
Politecnico di Torino

Master’s Degree in Computer Engineering
ACADEMIC YEAR 2020/2021

December 2021

Prototyping a cloud resource broker

Supervisor

prof. Fulvio Giovannni Ottavio RISSO

Candidate

Giuseppe ALICINO

Summary
As Kubernetes gains adoption, clusters start to be everywhere: on
private data-centres, on the cloud, at the edge of the network and
so on. With Liqo, a project carried out by the Computer Networks
Group at Politecnico di Torino, applications and services can leverage
those resources, by creating dynamic and opportunistic peerings of
clusters. Starting from this list of features this thesis has the aim of
doing another step. This work, carried out by the Computer Networks
Group at Politecnico di Torino and developed with the collaboration
of TOP-IX, tried to extend the concept of resource sharing already
implemented by Liqo creating a prototype of resource brokering: a
broker is a new type of cluster which has the task of aggregate all
the resources shared by other normal clusters and "sell" them to every
cluster which has an Incoming Peering with it in a smart way. With
this new concept will be possible to have a trusted cluster to connect
with which can satisfy every resources request grouping a lot of offers
sent by other providers. All these features are implemented using
the most important Liqo core concepts (e.g. Peering, reflection, pod
offloading). This is a prototyping work so there is no explicit attention
to the performances but there are some tests and measures that have
been done to evaluate the impact of these new features.

ii

Table of Contents

List of Figures vi

1 Introduction 1
1.1 Goal of thesis . 1

2 Background technologies: Kubernetes and Liqo 3
2.1 Kubernetes . 3
2.2 Kubernetes: a bit of history 4
2.3 Applications deployment evolution 4
2.4 Container orchestrators 6
2.5 Kubernetes architecture 8

2.5.1 Control plane components 8
2.5.2 Node components 11

2.6 Kubernetes objects . 12
2.6.1 Label & Selector 13
2.6.2 Namespace . 14
2.6.3 Pod . 14
2.6.4 ReplicaSet . 14
2.6.5 Deployment . 15
2.6.6 Service . 16

2.7 Virtual-Kubelet . 18
2.8 Kubebuilder . 18
2.9 Liqo . 20

2.9.1 Liqo Idea . 20
2.9.2 Cluster Management 21
2.9.3 Discovery . 22

iv

3 Towards the broker design 26
3.1 Liqo peering phase . 26

3.1.1 Overview . 26
3.1.2 Liqo ForeignCluster Operator 28
3.1.3 Liqo ResourceRequest Controller 31
3.1.4 Liqo Broadcaster 33
3.1.5 Liqo ResourceOffer Controller 35
3.1.6 Liqo CRD Replicator 35

3.2 Pod Offloading and communication 36
3.2.1 The Role of the Liqo Virtual Kubelet 36
3.2.2 Shadow pods 37
3.2.3 Namespace Offloading 37
3.2.4 Pod communication and IPAM 38

4 Implementation 43
4.1 Overview . 43
4.2 The concept of broker in Liqo 43
4.3 Broker Operator . 44

4.3.1 Broker Mode 44
4.3.2 Broker operator structure 46
4.3.3 Startup process 47
4.3.4 Peering phase 54

4.4 Pod Offloading phase 61
4.4.1 The Namespace Offloading 62

4.5 The network problem 63
4.5.1 The solution . 65

5 Results 67
5.1 Overview . 67
5.2 Performance Tests . 67
5.3 Final Evaluation . 69

6 Conclusions and Future work 70
6.1 Some General consideration 70

Bibliography 72

v

List of Figures

1.1 General brokering scenario 2

2.1 Evolution in applications deployment. 5
2.2 Container orchestrators use [9]. 7
2.3 Kubernetes architecture 8
2.4 Kubernetes master and worker nodes [11]. 12
2.5 Kubernetes pods [11] 15
2.6 Kubernetes Services [11] 17
2.7 Virtual-Kubelet concept [2] 19
2.8 No Change in Kubernetes API 21
2.9 Discovery . 22
2.10 Peering . 23
2.11 Network Interconnection 24
2.12 Use . 25

3.1 Incoming Peering and Outgiong Peering 28
3.2 general Schema of ResourceRequest Operator 31
3.3 Broadcaster logic schema 34
3.4 ResourceOffer Update logic schema 35
3.5 IPAM Address Remapping (from Liqo docs) 40
3.6 Service Reflection and ExternalCIDR (from Liqo docs) 42

4.1 General brokering scenario 44
4.2 Providers Peering . 55
4.3 Customer peering . 61
4.4 General broker flow 62
4.5 Namespace Offloading high-level scheme 63

vi

4.6 Pod address remapping in standard case 64
4.7 Pod unreachability scheme 64
4.8 Pod unreachability solution 66

5.1 A graph with the average times comparison 69

vii

Chapter 1

Introduction
As Kubernetes gains adoption, clusters start to be everywhere: on
private data-centers, on the cloud, at the edge of the network and so
on. With Liqo, a project carried out by the Computer Networks Group
at Politecnico di Torino, applications and services can leverage those
resources, by creating dynamic and opportunistic peerings of clusters.
The last version of Liqo provides:

• Automatic discovery of available clusters with Liqo installed

• Dynamic peering and resource sharing

• Support for inter-cluster connectivity with P2P parameter negotia-
tion

• Transparent Multi-cluster pod offloading and service reconciliation

• Pod-to-pod and pod-to-service connectivity across the clusters,
disregarding the installed CNI

1.1 Goal of thesis
Starting from this list of features this thesis has the aim of doing
another step. This work, carried out by the Computer Networks Group
at Politecnico di Torino and developed with the collaboration of TOP-
IX, tried to extend the concept of resource sharing already implemented

1

Introduction

by Liqo creating a prototype of resource brokering: a broker is new
type of cluster which has the task of aggregate all the resources shared
by other normal clusters and "sell" them to every cluster which has an
Incoming Peering with it in a smart way. The discussion is structured
as follows:

• Chapter 2: provides a presentation of Kubernetes and Liqo, their
architecture and main concepts;

• Chapter 3: analyzes more in deep some core features of Liqo
useful for the Broker design;

• Chapter 4: introduces the general design of the broker prototype
architecture and presents its implementation;

• Chapter 5: discusses some performance results and the differences
with Liqo vanilla;

• Chapter 6: discusses all the possible improvements to design and
what are the following steps to make the work production ready;

Figure 1.1: General brokering scenario

2

Chapter 2

Background
technologies:
Kubernetes and Liqo

2.1 Kubernetes

In this chapter we analyse Kubernetes architecture, showing also its
history and evolution through time, in order to lay the foundations
for all the work which will be exposed later on. Kubernetes (often
shortened as K8s) is a huge framework and a deep examination of it
would require much more time and discussion, hence we only provide
here a description of its main concepts and components. Further details
can be found in the official documentation [1].

The chapter continues with an introduction to other technologies
and tools used to develop the solution, in particular Virtual-Kubelet
[2], a project which allows to create virtual nodes with a particular
behaviour, and Kubebuilder [3], a tool to build custom resources.

3

Background technologies: Kubernetes and Liqo

2.2 Kubernetes: a bit of history
Around 2004, Google created the Borg [4] system, a small project with
less than 5 people initially working on it. The project was developed as
a collaboration with a new version of Google’s search engine. Borg was
a large-scale internal cluster management system, which “ran hundreds
of thousands of jobs, from many thousands of different applications,
across many clusters, each with up to tens of thousands of machines”
[4].

In 2013 Google announced Omega [5], a flexible and scalable sched-
uler for large compute clusters. Omega provided a “parallel scheduler
architecture built around shared state, using lock-free optimistic con-
currency control, in order to achieve both implementation extensibility
and performance scalability”.

In the middle of 2014, Google presented Kubernetes as on open-
source version of Borg. Kubernetes was created by Joe Beda, Brendan
Burns, and Craig McLuckie, and other engineers at Google. Its devel-
opment and design were heavily influenced by Borg and many of its
initial contributors previously used to work on it. The original Borg
project was written in C++, whereas for Kubernetes the Go language
was chosen.

In 2015 Kubernetes v1.0 was released. Along with the release, Google
set up a partnership with the Linux Foundation to form the Cloud
Native Computing Foundation (CNCF) [6]. Since then, Kuber-
netes has significantly grown, achieving the CNCF graduated status
and being adopted by nearly every big company. Nowadays it has
become the de-facto standard for container orchestration [7, 8].

2.3 Applications deployment evolution
Kubernetes is a portable, extensible, open-source platform for running
and coordinating containerized applications across a cluster of machines.
It is designed to completely manage the life cycle of applications and
services using methods that provide consistency, scalability, and high
availability.

4

Background technologies: Kubernetes and Liqo

What does “containerized applications” means? In the last decades,
the deployment of applications has seen significant changes, which are
illustrated in figure 2.1.

Figure 2.1: Evolution in applications deployment.

Traditionally, organizations used to run their applications on phys-
ical servers. One of the problems of this approach was that resource
boundaries between applications could not be applied in a physical
server, leading to resource allocation issues. For example, if multiple
applications run on a physical server, one of them could take up most
of the resources, and as a result, the other applications would starve.
A possibility to solve this problem would be to run each application on
a different physical server, but clearly it is not feasible: the solution
could not scale, would lead to resources under-utilization and would be
very expensive for organizations to maintain many physical servers.

The first real solution has been virtualization. Virtualization al-
lows to run multiple Virtual Machines on a single physical server. It
grants isolation of the applications between VMs providing a high level
of security, as the information of one application cannot be freely ac-
cessed by another application. Virtualization enables better utilization
of resources in a physical server, improves scalability, because an ap-
plication can be added or updated very easily, reduces hardware costs,
and much more. With virtualization it is possible to group together
a set of physical resources and expose it as a cluster of disposable
virtual machines. Isolation certainly brings many advantages, but it
requires a quite ‘heavy’ overhead: each VM is a full machine running

5

Background technologies: Kubernetes and Liqo

all the components, including its own operating system, on top of the
virtualized hardware.

A second solution which has been proposed recently is container-
ization. Containers are similar to VMs, but they share the operating
system with the host machine, relaxing isolation properties. There-
fore, containers are considered a lightweight form of virtualization.
Similarly to a VM, a container has its own filesystem, CPU, memory,
process space etc. One of the key features of containers is that they
are portable: as they are decoupled from the underlying infrastructure,
they are totally portable across clouds and OS distributions. This
property is particularly relevant nowadays with cloud computing: a
container can be easily moved across different machines. Moreover,
being “lightweight”, containers are much faster than virtual machines:
they can be booted, started, run and stopped with little effort and in a
short time.

2.4 Container orchestrators
When hundreds or thousands of containers are created, the need of a
way to manage them becomes essential; container orchestrators serve
this purpose. A container orchestrator is a system designed to easily
manage complex containerization deployments across multiple machines
from one central location. As depicted in figure 2.2, Kubernetes is by
far the most used container orchestrator. We provide a description of
such system in the following.

Kubernetes provides many services, including:

• Service discovery and load balancing A container can be ex-
posed using the DNS name or using its own IP address. If traffic to
a container is high, a load balancer able to distribute the network
traffic is provided.

• Storage orchestration A storage system can be automatically
mounted, such as local storages, public cloud providers, and more.

• Automated rollouts and rollbacks The desired state for the

6

Background technologies: Kubernetes and Liqo

Figure 2.2: Container orchestrators use [9].

deployed containers can be described, and the actual state can be
changed to the desired state at a controlled rate. For example, it is
possible to automate the creation of new containers of a deployment,
remove existing containers and adopt all their resources to the new
container.

• Automatic bin packing Kubernetes is provided with a cluster
of nodes that can be used to run containerized tasks. It is possible
to set how much CPU and memory (RAM) each container needs,
and automatically the containers are sized to fit in the nodes to
make the best use of the resources.

• Secret and configuration management It is possible to store
and manage sensitive information in Kubernetes, such as pass-
words, OAuth tokens, and SSH keys. It is possible to deploy and
update secrets and application configuration without rebuilding
the container images, and without exposing secrets in the stack
configuration.

7

Background technologies: Kubernetes and Liqo

2.5 Kubernetes architecture
When Kubernetes is deployed, a cluster is created. A Kubernetes cluster
consists of a set of machines, called nodes, that run containerized
applications. At least one of the nodes hosts the control plane and
is called master. Its role is to manage the cluster and expose an
interface to the user. The worker node(s) host the pods that are
the components of the application. The master manages the worker
nodes and the pods in the cluster. In production environments, the
control plane usually runs across multiple machines and a cluster runs
on multiple nodes, providing fault-tolerance and high availability.

Figure 2.3 shows the diagram of a Kubernetes cluster with all the
components linked together.

Figure 2.3: Kubernetes architecture

2.5.1 Control plane components
The control plane’s components make global decisions about the cluster
(for example, scheduling), as well as detecting and responding to cluster
events (for example, starting up a new pod). Although they can be
run on any machine in the cluster, for simplicity, they are typically
executed all together on the same machine, which does not run user
containers.

8

Background technologies: Kubernetes and Liqo

API server

The API server is the component of the Kubernetes control plane that
exposes the Kubernetes REST API, and constitites the front end for
the Kubernetes control plane. Its function is to intercept REST request,
validate and process them. The main implementation of a Kubernetes
API server is kube-apiserver. It is designed to scale horizontally,
which means it scales by deploying more instances. Moreover, it can
be easily redounded to run several instances of it and balance traffic
among them.

etcd

etcd is a distributed, consistent and highly-available key value store
used as Kubernetes’ backing store for all cluster data. It is based on
the Raft consensus algorithm [10], which allows different machines to
work as a coherent group and survive to the breakdown of one of its
members. etcd can be stacked in the master node or external, installed
on dedicated host. Only the API server can communicate with it.

Scheduler

The scheduler is the control plane component responsible of assigning
the pods to the nodes. The one provided by Kubernetes is called
kube-scheduler, but it can be customized by adding new schedulers
and indicating in the pods to use them. kube-scheduler watches for
newly created pods not assigned to a node yet, and selects one for them
to run on. To make its decisions, it considers singular and collective
resource requirements, hardware/software/policy constraints, affinity
and anti-affinity specifications, data locality, inter-workload interference
and deadlines.

kube-controller-manager

Component that runs controller processes. It continuously compares
the desired state of the cluster (given by the objects specifications)
with the current one (read from etcd). Logically, each controller is a

9

Background technologies: Kubernetes and Liqo

separate process, but to reduce complexity, they are all compiled into
a single binary and run in a single process. These controllers include:

• Node Controller: responsible for noticing and reacting when nodes
go down.

• Replication Controller: in charge of maintaining the correct number
of pods for every replica object in the system.

• Endpoints Controller: populates the Endpoint objects (which links
Services and Pods).

• Service Account & Token Controllers: create default accounts and
API access tokens for new namespaces.

cloud-controller-manager

This component runs controllers that interact with the underlying
cloud providers. The cloud-controller-manager binary is a beta
feature introduced in Kubernetes 1.6. It only runs cloud-provider-
specific controller loops. You can disable these controller loops in the
kube-controller-manager.

cloud-controller-manager allows the cloud vendor’s code and
the Kubernetes code to evolve independently of each other. In prior
releases, the core Kubernetes code was dependent upon cloud-provider-
specific code for functionality. In future releases, code specific to
cloud vendors should be maintained by the cloud vendor themselves,
and linked to cloud-controller-manager while running Kubernetes.
Some examples of controllers with cloud provider dependencies are:

• Node Controller: checks the cloud provider to update or delete
Kubernetes nodes using cloud APIs.

• Route Controller: responsible for setting up network routes in the
cloud infrastructure.

• Service Controller: for creating, updating and deleting cloud
provider load balancers.

10

Background technologies: Kubernetes and Liqo

• Volume Controller: creates, attaches, and mounts volumes, inter-
acting with the cloud provider to orchestrate them.

2.5.2 Node components

Node components run on every node, maintaining running pods and
providing the Kubernetes runtime environment.

Container Runtime

The container runtime is the software that is responsible for running
containers. Kubernetes supports several container runtimes: Docker,
containerd, CRI-O, and any implementation of the Kubernetes CRI
(Container Runtime Interface).

kubelet

An agent that runs on each node in the cluster, making sure that
containers are running in a pod. The kubelet receives from the API
server the specifications of the Pods and interacts with the container
runtime to run them, monitoring their state and assuring that the
containers are running and healthy. The connection with the container
runtime is established through the Container Runtime Interface and is
based on gRPC.

kube-proxy

kube-proxy is a network agent that runs on each node in your cluster,
implementing part of the Kubernetes Service concept. It maintains
network rules on nodes, which allow network communication to your
Pods from inside or outside of the cluster. If the operating system
is providing a packet filtering layer, kube-proxy uses it, otherwise it
forwards the traffic itself.

11

Background technologies: Kubernetes and Liqo

Addons

Features and functionalities not yet available natively in Kubernetes,
but implemented by third parties pods. Some examples are DNS,
dashboard (a web gui), monitoring and logging.

Figure 2.4: Kubernetes master and worker nodes [11].

2.6 Kubernetes objects
Kubernetes defines several types of objects, which constitutes its build-
ing blocks. Usually, a K8s resource object contains the following fields
[12]:

• apiVersion: the versioned schema of this representation of the
object;

• kind: a string value representing the REST resource this object
represents;

• ObjectMeta: metadata about the object, such as its name, anno-
tations, labels etc.;

• ResourceSpec: defined by the user, it describes the desired state
of the object;

12

Background technologies: Kubernetes and Liqo

• ResourceStatus: filled in by the server, it reports the current state
of the resource.

The allowed operations on these resources are the typical CRUD actions:

• Create: create the resource in the storage backend; once a resource
is created, the system applies the desired state.

• Read: comes with 3 variants

– Get: retrieve a specific resource object by name;

– List: retrieve all resource objects of a specific type within
a namespace, and the results can be restricted to resources
matching a selector query;

– Watch: stream results for an object(s) as it is updated.

• Update: comes with 2 forms

– Replace: replace the existing spec with the provided one;

– Patch: apply a change to a specific field.

• Delete: delete a resource; depending on the specific resource, child
objects may or may not be garbage collected by the server.

In the following we illustrate the main objects needed in the next
chapters.

2.6.1 Label & Selector
Labels are key-value pairs attached to a K8s object and used to organize
and mark a subset of objects. Selectors are the grouping primitives
which allow to select a set of objects with the same label.

13

Background technologies: Kubernetes and Liqo

2.6.2 Namespace
Namespaces are virtual partitions of the cluster. By default, Kubernetes
creates 4 Namespaces:

• kube-system: it contains objects created by K8s system, mainly
control-plane agents;

• default: it contains objects and resources created by users and it
is the one used by default;

• kube-public: readable by everyone (even not authenticated users),
it is used for special purposes like exposing cluster public informa-
tion;

• kube-node-lease: it maintains objects for heartbeat data from
nodes.

It is a good practice to split the cluster into many Namespaces in order
to better virtualize the cluster.

2.6.3 Pod
Pods are the basic processing units in Kubernetes. A pod is a logic
collection of one or more containers which share the same network
and storage, and are scheduled together on the same pod. Pods are
ephemeral and have no auto-repair capacities: for this reason they
are usually managed by a controller which handles replication, fault-
tolerance, self-healing etc.

2.6.4 ReplicaSet
ReplicaSets control a set of pods allowing to scale the number of pods
currently in execution. If a pod in the set is deleted, the ReplicaSet
notices that the current number of replicas (read from the Status) is
different from the desired one (specified in the Spec) and creates a new
pod. Usually ReplicaSets are not used directly: a higher-level concept
is provided by Kubernetes, called Deployment.

14

Background technologies: Kubernetes and Liqo

Figure 2.5: Kubernetes pods [11]

2.6.5 Deployment
Deployments manage the creation, update and deletion of pods. A
Deployment automatically creates a ReplicaSet, which then creates the
desired number of pods. For this reason an application is typically
executed within a Deployment and not in a single pod. The listing is
an example of deployment.

15

Background technologies: Kubernetes and Liqo

1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : nginx−deployment
5 l a b e l s :
6 app : nginx
7 spec :
8 r e p l i c a s : 3
9 s e l e c t o r :

10 matchLabels :
11 app : nginx
12 template :
13 metadata :
14 l a b e l s :
15 app : nginx
16 spec :
17 con ta i n e r s :
18 − name : nginx
19 image : nginx : 1 . 7 . 9
20 por t s :
21 − conta ine rPor t : 80

nginx-deployment and a label app, with value nginx. It creates three
replicated pods and, as defined in the selector field, manages all the
pods labelled as app:nginx. The template field shows the information
of the created pods: they are labelled app:nginx and launch one
container which runs the nginx DockerHub image at version 1.7.9 on
port 80.

2.6.6 Service
A Service is an abstract way to expose an application running on a
set of Pods as a network service. It can have different access scopes
depending on its ServiceType:

• ClusterIP: Service accessible only from within the cluster, it is
the default type;

• NodePort: exposes the Service on a static port of each Node’s IP;

16

Background technologies: Kubernetes and Liqo

the NodePort Service can be accessed, from outside the cluster, by
contacting <NodeIP>:<NodePort>;

• LoadBalancer: exposes the Service externally using a cloud
provider’s load balancer;

• ExternalName: maps the Service to an external one so that local
apps can access it.

Pod

Node

Figure 2.6: Kubernetes Services [11]

The following Service is named my-service and redirects requests
coming from TCP port 80 to port 9376 of any Pod with the app=MyApp
label.

1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : my−s e r v i c e
5 spec :
6 s e l e c t o r :

17

Background technologies: Kubernetes and Liqo

7 app : myApp
8 por t s :
9 − pro toco l : TCP

10 port : 80
11 ta rge tPor t : 9376

2.7 Virtual-Kubelet
Two Kubernetes-based tools which have been used during the devel-
opment of this project are Virtual-Kubelet and Kubebuilder. Virtual
Kubelet is an open source Kubernetes kubelet implementation that
masquerades a cluster as a kubelet for the purposes of connecting Kuber-
netes to other APIs [2]. Virtual Kubelet is a Cloud Native Computing
Foundation sandbox project.

The project offers a provider interface that developers need to im-
plement in order to use it. The official documentation [2] says that
“providers must provide the following functionality to be considered a
supported integration with Virtual Kubelet:

1. Provides the back-end plumbing necessary to support the lifecycle
management of pods, containers and supporting resources in the
context of Kubernetes.

2. Conforms to the current API provided by Virtual Kubelet.

3. Does not have access to the Kubernetes API Server and has a
well-defined callback mechanism for getting data like secrets or
configmaps”.

2.8 Kubebuilder
Kubebuilder is a framework for building Kubernetes APIs using Custom
Resource Definitions (CRDs) [3].
CustomResourceDefinition is an API resource offered by Kuber-

netes which allows to define Custom Resources (CRs) with a name and

18

Background technologies: Kubernetes and Liqo

Figure 2.7: Virtual-Kubelet concept [2]

schema specified by the user. When a new CustomResourceDefinition
is created, the Kubernetes API server creates a new RESTful resource
path; the CRD can be either namespaced or cluster-scoped. The name
of a CRD object must be a valid DNS subdomain name.

A Custom Resource is an endpoint in the Kubernetes API that
is not available in a default Kubernetes installation and which frees
users from writing their own API server to handle them [11]. On their
own, custom resources simply let you store and retrieve structured
data. In order to have a more powerful management, you also need
to provide a custom controller which executes a control loop over the
custom resource it watches: this behaviour is called Operator pattern
[13].

Kubebuilder helps a developer in defining his Custom Resource,
taking automatically basic decisions and writing a lot of boilerplate
code. These are the main actions operated by Kubebuilder [3]:

1. Create a new project directory.

2. Create one or more resource APIs as CRDs and then add fields to

19

Background technologies: Kubernetes and Liqo

the resources.

3. Implement reconcile loops in controllers and watch additional re-
sources.

4. Test by running against a cluster (self-installs CRDs and starts
controllers automatically).

5. Update bootstrapped integration tests to test new fields and busi-
ness logic.

6. Build and publish a container from the provided Dockerfile.

2.9 Liqo

2.9.1 Liqo Idea
Liqo aims to create an opportunistic interconnection of multiple Ku-
bernetes clusters allowing seamless resource and service sharing among
them, creating an "endless Kubernetes ocean" where the user applica-
tions can be scheduled.

We can have a multiple cluster environment in a lot of different
scenarios, both owned by the same entity or owned by different entities,
These cluster may have underutilized resources because all these clusters
have to have enough resources to deal with a peak of load by their own,
but during the day they have moments of low load. In these moments
they are wasting a part of their resources that can be available to be
shared.

Liqo aims to extend the resources present in an already existent
cluster using the ones currently non-occupied in neighbor clusters in an
opportunistic way, so no peering and no sharing are definitive or not
reversible, and it’s always possible unpeer the two clusters in a simple
way and return to the original state. When we extend a cluster with
Liqo there is no change in the standard Kubernetes APIs, the ones
described in this chapter are still valid in the new environment, and the
user applications have not to be changed in order to work with Liqo.

20

Background technologies: Kubernetes and Liqo

Liqo extends the cluster by adding a new virtual node for each remote
peered cluster, creating in that way a "virtual big node" where the pods
can be scheduled by the default Kubernetes scheduler with no change.
The Kubernetes Pods that will be scheduled on this virtual node will
be took by the Virtual Kubelet and offloaded to the remote cluster.

Figure 2.8: No Change in Kubernetes API

2.9.2 Cluster Management
Liqo is able to manage multiple Kubernetes clusters, allowing the user
to use external resources, in a transparent way. We can describe the
Liqo cluster management functionality with five pillars:

1. Discovery: Discover available clusters.

2. Cluster Authentication: Every cluster discovered authenticate
using a particular token.

3. Peering: Establish an administrative interconnection between the
clusters and negotiate the parameters.

4. Network Interconnection: Establish a network interconnection
between the clusters.

21

Background technologies: Kubernetes and Liqo

5. Resource Management: Create the virtual node and make the
external resources available.

6. Usage: Offload your pods.

2.9.3 Discovery

Liqo can dynamically discover and add new clusters to the "Big Cluster"
abstraction. These clusters can be discovered in a lot of different ways,
such as manually, or by an automatic configuration with DNS (on
selected domains) or with mDNS (only on local area network). The
discovery process will take the information from different data sources
and will create a new ForeignCluster CR in the local cluster.

Figure 2.9: Discovery

22

Background technologies: Kubernetes and Liqo

Peering

Liqo can dynamically peer different and administratively separate
clusters with a policy-driven, voluntary, and direct relationship. This
connection has to be established before sharing any resources. It
has a peer-to-peer architecture, so no master cluster is involved (this
paradigm will change to adapt liqo to implement brokering features as
it will be discussed in next chapters).

The Liqo peering uses the information collected during the discovery
phase to contact the remote cluster and checks that both clusters
that will be part of the peering are available and have accepted the
interconnection.

The peering process will be deeper analyzed in Chapter 3.

Figure 2.10: Peering

Network Interconnection

Liqo can extend the cluster network to the remote cluster, basing on
the peering information. The network parameters, required to establish
the VPN tunnel, are dynamically negotiated with dedicated CRD to

23

Background technologies: Kubernetes and Liqo

allow Liqo to support overlapping pod CIDR in the two clusters. This
let Liqo not take any assumption on the IP address space and on the
networking in the peered clusters.

Liqo defines a gateway pod (possibly replicated) that works as a VPN
terminator and allow the traffic to flow between the peered clusters. If
required, it performs a double natting to allow them to communicate
even if they have overlapping IP address spaces.

Figure 2.11: Network Interconnection

Resource Management

When a cluster accepted the peering with another one, it can offer to
the second the amount of resources that it can share. If the remote
cluster accepts the offer, it will create a new Virtual Node with these
resources (i.e. CPU and memory). The Virtual Nodes are equivalent
to physical nodes, hence can be controlled by the vanilla Kubernetes
scheduler and controller-manager.

When the peering and the network interconnection is completed, the
Virtual Kubelet will enable the new node setting it to ready.

Usage

When in the local cluster the new virtual node is set up and marked
as ready, and the vanilla Kubernetes scheduler can schedule new pods

24

Background technologies: Kubernetes and Liqo

on this node, these new pods will no see differences when accessing a
service being deployed locally or remotely.

The VirtualKubelet is in charge to take the Pods scheduled on the
virtual node, to offload them reflecting them in the remote cluster,
and to keep the local shadow Pod Status aligned to the remote one.
These Pods will be reachable from the local cluster and they can
reach the services in the local cluster. Services and Endpoints are
consistent on both the clusters, because of the VirtualKubelet reflection
of EndpointSlices and them IP translation.

Figure 2.12: Use

25

Chapter 3

Towards the broker
design
This chapter will describe in details some core features of Liqo which
have been relevant for the broker prototype design. In the last part of
this chapter will be presented how this features will be adapted for the
new design. Then in the next will be presented the implementation.

3.1 Liqo peering phase
In this section will be described in details the Peering mechanism in
Liqo that is fundamental mechanism to understand how the prototype
will communicate with other clusters to offer resources.

3.1.1 Overview
The peering process allows to manage the control plane of the shared
resources among different clusters. ResourceOffer messages embedding
cluster capabilities are sent to other peers; these messages are then
used to build a local virtual-node where jobs can be scheduled: if a job
is assigned to a virtual-node, it will be actually sent to the respective
foreign cluster. There are five main Liqo components involved in this
process:

26

Towards the broker design

1. ForeignCluster Controller: this is a controller which is in charge
to manage ForeignCluster CR Reconcile process. It can start the
peering generating a ResourceRequest CR after Discovery and
Authentication phases.

2. ResourceRequest Controller: this is a controller which is in
charge to manage ResourceRequest CR Reconcile process and
start ResourceOffer generation getting resources from the Liqo
Broadcaster.

3. Broadcaster: this operator is fundamental for the generation of
the ResourceOffers because tracks all available cluster resources in
which it is running.

4. ResourceOffer Controller: this is a controller which is in charge
to manage ResourceOffer CR Reconcile process. It has also the
task to start and stop the Virtual Kubelet deployment.

5. CRD Replicator: this component replicates all the local CRs to
remote destination cluster using Liqo Network.

Incoming Peering and Outgoing Peering

Before starting the analysis of all involved components is important
to explain the difference between Incoming Peering and Outgoing
Peering: the Liqo peering process is bidirectional so is fundamental
to distinguish the direction and it depends form the point of view; if
the whole process is considered form the point of view of the cluster
that wants to start the peering it is an Outgoing Peering otherwise
it is an Incoming Peering.

27

Towards the broker design

Figure 3.1: Incoming Peering and Outgiong Peering

In the following paragraph the term peering, if not specified, is used
for both Incoming and Outgoing.

3.1.2 Liqo ForeignCluster Operator
Every peering is started from a cluster which needs more resources to
deploy its applications generating a particular CR, the ResourceRequest.
This resource is sent to the cluster with whom it wants to start a peering.
This particular cluster is represented by another CR: the ForeignCluster.
A ForeignCluster CR is generated after a new Liqo Cluster is discovered.

Listing 3.1: Example of ForeignCluster CR
1 ap iVers ion : d i s cove ry . l i q o . i o /v1 alpha 1
2 kind : Fore ignClus te r
3 metadata :
4 name : my−f o r e i g n
5 r e sourc eVer s i on : "2031845"
6 uid : 79 c7e76e−7882−4774−b6 f 1−7535b711eb05
7 spec :
8 c l u s t e r I d e n t i t y :
9 c l u s t e r ID : 619db837−69d3−40b2−963d−f 74a6d762be0

28

Towards the broker design

10 clusterName : c l u s t e r 2
11 fore ignAuthUrl : https ://<auth . s e r v i c e . ip>:<port>
12 incomingPeeringEnabled : Auto
13 insecureSkipTLSVer i fy : t rue
14 outgoingPeer ingEnabled : Auto
15 t t l : 90

The code below shows a minimal example of a ForeignCluster which
has name my-foreign and some other attributes to identify the related
cluster. The ForeignCluster controller periodically watch this type
of Resources to reconcile values in the spec with values in status
as described in the 2.8. During this action the controller evaluate
the outgoingPeeringEnabled attribute which can have three possible
values:

• Yes: This is used for manually configuration. This value means
that the controller is allowed to start the peering towards this
foreign cluster and then generate a ResourceRequest CR which will
be sent to the cluster using Liqo Network.

• No: This is used for manually configuration. The controller is not
allowed to start the peering if it does not exist or drop it otherwise.

• Auto: The controller starts or not the peering automatically de-
pending on the configurations set during Liqo installation.

If a ResourceRequest CR is sent the peering phase starts.

Listing 3.2: The structure of a ResourceRequest
1 ap iVers ion : d i s cove ry . l i q o . i o /v1 alpha 1
2 kind : ResourceRequest
3 metadata :
4 creationTimestamp : "2021−10−14T08 : 26 : 25Z"
5 f i n a l i z e r s :
6 − crdRep l i c a to r . l i q o . i o
7 gene ra t i on : 1
8 l a b e l s :
9 l i q o . i o /remoteID : remote−c l u s t e r

10 l i q o . i o / r e p l i c a t i o n : " t rue "
11 name : my−resource−reques t

29

Towards the broker design

12 namespace : remote−namespace
13 ownerReferences :
14 − apiVers ion : d i s cove ry . l i q o . i o /v1 alpha 1
15 blockOwnerDeletion : t rue
16 c o n t r o l l e r : t rue
17 kind : Fore ignClus te r
18 name : d6 f 44ab5−adc6−498c−9c22−4720 eae 70a1c
19 uid : 8d2348a6−3a5a−450b−a8b6−50d71dc 11712
20 r e sourc eVer s i on : "6471"
21 uid : c9b7a936−80d5−49b8−81a1−3 f 304 e 943 e17
22 spec :
23 authUrl : https ://<auth . s e r v i c e . ip>:<port>
24 c l u s t e r I d e n t i t y :
25 c l u s t e r ID : my−c lu s t e r −id
26 clusterName : c l u s t e r 1
27 s t a tu s :
28 o f f e r S t a t e : Created

Above can be seen an example of ResourceRequest named my-resource-request
sent to a foreignCluster named remote-cluster by a cluster named
cluster1 and id my-cluster-id.

30

Towards the broker design

3.1.3 Liqo ResourceRequest Controller
Receiving a ResourceRequest CR triggers the ResourceRequest con-
troller which has the task of Reconcile (2.8) the resource ensuring the
correctness of all the conditions (e.g ForeignCluster existence, permis-
sions checks...). After passing all the checks the controller is in charge
to start the generation of a local ResourceOffer (see 3.1.4) that will be
populated with the amount of Cluster resources that can be shared.
These resources are calculated by the Liqo Broadcaster (see 3.1.4).

ResourceRequest
Controller

Control loop

Resource

Request

Create/Delete

ResourceOffer

Create/Update/Patch/Delete

Figure 3.2: general Schema of ResourceRequest Operator

Listing 3.3: The structure of a ResourceOffer
1 ap iVers ion : shar ing . l i q o . i o /v1 alpha 1
2 kind : ResourceOf fer
3 metadata :
4 creationTimestamp : "2021−10−14T08 : 26 : 25Z"
5 f i n a l i z e r s :
6 − l i q o . i o / v i r t u a l k ub e l e t

31

Towards the broker design

7 − l i q o . i o /node
8 gene ra t i on : 1
9 l a b e l s :

10 d i s cove ry . l i q o . i o / c l u s t e r −id : 48 c 5753c−87a1−49dd−bad2−3 f 3
c3a135a6a

11 l i q o . i o / o r i g in ID : remote−c l u s t e r
12 l i q o . i o /remoteID : c l u s t e r 1
13 l i q o . i o / r e p l i c a t e d : " t rue "
14 l i q o . i o / r e p l i c a t i o n : " f a l s e "
15 name : my−resource−o f f e r
16 namespace : remote−namespace
17 ownerReferences :
18 − apiVers ion : d i s cove ry . l i q o . i o /v1 alpha 1
19 blockOwnerDeletion : t rue
20 c o n t r o l l e r : t rue
21 kind : Fore ignClus te r
22 name : c l u s t e r 1
23 uid : my−c lu s t e r −id
24 r e sourc eVer s i on : "6548"
25 uid : 0240 e1a2−94eb−4779−8588−4ca 39 df 740 ee
26 spec :
27 c l u s t e r I d : remote−c l u s t e r −id
28 resourceQuota :
29 hard :
30 cpu : 1683m
31 ephemeral−s to rage : 19820376Ki
32 hugepages−1Gi : " 0 "
33 hugepages−2Mi : " 0 "
34 memory : 5843750Ki
35 pods : " 99 "
36 s t a tu s :
37 phase : Accepted
38 v i r tua lKube l e tS ta tu s : Created

The Example above shows the structure of ResourceOffer sent to a
ForeignCluster. The most relevant part is the resourceQuota attribute
where are listed all the shared resources. They will become the resources
assigned to the Virtual Node.

32

Towards the broker design

3.1.4 Liqo Broadcaster

The Liqo Broadcaster is the most important component in the peering
phase. It has the task of periodically watching internal cluster resources
and calculating the right amount of them to be shared with the other
clusters. This mechanism is obtained by using Kubernetes runtime
objects like Informers that periodically observe a particular resource to
notify Write/Update/Delete actions. The Liqo Broadcaster uses two
Informers to watch both Nodes and Pods resources to collect all the
changes in resources. The resulting number is obtained considering the
following parameters:

• physical Nodes allocatable resources which are summed to-
gether grouped by the tipology (e.g. cpu, memory etc.).

• deployed pods resource requests to be subtracted from physi-
cal nodes resources. This calculus does not consider shadow pods
(they are not real pods but just reflectd images of offloaded ones)
and pods offloaded by the ForeignCluster which started the peering
(avoiding virtual node shrinking phenomena).

• scaling percentage which multiplies all the resulting value. It
represents the quantity of resources the cluster owner wants to
share and it is set in the cluster ConfigMap create at installation
time.

33

Towards the broker design

Figure 3.3: Broadcaster logic schema

This values are periodically calculated by the Broadcaster and are read
by a sub-component which has the task of generating or updating all
the ResourceOffer CRs: the offerUpdater.

The OfferUpdater

This is a sub-component of the Broadcaster which is in charge to
generate or update all the resoureOffer resources. It works with a
working queue mechanism that periodically dequeue clusterIDs and
process the related ResourceOffer.

34

Towards the broker design

Figure 3.4: ResourceOffer Update logic schema

As represented in the above figure clusterIDs are enqueued just in
case there is a resource update greater than a threshold percentage
decided at installation time by the user. If some errors occur the
clusterID is re-queued for further processing. There is also a re-queue
with a delay after a successfully processing to avoid missing update
because of little updates do not overcome the threshold.

3.1.5 Liqo ResourceOffer Controller
This controller has the task to Reconcile (2.8) all the ResourceOffer
CRs received by a ForeignCluster and accept or decline it. It accepts
a ResourceOffer by default and if it happens this controller creates
the Virtual Kubelet (2.7) deployment. This controller is also re-
sponsible of destroying the Virtual Kubelet deployment if the related
ResourceOffer is no more valid.

3.1.6 Liqo CRD Replicator
This is a more general component of Liqo but also very important in
the peering process because it has the task of replicate all the local CRs
remotely using the Liqo Network. Every process previously described

35

Towards the broker design

at the end creates local CRs which are taken in charge by the CRD
Replicator that send them to the destination cluster.

3.2 Pod Offloading and communication
In this section will be analyzed what happens at the end of a peering
phase. In details will be described these concepts:

• The role of the Liqo Virtual Kubelet: in liqo the Virtual
Kubelet has a fundamental role in the process of pods offloading;

• Shadow pods: another type of pod which is a reflect of his real
image;

• Namespace offloading: how liqo creates remote namespaces to
isolate more different deployments regarding other peering;

• Pod communication and IPAM: some hints of how the liqo
network works to guarantee the pod reachability assigning right IP
addresses;

• Service Reflection and ExternalCIDR: the mechanism which
makes possible reflect kubernetes services to other clusters even
running on another one.

3.2.1 The Role of the Liqo Virtual Kubelet

As said in 2.7 the Virtual kubelet masquerades a cluster as a kubelet
and in Liqo has in charge of managing all the process of pod offloading.
Firstly the Virtual kubelet starts the creation the Virtual Node assigning
it the resources shared by the remote cluster through the ResourceOffer
CR; the reconcile process of the Virtual Node is charge of the Virtual
Node Controller.

36

Towards the broker design

3.2.2 Shadow pods

Shadow pods are the images of pod that have been offloaded. These
are special pods because they are not directly executed on the local
cluster but are useful to get all the information about the micro-service
execution status.

3.2.3 Namespace Offloading

At the end of the peering phase Liqo creates a new technical names-
pace in order to isolate all components (e.g. pods, services) and
resource (e.g. ResourceOffers) related to that remote cluster (in Liqo is
used tenant concept to manage the permissions) including the Virtual
Kubelet. The feature is a more general mechanism which allows to
replicate remote namespaces just applying a simple resource called
NamespaceOffloading.

Listing 3.4: Sample NamespaceOffloading structure
1 ap iVers ion : o f f l o a d i n g . l i q o . i o /v1 alpha 1
2 kind : NamespaceOffloading
3 metadata :
4 name : o f f l o a d i n g
5 namespace : target−namespace
6 spec :
7 namespaceMappingStrategy : DefaultName
8 podOf f load ingStrategy : LocalAndRemote
9 c l u s t e r S e l e c t o r :

10 nodeSelectorTerms :
11 − matchExpressions :
12 − key : l i q o . i o / type
13 operator : In
14 va lues :
15 − v i r tua l −node

This is a very powerful feature of Liqo and it will be fundamental to
make the broker correct behavior.

37

Towards the broker design

3.2.4 Pod communication and IPAM
In the whole Liqo process, the network part is the most important
one because allows communication among pods which can be part of
a single application. They may need to talk to each other and this is
not natively supported by Kubernetes if they run on different clusters.
Thus in the following paragraphs will be shortly described some of the
basic components of the Liqo networking to make more understandable
some Broker implementation choices and why they have been adopted.

PodCIDR

The PodCIDR is the name of the IP addressing space used by the
cluster CNI to assign IP addresses to Pods(e.g., 10.0.0.0/16). The
PodCIDR is generated at cluster CNI installation time and works very
well but just for a local pod scheduling policy. Nevertheless, in the Liqo
context, a pod can be scheduled remotely as described in the previous
paragraphs, so the addresses can have some conflicts. Liqo solves this
problem using IPAM (IP Address Management).

IPAM

Embedded within the Liqo Network Manager, the IPAM (IP Address
Management) is the Liqo module to avoid the previous problem but it
does more. In particular IPAM is in charge of:

• Managing networks currently in use in the home cluster:
the IPAM maintains a list of all the networks currently in use in
the home cluster and when a new peering takes place, adds the
network reserved to the remote cluster to the list. The network
remains in the list as long as the peering is active and it is removed
when the peering is terminated. In this way, after the termination
of a peering, such a network becomes available for future use

• Translating an offloaded pod’s IP address: IPAM is in charge
of translating IP addresses, assigned by the remote cluster, to the
corresponding IP address that is visible from the home cluster.

38

Towards the broker design

• Translating Endpoints IP addresses during the Reflection:
IPAM is in charge of translating IP addresses of reflected Endpoints.
Those IPs will be provided to the Virtual Kubelet, that in turn
will reflect adjusted Endpoints.

Following paragraphs describe better the last two features which are
the most relevant for this thesis work.

39

Towards the broker design

Translating an offloaded pod’s IP address

Offloaded Pods are assigned an IP address by the CNI of the foreign
cluster, as they actually are run there. Even if these addresses are
valid on the foreign cluster, they may have no meaning in the original
cluster. So the Virtual kubelet, when receiveing the pod oflloaded
status to update the corresponding shadow pod, consumes IPAM APIs
to remap the IP assigned by the foreign cluster CNI. The IPAM module
keeps track of how foreign clusters have remapped local networks and
provides offloaded Pod IP addresses to the Virtual Kubelet when it has
to update the Status of Shadow Pods.

Figure 3.5: IPAM Address Remapping (from Liqo docs)

Service Reflection and ExternalCIDR

One of the most important Liqo feature is the Reflection of Services and
Endpoints. The address translation of local Endpoints can be carried
out thanks to the fact that the local IPAM knows if and how the local
PodCIDR has been remapped in the cluster the reflection is going to
take place. The problem of reflecting on cluster X an Endpoint running
on cluster Y is way harder, if the home cluster is neither X nor Y. The
root problems are the following:

40

Towards the broker design

1. cluster X and cluster Y may not have a Liqo peering, thus their
Pods could not be able to talk to each other.

2. Even if such a peering existed, the home cluster would not have
any information about the network interconnection between X and
Y. In other words, the local cluster would not be aware of how X
could have remapped the PodCIDR of Y.

The current solution to these issues is based on the usage of an additional
network, called ExternalCIDR. Its name comes from the fact that
addresses belonging to this network are assigned to external (i.e., non-
local) Endpoints that are going to be reflected on a foreign cluster.
Each Liqo cluster has its own ExternalCIDR address space which can
be remapped by peered clusters, just like the PodCIDR.

Whenever the IPAM receives an Endpoint address translation request
by the Virtual Kubelet and the address does not belong to the local
PodCIDR, the IPAM module allocates an IP from the ExternalCIDR
address space and returns it to the Virtual Kubelet. The ExternalCIDR
address could be further translated if the remote cluster has remapped
the local ExternalCIDR. That’s not all: the IPAM stores the associa-
tions between Endpoint addresses and ExternalCIDR addresses so that
future address translation requests on the same Endpoint address will
use the same ExternalCIDR address. This is useful in case that End-
point is reflected on yet another cluster, using that same ExternalCIDR
address.

Suppose cluster B has a Liqo peering with clusters A and C. There-
fore, cluster B can offload Pods on them. However, clusters A and C
do not have an active peering and, thus, their Pods cannot connect.
Furthermore, assume that B wants to reflect Service A in cluster A.
The Service exposes the Shadow Pod C1, whose remote counterpart
lives in C with IP address 10.1.0.5. In this particular case, if the IPAM
did not translate the Endpoint’s address, Pods in A would not be able
to reach Service A. Pods in cluster A do not know how to connect to
network 10.1.0.0/24 (and therefore to Pods in C). They can only reach
Pods in B, as depicted in the IPAM block of cluster A.

41

Towards the broker design

Figure 3.6: Service Reflection and ExternalCIDR (from Liqo docs)

42

Chapter 4

Implementation

4.1 Overview
In this chapter will be described the whole process of prototyping a
Liqo Broker. It will have the following guideline:

• The concept of broker in Liqo: a general definition of the first
broker idea as an extension of Liqo and an high level example of
application context.

• The Broker operator: the description of the most important
component of the broker and its implementation.

• New offloading level: the Liqo network problem: the de-
scription of a problem introduced by the broker which will represent
a new offloading level not easily supported by Liqo.

• The solution to the networking problem: the solution to the
previous problem and its implementation.

4.2 The concept of broker in Liqo
Generally speaking a broker is a person or firm who arranges trans-
actions between a buyer and a seller for a commission when the deal

43

Implementation

is executed[wikipedia]. The Liqo broker aims to have this kind of be-
haviour in a multi-cluster context: a customer which owns a cluster will
send a peering request to the broker which "re-sell" resources shared by
a provider that have one or more clusters as represented in the figure
below.

Figure 4.1: General brokering scenario

4.3 Broker Operator
The Broker operator is the core of Broker logic. It is a component
started by the Liqo Controller Manager, the main Liqo operator which
is in charge of starting all the control plane controllers. If a cluster
has the role of broker the Liqo controller manager starts the broker
operator instead of the Broadcaster as explained in the next paragraph.

4.3.1 Broker Mode
To keep the compatibility of this prototype with standard Liqo has been
introduced a flag to pass at installation time which has the purpose of

44

Implementation

distinguishing the broker mode from the standard mode:

• Broker Mode: is activated when broker-mode flag has true
value. The Liqo controller manager starts the broker operator and
the cluster acts as a broker.

• Standard Mode: is activated when broker-mode flag has false
value or is not set. The Liqo controller manager starts the broad-
caster operator as usual.

Listing 4.1: controller manager broker mode managing
1 var operator i n t e r f a c e s . C lu s t e rRe sou r c e In t e r f a c e
2 var r e sourceReques tReconc i l e r ∗ resourceRequestOperator .

ResourceRequestReconc i l e r
3 i f brokerMode {
4 klog . In f o (" S ta r t i ng broker . . . ")
5 broker := &resourceRequestOperator . Broker {}
6 broker . SetupBroker (∗ c lus te r ID , c l i e n t s e t , mgr .

GetScheme () , ∗ resyncPer iod , mgr . GetCl ient ())
7 operator = broker
8 r e sourceReques tReconc i l e r = &resourceRequestOperator .

ResourceRequestReconc i l e r {
9 Cl i en t : mgr . GetCl ient () ,

10 Scheme : mgr . GetScheme () ,
11 ClusterID : ∗ c lus te r ID ,
12 Broadcaster : broker ,
13 EnableIncomingPeering : ∗ enableIncomingPeer ing ,
14 BrokerMode : true ,
15 }
16 } e l s e {
17 klog . In f o (" S ta r t i ng broadcas te r . . . ")
18 newBroadcaster := &resourceRequestOperator .

Broadcaster {}
19 updater := &resourceRequestOperator . OfferUpdater {}
20 updater . Setup (∗ c lus te r ID , mgr . GetScheme () ,

newBroadcaster , mgr . GetCl ient () , c l u s t e rLab e l s . StringMap)
21 operator = newBroadcaster
22 i f e r r := newBroadcaster . SetupBroadcaster (c l i e n t s e t ,

updater , ∗ resyncPer iod , r e sourceShar ingPercentage . Val ,
o f f e rUpdateThresho ld . Val) ; e r r != n i l {

23 klog . Error (e r r)

45

Implementation

24 os . Exit (1)
25 }
26 r e sourceReques tReconc i l e r = &resourceRequestOperator .

ResourceRequestReconc i l e r {
27 Cl i en t : mgr . GetCl ient () ,
28 Scheme : mgr . GetScheme () ,
29 ClusterID : ∗ c lus te r ID ,
30 Broadcaster : newBroadcaster ,
31 EnableIncomingPeering : ∗ enableIncomingPeer ing ,
32 BrokerMode : f a l s e ,
33 }
34 }

The previous figure shows how is implemented the broker mode in the
Liqo controller manager. However at this point is not very clear what
means "starting the broker operator" so is the moment of better explain
how the broker mode works and how it is implemented.

4.3.2 Broker operator structure

Listing 4.2: broker operator structure code
1 type Broker s t r u c t {
2 // nodeResources ho lds a l i s t o f c l u s t e r s (" p rov ide r ")

with the r e s ou r c e s they o f f e r .
3 nodeResources map [s t r i n g] corev1 . ResourceL i s t
4

5 // nodeInformer r e a c t s to changes in v i r t u a l nodes .
6 // Note that we cu r r en t l y use an Informer on Nodes (not

on ResourceOf f e r s) because when ResourceOf fer are c r ea ted
the

7 // corre spond ing VirtualNode may not be ready , and thus
we may not be ab le to o f f l o a d workloads yet .

8 nodeInformer cache . SharedIndexInformer
9 // nsInformer r e a c t s to namespaces being o f f l o ad ed on the

broker .
10 nsInformer cache . SharedIndexInformer
11

12 scheme ∗ runtime . Scheme
13 c l i e n t . C l i en t
14 homeClusterID s t r i n g

46

Implementation

15 }

In figure above is reported the main structure of the Broker operator
which contains the following attributes:

• nodeResources: is a map wich represents the bond between a
virtual node and its corresponding resources. The key is the node
id (clusterID) and the value all the shared resources wrapped in
the ResoruceList struct. This attribute is important to keep track
of all the virtual nodes informtion useful to generate a new offer
towards a customer.

• nodeInformer: is a particuar library object to manage watchers
that report all changes in the object watched. In this case this
informer tracks all changes in virtual nodes to add or modify a new
wntry in the noderesources map.

• nsInformer: is another informer used to watch the namespace
resources. Is used in association with the namespaceOffloading
resource to replicate a namespace from the customer to the provider
every time the customer creates a new namespace to offload new
jobs.

• scheme: library object used by the controller-runtime functions.
It has not a direct application in the logic.

• client: the client object to make requests to the API server.

• homeClusterID: a string to identify the cluster in which the
broker is runnung.

4.3.3 Startup process
In the next figures is explained how works the broker startup process.

Listing 4.3: setup
1 func (b ∗Broker) SetupBroker (c l u s t e r ID s t r i ng , c l i e n t s e t

kubernetes . I n t e r f a c e , scheme ∗ runtime . Scheme , resyncPer iod
time . Duration , k8Cl i ent c l i e n t . C l i en t) {

47

Implementation

2 b . nodeResources = map [s t r i n g] corev1 . ResourceL i s t {}
3 b . C l i en t = k8Cl i ent
4 b . scheme = scheme
5 b . homeClusterID = c lu s t e r ID
6 b . nodeInformer = in fo rmer s .

NewSharedInformerFactoryWithOptions (c l i e n t s e t ,
resyncPer iod ,

7 i n f o rmer s . WithTweakListOptions (v i r t u a lNode sF i l t e r)) .
Core () .V1() . Nodes () . Informer ()

8 b . nodeInformer . AddEventHandler (cache .
ResourceEventHandlerFuncs{

9 AddFunc : b . onNodeAddOrUpdate ,
10 UpdateFunc : func (oldObj , newObj i n t e r f a c e {}) {
11 b . onNodeAddOrUpdate (newObj)
12 } ,
13 DeleteFunc : b . onNodeDelete ,
14 })
15 b . nsInformer = in fo rmer s . NewSharedInformerFactory (

c l i e n t s e t , r e syncPer iod) . Core () .V1() . Namespaces () . Informer
()

16 b . nsInformer . AddEventHandler (cache .
ResourceEventHandlerFuncs{

17 AddFunc : b . onNamespaceAdd ,
18 // DeleteFunc i s not nece s sa ry : when the o f f l o ad ed

namespace goes away , the NamespaceOffloading w i l l a l s o be
de l e t ed

19 })
20 }

The code above is used to prepare all the broker parameters before
starting. The most important part is the informer setup: as previously
described the informers wrap object watchers and report all the the
changes to that object. This changes will be asynchronously processed
through three type of handle functions:

• AddFunc: handle function to process the creation of a new re-
source.

• UpdateFunc: handle function to process existing resource changes.

• DeleteFunc: handle function to process the deletion of a resource.

48

Implementation

The next paragraph describe all the handle functions of the broker
operator.

49

Implementation

Virtual Nodes handle functions

Listing 4.4: Virtual Node Add function
1 func (b ∗Broker) onNodeAddOrUpdate (obj i n t e r f a c e {}) {
2 node := obj . (∗ corev1 . Node)
3 // Do not r e g i s t e r the ResourceOf fer u n t i l the node i s

ready
4 i f ! u t i l s . IsNodeReady (node) {
5 r e turn
6 }
7 c l u s t e r ID := node . GetAnnotations () [cons t s . RemoteClusterID

]
8 i f c l u s t e r ID == " " {
9 r e turn

10 }
11

12 r e source s , e r r := b . g e tC lu s t e rO f f e r (c l u s t e r ID)
13 i f e r r != n i l {
14 klog . Er ro r f (" Fa i l ed to r e g i s t e r r e s ou r c e s f o r node %s

: %s " , node .Name, e r r)
15 r e turn
16 }
17 klog . I n f o f (" Reg i s t e r i ng ResourceOf fer f o r c l u s t e r %s " ,

c l u s t e r ID)
18 b . nodeResources [c l u s t e r ID] = r e s ou r c e s . DeepCopy ()
19 }

This is the handle function triggered at a new Virtual Node creation. Ev-
ery time a new Virtual Node is created and becomes ready this function
extracts all the available resources and add them to the nodeResource
map.

Listing 4.5: Virtual Node Delete function
1 func (b ∗Broker) onNodeDelete (obj i n t e r f a c e {}) {
2 node := obj . (∗ corev1 . Node)
3 c l u s t e r ID := node . GetAnnotations () [cons t s . RemoteClusterID

]
4 i f c l u s t e r ID == " " {
5 r e turn
6 }

50

Implementation

7 klog . I n f o f (" Unr eg i s t e r i ng ResourceOf fer f o r c l u s t e r %s " ,
c l u s t e r ID)

8 de l e t e (b . nodeResources , c l u s t e r ID)
9 }

This is the handle function triggered at a new Virtual Node deletion.
Every time a new Virtual Node is deleted and becomes ready this
function extracts all the available resources and delete them from the
nodeResource map.

51

Implementation

Namespaces handle functions

Listing 4.6: Namespace Add function
1 func (b ∗Broker) onNamespaceAdd (obj i n t e r f a c e {}) {
2 ns := obj . (∗ corev1 . Namespace)
3 c l u s t e r ID := ns . Annotations [cons t s .

RemoteNamespaceAnnotationKey]
4 i f c l u s t e r ID == " " {
5 r e turn
6 }
7

8 _ = c lu s t e r ID
9 klog . I n f o f (" Creat ing a NamespaceOffloading in response to

new namespace %s " , ns .Name)
10 nsOf f l oad ing := &of fv1a lpha1 . NamespaceOffloading{
11 ObjectMeta : metav1 . ObjectMeta{
12 Name : cons t s . DefaultNamespaceOffloadingName ,
13 Namespace : ns .Name,
14 } ,
15 Spec : o f f v1a lpha1 . NamespaceOffloadingSpec{
16 NamespaceMappingStrategy : o f f v1a lpha1 .

EnforceSameNameMappingStrategyType ,
17 PodOf f load ingStrategy : o f f v1a lpha1 .

RemotePodOffloadingStrategyType ,
18 Clu s t e r S e l e c t o r : corev1 . NodeSe lector {
19 NodeSelectorTerms : [] corev1 . NodeSelectorTerm

{{
20 MatchExpressions : [] corev1 .

NodeSelectorRequirement {
21 {
22 Key : cons t s . TypeLabel ,
23 Operator : corev1 . NodeSelectorOpIn

,
24 Values : [] s t r i n g { cons t s .

TypeNode} ,
25 } ,
26 {
27 Key : cons t s . RemoteClusterID ,
28 Operator : corev1 .

NodeSelectorOpNotIn ,
29 Values : [] s t r i n g { c lu s t e r ID } ,
30 } ,

52

Implementation

31 } ,
32 }} ,
33 } ,
34 } ,
35 Status : o f f v1a lpha1 . NamespaceOff loadingStatus {} ,
36 }
37 e r r := b . C l i en t . Create (context .TODO() , n sOf f l oad ing)
38 i f e r r != n i l {
39 klog . Er ro r f (" onNamespaceAdd : %s " , e r r)
40 }
41 }

This function is triggered when a new namespace is created. If this
namespace is a remote one the broker create a new namespaceOffloading
resource to re-offload that to the remote provider. For the namespaces
there are not handle functions for update and deletion because this
process is managed by the NamespaceOffloading controller.

Listing 4.7: start broker function
1 func (b ∗Broker) Sta r t (ctx context . Context , group ∗ sync .

WaitGroup) {
2 group .Add(2)
3 go b . startNodeInformer (ctx , group)
4 go b . s ta r tNsIn fo rmer (ctx , group)
5 }
6 func (b ∗Broker) startNodeInformer (ctx context . Context , group

∗ sync .WaitGroup) {
7 de f e r group . Done ()
8 b . nodeInformer .Run(ctx . Done ())
9 }

10

11 func (b ∗Broker) s ta r tNsIn former (ctx context . Context , group ∗
sync .WaitGroup) {

12 de f e r group . Done ()
13 b . nsInformer .Run(ctx . Done ())
14 }

The function above finally starts the broker. As the two inform-
ers have to run asynchronously they are stared in two separated
threads(goroutines).

53

Implementation

4.3.4 Peering phase
In this section will be analyzed how the broker works during the peering
phase from the receipt of the ResourceRequest to the ResourceOffer
generation.

54

Implementation

Peering with providers

To make the broker work properly is necessary to collect a certain
amount of offers generated by some providers it knows. So the broker
administrator has to start an outgoing peering towards these providers
with whom it has some agreements. In this phase the peering works
exactily the same as described in the previous chapter[3]. As reported

Figure 4.2: Providers Peering

in the 4.2 the handler of virtual nodes informer is triggered at the end
of every peering, updating the nodeResources map.

Peering with customers

The previous phase can be described as a sort of configuration part
without whom a broker cannot work properly (e.g. it cannot send
offers because they are generated from existing ones). In this prototype
there is a protection mechanism against this misconfiguration which
consists in a simple warning message but it will be more sophisticated

55

Implementation

if necessary. However this phase is started by a customer which needs
some resources so it starts a peering with the broker.

56

Implementation

The Broker receives a ResourceRequest which triggers the ResourceRequest
controller[3] which enqueue the request to be processed by the broker
operator.

Listing 4.8: ResourceRequest controller enqueue the request of the
customer

1 // ensure c r ea t i on , update and d e l e t i o n o f the r e l a t e d
ResourceOf fer

2 switch resourceReqPhase {
3 case al lowResourceRequestPhase :
4 // ensure that we are o f f e r i n g r e s ou r c e s to t h i s

remote c l u s t e r
5 r . Broker . EnqueueForCreationOrUpdate (remoteClusterID)
6 resourceRequest . Status . OfferWithdrawalTimestamp = n i l
7 case denyResourceRequestPhase ,

de let ingResourceRequestPhase :
8 // ensure to i n v a l i d a t e any r e sou r c e o f f e r e d to the

remote c l u s t e r
9 e r r = r . i nva l i da t eRe sou r c eO f f e r (ctx , &resourceRequest

)
10 i f e r r != n i l {
11 klog . Er ro r f ("%s −> Error i n v a l i d a t i n g

r e s ou r c eO f f e r : %s " , remoteClusterID , e r r)
12 r e turn c t r l . Result {} , e r r
13 }
14 }

The function EnqueueForCreationOrUpdate does this work and starts
the offer generation.

Listing 4.9: the structure of enqueue function in the Broker operator
1 func (b ∗Broker) EnqueueForCreationOrUpdate (c l u s t e r ID s t r i n g)

{
2 // Return aggregated r e s ou r c e s
3 to ta lResource s , e r r := b . getTota lResources ()
4 i f e r r != n i l {
5 klog . Error (e r r)
6 r e turn
7 }
8

9 i f resourceIsEmpty (to ta lRe sou r c e s) {

57

Implementation

10 klog . Warningf ("No r e s ou r c e s found : nodeResources=%v " ,
b . nodeResources)

11 r e turn
12 }
13

14 // Forward the o f f e r to the c l u s t e r
15 klog . I n f o f (" Generating o f f e r f o r c l u s t e r %s " , c l u s t e r ID)
16 e r r = b . gene ra t eOf f e r (c lus te r ID , to ta lRe sou r c e s)
17 i f e r r != n i l {
18 klog . Error (e r r)
19 r e turn
20 }
21 }

This function get the total amount of resources available shared by all
the providers and generate a new ResourceOffer with them (if there
are not available resources a warning message log will be printed). At
the end of this process the crd-replicator send the offer to the customer
which completes the peering phase.

The offer generation

The most important task of the broker operator is the offer generation.
It can have a lot of possible implementation, even very sophisticated,
depending on what results are expected to have. This prototype im-
plements a very simple approach which consists of collecting all the
resources shared by the providers which are still available.

Listing 4.10: extraction of the resources and ResourceOffer generation
1 func (b ∗Broker) getTota lResources () (corev1 . ResourceList ,

e r r o r) {
2 t o t a l := make(corev1 . ResourceL i s t)
3 f o r c l u s t e r , _ := range b . nodeResources {
4 r e source s , e r r := b . g e tC lu s t e rO f f e r (c l u s t e r)
5 i f e r r != n i l {
6 r e turn n i l , e r r
7 }
8 mergeResources (t o ta l , r e s ou r c e s)
9 }

10 r e turn to ta l , n i l

58

Implementation

11 }
12

13 func mergeResources (a , b corev1 . ResourceL i s t) {
14 f o r key , va l := range b {
15 i f prev , ok := a [key] ; ok {
16 prev .Add(va l)
17 a [key] = prev
18 } e l s e {
19 a [key] = va l . DeepCopy ()
20 }
21 }
22 }
23

24 func (b ∗Broker) g ene ra t eOf f e r (c l u s t e r ID s t r i ng , t oOf f e r
corev1 . ResourceL i s t) e r r o r {

25 l i s t , e r r := b . getResourceRequest (c l u s t e r ID)
26 i f e r r != n i l {
27 r e turn e r r
28 }
29 i f l en (l i s t . Items) == 0 {
30 r e turn fmt . Er ro r f (" no r e s ou r c e r eque s t f o r c l u s t e r %s

" , c l u s t e r ID)
31 }
32 i f l en (l i s t . Items) > 1 {
33 r e turn fmt . Er ro r f ("more than one r e s ou r c e r eque s t

e x i s t s f o r c l u s t e r %s " , c l u s t e r ID)
34 }
35 r eque s t := l i s t . Items [0]
36 o f f e r := &shar ingv1a lpha1 . ResourceOf fer {
37 ObjectMeta : metav1 . ObjectMeta{
38 Namespace : r eque s t . GetNamespace () ,
39 Name : o f f e r P r e f i x + b . homeClusterID ,
40 } ,
41 }
42

43 op , e r r := c o n t r o l l e r u t i l . CreateOrUpdate (context .
Background () , b . Cl ient , o f f e r , func () e r r o r {

44 i f o f f e r . Labe ls != n i l {
45 o f f e r . Labe ls [d i s cove ry . ClusterIDLabel] = reques t .

Spec . C lu s t e r I d en t i t y . ClusterID
46 o f f e r . Labe ls [cons t s . Rep l i cat ionRequestedLabe l] =

" t rue "

59

Implementation

47 o f f e r . Labe ls [cons t s . Rep l i c a t i onDes t ina t i onLabe l]
= reque s t . Spec . C l u s t e r I d en t i t y . ClusterID

48 } e l s e {
49 o f f e r . Labe ls = map [s t r i n g] s t r i n g {
50 d i s cove ry . ClusterIDLabel : r eque s t .

Spec . C lu s t e r I d en t i t y . ClusterID ,
51 cons t s . Rep l i cat ionRequestedLabe l : " t rue " ,
52 cons t s . Rep l i c a t i onDes t ina t i onLabe l : r eque s t .

Spec . C lu s t e r I d en t i t y . ClusterID ,
53 }
54 }
55 o f f e r . Spec . C lus t e r Id = b . homeClusterID
56 o f f e r . Spec . ResourceQuota . Hard = toOf f e r . DeepCopy ()
57 r e turn c o n t r o l l e r u t i l . S e tCont ro l l e rRe f e r enc e (&request

, o f f e r , b . scheme)
58 })
59

60 i f e r r != n i l {
61 klog . Error (e r r)
62 r e turn e r r
63 }
64 klog . I n f o f ("%s −> %s Of f e r : %s/%s " , b . homeClusterID , op ,

o f f e r . Namespace , o f f e r .Name)
65 r e turn n i l
66 }

As reported in the figure above the function getTotalResources col-
lects all the available resources and passes them to the mergeResources
function to sum all of them in a single ResourceList object which will be
returned to be passed to the generateOffer function which creates the
ResourceOffer. This is a very simple strategy but sufficient to have a
working prototype. In the next chapters will be proposed some possible
new strategies.
At the end of this phase the customer starts the Virtual kubelet as
usual even if it will create a big node which has the resources sent by
the broker.

60

Implementation

Figure 4.3: Customer peering

The following scheme shows the general flow described in this section
to better understand the entire peering process.

4.4 Pod Offloading phase
At the end of peering phase the customer can start deploying its pods
which may be offloaded to the broker. The broker takes the pod
offloaded and schedules them on the providers Virtual Nodes where
they will be executed. To make this possible a customer needs to do
this three simple actions:

1. Create a new namespace: it will contain all the pod the cus-
tomer wants to run.

2. Enable the namespace to the offloading: it is possible using a
particular liqo label or creating a new NamespaceOffloading custom
resource (see liqo docs).

3. Deploy every application in this namespace: the pod started
may be offloaded if they will be scheduled on the virtual node.

61

Implementation

Figure 4.4: General broker flow

4.4.1 The Namespace Offloading
If the customer complete the second point in the previus paragraph
correctly liqo offloads the marked namespace to the broker. At this
moment the broker operator is triggered by the new namespace creation
and as a result re-offload the namespace to all the providers which have

62

Implementation

an outgoing peeering marking the namespace as remote only. Every pod
started on this namespace will be directly re-offloaded to the providers.
This process complete what the broker operator does to make this

Figure 4.5: Namespace Offloading high-level scheme

cascading offloading work, so it is expected that when a pod reach
any provider becomes ready and it can be reached by the liqo network.
Unfortunately this is not completely true because the liqo network
does not support the kind of cascading offload and the pod becomes
unreachable.

4.5 The network problem
In a general configuration an offloaded pod becomes reachable thanks
to the liqo network and ipam address managing [3.5].

63

Implementation

Figure 4.6: Pod address remapping in standard case

Nevertheless if we add a broker as intermediate cluster in the previous
figure something go wrong and pod becomes unreachable. As reported

Figure 4.7: Pod unreachability scheme

in the figure there is a double address remapping done by both the
broker IPAM and cluster1 IPAM which makes the final address assigned
to the shadow pod not re-translatable. This is big problem because

64

Implementation

the standard liqo network is not completely compatible with the broker
architecture. On the other hand is possible to use a very powerful
liqo network feature to bypass this problem fixing this configuration
problem: the service reflection and the EXTERNAL CIDR.

4.5.1 The solution
Using the serice reflection, the broker can reflect its IPAM service on
the customer making possible to it asking an IP address for a shadow
pod belonging to the Broker EXTERNAL CIDR net. This will be
managed by the broker virtual kubelet running on the customer which
is in charge to check the address of every pod of whom is getting the
status:

• The ip address belongs to POD CIDR of the remote clus-
ter: this is the general case; the remote cluster could not be the
broker so the remapping is the same of the standard one.

• The ip address does not belong to POD CIDR of the re-
mote cluster: the broker case; the Virtual kubelet asks to the
Broker IPAM a new address from its EXTERNAL CIDR net.

Having this address all pods offloaded by the broker becomes reachable
and the applications will work properly.

65

Implementation

Figure 4.8: Pod unreachability solution

66

Chapter 5

Results

5.1 Overview
In this section will be described some performance results obtained
comparing the offloading time of a standard Liqo configuration (two
clusters peered in standard mode) with Liqo in brokering configuration
(a cluster as customer, a cluster as broker and another as provider) in
order to measure the overhead of the broker.

5.2 Performance Tests
The evaluate which impact the broker has on liqo performances it has
been collected two type of data:

• The pod offloading time in standard liqo configuration.

• The pod offloading time using a cluster in broker mode as
intermediate cluster

The following tables show 10 measurements of pod offloading time for
each quantity of pod offloaded. The chosen quantities are 1, 5, 10, 20,
30 and 50 pods deployed at the same time. As we can see the data
measured with the broker are more unstable than the standard case;
this instability has two major factors to be considered:

67

Results

1 pod 5 pods 10 pods 20 pods 30 pods 50 pods
0,5s 2,847s 6,307s 5,865s 10,15s 14,197s

2.527s 3.733s 4.199s 6.773s 7,272s 10,724s
1,436s 4,287s 6,636s 5,198s 10,54s 20,735s
1,669s 3,722s 5,802s 8,333s 9,76s 16,449s
2,713s 3,271s 5,098s 8,921s 13,276s 7,944s
1,753s 3,413s 5,942s 6,304s 10,491s 18,145s
2,269s 4,26s 5,167s 6,446s 9,321s 20,561s
2,657s 3,631s 6,977s 8,582s 12,794s 15,438s
1,828s 3,742s 4,695s 6,295s 15,348s 17,703s
2,151s 3,505s 5,082s 5,978s 14,915s 15,37s

Table 5.1: Offloading times in liqo standard configuration

1 pod 5 pods 10 pods 20 pods 30 pods 50 pods
2,846 3,921 9,199 22,129 40,476 27,69
1,99 4,975 17,977 9,908 14,153 14,562
0,417 3,723 9,719 14,019 22,96 26,56
2,872 4,21 8,913 18,111 17,725 22,608
2,113 7,319 7,988 14,795 15,518 20,212
16,555 4,431 9,431 11,181 11,831 20,434
6,33 16,615 8,482 12,189 16,204 23,598
2,402 18,078 6,788 13,625 14,488 22,28
16,543 4,799 8,665 28,616 15,791 22,555
2,277 4,37 18,665 16,125 25,541 26,443

Table 5.2: Offloading times in liqo with broker

1. The scheduling: this measures are taken from a case when the
pod can be scheduled both locally and on the remote cluster and this
adds a variety in time because the scheduler has no deterministic
behaviour.

2. The number of cluster crossed: in the standard case, when

68

Results

offloaded, pods are directly sent to the destination otherwise in the
broker case they have to pass through the broker and then they
reach the destination cluster.

If we analyze the average time of each quantity of pod to be fully ready
it can be seen that the broker takes mostly twice the time taken in the
standard configuration.

Figure 5.1: A graph with the average times comparison

5.3 Final Evaluation
In conclusion we can say that the broker adds an overhead comparable
with a new level of cluster offloading. This is a prototype so it has not
any optimization and some code instability which can influenced the
data. However it is important also to consider the fact that the broker
could become a bottleneck without the dedicated computational and
network resources.

69

Chapter 6

Conclusions and Future
work

6.1 Some General consideration
Since this thesis work is a prototyping one there are many feature that
a future broker can have. This work demonstrated that is possible to
implement brokering features in liqo and it is great. Nevertheless there
are some points to face which can transform this prototype in a real
implementation:

• Explicit Resource Requests: a customer can personalize its
ResourceRequest resource to ask exactly what needs to the broker.
It is very useful for the broker which can better select the resources
and share is smarter way.

• Offer generation algorithm: the previous feature has this one
with a direct consequence; when the broker receives a new request
it is very useful to have a sophisticated algorithm to choose what
resource share and then generate the offer which better satisfies
the customer.

• Over committing strategies: this strategy consists in offer more
resources than owned having more and more Broker approach.

70

Conclusions and Future work

• hierarchical broker: since the Broker can be a bottleneck can
be very useful to have more than one broker acting together as one.
This feature is very difficult to implement in liqo so needs more
study.

71

Bibliography
[1] Kubernetes official documentation. url: https://kubernetes.

io/docs/home/ (cit. on p. 3).
[2] Virtual-kubelet git repository. url: https://github.com/virtua

l-kubelet/virtual-kubelet (cit. on pp. 3, 18, 19).
[3] Kubebuilder git repository. url: https://github.com/kubernet

es-sigs/kubebuilder (cit. on pp. 3, 18, 19).
[4] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David

Oppenheimer, Eric Tune, and John Wilkes. «Large-scale cluster
management at Google with Borg». In: Proceedings of the European
Conference on Computer Systems (EuroSys). Bordeaux, France,
2015 (cit. on p. 4).

[5] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. «Omega: flexible, scalable schedulers for large com-
pute clusters». In: SIGOPS European Conference on Computer
Systems (EuroSys). Prague, Czech Republic, 2013, pp. 351–364.
url: http://eurosys2013.tudos.org/wp-content/uploads/
2013/paper/Schwarzkopf.pdf (cit. on p. 4).

[6] Ferenc Hámori. The History of Kubernetes on a Timeline. June
2018. url: https://blog.risingstack.com/the-history-of-
kubernetes/ (cit. on p. 4).

[7] Steven J. Vaughan-Nichols. The five reasons Kubernetes won the
container orchestration wars. Jan. 2019. url: https://blogs.dxc.
technology/2019/01/28/the- five- reasons- kubernetes-
won-the-container-orchestration-wars/ (cit. on p. 4).

72

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/kubernetes-sigs/kubebuilder
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://blog.risingstack.com/the-history-of-kubernetes/
https://blog.risingstack.com/the-history-of-kubernetes/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars/

BIBLIOGRAPHY

[8] Kalyan Ramanathan. 5 business reasons why every CIO should
consider Kubernetes. Oct. 2019. url: https://www.sumologic.
com/blog/why-use-kubernetes/ (cit. on p. 4).

[9] Eric Carter. Sysdig 2019 Container Usage Report: New Kubernetes
and security insights. Oct. 2019. url: https://sysdig.com/
blog/sysdig-2019-container-usage-report/ (cit. on p. 7).

[10] Diego Ongaro and John Ousterhout. «In search of an understand-
able consensus algorithm». In: 2014 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 14). 2014, pp. 305–319 (cit. on
p. 9).

[11] Kubernetes official documentation. url: https://kubernetes.
io/docs/home/ (cit. on pp. 12, 15, 17, 19).

[12] Kubernetes API official documentation. url: https://kuberne
tes.io/docs/reference/generated/kubernetes-api/v1.17/
(cit. on p. 12).

[13] Kubernetes Operator pattern. url: https://kubernetes.io/
docs/concepts/extend-kubernetes/operator/ (cit. on p. 19).

73

https://www.sumologic.com/blog/why-use-kubernetes/
https://www.sumologic.com/blog/why-use-kubernetes/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.17/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

	List of Figures
	Introduction
	Goal of thesis

	Background technologies: Kubernetes and Liqo
	Kubernetes
	Kubernetes: a bit of history
	Applications deployment evolution
	Container orchestrators
	Kubernetes architecture
	Control plane components
	Node components

	Kubernetes objects
	Label & Selector
	Namespace
	Pod
	ReplicaSet
	Deployment
	Service

	Virtual-Kubelet
	Kubebuilder
	Liqo
	Liqo Idea
	Cluster Management
	Discovery

	Towards the broker design
	Liqo peering phase
	Overview
	Liqo ForeignCluster Operator
	Liqo ResourceRequest Controller
	Liqo Broadcaster
	Liqo ResourceOffer Controller
	Liqo CRD Replicator

	Pod Offloading and communication
	The Role of the Liqo Virtual Kubelet
	Shadow pods
	Namespace Offloading
	Pod communication and IPAM

	Implementation
	Overview
	The concept of broker in Liqo
	Broker Operator
	Broker Mode
	Broker operator structure
	Startup process
	Peering phase

	Pod Offloading phase
	The Namespace Offloading

	The network problem
	The solution

	Results
	Overview
	Performance Tests
	Final Evaluation

	Conclusions and Future work
	Some General consideration

	Bibliography

