
POLITECNICO DI TORINO

Master’s Degree in INGEGNERIA INFORMATICA
(COMPUTER ENGINEERING)

Master’s Degree Thesis

Mass Scale Lightweight Remote Desktop
Environments for Educational Purposes

Supervisors

Prof. Fulvio RISSO

M.Eng. Marco IORIO

Candidate

Federico CUCINELLA

December 2021

Summary

CrownLabs was born in 2020 during the pandemic as a service for students,
to let them practice with laboratory experiences thanks to remote desktop
environments. CrownLabs has been started by a group of students and volun-
teers from Politecnico di Torino, and soon became a real-life playground for
experimenting with cutting-edge and production-grade cloud technologies and
development techniques (Kubernetes, CI/CD, open-source contributions).

This thesis work aims to extend the CrownLabs ecosystem to make it suitable
for a larger number of users, and especially to enable it as an exams platform.
Hence, allowing students to interact with the same environments they have
been studying onto, but in an insulated and protected sandbox that prevents
distractions and cheating.

The work spans from the whole CrownLabs infrastructural design and
implementation to the choices undertaken to be integrated with Moodle, the
platform that our university uses for delivering computerized exams.

Specifically, the first area of investigation concerned the shift from virtual
machines to container-based environments. This remarkably increased the
performance in terms of startup time and resources consumption: a single
physical machine can host several dozens of remote environments.

Subsequent design and implementation of automatising modules enabled the
usage in the exams scenario. Such modules provide: automatic startup of the
remote environments prior to exams; pre-population of the environments with
custom content; automatic termination of the environments when quiz attempts
close; seamless delivery of the content produced inside the environment.

ii

Initial tests over startup times and resources consumption proven the po-
tential of this solution and lead to the decision to leverage CrownLabs during
a Computer Science exam session. Through the work done within this the-
sis, CrownLabs has been adapted for delivering remote environments for the
computer sciences exams session held in September: almost eight hundred
examinees used PyCharm through their web browser during the exam. The
platform has been appreciated both by students and professors of the course.

iii

Table of Contents

1 Introduction 1

1.1 Goal . 1

1.2 Structure of this thesis . 1

2 Background 3

2.1 Related works . 3

2.1.1 VLAIB . 3

2.1.2 Coderunner . 4

2.1.3 Commercial products (AWS/Azure) 5

2.2 VMs based CrownLabs . 5

2.3 Virtual Machines VS Containers 6

2.4 Infrastructure of a desktop . 7

2.5 Remote Desktop Protocols . 7

2.6 Kubernetes . 8

2.6.1 Kubernetes resources . 8

2.6.2 Kubernetes components 12

2.7 PoliTO Exam platform . 14

2.7.1 Moodle . 14

v

2.7.2 Computerized exams in presence 15

2.7.3 Remote exams . 15

3 Design 16

3.1 Operators-based infrastructure 16

3.2 Kubernetes backend . 16

3.2.1 CrownLabs resources . 17

3.2.2 GraphQL and qlkube . 19

3.3 Remote desktop management 21

3.4 Exams and exercises . 22

3.4.1 User management . 22

3.4.2 Access flow . 22

3.4.3 Infrastructure . 23

3.4.4 Exam lifecycle . 25

4 Implementation 27

4.1 Container based instances . 27

4.1.1 Security context . 27

4.1.2 Single application container 28

4.1.3 Browser based remote desktop: (no)VNC 29

4.1.4 Single noVNC deployment 32

4.1.5 Sidecar containers infrastructure 32

4.2 CrownLabs Infrastructure . 35

4.2.1 Instance operator . 35

4.2.2 Monitoring . 39

4.2.3 Single Sign On . 41

vi

4.3 Exams and Exercises . 41

4.3.1 PoliTO Exercise platform 41

4.3.2 PoliTO portal API interfacing 42

4.3.3 Moodle integration . 42

4.3.4 Works delivery . 43

4.3.5 Infrastructure . 43

4.3.6 Infrastructure hardening 47

5 Validation 51

5.1 Testing conditions . 51

5.2 Measurements . 53

5.2.1 Load tests . 53

5.2.2 Startup tests . 53

5.2.3 Delivery tests . 54

5.2.4 Production results . 55

6 Conclusions 57

vii

Chapter 1

Introduction

1.1 Goal
This thesis has been developed at the Polytechnic University of Turin and
consists in the extension of CrownLabs, a project which has been developed
during the COVID-19 pandemic started in 2020 by Ph.D. students and master’s
degree students of Computer Networks and Cloud Computing courses. The
initial aim of the project was to enable students of the networking courses
to remotely make didactic laboratory experiences but kept on growing and
generalizing, not being just a mere service for such courses, but also an actual
real case playground project for those who wanted to take part of such a
wholesome and enriching experience.

The main purpose of this thesis is to demonstrate how such kind of infras-
tructure can be extended in order to scale up to bigger numbers, improving the
reliability and the overall architecture in order to deliver remote environments
to be used for examinations.

1.2 Structure of this thesis
The initial part of this thesis contextualizes technologies and background aspects
which are needed to better understand the reasons of this work.

The following design section summarizes how the general infrastructure has

1

Introduction

been set up and why.

The implementation section consists in the operative steps that have been
taken in order to achieve the main goals.

The validation section is a discussion of the results, along with metrics
collected during different kinds of tests that have been run during the various
phases.

The last conclusion part illustrates the final thoughts and suggests further
steps that could be done to improve and further expand this kind of project.

2

Chapter 2

Background

As mentioned, this thesis mainly consists in an extension of the CrownLabs
project. It basically consists in a graphical interface that lets students and
professors to start remote environments (in practice, remote desktops) which
contain all the needed tools to accomplish such experiences, with the possibility
to share the screen and the control of those environments between the users.

It can also enable the creation of persistent virtual machines that can be
accessed at any time that are very convenient for instance to hold development
environments without having to pollute the user personal computer.

2.1 Related works
The following sections will give an overview of several products that could be
related to CrownLabs and other aspects of this thesis work. In general all of
them provide some kind of remote experience.

2.1.1 VLAIB
Polytechnic of Turin technical department developed this technology on top of
an on-premise cluster equipped with VMWare Horizon. Its purpose is to provide
the same environment present in the terminals present in a LAIB (the university
base computer science laboratories): remote desktops delivered by this system

3

Background

provide the same large package of appliances present in physical LAIBs, which
students can use remotely through a web browser. This technology can also be
used to solve issues relatively to licenses, compatibility or performance that
students might encounter.

The main purpose for such technology has been found in the creation of exams
environment: the Polytechnic exam infrastructure1) has been integrated with
the VLAIB system in order in order to let students interact with a controlled
and hardened desktop environment providing the necessary appliances to take
practical exams types. Given the complexity of the infrastructure and the large
image for the VLAIB virtual machines, such approach resulted to be not easily
scalable, thus not suitable for exams with large numbers of students (above
the hundred of sessions).

2.1.2 Coderunner

CodeRunner is a free, open-source Moodle module which enables the creation
of questions which to be answered by inserting code segments. These can be
consequently ran to let students check their correctness. This technology has
been tested in the context of the pandemic to renew the computer sciences
exams of the Polytechnic of Turin which always have been written on paper
mainly due to time and space limits relatively to the LAIBs.

CodeRunner uses a dedicated backend (called Jobe) to run the inserted
code in a sandboxed environment. Virtually any language is supported and
advanced editing functions may be enabled (such as code completion and
highlighting) in the most recent versions of CodeRunner. However, due to the
current deployment of Moodle at PoliTo - which has been heavily customized
in order to better integrate with the university web services - latest versions of
CodeRunner are not compatible and thus several improvements for this plugin
(such as code completion and syntax highlighting) are not available. This is
one of the limitations which lead to the use of CrownLabs for deploying remote
environments in which students could use a real IDE to take their exams.

1See Section 2.7

4

Background

2.1.3 Commercial products (AWS/Azure)
There are several commercial products available from the current leading cloud
providers which offer personal environments in the cloud that can be accessed
remotely. These kinds of technologies aim to provide a way for the user not to
stick to physical devices they own so that any of them, thanks to an internet
connection, can be used to access a single remote workspace whenever then
need.

The user can generally interact with mouse and keyboard through a web
browser or a dedicated application, sending input and receiving the virtual
desktop of the remote machine. In some cases also audio input/output could
be supported. Often support of other kind peripherals is not granted, mostly
because of limitation of the remote desktop protocols used.

This kind of approaches can simplify the management and provisioning of
on-premises machines, decoupling the user needs and the machine that has to
be assigned to such user.

AWS Workspaces

Amazon Workspaces (from Amazon Web Services) enables the user to create
and connect to remote desktop virtual machines through a client which can
be installed on the physical machine that is being used to connect from. This
provides a rather responsive user experience and easy usage.

Azure Virtual Desktop

Azure Virtual Desktop (from Microsoft Azure) provides a comparable solution,
enabling connection through a dedicated client or a web browser.

2.2 VMs based CrownLabs
CrownLabs was born initially to run remote environments based on virtual
machines. Most of the times these are ephemeral2 instances: any file created

2The storage provided for these environments is not persistent: they cannot be shut-down
or stopped. In case of power outage or crash, data loss may occur.

5

Background

inside of the remote environment that the user wants to keep has to be copied
in a shared folder that is accessible from the remote environment and can be
managed also from “outside” the virtual environment.

A full-fledged operative system runs inside the virtual machines, along with
a remote desktop software suite (see Section 2.5 for further details) that enables
connecting to the instance through a web browser. Most of the virtual machine
images enable the user to get root access (over the VM itself), thus install
additional software and take full advantage of the remote environment.

2.3 Virtual Machines VS Containers

The classic virtual machine based approach has certain usability advantages
and provides great flexibility especially for personal usage, however it also
present several drawbacks, especially relatively to performance and scalability.

One of the major issues is given by the overhead that a virtual machine
needs in order to be functional. The CPU and memory resources involved can
become considerable when the infrastructure needs to be scaled up.

Another issue is related to the resources which generally need to be allocated
and reserved wholly to the virtual machine and cannot be shared among other
instances.

These issues can be almost completely solved by switching to containers. A
container mainly consist in process insulation techniques that enable software
to run on a physical machine but in sandboxed environments whose access
to system resources is limited to well defined sets. In particular, storage,
networking and memory access are restricted to reserved areas which cannot
be (easily) circumvented by the insulated process or external ones.

There is no resources overhead required by a supervisor or other system
process which are not effectively needed for the purpose of a well defined remote
environment.

6

Background

2.4 Infrastructure of a desktop
This section is a brief discussion of what a graphical desktop is “made of”. The
heart of a graphical user interface is a framebuffer : it can be represented as
the matrix of pixels (basically a matrix of colors, one per pixel, with each color
being generally an array of three bytes, one per channel, usually red, green and
blue) which are being displayed on a screen.

The framebuffer can be either physical - in this case it is directly read from
the display adapter which translates the information for a screen to display the
picture - or virtual, which means there is no actual display output. This is the
case of CrownLabs and generally all the remote desktop services which have
been presented. A single physical server would be able to host dozens (when
not hundreds) of virtual environments; it would be rather unpractical to have
a corresponding number of physical video outputs connected to a single server.
The virtual framebuffer instead enables a single machine to host an indefinite
number of independent environments, each of them being remotely controllable
through a remote desktop protocol.

2.5 Remote Desktop Protocols
One of the core components of what has been discussed up to now, which is in
common amongst any of those technologies, is the protocol which enables the
actual remote control. There are several protocols and infrastructures which
can be used, whether they are open source or proprietary.

Remote desktop protocols enable viewing (usually inside a window of the
client device) and controlling (by interacting with such window) a remote
desktop, be it a physical or virtual one. This generally works thanks to a bi-
directional, asymmetric communication: the client receives the screen content
of a remote machine and sends the commands (mostly mouse and keyboard
input) to the remote environment.

Such protocols generally let the possibility to set parameters for the connec-
tion, such as compression and quality levels, which result in different usage
of bandwidth and compute resources, in order to achieve the best trade off
between user experience and resources costs.

7

Background

2.6 Kubernetes
This (rather new) technology plays an important role in the infrastructure from
the beginnings of CrownLabs. It has been initially developed by Google and
its purpose is to provide a way to manage a cluster3 and enabling it to host
cloud native software.

Kubernetes practically consists in an orchestrator for containers4: through
specially crafted configuration files it is possible to declaratively define the
status of the cluster in terms of running applications, network connection,
exposition of services, security and other aspects of the cluster; Kubernetes
will keep such configuration as a reference in order to make the cluster state
reflect it.

2.6.1 Kubernetes resources
Each aspect of a Kubernetes cluster is defined by a resource of some kind. There
are several predefined resource kinds, that will be discussed in the following
paragraphs.

Node

A Node represents a machine (which could be either physical or virtual) which
takes part in the cluster. Through taints it is possible to define what a Node
can and cannot do (for example, Nodes that take part in the control-plane by
default will not be used for scheduling workloads).

The actual machines identified by Nodes run the effective components which
make Kubernetes work.

Namespace

While some kinds of resources are considered “global” within the cluster (they
are said cluster-wide, other kinds are namespaced. A Namespace represent a

3A set of servers which share certain conditions, such as the network
4Thanks to additional software like KubeVirt, which is used also in CrownLabs from its

beginnings, it is possible to schedule and run also virtual machines instead of just containers.

8

Background

partition of the cluster, which is insulated by certain means. The Namespace
resource itself is clearly cluster-wide.

Namespaced resources might refer, from within their specification, to other
resources: cluster-wide resources can generally be accessed without issues, while
namespaced resources need to be part of the same namespace of the referring
one, in order for the reference to work. Interesting use-cases are when the
cluster should be shared by different users or to run different applications (in
order to further decrease possible attack surfaces). It is also possible to insulate
networking between namespaces.

The following kinds of resources are all namespaced.

Pod

The minimal Kubernetes workload unit is represented by a Pod. A Pod is a
way to define and model a desired set (which often consist of a single entry) of
containers.

Conventionally (although there is no actual distinction within the Pod
specification), when more than a container is present inside a Pod, one of the
containers is considered the main one, while the other(s) are called sidecars.
All the containers inside a Pod share the same network namespace and can
possibly mount the same volumes which can be associated to the Pod. A Pod
will be entirely scheduled within the same node (i.e. a sidecar will not be run
in a different node than the main container).

Each Pod has its own network namespace which is bound to a unique IP
address within the cluster, which avoid conflicts with port bindings and possible
routing issues. IP addresses associated to Pods are ephemeral and thus should
not be used to contact Pods. In order to properly access Pods it is necessary
to define a Service.

Service

A Service represents a backend (usually made of Pods) which becomes accessible
through different techniques (e.g. a unique internal IP address within the cluster
or a specific port of any node).

9

Background

Such backend is referenced by means of label selectors. Labels are key/value
metadata that can be associated to any Kubernetes resource and can also be
used to refer to a certain group of those. When more Pods share the same set
of labels, this can be used as selectors, so that any request to the Service can
be forwarded to one of those Pods. There is no need to manually create the
different Pods though: the ReplicaSet resource can automatize such behavior.

ReplicaSet and Deployment

ReplicaSets purpose is to maintain a stable set of running replicated Pods: this
is often used to guarantee the availability of a given application by making sure
that the desired number of Pods stays up and running, for example in case
a pod is deleted, another one will be created. ReplicaSets work by assigning
label selectors to the Pods it manages in order to keep track of them.

Deployments are a higher level management mechanism for ReplicaSets and
serve to manage what happens to the ReplicaSet. This ease the management
of application scaling (if the number of replicas has to be scaled up or down),
upgrades (when a new version has to be rolled out), rollbacks (when it is
necessary to undo an upgrade).

These resources perform any operation to try to keep the availability of a
service: in case of an update, replicas are not updated at once. Each of the
Pods running the old version of a deployment gets terminated only when a new
replica becomes ready to replace it.

Volume, Persistent Volume and PVC

Filesystem in Kubernetes containers provide ephemeral storage, by default: a
restart of the pod will remove any data on such containers, therefore, it is not
suitable for applications that require to have a persisted state. Within the
specification of a Pod it is possible to define Volumes5: they provides persistent
storage to the pod itself. Volumes can also be used as shared disk space for
containers within the pod. Volumes are mounted at specific mount points
within the containers, defined inside the pod configuration, and cannot mount

5A Volume is not an actual Kubernetes resource. It is part of the Pod specification.

10

Background

onto other volumes or link to other volumes. The same volume can be mounted
at different points in the filesystem tree by different containers.

Volumes can be backed up by different technologies:

• an emptyDir is backed by an insulated folder on the physical node which
exists for the lifetime of the Pod: it gets removed once the Pod is deleted.

• Network shares (such as NFS or iSCSI) enable using different kinds of
existing network attached storage systems as backing store for Pods.

• Persistent Volumes Claims (PVCs) instead are native Kubernetes (names-
paced) resources which are provided by some underlying technology (such
as Ceph or again file sharing network protocols) and exist independently
in the cluster. Cluster admins can allocate space (using a Persistent Vol-
ume, which is a cluster-wide resource) on a certain mean (defined by a
StorageClass) and cluster users can claim such space by binding a PVC
to the PV. Pods within a certain namespace can use PVCs in the same
namespace as Volumes.

ConfigMap and Secret

A common application challenge is to decide where to store and manage config-
uration information, some of which may contain sensitive data. Configuration
data can be anything, from individual properties to entire configuration files or
JSON/XML documents.

Kubernetes provides two closely related mechanisms to deal with this need:
ConfigMaps and Secrets, both of which allow for configuration changes to
be made without requiring to rebuild the whole application. Data stored in
ConfigMaps and Secrets is be made available to every Pod to which these
objects have been bound to and is only sent to a Node if a Pod on that Node
requires it, keeping it in the memory on that Node. Once the Pod that depends
on the Secret or ConfigMap is deleted, the in-memory copy of all bound Secrets
and ConfigMaps are deleted as well. The data itself is stored inside Kubernetes
database.

The main difference between a Secret and a ConfigMap is that the content
of the data in a secret is base64 encoded. Recent versions of Kubernetes have

11

Background

introduced support for encryption to be used as well. Secrets are often used to
store data like certificates, passwords, access tokens, pull secrets (credentials to
work with image registries) and so on.

Custom Resources Definition

As mentioned, Kubernetes works by means of resources. Different pieces of
software, called operators, monitor resources and the cluster state in order
to make the desired state actual in the cluster. While integrated Kubernetes
resources (such as those depicted up to now) are managed by components which
are internal to the Kubernetes engine itself, it is possible do specify and install
custom kinds of resources by using CRDs.

A CRD is a cluster-wide resource itself and defines the format that user-
defined resources have to comply to. It is then possible to build software to
monitor and actualize custom resources that might require it.

2.6.2 Kubernetes components
The following sections illustrate the most important Kubernetes components
and behaviors.

etcd

When deployed with a distrubuted configuration, etcd implementation favors
consistency over availability in the event of a network partition: this means that
in case some of the different etcds instances cannot communicate, the database
stays consistent but will not be functional until connection is recovered. This
consistency is crucial for correctly scheduling and operating services.

Another interesting feature of etcd is its watch API : clients can subscribe
to events that may occur on entities on the database. The Kubernetes API
Server exploit such possibility to monitor the cluster and roll out configuration
changes or simply restore any divergences of the state of the cluster back to
what was declared. For example, if the desired state of an application has been
configured so that it has to have three replicas running on the cluster, it might
happen that the actual state is not the desired one (e.g. one of the replicas
crashed): such difference is detected and an action will be taken to actualize

12

Background

the desired state (e.g. starting one more replica). In case the operation is not
successful, it will be retried more times, usually by adding a back-off time:
delay between retries will be incremented with every failed retry.

API server

The API server is another key component of Kubernetes: it serves the Kuber-
netes API using JSON over HTTP, providing both an internal and external
interface to Kubernetes. This means practically every request done by users or
an internal agent (for example, an operator) will have to be done through the
API server. It processes and validates REST requests, then updates the state
of the API objects in etcd. This allows clients to set (and get) the desired state
which has been mentioned above.

Scheduler

The scheduler is a pluggable component that selects which node(s) have to be
used in order to persist some kind of configuration. Basically, it chooses which
nodes workloads have to be distributed in.

Given that each pod has a set of resources (requested and reserved) associated
to it, the scheduler tracks actual resources usage on each node to ensure
that workload is not scheduled in excess of available resources. Different
strategies can be adopted depending on which scheduler is used and how it is
configured: apart from user-provided resources constraints, directives can be
used to “suggest” or “make sure” how the scheduling should be done. Examples
include quality of service policies, the fact that some pods have to be scattered
across different nodes (anti-affinity) or concentrated in the least number of
nodes (affinity), “proximity” to data (in case there some nodes can have some
kind of eased availability to certain types of storage).

Controller manager

The controller manager main goal is to run the reconciliation loop for the
default Kubernetes resources. Such process is the procedure which drives actual
cluster state toward the desired one, communicating with the API server in
order to create, update, and delete the resources it manages.

13

Background

Kubelet

Kubelet is responsible for doing the actual scheduling operations on each node
and reporting the status of each operation (together with the status of the
node itself) to the API server.

kubectl

While the previous components are part of the cluster itself, kubectl is the
official Kubernetes tool to interact with a Kubernetes cluster. As a command
line tool, it practically consists in a REST client which is designed to talk to
the API server, mostly for getting, updating and deleting resources.

For instance, as Kubernetes resources (while they are written locally) are
generally stored on YAML or JSON files, kubectl is particularly useful for
applying such resources. The apply operation basically first checks the existence
of a resource with a given name (within a namespace, if namespaced), then
the resource is either created (if it does not exist on the cluster) or patched in
order to be updated with the contents of the YAML/JSON file.

2.7 PoliTO Exam platform
The Polytechnic University of Turin adopted the Moodle platform as part
of its didactic web services. The area on which Moodle is most used is for
computerized exams.

2.7.1 Moodle
Moodle is a free and open-source learning management system written in PHP.
It can be used for blended learning, distance education, flipped classroom and
other e-learning projects in schools, universities, workplaces and other sectors.

It offers various kind of features like courses management. Users can be
teachers or students for given courses; courses can hold multimedia materials
which can be uploaded by teachers and consulted by students. Teachers can
create assignments that students can fulfill by uploading files.

The above features however have always been provided by the internal

14

Background

university web services in a much more structured, organized and efficient way.
The reason why Moodle has been integrated into the university infrastructure
instead is for enabling computerized exams.

Moodle, in facts, also includes a powerful quiz module among its features. It
enables professors to easily build surveys which can be made of several kinds of
questions (like single or multiple choices, free text inputs, file uploads and much
more) then have students answer compile the quiz in a suitable environment to
have the legal validity for being considered exams.

2.7.2 Computerized exams in presence
Up to before the Covid-19 pandemic, exams in PoliTO have always been done
in presence. Such exams have always been delivered through computers LAIBs.
Most of the exams were based on Moodle quizzes which started in a controlled,
full-screen browser window which prevented students from distractions and
cheating. A minor part of the computerized exams required the actual use of
applications installed on the laboratories terminals.

Exams on Moodle, comparatively to those which require using actual ap-
plications, tend to be preferred by professors for several reasons. During the
exam, in case of crash of the physical machine or any other issue which might
occur, the exam can always be resumed simply logging in on another machine.
Moreover, collecting files produced by students through native applications can
be non trivial.

2.7.3 Remote exams
The lockdown which begun with the pandemic and the subsequent prevention
measures taken by government and the university required exams to be taken
remotely, for the first time.

First of all, this required adopting proctoring tools that could be installed in
students’ computers in order to avoid cheating and distracting. Subsequently,
the Moodle infrastructure needed to be improved to support a larger number
of sessions.

15

Chapter 3

Design

3.1 Operators-based infrastructure
Even if CrownLabs could resemble a rather generic web-service, its infrastructure
and backend has not been written by “traditional” means. Nowadays regular
web-services are realized with custom backends (that can use frameworks like
Spring in Java or Express on NodeJS or Flask for Python) which expose an
API defined directly by the team behind the project.

The core and backend of CrownLabs, instead, is a Kubernetes cluster. The
user directly interacts with Kubernetes API server itself, the source of truth of
the whole system is Kubernetes etcd database.

Being Kubernetes a rather general purpose system, however, customization
is achieved through components that run inside the cluster. These components,
called operators, manage the cluster from within the cluster itself. Figure 3.1
shows a simplified overview of CrownLabs infrastructure and its components.

3.2 Kubernetes backend
The core of CrownLabs consists in several operators. Each of them takes
care of several resource types, reacting to the actions that users perform on
such resources. Many of these types however are not between the integrated

16

Design

Kubernetes resources (like the ones depicted in the Background): they are
Custom Resources defined by CRDs.

The main entities involved in the CrownLabs infrastructure in facts, are
mapped to Custom Resources and the user can interact with them by sending
requests directly to a Kubernetes API server on which CrownLabs has been
deployed to.

It is possible, indeed, to use whole CrownLabs backend through the kubectl
command. Regardless of the used client, users can perform any operation, like
the following:

• create Instances by applying the relative resource YAML;

• obtain information on how to access Instances from the state of the created
instance once it has been started;

• stop Instances (by changing a property in the Instance specification, if
supported by the type of instance);

• delete Instances;

• retrieve and change information about the associated Tenant;

• manage other Tenants, in case the user is a manager for a given Workspace.

3.2.1 CrownLabs resources

The following section illustrates the main custom resources kinds that make
the whole infrastructure work.

Instances The Instance represents the actual core of CrownLabs: a running
environment. The instance specification references a Template that describes
which environment has to be run; the instance also includes a status that shows
useful information about the running instance, such as how/where it can be
reached. Each instance can possibly have more than a single environment
associated to it. Each environment can be either graphical or text-based. In
the second case it is generally reachable through ssh.

17

Design

Home Page Login Page

Front-end
Remote
Desktop

Load Balancer
+

Ingress Controller

OIDC Server
(Authentication)

Personal Storage
& File Sharing

CRDs

RBAC
(Authorization)

API Server GraphQL
Relay

AttachesEnvironment
(VM/Container)

Instance
Operator

Instance Business Logic

Templates Get

Instances

Get – Watch

Create

Templates

Refers to

Sp
aw

ns

Tenant
Operator

Tenant Business Logic

Tenants
Get – Watch

C
on

fig
ur

es
Owns

Fr
on

te
nd

:
W

eb
Br

ow
se

r
B

ac
ke

nd
:

K
ub

er
ne

te
s

C
lu

st
er

Figure 3.1: Overall schema

Templates A Template can be seen as a “model” that describes how an
instance should consist of. Its specification holds information relatively to the
image to be used in the instances created from that template, if it the instance
will be based on a virtual machine or on a container, the maximum amount of
resources that will be available for the environments and other details.

18

Design

Tenants A Tenant represents a CrownLabs user, whether they are students,
professors or administrators. Each user has an associated namespace in Ku-
bernetes, an account on the identity provider system and reserved space on
an internal file manager. Thanks to the identity provider association it is also
possible to access the Kubernetes cluster using the Tenant credentials.

Workspaces A Workspace often overlaps with the concept of a course.
It mostly consists of a collection of Templates. Tenants have one or more
Workspaces associated to them, so that they can start Instances based on the
Templates that they belong to those Workspaces only. A Tenant can be a User
or a Manager for a given Workspace.

3.2.2 GraphQL and qlkube

While kubectl is a a great tool for managing clusters while keeping full control
over their status, it is not really suitable for users which have no experience
with command line application as well as enough knowledge of the Kubernetes
infrastructure. There are several graphical user interfaces and dashboards
designed for managing Kubernetes clusters, but still they may not be ideal for
whose who can not be considered system administrators or still power users,
due to the presence of a large number of options and views which could be
confusing for the “basic user”.

Therefore, since CrownLabs basically consists of a Kubernetes Cluster,
virtually any client which supports making REST calls, which are HTTP
calls, could be used to be interfaced with a Kubernetes cluster. Specifically,
a common web browser could be exploited for running a more user-friendly,
possibly custom, interface.

Modern web development techniques however makes use of technologies that
ease writing code, both reducing the time needed and enforcing correctness.
GraphQL is one of these technologies. Initially developed by Facebook, it
consists of a language and the relative infrastructure for making special kinds
of requests (called queries that can be translated into plain REST calls) which
include, other than possible parameters needed to accomplish them, which
fields are required in the given response.

19

Design

Client (e.g. browser)

XHR

GraphQL client

Kubernetes cluster

API Server

qlkube

GraphQL relay

Rest

K8s
resolversolvers

GraphQL

⇌

JSON

Figure 3.2: GraphQL relay schema

While it is possible to write a backend directly with GraphQL, another way
is to have a middleware (like Apollo Server) which translates GraphQL queries
into regular REST calls. Such kinds of software often offer the possibility of
automatically generate the whole GraphQL schema from an existing REST
API schema; this is the case of qlkube: by using Apollo Server as a base, it
adapts Kubernetes REST API to be used through GraphQL.

This approach has several advantages over standard REST calls:

• it decouples the data required by the client respectively to the REST
interface (for example, a single GraphQL request could be equivalent to
multiple REST calls which retrieve an entity and several nested properties)

• it reduces the traffic and the possible elaboration from the backend

• it avoid exposing unnecessary information

Furthermore, Apollo Server also includes a powerful tool (Apollo GraphQL
Playground) which enables writing queries with the support of code completion
and the ability to test the created queries. Ultimately, the counterpart, Apollo

20

Design

Client, is able to generate TypeScript helper functions and types that can be
used by a TypeScript based frontend application, which eases development and
eases correctness.

Thanks to a modern and consistent backend it is then possible to build a
client web application which can be suitable for use by students and teachers
without the need of actual training.

Operation

As depicted in Fig. 3.1, the client that is going to communicate with the
Kubernetes cluster, can interact with a relay through GraphQL. The Fig. 3.2
focuses on the various steps that take place when a request is made through
GraphQl.

The client calls a function on the GraphQL client (e.g. Apollo Client), which
prepares the query with the GraphQL language and sends is at a POST request
to qlkube. Within qlkube (that runs inside the cluster1), the query is processed
by the GraphQL server (e.g. Apollo Server) and resolved thanks to functions
provided by qlkube itself. Resolver function make traditional REST calls to
the Kubernetes API Server and are used to compose the final JSON reply that
is being sent back to the client.

3.3 Remote desktop management
In case of graphical environments, the user can interact with a remote desktop.
Each running instance, in its status, indicates the URL on which its remote
desktop is accessible. The web-based frontend automatically shows a button
that opens the remote desktop in a new window.

The remote desktop through enables full mouse integration and an almost
complete integration with keyboard (some combinations of keys would interfere
with both the client operating system and browser and cannot be directly
forwarded to the remote environment).

1The fact that this component runs inside the cluster is not actually required. In the
CrownLabs setup, this choice is made for sake of convenience and simplicity.

21

Design

3.4 Exams and exercises
Most of this thesis work focused on adapting the CrownLabs infrastructure in
order to deliver environments suitable for exams sessions and exams simulations.
The following sections illustrate the issues and the design choices undertaken
to solve them.

3.4.1 User management
The whole CrownLabs infrastructure is not currently integrated with the
Polytechnic Single-Sign-On system and this implies that users of the platform
cannot directly log into the platform. Students and professors who are interested
in working with CrownLabs have to be registered and managed separately by
CrownLabs SSO.

Requiring examinees to register prior the exam is not institutionally com-
fortable, also considering that a separated login procedure would be required
prior to the exam itself.

For the reasons above, combined with the fact that students attending exams
should require no access to the CrownLabs frontend dashboard, the exams
integration prospects a user-less design. As such, examinees do not have an
associated Tenant and are not required/able to log into CrownLabs for taking
the exam.

3.4.2 Access flow
In order to access instance, the student who is attempting an exam or a
simulation would start from a Moodle quiz (available inside the Polytechnic
didactic portal). Since access to CrownLabs has to pass through Moodle, the
integration plugin can be the responsible component for authorizing access to
instances.

Professors interested in using CrownLabs can insert a special type of question
inside the quiz, that will provide access for each student. This way, inside
the quiz attempt, each student will find a special link that redirects to their
instance.

22

Design

Authentication

The first iteration prospects no explicit authentication. The exam quiz securely
generates a personal access link for each student. Such link includes the
following information for each student:

• an user identifier (student’s matricola),

• the course identifier,

• an HMAC2, generated combining the two parameters above, using a fixed
key which can be set per each exam session.

The generated link is then used to access the instance. Logging is adopted to
check IP addresses which connect to each instance, in order to provide alerts
in case of usage of connections from different addresses to the same instance.
This approach would still be weak in case students could view and share said
generated link.

For this reason the Respondus Lockdown Browser has been used for delivering
exams. This proctoring tool indeed provides no way to access and modify the
address bar and seeing link destinations, thus the URL of the visited web pages.
This partially solves the issue of communicating personal access links to the
instances.

As a second step, instances could be authenticated through OpenID connect
by the ingress controller. Users must have signed into the university SSO
system (access to the quiz implies that the user is already authenticated), which
can grants authentication to each instance.

3.4.3 Infrastructure
The exams infrastructure consists by several accessory components that are
put beside the existing CrownLabs infrastructure. This section illustrates an
overview of such components, which detailed behavior is further discussed in
the implementation chapter.

2A keyed-hash message authentication code may be used to simultaneously verify both
the data integrity and the authenticity of a message. The easiest implementation is a
concatenation of the data to be hashed and a key.

23

Design

Landing

This component mainly acts as an interface between the Kubernetes cluster
and Moodle. Links generated by the special Moodle question type point to the
Landing component. Given the link, an Instance is identified. The following
conditions can occur:

• the Instance exists, it is ready and reachable → the user is redirected to
the remote environment desktop;

• the Instance exists but is not yet ready → the user sees a loading spinner
until the instance becomes ready, then they are redirected;

• the Instance is not ready → depending on the configuration of the Landing
component, the instance can be created on demand or return an error to
the user.

Content downloader

This component runs as an init container3 and is responsible for pre-populating
the instance at creation time. This enables customizing each exam session/sim-
ulation (possibly also per each student in case it is required) through a field
present inside the Template.

Terminator

This component runs for the entire duration of the exam/exercise session. It
polls a specific Moodle endpoint which returns which attempts are still open.
Once attempts finish, the Terminator component stops the associated instance.

Submitter

This component handles the termination of the instance. Right after termination
of each instance, a Job running the submitter component is launched. Such

3An init container is a special type of container that can be specified in the specification
of Pods. It consists in a container which is launched prior than the actual pod containers,
which will wait for the completion of any init container specified for the pod.

24

Design

component collects the content elaborated by the student and uploads it to an
endpoint specified in the Template of the Instance.

Collector

This component has been used before the Moodle integration has been com-
pleted. It consists in a simple web server onto which files can be uploaded by
the Submitter jobs. It also offers a protected file manager graphical interface
so that results can be retrieved through an user friendly experience.

3.4.4 Exam lifecycle
The following section illustrates the main actions and actors that would be
involved from the beginning to the end of an exam supported by CrownLabs.

Fig. 3.3 shows a simplified schema of the lifecycle of an exemplified exam.
The main involved actors include:

• the student, which interacts through a browser;

• Moodle, the exam platform that actually runs the exam;

• the CrownLabs Landing component (see the previous section);

• the CrownLabs Instance that is associated to the student doing the exam.

Exam startup

As soon as the exam starts4, the Moodle back-end contacts the CrownLabs
Landing in order to start the Instance for the Student attempting the exam.
The Landing component then creates a new Instance.

Exam fulfillment

The exam runs normally, with the possibility for the student to answer other
questions within the quiz.

4to minimize, if not nullify, the amount of time that a student has to wait before the
Instance is ready, the startup could also be done before the actual beginning of the quiz
attempt, on the welcome page for the attempt itself.

25

Design

Student

Exam end

Moodle

Exam end

Begin exam

CrownLabs

Landing

Start instance

CrownLabs

Instance

Collect

results

Start instance

Stop instance

Save results

Answer question

CrownLabs question
Get instance

Work on instance

Instance screen

Figure 3.3: Exam lifecycle

A special type of question within the quiz then requests the Instance screen,
which is forwarded by the Landing component to the student browser. At this
point the attention shifts on the Instance, onto which the student can perform
the tasks requested by the exam.

Exam termination

Once the exam ends (in Fig. 3.3 is depicted the case in which the deadline for
the exam expires, but the student can also stop the exam on their behalf), the
Instance is stopped and results are collected and passed to Moodle.

26

Chapter 4

Implementation

This chapter illustrates a more detailed overview of the infrastructure imple-
mentation relatively to delivering exam environments through the CrownLabs
platform.

4.1 Container based instances
It has been assumed that the delivered virtual environments are simple enough
to work inside containers. This assumption simplifies the whole solution and
eases the management of security. The following sections further elaborate this
aspect.

4.1.1 Security context
One of the major aspects that must be considered in this kind of infrastructure
is unarguably security.

It is a good security practice to apply the least privilege paradigm to con-
tainers security configuration: this generally includes disabling root access.
This setting, however, prevents basic administrative commands to be exe-
cuted from within the container, commands that would be required to have
an operating-system-like interface. The following exemplary basic features will
not be functional.

27

Implementation

• Services: proper services management would not be functional. Several
system components rely on services. Disabling the possibility to start and
manage services and daemon may not provide access to certain kinds of
features that might be necessary for some applications to run correctly. In
most cases, these include graphical user interface based applications.

• Package managers: system utilities that manage packages (for installing,
updating and removing software) practically always require to be run as
root. Preventing package management is a major limitation when the aim
is to provide a complete desktop environment.

• System configuration: many aspects of the operating system need to be
configured through a system account for security reasons. Disabling the
root account prevents the user from modifying system configuration files
and objects.

A weaker security context which lets the user become root would be required
could circumvent some of these limitation, but would expose the whole cluster
to high severity security flaws. Even within a container, a process running as
the root account can exploit privilege escalation techniques to “get out” of the
container and gain access over the physical node. The CrownLabs infrastructure
could be potentially used by non-trusted users. For this reason, the security
context has to be as restrictive as possible, to avoid the risk of compromising
the whole system.

4.1.2 Single application container

Because of security implications and general Docker guidelines, the actual imple-
mentation of CrownLabs uses single application instances (for container-based
instances). This means that each environment that it would be troublesome
to run more than a user application within the same environment. Currently
the desktop interface of the container-based instances is stripped down the
minimum needed to run the main application. It provides no way to start
applications (no launcher menu is available) and the main application is started
by the pod itself as it launches. In case the user closes the application it
would be launched again by the pod management logic of Kubernetes. The
desktop environment is run as another container and has no knowledge of which

28

Implementation

applications could be started. Still, there would be no way to start another
container within the same pod.

One possibility could be to start a new process from the application container
itself: in this case some kind of custom application should be build within the
main application container, which could show some kind of window that could
then be used to start other applications.

In general however these behaviors are not provided by CrownLabs out of
the box and are discouraged.

Container creation

Virtually any application could be made available to be run in a CrownLabs
Instance. New applications can be created by just “containerizing” it, i.e.,
writing a self-contained Dockerfile for the application layer, without introducing
strict bindings with the graphical components that would make the deployment
monolithic and thus more difficult to maintain. Containers must not include
desktop environments, which is provided by the CrownLabs infrastructure itself
(see next sections). Two sample applications have been developed for testing
purposes but have both been used within laboratories and exams by hundreds
of students.

PyCharm The Dockerfile that builds the PyCharm application container
starts from a Ubuntu 20.04 image. From this image, several libraries are
installed to make PyCharm work. PyCharm CE is then downloaded, extracted
and dynamically configured in order to be able to run seamlessly. In fact, before
launching the PyCharm executable, a set of pre-configuration files are copied
in the proper locations in the resulting image. This allows the software to work
out-of-the-box, without any splash screen (e.g., to confirm the license terms),
for a better user experience.

4.1.3 Browser based remote desktop: (no)VNC
In order to give users a simple and effective way to access remote environments,
several existing protocols can be used. One of the most known protocols that
enable remote desktop control is VNC.

29

Implementation

VNC

Virtual Network Computing is a graphical desktop-sharing system that can
be used to remotely control another computer. It transmits the keyboard
and mouse input from one computer to another, relaying the graphical-screen
updates, over a network.

VNC is platform-independent: there are clients and servers for many GUI-
based operating systems and for Java. Multiple clients may connect to a VNC
server at the same time. Popular uses for this technology include remote
technical support and accessing files on one’s work computer from one’s home
computer, or vice versa.

The original VNC source code and many modern derivatives are open source
and can thus be publicly accessed. It is a robust protocol which is used by
many well tested open source implementations.

The core of VNC is the Remote FrameBuffer (RFB) protocol, an open simple
protocol for remote access to graphical user interfaces. Because it works at the
framebuffer level it is applicable to all windowing systems and applications,
independently from the platform.

noVNC

The use of VNC however requires a client to be installed on the user’s machine.
To avoid complicating the user experience and offering a more streamlined
access flow, CrownLabs uses noVNC : a web implementation of a VNC client. It
is both a library written in JavaScript and WebAssembly and a web application
that uses such a library. Thanks to noVNC it is possible to access and
control instances directly from within the browser. A minimal user interface
enables clipboard sharing and management of the VNC connection. Overall
user experience, thanks to the WebAssebly implementation of RFB, is highly
performant and with a low footprint in terms of network, CPU and memory
requests on the client device.

While noVNC surely has many advantages, it surely has one major drawback:
VNC protocol works over a TCP and web browsers cannot directly connect to
sockets. The solution is to use WebSockets.

30

Implementation

WebSocket

WebSocket is a communications protocol that provides full-duplex commu-
nication channels over a single TCP connection. WebSocket is designed to
work over HTTP ports 443 and 80 as well as to support HTTP proxies and
intermediaries, thus making it compatible with HTTP. To achieve compatibility,
the WebSocket handshake uses the HTTP Upgrade header to change from the
HTTP protocol to the WebSocket protocol.

The WebSocket protocol enables interaction between a web browser (or
other client application) and a web server with lower overhead than half-duplex
alternatives such as HTTP polling, facilitating real-time data transfer from
and to the server. This is made possible by providing a standardized way for
the server to send content to the client without being first requested by the
client, and allowing messages to be passed back and forth while keeping the
connection open. In this way, a two-way ongoing conversation can take place
between the client and the server. The communications are usually done over
TCP port number 443 (or 80 in the case of unsecured connections), which is
beneficial for environments that block non-web Internet connections using a
firewall.

Websockify Websockify is a rather small-footprint component that translates
WebSockets traffic to normal socket traffic. Websockify accepts the WebSockets
handshake, parses it, and then begins forwarding traffic between the client
and the target in both directions, hence allowing a browser (with a suitable
JavaScript client) to communicate with any remote server.

This component is required because the client browser needs a bi-directional
interaction with the remote desktop, hence using a websocket connection.
However, another component is required to translate the websocket connection
into standard socket data, to be consumed by the VNC server on the remote
server.

The Websockify container has been designed to be executed as a sidecar
(see Section 4.1.5) inside the same pod of the VNC server without any further
configuration. However, it could be executed in other contexts as well by setting
the necessary environment variables, if needed.

31

Implementation

In CrownLabs, the C version of Websockify has been chosen in order to
provide a more efficient (in terms of space, memory and CPU usage) imple-
mentation: the “standard” version is written in Python and, as such, implies
much more overhead in several aspects.

Compared to the Python version, the C version does not include a static web
server, which is used to host the web application that connects to Websockify
in order to reach the actual server running in the backend.

4.1.4 Single noVNC deployment

As mentioned, the C version of Websockify is more performing and requires
less resources to be run, however it lacks some minor features, for example
hosting the noVNC client files. For this reason, the initial implementation of
the containerized desktop environment had one more sidecar container per each
Pod which served the noVNC client files and proxied the websocket connection
to the same http port. The noVNC static files however had no actual need
to be present in every instance. This lead to the decision to create a single
noVNC deployment (with multiple replicas in order to improve resilience and
availability) so that the instances could have made lighter and decoupled the
VNC backend from the frontend, for further easing the maintainability.

4.1.5 Sidecar containers infrastructure

In Kubernetes, pods can have more than a single container inside them. All
the containers within a pod share the same network namespace1 and can share
volumes and other resources. Conventionally, a pod has a main2 container while
the others, considered support processes, are called sidecars. As mentioned, the
first implementation included a third sidecar which hosted the noVNC client
files.

1Containers generally run in insulated network namespace, which means that their network
is insulated. Within a pod instead, processes in different containers can directly reach each
other as if they were run in the same container.

2The fact that one of the containers is the main one is just a convention since it has no
actual implications in the configuration of the Pod Specification, nor in the way they work.

32

Implementation

Ingress

controller

Browser

noVNC

runtime files image

 1

Instance Pod

X+Vnc Server

Desktop environment

Application container

Websockify

 X server protocol

 VNC (tcp) protocol

 2

 VNC in WebSocket

Figure 4.1: Container based instance graphics infrastructure

A container-based instance basically consists in a pod which runs the compo-
nents described above as sidecars. See the Fig. 4.1 for a clearer representation.
The application container runs along with two other containers: one runs
Websockify, while the other holds the actual desktop for the instance.

XVnc Server

Linux desktop traditionally works thanks to the X Window System, generally
with its most famous implementation, X.Org. Summing up, it works by
managing a framebuffer (practically, a matrix of pixels that can be stored in
the system memory or in the GPU memory) and exposing (high and low level)
directives to interact with such framebuffer to other applications, usually by
means of Unix sockets.

33

Implementation

The XVnc server is based on a standard X server, but it has a virtual screen
rather than a physical one. X applications display themselves on it as if it
was a normal X display, but they can only be accessed via a VNC viewer.
Technically, this consists in two different servers (the actual X server and a
VNC server) that are bound together and provide a virtual desktop both to
the user (through the VNC protocol) and to the final application (through the
X core protocol).

There are several implementations of such type of server. For CrownLabs,
TigerVNC has been chosen, since it provides automatic desktop rescaling
features. Note that TigerVNC server cannot be considered a regular X server
since it cannot display the desktop on a physical screen.

TigerVNC container

XVnc

VNC Server

X Server

Fluxbox

Exposed X Server port

Exposed VNC port

Figure 4.2: X+VNC container structure

This container also includes Fluxbox, a lightweight window manager which
provides an effectively desktop-like user experience and, above all, it enables
menus and sub-windows to be rendered correctly. The whole container is
based on the Ubuntu base image and the X server instances starts with no
authentication. This implies that any X client would be able to connect to
such server and display content on it, if the IP address of the Pod is known.
Network policies can be used to avoid such behaviors in case it is necessary.

34

Implementation

In order to make this component work in a containerized environment, it is
required to assert the following aspects:

• The DISPLAY environment variable must have the same value in the X server
instance and in the application container. This requires the component
that coordinates the deployment of the two containers to set the DISPLAY
value accordingly when starting the two Dockers.

• The X server will create a socket file in folder /tmp/.X11-unix/, which may
need to be shared with the container running the application. This requires
the component that coordinates the deployment of the two containers to
possibly mount the same shared volume under /tmp when starting the two
Dockers.

4.2 CrownLabs Infrastructure
This section illustrates implementation details of the CrownLabs infrastructure,
with a particular focus on the areas that influenced the use of CrownLabs for
exams.

4.2.1 Instance operator
The Instance Operator is the core component of CrownLabs. Like the other
CrownLabs operators, it is written in Go language and makes use of the
Kubebuilder framework. It simplifies writing Kubernetes software by scaffolding
code for controllers and CRDs.

The Instance Operator main task is the Instance Controller. Controllers
main method is called Reconcile: upon creation, update or deletion of the
managed resources, such Method is invoked. Its purpose is to actualize the
resource within the cluster. The original Instance Controller of CrownLabs was
responsible for starting and managing Virtual Machine Instances. This thesis
work added the support for container based instances. The schema on Fig. 4.3
shows a simplified overview of how a container based Instance is actualized on
the cluster.

For each Instance the following native Kubernetes objects are created.

35

Implementation

CrownLabs Production Namespace

Instance

Operator

Personal/Exam Namespace

Instance

Instance

PVC

Instance

Deployment

App
XVnc

Websockify

Instance

Ingress

Instance

Service

Binds to

Exposes

Exposes

 Owns

Reads

Creates

Figure 4.3: Instance Operator

• The Instance Deployment: this is the actual workload that carries the
Instance application. The pod created by the deployment includes what is
necessary for creating the instance desktop.

• The Instance PVC, which provides persistent storage for the Instance.
This is particularly critical during exams, since provides a certain resilience
against failures.3

3Depending on the Template specification, instances can be either persistent or not. For
this this work, only persistent Instances are taken into account, since such persistence is
crucial during Exams. Persistent storage provided by Kubernetes in CrownLabs cluster is
replicated and highly available. In case of failure, contents of persistent Instances is not
going to be lost. Also theoretically, in case of over-provisioning of cluster resources, this

36

Implementation

• The Instance Service which exposes the Deployment within the cluster.

• The Instance Ingress makes the Instance available over the Internet,
through an http endpoint that is written inside the Instance status.

All of these resources are set to be owned by the Instance itself. This way,
deleting the Instance resource results in deleting all the associated resources
without the need for the Instance Operator do to that “manually”.

Instance lifecycle

The following section illustrates in detail which components are involved in the
Instance lifecycle and the actions they perform.

In case any Instance is created, modified or deleted, since the Instance Opera-
tor is watching the Instance resource type, it will be notified by the Kubernetes
API server. This triggers the Reconcile method within the Instance controller.
See Fig. 4.4 to follow the main steps within this method.

The first action is to enforce4 all the required resources, as mentioned in the
previous section. When creating the Deployment for the Instance, the operator
checks the Instance Specification for the presence of the SourceArchiveURL
property: in case it is set, the created Deployment will include an InitContainer
that will run the ContentDownloader component (see the Content downloader
paragraph for further information).

An Instance can be created as not running: in this case all the resources
are prepared but the number of replicas of the Instance Deployment is set to
zero. As the Instance is set to be Running, the Deployment is scaled up and
the Instance is actually started.

At this point, the Reconcile method of the Instance Controller stops. The
Instance Operator however does not only include the Instance Controller:
between the subroutines that are performed by the operator, there is a periodic

enables fault tolerance in case one of the cluster nodes fails: instance deployments can be
re-scheduled on other nodes, with a small downtime for the user, without losing the stored
data.

4this operation is idempotent: if one of the resources already exists, the operator will check
that its specification, labels and annotations are correctly set, correcting them if necessary.

37

Implementation

No

Instance

Creation / Update

Spec.Running

changed?

Enforce Instance resources

End of Instance

Reconcile

No

Yes

Add initContainer
ContentDownloader

to populate PVC

Instance

SourceArchiveURL

is set?

Yes

Scale up/down

Deployment

Figure 4.4: Instance lifecycle - first part

check on all those running Instances that include a StatusCheckURL field in
their specification.

The endpoint provided in such field is contacted - as said, periodically -
to check the desired status of the Instance. When said endpoint returns an
appropriate value, the associated Instance would be set as not running.

As shown in Fig. 4.5, this change triggers the Reconcile method of the
Instance controller5 that first scales down the Deployment. Then, in case

5The Go routine that checks the external endpoint for the Instance desired status cannot
directly invoke the Reconcile method. Instead, an update is sent to the Kubernetes API

38

Implementation

Triggers

No

Yes

Poll Instance StatusCheckURL

until termination is requested

Instance Reconcile

Go Routine

Instance Reconcile
Terminate Instance

(Spec.Running ⇐ false)

Scale down

Instance Deployment

Instance

ContentDestinationURL

is set?

Start

Submitter Job

Instance lifecycle end

Figure 4.5: Instance lifecycle - last part

the Instance has a ContentDestinationURL in its specification, a new Job
(running the Submitter component) is started to collect the content generated
inside the Instance.

4.2.2 Monitoring
Cluster Monitoring is the process of assessing the performance of cluster entities
either as individual nodes or as a collection. Cluster Monitoring should be able
to provide information about the communication and interoperability between
various nodes of the cluster.

CrownLabs monitoring is achieved with the following set of instruments.

Server, which in returns, notifies the Instance Controller, that will run the Reconcile method.
The Instance status check routine could in fact be done by an external component, it has
been inserted as part of the Instance Operator just for convenience and organization reasons.

39

Implementation

Prometheus is an open-source systems monitoring and alerting toolkit.
It basically acts as a time series database. Whatever service that should
be monitored exposes a /metrics endpoint that is scraped at regular time
intervals. Targets to be monitored are discovered via service discovery or static
configuration. Thanks to PromQL it is possible to query the Prometheus
database and obtain desired data.

Thanos leverages the Prometheus 2.0 storage format to cost-efficiently store
historical metric data in any object storage while retaining fast query latencies.

Grafana is an open source visualization and analytics software. It allows
to query, visualize (see Fig. 4.6), alert on, and explore metrics gathered by
Prometheus.

Figure 4.6: Main Grafana Dashboard in CrownLabs

This monitoring stack has been crucial during the exam session held in
September: having a comprehensive visual of the cluster status can prevent
issues to happen before it is too late. Resource usage metrics above all, can

40

Implementation

be an indication of malfunctions that can be mitigated before they become
critical.

4.2.3 Single Sign On
Users in CrownLabs are modeled by the Tenant CRD. The Tenant operator
takes care of preparing all the resources associated to every user: a personal
Namespace, authorization resources like RoleBindings and ClusterRoleBindings
for accessing Templates, and an account on the Identity Provider that has been
chosen for Crownlabs, which is Keycloak.

Keycloak provides Single Sign On authentication: when an user needs to log
into any CrownLabs service, they would be redirected to Keycloak, that would
proceed to authenticate such user for the given service. Further integration can
be introduced, for using the university IDP as a source for authenticating with
Keycloak. This would enable users to be directly authenticated if they already
logged into any web-service provided by the university.

4.3 Exams and Exercises
The integration between CrownLabs and the university web services has been
done in different ways. An initial iteration used an API exposed by the didactic
portal, which returned information about students registered to courses and
exams. A second iteration left this approach to focus more on integrating with
Moodle.

4.3.1 PoliTO Exercise platform
The Polytechnic University of Turin offers to its student the possibility to make
practice in sight of the exam on a platform that is practically a clone of the
one used for exams. For this reason, the initial CrownLabs integration with
Moodle has been done through Exercise.

While for exams the number of students is known a priori and instances
startup can be scheduled before each turn of exams, it would not be possible
(with the current resources) to start up an instance per each student registered
to every course. For this reason, the Landing component (see Section 3.4.3)

41

Implementation

is configured to start instances when they are not found, upon visit of the
generated link. This allows starting up instances on demand.

Limits on the maximum numbers of instances is configured, so that an
message can be displayed when resources limits on the cluster have been
reached. This way students can retry at a later time.

4.3.2 PoliTO portal API interfacing
The integration done for the exercises platform has proven to be valid and
functional, however it presented a major drawback. Instances would be started
the first time the student tries to open the Instance itself. This would result in
a waiting time for the student which can be critical during an exam.

For this reason, the initial integration of the CrownLabs infrastructure
with the PoliTo didactic portal initially prospected an external agent. Such
component would use the didactic portal API to retrieve the list of students
booked for a certain exam and create all the necessary resources for a given
exam, then start every instance in advance, right before the beginning of exam.
This method has been used for the tests held in September and solved the
problem of the waiting time for students.

This solution however has been proved not to be easily manageable and
automatable for the following reasons.

• Some logic would have been created for automatically preparing the envi-
ronment for each exam, upon creation of the Moodle quiz.

• The didactic portal and the exams platform are rather weakly integrated.
Students who book an exam are not bound to a single Moodle quiz, the
student can choose which quiz to start in case more than one is available.
In case different quizzes require different environments in CrownLabs, it
would not be feasible to start an instance for each possible quiz and each
student who registered for such exam.

4.3.3 Moodle integration
A better integration has been designed in a second iteration. This solution
moves part of the logic into the Moodle plugin, removing the integration with

42

Implementation

the didactic portal. This way CrownLabs instances are started when the user
lands on the quiz attempt page. On that page, the quiz has not been started
yet and there is a time window during which the instances have some time
to start before the exam begins. When the student navigates to the special
question type that shows the link towards the instance, a loading page will be
shown in case the instance is not yet ready, automatically redirecting to the
desktop when it is ready. This solution reintroduces the issue of the waiting
time for the students, but such time would be rather shorter, if not none, since
the instance is started upon beginning of the quiz attempt.

This way it is possible to bind a Template directly to a Moodle question.
Only effectively used instances are created (so removing the possible overhead
of creating instances that will not be used by students that do not show up for
the exam) and with the correct environment.

4.3.4 Works delivery

The infrastructure set up for the September section used a rather simple
method for collecting material produced by students during the exam. Upon
termination of each instance, the Terminator component creates a job (running
the Submitter component) that uploads the contents elaborated by students
into a rather rudimentary http server. In a second phase, collected results have
been manually sent to the respective professors through emails.

The new Moodle integration introduces an endpoint on which uploading
such contents, so that professors can download them directly from the quiz
review.

4.3.5 Infrastructure

The following section better illustrates the technology behind each component
which takes part in the exams environment. Each component is designed to
be run inside the CrownLabs cluster as a container. Further details about
the implementation depend on the component and are discussed in the next
sections.

43

Implementation

Landing

The Landing component is written on Go language and includes the Kubernetes
client. For this reason it is necessary to provide a service account with the
right RoleBindings to the Pod that runs this component, in order to enable it
to manage instances.

CrownLabs cluster

K8s API Server

CrownLabs
Landing

Instance

id : string

template : string

running : boolean

customizationUrls : object

 contentOrigin : url

 contentDestination : url

 statusCheck : url

GET /api/instance

GET /api/instance/{id}

 PUT /api/instance/{id}

DELETE /api/instance/{id}

 List

Redirect

GET /api/template

Figure 4.7: Landing component API

As mentioned, upon each request, the logic of this component is able to
retrieve Instances from a given namespace and possibly create them, when the
startup flags are set to enable such behavior. The webserver contained in the
Landing component then replies back to each request with a redirect response
or with a user-friendly placeholder that communicates the instance is being
created and is not yet available.

44

Implementation

Content downloader

The Content downloader is a simple utility script that is built from Ubuntu
base image and includes cURL and unar.

cURL is a command-line tool for getting or sending data including files using
URL syntax. It supports HTTPS and performs SSL certificate verification by
default when a secure protocol is specified such as HTTPS.

unar is a command-line tool for uncompressing archives. It supports a great
number of archive formats.

This container accepts two parameters: the first is the source of an archive
to be downloaded. It is passed to cURL, which saves the file to a temporary
location. Subsequently, the second parameter contains a destination onto which
the downloaded archive has to be extracted.

It is worth mentioning that since, this component is made for being run
inside a container, the destination folder has to be specified in the volume
mounts at runtime, otherwise the downloaded content would be destroyed upon
termination of the container.

Collector

This component is a rather simple webserver written in Go. It has been initially
written to accept contents from virtual-machine-based Instances, thus providing
a simple web page onto which students could drag-and-drop files to be uploaded.
A simple backend accepts POST requests with binary encoded body that is
uploaded into a folder specified from the startup arguments.

In case of container-based Instances, the backend is not protected: a Network
Policy restricts access to this container only from Submitter Jobs.

In case of virtual-machine-based Instances, a JWT is passed as a query
parameter to recognize and authenticate the user. Such parameter is saved
into the Virtual Machine on startup through CloudInit.

45

Implementation

Submitter

The Submitter component is written in Node.JS. Its purpose is to process all
the files within a folder (passed as an argument to the container at runtime) and
submit it somewhere. The initial implementation used for the September session
first uploads the single files to the Collector component using Axios (a JavaScript
library for making http requests) through a POST request; subsequently it creates
a zip file containing the same files and emails them to an email address that is
built at runtime from a string passed from a configuration file and environment
variables.

The second implementation creates a zip file and uploads it to an endpoint
which is passed as an argument.

In order for this component to work it is clearly necessary to mount a volume
to the same directory that is passed as an argument, as the root of the files to
be submitted.

Exam-Agent and Terminator

In the first iteration, for the September session, a single component could
manage the “lifecycle” of an exam. Written in Go, it includes the Kubernetes
client (see the implications of the Landing component) and is interfaced with
the university didactic portal. It manages the whole lifecycle for a given exam.

• Prior to the beginning of an exam, it creates all the resources necessary to
hold all the resources of the exam:

– the Namespace for the Exam that contains all the other resources;

– a NetworkPolicy to avoid unnecessary network operations;

– Deployment, Service and Ingress for the Landing component;

– Deployment, Service and Ingress for the Collector component, if nec-
essary.

• If set with an appropriate flag, it creates and launches all the Instances
right after creating the exam resources.

• It waits, cycling all running instances and polling onto a given endpoint

46

Implementation

that returns if the associated Moodle quiz attempt is still running. Once
the attempt is finished, the Agent/Terminator terminates the Instance.

• Upon termination of the Instance, a Job running the Submitter is launched,
mounting the same PVC of the Instance, so that what has been produced
inside the Instance can be sent to the Collector component.

The second implementation is much simpler, since the Exam-Agent is not
required anymore. All instances are being started on demand in a single
Namespace which is already present on the cluster. The termination component
has been integrated inside the Instance Operator itself. A routine periodically
checks the running instances and polls an URL written directly inside the
Instance specification: if such endpoint returns a 404 error, the instance would
be terminated and a Submitter Job would be created.

4.3.6 Infrastructure hardening
While the standard CrownLabs network is rather permissive also to let student
experiment with the infrastructure, exams namespaces are hardened through
restrictive network policies. This is achieved thanks to Calico, the CNI used in
the CrownLabs cluster, which enables writing precise rules that mostly work
through a white-listing model. The only allowed traffic towards the Internet is
towards the port exposed by Websockify. Then some service traffic is allowed
within the namespace, e.g. communication between the Terminator and Moodle
or between the Landing and the Kubernetes API Server.

File-system redundancy: Ceph

CrownLabs cluster is equipped with Ceph: a distributed filesystem without
single point of failure. This ensures that the whole system stays healthy even
if one of the nodes crashes or physically breaks.

Backup system: Velero

Kubernetes provides a powerful and reliable infrastructure, however the risk of
making remarkable damages because of the human error is an actual issue. For
this reason, Velero has been deployed on the cluster. It consists of a backup

47

Implementation

system which can periodically save every resource in a Kubernetes cluster, also
theoretically easing migration and disaster recovery.

Velero is a backup and migration cloud native software designed to perform
disaster recovery and migrate resources across cluster. The main purpose of
Velero in CrownLabs is to mitigate the following eventualities:

• failed or bugged updates

• unintentional resources deletion

• catastrophical physical cluster destruction/loss of all control plane nodes6

Note that storing backups on the cluster itself could help to mitigate unin-
tentional resource deletions but it is not a great strategy, since the deletion of
volumes or related resources could lead to the deletion of backups themselves.

Velero can store backups of Kubernetes resources and possibly associated
volumes on several cloud native/proprietary storage solutions (such as AWS,
GCP, Azure, VMWare, OpenStack, etc.).

In case of full bare-metal environments, it is possible to use Minio, an open
source, Kubernetes-native object storage solution which is compliant with
Amazon’s S3 API. This provides a valid storage target for Velero, provided
that the mounted data path is not being stored on the cluster itself.

In the case of CrownLabs, while Minio is deployed on the cluster itself, the
storage backend that is used is provided through iSCSI by an external NAS
server. See Fig. 5.1 for further information about the cluster configuration.

Infrastructure resilience: multi-master K8s cluster

While the original intent of CrownLabs was to provide a best-effort service, the
fact of using it within exams required further work to improve the resilience of
the infrastructure. The initial deployment of Kubernetes inside the CrownLabs
cluster prospected a single master node, running as a virtual machine within

6this would require backups to be stored in a physically different/distant location relatively
to the cluster

48

Implementation

one of the physical nodes. In case the physical machine running the master
node encountered any issue, the whole cluster would fail.

The solution implied adding replicating the virtual master nodes into two
more physical servers so that in case of failure of one of them, the platform
could keep working minimizing service losses.

This configuration is knows as high availability Kubernetes deployment.
Master nodes run several critical services, such as the API server and the etcd
database7 and need to be in odd cardinality (in order to reach the quorum in
case of inconsistencies).

Network scalability

Kubernetes offers powerful load balancing capabilities that, however, can not
be completely enabled because of infrastructural limitations of the place in
which the physical cluster has been placed.

MetalLB MetalLB is a load-balancer implementation for bare metal Kuber-
netes clusters, using standard routing protocols. Among the configurations
it offers for providing load balancing capabilities there are ARP and BGP
working methods.

ARP This is the technology that has been initially deployed on CrownLabs,
since BGP was not initially available. In this way, the cluster nodes elect one
of them as the one that will receive all the traffic through a virtual ip that is
announced on the physical network through gratuitous ARP. At that point,
such node will forward the incoming request to the node that actually holds
the required service. This configuration is fault tolerant (since in case of failure
of the elected node, another node will be elected, with rather short down-times)
but demands load balancing to one of the cluster nodes, thus not being real
load balancing and possibly becoming a bottleneck.

7The etcd servers can be actually run on external nodes that are not part of the cluster
itself. Deploying etcd directly within the master nodes however is much simpler and further
eases management tasks.

49

Implementation

BGP This second way requires the routers present on the physical network
to support this protocol in order to properly work. In this configuration, thanks
to the multi-path routing capabilities of BGP, the campus routers can act as
actual load-balancers, scattering requests across the whole cluster. In case the
request is being forwarded to a node that does not host the required service,
the request is forwarded to the correct one.

Thanks to the network management team of the university though, BGP
has been activated on the network segment of the cluster and MetalLB has
been configured accordingly, enabling proper load balancing across the cluster.

50

Chapter 5

Validation

The whole infrastructure has been tested in different ways, first to better
understand the feasibility of the solution. Secondhand, results have been
collected to understand the effective scalability potential.

After the initial feasibility tests, the CrownLabs infrastructure has been
used to carry out a real exam case, within the exams session held in September
2021 for the Computer Sciences courses.

5.1 Testing conditions
CrownLabs runs on a bare-metal Kubernetes cluster made of 6 physical servers
with the following specifications:

• 4 Dell PowerEdge R740x servers, each one with

– 1 Intel Xeon (28 virtual cores),

– 256 GiB of RAM,

– 1 TB of SSD storage;

• 2 Dell PowerEdge R740x servers, each one with

– 2 Intel Xeon (64 virtual cores each),

– 512 GiB of RAM,

51

Validation

– 8 TB of SSD storage;

• 1 QNAP TES-1885U offering iSCSI storage (used for backups);

• 1 Cisco SG350X switch providing 1 Gbps interfaces for maintenance
purposes;

• 1 Cisco SG350XG switch providing 10 Gbps interfaces for the data plane.

Overall the cluster provides 336 virtual cores, 2 terabytes of RAM and 20
terabytes of SSD storage. Each server is connected with aggregated 10 Gbps
links to the data plane switch and with 1 Gbps to the maintenance switch. The
two switches are then connected to the Campus network, respectively with a
10 Gbps link and a 1 Gbps link. The overall structure is depicted on Fig. 5.1.

The machines are physically installed inside the university and are managed
by the CrownLabs team.

Cisco SG350X
(1Gbps)

Cisco SG350XG
(10Gbps)

To Campus Network

6x Dell
PowerEdge R740x

Maintenance Network

QNAP TES-1885U
(backup)

Figure 5.1: Physical infrastructure

All the tests and operations have been carried out on the cluster described
above.

52

Validation

5.2 Measurements
The following section includes all the various tests, starting from the feasibility
ones, to the production operation occurred in the September exam section.

5.2.1 Load tests
An initial test has been done by overloading one single machine (with 28 virtual
CPUs) with 30 running PyCharm Instances which have been used by a group
of volunteers.

The running Instances has been used in rather unusual ways, by running CPU
intensive task or operations which caused noticeable video output operations.
The following results emerged from this trial.

• The network load has proven not to be an issue: the most intensive video
output operation never required more than 10 megabits per Instance
(Fig. 5.3 shows the overall network usage during the exam, which never
went beyond 200 megabits per second).

• The overall user experience was quite surprisingly not compromised, re-
gardless of the high CPU load on the machine (due to the rather aggressive
usage during the test).

5.2.2 Startup tests
To test startup times, 350 PyCharm Instances have been started, scattered
across the whole cluster.

The Instance resources have been created from an automated script that
has been run from outside the cluster. The Kubernetes API Server and the
Instance operator processed all the requests (both coming from the computer
that created the instances and from the Instance Operator itself) without
accumulating delays or needing to queue requests.

The whole operation never exceeded 8 minutes: such time has been clocked
from the creation of the Instances resources to the moment in which all the
Instances became ready and accessible. Note that this phase does not include
the PyCharm indexing phase (visible in the initial peak in Fig. 5.2) that

53

Validation

occurs right after the container startup; during the indexing phase PyCharm is
partially unresponsive but still usable.

5.2.3 Delivery tests
Further tests have been done to better understand the behavior of the infras-
tructure during another critical phase, that is the final moment of the exam.
During this time, the contents produced by the examinees are submitted and
the load on the component that has to collect all the results can be high. Two
solution have been tested.

NextCloud

NextCloud is the storage system which has been initially integrated in Crown-
Labs for letting students persistently store data inside Instances, allowing
sharing them between other students and professors. It provides several li-
braries that enable programmatically working with its filesystem without too
much programming effort.

This solution was used by setting the Submitter component so that it
uploaded files in the Instance PVC onto a given NextCloud endpoint.

Such system however has proven to be too slow and unstable. Worst case
tests with 350 instances have been run: the submission has been triggered
concurrently on every instance, uploading 5 small text files (less than 2 Kilobytes
in total) onto NextCloud. Said test completely paralyzed the NextCloud
deployment inside CrownLabs cluster, that presents 3 replicas of the NextCloud
server and 3 corresponding replicas of its PostgreSQL database. This mainly
happened because of NextCloud needing to contact its database multiple times
for each file operation.

Collector

The Collector component, initially developed for handling uploads for virtual-
machine-based Instances, has been adapted to handle simple file uploads.

It worked flawlessly if compared to NextCloud: requests have been processed
immediately as soon as the Submitter Jobs started. The same number of

54

Validation

Instances pushed the same files used to test the NextCloud based solution onto
a single replica of the Collector without the need of queuing requests.

5.2.4 Production results
The final, overall number of students who signed in for such exam session was
around 750.

To avoid overloading the system and managing possible overlappings, the
exam has been divided into 3 rounds (i.e. 250 instances per round). Each
round lasted 90 minutes, with 30 minutes between each of them. The cluster
has been cleaned up from all active CrownLabs Instances after informing all
the users subscribed to the service, then public access has been disabled.

For this operation, because of some limitations of the Moodle integration
being incomplete at the time of the exam, all the Instances for the respective
round have been started up upon each turn.

The resources limits have been set as follows:

• CPU has been limited to a whole virtual cores per each Instance, with
0.75 virtual cores reserved,

• Memory has been limited to 2 Gigabytes per each Instance.

The maximum load on the cluster has been detected only during the startup
phase, given that the PyCharm application needs to perform intensive I/O
operations during startup. The overall cluster usage in terms of CPU never
exceeded 75 units out of 336 virtually available units.

Fig. 5.2 and Fig. 5.3 show respectively the number of CPU threads and
bandwidth usage during the second round of the exam. Each line represents
usage of each Instance.

55

Validation

Figure 5.2: Overall CPU Usage on September exam session (turn 2)

Figure 5.3: Overall bandwidth usage on September exam session (turn 2)

56

Chapter 6

Conclusions

The versatility of an infrastructure like the one behind CrownLabs has been
crucial for making this work possible. The power of Kubernetes and its general
purpose capabilities can be exploited to build complex applications without
the need of writing critical procedures. Reliability and resilience are provided
out of the box.

The tests have proven the effectiveness of the system, which provided a much
more stable, usable and comfortable experience for the students, in comparison
to CodeRunner. At the same time, it demonstrated the higher scalability of
container-based Instances in contrast with virtual machines, especially in terms
of startup time and resources usage.

Both professors and students from the Computer Sciences courses appreciated
this solution: professor can build exercises with more freedom and without the
concern of unstable environments; students, on the other hand, can work on
the same environment on which they studied during laboratory experiences,
without the limitation of custom solutions.

Further work is planned for better integrating the platform with the university
exams infrastructure. Given the success of the September session, this solution
has been chosen for the more critical winter exam session which will roughly
expect ten times the number of students had on September.

57

	Introduction
	Goal
	Structure of this thesis

	Background
	Related works
	VLAIB
	Coderunner
	Commercial products (AWS/Azure)

	VMs based CrownLabs
	Virtual Machines VS Containers
	Infrastructure of a desktop
	Remote Desktop Protocols
	Kubernetes
	Kubernetes resources
	Kubernetes components

	PoliTO Exam platform
	Moodle
	Computerized exams in presence
	Remote exams

	Design
	Operators-based infrastructure
	Kubernetes backend
	CrownLabs resources
	GraphQL and qlkube

	Remote desktop management
	Exams and exercises
	User management
	Access flow
	Infrastructure
	Exam lifecycle

	Implementation
	Container based instances
	Security context
	Single application container
	Browser based remote desktop: (no)VNC
	Single noVNC deployment
	Sidecar containers infrastructure

	CrownLabs Infrastructure
	Instance operator
	Monitoring
	Single Sign On

	Exams and Exercises
	PoliTO Exercise platform
	PoliTO portal API interfacing
	Moodle integration
	Works delivery
	Infrastructure
	Infrastructure hardening

	Validation
	Testing conditions
	Measurements
	Load tests
	Startup tests
	Delivery tests
	Production results

	Conclusions

