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Abstract

Hyperspectral imaging is widely used in various fields. This thesis refers to a
specific remote sensing application. It aims to find and implement an algorithm
able to compress hyperspectral images which are used to detect the presence of ice
on metallic surfaces. The basic concept is that different materials bring to different
spectral signatures, which allows us to recognize them through specific software. A
hyperspectral image is obtained with a special camera which collects information
of the same spatial scene at different spectral bands, i.e. narrow portions of the
electromagnetic spectrum. As a consequence, the amount of data to be processed
is huge, and has to be reduced without losing essential information for spectral
recognition. Specifically, according to the state of the art, lossless compression
algorithms bring a poor compression ratio even if they preserve totally the original
information, while lossy ones achieve better compression, getting rid mostly of
spectral and spatial redundancy. In the thesis, the first analysed technique uses
PNG and JPEG standards applied to all images corresponding to each spectral
band of the HSI. Both techniques are applied in combination with a two-dimensional
Wiener filter, in order to get rid of the noise and obtain a better compression ratio.
Another implemented and studied lossless technique is based on the Recursive
Least Squares (RLS) filter, used for pixel prediction on the previous spectral bands.
Eventually, the last algorithm investigated in this thesis, provides hyperspectral
data representation in tensor notation and it is based on the combination of the two-
dimensional Discrete Wavelet Transform (2D-DWT) and the Tucker Decomposition
in its Alternating Least Square (ALS) implementation.
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Chapter 1

Introduction

Nowadays, multispectral and hyperspectral imaging (HSI) are used for many differ-
ent applications, such as detecting some types of cancer and retinal diseases, forensic
laboratory, exploration of oil and gas, environmental monitoring on pollution levels,
biomedical analysis, food quality and control and remote sensing. Through the
measurements acquired by a special sensor, i.e. the hyperspectral (or multispectral)
camera, it is possible to categorize vegetation, surfaces and atmospheric conditions
according, indeed, to the spectrum behaviour. Hyperspectral and multispectral
images, in fact, differently from traditional digital images, contain not only spatial
information, but also spectral one. Usually, they are referred to as "data cubes" or
"hypercubes", since data are organized in a three dimensional structure: spatial
(bidimesional) and spectral. The data cube is composed by images acquired at the
same time at multiple wavelengths, or alternatively it can be seen as a set of spectra
corresponding to each pixel of the image. The difference between hyperspectral and
multispectral images lies with the wavelength bands used to acquire them: if they
are consecutive it is the case of hyperspectral images, otherwise it is multispectral
one.
Many of the application scenarios have low bandwidth occupancy requirement
and/or limited storage available, while the total load of HSIs is huge. As a conse-
quence, the amount of data has to be reduced, but without loosing a large amount
of information, otherwise spectral signature recognition could be compromised. It,
in fact, has to be preserved as it is used for feature extraction and recognition,
and classification. In order to do so, some techniques have been developed during
the years. On one hand, lossless compression algorithms bring a poor compression
ratio, even if they preserve totally the original information, on the other lossy ones
achieve better compression, getting rid mostly of spectral and spatial redundancies.
Consequently, the need is finding a good compromise between complexity and
amount of discarded information, depending on the dataset and the application
field.
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Introduction

This work refers to a remote sensing case, specifically it aims to study and implement
algorithms able to compress hyperspectral images, which are used to detect the
presence of ice on metallic surfaces. Specifically, it aims to analyse and test some
algorithms available in the state of the art to compress some hyperspectral images,
acquired in laboratory, simulating ice on metallic surface in different conditions.
The thesis content is organized as follows: at first the basics to understand princi-
ples of hyperspectral imaging are given, focusing on the electromagnetic radiation
and sensor characterization. Here it is also explained what spectral signatures are,
and why they are subject to variability. Going on, some compression techniques
used in hyperspectral imaging as well as digital images are illustrated, in particular
main transforms and prediction filters are explained in detail. Eventually, the
state of the art of HSI compression algorithm is presented. Next chapter, instead,
contains the comprehensive description of the working principle of the investigated
ones, i.e. PNG and JPEG applied to each per-band image of the hypercube, the
solution proposed by Song et al. in [1] which uses Recursive Least Square Filter
(RLS) for lossless compression, and the one presented by Karami et al. in [2],
which instead works with tensors. Indeed, this solution foresees the usage of two
dimensional discrete wavelet transform (2D-DWT) and of the Tucker decomposition
(TD). Finally, the tested data are illustrated and implementation and experimental
choices for each of the studied solutions are explained. Results are shown comparing
the ones obtained with different techniques and different features.
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Chapter 2

Hyperspectral Remote
Sensing

Hyperspectral Imaging (HSI) consist of data collected through special remote
sensing devices, such as air-crafts and satellites, which contain spatial and spectral
information. Usually, hyperspectral images are presented as "data cubes" or "hy-
percubes", since information is organized in a three dimensional (x, y, λ) structure,
with (x, y) spatial dimension and λ spectral one (wavelength). The data cube
is composed by images acquired at the same time at multiple wavelengths, or
alternatively as a set of spectra corresponding to each pixel of the image.[3]

Figure 2.1: Illustration of a HSI data cube.[4]

Comparison between RGB image and hypercube is presented in Fig.2.2. HSI com-
bines imaging and spectroscopy, in fact, as just explained, the generated hypercube
is a 3-D dataset, covering a contiguous portion of the light spectrum and with higher
spectral resolution with respect to multispectral imaging, which is another similar
technique used in remote sensing applications. Actually, if hyperspectral imaging
covers up to few hundreds of spectral bands, multispectral imaging uses up to few
dozens (usually around 30) of non consecutive spectral bands.[5] Multispectral

3



Hyperspectral Remote Sensing

imaging produces discrete spectral information, while hyperspectral one translates
onto continuous spectral reflectance (spectral signature), which is the key param-
eter for applications in different areas, as it will be explained later on in this chapter.

Figure 2.2: Comparison between hypercube and RGB image.[5]

HSI is widely used in many fields, depending on the need: it could be for detection
of vegetation features, in order to monitor pollution effects or to counteract narcotics;
it can be used to find man-made materials in natural environments, helping in
rescuing operations, or it could help in resource management. HSI is employed also
for studying food compositions, in biomedical and many other fields.
All of these application are related to remote sensing, which includes acquisition,
processing and interpretation of images, related data obtained by recording the
interaction between matter and electromagnetic radiation. The source of this
radiation can be natural (e.g. earth’s emitted heat and sun’s reflected light) or
man-made, i.e. that produce itself radiation. Indeed, systems can be classified as
active and passive, depending on how the radiation is emitted and then analysed.
In Fig.2.3 are depicted the two cases, notice that range information can be provided
only in the case of active systems.[3]
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Hyperspectral Remote Sensing

Figure 2.3: Remote sensing with active and passive sensors.[6]

2.1 Electromagnetic Radiation and Sensor Char-
acterization

The electromagnetic radiation is the means by which energy propagates in the form
of a waves. Electromagnetic waves are located within the electromagnetic spectrum
(see Fig.2.4) depending on their parameters, i.e. wavelength and frequency. In
hyperspectral imaging only a portion of electromagnetic spectrum is exploited,
from 0.4 [µm] to 14 [µm]. More precisely, the exploited windows are the visible one
(V), which includes Blue, Green and Red wavelengths, from 0.4 to 0.7 [µm], Near
Infrared (NIR) from 0.7 to 1.1 [µm], Short Wave Infrared (SWIR) from 1.1 to 2.5
[µm], Mid Wave Infrared (MWIR), from 3 to 5 [µm] and Thermal or Long Wave
Infrared (TIR or LWIR), form 5 to 14 [µm]. In Tab 2.1 are reported in details
used wavelengths in hyperspectral imaging, with their relative application fields.[3]

Figure 2.4: Complete electromagnetic spectrum.[7]
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Hyperspectral Remote Sensing

In V and NIR regions the radiation emitted from the sun is modified by earth’s
atmosphere and surface (reflective energy is predominant), while in TIR region the
study is focused on the radiation emitted by the earth’s atmosphere and surface
(emissive energy is predominant).[3]

Table 2.1

Band Wavelength Property Application

Blue 400-500 nm Reflective Illuminates material in shad-
ows, water penetration for
bathymetry

Green 500-600 nm Reflective Water penetration for
bathymetry, discrimination
of oil on water

Red 600-700 nm Reflective Limited water penetration
for bathymetry, vegetation
differentiation

NIR 700-1100 nm Reflective Artificial material detection,
shoreline mapping, vegeta-
tion analysis

SWIR 1100-3000 nm Reflective/
Emissive

Discrimination of oil on wa-
ter, snow/cloud differentia-
tion, change detection, ar-
tificial material detection,
plume detection

MWIR 3000-5000 nm Emissive Nighttime target detection,
ocean temperature analysis,
daytime reflected/emitted
thermal analysis, nighttime
thermal analysis, smoke pen-
etration

6
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Table 2.1

Band Wavelength Property Application
TIR or LWIR 5000-14000 nm Emissive Thermal analysis, vegeta-

tion density and cover type,
gas detection and identifica-
tion, mineral and soils anal-
ysis

In remote sensing, imaging spectrometers, most commonly known as hyperspec-
tral sensors, collect at once digital images in several contiguous narrow spectral
bands of the just described windows of the electromagnetic spectrum. They can
be classified as active or passive sensors, depending on the source of the electro-
magnetic radiation which carries the radiant energy measured and converted into
data from the device itself. To successfully complete the acquisition procedure,
all imaging spectrometers require some sort of positioning and scanning systems,
allowing to accumulate data assigning the three coordinates (x, y, λ) to each pixel.
Consequently, to construct the hyperspectral cube spatial, spectral and radiometric
sampling are needed. Temporal sampling, instead, refers to how often data are
obtained for the same area and it has to be considered as an operational procedure,
since it is not interesting from a signal processing perspective.[3]
Focusing on passive remote sensing, there are two main sources of radiations col-
lected by the sensors: in the V to the SWIR it is the sun, while in TIR (or LWIR) it
is the thermal radiation, which is emitted directly by materials and combines with
self-emitted thermal radiation in the atmosphere as it propagates upward. In fact,
part of the radiation received by the sensor has been reflected at earth’s surface
and possibly scattered by the atmosphere. Solar radiation can be considered to
be emitted at maximum efficiency possible for a body at its effective temperature,
indeed sun is approximated as a near-perfect blackbody radiator. Therefore, spectral
radiance exitance from the sun is described by Plank’s equation. One important
physical dimension in HSI is spectral irradiance, as it measures the radiation on top
of the atmosphere. Units of spectral radiance exitance and spectral irradiance are
the same (i.e. W/m−2/µm−1), so they can be referred to as spectral flux density. It
can be demonstrated that as the wavelength increases to the SWIR, less radiation
is available from the sun for signal detection by remote sensing. Furthermore,
radiation components in the visible to shortwave infrared region are depicted in
Fig.2.5.[8]
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Figure 2.5: V to SWIR region: radiation components.[9]

In the electromagnetic window between SWIR to MWIR, beside solar radiation,
also thermal radiation becomes a relevant component in spectral analysis. It is
emitted by objects named Lambertian reflectors. Increasing wavelengths up to
TIR region of the spectrum, direct solar radiation is not a factor compared to the
self-emitted thermal radiation, exception for some objects named Specular reflectors.
The emissivity, which is a function of wavelength, is an emission efficiency factor
and it regulates the radiation emitted by a real object which is not a blackbody.
Actually, real objects are not perfect absorbers or emitters. Thus, the energy
collected by a remote sensing system is proportional to the solar effective region
and to the thermal region.[8]

2.2 Spectral Signatures

The main scope of remote sensing is to identify objects, but, since spatial resolution
of satellite-based sensing systems is too low to do it by shapes and spatial details,
object identification is done by spectral measurements. In detail, in HSI remote
sensing it is done with spectral signatures. The spectral signature of a material, in
solar-reflective region, can be defined by its reflectance as a function of wavelength,
measured at an appropriate spectral resolution. In TIR region of the electromag-
netic spectrum, instead, signatures of interest are emissivity and temperature.[8]
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Figure 2.6: Example of typical surfaces’ spectral signatures in in V and NIR
regions of the electromagnetic spectrum.[10]

Each material is characterized by its unique spectral signature, described by
spectral reflectance in V, NIR and SWIR regions, and by spectral emittance in
LWIR region of the electromagnetic spectrum. Unfortunately, supposing to have
a perfect spectral signature predetermined for each material is not realistic, but
it is an ideal concept, difficult to be observed in actual applications. In fact, in
a real case scenario there are many sources of variability that affect measured
radiance of materials, affecting the performance of hyperspectral image exploitation,
particularly in the case of target detection.[11]
There are more than one sources of target spectral variability. First of all, it can be
the target material itself: it is very rare to observe in natural environment perfect
pure materials, it is likely they will have some variability in their composition. This
modification can find explanation due to different reasons. One of the most direct
source of spectral variability is due to some chemical variation (e.g. oxidation
or hydration), or due to morphology of the observed surface. If this is the case,
it is called intrinsic target variability. Spectral signatures, in fact, depend on
the reflectance properties of the solid material, that, in turns, is characterized by
the refraction index and the extinction coefficient of the material, according to
which it is possible to derive modeled reflectance signatures based on morphology
(e.g. particle size or packing density). Consequently, obtaining overall spectral
measurements over the multitude of possible mythologise is not viable, and there
is the need of some models capable of generating simulated spectra. Moreover,
for solid materials, reflectance depends on both the angle at which the surface is
observed and the one from which it is illuminated. These models are evaluated
according to the bidirectional reflectance distribution function (BRDF), which
describes how light reflects off an opaque surface; it is a function of radiance and
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irradiance, thus depends also on wavelength. Geometry of BRDF is described in
Fig.2.7[11]

Figure 2.7: Geometry definition of BRDF.[12]

Regardless of the nature of the material, spectral variability can depend also on
how much material there is relatively to pixel size, on concentration and thickness
of the matter and, in the LWIR, also on temperature, since warmer materials emit
more radiation and seem brighter to the sensor. These just described factors belong
to case of extrinsic target variability. This type of variability can be described
through several model depending on the observed object nature (i.e. solid, gas-
phase, thin layer of powder, plumes or others). [11]
Target spectral variability not only depends on the target itself, but it is also caused
by the surrounding environment, which is the case of environmentally induced target
variability. This type of sources can be divided in four categories: variation can be
caused by atmosphere, illumination, acquisition geometry or adjacent environment.
Specifically adjacent environment source includes adjacent materials, nearby objects
and obstacles, shadows and sensor viewing angle; acquisition geometry source,
instead, rely on sun position and topography.[11] Main topics of atmospheric effects
are absorption and scattering, which strongly affect spectral signatures. For this
reason atmospheric correction and radiometric calibration is needed on acquired
data.[3]
In conclusion, reading and interpreting hyperspectral images acquired through
remote sensing is strongly related to spectral signatures, which are subject to
variability. In fact, it is with spectral signatures that is possible to perform
detection and classification of different materials in the observed environment.
The point of studying this target variability is to be able to differentiate which
distinctions are "good" ones-and so allow to differentiate natural versus man-made
objects, target versus background, healthy vegetation versus dead one, etc- and
which are the "bad" ones, i.e. what confuses the analysis, such as dry or humid
atmosphere, sunlit versus shadows, etc. However, it is possible to characterize this
variability through algorithms once the target variability model has been defined.
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Chapter 3

Hyperspectral Images
Compression

Hyperspectral images obtained by sensor are presented as data-cubes: three dimen-
sional structure containing spatial information (x, y) at different spectral bands,
i.e. wavelengths λs. They can be viewed as as many sub-band images as the
acquisition bands, i.e. for each band there is the same number of pixels and the
resolution (number of pixels) depends on the capability of the sensor. Size of
one hyperspectral image depends on both resolution and number of acquisition
bands which usually are in the range going from approximately 100 to 300 or more
wavelengths. Considering Npixels = x× y the number of pixels per sub-band image,
Nbit the number of bits per pixel (e.g. 16), then: size = Npixels × Nbit × Nbands.
Size’s order of magnitude is around hundreds or thousands of megabyte, hence
reducing dimensions of collected data is fundamental for their storage.[13]
Another issue is limited transmission channel bandwidth, since required bandwidth
is proportional to transmitted data size and it is the main factor in terms of
application cost. Also the transmission time is a key parameter to be monitored, in
fact it regulates calibration and information losses at data centers, once information
is received from sensors. For all these reasons, data compression is fundamental
stage in hyperspectral imaging processing. As in traditional image compression,
there are many algorithms designed to reduce size. One parameter to be taken
into account useful to this scope is redundancy; it in fact, in general, it allows
compression algorithms to achieve better compression ratio (CR), i.e. the ratio
between the number of bits needed to represent the original uncompressed image
and the ones needed for the compressed version. Compression algorithms decor-
relate redundancies if present and thus data size is reduced. This procedure is
usually reversible, and original data can be reconstructed or approximated through
inverse procedure.[13] Types of redundancy and their classification are represented
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in Fig.3.1.

Figure 3.1: Redundancies’ classification in image processing.

Statistical redundancy occurs due to similar intensity of pixels in neighborhood,
except where illumination changes, while psychovisual is related to human per-
ception: human brain distinguish different content on the visual scene and not
all its components have the same importance for understanding it. Then, coding
redundancy involves the usage of codes to reduce the amount of data used to
represent the visual information. In traditional image processing interpixel spatial
redundancy, is due to the correlation of neighboring pixels, since they are not
statistical independent; in fact, value of current pixel can be predicted using its
neighbors values. In HSI specifically, spatial redundancy occurs due to intra-band
dependency that exist in spatial domain. Going on, interpixel temporal redundancy
occurs when HSI of the same location is taken at different times, this, in fact,
will generate a dependency in time domain for corresponding spectral and spatial
pixels. In digital image processing, instead, it refers to successive frames in video
sequence, indeed it is also called inter-frame redundancy. It is exploited when
motion compensation is applied. Eventually, spectral redundancy occurs due to
the dependency among pixels of different bands at the same spatial location.[13]

3.1 Compression Techniques
There are many techniques used and combined together to compress a hyperspectral
image based on which HSI compression algorithms can be categorized, such as
vector quantization, whose significant steps are training (codebook generation)
and coding (vector matching), compressive sensing, widely used in real time ap-
plication, in fact it includes different complexity for encoding (low) and decoding
(high) procedures, tensor decomposition, learning based algorithms and many more.
However, the most widely used can be identified in transforms and prediction
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based techniques, since they exploit interpixel redundancy efficiently to reduce dig-
ital image size or data cube size in the case of hyperspectral or multispectral images.

3.1.1 Transforms
As in digital signal processing, also in HSI compression, transform based techniques
act by transforming pixel values into a new domain, more suitable for quantization
and coding, by applying a function to the three dimensional (x, y, λ) data-cube.
Actually, most of the signal energy is contained in few coefficients in the transformed
domain, for this reason it is possible to achieve compression: only significant values
of the transformation result are kept. In the case of linear transforms, they can be
interpreted as a decomposition of input data (i.e. vector if one dimensional, matrix
if bi-dimensional, and so on) in terms of a basis set. The most known are Fourier
Transform, used in its discrete version (DFT), Discrete Wavelet Transform (DWT),
Discrete Cosine Transform (DCT) and Karhunen-Loeve Transform (KLT). All of
them are able to decorrelate data, both in spectral and spatial domain. These
transformation are reversible, so that it is possible to recover original uncompressed
data. They generate coefficients and then quantization is applied to remove factors
that are close to zero. Bit streams are generated by encoding quantization output,
which are then transmitted or stored. Even if they can vary, most common steps
of algorithms that use transform based compression are shown in Fig.3.2 [13]

Figure 3.2: Common steps of transform based algorithms.

Starting from 1D case, it is possible to define a transform as a mathematical
reversible function T that given a vector of N elements x, it returns y with the
same number of elements, in formulas:

y[n] = 1
N

N−1Ø
i=0

T (n, i)x[i] (3.1)

x[n] = 1
N

N−1Ø
i=0

T−1(n, i)y[i] (3.2)

13



Hyperspectral Images Compression

In detail, DFT uses sine and cosine waves with increasing frequencies as basis
functions. In the case of simple digital image with size N ×N , which in the case of
HSI can be a sub-band image (i.e. spatial information (x, y) corresponding to one
of the wavelengths), the transformation is two dimensional, 2D-DFT. It is obtained
by multiplying the image IN by the corresponding basis function summing the
result (3.3).

F (k, l) = 1
N2

N−1Ø
n=0

N−1Ø
m=0

I(n,m)e−j2π( kn
N

+ lm
N ) (3.3)

Inverse transform, instead, is 3.4. Its complexity is O(N2 log2 N) if Fourier trans-
form is implemented in its fast version (FFT).[14]

I(n,m) = 1
N2

N−1Ø
k=0

N−1Ø
l=0

F (k, l)ej2π(
kn
N

+ lm
N ) (3.4)

KLT, also called Hotelling Transform or Principal Component Analysis (PCA),
instead, is based on eigenvector decomposition of covariance matrix. Considering
X = [X1, ..., XN ] a random process of length N, A a matrix of size N ×N whose
columns correspond to the eigenvectors of the covariance matrix C of X arranged
in increasing eigenvalue order, and m = [m1, ...,mN ] the vector containing the
mean values mi = E[Xi], then the KLT transform is defined as:

Y = AT (X −m) (3.5)

where ATA is the identity matrix I. A is the KLT matrix and it diagonalizes
the covariance matrix for the input process. It is such that the elements in the
transformed coefficients vector are uncorrelated, i.e. Y has no correlation. This
transform minimizes the Mean Squared Error (MSE) between the original values
and the selected k from the inverse transform result, as it packs most of the energy in
the first k coefficients. The main problems with KLT are the requirement of training
data, the calculation of eigenvalues and eigenvectors, which is computationally
intensive (vector-matrix product is O(N2))and not very stable, and data adaptation
to the transform, since the output Y depends on C, which in turn depends on the
training data, while, for example, Fourier transform basis functions are independent
from the input image.[14]
Discrete Cosine Transform, instead, similarly to the Fourier transform, uses cosine
waves as basis functions. It is applied to the images in its 2D version (separable
multidimensional extension). As previously explained, in the case of hypercubes,
transforms are used in their bi-dimensional version, so that they can be applied to
the sub-band images (x, y) with dimensions N×N for each wavelength λ of the HSI.
In formulas direct and inverse 2D-DCT is explained in 3.6 and 3.7, where f(n,m) is
the input original data and α[u] =

ñ
u
N

and α[v] =
ñ

v
N

, with u, v = 1, ..., N −1.[14]
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C[u, v] = α[u]α[v]
N−1Ø
n=0

N−1Ø
m=0

f [n,m]cos
A

(2n+ 1)uπ)
2N

B
cos

A
(2m+ 1)vπ)

2N

B
(3.6)

f̃ [n,m] =
N−1Ø
u=0

N−1Ø
v=0

α[u]α[v]C[u, v]cos
A

(2n+ 1)uπ)
2N

B
cos

A
(2m+ 1)vπ)

2N

B
(3.7)

DCT transform is used in JPEG, since it is very simple to be implemented in
hardware and solve the discontinuity problem of the DFT implementation (see
Fig.3.3). DCT in fact uses only odd numbers as argument of the the cosine basis,
doing a "mirror copy" and eliminating the discontinuity between two consecutive
periods. In digital image processing this means that lines can be approximated
through fewer coefficients.

Figure 3.3: DFT and DCT periodicity.

Since 2D-DCT is implemented as a horizontal-vertical separable transform, it is
very good at compacting the energy of horizontal and vertical discontinuities, but
the need of transforms that can adapt to specific directions of the image feature
led to Directional DCT implementation. Instead of scanning by rows and then by
columns, it acts choosing an angle and then diagonalizing. The ability of choosing
a good angle which is optimal directly on the image leads to maximum coding
efficiency, even if this value has to communicated also to the decoder, increasing
the overhead. Steps of Mode 3 Directional DCT with 45° angle are showed in
Fig.3.4.[14]
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Figure 3.4: Steps of Mode-3 Directional DCT.

Lastly, another very used technique is Discrete Wavelet Transform. Wavelet
expansion, in fact, allows to more accurate local description and separation of the
signal characteristics. Its coefficients represents a local component itself, being
easier to interpret. Wavelet transform based techniques, in general, may allow to a
separation of signal’s components that overlap in time and frequency. Wavelets are
adaptable and adjustable, and consequently ideal for adaptive systems. Moreover,
their generation and the calculation of DWT is well matched to digital computer:
all the operation (additions and multiplications) are very easily implementable in
electronics. The DWT is rarely used in its mathematical form, while it is most
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common to use its filter bank implementation. A filter bank is a structure that
decomposes a signal into a collection of sub-signals that convey salient features
of the original one and are sufficient to reconstruct it. In signal compression, the
analysis filters (high-pass filters) are used to filter the original signal, which is
then down-sampled by a factor M to give a sub-band signal. The original one is
recovered by up-sampling and filtering with synthesis filters. Perfect reconstruction
is possible by wisely choosing the design of filters.[15]

Figure 3.5: DWT Filterbanks.

The high-pass filter HPF, at each level i, produces detailed information Di,
while the low-pass LPF associated with scaling function, produces the approximate
information Ai. Filters’ coefficients are chosen according to the characteristics of
the input signal, coherently with the available wavelets functions (Biorthogonal,
Daubechies, Coifilet, etc.) and they have to guarantee the perfect reconstruction
(PR). In this sense they have application dependent properties as, for example,
frequency selectivity. In the case of image compression, 2D-DWT is used and,
furthermore, in the case of hyperspectral images, 2D-DWT is applied to spatial
content of each spectral band of the datacube. Discrete Wavelet Transform is
used in the JPEG 2000 standard instead of the DCT to perform decomposition of
the image. Fig.3.6 shows how the 2D transform is obtained by applying the 1D
transform first rows-wise and then columns-wise (at each iteration 4 sub-bands are
obtained). All four final components (LL, LH, HL and HH) will have same final
size of N

2 × N
2 . Similarly to the DCT, DWT compact most of the signal energy into

the lower frequency sub-bands, and most of the coefficients in higher sub-bands
are small or nearly zero.[16]
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Figure 3.6: 2D-DWT: Sub-band decomposition of N ×N image

Transform based techniques have many advantages, including high compression
performance, global optimum solution, fault tolerance mechanism. Thanks to fast
calculation, they can be adopted in on-board compression and data centers. Main
disadvantage of this approach is high computational time, caused by computations
included in transform procedure (multiplications, transpose, inverse matrix, etc.).
However, it can be decreased with parallelism.[13]

3.1.2 Prediction Based Techniques
As an alternative to transform based algorithms, compression can be achieved
by using prediction techniques. In this case, pixel value is predicted through
mathematical methods based on the value of the previous pixels and both spectral
and spatial correlation are exploited and removed. In HSI, prediction is applied
mostly on the spectral domain through filtering. Most used filter functions are
Recursive Least Squares (RLS) and Least Mean Squares (LMS) filter. Prediction
based methods are easy to implement on HSIs and their steps rely on what depicted
in Fig.3.7. [13]

Figure 3.7: Common steps of prediction based algorithms.

While spectral decorrelation is performed for all of the bands of the HSI, the
prediction step in Fig.3.7 acts only on p-1 bands, where p is the number of prediction
bands used to evaluate the pixel estimate through mathematical operations. This
can be done by using a weight matrix, which is generated by a filter function that
varies according to the implemented algorithm. After image is predicted, it is
subtracted to the original one, generating the residual, which, on turn, is encoded.
Usually, Golomb or entropy coders are adopted.[13]
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Going in detail, the adaptive Least Mean Square filter mechanism relies on the
Stochastic Gradient Descent (SGD) algorithm, whose scope is to determine the
gradient (i.e. the direction) from one adaptation cycle to the next. The LMS
algorithm computational complexity scales linearly with the dimensionality of the
FIR filter on which it operates, in this sense it is said to be simple. Moreover, it
does not require knowledge of statistical characteristics on the environment on
which it operates and it is robust in each single realization of the algorithm.[17]

Figure 3.8: LMS algorithm block diagram.[17]

The block diagram depicted in Fig.3.8 is composed by the three components
of the LMS algorithm, i.e. a FIR filter that produces an estimate of the desired
response, a comparator, which subtracts the estimate from the desired response
producing a estimate of the error, and an adaptive weight-control mechanism that
regulates the adjustments applied to the tap weights of the FIR filter by exploiting
information contained in the estimation of the error. Table 3.1[17] summarizes how
the LMS algorithm works.[17]
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Summary of the LMS Algorithm
Parameters:
M = number of taps (i.e. filter length)
µ = step-size parameter
0 < µ < 2

λmax
,

with λmax maximum value of correlation matrix between tap
inputs u(n) and filter length.
Initialization:
If poor knowledge of the tap-weight vector ŵ(n) is available,
use it to select and appropriate value for ŵ(0).
Otherwise, set ŵ(n) = 0.
Data:
Given:
u(n) M-by-1 tap-input vector at time n
u(n) = [u ((n), u(n− 1)) , ...., u(n−M + 1)]T
d(n) = desired response at time n.
To be computed:
ŵ(n+ 1) = estimate of tap-weight vector at time n+ 1.
Computation:
For n = 0,1,2.... compute
e(n) = d(n) − ŵH(n)u(n)
ŵ(n+ 1) = ŵ(n) + µu(n)e ∗ (n).

Table 3.1

Figure 3.9: RLS algorithm block diagram.[17]
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In terms of convergence, a faster alternative to the simple LMS algorithm is the
Recursive Least Squares (RLS) one, which whitens the input data by using the
inverse correlation matrix of the data, assumed to be zero mean. This improvement
is obtained at expense of an increase in computational complexity. In particular,
the step size parameter µ in the LMS algorithm, here is replaced by the inverse
of the correlation matrix of the input vector. RLS algorithm is composed by two
main stages, filtering process and adaptation process, and its computation follows
a square law. In Fig.3.9 is presented the block diagram representation of the RLS
algorithm. It requires to specify to quantities, i.e. the initial weight vector, which
is commonly at first equal to the all-zeros vector, and the initial correlation matrix,
which depends on a regularization parameter δ, assigned according to the signal-to-
noise ratio (SNR). In Tab.3.2 steps of the RLS algorithm are summarized.[17]

Summary of the RLS Algorithm
Initialize the algorithm by setting:
ŵ(0) = 0,
P(0) = δ−1I,
and
δ equal to small positive constant for high SNR and large positive
constant for low SNR
For each instant of time n=1,2,... compute:

k(n) = λ−1P(n−1)u(n)
1+λ−1uHP(n−1)u(n)

ξ(n) = d(n) − ŵH(n− 1)u(n),

ŵ(n) = ŵ(n− 1) + k(n)ξ∗(n),
and
P(n) = −λ−1P(n− 1) − λ−1k(n)P(n− 1).

Table 3.2

It is important to point out that, in the context of adaptive filtering algorithms,
there is a trade-off between deterministic robustness in the face of uncertainties on
the one hand and statistical efficiency on the other. The LMS algorithm, being
model-independent in statistical terms, provides a suboptimal solution, but, by
assign a small enough value to its step-size parameter, it is possible to ensure
robustness. The loss to do so is in terms of statistical efficiency, i.e. long rate of
convergence. The RLS algorithm, instead, is model-dependent and its derivation is
based on the method of least squares, which is pivoted on a multiple linear regression
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model for describing the desired response. In this sense, it is optimal from the
statistical efficiency (faster convergence rate with respect to LMS algorithm by more
than one order of magnitude), but the price to pay is robustness. Consequently,
resolution of this trade-off is possible only by considering the practical realities of
the application of interest.[17]
Main advantages of prediction algorithms over transforms ones are support for
higher bit rates, low complexity and better performances on average. If quantizer is
used, near lossless compression can be achieved. Main problem of this approach is
error propagation, due to the recursive filters used to predict pixel values. Moreover
also low performance is one of the main drawbacks of prediction techniques, as well
as poor error tolerance. One solution can be using hybrid algorithms, which include
the employment of different techniques in order to overcome the just explained
problems.[13]

3.2 State of the Art
As well as for typical digital image processing, also in hyperspectral imaging
compression techniques can be classified as lossless, i.e. reducing data size without
losing information, and lossy, which on the contrary lowers data size by discarding
less significant information. In lossy techniques how much information can be lost
is usually regulated by some parameters that set a threshold on the amount of
discarded data. Once motivations for reducing amount of data have been explained,
it is fundamental to understand that there is not a universal method that is suited
for all scenario. Hence, many solutions have been developed, according to available
techniques that can be combined together (e.g. transform coding, adaptive filtering,
vector quantization, etc.). This section provides a review on the state of the art of
compression algorithms for HSI.
Algorithms reported in Tab.3.3 have been selected from reviews done by Dua et
al.[13] and Babu et al.[18].

Table 3.3

Algorithm Technique and Results Future research
directions

DWT-TD[2] Transform (2D-DWT) and Tensor
(Tucker Decomposition) based. Bet-
ter pixel-based results for classification
accuracy, with the drawback of com-
putational load due to TD.

Decrease core ten-
sor size to decrease
the load.
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Table 3.3

Algorithm Technique and Results Future research
directions

PCA-
DCT[19]

Combination of machine learning and
DCT (transform based); PCA is ap-
plied to find the features and DCT is
used to compress. High CR but selec-
tion of the number of features is not
considered.

Data decorrelation
in spatial domain
through different
transformation
techniques.

IKLT-
IDWT[20]

Integer based method. Eigen-matrix
decomposition is applied. Invertible
integer KLT and integer DWT are cas-
caded to spatially decorrelate image
data. Three different wavelet-based
coding are investigated. Ideal energy
compaction but not suitable for on-
board or real-time compression.

Parallelization to re-
duce compression
time.

Folded
PCA[21]

PCA combined with JPEG2000 (to fur-
ther compression). Covariance matrix
is calculated by folding the spectral
vector into a matrix and eigenvectors
are used to represent features of the
entire image. Best compression and
classification with number of princi-
pal components=40. Not suitable for
many applications.

Parallelization.

RLS filter[1] Statistical and prediction based: least
square optimization and entropy cod-
ing. Adaptive edge-based prediction
algorithm by using correlation among
pixels. Worsening of the performances
in terms of CR for low number of pre-
diction bands.

Reduce computa-
tional time.
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Table 3.3

Algorithm Technique and Results Future research
directions

CCSDS-
123.0-B
Enhance-
ment[22]

Enhancement of the standard pro-
posed by the consultative committee
for space data systems. Introduction
of specific extensions (constant SNR,
rate control and hybrid coding). User
control over accepted losses with low
complexity algorithm. It is application
friendly but hybrid encoding could pro-
vide worse results in some cases.

Hardware imple-
mentation.
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Chapter 4

Proposed Algorithms

Once the basis of compression techniques have been explained and the state of the
art has been investigated, some algorithms have been studied in detail and then
implemented in software to test their performances on a real dataset of hyperspec-
tral images. This chapter explains how they works in depth.

4.1 PNG and JPEG
As already explained, it is possible to see the hyperspectral image as a series of
consecutive images through frequency spectrum. As a consequence, the starting
point for this survey was using traditional digital image compression standards,
specifically PNG and JPEG for reducing size of each of them, and so the one of
the hypercube.
Portable Network Graphics (PNG) is an image format, defined in W3C recom-
mendation for image coding. It is also standardized as ISO 15948-2004. PNG is a
fully lossless compression method, patent-free, it supports palette based images,
i.e. color mapped images, and it provides support for transparency. It is based
on prediction and entropy coding, as a combination of LZ77 and Huffman coding,
called deflate algorithm. Prediction is applied first, transforming data through
filtering. There are five types of filters, collectively referred to as "filter method 0".
The simplest filter is the None filter, that implements the trivial case of no filtering;
the second one is the Sub followed by Up filter, which are conceptually similar.
Both are differencing filters, Sub operates on the corresponding byte of the pixel to
the left, while Up on the above, i.e. on the corresponding byte of the pixel on the
previous row of the image. Problems using this two filters are avoided filling with
zero bytes the region outside the image. The fourth filter type is Average, which is
a combination of the previous two. Last type is called Paeth filter and it is the
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most complex one. Its basic idea is to make an initial estimate of the current byte
based on a linear function of the pixel of the above, left and upper-left positions
with respect to the current one.[23]
The compression engine, instead is deflate. It is comparable to or even faster than
LZW in encoding as well as in decoding. Specifically, it uses a sliding window
of up to 32 KB with a Huffman encoder on the back end. Encoding procedure
relies on the longest matching string in the 32-KB window immediately prior to
the current position, storing that as a pointer and length, incrementing the current
position and consequently the window. Deflate limits the maximum match length
to be between 3 and 258 bytes and, as a consequence, the maximum achievable
compression ratio is 1032:1 (using 1 bit to encode the distance pointer and one bit
to encode the maximum length, i.e. 258 bytes).[23]
Joint Photographic Experts Group (JPEG) is a ISO/ITU joint committee
that defined the first standard for continuous-tone images. The standard specifies
the decoding process, while the encoding has not a mandatory procedure to fol-
low, allowing competition among different implementers. However, non-normative
guidelines about the compression process are provided in the standard, including
extensions for progressive and hierarchical coding.[14][24]

Figure 4.1: Standardization in JPEG.

JPEG comes to the need of increasing compression ratio and it is a lossy tech-
nique. It was developed for digital images and primarily for digital photography.
This standardized image compression scheme, in fact, works on both full-color
or grayscale images, and foresees also a separate lossless mode. In Fig.4.2 is de-
picted the basic steps of JPEG standard. Indeed, this standard, relies on four
basic passages: color space decomposition, application of 2D-DCT (see Chapter 3),
quantization and entropy coding. Moreover, JPEG is a symmetric codec, in the
sense that the steps needed for decoding are the exact inverse of the ones used for
encoding procedure.[14][24]
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Figure 4.2: JPEG Encoder Block Diagram.

Unlike PNG, JPEG does not use the palette color system (red, green and blue -
RGB), but the Y’CbCr, which is very similar to YUV. The difference between the
two is an offset, introduced in order to have always positive values, since the domain
of interest is digital. YUV system can be obtained from RGB one by means of a
linear transform: Y is the luminance, which contains most of the information, i.e.
the one better perceived by the human visual system. It contains the corresponding
grayscale image. U and V, instead, are the chrominance components, which add
color information to the luminance one. At this step, some information can be
lost, due to subsampling of the chrominance components (see Fig.4.3). In fact,
it can be chosen 4:4:4 (no subsampling), 4:2:2 and 4:1:1 or 4:2:0 coding (Cb and
Cr subsampled by 2), depending on the application requirements. However, in
order to avoid aliasing, most of the time it is necessary to filter the image before
subsampling.[14][24]

Figure 4.3: Y’CbCr Subsampling.[24]

Next step is dividing the image in blocks of 8×8 pixels and applying the two
dimensional discrete cosine transform to them. This passage decorrelates well the
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coefficients, avoiding the need of prediction. Then, a weighted scalar quantization
is applied to each transformed coefficient in every block. Usually, quantization
parameter is chosen to adjust the compression ratio: the lower it is, the less will be
the significant coefficients to code; on the other hand, lowering the quantization
parameter will worsening the image quality, so that it is a trade-off between how
much compression is achieved and the quality of the compressed image. At this
stage less important details are discarded and, in order to reduce the number of
bits to code the data, other techniques are used. Final step is entropy coding: first
of all coefficients are re-ordered from 2D to 1D in a zig-zag fashion, leading to many
sequences of consecutive zeros. The resulting scanned coefficients are then encoded
with Run Length Encoding (RLE), as sequence of "couples" of symbols, i.e. Symbol
1 = (RUN LENGTH, SIZE) containing the number of zero samples preceding the
current sample and the number of quantization bits for the current sample, and
Symbol 2 = (AMPLITUDE), which is the quantized sample value. Then, usually
Huffman coding is applied, even if JPEG standard allows also the use of arithmetic
encoder, but it is rarely used due to royalties problems and it is slower with respect
to Huffman coding, and ,even if it is more efficient mathematically speaking, it
achieve poor advantage on CR compared to Huffman.[14][24]
After JPEG, JPEG-2000 was developed. The main difference between the two is
the type of transform: instead of the two dimensional DCT on 8×8 blocks, in fact,
JPEG-2000 uses the 2D-DWT on larger blocks (64×64). Its complexity is an order
of magnitude higher than the JPEG and there are many additional features with
respect to previous standard, such as different quality for different areas (region of
interest-ROI) and re-synchronization codes for transmission over noisy channels.
Other evolution of first JPEG standard are available, as JPEG-XR, which allows
to achieve better compression, JPEG-LS (lossless/near-lossless) and JPEG-XT,
which adds bit depth and high dynamic range.[24]
Focusing on JPEG-LS, it provides both lossless and near-lossless modes, the
difference between the two consist in the value assigned to the NEAR parameter,
that is the maximum absolute pixel error tolerated in the near lossless; if NEAR=0,
then lossless mode is selected. In Fig.4.4 is presented the block diagram of JPEG-LS
encoding, made up by context modeling, mode determination (run or regular),
context based prediction, with a context-dependent error correction term, error
quantization and entropy coding.[23]
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Figure 4.4: JPEG-LS Block Diagram.

In the first block, context modeling, a set gradients is determined from recon-
structed pixels adjacent to the current one: if all the local differences are zero
(lossless compression) or less than NEAR value (near-lossless compression), then it
is selected run mode, otherwise it is used the regular mode. If it is the latter case,
an initial prediction is made based on an edge detecting predictor, which uses the
values of the neighbour reconstructed pixels. Then, this rough prediction is refined
in order to decrease the error bias associated with a given context. Next step
consist of mapping and quantizing the output error. Eventually, entropy coding is
applied.[23]

4.2 Recursive Least Square Filter for HSI Com-
pression

Jinwei Song et al.[1] developed an algorithm capable of compressing lossless hyper-
spectral images with the use of RLS filter.
As already explained, HSIs have strong correlation on both spatial and spectral
dimension. First step of the algorithm consist of calculating the average value
of four neighbour sNWz (t), sNz (t), sNEz (t) and sWz (t) of the current one sz(t), i.e.
calculating the local mean s̃z(t) as defined in 4.1 (see Fig.4.5).

s̃z(t) =
1
sNWz (t) + sNz (t) + sNEz (t) + sWz (t)

2
/4 (4.1)

In particular, t = Wy+x, with W×H size of the current band image (width×height)
and (x, y) coordinates of the current pixel.[1]
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Figure 4.5: Neighbour pixels used for calculating local mean.[1]

Next step, is subtracting the calculated local mean by the current pixel, in
order to eliminate correlation in the current band image. The result is the local
difference, defined as dz(t) = sz(t) − s̃z(t). For the first band dz(t) is sent to the
arithmetic encoder directly, while correlation in the other bands is eliminated by
using a RLS filter. The adopted encoder is the adaptive arithmetic one (AAC).[1]
How the algorithm works step by step is explained in Tab.4.1, where the expectation
signal of the RLS filter is dz(t) and the input vector is composed as dz(t) =
[dz−1(t), dz−2(t), ..., dz−p(t)], with p is the number of prediction bands used to predict
the current band. The weight vector of the filter is w(t) = [w1(t), w2(t), ..., wp(t)].[1]
This procedure keeps the complexity relatively low and it is suitable for real time
compression on satellites.[1]
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Proposed Algorithm

STEP 1: Let P(0) = δIp, the weight vector w(0) = [0] and t = 1,
where δ = 1e− 4 and Ip identity matrix of order p.

STEP 2: Calculate dz(t) and dz−i(t) with i = 1, ..., p. Form the
input vector as dz(t) = [dz−1(t), dz−2(t), ..., dz−p(t)].

STEP 3: Calculate the prediction residual ez(t) as:

ez(t) = dz(t) − ⌊dz(t)wT (t− 1)⌋ (4.2)

STEP 4: Let:

kT (t) = P(t− 1)dTz (t)
1 + dz(t)P(t− 1)dTz (t) (4.3)

and
P(t) = P(t− 1) − kT (t)dz(t)P(t− 1) (4.4)

STEP 5: Update w(t) by

w(t) = w(t− 1) + k(t)ez(t) (4.5)

STEP 6: Send ez(t) to the encoder (AAC).

STEP 7: Increment t, i.e. t = t+ 1

STEP 8: If t is less or equal than W×H, GO TO STEP 2, otherwise
end prediction procedure of current band prediction.

Table 4.1
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4.3 Discrete Wavelet Transform and Tucker De-
composition Algorithm

Last investigated HSI compression technique is proposed by Karami et al. in [2]. It
relies on 2D-DWT and Tucker Decomposition, since data are represented in tensor
notation. In order to better understand how it works a small digression on tensor
theory is needed.

4.3.1 Tensors and Tensor Notation
In mathematics, a tensor is a multidimensional array. The order, or way or mode
is the number of dimensions. Tensors of order one are vectors and are denoted
by boldface lowercase letters, e.g. x and the ith entry of a vector x is denoted
by ai; tensors of order 2 are matrices and are denoted by boldface capital letter,
e.g. X and the element (i, j) of X is denoted by xij; tensors with order grater or
equal to 3 are higher-order tensors and are denoted by boldface Euler script letters,
e.g. X, and an element (i, j, k) of a third-order tensor X is denoted by xijk. The
nth element in a sequence is denoted by a superscript in a parentheses, e.g. A(n)

denotes the nth matrix in a sequence. It is possible to fix a subset of indices and
form a subarray, for example in matrices with notation xi,: it is denoted the ith
row of matrix A. If notation is compact, e.g. xj , it is usually referred to as the jth
column of matrix A.[25]
Fibers are the higher-order analogue rows and columns, and it is defined by fixing
every index but one. Slices, instead, are two-dimensional section of a tensor, defined
by fixing all but two indices. In Fig.4.6 and Fig.4.7 are presented fibers x:jk, xi:k
and xij:, and slices X:jk, Xi:k and Xij: of a third order tensor X.[25]

Figure 4.6: Fibers of third-order tensor.[25]
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Figure 4.7: Slices of third-order tensor.[25]

All the subsequent operations are defined according to [25].
The norm of a tensor X ∈ RI1×I2×...×IN is defined as the square root of the sum of
all its elements and it is defined in (4.6). It corresponds to the Forbenius norm of
a matrix.

∥X∥ =

öõõõô I1Ø
i1=1

I2Ø
i2=1

...
INØ
iN =1

x2
i1i2...iN (4.6)

Another important operation to be defined is the inner product: given two tensor
with the same size X,Y ∈ RI1×I2×...×IN it is the sum of the products of their entries,
in formulas:

⟨X,Y⟩ =
I1Ø
i1=1

I2Ø
i2=1

...
INØ
iN =1

xi1i2...iNyi1i2...iN (4.7)

The n-mode product, instead, is the product of a tensor X ∈ RI1×I2×...×IN with a
matrix U ∈ RJ×In and it is denoted by X ×n U. It is defined as in 4.8.

(X ×n U)i1...in−1jin+1...iN
=

INØ
in=1

xi1i2...iNujin (4.8)

The Kronecker product is defined between two matrices U ∈ RI×J and V ∈ RK×L,
it is equal to:

U ⊗ V = [u1 ⊗ v1 u1 ⊗ v2 u1 ⊗ v3 ... uJ ⊗ vL−1 uJ ⊗ vL−1] (4.9)

Other two products defined in tensor notation are the Khatri-Rao product and the
Hadamard product. The first one is the equivalent columnwise of the Kronecker
product, denoted with ⊙. Notice that in the case of vectors Kronecker and Khatri-
Rao products coincide. The Hadamard product, instead is the elementwise matrix
product and it is possible for matrices U and V that have the same size. It is
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denoted by U ∗ V.[25]

Figure 4.8: Tucker decomposition of a three-way array.[25]

It is possible to decompose a tensor according to two main methods: the
CANDECOMP/PARAFAC, better known as CP, which factorizes a tensor into a
finite sum of component rank-one tensors, and the Tucker decomposition, which
is a form of higher-order PCA. Tucker decomposition decomposes a tensor into a
core tensor multiplied (or transformed) by a matrix along each mode, so that, for
example, a three-way tensor X ∈ RI×J×K can be written as:

X ≈ G ×1 A ×2 B ×3 C =
PØ
p=1

QØ
q=1

RØ
r=1

gpqr ap ◦ bq ◦ cr = JG; A,B,CK (4.10)

where, A ∈ RI×P , B ∈ RJ×Q, and C ∈ RK×R are the factor matrices, usually
orthogonal, while G ∈ RP×Q×R is the so-called core tensor, which ca be seen as
a compressed version of X. Tucker tensor decomposition is illustrated in Fig.4.8.
Most of the time factor matrices are columnwise orthonormal. There are three
main methods for computing the tucker decomposition of a tensor: higher-order
SVD (HOSVD), Alternating Least Squares (ALS) and higher-order orthogonal
iteration (HOOI).[25]

4.3.2 Algorithm
In their work [2], Karami et al. relies on the fact that some compression methods
consider HSIs as three-dimensional data, so that they could be presented as
three-dimensional tensors, with two dimensions for spatial information and one
for spectral. By doing so, spatial and spectral correlation of a HSI are taken
into consideration simultaneously, and not alternatively as in the case of other
compression techniques. The proposed algorithm is an hybrid scheme based on
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DWT and Tucker Decomposition (TD).[2]
In the first step two dimensional discrete Wavelet transform is applied to each band
of the HSIs, so that four sub-band images are obtained: the ones produced by the
high-pass filtering of the discrete time domain, i.e. horizontal (H), vertical (V) and
diagonal (D) information, and the approximate information (A) produced with the
low pass filtering. The 2DWT of function f(x, y) with size I1 and I2 can be shown
as:

Wϕ(i1, i2) = 1√
I1I2

I2−1Ø
y=0

I1−1Ø
x=0

f(x, y)ϕi1,i2(x, y) (4.11)

W k
ψ(j, i1, i2) = 1√

I1I2

I2−1Ø
y=0

I1−1Ø
x=0

f(x, y)ψkj,i1,i2(x, y) (4.12)

k = {H,D, V } (4.13)

ϕi1,i2(x, y) = ϕ(x− i1, y − i2) =
Ø
m

hϕ(m− 2i1)
√

2ϕ(2x−m)

×
Ø
n

hϕ(n− 2i1)
√

2ϕ(2x− n)
(4.14)

ψHj,i1,i2(x, y) = 2
j
2ψ(2jx− i1,2jy − i2) = 2

j
2
Ø
m

hψ(m− 2i1)
√

2ψ(2j+x−m)

×
Ø
m

hψ(n− 2i1)
√

2ψ(2j+x− n)

(4.15)

hϕ and hψ are the (9/7) biorthogonal wavelet filters whose coefficients are reported
in Tab.4.2, ϕ is the scaling function, Wϕ(i1, i2) coefficients define an approximation
of f(x, y) and Wψ(j, i1, i2) instead add horizontal, vertical and diagonal details.
Usually, i1 = i2 = 2j with j = 0,1..., J − 1.[2]

n hϕ[n] hψ[n]
0 0.7885 0.8527
±1 0.4181 0.3774
±2 -0.04069 -0.111
±3 -0.06454 -0.02385
±4 - 0.03783

Table 4.2
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The inverse 2DWT is formulated as in 4.16

f(x, y) = 1√
I1I2

Ø
i2

Ø
i1

Wϕ(i1, i2)ϕi1,i2(x, y)

+ 1√
I1I2

Ø
k={H,D,V }

J−1Ø
j=0

Ø
i2

Ø
i1

W k
ψ(i1, i2)ψkj,i1,i2(x, y)

(4.16)

In lossy compression the detailed sub-bands, i.e. H,V and D, are ignored and the
preserved information is only the detailed one (A). By doing so, in fact, higher
compression ratio is achieved.[2]
In the second step, instead, the TD algorithm is applies to the four (if lossless case)
results of the 2DWT. For each of the four tensors the size of the core tensor in
the Tucker decomposition is selected manually and, considering that most of the
energy is contained in the lowest frequency components (tensor A), its dimensions
are higher then those of other tensors (H,V and D).[2]
In the third step the four core tensors and the corresponding factor matrices have to
be transmitted. Since most of the elements of the core tensors are nearly zero, the
bit-plane coding procedure is used to transmit them. This procedure is composed
by two passes: the significant pass an the refinement. The first one identifies
a significant element according to a certain threshold value among the absolute
values of the core elements; then, the significant elements have to be encoded and
preserved for the next bitplane procedure iteration. Refinement, instead, consist of
dividing in half the threshold and repeat the process. This approach is repeated
until the energy of the encoded elements is equal or higher than 99.5% of that of
the original tensor.[2]
Last step is encoding: there are many possible approaches, one of the most used
for lossless entropy coding is using the adaptive arithmetic encoder (AAC). Unlike
Huffman encoding, it does not require the transmission of a codebook, so that it
achieves higher compression. AAC computes the cumulative distribution function
(CDF) of the probability of a sequence of symbols and the result, i.e. a numerical
value, is represented in binary code. To reconstruct the original HSI, beside the
core tensor, also the factor matrices are needed. They are normalized so that their
elements are in the range [0,1] and then uniform quantization is used to transfer
the 12 factor matrices (in the case of lossless algorithm implementation).[2]
In fifth step the transmitted data are decoded and in the sixth one the inverse
2DWT is applied to reconstruct the images.[2]
In Tab.4.3 and Tab.4.4 it is summarized the just explained algorithm.[2]
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Proposed Algorithm

Input: Original HSIs X with size I1 × I2 × I3

STEP 1: Apply the 2DWT to each spectral band to obtain 4 sub-
images, i.e. approximate, diagonal, vertical and horizontal tensors.

STEP 2: Apply Tucker Decomposition algorithm to the four tensors
individually. Each tensor has size ( I1

2 × I2
2 × I3).

TD
Input:
-Tensor Y of size ( I1

2 × I2
2 × I3).

-1≤ J1 ≤ I1
2 , 1≤ J2 ≤ I2

2 , 1≤ J3 ≤ I3
2

Output:
3 factors A(n) ∈ RIn×Jn and core tensor G ∈ RJ1×J2×J3

STEP 3: Bit-plane coding procedure repeated until a stopping
criterion is met.

STEP 4: Quantize A(n) ∈ RIn×Jn and encode core tensor G ∈
RJ1×J2×J3 using AAC.

Table 4.3

Reconstructed Algorithm

STEP 5: Decode the elements Ŷ = Ĝ × {Â}

STEP 6: Calculate the inverse 2DWT to reconstruct the images X̂

Table 4.4

Considering that the chosen wavelet is the (9/7) wavelet with one level of
decomposition and being IA the average number of pixels of the approximate core
tensor, and JA the average of the dimensions ( I1

2 × I2
2 × I3) of the approximate core

tensor, the total computational complexity of the proposed algorithm is of order
4 ×O(JAI3

A) +O(9I1I2I3/7).[2]
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Chapter 5

Experimental Results

This chapter illustrates the implementation and performances of each investigation
proposed in the previous chapter, making a discussion among comparable results.
Numerical results are presented and effects of compression on spectral signatures
are examined.

5.1 Data Set and Implementation Choices

Proposed experiments aim to reduce the size of the original hyperspectral image
without affecting spectral signatures. In particular, tests have been done on four
hyperspectral images on which ice detection on metallic surfaces has to be performed.
Specification on the data set can be found in Tab.5.1. Each file of the proposed
data set has size 389 [MB], saved with ENVI image format.

File Presence Of Ice Indoor/Outdoor
160504-SG_30ms_100_RC.dat no ice outdoor
161337-G_30ms_100_RC.dat ice outdoor
noice_Luce_1.dat no ice indoor
ice_Luce_5.dat ice indoor

Table 5.1
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Figure 5.1: Senop Rikola Hyperspectral Camera.

Data have been acquired with Senop Rikola hyperspectral camera (Fig.5.1)
whose sensor specifications are reported in Tab.5.2.

Specifics Senop Rikola
Lens Optics H 36.5°, V 36.5°
Spectral Range 500-900 nm
Spectral Channels 380
Spectral Resolution 1 nm
Shutter Type Global
Focal Length 9 mm
Image Resolution 1010× 1010 pixels
Pixel Size 5.5µm
Weight 720 g
Dimensions 172.7×89×77 mm
Cost ≈60 000 €

Table 5.2

Examined data, specifically 161337-G_30ms_100_RC.dat and ice_Luce_5.dat,
include two types of ice: white and transparent, the first similar to rime and the
second similar to clear ice. Thus, differentiation in testing spectral signatures must
be done, due to spectral variability of solid materials (see Chapter2).
All four images are composed by 100 bands covering the spectral range form 505 to
903 nm with a theoretical band step of 4 nm. Each image resolution is 1010×1010
pixels. Data used are radiometrically calibrated through Empirical Line Calibration
tool of ENVI Software[26].
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(a) (b)

(c) (d)

Figure 5.2: Original Hyperspectral Images ROIs.

In Fig.5.2 are shown the four tested images described in Tab.5.1. Selection of
regions of interest have been done manually using ENVI 5.2 [27], ROIs’ legend can
be found by looking at Tab.5.3

Clear Ice
Rime Ice
Metal
Lacquered Metal
White Reference Panel
Black Reference Panel

Table 5.3: ROIs’ Legend

In order to validate the proposed implemented algorithms, tests have been done
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on larger data set of images, the ones described in Tab.5.1 contains one of each.
Compression techniques have been implemented using MATLAB and its Hyper-
spectral Image Toolbox[28].

5.2 PNG and JPEG
First attempt consist of applying digital image compression standards to each
per-band image of the hyperspectral data cube. This has been done by extracting
from the input file one image of 1010×1010 pixel for each of the 100 bands, which
is then saved as png or jpeg file. According to original values, 16 bits are needed to
represent properly original information. The result is a collection of standard per-
band bi-dimensional images. For each folder containing per-band images of the same
hyperspectral one, there is a metadata file, since information (e.g. wavelengths)
are necessary for the inverse procedure, and so for the hypercube reconstruction.
For what concerns lossless procedures, to reduce noise, and so increasing the
compression ratio, a bi-dimensional Wiener filter has been used. It filters the
per-band image using a pixel-wise adaptive low pass Wiener filter. It acts on a
neighborhood of size m×n to estimate the local image mean and standard deviation.
A good compromise between execution time and performance is using one of size
3×3. The additive noise power is assumed to be Gaussian.
The objective of these experiments is to achieve a reasonable compression ratio
without disrupting spectral signatures. In Tab.5.4 are reported numerical results
for lossless compression of the four hyperspectral images described in previous
section.

FILE PNG JPEG
Noisy Filtered Noisy Filtered

160504-SG_30ms_100_RC.dat 35.4 MB 19.3 MB 29.5 MB 18.1 MB
161337-G_30ms_100_RC.dat 36 MB 20 MB 29.7 MB 18.5 MB
noice_Luce_1.dat 77.9 MB 51.6 MB 64 MB 43.3 MB
ice_Luce_5.dat 87.6 MB 59.9 MB 71.8 MB 50.3 MB

Table 5.4

Results show that if Wiener filtering is not applied, and consequently the per-
band image is noisy, JPEG in its lossless implementation performs 21% better then
PNG. If, instead, noise is filtered out from each per-band image, on average, there
is 13% of achievement. However, improvement obtained through noise filtering
depends on data and spatial correlation among pixels. In fact, for outdoor hyper-
spectral images that have similar spatial content (160504-SG_30ms_100_RC.dat
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and 161337-G_30ms_100_RC.dat), size of compressed data with JPEG is only 7%
better than PNG, while for the indoor (noice_Luce_1.dat and ice_Luce_5.dat) it
is about 19%.

(a) Original (b) Noisy PNG (c) Filtered PNG

Figure 5.3: 160504-SG_30ms_RC.dat: PNG.

(a) Original (b) Noisy JPEG (c) Filtered JPEG

Figure 5.4: 160504-SG_30ms_RC.dat: JPEG.

(a) Original (b) Noisy PNG (c) Filtered PNG

Figure 5.5: 161337-G_30ms_100_RC.dat: PNG.
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(a) Original (b) Noisy JPEG (c) Filtered JPEG

Figure 5.6: 161337-G_30ms_100_RC.dat: JPEG.

From Fig.5.3 to Fig.5.10 are displayed spatial content of each new reconstructed
hypercube. There are no perceptual differences between the original and the two
lossless techniques, PNG and JPEG, both with and without noise filtering.

(a) Original (b) Noisy PNG (c) Filtered PNG

Figure 5.7: noice_Luce_1.dat: PNG.

(a) Original (b) Noisy JPEG (c) Filtered JPEG

Figure 5.8: noice_Luce_1.dat: JPEG.
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(a) Original (b) Noisy PNG (c) Filtered PNG

Figure 5.9: ice_Luce_5.dat: PNG.

(a) Original (b) Noisy JPEG (c) Filtered JPEG

Figure 5.10: ice_Luce_5.dat: JPEG.

The spectrum of any pixel of these HSIs is a mixture, and the objective of
spectral analysis is to extract the spectra of individual materials. In fact, a ground
resolution element contains several materials and all of them contribute to the
individual pixel spectrum measured by the sensor. As result there is a composite or
mixed spectrum, and the target is to identify the "pure" spectra that contribute to
this mixture. Such pure spectra are called endmembers.[3] Consequently, another
important aspect to be analysed is how these manipulations affect endmembers
extraction. For hyperspectral analysis it is fundamental to not disrupt spectral
signature of reconstructed hypercubes, otherwise classification and other steps
could not be possible. Endmember extraction has be done using the same ROIs
defined in Fig.5.2 (see Tab.5.3 for legend) with ENVI Endmember Collection Tool
[29].
From Fig.5.11 to Fig.5.18 it can be observed how endmembers are preserved from
considerable distortion for all hypercubes of the data set. Their extraction leads to
almost same results both in case of PNG and lossless JPEG. Specifically, minor
changes are present in the mean of Black Reference Panel ROI in indoor file with
and without ice (Fig.5.15 to 5.18).
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(c) Filtered PNG

Figure 5.11: 160504-SG_30ms_RC.dat: PNG.
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(c) Filtered JPEG

Figure 5.12: 160504-SG_30ms_RC.dat: JPEG.
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(c) Filtered PNG

Figure 5.13: 161337-G_30ms_100_RC.dat: PNG.
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(c) Filtered JPEG

Figure 5.14: 161337-G_30ms_100_RC.dat: JPEG.
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(c) Filtered PNG

Figure 5.15: noice_Luce_1.dat: PNG.

Also in spectral analysis, noise filtering does not affect results.
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Figure 5.16: noice_Luce_1.dat: JPEG.
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(c) Filtered PNG

Figure 5.17: ice_Luce_5.dat: PNG.
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(c) Filtered JPEG

Figure 5.18: ice_Luce_5.dat: JPEG.

When it comes to lossy JPEG, by changing the quality parameter for the
compression, i.e. the Quality Factor (QF), it is possible to decrease the size likely
to 6 MB (for QF=15). Using Matlab imwrite() function it is possible to implement
lossy JPEG by changing QF from 100 (lossless) to at maximum 0. Unfortunately,
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lossy JPEG supports only up to 12 bits which are not enough to correctly represent
original data. 16 bit can be used only for lossless JPEG implementation. In fact,
even if spatial information could seems poorly changed, spectral signatures are
strongly corrupted, and so endmembers extraction is altered.

(a) Original (b) JPEG QF 60 Filtered

Figure 5.19: ice_Luce_5.dat
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(b) Endmembers JPEG QF=60

Figure 5.20: Endmembers ice_Luce_5.dat
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5.3 Lossless Compression through RLS filter
Another tested algorithm involves the usage of a recursive least square filter, as
suggested by Song et al. in [1]. The view is to remove spatial correlation through
local mean calculation among adjacent pixels. For the first band it is subtracted to
the pixel value and then sent to the encoder, while for successive ones it is sent to
the RLS filter. Local mean and RLS filter have been implemented from scratch,
whereas arithenco() MATLAB function have been used as encoder.

5.3.1 Implementation
Emulating what specified in [1], local mean is defined as in 5.1, where sz(x, y) is
the value of the current pixel in the current band, (x, y) the coordinates of the
pixel, and sNWz (x, y),sNz (x, y),sNEz (x, y) and sWz (x, y) are the neighbour pixels in
north-west, north, north-est and west positions respectively.

s̃z(x, y) =
A
sNWz (x, y) + sNz (x, y) + sNEz (x, y) + sWz (x, y)

4

B
(5.1)

Steps have been implemented in MATLAB taking as reference what described in
[1].

1. Load the hypercube and extract the 1010×1010 pixels current band image.

2. Calculate local mean through local_mean = LocalMean(image), which eval-
uates the local mean of each pixel for the current band image.

3. Calculate difference between each (x, y) of the pixel values and its correspond-
ing local mean dz(x, y) = sz(x, y) − s̃z(x, y). If the current band is the first it
is encoded with arithenco() function; otherwise, dz(x, y) is sent to the RLS
filter.

4. Filter: RLS filter takes as input dz(x, y)and a vector u which contains the
differences dz−i(x, y), with i = 1...p, and p the number of prediction bands
used. The output is the vector e which is the difference between dz(x, y)
(desired response) and u (vector of buffered input samples) weighted by the
filter taps, which recursively adjust.

5. Send e to the arithmetic encoder. Repeat the routine for all band images.

The most important parameter is p, i.e. the number of prediction bands used. The
higher it is the better will be the performance in terms of compression. In this
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experiment 2, 4, 6 and 8 bands have been used for each of the one files of the
dataset described in 5.1. Results obtained are reported in Fig.5.21.
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Figure 5.21: RLS algorithm compression performances.

Going from 2 to 4 prediction band there is, on average, an improvement in
compression size of 10%, from 4 to 6 of almost 7% and form 6 to 8 of 3.6%. Thus,
simulation results coincide with expected ones.
Being lossless, the reconstructed hypercube spectral signatures are not corrupted,
but experiments have been limited, since performances are worst compared to other
algorithms analysed in this study.
One solution to poor compression results could be implementing and efficient
adaptive arithmetic encoder, which should lead to better results.
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5.4 Two Dimensional DWT and Tucker Decom-
position

According to the state of the art, it is possible to efficiently reduce original size of
an HSI by exploiting both spectral and spatial correlation, by using two dimen-
sional discrete Wavelet transform and Tucker Decomposition combined. Taking
as reference solution proposed by Karami et al. in [2], lossy solution has been
implemented.
This algorithm is based on data representation in tensor notation. In order to
manipulate tensor-type data and to use related operations, Tensor Toolbox for
MATLAB developed by Sandia National Labs [30] has been deployed.

5.4.1 Implementation
Here follows implementation steps for encoding:

1. Load the hyperspectral image and extract three dimension of the datacube:
I1, I2 and I3.

2. Apply two-dimensional discrete Wavelet transform to each band of the dat-
acube. The output of this operation are four three dimensional variables (see
Fig.5.22): A (approximate), H (horizontal),V (vertical) and D (diagonal),
each of them with size I1

2 × I2
2 ×I3. Since lossy version of the algorithm is

studied, only A component is considered from now on.

3. Convert A to a third order tensor A

4. Apply Tucker Decomposition to tensor A of size I1
2 × I2

2 ×I3. Output will
be three n-mode matrix in Tucker model U(n) ∈ RIn×Jn and a core tensor
G ∈ RJ1×J2×J3 , see Fig.5.23

5. Write in binary file core tensor G and three factors

Figure 5.22: 2D Discrete Wavelet Transform decomposition.
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Figure 5.23: Implementation Step 4: Third-order Tucker decomposition.

For decoding, instead:

1. Read from file the core tensor Ĝ ∈ RJ1×J2×J3 and Û(n) ∈ RIn×Jn

2. Reconstruct approximate tensor with n-mode product:
Â = Ĝ ×1 Û(1) ×2 Û(2) ×3 Û(3) = Ĝ × {Û}

3. Calculate the inverse two-dimensional discrete Wavelet transform and recon-
struct the datacube.
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Figure 5.24: Impulse response of LP and HP filters.

Focusing on two-dimensional DWT, it has been used MATLAB function
[cA,cH,cV,cD] = dwt2(X,LoD,HiD), which computes the single-level 2-D DWT
using the wavelet decomposition lowpass filter LoD and highpass filter HiD. The
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chosen wavelet for this application is the biorthogonal. More precisely, considering
SNR defined in (5.2)[2], the chosen one is with 6 synthesis filters and 8 analysis
filter, i.e. ’bior6.8’(Fig.5.24); it, in fact, maximize the SNR for all the four HSI
in the dataset described before.

SNRdB = 10log10

A
∥A∥2

∥A − Â∥2

B
(5.2)

It is important to underline the proposed algorithm is in its lossy version, i.e.
only approximate component of the four produced by 2D DWT is used for data
representation. Indeed, as it can be seen in Fig.5.25, horizontal (H), vertical (V)
and diagonal (D) components’ data are distributed around zero, while A contains
most of the information.

(a) 160504-SG_30ms_100_RC.dat (b) 161337-G_30ms_100_RC.dat

(c) noice_Luce_1.dat (d) ice_Luce_5.dat

Figure 5.25: Sub-band Images Values Distributions.
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Tensor conversion is done efficiently with tensor() function, available in Tensor-
Toolbox[30]. Once data are in tensor notation, it is possible to apply Tucker
Decomposition to them.
Specifically, it has been used T = tucker_als(X,R,’param’,value,...) from
the same toolbox, which implements Tucker Decomposition in its alternating least
square version. It computes the best rank approximation of input tensor X (i.e. A
in Fig.5.23 ), according to the dimension specified in vector R.
It works as follows:

1. Extract number of dimension and norm of input tensor X, i.e. A.

2. Set up and error checking on initial guess for U. Initialization is done by
computing an orthonormal basis for the dominant dimension in R

3. Main loop: iterate until convergence

I. Considering n = 1...N , iterate over all N modes of the tensor. In this case
N=3

II. Evaluate U(n) and core tensor through current approximation
III. Compute the error as the difference between current and old fit and check

for convergence. Fit is calculated as fit = 1 −
√

∥X∥2−∥Core∥2

∥X∥2

As parameters, tolerance has been set at 1.0e−4 and maximum number of iteration
at 50. However, convergence is met within third iteration.
Also quantization effects have been investigated. Since U(n) and core tensor G
values are not uniformly distributed, Max-Lloyd quantizer have been chosen. For
the proposed dataset minimum number of bits needed to have good approximation
is 4, so that the quantizer has 2nbit=24=16 levels.
For reconstructing the hypercube Â from compressed data, n-mode product be-
tween core tensor Ĝ and {Û} ttm() function form Tensor Toolbox[30] has been
used.
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(a) 160504-SG_30ms_100_RC.dat (b) 161337-G_30ms_100_RC.dat

(c) noice_Luce_1.dat (d) ice_Luce_5.dat

Figure 5.26: Core Tensor values before and after quantization.
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(a) 160504-SG_30ms_100_RC.dat (b) 161337-G_30ms_100_RC.dat

(c) noice_Luce_1.dat (d) ice_Luce_5.dat

Figure 5.27: Difference between original and reconstructed HSI data distribution.

To be aware of the loss between original hypercube and reconstructed one see
Fig.5.27 and Fig.5.28. May be found that even if they have not the same values,
their shaping distribution is preserved. It can be noticed that, even if quantization
is applied, it does not corrupt the reconstructed (estimated) hypercube. This
behaviour translates in the same size of compressed data in both cases.
New size of compressed information needed for the hypercubes reconstruction is
14.5 [MB] for all of the four files specified in the dataset. Notice that uncom-
pressed datacube in ENVI format have size 389 [MB], as specified in previous section.
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(a) 160504-SG_30ms_100_RC.dat (b) 161337-G_30ms_100_RC.dat

(c) noice_Luce_1.dat (d) ice_Luce_5.dat

Figure 5.28: Difference between original and reconstructed hsi data distribution
with quantization.

62



Experimental Results

Turning to spectral signatures and endmembers’ extraction relatively to the
ROIs defined in section 5.1, since the algorithm is lossy, it is expected to observe
some difference between those of the original hypercube and the reconstructed
ones.

(a) Original (b) NO Quantization

(c) Quantization with 8 bits (d) Quantization with 16 bits

Figure 5.29: Reconstructed hypercubes of ice_Luce_5.dat
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(c) Quantization with 8 bits
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(d) Quantization with 16 bits

Figure 5.30: Reconstructed hypercubes of ice_Luce_5.dat
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As it can be observed in Fig.5.29 (c) and (d) the effect of quantization on spatial
information is considerable. If no quantization is applied, instead, even if the
compression is lossy, there is not appreciable differences between the reconstructed
(b) and the original (a) hypercubes.
For what concerns to spectral signatures, peaks are highlighted, even strongly with
quantization, but the shape and the behaviour of the endmembers extracted from
ROIs is not altered (Fig.5.30).
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In short, this thesis explored hyperspectral imaging compression and its basic
concepts. Starting from understanding the meaning of spectral information col-
lected by sensors, it illustrated the state of the art of HSI compression algorithms,
explaining the elementary principles of compression techniques, such as prediction
filters and transforms. Three solutions have been studied and then implemented in
software. Simulations have been done on a real dataset acquired in laboratory, on
which recognition of ice on metallic surfaces has to be performed.
Experiments have been done to test if spectral signatures were preserved or dis-
rupted and to evaluate the compression ratio. Results show that using JPEG-LS
on each per-band image instead of PNG, compression can improve up to 21%.
However, if 2D-Wiener filter is used before compression, results produced by the
two standards are comparable. Moreover, JPEG in its baseline version, i.e. lossy,
is not suited to this type of hyperspectral images, since the maximum supported
bits is 12, and so spectral signatures are impaired. Then, lossless compression
through recursive least squares filter (RLS), based on what proposed by Song
et al. in[1] has been tested. After filter implementation, experimental results
demonstrate that with increasing number of prediction bands, size of compressed
data is further reduced. However, amount of size reduction achieved is too low
with respect to other techniques, and encoding procedure is time demanding. Last
explored algorithm was inspired by Karami et al.[2], implemented in lossy version.
In fact, after 2D-DWT only the approximate coefficients are first decomposed via
TD, and eventually quantized and encoded. In this case compression achieved
is high (approximately 96% with respect to original size) and even if there are
some differences in the spectral signatures, their behaviour is not affected by the
compression algorithm.
Future work that could not have been handled in this thesis, could address an
optimized implementation of the RLS filter and an efficient adaptive arithmetic en-
coder, for the second explored algorithm, which should lead to better performances.
Another possible further development could be testing different implementation
of the Tucker Decomposition in the last proposed solution. Moreover, taking as
reference spectral signatures of the compressed hypercubes, it could be meaningful
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exploring and analyzing classification results, that was out of the scope of this
work.
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