic res-
olutions; this feature of Premium HMI allows existing projects to be easily
reused on different systems regardless of the graphic resolution of the display

� Rich gallery of vector graphic objects (buttons, switches, analogue displays,
sliders, etc.) to realise unprecedented user interface projects

� Complete set of graphic animations (including movement of objects along de-
finable routes)

� SVG import functionality

� Alias support and inheritance of symbols with definition of public symbols and
automatic propagation of modifications from parent object to child object

� Integrated support for multi-monitor systems

Premium HMI has a complete communication drivers library for the most used PLCs
on the market. Premium HMI also provides:

Figure 5.2: Premium HMI IDE

� High performance and reactivity of controls to meet the most demanding
requirements of machine manufacturers that need fast data updating and a
prompt dispatch of commands to actuators

Chapter 5 Alfonso Falcone 93

Industrial Manipulator Application

� Support for multi-protocol interfacing with data transfer function (gateway)
between communication channels

� Real-Time I/O ODBC Link provides connectivity towards company’s infor-
mation systems. Each variable (Tag) has the reading-writing connectivity to
an external relational DB. Therefore the Real-Time DB of the project can be
shared automatically (partially or entirely) on a DB table, allowing sharing of
plant’s real-time data with the company’s ERP

� Availability of normalisers for the application of non-linear transformations to
the variables

Premium HMI provides maximum reliability in events management, guaranteeing
continuous and immediate system/ machine monitoring, improving its efficiency and
minimising production downtime

� Alarms are managed according to ISA S-18 standards, but they are entirely
customizable with high-configurable objects and templates-oriented program-
ming (threshold alarms, digital alarms, warning messages without recognition
cycle, etc.)

� Simple definition and configuration of repetitive alarms using templates

� Fixed or variable triggering thresholds determine activation of the alarm, man-
aging the four standard operating statuses (ON, OFF, ACK and RST) and the
consequent representation of active alarms in visualization objects, managed
by Windows or Banners with several filters (by time, area, priority, period,
etc.) and the possibility to dynamically combine help and wizards on external
files (CHM, HTML, PDF)

� Library tools for the organic visualization of active alarms, alarms awaiting
acknowledgement and the alarm log with the possibility to apply visualization
filters for a simple search and analysis

� The Alarms Window and the Historic Log Window are the tools to visualize
active or stored alarms and can be inserted and configured as objects in any
screen

� Premium HMI introduces the possibility to select an active alarm and directly
view its history in the alarm window

� The Alarm Log automatically records all the events (Alarms, Driver Events or
System Events) on the relational database (even on Windows CE) or on text
files

� Alarm Dispatcher to promptly send alarms or messages via SMS or E-mail;
the notification is sent to the specific User or Group of Users and can be
customised depending on timetables, calendars, work shifts, etc. SMS noti-
fication dispatcher based on SMPP protocol (dispatches SMSs via Internet
without modem)

5.2.1 Designed HMI

The machine has an operator interface called HMI. With it you can monitor the
correct operation of the system. Manage the system in manual mode, monitor the

94 Chapter 5 Alfonso Falcone

Industrial Manipulator Application

status of alarms, check the history of events, set parameters adjustment. The oper-
ator panel (HMI) consists of two structures that are common to all pages realized.
The upper part of the interface operator, is composed from the bar of the title.

� BOTTONE DI DISCONNESSIONE

� SMARTpad

� KEYSWITCH

� PULSANTE DI SICUREZZA

� SPACE MOUSE

� PULSANTI DI AVANZAMENTO

� PROGRAM

� OVERRIDE

� AVANZAMENTO

� OVERRIDE

� MENU PRINCIPALE

� DISPLAY TOUCH

� SCREEN

� PULSANTI DI STATO

� PULSANTE START

� PULSANTE DI AVVIO IN BACKWARDS

� PULSANTE STOP

� MOSTRA TASTIERA

� TOUCH

The button bar or navigation bar is located on the left side of the interface and
serves to navigate between the pages of the HMI, to request the removal of lids from
the axis of supply and subsequent storage within the CQ station, to request the
picking of from the CQ station and palletizing inside the box, for display the status
of the machine and to select the mode of operation (Manual or Automatic). The
operations of Request withdrawal for CQ and Request deposit from CQ can be also
carried out by quality control control control panel placed next to its workstation.

5.3 Home Page

The main page of the panel is the home page from which you can have a overview
of the operating status of the plant. In the background is represented the layout
of the machine with two lights that light red if they should be disconnected RFID
sensors, cause access door opening and CQ drawer. At the bottom of left there is
a button with which you can vary the operating status and switch from Manual

Chapter 5 Alfonso Falcone 95

Industrial Manipulator Application

(Yellow Color) to Automatic (Green Color). There are two buttons called ”Reset
Left/Right Box” that allow zeroing of the cycle; the reset buttons shall be pressed
downstream of the following procedure:

� Remove the complete box from its position (after having inserted the safety,
placed in the upper part of the box, and have checked that all the drawers are
locked and safely);

� Place the empty box on the location of interest and remove the safety;

� Press the button ”Reset Left/Right Box” to reset the cycle parameters;

� Press ”Start” to start the cycle.

There are also two indicators relating to the working cycle: number of the Bat-
tery being processed and number of the Worktop. In low there is a window where
the machine’s operating state is reported and process speed: the ”Plant Status”
indicates the operating status, in real time, of the machine; the ”Command Miss”
indicates the operation performed by the PLC in real time; the ”Miss Robot” means
the operation performed by the Robot in real time. Ensure that the safety has been
removed or is likely to damage the drawer extraction component and the Gripper
Failure to press the Reset button when processing a new box, may cause incorrect
arrangement of lids, as well as damage to machine components. Always press the
key Reset Box when processing a new box. In addition, there is an Alarms button
with which you can interact to open its and check which alarms have been triggered.

Figure 5.3: HMI - Home Page

5.3.1 Manual Operation Page

If necessary, you can control the Robot Gripper, in the only manual mode, and
through this page you can activate the actions of the pliers. As well as monitoring

96 Chapter 5 Alfonso Falcone

Industrial Manipulator Application

the status of the associated facilities. It is also important to monitor the status of
the plant. WARNING: After a collision, always check that the deposit number is
consistent with that which is actually the situation of machine downtime. If it is not
consistent, set the correct deposit number to prevent the Robot go to collide. This
is an operation to do with the plant in MANUAL mode and the robot in HOME
position. The number on the panel corresponds to the deposit that the ROBOT
must carry out.

1. STATO

2. CASSONE

3. SELETTORE

4. AUT/MAN

5. RESET

6. CASSONE

7. CONTROLLO

8. QUALITA’

9. INDICATORI STATO

10. MACCHINA

11. PULSANTE

12. ALLARMI

13. INDICATORI DI STATO

14. DELLA MACCHINA

15. INDICATORI

16. SENSORI RFID

5.3.2 Setup Page

The parameters can only be changed when the system is stationary, in manual mode.
In addition the modification of some parameters shall be carried out by checking
that there is consistency with the standstill situation.
On the MAIN page you can change the following parameters:

1. Stack - Number of the stack to be deposited, from 1 to 13, in the plan indicated
(modifiable only when the system is stationary, in manual mode, checking that
there is consistency with the stationary situation to avoid collisions).

2. Plane- Number of the plan to work from 1 to 15 (modifiable only to plant sta-
tionary, in manual mode, checking that there is consistency with the situation
of machine downtime to avoid collisions).

3. Global Speed - Variable robot handling speed from 0 to 100.

Chapter 5 Alfonso Falcone 97

Industrial Manipulator Application

Figure 5.4: HMI - Manual Page

4. Palletization change side - Allows you to change the palletizing side from left
to right and vice versa. At the pressure a Pop-Up window will appear that
will ask to confirm the side change; pressing YES will confirm the choice, press
NO to cancel it.

On the Setup page you can change the following parameters:

1. Laser height set socket - Distance between the light source of the laser sensor
and battery head covers. Determines the length that must have the stack of
lids to palletize. The lower the quota and the higher the length of the cover
stack. Once reached the set altitude the Robot is authorized at the removal
of the lids on the feeding axis.

2. Max number of planes on the left/right side - Maximum number of planes the
robot must fill inside the box during the production cycle. The values can be
set between 1 and 15.

Read Laser Quota: Indicates the instant quota read by the sensor (can not be
modified). Once the parameters are changed, they become immediately operational.

5.3.3 Alarm Pages

This page monitors the alarms of the machine. They are referred to as Leds that are
coloured red in case they are activated. All alarms are reported from the luminous
column with the lighting of the red light, which disappears at the moment of Reset.
The alarms managed are the following:

1. ALLARME CIRCUITO EMERGENZE

2. ALLARME CIRCUITO CARTER

3. ALLARME MICRO PORTA ACCESSO

98 Chapter 5 Alfonso Falcone

Industrial Manipulator Application

Figure 5.5: HMI - Setup Page

4. ALLARME MICRO PORTA QUALITA

5. ALLARME PRESENZA CASSETTIERA DX

6. ALLARME PRESENZA CASSETTIERA SX

7. ALLARME QUOTA SICUREZZA LASER

8. ALLARME DISCREPANZA CASSETTI DX

9. ALLARME DISCREPANZA CASSETTI SX

10. CASSETTIERA PIENA DX

11. CASSETTIERA PIENA SX

Moreover we have the following alarms:

� ALLARME CIRCUITO EMERGENZE: it is connected to emergency mush-
rooms and is activated at pressure of one of them. After restoration, it is
important to reset the alarm. The occurred Execution of the reset is indicated
by the color of the button ALARMS in green.

� ALLARME CIRCUITO CARTER: It is activated when the circuit that con-
nects the sensors of the perimeter access is interrupted, that is when you try
to access the work area from two openings available: for opening the operator
access door and/or for opening the CQ drawer. The alarms are visible on the
HMI by means of two indicators, positioned on the layout in the Home screen
at the above accesses, which emit light red when active. To restore the state
of operation of the machine must close the accesses, ensure that no operator
is present within the perimeter of the machine and press the Start button.

� ALLARME MICRO PORTA ACCESSO: Active when operator access door
comes open. The sensor is restored by closing the door and pressing the Start
button on the operator panel. The activation of this alarm involves the plant

Chapter 5 Alfonso Falcone 99

Industrial Manipulator Application

shutdown, of Consequently, the machinery must be restored to its state of
operation.

� ALLARME MICRO PORTA QUALITA’: Active when quality desk drawer is
opened. The sensor is restored by closing the door and pressing the button
Start on operator panel. Activation of this alarm does not stop the process
Unless the robot is heading to the quality control station.

� ALLARME PRESENZA CASSETTIERA DESTRA/SINISTRA: It is acti-
vated when the box is not present in its location or has not been correctly
positioned. The presence of this alarm does not allow to start the production
cycle.

� ALLARME QUOTA SICUREZZA LASER: It is an alarm that is activated
when the battery of lids present on the feed axis, at the outlet from the furnace
for the application of mastic, has not reached the level of work set, that is, when
the number of lids is not enough to obtain a complete stack for palletizing.

� ALLARME DISCREPANZA CASSETTI DX/SX: Indicates that the number
of the Top inserted in the Home screen Plan box does not match with what
was processed before manual insertion by HMI. To restore machine operation
enter the correct Plan number and press Start.

� CASSETTIERA PIENA DX/SX: At the end of the production cycle, the robot
takes in a rest position and signal to the operator that you have to remove the
box. After the removal of the full box, you will have to place a new empty
box, remove the safe drawers and reset the alarm from the operator panel.

Figure 5.6: HMI - Alarm Page

100 Chapter 5 Alfonso Falcone

Chapter 6

Conclusions

This project has tried with success to meet the customer’s needs: ”Obtain an au-
tomatic palletizing system for aluminium lids thanks to the use of a robotic ma-
nipulator” To this end, two racks containing boxes, an ad-hoc end effector for the
application and a safety barrier for operators have been constructed from a me-
chanical point of view, From the electrical point of view, an electric panel has been
created able to house an Omron PLC and Sick safety modules, from the point of
view of programming, both the robot’s PC and the external PLC have been pro-
grammed, sick modules and HMI operator interface panel.
The proposed solution, with the external PLC architecture, proved to be valid and
robust, with a fairly fast working time and good general stability. This result is
consistent with the expectation initially expressed in the elaboration, according to
which the use of an external PLC would have created a separation between the robot
and the rest of the plant, making it act a simple muscle, which performs the orders
given by the external PLC. This use of the manipulator is optimal because the com-
putation power of the robot PC is engaged only in the calculation of the trajectories
to follow, making the system less overloaded with respect to the simulated robot
PLC case.
However, it is important to keep in mind that this solution is more expensive in
general and involves the use of many different devices, which must be programmed
in different environments and also present incompatibilities with regard to the com-
munication protocol, that have to be solved. Therefore, although this architecture
is valid and meets all customer expectations, it would be possible in the future to
integrate more devices with the same communication protocol to speed up program-
ming operations. In addition, the use of an external PLC also increases the size of
the final electrical panels, so it should be considered the possibility of using just the
simulated robot PLC, but being very careful to prevent loop and stability issues.

101

Bibliography

[1] John J Craig. Introduction to Robotics: Mechanics and Control. 2020.

[2] Géza Husi. Position Singularities and Ambiguities of the KUKA KR5 Robot.
2015. url: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.979.2398&rep=rep1&type=pdf.

[3] IEC 61508. 2011. url: https://en.wikipedia.org/wiki/IEC_61508.

[4] Bruno Siciliano Lorenzo Sciavicco Luigi Villani Giuseppe Oriolo. Robotics,
Modelling, Planning and Control. 2009.

[5] Majid Pakdel. Advanced PLC Programming. 2020.

[6] Premium HMI. 2021. url: https://asem.it/it/prodotti/72/premium-
hmi.html.

[7] Alessandro Rizzo. Robotics course slides. 2020.

[8] Raffaella Sesana. Applied Mechanics and Machine Design course slides. 2020.

[9] Angela Summers. Evaluation of Uncertainty in Safety Integrity Level (SIL)
Calculations. 2016. url: https://sis-tech.com/wp-content/uploads/
2016/11/Evaluation-of-Uncertainty-in-Safety-Integrity-Level.pdf.

[10] Yuhan Chen Xiao Luo Baoling Han Yan Jia Guanhao Liang Xinda Wang. “A
General Approach Based on Newton’s Method and Cyclic Coordinate Descent
Method for Solving the Inverse Kinematics”. In: Applied Sciences (2019).

102

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.979.2398&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.979.2398&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/IEC_61508
https://asem.it/it/prodotti/72/premium-hmi.html
https://asem.it/it/prodotti/72/premium-hmi.html
https://sis-tech.com/wp-content/uploads/2016/11/Evaluation-of-Uncertainty-in-Safety-Integrity-Level.pdf
https://sis-tech.com/wp-content/uploads/2016/11/Evaluation-of-Uncertainty-in-Safety-Integrity-Level.pdf

Appendix A

Appendix Title

Figure A.1: Property of MVQuadro S.r.L

A.1 Sysmac - Structured Language Code

IF TO_ROBOT_DEPOSITA_DX=TRUE AND ULTIMA_PILA_DX=TRUE AND CASSETTO_APERTO=TRUE THEN

ROBOT_NUM_MISSIONE:=500;

ELSIF

TO_ROBOT_DEPOSITA_SX=TRUE AND ULTIMA_PILA_SX=TRUE AND CASSETTO_APERTO=TRUE

THEN

ROBOT_NUM_MISSIONE:=500;

END_IF;

IF TO_ROBOT_DEPOSITA_DX=FALSE AND TO_ROBOT_DEPOSITA_SX=FALSE...

THEN ROBOT_NUM_MISSIONE:=2000;

END_IF;

IF ROBOT_NUM_MISSIONE=2000 AND RICHIESTA_ACCESSO=FALSE THEN

ROBOT_NUM_MISSIONE:=100;

END_IF;

IF ECO_NUMERO_MISSIONE=ROBOT_NUM_MISSIONE THEN

TO_ROBOT_START_MISSIONE:=TRUE ;

END_IF;

IF ECO_NUM_MISS_RUN>ROBOT_NUM_MISSIONE AND ...

ECO_NUM_MISS_RUN<ROBOT_NUM_MISSIONE +100

AND ROBOT_IN_ATTESA=FALSE

THEN TO_ROBOT_START_MISSIONE:=FALSE;

//ROBOT_NUM_MISSIONE:=2000;

END_IF;

IF ECO_NUM_MISS_RUN=ROBOT_NUM_MISSIONE+99 AND ROBOT_IN_ATTESA=FALSE THEN

//CASE CICLO

CASE (ROBOT_NUM_MISSIONE+99) OF

//MISSIONE HOME

199:MISSIONE_ACQUISITA:=TRUE;

IF TO_ROBOT_DEPOSITA_DX=TRUE THEN

TO_ROBOT_NUMERO_LATO_DEP:=1;

TO_ROBOT_NUMERO_PIANO_INT:=NUMERO_PIANO_DEPOSITO_DX;

END_IF;

103

Industrial Manipulator Application

IF TO_ROBOT_DEPOSITA_SX=TRUE THEN

TO_ROBOT_NUMERO_LATO_DEP:=2;

TO_ROBOT_NUMERO_PIANO_INT:=NUMERO_PIANO_DEPOSITO_SX;

END_IF;

IF RICHIESTA_ACCESSO=FALSE THEN

IF CASSETTO_APERTO=TRUE THEN

ROBOT_NUM_MISSIONE:=200;

MISSIONE_ACQUISITA:=FALSE;

ELSE

IF TO_ROBOT_DEPOSITA_DX=TRUE THEN ...

TO_ROBOT_NUMERO_LATO_DEP:=1; ROBOT_NUM_MISSIONE:=400;

TO_ROBOT_NUMERO_PIANO_INT:=NUMERO_PIANO_DEPOSITO_DX;

MISSIONE_ACQUISITA:=FALSE;

ELSIF TO_ROBOT_DEPOSITA_SX=TRUE THEN...

TO_ROBOT_NUMERO_LATO_DEP:=2;ROBOT_NUM_MISSIONE:=400;

TO_ROBOT_NUMERO_PIANO_INT:=NUMERO_PIANO_DEPOSITO_SX;

MISSIONE_ACQUISITA:=FALSE;

END_IF;

END_IF;

ELSE

ROBOT_NUM_MISSIONE:=2000;

MISSIONE_ACQUISITA:=FALSE;

END_IF;

//MISSIONE PREPARAZIONE PRELIEVO

299: MISSIONE_ACQUISITA:=TRUE;

IF RICHIESTA_ACCESSO=FALSE THEN

IF ((QUOTA_PILA_REAL<=(HMI_QUOTA_PILA_REAL+20)) AND...

(EV_PINZA_CHIUDI_AUTO=TRUE)) THEN

ROBOT_NUM_MISSIONE:=300;

MISSIONE_ACQUISITA:=FALSE;

END_IF;

IF PRENOTAZIONE_STOP_CICLO=TRUE OR RICHIESTA_ACCESSO=TRUE THEN

ROBOT_NUM_MISSIONE:=100;

END_IF;

ELSE

ROBOT_NUM_MISSIONE:=100;

MISSIONE_ACQUISITA:=FALSE;

END_IF;

//MISSIONE DEPOSITO

399:MISSIONE_ACQUISITA:=TRUE;

IF HMI_RICHIESTA_DEPOSITO_CQ=TRUE THEN

ROBOT_NUM_MISSIONE:=1000;

ELSE

IF TO_ROBOT_DEPOSITA_DX=1 THEN TO_ROBOT_NUMERO_LATO_DEP:=1;

ELSIF TO_ROBOT_DEPOSITA_SX=1 THEN TO_ROBOT_NUMERO_LATO_DEP:=2;

MISSIONE_ACQUISITA:=FALSE;

ELSE

ROBOT_NUM_MISSIONE:=100;

ROBOT_IN_ATTESA:=TRUE;

MISSIONE_ACQUISITA:=FALSE;

END_IF;

104 Chapter A Alfonso Falcone

Industrial Manipulator Application

IF ROBOT_IN_ATTESA=FALSE AND TO_ROBOT_NUMERO_LATO_DEP=1 THEN

TO_ROBOT_NUMERO_FILA_PIANO_INT:=NUMERO_DEPOSITO_PILE_DX;

TO_ROBOT_NUMERO_PIANO_INT:=NUMERO_PIANO_DEPOSITO_DX;

ROBOT_NUM_MISSIONE:=600;

MISSIONE_ACQUISITA:=FALSE;

ELSIF

ROBOT_IN_ATTESA=FALSE AND TO_ROBOT_NUMERO_LATO_DEP=2 THEN

TO_ROBOT_NUMERO_FILA_PIANO_INT:=NUMERO_DEPOSITO_PILE_SX;

TO_ROBOT_NUMERO_PIANO_INT:=NUMERO_PIANO_DEPOSITO_SX;

ROBOT_NUM_MISSIONE:=600;

MISSIONE_ACQUISITA:=FALSE;

END_IF;

END_IF;

699: MISSIONE_ACQUISITA:=TRUE;

IF TO_ROBOT_DEPOSITA_DX AND NUMERO_DEPOSITO_PILE_DX>1 AND ...

NUMERO_DEPOSITO_PILE_DX<13 AND

... HMI_RICHIESTA_PRELIEVO_CQ=TRUE THEN

ROBOT_NUM_MISSIONE:=800;

ELSIF TO_ROBOT_DEPOSITA_SX AND NUMERO_DEPOSITO_PILE_SX>1 AND...

NUMERO_DEPOSITO_PILE_SX<13 AND...

HMI_RICHIESTA_PRELIEVO_CQ=TRUE THEN

ROBOT_NUM_MISSIONE:=800;

ELSE

IF ULTIMA_PILA_DX=TRUE OR ULTIMA_PILA_SX=TRUE THEN

ROBOT_NUM_MISSIONE:=500;

MISSIONE_ACQUISITA:=FALSE;

ELSE

ROBOT_NUM_MISSIONE:=200;

MISSIONE_ACQUISITA:=FALSE;

END_IF;

END_IF;

599: MISSIONE_ACQUISITA:=TRUE;

IF TO_ROBOT_DEPOSITA_DX=1 THEN TO_ROBOT_NUMERO_LATO_DEP:=1;

TO_ROBOT_NUMERO_PIANO_INT:=NUMERO_PIANO_DEPOSITO_DX;

MISSIONE_ACQUISITA:=FALSE;

ELSIF TO_ROBOT_DEPOSITA_SX=1 THEN TO_ROBOT_NUMERO_LATO_DEP:=2;

TO_ROBOT_NUMERO_PIANO_INT:=NUMERO_PIANO_DEPOSITO_SX;

MISSIONE_ACQUISITA:=FALSE;

END_IF;

ULTIMA_PILA_DX:=FALSE;

ULTIMA_PILA_SX:=FALSE;

ROBOT_NUM_MISSIONE:=400;

IF CASSETTIERA_PIENA_SX=TRUE AND CASSETTIERA_PIENA_DX=TRUE THEN

ROBOT_NUM_MISSIONE:=2000;

END_IF;

499:MISSIONE_ACQUISITA:=TRUE;

ULTIMA_PILA_DX:=FALSE;

ULTIMA_PILA_SX:=FALSE;

IF CASSETTO_APERTO=FALSE THEN

Chapter A Alfonso Falcone 105

Industrial Manipulator Application

ERRORE_CASSETTO:=TRUE;

MISSIONE_ACQUISITA:=FALSE;

ELSE

ROBOT_NUM_MISSIONE:=200;

MISSIONE_ACQUISITA:=FALSE;

APERTURA_FALLITA:=FALSE;

END_IF;

899: HMI_RICHIESTA_PRELIEVO_CQ:=FALSE;

IF TO_ROBOT_DEPOSITA_DX=1 THEN TO_ROBOT_NUMERO_LATO_DEP:=1;

TO_ROBOT_NUMERO_PIANO_INT:=NUMERO_PIANO_DEPOSITO_DX;

MISSIONE_ACQUISITA:=FALSE;

ELSIF TO_ROBOT_DEPOSITA_SX=1 THEN TO_ROBOT_NUMERO_LATO_DEP:=2;

TO_ROBOT_NUMERO_PIANO_INT:=NUMERO_PIANO_DEPOSITO_SX;

MISSIONE_ACQUISITA:=FALSE;

END_IF;

ROBOT_NUM_MISSIONE:=600;

1099:HMI_RICHIESTA_DEPOSITO_CQ:=FALSE;

ROBOT_NUM_MISSIONE:=200;

END_CASE;

END_IF;

Figure A.2: Property of MVQuadro S.r.L

A.2 Kuka - Missions Code

A.2.1 Mission 100

DEF GEST_HOME()

;FOLD RIDUZIONE DELLA VELOCITA’ SE IL ROBOT E’ STATO MOSSO MANUALMENTE

PTP $POS_ACT

IF NOT(PRIMA_HOME_OK) THEN

$RED_VEL=20

;ENDFOLD

;FOLD SELEZIONE TOOL E BASE PER MOVIMENTI SAFE

BAS(#TOOL, 0)

BAS(#BASE, 0)

;ENDFOLD

;FOLD ESEGUO I MOVIMENTI SOLO SE NON SONO IN HOME

$ADVANCE = 3

;FOLD VERIFICO LA POSIZIONE DEL ROBOT IN ASSI

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP(VEL_MISS, ACC_MED, APO_PTP_NORMALE)

;VERIFICO LA POSIZIONE ATTUALE DEL ROBOT IN ASSI ED IN CARTESIANO

AX_ATTUALE=$AXIS_ACT

106 Chapter A Alfonso Falcone

Industrial Manipulator Application

POS_ATTUALE = $POS_ACT

IF (OUT_WORKZONE_RASTR_SX) THEN

;FOLD IN WORKZONE RASTRELLIERA SX

IF ((POS_ATTUALE.Y > 1225) AND (POS_ATTUALE.Y < 1235)) THEN

;IL ROBOT SI TROVA IN UNA POSIZIONE DI DEPOSITO DISCHI

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ATTUALE.Z = POS_ATTUALE.Z + 80

VelAccApoLIN (0.5, 100, 0)

LIN POS_ATTUALE C_DIS

ELSE

;IL ROBOT SI TROVA IN UNA POSIZIONE DI PRELIEVO CASSETTO

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ATTUALE.Z = POS_ATTUALE.Z + 20

VelAccApoLIN (0.5, 100, 0)

LIN POS_ATTUALE C_DIS

ENDIF

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ATTUALE.X = 0

VelAccApoLIN (0.5, 100, 0)

LIN POS_ATTUALE C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ATTUALE.Y = 1100

VelAccApoLIN (0.5, 100, 0)

LIN POS_ATTUALE C_DIS

; NUM_MISS_RUN = NUM_MISS_RUN + 1

; AX_APPOGGIO=$AXIS_ACT

; AX_APPOGGIO.A4 = -180

; AX_APPOGGIO.A5 = 40

; AX_APPOGGIO.A6 = 90

; VelAccApoPTP(VEL_MISS, ACC_MAX, APO_PTP_NORMALE)

; PTP AX_APPOGGIO C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP(VEL_MISS, ACC_MAX, APO_PTP_NORMALE)

PTP POS_SAFE_HIGH_SLIDE_SX C_DIS

;ENDFOLD

ELSE

IF (OUT_WORKZONE_PREL) THEN

;FOLD IN WORKZONE PRELIEVO

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ATTUALE.Z = POS_ATTUALE.Z + 500

; SE IL VALORE DELLA Z E’ SUPERIORE AL VALORE LIMITE DEFINITO

;(+ UNA QUOTA DI SICUREZZA) MODIFICO IL VALORE

IF (POS_ATTUALE.Z > 1350) THEN

POS_ATTUALE.Z = 1350

ENDIF

VelAccApoLIN (0.5, 100, 0)

LIN POS_ATTUALE C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ATTUALE.Y = 0

VelAccApoLIN (0.5, 100, 0)

LIN POS_ATTUALE C_DIS

Chapter A Alfonso Falcone 107

Industrial Manipulator Application

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ATTUALE.X = POS_ATTUALE.X - 300

; SE IL VALORE DELLA X E’ INFERIORE AL RAGGIO DELLA PINZA

;(+ UNA QUOTA DI SICUREZZA)MODIFICO IL VALORE

IF (POS_ATTUALE.X < 400) THEN

POS_ATTUALE.X = 400

ENDIF

VelAccApoLIN (1, 100, 0)

LIN POS_ATTUALE C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP(VEL_MISS, ACC_MAX, APO_PTP_NORMALE)

PTP POS_SAFE_PREL C_DIS

;ENDFOLD

ELSE

IF (OUT_WORKZONE_RASTR_DX) THEN

;FOLD IN WORKZONE RASTRELLIERA DX

IF ((POS_ATTUALE.Y > -1255) AND (POS_ATTUALE.Y < -1245)) THEN

;IL ROBOT SI TROVA IN UNA POSIZIONE DI DEPOSITO DISCHI

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ATTUALE.Z = POS_ATTUALE.Z + 80

VelAccApoLIN (0.5, 100, 0)

LIN POS_ATTUALE C_DIS

ELSE

;IL ROBOT SI TROVA IN UNA POSIZIONE DI PRELIEVO CASSETTO

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ATTUALE.Z = POS_ATTUALE.Z + 20

VelAccApoLIN (0.5, 100, 0)

LIN POS_ATTUALE C_DIS

ENDIF

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ATTUALE.X = 0

VelAccApoLIN (0.5, 100, 0)

LIN POS_ATTUALE C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ATTUALE.Y = -1100

VelAccApoLIN (0.5, 100, 0)

LIN POS_ATTUALE C_DIS

;NUM_MISS_RUN = NUM_MISS_RUN + 1

;AX_APPOGGIO=$AXIS_ACT

;AX_APPOGGIO.A4 = -180

;AX_APPOGGIO.A5 = 40

;AX_APPOGGIO.A6 = 90

;VelAccApoPTP(VEL_MISS, ACC_MAX, APO_PTP_NORMALE)

;PTP AX_APPOGGIO C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP(VEL_MISS, ACC_MAX, APO_PTP_NORMALE)

PTP POS_SAFE_HIGH_SLIDE_DX C_DIS

;ENDFOLD

ENDIF

108 Chapter A Alfonso Falcone

Industrial Manipulator Application

ENDIF

ENDIF

;ENDFOLD

;FOLD MOVIMENTO IN HOME

$ADVANCE = 3

NUM_MISS_RUN = NUM_MISS_HOME_FINE

$RED_VEL=100

VelAccApoPTP(VEL_MISS, 100, APO_PTP_AMPIO)

$H_POS=XHOME

PDAT_ACT=PDEFAULT

BAS (#PTP_DAT)

FDAT_ACT=FHOME

BAS (#FRAMES)

BAS (#VEL_PTP,100)

PTP XHOME

;ENDFOLD

IF NOT(OUT_IN_HOME) THEN

$H_POS=XHOME

PDAT_ACT=PDEFAULT

BAS (#PTP_DAT)

FDAT_ACT=FHOME

BAS (#FRAMES)

BAS (#VEL_PTP,100)

PTP XHOME

;ENDFOLD

ENDIF

ENDIF

;ENDFOLD

$ADVANCE = 3

NUM_MISS_RUN = NUM_MISS_HOME_FINE

$RED_VEL=100

WAIT SEC 0.5

END

A.2.2 Mission 200

DEF GEST_APPR_PREL()

;FOLD Missione per la gestione dell’approccio al prelievo

$ADVANCE=2

NUM_MISS_RUN = NUM_MISS_RUN + 1

; Apri pinza per sicurezza

APRI_PINZA()

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, 0)

BAS(#BASE, 0)

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_PREL C_DIS

;Setto il TOOL e la BASE corretti

Chapter A Alfonso Falcone 109

Industrial Manipulator Application

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, NUM_TOOL_LAVORO)

BAS(#BASE, NUM_BASE_PREL)

;Verifico eventuali correzioni da apportare al punto di prelievo dischi

POS_FINALE_DISCHI = POS_PREL_DISCHI

POS_FINALE_DISCHI.X = POS_PREL_DISCHI.X + CORR_X

POS_FINALE_DISCHI.Y = POS_PREL_DISCHI.Y + CORR_Y

POS_FINALE_DISCHI.Z = POS_PREL_DISCHI.Z + CORR_Z

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_PREL = POS_FINALE_DISCHI

POS_APPROCCIO_PREL.Z = POS_FINALE_DISCHI.Z + 150

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_APPROCCIO_PREL C_DIS

;WAIT FOR IN_FBK_GRIPPER_OPN

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoLIN (0.5, 100, 0)

LIN POS_FINALE_DISCHI

WAIT SEC 0.0

NUM_MISS_RUN = NUM_MISS_APPR_PREL_FINE

MISS_RUN = FALSE

;ENDFOLD

END

A.2.3 Mission 300

DEF GEST_PRELIEVO_DISCHI()

;FOLD Missione per la gestione del prelievo dei dischi dalla macchina

;PTP $POS_ACT

NUM_MISS_RUN = NUM_MISS_RUN + 1

;Apri pinza

;APRI_PINZA()

;WAIT FOR IN_FBK_GRIPPER_OPN

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, NUM_TOOL_LAVORO)

BAS(#BASE, NUM_BASE_PREL)

;NUM_MISS_RUN = NUM_MISS_RUN + 1

;VelAccApoLIN (0.5, 100, 0)

;LIN POS_FINALE_DISCHI C_DIS

;Istruzioni commentate per tempistiche dovute al Laser

;WAIT SEC 0.0

NUM_MISS_RUN = NUM_MISS_RUN + 1

;Chiudi pinza per prelievo dischi

;CHIUDI_PINZA()

COM_PINZA_OPN = FALSE

COM_PINZA_CLS = TRUE

110 Chapter A Alfonso Falcone

Industrial Manipulator Application

WAIT FOR IN_FBK_GRIPPER_CLS

COM_PINZA_CLS = FALSE

WAIT FOR IN_FBK_GRIPPER_CLS

$ADVANCE = 3

NUM_MISS_RUN = NUM_MISS_RUN + 1

; Calcolo per la posizione di allontamento

POS_ALLONTANAMENTO_01 = POS_FINALE_DISCHI

POS_ALLONTANAMENTO_01.X = POS_FINALE_DISCHI.X + 60

VelAccApoLIN (2.5, 100, 5)

LIN POS_ALLONTANAMENTO_01 C_DIS

;NUM_MISS_RUN = NUM_MISS_RUN + 1

;; Calcolo per la posizione di allontamento

;POS_ALLONTANAMENTO_02 = POS_FINALE_DISCHI

;POS_ALLONTANAMENTO_02.X = POS_FINALE_DISCHI.X + 20

;VelAccApoLIN (0.5, 100, 0)

;LIN POS_ALLONTANAMENTO_02 C_DIS

;NUM_MISS_RUN = NUM_MISS_RUN + 1

;; Calcolo per la posizione di allontamento

;POS_ALLONTANAMENTO_03 = POS_FINALE_DISCHI

;POS_ALLONTANAMENTO_03.X = POS_FINALE_DISCHI.X + 40

;VelAccApoLIN (2.0, 100, 0)

;LIN POS_ALLONTANAMENTO_03 C_DIS

NUM_MISS_RUN = NUM_MISS_PREL_FINE

MISS_RUN = FALSE

POS_ALLONTANAMENTO_04 = POS_FINALE_DISCHI

POS_ALLONTANAMENTO_04.X = POS_FINALE_DISCHI.X + 100

POS_ALLONTANAMENTO_04.Z = POS_FINALE_DISCHI.Z + 200

VelAccApoLIN (3.0, 100, 30)

LIN POS_ALLONTANAMENTO_04 C_DIS

;Setto il TOOL e la BASE corretti

;NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, 0)

BAS(#BASE, 0)

;NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_PREL C_DIS

NUM_MISS_RUN = NUM_MISS_PREL_FINE

$RED_VEL=100

;ENDFOLD

END

Chapter A Alfonso Falcone 111

Industrial Manipulator Application

A.2.4 Mission 400

DEF GEST_DEPOSITO_DISCHI()

;FOLD Missione per la gestione del deposito dei dischi nella rastrelliera

IF (NUM_FILA_PIANO == 13) OR (NUM_FILA_PIANO == 1) THEN

$RED_VEL = 100

ELSE

$RED_VEL = 80

ENDIF

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, 0)

BAS(#BASE, 0)

NUM_MISS_RUN = NUM_MISS_RUN + 1

SWITCH NUM_LATO_DEP

CASE 1

; Vai nella posizione safe Rastrelliera SX

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_RASTR_SX C_DIS

SWITCH NUM_PIANO

CASE 1,2,3,4,5

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_LOW_RASTR_SX C_DIS

CASE 6,7,8,9,10

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_MED_RASTR_SX C_DIS

CASE 11,12,13,14,15

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_HIGH_RASTR_SX C_DIS

ENDSWITCH

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, NUM_TOOL_LAVORO)

BAS(#BASE, NUM_BASE_RASTR_SX)

CASE 2

; Vai nella posizione safe Rastrelliera DX

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_RASTR_DX C_DIS

SWITCH NUM_PIANO

CASE 1,2,3,4,5

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_LOW_RASTR_DX C_DIS

CASE 6,7,8,9,10

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_MED_RASTR_DX C_DIS

CASE 11,12,13,14,15

112 Chapter A Alfonso Falcone

Industrial Manipulator Application

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_HIGH_RASTR_DX C_DIS

ENDSWITCH

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, NUM_TOOL_LAVORO)

BAS(#BASE, NUM_BASE_RASTR_DX)

ENDSWITCH

;Calcolo della quota di deposito e verifica eventuali correzioni da apportare

;al punto di deposito dischi

POS_FINALE_DEP = POS_DEP_DISCHI

POS_FINALE_DEP.X = POS_DEP_DISCHI.X + CORR_X + ((NUM_FILA_PIANO-1) * 90)

POS_FINALE_DEP.Y = POS_DEP_DISCHI.Y

POS_FINALE_DEP.Z = POS_DEP_DISCHI.Z + CORR_Z + ((NUM_PIANO-1) * 88.0)

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_01 = POS_FINALE_DEP

POS_APPROCCIO_01.X = 270

POS_APPROCCIO_01.Z = POS_FINALE_DEP.Z + 80

;VelAccApoLIN (0.5, 100, 0)

;LIN POS_APPROCCIO_01 C_DIS

IF NUM_PIANO <= 3 THEN

SPLINE

SLIN POS_APPROCCIO_01 WITH $ORI_TYPE=#CONSTANT, $VEL.CP = VEL_MISS_LIN

ENDSPLINE

ELSE

VelAccApoLIN (VEL_MISS_LIN, 100, 20)

LIN POS_APPROCCIO_01 C_DIS

ENDIF

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_DEP = POS_FINALE_DEP

POS_APPROCCIO_DEP.X = POS_FINALE_DEP.X

POS_APPROCCIO_DEP.Z = POS_FINALE_DEP.Z + 80

VelAccApoLIN (1.0, 100, 10)

LIN POS_APPROCCIO_DEP C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoLIN (0.5, 100, 0)

LIN POS_FINALE_DEP

WAIT SEC 0.0

;Comanda l’apertura della pinza

APRI_PINZA()

; WAIT FOR IN_FBK_GRIPPER_OPN

IF (NUM_LATO_DEP == 1) THEN

OUT_PEZZO_DEP_SX_OK = TRUE

ELSE

OUT_PEZZO_DEP_DX_OK = TRUE

ENDIF

$ADVANCE=3

NUM_MISS_RUN = NUM_MISS_DEPO_FINE

MISS_RUN = FALSE

;Allontanamento dal punto di Deposito

Chapter A Alfonso Falcone 113

Industrial Manipulator Application

;NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ALLONTANAMENTO_DEP = POS_FINALE_DEP

;POS_ALLONTANAMENTO_DEP.Y = POS_FINALE_DEP.Y + 10

POS_ALLONTANAMENTO_DEP.Z = POS_FINALE_DEP.Z + 20

VelAccApoLIN (0.5, 100, 2)

LIN POS_ALLONTANAMENTO_DEP C_DIS

;NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ALLONTANAMENTO_01 = POS_FINALE_DEP

;POS_ALLONTANAMENTO_01.Y = POS_FINALE_DEP.Y + 10

POS_ALLONTANAMENTO_01.Z = POS_FINALE_DEP.Z + 80

VelAccApoLIN (1, 100, 10)

LIN POS_ALLONTANAMENTO_01 C_DIS

;NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ALLONTANAMENTO_02 = POS_FINALE_DEP

POS_ALLONTANAMENTO_02.X = 270

POS_ALLONTANAMENTO_02.Y = POS_FINALE_DEP.Y + 10

POS_ALLONTANAMENTO_02.Z = POS_FINALE_DEP.Z + 80

VelAccApoLIN (1, 100, 10)

LIN POS_ALLONTANAMENTO_02 C_DIS

;Setto il TOOL e la BASE corretti

;NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, 0)

BAS(#BASE, 0)

IF (NUM_LATO_DEP == 1) THEN

IF (NUM_PIANO <= 5)THEN

;NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_LOW_RASTR_SX C_DIS

ENDIF

IF ((NUM_PIANO > 5) AND (NUM_PIANO <= 10)) THEN

;NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_MED_RASTR_SX C_DIS

ENDIF

IF (NUM_PIANO > 10)THEN

;NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_HIGH_RASTR_SX C_DIS

ENDIF

;NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_RASTR_SX C_DIS

ENDIF

IF (NUM_LATO_DEP == 2) THEN

IF (NUM_PIANO <= 5)THEN

114 Chapter A Alfonso Falcone

Industrial Manipulator Application

;NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_LOW_RASTR_DX C_DIS

ENDIF

IF ((NUM_PIANO > 5) AND (NUM_PIANO <= 10)) THEN

;NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_MED_RASTR_DX C_DIS

ENDIF

IF (NUM_PIANO > 10)THEN

;NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_HIGH_RASTR_DX C_DIS

ENDIF

;NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_RASTR_DX C_DIS

ENDIF

NUM_MISS_RUN = NUM_MISS_DEPO_FINE

$RED_VEL=100

WAIT SEC 0.0

;ENDFOLD

END

A.2.5 Mission 500

DEF GEST_OPEN_SLIDE()

;DICHIARAZIONE DELL’INTERRUPT DI ESTRAZIONE CASSETTO.

; MI FERMO SE SI ALZA LA VARIABILE CASSETTO IN POSIZIONE.

INTERRUPT DECL 20 WHEN SLIDE_IN_POS == TRUE DO SLIDE_IN_POS()

;FOLD Missione per la gestione dell’apertura del cassetto della rastrelliera

NUM_MISS_RUN = NUM_MISS_RUN + 1

; Chiudi pinza per prelievo dischi

CHIUDI_PINZA()

;WAIT FOR IN_FBK_GRIPPER_CLS

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, 0)

BAS(#BASE, 0)

NUM_MISS_RUN = NUM_MISS_RUN + 1

SWITCH NUM_LATO_DEP

CASE 1

; Vai nella posizione safe Rastrelliera SX

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_SLIDE_SX C_DIS

SWITCH NUM_PIANO

CASE 1,2,3,4,5

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_LOW_SLIDE_SX C_DIS

Chapter A Alfonso Falcone 115

Industrial Manipulator Application

CASE 6,7,8,9,10

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_MED_SLIDE_SX C_DIS

CASE 11,12,13,14,15

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_HIGH_SLIDE_SX C_DIS

ENDSWITCH

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, NUM_TOOL_LAVORO)

BAS(#BASE, NUM_BASE_RASTR_SX)

CASE 2

; Vai nella posizione safe Rastrelliera DX

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_SLIDE_DX C_DIS

SWITCH NUM_PIANO

CASE 1,2,3,4,5

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_LOW_SLIDE_DX C_DIS

CASE 6,7,8,9,10

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_MED_SLIDE_DX C_DIS

CASE 11,12,13,14,15

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_HIGH_SLIDE_DX C_DIS

ENDSWITCH

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, NUM_TOOL_LAVORO)

BAS(#BASE, NUM_BASE_RASTR_DX)

ENDSWITCH

;Calcolo della quota di prelievo cassetto e verifica eventuali correzioni da apportare

;al punto di prelievo cassetto

POS_FINALE_SLIDE = POS_OPEN_SLIDE

POS_FINALE_SLIDE.Z = POS_OPEN_SLIDE.Z + ((NUM_PIANO-1)*87.8) + CORR_Z

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_01 = POS_FINALE_SLIDE

POS_APPROCCIO_01.X = POS_FINALE_SLIDE.X

POS_APPROCCIO_01.Y = POS_FINALE_SLIDE.Y + 635

POS_APPROCCIO_01.Z = POS_FINALE_SLIDE.Z + 150

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_MINIMO)

PTP POS_APPROCCIO_01 C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_07 = POS_FINALE_SLIDE

116 Chapter A Alfonso Falcone

Industrial Manipulator Application

POS_APPROCCIO_07.X = POS_FINALE_SLIDE.X

POS_APPROCCIO_07.Y = POS_FINALE_SLIDE.Y + 650

POS_APPROCCIO_07.Z = POS_FINALE_SLIDE.Z

VelAccApoLIN (1.0, 100, 0)

LIN POS_APPROCCIO_07 C_DIS

$RED_VEL=80

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_02 = POS_FINALE_SLIDE

POS_APPROCCIO_02.X = POS_FINALE_SLIDE.X

POS_APPROCCIO_02.Y = POS_FINALE_SLIDE.Y

POS_APPROCCIO_02.Z = POS_FINALE_SLIDE.Z

VelAccApoLIN (1.0, 100, 0)

LIN POS_APPROCCIO_02 C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_03 = POS_FINALE_SLIDE

POS_APPROCCIO_03.X = POS_FINALE_SLIDE.X

POS_APPROCCIO_03.Y = POS_FINALE_SLIDE.Y + 20

POS_APPROCCIO_03.Z = POS_FINALE_SLIDE.Z

VelAccApoLIN (1.0, 100, 0)

LIN POS_APPROCCIO_03 C_DIS

$RED_VEL=100

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_04 = POS_FINALE_SLIDE

POS_APPROCCIO_04.X = POS_FINALE_SLIDE.X

POS_APPROCCIO_04.Y = POS_FINALE_SLIDE.Y + 20

POS_APPROCCIO_04.Z = POS_FINALE_SLIDE.Z + 30

VelAccApoLIN (1.0, 100, 0)

LIN POS_APPROCCIO_04 C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_05 = POS_FINALE_SLIDE

POS_APPROCCIO_05.X = POS_FINALE_SLIDE.X

POS_APPROCCIO_05.Y = POS_FINALE_SLIDE.Y - 20

POS_APPROCCIO_05.Z = POS_FINALE_SLIDE.Z + 30

VelAccApoLIN (1.0, 100, 0)

LIN POS_APPROCCIO_05 C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_06 = POS_FINALE_SLIDE

POS_APPROCCIO_06.X = POS_FINALE_SLIDE.X

POS_APPROCCIO_06.Y = POS_FINALE_SLIDE.Y - 12

POS_APPROCCIO_06.Z = POS_FINALE_SLIDE.Z + 4

VelAccApoLIN (1.0, 100, 0)

LIN POS_APPROCCIO_06 C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoLIN (0.5, 100, 0)

LIN POS_FINALE_SLIDE C_DIS

Chapter A Alfonso Falcone 117

Industrial Manipulator Application

;Apertura cassetto

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ALLONTANAMENTO_02 = POS_FINALE_SLIDE

POS_ALLONTANAMENTO_02.Y = POS_FINALE_SLIDE.Y + 530

POS_ALLONTANAMENTO_02.Z = POS_FINALE_SLIDE.Z - 3

VelAccApoLIN (0.5, 100, 0)

$RED_VEL=70

LIN POS_ALLONTANAMENTO_02 C_DIS

;Apertura cassetto

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ALLONTANAMENTO_01 = POS_FINALE_SLIDE

POS_ALLONTANAMENTO_01.Y = POS_FINALE_SLIDE.Y + 630

POS_ALLONTANAMENTO_01.Z = POS_FINALE_SLIDE.Z - 2

VelAccApoLIN (0.5, 100, 0)

$RED_VEL=30

OPEN_SLIDE ()

$ADVANCE = 3

$RED_VEL=100

NUM_MISS_RUN = NUM_MISS_RUN + 1

LIN_REL {Y - 8}

LIN_REL {Z + 30}

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ALLONTANAMENTO_03 = POS_FINALE_SLIDE

POS_ALLONTANAMENTO_03.Y = POS_FINALE_SLIDE.Y + 650

POS_ALLONTANAMENTO_03.Z = POS_FINALE_SLIDE.Z + 150

VelAccApoLIN (1.0, 100, 0)

LIN POS_ALLONTANAMENTO_03 C_DIS

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, 0)

BAS(#BASE, 0)

IF (NUM_LATO_DEP == 1) THEN

IF (NUM_PIANO <= 5)THEN

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_LOW_SLIDE_SX C_DIS

ENDIF

IF ((NUM_PIANO > 5) AND (NUM_PIANO <= 10)) THEN

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_MED_SLIDE_SX C_DIS

ENDIF

IF (NUM_PIANO > 10)THEN

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_HIGH_SLIDE_SX C_DIS

118 Chapter A Alfonso Falcone

Industrial Manipulator Application

ENDIF

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_SLIDE_SX C_DIS

ENDIF

IF (NUM_LATO_DEP == 2) THEN

IF (NUM_PIANO <= 5)THEN

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_LOW_SLIDE_DX C_DIS

ENDIF

IF ((NUM_PIANO > 5) AND (NUM_PIANO <= 10)) THEN

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_MED_SLIDE_DX C_DIS

ENDIF

IF (NUM_PIANO > 10)THEN

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_HIGH_SLIDE_DX C_DIS

ENDIF

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_SLIDE_DX C_DIS

ENDIF

NUM_MISS_RUN = NUM_MISS_OPEN_SLIDE_FINE

$RED_VEL=100

WAIT SEC 0.0

;ENDFOLD

END

Mission 600

DEF GEST_CLOSE_SLIDE()

;FOLD Missione per la gestione della chiusura del cassetto della rastrelliera

NUM_MISS_RUN = NUM_MISS_RUN + 1

; Chiudi pinza per prelievo dischi

CHIUDI_PINZA()

;WAIT FOR IN_FBK_GRIPPER_CLS

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, 0)

BAS(#BASE, 0)

NUM_MISS_RUN = NUM_MISS_RUN + 1

SWITCH NUM_LATO_DEP

CASE 1

; Vai nella posizione safe Rastrelliera SX

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_SLIDE_SX C_DIS

Chapter A Alfonso Falcone 119

Industrial Manipulator Application

SWITCH NUM_PIANO

CASE 1,2,3,4,5

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_LOW_SLIDE_SX C_DIS

CASE 6,7,8,9,10

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_MED_SLIDE_SX C_DIS

CASE 11,12,13,14,15

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_HIGH_SLIDE_SX C_DIS

ENDSWITCH

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, NUM_TOOL_LAVORO)

BAS(#BASE, NUM_BASE_RASTR_SX)

CASE 2

; Vai nella posizione safe Rastrelliera DX

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_SLIDE_DX C_DIS

SWITCH NUM_PIANO

CASE 1,2,3,4,5

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_LOW_SLIDE_DX C_DIS

CASE 6,7,8,9,10

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_MED_SLIDE_DX C_DIS

CASE 11,12,13,14,15

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_HIGH_SLIDE_DX C_DIS

ENDSWITCH

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, NUM_TOOL_LAVORO)

BAS(#BASE, NUM_BASE_RASTR_DX)

ENDSWITCH

;Calcolo della quota di chiusura cassetto

;e verifica eventuali correzioni da apportare

;al punto di chiusura cassetto

POS_FINALE_SLIDE = POS_CLOSE_SLIDE

POS_FINALE_SLIDE.X = POS_CLOSE_SLIDE.X

POS_FINALE_SLIDE.Z = POS_CLOSE_SLIDE.Z + ((NUM_PIANO-1) * 87.9) + CORR_Z

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_01 = POS_FINALE_SLIDE

POS_APPROCCIO_01.X = POS_FINALE_SLIDE.X

POS_APPROCCIO_01.Y = POS_FINALE_SLIDE.Y + 635

120 Chapter A Alfonso Falcone

Industrial Manipulator Application

POS_APPROCCIO_01.Z = POS_FINALE_SLIDE.Z + 150

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_MINIMO)

PTP POS_APPROCCIO_01 C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_02 = POS_FINALE_SLIDE

POS_APPROCCIO_02.X = POS_FINALE_SLIDE.X

POS_APPROCCIO_02.Y = POS_FINALE_SLIDE.Y + 650

POS_APPROCCIO_02.Z = POS_FINALE_SLIDE.Z

VelAccApoLIN (1.0, 100, 0)

LIN POS_APPROCCIO_02 C_DIS

;Chiusura cassetto

NUM_MISS_RUN = NUM_MISS_RUN + 1

$RED_VEL=50

VelAccApoLIN (0.5, 100, 0)

LIN POS_FINALE_SLIDE C_DIS

$RED_VEL=100

; Allontanamento

WAIT SEC 0.5

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_ALLONTANAMENTO_01 = POS_FINALE_SLIDE

POS_ALLONTANAMENTO_01.Y = POS_FINALE_SLIDE.Y + 200

VelAccApoLIN (1.0, 100, 0)

LIN POS_ALLONTANAMENTO_01 C_DIS

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, 0)

BAS(#BASE, 0)

IF (NUM_LATO_DEP == 1) THEN

IF (NUM_PIANO <= 5)THEN

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_LOW_SLIDE_SX C_DIS

ENDIF

IF ((NUM_PIANO > 5) AND (NUM_PIANO <= 10)) THEN

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_MED_SLIDE_SX C_DIS

ENDIF

IF (NUM_PIANO > 10)THEN

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_HIGH_SLIDE_SX C_DIS

ENDIF

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_SLIDE_SX C_DIS

ENDIF

Chapter A Alfonso Falcone 121

Industrial Manipulator Application

IF (NUM_LATO_DEP == 2) THEN

IF (NUM_PIANO <= 5)THEN

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_LOW_SLIDE_DX C_DIS

ENDIF

IF ((NUM_PIANO > 5) AND (NUM_PIANO <= 10)) THEN

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_MED_SLIDE_DX C_DIS

ENDIF

IF (NUM_PIANO > 10)THEN

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_HIGH_SLIDE_DX C_DIS

ENDIF

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_SLIDE_DX C_DIS

ENDIF

IF NUM_LATO_DEP==1 THEN

OUT_SLIDE_SX_CLS = TRUE

ELSE

OUT_SLIDE_DX_CLS = TRUE

ENDIF

NUM_MISS_RUN = NUM_MISS_CLOS_SLIDE_FINE

$RED_VEL=100

WAIT SEC 0.0

;ENDFOLD

END

A.2.6 Mission 700

DEF GEST_PREL_CQ()

;FOLD Missione per la gestione del prelievo dei dischi dalla stazione CQ

NUM_MISS_RUN = NUM_MISS_RUN + 1

; Apri pinza per sicurezza

APRI_PINZA()

;WAIT FOR IN_FBK_GRIPPER_OPN

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, 0)

BAS(#BASE, 0)

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_CQ C_DIS

;Setto il TOOL e la BASE corretti

122 Chapter A Alfonso Falcone

Industrial Manipulator Application

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, NUM_TOOL_LAVORO)

BAS(#BASE, 0)

;Verifico eventuali correzioni da apportare al punto di prelievo dischi

POS_FINALE_CQ = POS_PREL_CQ

POS_FINALE_CQ.X = POS_PREL_CQ.X + CORR_X

POS_FINALE_CQ.Y = POS_PREL_CQ.Y + CORR_Y

POS_FINALE_CQ.Z = POS_PREL_CQ.Z + CORR_Z

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_PREL = POS_FINALE_CQ

POS_APPROCCIO_PREL.Z = POS_FINALE_CQ.Z + 200

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_APPROCCIO_PREL C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoLIN (0.5, 100, 0)

LIN POS_FINALE_CQ C_DIS

WAIT SEC 0.0

NUM_MISS_RUN = NUM_MISS_RUN + 1

; Chiudi pinza per prelievo dischi

CHIUDI_PINZA()

;WAIT FOR IN_FBK_GRIPPER_CLS

NUM_MISS_RUN = NUM_MISS_RUN + 1

; Calcolo per la posizione di allontamento

POS_ALLONTANAMENTO_01 = POS_FINALE_CQ

POS_ALLONTANAMENTO_01.Z = POS_PREL_CQ.Z + 200

VelAccApoLIN (0.5, 100, 0)

LIN POS_ALLONTANAMENTO_01 C_DIS

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, 0)

BAS(#BASE, 0)

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_CQ C_DIS

NUM_MISS_RUN = NUM_MISS_PREL_CQ_FINE

$RED_VEL=100

WAIT SEC 0.5

;ENDFOLD

END

A.2.7 Mission 800

DEF GEST_DEP_CQ()

;FOLD Missione per la gestione del deposito nella stazione CQ

Chapter A Alfonso Falcone 123

Industrial Manipulator Application

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, 0)

BAS(#BASE, 0)

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_CQ C_DIS

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, NUM_TOOL_LAVORO)

BAS(#BASE, 0)

;Verifico eventuali correzioni da apportare al punto di prelievo dischi

POS_FINALE_CQ = POS_DEP_CQ

POS_FINALE_CQ.X = POS_DEP_CQ.X + CORR_X

POS_FINALE_CQ.Y = POS_DEP_CQ.Y + CORR_Y

POS_FINALE_CQ.Z = POS_DEP_CQ.Z + CORR_Z

NUM_MISS_RUN = NUM_MISS_RUN + 1

POS_APPROCCIO_PREL = POS_FINALE_CQ

POS_APPROCCIO_PREL.Z = POS_FINALE_CQ.Z + 200

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_APPROCCIO_PREL C_DIS

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoLIN (0.5, 100, 0)

LIN POS_FINALE_CQ C_DIS

WAIT SEC 0.0

NUM_MISS_RUN = NUM_MISS_RUN + 1

; Apri pinza per deposito dischi

APRI_PINZA()

;WAIT FOR IN_FBK_GRIPPER_OPN

NUM_MISS_RUN = NUM_MISS_RUN + 1

; Calcolo per la posizione di allontamento

POS_ALLONTANAMENTO_01 = POS_FINALE_CQ

POS_ALLONTANAMENTO_01.Z = POS_PREL_CQ.Z + 200

VelAccApoLIN (0.5, 100, 0)

LIN POS_ALLONTANAMENTO_01 C_DIS

;Setto il TOOL e la BASE corretti

NUM_MISS_RUN = NUM_MISS_RUN + 1

BAS(#TOOL, 0)

BAS(#BASE, 0)

NUM_MISS_RUN = NUM_MISS_RUN + 1

VelAccApoPTP (VEL_MISS, ACC_MAX_MISS, APO_PTP_AMPIO)

PTP POS_SAFE_CQ C_DIS

NUM_MISS_RUN = NUM_MISS_DEP_CQ_FINE

124 Chapter A Alfonso Falcone

Industrial Manipulator Application

$RED_VEL=100

WAIT SEC 0.5

;ENDFOLD

END

A.2.8 Mission 1000

DEF GEST_MANUTENZIONE()

;FOLD Missione per la gestione del movimento del robot

; e portarlo in posizione di manutenzione

$RED_VEL=100

WAIT SEC 0.5

;ENDFOLD

END

Chapter A Alfonso Falcone 125

	Hardware configuration
	Introduction
	Manipulator
	PLC
	End Effector - Tool design
	Mechanical Failure Analysis

	Distribution boards & data-sheets
	Power
	Signal
	Terminal box

	Pneumatic Circuit
	Safety
	SIL - Safety Integrator Level
	Safety of human operators
	Safety regions

	Robotics basic concepts
	Introduction
	Basics
	Elementary displacements
	Cardan angles
	Robot basic structure
	Basic Terminology
	Denavit-Hartenberg Convention
	Direct Kinematics
	Differential Kinematics
	Singularity
	Inverse kinematics
	The Jacobian inverse technique
	Heuristic methods
	Trajectory Planning
	Trajectory Planning Specifics
	Trajectory Planning Algorithms
	KUKA Motion Instructions
	PTP : Point to Point
	PTP_REL : Point to Point Relative
	LIN : Linear
	LIN_REL : Linear Relative
	CIRC : Circular
	CIRC_REL : Circular Relative
	Spline
	Spline (1)
	SPLINE
	PTP_SPLINE ... ENDSPLINE

	Safety in Modern Robotics
	Tool Calibration
	4-point method
	XYZ Reference method
	ABC 2-point
	ABC World
	Numeric input
	Base Calibration
	ABC 3-point
	Configuring axis-specific workspace
	Collision Detection
	Safety Planes
	Safety Barriers
	Safety Hardware
	Brake Test

	Teach Pendant
	Operating Modes

	Omron PLC
	OMRON
	Computer Network
	Local Are Network
	Internet Protocol
	Public IP addresses
	IPV4
	Subnet

	Ethercat Protocol
	Ethernet Communication
	Add on-the-fly process data
	Ethercat P: data & power supply on one cable
	Distributed Clock for Precise Synchronization
	Diagnostic and Localization Errors
	High Availability Requirements
	 Communication Profiles
	Transparent transmission of standard IT protocols
	Services

	Sysmac
	Structure of the Code
	Mission Concept
	External PLC - Robot PC Communication

	Coding
	Sysmac
	Ladder Main Program
	Structured Code

	WorkVisual
	Files Extensions

	Robot Program
	Normal Operations
	Special Operations

	Full Missions Code

	HMI Operator Panel
	Common Uses of HMI
	Premium HMI
	Designed HMI

	Home Page
	Manual Operation Page
	Setup Page
	Alarm Pages

	Conclusions
	Appendix Title
	Sysmac - Structured Language Code
	Kuka - Missions Code
	Mission 100
	Mission 200
	Mission 300
	Mission 400
	Mission 500
	Mission 700
	Mission 800
	Mission 1000

