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Summary

Recent advances in deep learning models have been largely attributed to the quantity and
diversity of data gathered in recent years. Data augmentation is a strategy that enables
practitioners to significantly increase the diversity of data available for training models,
without actually collecting new data. Data augmentation techniques such as cropping,
padding, and horizontal flipping are commonly used to train large neural networks for
image analysis, and in more recent years adaptive techniques, such as GAN-based or
Model-based approaches, have been proposed to increase the effectiveness of data aug-
mentation strategies.

Different data augmentation strategies are likely to perform differently depending on
the type of input and visual task. For this reason, it is conceivable that medical imaging
may require specific augmentation strategies that produce plausible data samples and al-
low effective regularization of deep learning model.

Data augmentation may also be used to enhance specific classes that are underrepre-
sented in the training set, e.g., to generate artificial lesion samples. The goal of this thesis
is to do an extensive systematic literature review in order to answer the following research
questions: (i) which study designs are used to evaluate the effect of data augmentation,
(ii) what types of data augmentation are used in the medical domain, (iii) what are their
effects on the performance of deep learning-based methods for medical image analysis,
(iv) what types of data augmentation are not adopted in the medical domain?

To answer these research questions, 273 papers published in reputable venues have
been retrieved and analyzed to highlight trends in recent literature.

The key findings of the systematic literature review have been complemented by prac-
tical experiments on a chest x-ray data set, particularly to explore lesser-used data aug-
mentation techniques in the literature.
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Chapter 1

Introduction

1.1 Deep Learning in Medical Domain

Deep Learning is a subfield of machine learning concerned with algorithms inspired by the
structure and function of the brain, called artificial neural networks. It has established the
state-of-the-art in many areas of computer vision and pattern recognition including med-
ical imaging and medical image analysis. In order to successfully build well-generalized
deep models, we need a large data set to avoid overfitting of such large-capacity learners.
It has become a significant obstacle which makes deep neural networks quite challenging
to apply in the medical image analysis field where acquiring high-quality ground-truth
data requires time, money and human resources.

Moreover, the majority of manually annotated data sets are imbalanced, with some spe-
cific classes that are often underrepresented. To mitigate the problem of limited medical
training sets, data augmentation techniques, which generate synthetic training examples,
are being actively developed in the literature.

Nowadays, there are so many data augmentation techniques and strategies that is not
trivial anymore to understand which is the best choice to reach the best results. Another
important aspect to evaluate is the medical consistency, because every synthetic training
example has to respect the human anatomy to not fall in a wrong evaluation that could
be dangerous for the patients.

1.2 Data Augmentation

Data augmentation is a strategy that enables practitioners to significantly increase the
diversity and the size of data available for training models, without actually collecting
new data, using different image manipulation technique techniques or creating new ones
that employ other models. By way of illustration, some techniques are showed in Figure
1.1.

13



Introduction

Data augmentation can be performed both during the training phase, in order to re-
duce the class imbalance, reduce the overfitting or reduce the data-set bias, both during
the testing phase in order to increase the accuracy or to measure the uncertainty of the
model. In addition, data augmentation can generate new images from the original data
set or can generate new images from scratch using machine learning.

Another important property of data augmentation is that it promotes learning invari-
ance to transformations that should not affect the outcome. Data augmentation provides
a way to exploit invariance without designing the architecture in order to be equivariant
or invariant [23].

Therefore, Data Augmentation can improve the performance of their models and ex-
pand limited datasets to take advantage of the capabilities of big data.

Original Image

De-colorized

Edge Enhanced

Salient Edge Map

Flip/Rotate

Figure 1.1. Different Data Augmentation techniques (Image credit: [5])
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1.3 — Systematic Literature Review’s motivation

1.3 Systematic Literature Review’s motivation

Different data augmentation strategies are likely to perform differently depending on the
type of input, visual task and research field. In the literature there are so many reviews
and surveys that analyze different data augmentation techniques in the most disparate
fields, such as [117] which present existing methods for data augmentation, promising
developments, and meta-level decisions for implementing data augmentation across the
entire image domain.

There are also studies that analyze only narrow and too specific medical fields, for
example [83] which highlights the most promising research directions to follow in order to
synthesize high-quality artificial brain-tumor examples which can boost the generalization
abilities of deep models.

It is conceivable that medical imaging may require specific augmentation strategies
that produce plausible data samples and allow effective regularization of deep learning
models, since the biases distancing the training data from the testing data are generally
more complex.

Thus, there are no studies that provide a general overview of the application of data
augmentation for medical imaging analysis . For this reason, I have decided to write this
systematic literature review.

In this systematic literature review, I explore the data augmentation world for med-
ical image analysis to identify, analyze, and summarize the best techniques, strategies
and ideas to apply in the different medical tasks, such as classification, detection and
segmentation, for each pathology, organ or data modality.

15
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Chapter 2

Data augmentation techniques

2.1 Data Augmentation Taxonomy

Since there are different data augmentation techniques, we proposed the following taxon-
omy, which is adapted from [117] to account for methodologies that are uniquely tailored to
the medical imaging domain. At the upper level, the two main groups are transformation
of original data and generation of artificial data. Subsequently, in the second level, the
first group is divided into affine, erasing, elastic and pizel-level transformations and the
second group is divided into GAN-based, feature mizing, model-based and reconstruction-
based transformations.

The complete taxonomy is shown in Figure 2.1 and each group and transformation is
described in the next sections.

2.2 Transformation of original data

The transformations belonging to this group perform image manipulation on the original
data set. The affine transformations like cropping, flipping, or translation are the easiest,
simplest and most popular types of data augmentation transformations, there are several
libraries that allow you to perform them by writing a few lines of code, including the
famous TensorFlow and Keras. For these reasons, it is also tried out in the majority of
the papers, both for finding new combinations of data augmentation and for comparison
with new generation of artificial data-based method.

Other transformations belonging to this group are pixel-level, erasing and elastic tech-
niques. They could be more complex to implement with respect to the affine, but they
offer a wider customization spectrum of action for different medical applications.

Get into the details, the different transformations of this group differ as follows:

17
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Data Augmentation

[—@sformaﬁon of original data J»@neraﬁon of artificial d@

A A

A A

Affine Erasing Elastic Pixel-level Generative Feature Model-based| | Reconstruction-
Network Mixing method based method
) ) l l  Adversarial Networks * Mixup
* Flip and Rotation  Shape Variations « NO-Adversarial * Mixmatch
* Translation ) * Random Erasing pe Networks « Cutmix
¢ Scaling and Cropping Dropout * Mapping
« Shearing (e.g.diffeomorphism)

» Modify pixel level intensity (gradients or
saturation)

« Shifting and scaling pixel-level intensity

» Gamma corrections and similar

« Sharpening, Blurring, ect.

Figure 2.1. Data augmentation taxonomy

2.2.1 Affine transformation

Affine transformations refer to a class of geometrical transformations which preserve lines
and parallelism, but not necessarily distances and angles. [ref: https://mathworld.
wolfram.com/AffineTransformation.html]

This kind of preservation is possible because the transformations take place respecting
one or more axes of symmetry within the image. The transformation along an axis is
typically expressed through a matrix that contains the coordinates along the abscissa and
ordinates or the angles of rotation.

Note that, in the medical domain, there are 2-dimensional or 3-dimensional images. For
example, the mathematical 2-dimensional transformations are the following:

o Translation: a function that moves every point with a constant distance in a spec-
ified direction. In the transformation matrix, ¢, specifies the shift along the z axis
and t, specifies the shift along the y axis.

1 0 0
0 1 0
ty t, 1


https://mathworld.wolfram.com/AffineTransformation.html
https://mathworld.wolfram.com/AffineTransformation.html

2.2 — Transformation of original data

« Rotation and Flipping: circular transformation around a point or an axis. The
value ¢ in the transformation matrix specifies the angle of rotation in the range
[1°,359°]. Note that when apply a rotation with ¢ = 90° or with ¢ = 180° this
technique is known as flipping, respectively horizontal flipping and vertical flipping.

cos(q) sin(q) 0
-sin(q) cos(q) 0
0 0 1

o Scaling: a linear transformation that enlarges or shrinks the image by a scale factor
which is the same in all directions. In the transformation matrix, s, specifies the
scale factor along the z axis and s, specifies the scale factor along the y axis.

s, 0 0
0 s, O
0 0 1

It is important to note that since the transformations are defined by matrices, it is
possible to combine the matrices to obtain combined affine transformations.
Example of this kind of transformations are showed in Figure 2.2.

() (b) (c) (d)

Figure 2.2. Example of affine transformations applied to a brain magnetic res-
onance image. Respectively: (a) original image (b) vertical flipping (c) scaling
(d) horizontal flipping

2.2.2 FErasing transformation

FErasing transformation selects a region in an image and erases its pixels by substituting
their intensity with other values. Generally, the region erased is a rectangle or a circle
and it is chosen randomly to better generalize the training. The erasing values could be
expressed with a single value of the gray scale or with a tuple of length 3, that is used to
erase R, G, B channels respectively, or with random values.

This type of transformation could seem very counterintuitive for data augmentation, but
in a certain task, such as face recognition, it is very helpful because the model is forced to
not create simplified detection patterns.

Example of erasing transformation is showed in Figure 2.3.
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() (d)

Figure 2.3. Example of random erasing transformation applied to chest x-ray image from
CheXpert [53]. Respectively: (a) original image (b) white erasing value (c¢) black erasing
value (d) random erasing value

2.2.3 Elastic transformation

Elastic transformations distort the image applying shape variations or some type of map-
ping. They can bring lots of noise and damage into the training set if the deformation field
is seriously varied, because as opposed to affine transformations, there is no preservation
of col-linearity or ratio of distances. For this reason, it is important to distort the images
with appropriate values to not de-contextualize the subject.

To perform this augmentation, it has to apply a diffeomorphism. A diffeomorphism is a
map between manifolds which is differentiable and has a differentiable inverse [83].

Mathematically, the diffeomorphism ¢ (also referred to as a diffeomorphic mapping) is
given in the spatial domain € of a source image I, and transforms I to the target image

J:1TU ¢ (z,1)
The mapping is the solution of the differential equation:

WL — o(¢(x,1), 1)

20



2.3 — Generation of artificial data

where ¢(z,0) = , v is a time-dependent smooth velocity field, v : Q x t — R%, ¢(z,1)
is a geodesic path(d denotes the dimensionality of the spatial domain ), and ¢(x,t) :
Q x t — Q. In practice, a grid is created on an image mapped on each pixel, then this
grid is distorted through various deformations, finally each pixel is re-positioned on the
new grid following the old mapping in order to generate the elastically deformed image.
This type of transformation can also help to reconstruct nonoptimal situations typical
of the medical domain. For example, considering the fact that when medical researchers
capture medical images from patients, movements like breathing may lead to image de-
formation, the use of image deformation could help to resolve this problem, just like in

[137] or [105).

Example of elastic transformation is shown in Figure 2.4.

Figure 2.4. Example of elastic transformation applied to a mammography.
A Gaussian filter is applied after the distortion. (Image credit: [17])

2.2.4 Pixel-level transformation

Pixel-level transformations change the pixel values in order to modify pixel-level intensity,
gamma correction, blurring, etc. There are several ways of changing pixel-level to have
different results, such as increasing or decreasing the brightness, contrast, or saturation
of an image. In the medical domain, in most cases, we work with gray scale images, so it
is quite useless to perform a color normalization. Due to this abundance of options, it is
common to apply a combination of pixel-level transformation according to the final task
of the model.

Example of pixel-level transformations are showed in Figure 2.5.

2.3 Generation of artificial data

The transformations belonging to this group create new synthetic images using deep learn-
ing methods or other pattern-based methods. The implementation of these methods is

21
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(d) (e) (f)

Figure 2.5. Example of pixel-level transformations applied to a chest x-ray image.
Respectively: (a) original image (b) brightness (c¢) contrast (d) blur (e) light gamma
correction (f) dark gamma correction

computationally heavier and not trivial with respect to the first group but the possibilities
of approach are wider and richer in terms of developing new strategies.

2.3.1 Generative Networks

Generative Networks are a fast-growing area in deep neural networks that can be used
to generate realistic images, speech, prose, and more. They can be adversarial or not
adversarial with respect to presence or not of the model discriminator.

The most widespread are the Generative Adversarial Networks (GANs), introduced by
[41]. The architecture of GANS, illustrated in Figure 2.6, is composed by two networks:

22



2.3 — Generation of artificial data

o Generator: creates a new image that tries to trick the discriminator into believing
the fake data is authentic;

e Discriminator: evaluates samples passed from the generator and attempts to dis-
cern if the image belongs to the training dataset, meaning it’s authentic, or if it was
generated, meaning it’s fake.

When used for image generation, the generator is typically a deconvolutional neural net-
work, and the discriminator is a convolutional neural network.

Thus, the two neural networks contest with each other in a game (in the form of a zero-sum
game, where one net’s gain is another net’s loss).

Realworld —— sample ™~
ima
e ‘-\\ Real
\\
;}b Discriminator = E
(]
/
!
Y / Fake
L) A
\J Generator [ Sample L
Y
'\__,'

Figure 2.6. Generative Adversarial Network architecture
(Image credit: https://becominghuman.ai/)

The mode of operation is quite simple: the generator creates a fake sample, which is
fed into the discriminator alongside a real sample taken from the real training dataset.
At this point, the discriminator returns a prediction with a probability from [0, 1] where
0 indicates the fake one and 1 indicates the authentic one.

Examples of synthetic images generated by GAN are shown in Figure 2.7.

There are so many improvements and changes to the GAN architecture based on own
goals and tasks, starting from the the architecture of generator and discriminator to the
different kind of losses. Examples of this type are:

« Conditional GAN [79]: it is a generative adversarial network whose generator and
discriminator are conditioned during training by using some additional information.
This auxiliary information could be, in theory, anything, such as a class label, a
set of tags, or even a written description. In a Conditional GAN, the discriminator
does not learn to identify which class is which. It learns only to accept real, match-
ing pairs while rejecting pairs that are mismatched and pairs in which the example
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original

tumor mirrored

tumor on normal  tumor 16% smaller  tumor 16% larger

Figure 2.7. Example of GAN generated images. The first row depicts the real images
on which the synthetic tumors were based. Generated images without adjustment of the
segmentation label are shown in the second row. Examples of generated images with
various adjustments to the tumor segmentation label are shown in the third through fifth
rows. The last row depicts examples of synthetic images where a tumor label is placed
on a tumor-free brain label from the ADNI data set. (Image credit: [116])

is fake. Thus, Conditional GAN can generate artificial samples of a specific cate-
gory to improve the accuracy of the deep learning classifier when the sample size is
insufficient.

o CycleGAN [148]: it is one of the most powerful and complex GAN architectures.
It is fundamentally hallucinating part of the content it creates. Its outputs are
predictions of "what might it look like if" and the predictions, thought plausible,
may largely differ from the ground truth. CycleGAN should only be used with great
care and calibration in domains where critical decisions are to be taken based on
its output. This is especially true in medical applications, such as translating MRI
to CT data. Indeed, CycleGAN has been widely used for cross-domain medical
image synthesis tasks particularly due to its ability to deal with unpaired data.
(https://junyanz.github.io/CycleGAN/)

A more complete in-depth analysis regarding the various GAN data augmentation
techniques and architectures is given by [93] in their review.
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2.3 — Generation of artificial data

2.3.2 Feature mixing method

Feature mixing method combines 2 or more images from the original dataset to create a
new one. Mixing images together by averaging their pixel values or cut and paste some
part of one image in another are very counter-intuitive approaches because the images
produced by doing this will not look like a useful transformation to a human observer
[117]. They are very useful for generalizing deep learning models, especially when we are
not sure about selecting a set of augmentation transforms for a given dataset, medical
imaging datasets, for example. Feature mixing can be extended to a variety of data
modalities such as computer vision, natural-language processing, speech, and so on.

One of the most used feature mixing method is called mix-up. This data augmentation
technique can be mathematically expressed with the following formulas:

T = Ar; + (1 — Nz, , where z; and xz; are raw input vectors
y=Ay; + (1 — Ny, , where y; and y; are one-hot label encodings

Note that the lambda values are values with the [0,1] range and are sampled from the
Beta distribution. (https://keras.io/examples/vision/mixup/)

Examples of mix-up data augmentation are shown in Figure 2.8.

Figure 2.8. Example of mix-up generated images. In the first row there original
chest x-rays, in the bottom left there is the result of mix-up augmentation and in
the bottom right the corresponding mask.

(Image credit: [112])
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2.3.3 Model-based methods

Under the umbrella of model-based methods, we group a variety of techniques that are
based on physically or biologically inspired models to generate new images or modify-
ing existing ones. These transformations are sometimes implemented using deep learning
techniques (not necessarily generative models) or traditional image processing techniques,
such as shape modelling/deformation or image blending.

Since medical datasets are often very skewed towards normal cases, the most common
model-based techniques involve the synthesis and injection of artificial lesions in otherwise
healthy subjects. This methods has been applied to simulate multiple sclerosis lesions in
brain MR images [108] or to add cancer signs to breast mammography images [18]. An
example of such model-based data augmentation is shown in Figure 2.9.

Synthetic MS lesions on healthy

Healthy Original T1l-w FLAIR Lesion Mask

T1l-w FLAIR

Linear

Nonlinear

Tl-w

Clinical MS dataset
Linear

Nonlinear

Figure 2.9. Example of model-based method: synthetic multiple sclerosis lesions
generated on a healthy subject. Slices are also displayed using jet color maps to
visually enhance the intensities

(Image credit: [108])

Another class of model-based techniques is concerned with the simulation of physio-
logical time progression, such as reproducing the effect of aging on organs, or simulating
disease progression and regression [73].

Finally, some model-based techniques exploit prior knowledge about the human anatomy
and/or the image formation process to generate plausible variants of existing images, or
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simulate common acquisition artifacts to increase the robustness of image analysis algo-
rithms. For instance, in [123] statistical shape models are created for different organs
(e.g., prostate and liver); then, the shape models are deformed and, after obtaining the
new shape, a realistic texture is generated via image warping and interpolation. This
allows to generate random variations representative of inter-subject variability. Unlike
GAN-based techniques, these techniques typically require minimal or no training, and
directly incorporate anatomical constraints on the generated images; however, they only
be applied to specific organs for which mathematical models are available.

2.3.4 Reconstruction-based method

Three-dimensional medical imaging modalities are reconstructed using a mathematical
process that transforms the raw data collected by the image scanner into a (usually three-
dimensional volume) that can be viewed by the radiologist. For instance, image recon-
struction in CT involves generating tomographic images from X-ray projections acquired
at many different angles.

The reconstruction algorithms and its settings influence the signal-to-noise ratio, res-
olution, presence of artifacts, and general quality of the reconstructed images. While the
majority of data augmentation techniques operate directly on the reconstructed images, a
few techniques have been proposed that operate directly on the raw data space, and then
reconstruct the distorted images.

= ik E' ] "k = g
(a) Good quality image (b) Motion artefact image  (c) Synthetic image

Figure 2.10. Example of reconstruction-based method: a good quality cine CMR,
image (a), an image with blurring motion artefacts (b), and a k-space corrupted
image (c¢). The k-space corruption process is able to simulate realistic motion-
related artefacts (Image credit: [89])

For instance, in [89] realistic motion artifacts are simulated by corrupting the raw
data using Gaussian blurring, and then a segmentation network is trained on increasingly
distorted data. These techniques may be relatively complex to apply, as they require
access to the raw data acquired by the scanner (often not available in a clinical setting),
and implementing the entire reconstruction algorithm.
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Data augmentation techniques

A related set of techniques involve simulating 2D images (e.g., X-rays) from 3D vol-
umes (e.g, CT scans), in order to simulate different acquisition angles and views [15].

A visual example of model-based data augmentation is shown in Figure 2.10.

2.4 Learnable data augmentation

Learnable augmentation is a new and very active subfield of deep learning research that
has the goal of reducing the human labor inherent in selecting, designing, and validating
data augmentation [68].

This type of approach proposes techniques that overlap the data augmentation tech-
niques shown in the taxonomy of Figure 2.1, but it automates the choice for the best data
augmentation technique to use. They are the following:

e Learning to Augment Data With a Neural Network: this augmentation uses
2 types of networks: the first learns the desired task (Network B) and second learns
to perform the augmentation for the network that learns the desired task (Network
A, ie. the augmenters). Network A takes two or more randomly selected images
as an input and learns to utilize the information in them to generate a single third
image with information from a target classifier and a random target image [69].

e Augmentation Policy Learning: this approach, also called autoaugment, take a
list of known augmentation policies for a specific dataset (such as affine, pixel-level,
etc.), and use a machine learning technique to automatically learn policies that result
in a better model [27].

o Evolutionary Image Augmentation: it uses automatic construction of tree-
structural image transformation is used to create augmented images that are shown
to improve the results on various two-class problems [35].

« Approaches Based on Classic Statistical Models: in this idea, augmentations
are a type of deformation. A parametric model is used for generating transformations
of input images. After the model has been trained to generate images similar to those
in the dataset, generated images are sampled randomly from the parametric model,
allowing for a large number of realistic transformations [48].

o Approaches Based on GANs: GANs learn the distribution of the training set
by competing against a discriminator and this competitive process alone determines
the type of data augmentation that the GAN generates [58].
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2.5 Training-Time & Test-Time Data Augmentation

In addition to using different data augmentation techniques, you can choose when to
use these techniques. In particular, it is possible perform data augmentation during the
training phase or during the test phase:

o Training-time data augmentation: it is the classic method, where the dataset
size increases to better generalize model learning. Most of the time this approach is
chosen.

o Test-time data augmentation: it can be seen as analogous to ensemble learning
techniques in the data space. This method takes a test image and augments it in the
same way as the training image. This comes at a computational cost depending on
the augmentations performed, and it can restrict the speed of the model. After the
augmentation, the final result is chosen performing a majority vote on the various
transformations applied to the test image. This could be a very costly bottleneck
in models that require real-time prediction, but it could bring more robust results
[117].

Despite test-time augmentation limitations, it is a promising practice for applications
such as medical image diagnosis, because its impact is a useful mechanism for measuring
the robustness of a classifier, limiting the number of classification error, and in particular
the number of false positives/negatives.
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Chapter 3

Systematic Literature Review:
Methods

3.1 Research questions

I performed this review according to the PRISMA guidelines (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses, prisma-statement.org). This method guar-
antees that the outcome of the review is verifiable and repeatable by other researches.
The protocol (which is graphically illustrated in Figure 3.1), was jointly developed by the
authors.

The purpose of this systematic literature review is to identify, analyze, and summarize
the studies that use data augmentation techniques in medical domain in order to compare
current applications of data augmentation in the medical domain, understand its potential
impact on the performance of deep learning models and identify current gaps in knowl-
edge, also by comparing with the corresponding literature in the non-medical domain.
For these reasons, we defined the following research questions:

RQ1: What are the most common study designs to present and assess data
augmentation methods in the medical domain? Are there studies comparing the effect of
different data augmentation models on downstream tasks?

RQ2: What types of data augmentation are used in the medical domain?

RQ3: What are their effects on the performance of deep learning-based methods for
medical image analysis?

RQ4: Which data augmentation methods have not been explored in the medical
domain?
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Systematic Literature Review: Methods

Research identification

Primary studies selection

Data extraction

Data synthesis

Figure 3.1. Systematic Literature Review Protocol

3.2 Search strings and Study selection

We selected four scientific digital libraries that contain primary studies related to the field
of computer science, medical imaging and biomedical engineering. Other more general
sources, like Google Scholar, were not included because they usually index studies already
available in the primary sources. The search strings for each scientific digital library are
shown in Table 3.1. Note that for each search, the studies are filtered by date: we consider
only studies published between January 2018 and June 2021, which mostly represent the
state of the art, since this is a rapid evolution research field.

The selection process was divided in different stages. First, I defined inclusion and ex-
clusion criteria related to the language, time window, type of study, modality, context, and
task. I select only English primary studies from 2018 to 2021, including both proceedings
and journal papers, but excluded preprints. I also excluded dermatology, ophthalmology
and histopathology papers (in general, I excluded any article that not uses x-ray (XR),
magnetic resonance (MR), computed tomography (CT), positron emission tomography
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3.2 — Search strings and Study selection

Digital Library Search string
ACM Digital Library [All: "data augmentation'] AND [All: "medical imaging"]
IEL-IEEE ("Abstract":Data Augmentation) AND ("Abstract":Medical Imaging)
PubMed ("data augmentation") AND ('imaging")
Science Direct Title, abstract, keywords: ("Data Augmentation") AND ("Medical")

Table 3.1. Digital libraries with respective URL and search string.

(PET) and ultrasound scan (US) as dataset). I excluded studies that not use data aug-
mentation or of which the full text is unavailable. The only downstream tasks allowed
are classification, detection and segmentation. Moreover, I selected only selected papers
that use deep learning models to perform their downstream tasks, excluding any other
machine learning techniques that are not artificial neural network-based. This exclusion is
necessary to ensure some homogeneity in the studies included in the Systematic Literature
Review.

Inclusion and exclusion criteria are summarized in Table 3.2. Then, we checked the titles
and the authors in order to discover possible duplicates. Furthermore, I apply the crite-
ria only to the title and the abstract of each paper to perform a first preliminary exclusion.

Lastly, we read all the remaining papers applying the criteria to the full text. At the
end of this stage, we perform the last round of exclusions obtaining the final set of paper
that will be involved in the Systematic Literature Review.

Inclusion criteria Exclusion criteria

Language English Any other languages

Time window from 2018 to 2021 Published before 2018

Study Original research Review, Survey, Commentaries, Opin-
ion paper, Abstract

Data Augmentation Used Not used

Full text Available Unavailable

Modality CT, XR, MR, PET, US  Dermatology, Ophthalmology,
Histopathology

Context Deep Learning Any other type of machine learning

Downstream task Classification, Detec- Any other tasks

tion, Segmentation

Table 3.2. Inclusion and exclusion criteria.

For each paper, the exclusion criterion was recorded and classified as follows:

e No D.A.: papers discarded because they do not use existing data augmentation
methods,

e Out of Scope: papers discarded because they are out of modalities, tasks or type
o study,
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Systematic Literature Review: Methods

e No Medical Domain: papers discarded because they are out of medical domain,

o Missing text: papers discarded because their full text is unavailable

3.3 Data extraction

After the selection process, the last step is to extract the data that are of interest to us for
the purposes of Systematic Literature Review. To give an answer to the first research
question, it is necessary to define a classification for the analyzed papers. Thus, we
defined the following categories (N.B. a paper can belong to more than one category):

o Type 1: papers that use existing data augmentation methods in the pipeline but
do not assess their impact on the performance on the downstream task

o Type 2: papers that propose new data augmentation methods tailored to the med-
ical imaging domain, but do not necessarily validate its impact on the performance
of downstream tasks

o Type 3: papers that compare performance obtained on one or more downstream
tasks with and without applying data augmentation

o Type 4: papers that compare performance obtained on one or more downstream
tasks with different data augmentation techniques

Since a paper can belong to more than one category, we have assigned it the type with
the largest number as it extends the useful features of the papers underneath it.

Subsequently, to answer to the second research question I only consider the type
2, type 3 and type 4 papers, instead to answer to the third research question, I only
consider the type 3 and type 4 papers. However, to answer both research questions, I
extracted and grouped the information in order to analyze and comment the values in the
next chapter. In particular, the columns extracted with relative description and possible
values, are summarized in Table 3.3.
The value "-" as possible value indicates that the column can assume any string value.
Lastly, note that the columns marked with (*) are the ones automatically extracted using
the reference management software Zotero (https://www.zotero.org/), on the con-
trary, the remaining columns have been extracted manually after the full text reading by
me, and verified and validated by the professor L. Morra.

N.B. In the table, (1) indicates the exclusion reason before the full text review, instead,
(2) indicates the exclusion reason after the full text review. Besides, D.A. Objective
column values could be Balance Dataset if the data augmentation strategy is applied in a
targeted way to fix the class imbalance, or could be Random if the only purpose of data
augmentation is to increase the size of dataset randomly.
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3.4 — Data synthesis

3.4 Data synthesis

The extracted data are used to generate bar plots, tables, box plots, and scatter plots to
clearly analyze the distribution of the extracted values.

Bar-plots help to visualize the distribution of type of paper, type of data augmenta-
tion technique, modalities, organs and and their possible correlations. They are generated
using matplotlib python library.

Tables help to organize data in order to calculate simple statistics, such as percentage
increments obtained from the several data augmentations. They are generated in the
following way:

1. The articles will be grouped into 5 groups according to the organ studied: brain,
lung, heart, breast and others, which contains different less studied organs.

2. Subsequently, they are sub-grouped by task
3. Lastly, they are sub-grouped by pathology

4. They are compared using homogeneous performance metrics (i.e., as similar as pos-
sible) wherever possible. Where more metrics were available, more robust metrics
such as Area under the ROC Curve and Dice Score were prioritized.

Box plots show the percentile distribution of the statistics calculated in the tables,
following different comparisons. In particular, comparisons will be made on DA versus
w/o DA results for each tabulated organ and only affine versus no-only-affine transfor-
mations. They are generated using seaborn python library.

Scatter plot shows, using Cartesian coordinates, the relative performance increase
values (on the ordinate axis) as a function of the original training set size(on the abscissa
axis). In addition, each different data augmentation is indicated with a different marker
and color. It is generated using seaborn python library.

Lastly, analyzing the data extracted or calculated in the previous sections and qual-

itative comparing them with the distributions of the most used of data augmentation
techniques in the literature, I will be able to answer to the fourth research question.
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3.4 — Data synthesis
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Chapter 4

Systematic Literature Review:
Results

4.1 Study selection result

The selection process was performed during July 2021. The preliminary set initially con-
tained 484 papers. We checked their titles and authors in order to discover possible
duplicates: after having removed 30 duplicated results, the preliminary set was reduced
to 454 papers.

We first applied the inclusion and exclusion criteria [Table 3.2] only to title and ab-
stract, obtaining a list of 266 papers. In particular, we discarded 32 studies that not
belong to the medical domain, 22 studies that are reviews or surveys, 42 studies that do
not use data augmentation, and 92 studies classified as Out of Scope.

This last grouping includes studies with different tasks, modalities or context with respect
to the inclusion criteria.

We also added 7 papers from records identified through other sources (e.g., studies that
were already known to the authors or cited by the retrieved papers). Then, we analyzed
all the 273 papers in detail. At the end of the process, we discarded 67 papers and we

finally selected 206 papers as part of this literature review.

The control flow diagram of the selection process is shown in Figure 4.1.
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Systematic Literature Review: Results

Defined inclusion/exclusion criteria
and research queries

484 Records identified through
database search:

ACM: n = (89)
IEEE: n = (140)
PubMed: n = (175)
Science Direct: n = (80)

( 30 duplicated ><—

(added through other sou@q

273 potentially relevant articles for
full-text review

206 articles included in the Systematic
Literature Review

Figure 4.1.

40

188 titles or abstact excluded:
No medical domain: n = (32)
Review or Survey: n = (22)
Out of scope: n = (92)

No data augmentation: n = (42)

67 excluded after full text review:

No medical domain: n = (1)
Review or Survey: n = (2)
Out of scope: n = (50)

No data augmentation: n = (7)
Missing full text: n = (7)

Systematic Literature Review Control Flow Diagram



4.2 - RQ1 & RQ2: Types of Data Augmentation

4.2 RQ1 & RQ2: Types of Data Augmentation

Fach paper has been assigned to a category according to the methods described in the
Section 3.3. The distribution is shown in Figure 4.2.

It is immediate to note that more than half of the papers, about 62% (128/206), do a
comparison among different methods, instead only 10% (22/206) propose a new method
without evaluating their impact on one or more downstream tasks.

80

70

60

50 A

40

30 1

20 A

101

Type 1 Type 2 Type 3 Type 4

Figure 4.2. Number of papers for each type

140 4
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60 -

40 A
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Aff'ine EIa;tic Pixely-level G(A)N FiVI Reconsytruction Moael
Figure 4.3. Number of papers for each class of D.A. transformation used.

Note that a single paper can uses more than one D.A. technique. In this case, every D.A.
technique implemented is considered.
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Systematic Literature Review: Results

Figure 4.3 represent the distribution of papers for each D.A. transformation, Figure
4.4 represent the distribution of papers for each modality and Figure 4.5 represent the
distribution of papers for each organ.

PET us Other

Figure 4.4. Number of papers for each modality

50 A

40 1

Heart Lung Brain Breast Prostate Liver Other

Figure 4.5. Number of papers for each organ

Looking at the histogram in Figure 4.3 it is easy to answer to the second research
question. The most used type of data augmentation are affine transformations, used in
49.6% (139/280) of papers. This result was really expected, because the type of data
augmentation is very easy to implement.

To follow, we have GAN-based and pixel-level transformations with both above 20.3%
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4.2 - RQ1 & RQ2: Types of Data Augmentation

(57/280) and 16.4% (46/280), respectively. I think that probably the latter technique is
particularly quite widespread because it allows to be more robust to different vendors and
acquisition protocols.

Model-based methods and elastic transformation are used in 11% of the papers (14,/280
and 17/280 respectively) and the remaining methods are around 2.5% (7/280), which indi-
cates that reconstruction-based method, used in [89] which implements Gaussian blurring
corrupted data augmentation and [15] which creates X-ray images from the testing CT
data set, and feature mizing transformation, used in [11] [74] [87] [120] [147] which use
different mix-up techniques, still needs to be further investigated in the medical domain
image analysis.

In Figure 4.4, we can see that CT, MR, and XR are the most used (and probably
the most common) modalities. Particularly, under the Other category, there are 3 dif-
ferent modalities: Coronary Angioscopy (CAS) [80], Myocardial perfusion imaging (MPI)
[10], Digital breast tomosynthesis (DBT) [145]. Besides, there are 3 papers that use a
cross-modality approach: MR as the source and CT as the target [110]; CT as source and
MR as target [20]; modality manipulation from CT to MR and the other way around [32].
Due to data privacy concerns and unavailability of medical annotators and due to diffi-
cult to obtain a lot of labeled medical images, cross-modality data augmentation could
mitigate the data deficiency issue in the medical imaging domain.

Heart
Lung
Brain
Breast
Prostate
Liver

Jny

im an .

Affine Elastic Pixel-level G(A)N FM Reconstruction Model
D.A. type used

Figure 4.6. Number of different data augmentation techniques for each organ

In Figure 4.5, it is immediate to see that the most studied organs are lung and brain
with 53 and 50 papers respectively. Note that other indicates different organs studied
in less than 10 papers, which include the musculoskeletal system (arm, calcaneus, knee,
hand, humerus, hip, maxillary, neck, pelvis, skull, shoulder, spine), the abdomen (colon,
kidney, lymph node, pancreas, stomach) and espohagus, pituitary membrane, rectum,
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teeth, thyroid and urinary conduct.

Moreover, we plot multiple bar plots in order to understand if there exists a type of

correlation between D.A. technique used and (i) organ, (ii) modality, (iii) type of paper,
(iv) downstream task.
Taking into consideration the Figure 4.6, it is immediate to note that affine transforma-
tion in the technique most used for all the different organs. Then, looking at Figure 4.7,
we notice that CT and MR are the most used modalities predictable as they are the most
widespread.

Lastly, in Figure 4.9, except for affine transformations, the majority of papers do
comparison between no data augmentation results and different techniques of data aug-
mentation.

30 cT
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40
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Modalities
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Affine Elastic Pixel-level G(A)N FM Reconstruction Model
D.A. type used

Figure 4.7. Number of different modality for each data augmentation technique

The type 1 papers were not included in the following research questions, because they
neither experiment new data augmentation methods nor do any comparison with other
results. In most cases, the type 1 papers include very standard and simple affine data
augmentation techniques, like flip and rotation, and thus they provide limited information.

This particular result may be a side-effect of our selection process, which sought to
highlight novel data augmentation strategies emerging in the literature. The results,
however, are consistent with a previous study by Nalepa and colleagues, who analyzed
data augmentation strategies employed in the BraTS challenge [84].
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Figure 4.8. Number of different data augmentation techniques for each type of paper
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Figure 4.9. Number of different data augmentation techniques for each task
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4.3 RQ3: Effect of Data Augmentation on Perfor-
mance

To evaluate the effect of the various data augmentation strategies we have to select only
papers that make comparison with/without other data augmentation strategies. For this
reason, in this section we will only consider type 3 and type 4 papers.

A total of 128 papers was included in this analysis. The approach to the table analysis
is described in Section 3.4.

The comparisons between the different studies are organized in tables, which report
the paper modality, pathology, the type of D.A. studied (and the baseline D.A. method
for the type 4 papers), the metrics used for the evaluation and the results w/w.o. data
augmentation. Notice that results w/w.o. data augmentation are not available for all
papers.

Moreover, the last 2 columns indicates the difference (in percentage with respect to the
baseline) between the proposed D.A. and the relative NO D.A. result or other D.A. result.
The use of relative differences allows us to compare studies based on different metrics.
The papers in which it was not possible to extract these data were excluded from the
quantitative analysis. A total of 9 papers were excluded from the tables for this reason.

We report the results separately for papers that include experiments on different or-
gans or tasks, hence the total number of records is 131, out of 119 papers.

The following abbreviations have been used and the results are discussed in the fol-
lowing section:

e S - Segmentation e BIF - Bifurcation
e C - Classification e PNE - Pneumothorax
e D - Detection + NOD - Nodule

e OSD - One Stage Detector + COV.- COVID-19

¢ TUB - Tubercolosis
e H - Healthy

e« POL - Polyp
¢ CAN - Cancer

¢ NMD - Neuromuscolar Diseases
e L - Lesion

e OS - Osteoporosis

e MS - Multiple Sclerosis
¢ FRC - Fractures

e ALZ - Alzheimer e URS - Urinary Stones

e HAND - Hand Injuries and Disorders « CY - Cyst
e PAR - Parkinson e AF - Affine
e ACS - Acute Coronary Sindrome e M-AF - Mix Affine
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S-AF - Single Affine

GAN - Generative Adversial Network

PGAN - custom GAN

GN - Generative Network
wGAN - Wasserstein GAN
iGAN - Info GAN

EL - Elastic

PX - Pixel-level

FM - Feature Mixing

MOD - Model-based

REC - Reconstruction-based
ER - Erasing

(*) - Test Time Augmentation
MR - Magnetic Resonance
CT - Computed Tomography
XR - X-Ray scan

MG - Mammography
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US - Ultrasound scan

CAS - Coronary Angioscopy

DICE - DICE Score

CPM - Competition Performing Metric
F1 - F1 Score

ACC - Accuracy

SNS - Sensitivity

PSNR - Peak Signal-to-Noise Ratio
AUC - Area under the ROC Curve
SP - Specificity

FPI - False Per Image

TPR - True Positive Rate

PACC - Pixel Accuracy

FROC - Free-Response Receiver Operating
Characteristic

MD - Mean Distance (mm)
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4.4 Brain

Neuroimaging is used to directly or indirectly assess the structure and function of the
nervous system, primarily with computed tomography (CT), magnetic resonance imaging
(MR), and positron emission tomography (PET).

The main pathologies analyzed in the various studies are Alzheimer’s disease, Multiple
Sclerosis, Parkinson’s disease and brain tumor.

In Table 4.1 there are 31 records, of which 10 studies perform classification tasks, 1
performs a detection task and 20 perform segmentation task. Classification is useful in
determining the stage of progress in brain disease, like for example [149] for glioma grad-
ing, instead the segmentation helps to determine a healthy brain model with respect to
a sick brain model, like in [121]. Lastly, detection task is not very used in this research
field.

Every data augmentation technique used in these studies improves performance with re-
spect to the w/o DA baseline and the other DA baseline, either by using data augmentation
for balance imbalanced dataset or by using simple random data augmentation. The best
percentage increase from the result w/o DA is given by [116] with 26.56%, and the best
percentage increase from the baseline DA result is given by [105] and [57] with 11.76%.
However, the most impressive increase in w/o DA results is given by [100] with an increase
in accuracy from 0.976 to 1 using only affine techniques.

Furthermore, G(A)N and model-based techniques are used more frequently in neu-
roimaging than that in other organs: this data is very interesting because it suggests that
these techniques probably perform better for the brain than other organs because the
brain has an anatomical structure that is more ’stable’ and less variable from one subject
to another.

In particular, [108] and [59] are very interesting model-based techniques. The first
proposes to generate synthetic MS lesions on patient or healthy images using different
intensity level masks, and the second proposes the generation of brain tumor MR images
and tumor masks used for supervised learning in brain tumor segmentation.

The study [13] is interesting because it offers a comparison with SMOTE (Synthetic
Minority Over-sampling Technique as presented in [21]) proposing a framework based on
generative adversarial network to create synthetic structural brain networks in multiple
sclerosis.

In [57] the proposed data augmentation simulates a type of artifact that has been tried

to correct for years. Now we try to do the opposite (make the network robust to this type
of artifact). The ablation studies they propose are also interesting.
Lastly, the paper [146] deserves mention, because it proposes a model-based data aug-
mentation that learns spatial and appearance transformations by transforming a reference
atlas to match the images of a real subject. The purpose of this DA strategy is to perform
a Few-shot learning: since the segmentation is known for the atlas, the images generated
through the proposed methodology will be automatically labelled.
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Systematic Literature Review: Results

4.5 Heart

Cardiac imaging refers to non-invasive imaging of the heart using primarily ultrasound (US),
magnetic resonance imaging (MR) and computed tomography (CT). The heart is the most
important organ in our body, for this reason many diseases involving the circulatory system
are also analyzed in these studies.

In Table 4.2, there are 11 records, of which 3 perform classification tasks, 2 perform
detection task and 6 perform segmentation task. Note that the segmentation is practically
performed only on healthy subjects.

Every data augmentation technique used in these studies improves performance with re-
spect to the w/o DA baseline and the other DA baseline, either by using data augmentation
for balance imbalanced dataset or by using simple random data augmentation.

In interpreting the results, attention must be paid to the experimental setting of each
paper, which could inflate the comparison. For example, [144] starts from a very poor and
easily improved result, therefore the 352.13% increase is not an amazing result as it might
seem. With this reading key, the best results are achieved by [70] (DICE: 0.911 to 0.927)
from the result w/o DA and [12] (DICE: 0.833 to 0.846) e from the baseline DA.

The study [89] deserves a mention because it is the only one paper that performs data
augmentation using a reconstruction-based method. They presented a study on automatic
cardiac motion artefact detection using spatio-temporal deep learning techniques, in partic-
ular by using a k-space based corruption strategy to increase the robustness of the classifi-
cation: this strategy is able to simulate different levels of realistic motion-related artefacts
(e.g., breathing and mistrigering artefacts).

Lastly, different variants of GAN are used, such as SpeckleGAN [12], ScreenGAN [40] or
CycleGAN [20].
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Systematic Literature Review: Results

4.6 Lung

Lung imaging refers to non-invasive imaging of the lungs using primarily magnetic resonance
imaging (MR), computed tomography (CT), and positron emission tomography (PET).
Due to the fact that lung cancer is the leading cause of cancer deaths worldwide and due
to the COVID-19 epidemic of the last 2 years, the lung is probably the most studied and
analyzed organ in the entire SLR.

In Table 4.3, there are 34 records, of which 26 perform classification tasks, 4 perform de-
tection task and 4 perform segmentation task. Every data augmentation technique used
in these studies improves performance with respect to the w/o DA baseline and the other
DA baseline, either by using data augmentation for balance imbalanced dataset or by using
simple random data augmentation, except for [97] which observes a decrease of 14.45%
in COVID-19 classification using simple affine transformation. There might be different
reasons why the performance get worse, one of these could be that after the affine transfor-
mation (i.e., flip, rotation, etc) the image is not a valid image in the domain. However, this
remains an isolated case.

Moreover, there are 2 papers that use particular strategies to deepen. The first is [55] which
implements a tumor-aware unsupervised cross-domain adaptation (preserving the anatomi-
cal details between CT and MRI), followed by a semi-supervised tumor segmentation using
U-Net trained with synthesized artefacts created from a limited number of original magnetic
resonances.

The second one is [92] which implements a particular rotation invariant CNN: three im-
age slices of cross sections normal to the axial, coronal and sagittal axes of the pulmonary
nodule were captured using the extracted VOI. Then, data augmentation was performed to
increase the training data. To facilitate consideration of information from adjacent slices,
multiplanar images of the pulmonary nodule were generated, with slice angles varying be-
tween [—40°,40°] in steps of 5° with reference to the three slice images. This increased the
amount of data by 32 times. Furthermore, it was increased by eight times by rotating and
reversing the multiplanar images. Therefore, the training data were expanded 256 times
and served as input to the networks.
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4.6 — Lung

Lastly, paper [8] and paper [2| implements test time data augmentation, according to the
methodology described in the Section 2.5., obtaining good results (DICE: 0.941 to 0.979
and 0.901 to 0.902, respectively). These results may confirm that the models can benefit
from the increased robustness given by test-time data augmentation.
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4.7 — Breast

4.7 Breast

Breast imaging is a sub-speciality of diagnostic radiology that involves imaging of the breast
for screening or diagnostic purposes using principally mammography (MG). Although the
death rate is decreasing, breast cancer remains one of the most common cancers, especially
among women. Indeed, breast cancer is the only pathology analyzed in this table.

In Table 4.4, there are 14 records, of which 9 perform classification tasks, 3 perform
detection task and 2 perform segmentation task.

Every data augmentation technique used in these studies improves performance with
respect to the w/o DA baseline and the other DA baseline, either by using data augmen-
tation for balance imbalanced dataset or by using simple random data augmentation. In
particular, using the Sigmoid correction, the best increase from the w/o DA result is given
by [143] using only affine transformation and, the best increase from the baseline DA is
given by [106] using a GAN with respect to affine techniques.

The studies [18] and [73] deserve a mention because they use model-based methods: in
the first, virtual three-dimensional anthropomorphic phantoms were produced using a proce-
dural analytic model in which the major anatomical structures (including fat and glandular
tissues, ductal tree, vasculature, and ligaments) are stochastically generated within a prede-
fined breast volume; instead in the second they propose a method called stochastic evolution
(SE): the irregular deterioration and healing processes of the diseased tissue is simulated
according to the direction of the local distortion, thereby producing a natural sample that
is indistinguishable by humans.

Lastly, there is another interesting study conducted by [17] where only elastic technique
is compared to affine technique. The proposed data augmentation decreases the False per
Image (FPI) of about 25.66% in classification task: this is probably favored by the shape
of the breast that rewards this type of transformation.
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4.8 — Other Organs

4.8 Other Organs

In Table 4.5 there are 42 records representing studies conducted on minor organs. The or-
gans most present in the table are liver and prostate with 10 and 7 instances, respectively.
These studies analyze more particular and less common cases and/or conditions than in
the previous tables, such as detection of urinary stones in [101], classification of cyst and
tumors of both jaws in [64] or classification of calcaneal fractures in [4].

Even if not included in the table because they do not compare different DA techniques,
the studies [4] and [50] deserve a mention because they use a curious approach: same data
augmentation techniques, but they change the number of data generated for each exper-
iment. In particular, the first study compares 10000 vs 2000 calcaneous images, and the
second compares 3000 vs 500 pelvic images, noting that generating more images bring to
better results.

The study [60] uses train-time data augmentation to randomly increase the size of the
training set and, it uses test-time data augmentation to estimate the uncertainty of the
predictions. For both strategies there is an improvement with respect w/o DA baseline.

The studies [139] and [101] deserve a mention because they use model-based methods to
generate spine and urinary tract images, respectively.

In [36] we noticed a positive effect of augmentation for the “severe” data, instead for the
“moderate” data there are no significant improvements (note that “moderate” and “severe”
referring to the level of generated fatty infiltration in human thighs).

The study [102] is very interesting because it uses an adaptive data augmentation in
which the optimal policy is learned through reinforcement learning, being the only study in
this Systematic Literature Review that implements a learnable augmentation strategy.
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Systematic Literature Review: Results

Also the study [26] is very interesting because, in addition to studying the application
of their data augmentation technique on various organs, it performs 3-dimensional trans-
formations to augment the datasets to train the same model across different views, which
forces the network to use the same weights to capture structures at different viewing-angles.
The results show that combining and augmenting three different views could further boost
up performance.

Lastly, in this table there are another study in which the data augmentation used does

not improve the w/o DA performance: in [65] we have a decrease in performance from 0.89
to 0.88 using affine and pixel-level transformations in teeth classification.
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Systematic Literature Review: Results

4.9 Visual Data Analysis

The box plot in Figure 4.10 represents the distribution of the percentage increase in perfor-
mance with respect to each organ and with respect to the totality of the data. Only papers
comparing w/o DA results and proposed DA result are taken into consideration. The detail
of the number of papers included is summoned in Table 4.6.

Organ # papers included
Heart 8

Brain 26

Lung 28

Breast 12

Others 38

All 112

Table 4.6. Number of papers involved for each organ in the box plot of Figure 4.10

The average increase compared to all organs is about 10%, however, heart, lung and
breast appear to have larger increases. It could be due to various factors: the data augmen-
tation techniques are more effective, the datasets are on average smaller, or the variability of
the organ is greater, and therefore the data augmentation helps more to generalize. Instead,
brain has the lowest average increment.

100

80

60

40

Increase (%)

20

Heart Brain Lung Breast Others All
Organ

Figure 4.10. Box plot of the percentage increases from w/o DA for each organ.
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4.9 — Visual Data Analysis

The box plot in Figure 4.11 represents the distribution of the percentage increase in
performance with respect to affine and no-affine data augmentation. Moreover, the in-
creases of no-affine techniques when the baseline uses affine transformation are reported.
The detail of the number of papers included is summoned in Table 4.7.

Comparison # papers included
Only Affine vs w/o DA 29
Other vs w/o DA 91
Other vs Affine 29

Table 4.7. Number of papers involved for each DA techniques comparison in
the box plot in Figure 4.11

A total of 149 papers are involved in this box plot.
Excluding the few outliers, the affine transformations reach on average results comparable
to the other techniques, and, as they are very simple to implement, they can be the first
way to go to perform data augmentation, before attempting "more complez” techniques that
will still give similar results.

100
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Increase (%)

20 T 4

=20
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w/o DA vs Affine w/o DA vs Other Affine vs Other
Data Augmentation techniques

Figure 4.11. Box plot of the percentage increases from w/o DA and Baseline results over
affine and no-affine transformations.
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Systematic Literature Review: Results

Scatter plot in Figure 4.12 shows the distribution of every percentage increase from the
w/o DA result with respect to its original data set size. Ounly papers comparing w/o DA
results and proposed DA result are taken into consideration.

There are 111 points in the plot. Methods that combine multiple transformations were
assigned to the most complex transformation according to the following hierarchy:

1. GAN 3. Reconstruction-based 5. Erasing
2. Model-based 4. Feature Mixing 6. Affine

Moreover, the x-axis is represented in logarithmic scale in order to facilitate the reading
of the plot. The scatter plot is shown in Figure 4.12.

° ® Affine
e GAN
® Feature Mixing
® Reconstruction-based
» Erasing
Pixel-level
® Model-based
° Generative Network
° Elastic
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° .
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Figure 4.12. Scatter plot of percentage increase from w/o DA result over the
original training set size.

More than half of the datasets have less than 1000 records, confirming the initial hy-

pothesis that it is difficult to collect this type of data and data augmentation must be done
to better generalize the model.

There are only 2 negative increments. Furthermore, it can be seen that the GANs seem

to have a higher trend. In any case, almost all values and finally almost all are in the 0-40%
range.

It is interesting to draw a regression line of all these values, as shown in the Figure 4.13.
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Figure 4.13. Regression line between percentage increase from w/o DA result and
the original training set size.

The regression line has a slope of —1.46356e — 05, confirming that there is practically
no correlation between the size of the training set and the percentage increase of the data
augmentation.
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4.10 RQ4: Differences between Computer Vision and
Medical Data Augmentation

In this section we will answer to what are the types of data augmentation that are not
adopted /less used in the medical domain. Considering as a point of reference the taxonomy
defined in [117], and looking to the previous results of this Systematic Literature Review,
the following consideration emerge:

e Geometric transformations: different augmentations based on geometric transfor-
mations and many other image processing functions. It is characterized by their ease
of implementation. They are called affine transformations in our taxonomy.

« Random Erasing: this technique was specifically designed to combat image recogni-
tion challenges due to occlusion, but in the medical domain does not exist the concept
of occlusion. Rarely used in the medical domain literature.

e Color Space Transformations: these techniques modify the pixel values of the
image. In the medical domain, it is usual to modify the brightness, the contrast, or the
saturation, rather than modifying the color space, since most reports are in grayscale.
All these transformations are called pixel-level transformations in our taxonomy.

« Mixing images: these techniques are mostly used in object detection tasks. They are
called feature mizing in our taxonomy. Rarely used in the medical domain literature.

o Adversarial training: it is used as a search algorithm for the best data augmentation
policy. Very widespread in the learnable data augmentation field, but less in medical
domain.

e Neural style transfer: the algorithm works by manipulating the sequential rep-
resentations across a CNN such that the style of one image can be transferred to
another while preserving its original content. We have considered these techniques as

GAN-based methods.

e GAN Data Augmentation: classic approach to generate synthetic images. It is
called GAN-based methods in our taxonomy.

Taking into account the results of this literature, the two main data augmentation tech-
niques that are rarely used in the medical literature: random erasing and feature-mizing
techniques.

The reasons and motivations behind this kind of exclusion are never expressly exhibited,
so we can only do a hypothesis about it. Probably, because erasing or mixing a part of
an image can lead to lose the important feature of that. To discover if can be future
studies about these techniques in medical domain, in the next chapter, we conduct some
experiments using random erasing and mix-up data augmentation on ChestX-ray14 dataset.
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Chapter 5

Experiments

5.1 Dataset

The dataset chosen for the experiments is ChestX-rayl4 from [53]. It contains 112,000
images from 32,717 patients. The dataset is labeled for the presence/absence of 14 inde-
pendent observations starting from radiological reports using two different semiautomatic
labellers. The five classes chosen for the exeriments are: Atelectasis, Cardiomegaly, Con-
solidation, Edema and Pleural Effusion, for which prior results are available in literature.

CheXpert ground truth takes into account uncertainty in the reporting and labelling
process by assigning each observation one of three values: positive, negative and uncertain.
To handle uncertain labels during training, we used following policies [81]:

e U-Ones: it converts an uncertain label to a positive label.
It was used on Atelectasis, Edema, and Pleural Effusion labels.

o U-Zeroes: it converts an uncertain label to a negative label.
It was used on Cardiomegaly and Consolidation labels.

5.2 Experimental setup

We performed the experiments using the baseline described in [81] based on ResNet18
architecture (pretrained on ImageNet). The output layer is the combination of five binary
heads, one for each observation. During training, classical weak data augmentation is per-
formed: random rotation (£ 10°), random zooming (0% to 10%), random cropping and
rescaling to network input size. Every transformation is applied with probability p = 0.75.

Moreover, all the images were normalized with the mean and standard deviation cal-
culated over CheXpert. The network was trained using the SGD optimizer with the One
Cycle Policy for 12 epochs. The starting Learning Rate (LR) is equal to 3e — 3. Weights
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were saved every 1024 iterations and the checkpoint with the highest validation perfor-
mance was used.

The metric chosen for the evaluation is the Area under the ROC curve (AUC). It
was calculated for each observation, and then its mean value was used to summarize the
performance. For each experiment configuration, the training was repeated three times
and the mean and standard deviation were reported.

1

Figure 5.1. Example of images generated using random erasing technique over the
baseline weak data augmentation.

5.3 Tested Data Augmentation Techniques

For the first experiment, random erasing data augmentation is applied to the baseline
with probability p = 0.5, scale from 0.02 to 1 (i.e. range of the proportion of erased area
against the input image), ratio from 0.3 to 1 (i.e. the range of aspect ratio of erased area)
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and pixel erasing value equal to 0 (i.e white color in the grayscale).
Examples of images generated using this technique are shown in Figure 5.1.

Figure 5.2.  Example of images generated using miz-up technique over the base-
line weak data augmentation.

For the second experiment, mix-up data augmentation is applied to the baseline.
Inspired by [103], we used this formula to generate the mixed images:

T = Ar; + (1 — N)z; , where z; and xz; are image input vectors
and this formula to generate the new labels:
=My + (1 — Ny, , where y; and y; are label vectors
and where lambda values is randomly sampled from Beta distribution (c, «v).

Every transformation is applied with probability p = 0.5 and parameter o = 0.3.
Examples of images generated using this technique are shown in Figure 5.2.
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Figure 5.3. Example of images generated using cut-mizx technique over the
baseline weak data augmentation.

In the last experiment, we decided to merge the techniques used in the previous exper-
iments, implementing cut-mix data augmentation. Instead of removing pixels and filling
them with black or grey pixels (like random erasing), you replace the removed regions
with a patch from another image (like feature mixing with o = 1), while the ground truth
labels are mixed proportionally to the number of pixels of combined images [141].

In particular, we used this formula to generate the new labels:

y=(1—A)y; + Ay, , where y; and y; are label vectors

and where A is the ratio between area of patch applied and the total area of the image
(320x320). Every transformation is applied with probability p = 0.5 and its width w and
heigth h both variable in the range [50,160] so that the largest possible patch modifies
the label by a maximum of 25%.
Examples of images generated using this technique are shown in Figure 5.3.
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5.4 Results

In this section, we compare the different data augmentation strategies illustrated above.
All the experiments are trained by fine-tuning all layers. The average AUC values are
shown in Table 5.1.

Setup Data Augmentation Strategy Mean AUC

Baseline Weak DA 89.6 £ 0.2
Expl Weak DA + Random Erasing 89.1 + 0.2
Exp2 Weak DA + Mix-up 89.0 £ 0.2
Exp3 Weak DA + Cut-Mix 89.3 £ 0.3

Table 5.1. Average AUC for different data augmentation strategies on CheXpert.

Based on the observed standard deviations, differences between the different data aug-
mentation schemes appear to be compatible with the variability due to random initializa-
tion.

Moreover, in validation losses and AUC curves showed in Figure 5.4 for random eras-
ing, Figure 5.5 for mix-up and Figure 5.6 for cut-mix, it is observed that the random
erasing experiment is more subject to overfitting than the other two experiments.

However, all the experiments performed slightly worse than the baseline result. These
results confirm that random erasing and feature mixing strategies are less used in the med-
ical literature because they are not so effective with respect to other data augmentation
techniques.
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Figure 5.4. Random erasing: losses and AUC curves
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Chapter 6

Conclusion

6.1 Systematic Literature Review conclusion

This Systematic Literature Review presents an analysis of the main data augmentation
techniques and strategies used in the medical literature, to solve the problem of lack of
high-quality ground-truth data, due to time, money and human resource limitations.

The most common study designs to present and assess data augmentation methods
compare the effect of different data augmentation models on downstream tasks.

Affine transformation and GAN-based models are the most widespread and used
data augmentation techniques to fight the phenomenon of overfitting, with significant in-
creases in the performance of downstream tasks.

Anyway, in most cases, using any data augmentation technique brings advantages in
terms of performance of downstream tasks.

Instead, feature mixing techniques and random erasing are the less used data
augmentation strategies in the medical literature. These transformations were initially
designed to make computer vision models more robust to occlusions, which do not occur
in medical images; in the case of feature mixing, it is also difficult to generate reliable labels
for the resulting images. These techniques need further study to solve these problems and
perhaps be used in the world of medical data augmentation.

6.2 Experimental conclusion

The experiments performed on ChestXpert dataset confirm that feature mixing and ran-
dom erasing strategies are the less used and less effective data augmentation techniques.
They do not have a positive impact on the performance of the model, obtaining lower
results than the baseline.
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