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Summary

Nowadays Artificial Intelligence (AI) is a widespread tool that has consistently came
into our lives recently due to the enhancement of the Deep Learning techniques
made possible by means of the growth of the hardware computational power and
data availability. Despite its support on hard tasks such as object classification,
geo-localization, or text completion, AI can contribute to some other called soft
tasks related to art and creativity. However, as of now, there are few studies that
aim to deal with these aspects using a multimodal approach, yet as humans we
know that these subjects don’t have a single communication channel, moreover,
there are not many datasets supporting these goals. This thesis work aims to show
how deep learning can be used for artistic purposes than practical ones, which only
recently have attracted the attention of the research community.
This work stems from the music emotion recognition task, which is exploited to
connect sound information to visual one through a conditioned generative process.
As a first step, a detailed analysis of the sound-emotion and visual-emotion existing
datasets took place together with their alignment to have a shared set of emotion
categories to be used to connect audio and visual information. Consequently, dif-
ferent sound representations have been used and compared to perform the emotion
recognition task to build a classifier whose output is wanted to be used as the input
of generative model, obtaining new creative images reflecting the music sentiment.
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Chapter 1

Introduction

1.1 Problem Statement

’Would it be possible to make AI creative and empathic?’
This is the starting point of this work, whose purpose is to create an AI capable

of ’listening’ to music to get inspiration for visual artwork.
The work is composed of two natures: audio and visual. The first difference between
them comes directly from the human sense required to perceive an audio and an
image. Obviously, there is not an objective direct-map between what we can hear
and its visual representation thought as an image or a color.
Could this mapping be found?

This question guides towards the search of a solution aiming to create a direct
link between these two domains: they are two human’s art forms and since they
are art forms they are created by the human instinct, at least in a very primordial
form. Going a bit deeper and talking about human evolution we can assert that the
factor of human growth is given by the neocortex, the largest part of the cerebral
cortex. Among all its functions it’s worth mentioning that it is responsible for
cognitive processes, social and emotional processing. As neocortex becomes more
evolved, humans become more conscious about themselves, understanding that art
is the direct expression of feelings that can be controlled to give this expression
a wanted structure, a thought-form. In other words art is, in a more conscious
meaning, the output given by human’s intellectual choices made in order to give a
form to emotional inputs.

Leo Tolstoy: "Art is a human activity consisting in that one human consciously
hands on to others feelings they have lived through, and that other peple are infected
by these feelings, and also experience them"
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We can find a better, scientific definition reading Daniel Goleman, a scientific
journalist, author and psychologist, who gave a structure to this concept calling it
’Emotional Intelligence’ (EQ), defined as the humans’ ability to understand and
manage their own emotions and feelings such that EQ can be applied to reach
self-awarness, objectivity and equality. He is not the founder of the emotional
intelligence theory but he developed a framework of five key components that
compose the emotional intelligence, plus a set of skills that can be developed and
improved by anyone.

Music art and Visual art share a common space identified by the emotions they
bring in themselves, so at this point we can think a music-emotion map and
a image-emotion map thus use the emotion space as the direct link between
audio and image.

Taking head of this, this thesis work focuses on two emotion-labelled dataset:
a first dataset containing audio files used to train a music-to-emotion classifier
and a second one containing paintings used to train an image-to-emotion classifier
which is exploited in the context of the conditionalGAN framework, in order to
generate visual artworks inspired by music emotions.

1.2 High Level Pipeline
The high-level AI system is depitcted in 1.1.

Figure 1.1: High Level Pipeline

Translator is a Deep Learning classification model which is in charge of taking
an audio file as input and extract the emotion carried by the music.
More details are in Chapter 4, where a comparison between different modal-classifier
is explained. Since audio is information, we can have different representations
(*.mp3, *.wav, Spectrogram, MFCC) of the same information thus different music-
to-emotion classifiers based on the different starting representations of sound.

Generator is a conditional GAN capable of generating visual art inspired by
the emotions given by the Translator.

18



Chapter 2

Related works

2.1 Music Classification

The first time music field was mentioned to be studied under the AI domain was
in 1974 at ICMC (International Computer Music Conference), Michigan State
University, East Lansing, USA. Starting from that moment the ICMC became an
annual event organized by the ICMA (International Computer Music Association).
Although it’s been almost 60 years since the AI experiments on music composition
began, the field is still considered at its beginning by many music experts and
researchers.
There is no a primary context in which music is placed because it could be present
in most of the routine activities performed by humans. It represents a connection
point for people, a topic of discussion or even a background for reflection.
Music has always played an important role in humans’ lives, and nowadays with
the enhancement of the digital and the internet network everyone can have an easy
access to a huge library of music such that music industry has shifted away from
physical media formats towards selling online contents and services. This events
have changed how music content have to be stored due to the increasing challenges
related to its searching, thus retrieving. To cope with this arising problems several
interdisciplinary experts, ranging from music perception, cognition, musicology
to engineering and computer science, have been involved in activities that have
been resulted in many proposed algorithmic and methodological solutions to music
search using content-based methods. [1]

Music Information Retrieval (MIR) is the name given to the pool of strategies
aiming to get other information from sound analysis for enabling a personalized
access to music collections to a different type of users such as recording or aggrega-
tion Industries, end users, music performers, teachers, musicologists and so on.[1]
Before the development of the first MIR-systems the most common method used to
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access music was through textual metadata, whose expressiveness was sufficient in
many scenarios. The actual problem is related to the impracticability of scaling this
approach, because as catalogues become larger, maintaining consistent expressive
metadata is an hard challenge. Furthermore these descriptions represent opinions,
so the editorial supervision of the metadata is paramount. [2]
Going further the metadata-based systems have been by content-based systems
whose strongest point is to hold music descriptors able to identify what the user is
seeking for even when he does not know exactly what he is looking for.
An example of content-based MIR is Shazam, capable of retrieving a soundtrack
only with a few seconds of recording given as input for the query. [3]
MIR-systems are commonly divided into content-based search systems of general
audio-data and music-based search systems which works on the notes, moreover
there are also hybrid systems which convert any type of audio data into a symbolic
version of the notes.
Because of the many different aspects and uses about MIR-systems and their
relative tasks, addressing all of them is pointless but it’s worth mentioning that
the majority of most interesting tasks is related to music genre classification [4],
instrument activity detection [5], chords recognition [6], audio segmentation [7],
automatic speech recognition [8] and music emotion recognition [9].

As told in the Introduction section 1.1, this work aims to analyze audio with an
emotion-centric point of view, thus the task of interest is the latter mentioned.

Music Emotion Recognition (MER) is the task which nowadays involves Ma-
chine Learning and even Deep Learning techniques to extract emotion as a feature
from music. The detection of emotions in music has raised a particular interest
since music is a pervasive subject and it is the finest language of emotions [10],
moreover the recent rise of social music applications has generated the demand on
the emotional ability of search engines [11]. The research community has developed
many music emotion recognition solution such as MoodTrack [12], MusicSense [13],
MoodCloud [14], just to name a few.
All of them accomplish that MER task is one of the most challenging due to the
intrinsic subjective nature of the relationship between music and emotions, and to
the difficulty to give a worldwide way to express emotions, because adjectives used
to their description might vary from person to person.
Starting from saying that a single listener could be differently affected from the
same song [15], it’s quite intuitive to think that every single person has a different
perception of the same song, thus people can recognize different emotions from the
same song. This topic was deeply studied and it’s still being studied from different
point of view as it is possible to read in paper [16]. It appeared that the role of
individuality has the major contribute in a MER-system in terms of its success.

20
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Build a objective MER-system, working in all scenarios, seems really unfeasible
unless other considerations are taking in account when designing it, but still it
would require a lot of effort especially at the beginning.
The first thing to be taken in account is undoubtedly the individuality: authors of
[16] point that none of other’s previous works considered this aspect.
This thesis work goes beyond this approach, although it should, as well.
The major contribute of [16] was to focus the attention in this preliminary concept
rather than approach MER as an aseptic classification problem, proposing a group-
wise MER approach (GWMER) and a personalized MER approach (PMER).
The first evaluates the importance of each individual factor such as sex, personality
and music experience, while the latter evaluates whether the prediction accuracy
for a user is significantly improved if the MER system is tailored for the user.

Usually, there are two common classification approaches: a dimensional and a
categorical one. The dimensional problem has been generally handled with a
shallow classifier such as Support Vector Regressor (SVR) or Support Vector Ma-
chine (SVM) trained on real-values labels, such as Valence-Arousal points, or on
handcrafted features called Mel-Frequency Cepstral Coefficients (MFCCs).
The categorical one focuses on characteristics that differentiate emotions from one
another taking in account music features such as timbre, harmony or rhythm. Once
Deep Learning has gained effectiveness and popularity, different novel approaches
have been tried to process sound, regardless the task. The most common approach
exploits 2D-Convolutional Neural Networks and consists on fitting an audio wave-
form into a pre-processing pipeline which outputs another representation of the
sound: the most famous and used is the Spectrogram representation seen as an
image, perfect to be fed into a 2D-CNN.
Most recent approaches to audio-classification discard handcrafted features extrac-
tion pipeline and focus only on the direct waveform analysis by feeding it into a
1D-CNN. Starting from this findings, the research community moved towards the
application of CNN [17], [11], LSTM-RNN [18] and combination of those architec-
tures [19], [18]. Despite the subjectivity nature of MER together with its impact
on MER-systems performances are well recognized, this thesis wants to be an
attempt to be the basis for the development of the deep learning project described,
concerning the artistic field. Although there are improvements that could be made,
the works want to give a new idea about a possible, different, application of an
emotion classifier, aimed at giving AI the possibility to create visual art in a new
way, being inspired by music, as many human artists do.
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2.1.1 Audio representations

’What is Sound?’
From a physical point of view sound is a vibration that propagates as an acoustic
wave through a transmission medium.

Acoustic waveform

The first, raw representation of sound is a pressure wave, whose propagation, in
one dimension, is governed by the second-order linear partial differential equation
2.1.

∂2p

∂x
− 1

c2
∂2p

∂t2 = 0 (2.1)

where:

• x is the dimension of propagation

• c is the speed of sound through the medium

• p is acoustic pressure

and equation 2.2 as solution:

∆P = ∆Pmaxsin(kx∓ wt + ϕ) (2.2)

When acoustic waves have frequencies f ∈ [20Hz, 20kHz] they can be perceived by
humans ears.
Figure 2.1 represents the plot of the amplitude-envelope of a waveform and since
this represents the raw signal it holds the highest level of detail.
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2.1 – Music Classification

Figure 2.1: Audio Waveform

This representation is used in section 3.4 and explored as input in Deep Learning
models in section 4.3.3.

Spectrogram

A single waveform is an ensemble of several single-frequency sound waves and the
single sample which is taken over time represents only the resulting amplitude.
The mathematical transformation which allows to decompose a function depending
on space or time is the Fourier Transform (FT), defined by equation 2.3.

F{g(t)} = G(f) =
Ú ∞

−∞
g(t)e−i2πftdt (2.3)

It is a tool used to break down a waveform into an alternative representation
showing that a single waveform can be written as the sum of several sinusoids of
different frequencies. The resulting function depends on frequency f and gives the
amount of power g(t) contained at frequency f , generally called spectrum of g. In
other words this tool converts the signal from the time domain into the frequency
domain (Figure 2.2).
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Figure 2.2: FT Illustration

Since we are dealing with the digital signal processing we are referring to
discrete functions, thus we will use discrete version of the FT, the Discrete
Fourier Transform (DFT) from now on (eq. 2.4). The DFT transforms a
sequence of N complex numbers xn := x0, x1, ..., xN−1 into another sequence of
complex numbers Nk := X0, X1, ..., XN−1 defined by equation 2.4:

Xk =
N−1Ø
n=0

xn · e− i2π
N
kn =

N−1Ø
n=0

xn ·
5
cos

32π

N
kn

4
− i · sin

32π

N
kn

46
(2.4)

Fast Fourier Transform (FFT) is the name given to the algorithm which
efficiently compute the DFT, used in signal processing in order to analyze the
frequency content of a signal.
When the frequency content varies over time, such as in Music, speech or more
in general in non-periodic signals, we can use a method which involves the
computation of several FFT spectrums performed on several windowed segments
of the signal.
Short-time Fourier Transform (STFT) consists in taking a sliding window
along the signal (or time series object) and computing the DFT on the time
dependent segment. Figure 2.3 and 2.4 show the outputs of STFT using one fixed
window of 2048 samples on 4 different audio lengths ([k ∗ 2048] for k = 1, 2, 3, 4)
of the same file, sampled at 44100Hz.
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2.1 – Music Classification

Figure 2.3: STFT outputs: spectrum of ’2.wav’

Figure 2.4: STFT outputs: spectrum of ’2.wav’

Converting Amplitudes to dB and stacking several FFTs on top of each other it
is possible to obtain the Spectrogram where the color dimension represents dB.
(Figure 2.5).
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Figure 2.5: Spectrogram of ’2.wav’

As explained in [20] humans do not have a linear perception of sound, such that
the difference between two sounds at 400 and 800Hz is more noticeable than the
difference between a 7000 and 7400Hz sounds. To fill this gap, a scale where sounds
are spaced in pitch as humans perceive has been constructed: the Mel-Scale
(Figure 2.6).

Figure 2.6: Hz-Mel Scale Conversion Curve

To construct it, i.e. apply non-linear transformations to the Hz scale, we can
use the python library librosa and specifically the command:

librosa.filters.mel(sr=sr, n_fft=n_fft, n_mels=n_mels)

which partitions the Hz scale into bins and transforms each bin into a Mel-Scale
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2.1 – Music Classification

bin, using overlapping triangular filters depicted in Figure 2.7, while filterbanks
used for the Hz to Mel conversion are shown in Figure 2.8.

Figure 2.7: Triangular filters

Figure 2.8: Hz to Mel Filterbanks

At this point, performing a dot product between the amplitude of one time
window and mel bins we obtain the spectrum in orange color depicted in Figure
2.9. The blue spectrum is the same as in Figure 2.3, left plot.
After the Hz to Mel-scale conversion, the Mel-Spectrogram has been obtained

(Figure 2.10) and it represents the input of the Deep Learning Model discussed in
section 4.3.2.
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Figure 2.9: Converted spectrum Hz to Mel

Figure 2.10: Mel-Spectrogram of ’2.wav’

This ’image representation’ of audio signals is exploited by Deep Learning tech-
niques to perform audio analysis.

2.2 Image Generation
Generative Adversarial Networks have been introduced by Ian Goodfellow in 2014
[21] and they are mostly used to perform image and video generation tasks([22],
[23], [24]).
They are used in the unsupervised representation learning, meaning that they do
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not require any label associated with the sample during the training phase: they
are able to learn P(X) where X is a set of features.

Vanilla GAN

’How does the GAN framework work?’
Generative Adversarial Networks are a particular type of generative models [21],

able to learn the distribution of a dataset (pdata) and then represent an estimation
of this distribution (pmodel)[25]. A standard GAN is composed by two main entities
(Figure 2.11):

1. Generator (G): learns to generate non-existing images (fake) which have to
look as real as possible.

2. Discriminator (D): learns to distinguish between real and fake images.
G and D play an adversarial min-max game given by the loss function in the
equation 2.5.

J(D) = Ex∈pdata [logD(x)] − Ez
51
2 log(1−D(G(z)))

6
J(G) = −J(D)

(2.5)

Where:

• x is a real data sampled from pdata distribution.

• z is a random vector sampled from the latent space distribution pz.

• G and D are the Generator and Discriminator network, respectively.

Figure 2.11: Structure of GAN, adopted from [26]
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The Discriminator is a classifier trained to output two different values: when
it outputs 1, it means that the image generated by the Generator is classified as
real, while when it outputs 0 the generated sample is classified as fake. Its loss is
evaluated taking in account how well real samples D(x) and fake samples D(G(z))
are classified. Moreover D(x) should be as close as possible to 1, D(G(z)), instead,
to 0.
The Generator has a cost function opposite to the discriminator’s one because it is
trained to fool the discriminator.
To learn a generator distribution pg over data x, G builds a mapping function from
a prior noise distribution pz(z) to data space as G(z; θg) and D, D(x; θd), outputs
the single scalar representing that x came from from training data rather than pg.
G and D are trained simultaneously adjusting parameters for G to minimize
log(1−D(G(z)) and adjusting parameters for D to minimize logD(X), as if they
are following the two-player min-max game with value function V (G, D)[27]:

min
G

max
D

V (D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.6)

GAN training consists in finding Nash equilibrium of this two-players non-
cooperative game [28], achieved when each player has the minimum possible cost,
and this equilibrium research is one of the most challenging problem for GANs
expecially when cost functions are non-convex and the space of parameters has
high dimensionality.

DCGAN

DeepConvolutionalGAN is the first major improvement in GAN introduced in [29]
which demonstrates how the use of deep convolutional layers inside the architectures
of the generator and discriminator leads to better perfomances together with a fast
convergence. The authors of the paper [29] give the following general guidelines:

• Replace any Pooling Layer with Fractional-strided Convolutions in the gener-
ator and with Strided Convolutions in the discriminator.

• Use Batch Normalization [30] in both generator and discriminator.

• Remove Fully Connected hidden layers for deeper architectures.

• Use ReLU activation [31] for any layer in the generator but for the last, which
has to use Tanh.

• Use LeakyReLU activation [32] for all layers in the discriminator.
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Figure 2.12 shows the general architecture of the generator receiving a 100-
dimensional random vector z, sampled from a uniform distribution, and outputting
a 64x64 image thanks to the concatenation of fractional-strided convolutions.
The architecture of the discriminator mirrors the generator’s one, receiving a 64x64
image and outputting a scalar real-number n ∈ [0, 1].

Figure 2.12: DCGAN generator adopted from [29]

Condition the generation of GANs

The paper [27] introduces the conditional version of GANs, which can be constructed
by simply feeding the data y we wish to condition on to both the generator and
discriminator. The data y is an additional information which lets the models learn
P (X|Y ), leading to the generation of specific class samples resulting in a higher
control on what is generated. This conditional architecture has been applied to the
Vanilla GAN case, but it can be applied to other variants as well.
In the generator the input vector noise pz(z) and y are combined in joint hidden
representation which can be composed in a lot of different ways thanks to the
adversarial training framework.
The objective function of a two-player minimax game 2.6 becomes the following:

min
G

max
D

V (D, G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (2.7)

The proposed structure of a conditionalGAN is depicted in Figure 2.13, where x
and y are both inputs for the discriminative function while y is combinated with z
for the generator.
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Figure 2.13: conditionalGAN architecture adopted from [27]

Class labels can be encoded and incorporated into discriminator and generator
in several different ways. One of the best practices concerns in using an embedding
layer followed by a Fully-Connected layer with a linear activation that scales the
embedding to the size of the image before concatenating it in the model as an
additional channel or feature map [33].
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Chapter 3

Data and evaluation

3.1 Image perspective

The major interest lies in generating artworks by conditioning the generation with
emotions, hence a dataset containing artworks annotated with emotions it is needed.
There are a lot of image-emotion datasets in literature [34], [35] but none of them
fits for the thesis intent.
The dataset which holds artworks is the well-known WikiArt dataset [36], whose
information are readable from Table 3.1, but it does not contain any emotion
information.

paintings artists art styles maxWidth maxHeight minW minH max Resolution
81,447 1,119 27 15,530px 9,541px 63px 50px 107,327,830px

Table 3.1: Wikiart Dataset stats

Further researches put lights on the Panos Achlioptas et al. paper [37] which
brings a new vision of Wikiart dataset by asking annotators to annotate the domi-
nant emotion they feel for a given image and to also provide a grounded verbal
explanation for their emotion choice. This dataset contains a set of signals for both
the objective content and the affective impact of an image, creating associations
with abstract concepts or references that go beyond what is directly visible.
The now called ArtEmis dataset contains 439k emotion attributions and explana-
tions from humans on 81k artworks from wikiart.
A content-based dataset containing images descriptions in human language already
exists in literature and it is called COCO [38], but with the huge difference lieing into
the semantic of the utterances. COCO-captions refer to objects and actions directly
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visible, while inside ArtEmis the annotators exposed a wide range of abstract seman-
tics and emotional states associated with the concept of an object or an animal. In
Figure 3.1 is possible to notice the semantic difference between ArtEmis and COCO.

Figure 3.1: Affective explanations vs. content-based captions mentioning the
word ’bird’

Data Collection

Each artwork was annotated by at least five annotators who were asked to express
their dominant emotion through Amazon’s Mechanical Turk GUI together with the
reason related to the choice. If none of the given emotions was fine to describe what
the annotator felt, it was possible to choose the something else option, providing
an explanation as well.
In total the authors of [37] collected 439,121 explanatory utterances and emotional
responses resulting in 36,347 distinct words written by 6,377 annotators.
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label_id emotion color
0 amusement #EE82EE
1 awe #FFFF00
2 contentment #DC143C
3 excitement #000080
4 anger #F0E68C
5 disgust #C0C0C0
6 fear #696969
7 sadness #228B22

Table 3.2: ArtEmis Dataset Labels

The most important side of this dataset, for this thesis task, is related to the
emotion categorical label (Table 3.2). Since each artwork has at least 5 annotators
it was possible to build an emotion-histogram for each painting, given a basis
for a possible multi-label classification task: the classifier could attribute more
than one emotion class to the painting, each with its weight.
In section 3.2 a single 30s excerpt of music is mapped with one class emotion,
hence for the generative experiment the ArtEmis labels were simplified such that
from each emotion-histogram only the most important emotion has been selected:
images with ambiguous dominant emotion (i.e. two or more emotions with same
value) have been discarded. The resulting dataset for the generative phase, has the
following characteristics (Table 3.3):

label_id emotion number of paintings
0 amusement 5893
1 awe 9332
2 contentment 24938
3 excitement 3283
4 anger 290
5 disgust 1884
6 fear 5955
7 sadness 6665

Table 3.3: Wikiart dataset usable for cDCGAN training
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3.2 Music perspective
Music shares emotions through time passing, images are the representation of an
instant of time: ’How do we have to classify the emotions from music?’
This first question was answered after some researches in literature on existing music
datasets after having understood how music annotations are generally collected.
The most interesting dataset been found is the DEAM dataset [39], containing 744
.mp3 files. Each file has Valence-Arousal values annotated every 500ms and lasts
approximately 45 seconds. The major interest about this dataset is related to the
annotations, both for their nature and for the modality of their collection, because
they could allow to perform a time-continuous approach to classify emotions from
music.

’What Valence and Arousal are?’
From a mathematical point of view they are values belonging to R, from a

psychological one they are ways to describe an information:

Valence refers to positive or negative affectivity;
Arousal measures how calming or exciting the information is.

In other words, Valence indicates the positivity or negativity of an emotion, (i.e.
happiness has a positive valence whereas fear has a negative one) while Arousal,
ranging from excitement to relaxation, is high being related to anger and low
referring to sadness.

Data Collection

The 775 songs were annotated by crowd workers on Amazon Mechanical Turk
through a GUI accessible via Browser while listening to the music. Each song
was annotated once for Valence and once for Arousal separately, producing two
distinct csv files containing V-A values of the song excluding the first 15 seconds:
at the beginning of the clip the annotations were not stable. Annotators were asked
to write down any personal emotion but the one music intended to induce. The
continuous annotations were collected at a different sampling rate, depending on
browsers and computer performances, thus after having collected 10 annotations
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for each song, they were re-sampled at 2Hz and their values were squashed into
the interval [−1, +1].

Since the annotations were taken at a sampling-rate of 2Hz (Figure 3.2 shows
the first ten lines of arousal.csv), it could be possible to predict both (A, V)
∈ [−1, +1] in the continuous dimension, approaching it as a regression problem,
as said in the Related Works section 2.1 and as done by Orjesek et al. [11] who
proposed a novel way to handle to the regression-approach MER task by stacking a
Convolutional and a Recurrent layer for feature mining and V-A values prediction.

Figure 3.2: head of arousal.csv

Keeping in mind that the ArtEmis dataset [37] has categorical emotion labels,
before trying to implement this solution, (i.e. handling the problem as a regres-
sion one) the music dataset was further explored to understand if changing the
regression-approach to the categorical one would lead to a loss of annotations’
details. For each song, all its V-A values have been plotted in a 3D Scatter Plot in
Figure 3.3 using time (t) as the third dimension, ending up with the evidence that
the emotions do not change inside an interval of 30 seconds of music.
This assertion could be false for the classical music case, but it can be applied on
this dataset because it does not contain any classical music content but rock, R&B,
pop one.
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Figure 3.3: 3D Scatter of A-V values for 3 different songs

3.3 Music-Image labels alignment
Taking head of these insights an amount of time was spent to investigate how to
change the type of information descriptors such that the continuous prediction
could be moved to a categorical one, taking in account emotions instead of their
representation through V-A values. This shift was necessary to have the two
image-emotion and the music-emotion datasets, aligned on the same number and
type of categorical emotion-labels.
Going further with researches it has been found that in 1980 the psychologist James
Russell described the Circumplex Model of Affect (Figure 3.4) which represents the
affective state, arising from the behavior of two independent neurophysiological
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systems (the arousal and the valence systems), into a goniometric circumference[40].
Letting valence = v be a generic point on the x-axis and arousal = a be a

generic point on the y-axis the equation 3.1 mathematically describes the Russell’s
Circumplex model of Affect circumference.

v2 + a2 6 1 (3.1)

Figure 3.4: Russell Model of Affect adopted from [40]

According to the Russell’s framework [40] we can consider Valence and Arousal
as the pair (x, y) identifying a point in the (V-A) space: the point is a generic
emotion.
Referring to the ArtEmis emotions collected in Table 3.2 and looking at the Russell
Model in Figure 3.4, each ArtEmis emotion was manually provided with a pair of
coordinates, in order to be identified inside the V-A space. (Table 3.4)
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label_id emotion v a
0 amusement 0.55 0.2
1 contentment 0.82 -0.56
2 awe 0.42 0.89
3 excitement 0.7 0.72
4 anger -0.42 0.78
5 disgust -0.67 0.49
6 fear -0.11 0.78
7 sadness -0.82 -0.4

Table 3.4: ArtEmis emotion Coordinates in V-A Russell Space

Figure 3.5: Map-Function abstract view on Russell Model of Affect [40]

After having manually pointed the eight ArtEmis emotions inside the Russell’s
model it was possible to write a map function whose aim was to rewrite the csv
files containing V-A values in order to categorize emotions and shift the point
of view: considering the music classification problem as a multi-class task and
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together aligning the music dataset labels with the image dataset ones.

va2emotions.py
The plane was divided into circular sectors, one every 45º (Figure 3.5) and the
following algorithm was applied:

Algorithm 1 VA values to Categorical Emotions conversion.
1: procedure va2emotion_atan2(v, a)
2: ó v and a are the values of the jth 500ms interval of song i
3: ó Check sign
4: sign = v · a
5: if sign > 0 then
6: θ ← atan2(a, v)
7: if a > 0 ∧ v > 0 then
8: if θ < 45 then ó Q1.1
9: emotion←Í amusementÍ

10: else ó Q1.2
11: emotion← get_nearest(v, a) ó Awe or Excitement
12: end if
13: else a < 0 ∧ v < 0 ó Q3
14: if θ < −135 then ó Q3.1
15: emotion←Í sadnessÍ

16: else ó Q3.2
17: emotion←Í sadnessÍ ó NOT USED
18: end if
19: end if
20: else
21: θ ← atan2(a, v)
22: if v < 0 then ó Q2
23: if θ < 135 then ó Q2.1
24: emotion← get_nearest(v, a) ó Afraid or Angry
25: else ó Q2.2
26: emotion←Í disgustÍ

27: end if
28: else a < 0 ó Q4
29: if θ < −45 then ó Q4.1
30: emotion←Í contentmentÍ ó NOT USED
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31: else ó Q4.2
32: emotion←Í contentmentÍ

33: end if
34: end if
35: end if
36: end procedure

High level algorithm 1 shows the implementation of the map function used to
remap all the Valence-Arousal values into categorical emotions ones, moving the
point of view considering this as a multi-class classification task, hence having
aligned music labels with images ones.

Music Dataset description

At this point some statistics have been calculated for the music dataset [39] from
the two csvs files outputted by algorithm 1:
1. music_emotions_labels.csv

2. music_single_emotion_labels.csv

NOTE: Artemis label ’something_else’ was not considered in this process.

For each song a frequencies array was built, then summing up all arrays the global
frequencies array was created, to give a description of the dataset from a categorical
emotion point of view.
Since an emotion-frequencies array for each song is available, it was possible to
easily notice how emotions change inside a single song. Despite some songs present
at most two distinct, non-conflicting emotions, the overall trend is that a 30s
excerpt of music corresponds to one distinct emotion, as said at the end of section
3.2.
The .mp3 files were not all sampled at the same frequency and did not have the
exact same length, which approximately is around ∼45 seconds. During the pre-
processing step some information were collected, and they are presented through
the followings charts.

• Pie chart (Figure 1.1 ) shows the percentage associated with each emotion
w.r.t the entire dataset. The legend shows the map between emotion and
color.

• Bar chart (Figure 1.2 ) shows the same information, but giving us the number
of bins associated with a particular emotion, always w.r.t the entire dataset,
composed by 45,384 bins (i.e. slices).
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Figure 3.5.0 emotion percentages Pie

Figure 3.5.1 emotion distribution bar

Figure 3.6: The pie chart refers to percentage of emotions characterizing the
dataset. The bar chart shows the number of slices in which an emotion is present.

3.4 Audio Preprocessing Pipeline
This section illustrates the four-stages-pipeline data were fitted in.

• Resampling

• Padding

• Clipping
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• Trimming

All the work aims to have raw data arranged in such a way we can match exactly
the .csv informations.
We want to realize two reading modes of the dataset: the first utilized to fit the
network with an input shape that is made up of a number of samples which matches
a 500 milliseconds time interval, and the second to fit the network with the whole
30s excerpt.
Original annotations .csv have a number of columns equal to 61, starting from
sample_15000ms ending to sample_45000ms. Each column name wraps the value
of Valence (Arousal in the other case) calculated as the average Valence in the time
interval centered in the column name timestamp: it means that the first column
refers to the 500ms raw input going from 14750ms to 15250ms and so on.
Pre-processing pipeline starts with Resampling in which each song.mp3 is con-
verted to a .wav file with a samplerate of 44100Hz.
Then the audio length is checked by dividing its duration in seconds by 500ms and
converting time into samples, obtaining a length multiple of one slice: if the length
is less than a multiple of 500ms = 22050 samples, it is padded.
At this point the song is clipped considering the interval [14,750 - 45,250] ms.
The pipeline is made on-the-fly and if Dataset is in slice_mode the Trim stage
takes place and each song is divided in slices, all of the same 500ms length.
Each song:

• total samples: 1,345,050 each is of type: np.int32

• number of slices: 61

• samples per slice: 22,050

Whole dataset:

• total songs: 744

• total slices: 45,385

• total samples: 1,000,717,200 ∼25.21h
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Figure 3.7: Preprocessing pipeline: X and Y are part of the emoMusicPTDataset
object
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3.5 Evaluation methods

3.5.1 Music perspective

Each classifier is a multi-class problem solver. To evaluate the performances, despite
the overall accuracy has been the main metric to perform the model selection, other
three metrics, separately for each class, has been calculated.

• precision

• recall

• f1-score

Before explaining what these metrics are, it is worth to give a brief introduction.
For a binary classification task it is possible to build a table like this: where the

Predicted
Negative Positive

Actual Negative True Negative (TN) False Positive (FP)
Positive False Negative (FN) True Positive (TP)

Table 3.5: Binary classification

rows refer to the ground truth label while the columns refer to the predicted labels,
moreover we are able to specify how an instance is classified by the model and thus
calculate some different metrics to evaluate it.
When we have to deal with a multi-class classification problem we cannot refer to
this table while build a confusion matrix is the right solution.
Following table is a concrete output from this thesis work. It is the TorchM18
model’s output used for the raw-audio classification task processing the dataset
without slice mode turned on and using a kernel size of 880 audio samples, kernel
shift of 440 and a number of kernel features maps equals to 512.
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0 1 2 3 4 5 6 7
0 4 2 4 3 0 0 1 3
1 1 0 0 0 0 0 0 0
2 1 0 3 1 1 0 1 2
3 0 0 0 0 0 0 0 0
4 0 1 1 0 0 0 0 0
5 1 1 3 0 0 0 1 0
6 2 1 1 0 0 1 0 1
7 5 6 1 0 0 2 2 18

Table 3.6: TorchM18 confusion matrix example

Since we don’t have Positive/Negative classes we can find TP, TN, FP and FN
for each individual class. An example is given for class 0, ’amusement’ :

• TP = 4

• TN = sum of all elements except class’ row and column = 48

• FP = row except TP = 13

• FN = column except TP = 10

∀ class c ∈ C = {0, 1, 2, 3, 4, 5, 6, 7} we can define:

Precision

Answers the question ’How many selected items are relevant?’

• Precisionc = TPc
TPc+FPc

Recall

Answers the question ’How many relevant items are selected?’

• Recallc = TPc
TPc+FNc
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f1-score

It is the harmonic mean between Precision and Recall.

• f1-scorec = 2·TPc
2·TPc+FPc+FNc

This metric is preferable when the dataset has an imbalanced class distribution.

3.5.2 Image perspective
The evaluation of a GAN model is not straightforward as the evaluation of a
generic classifier model. Classifiers have an objective loss to minimize so they can
objectively be assessed also from just the Loss value, whereas the GAN models are
composed by two entities, Generator and Discriminator, which are trained together
and their objective is to maintain an equilibrium.
The most intuitive way to evaluate a GAN model is to manually visualize and
examine generated samples, human can certainly give the best type of evaluation,
but with this approach there will be a lot of limitations thus although this could
seem the best and simplest way to assess a model, it is discarded. Evaluating
the quality of generated images with human vision is expensive and cumbersome,
biased, difficult to reproduce and does not fully reflect the capacity of models[41].

Qualitative Metrics

These measures are not numerical and they leverage both human subjective evalua-
tion and evaluation via comparison.
The following list wants to point what are the most common qualitative metrics
used for assess a GAN model[41]:

• Nearest Neighbors: to detect overfitting, generated samples are shown next to
their nearest neighbors in the training set

• Rapid Scene Categorization: in these experiments, participants are asked to
distinguish generated samples from real images in a short presentation time
(i.e. 100ms) to perform the real vs fake scenario

• Preference Judgment: Participants are asked to rank models in terms of the
fidelity of their generated images

• Mode Drop and Collapse: Over datasets with known modes, modes are
computed as by measuring the distances of generated data to mode centers

• Network Internals: Regards exploring and illustrating the internal represen-
tation and dynamics of models (i.e. space continuity) as well as visualizing
learned features
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Quantitative Metrics

Authors of [41] give twenty-four quantitative techniques for evaluating GAN models,
and they refers to the calculation of specific numerical scores used as quality
indicators of generated images.
Listing all metrics is pointless, but it’s worth mentioning the most used:

• Inception Score (IS)

• Modified Inception Score (m-IS)

• Fréchet Inception Distance (FID)

Fréchet Inception Distance (FID) was introduced by authors of [42] and it evaluates
the distance between the real and fake distributions for each feature expressing it
with a scalar number (equation 3.2). The FID metric is the squared Wasserstein
metric between two multidimensional Gaussian distributions:
N (µ, Σ), the distribution of some neural network features of the images generated
by the GAN, and N (µw, Σw), the distribution of the same neural network features
from the "world" or real images used to train the GAN.
It can be computed from the mean the the covariance of the activations when the
synthetized and real images are fed into the Inception network as:

d2((µ, Σ), (µw, Σw)) = ëµ− µwë2
2 + tr(Σ + Σw − 2(ΣΣw)1/2) (3.2)

Where:

• (µ, Σ) are the feature-wise mean and covariance matrix for real samples

• (µw, Σw) are the feature-wise mean and covariance matrix for the generated
samples
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Chapter 4

Experimental Setup and
Results

4.1 Introduction
This chapter contains details about the conducted experiments, in particular:

• section 4.3 refers to the two different modalities used to handle MER task:

• section 4.3.2 refers to the solution using Mel-spectrogram as input of
a Convolutional Neural Network

• section 4.3.3 refers to the solution using raw-audio as input of three
different Convolutional Neural Networks

• section 4.4 refers to the DCGAN and cDCGAN baselines implemented to
conduct the generation process

4.2 GitHub Repo
The code repository is available at CcreativeAI: visualize music emotions.
The code has been thought to be modular, easier to use and maintain.
The repository has two ’sides’ one for image and one for music and, after being
cloned, with these commands it could be installed as a python module with the
commands1:

1Working example for Google Colab
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%cd /content
!git clone https://github.com/mHead/creativeAI.git
%cd /content/creativeAI
%pip install -e .
os.environ[’PYTHONPATH’] += ":/content/creativeAI"

At this point it possible to import creativeAI and by means of the . operator it
is possible to import all the modules inside the Package just installed.

Due to Google Colab time and resources limitations all experiments have been
made on HPC@polito Legion Cluster2 thus a Command Line Intefrace approach
was developed in order to create and launch a job for the SLURM scheduler.
After some #SBATCH directives for the scheduler the command called by the bash
script run_legion.sh is:

python3 ${code}$ -v -r ${repo_root_legion}$ -task

Where:

• -v stands for "verbose"

• -r stands for "repository" and it must be followed by the root of the cloned
repository

• -task has to be replaced by one of the element of the list: [-raw || -mel
|| -dcgan || -cdcgan]

High Level Pipeline
For convenience, the High Level Pipeline picture is again shown below:

Figure 4.1: High Level Pipeline

2Risorse di calcolo fornite hpc@polito, progetto di Academic Computing del Dipartimento di
Automatica e Informatica presso il Politecnico di Torino (http://www.hpc.polito.it)
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4.3 creativeAI.musicSide
This package focuses on the definition and training of theTranslator block depicted
in Figure 4.1.
Translator is an audio classifier, in charge of extract emotions as features from the
music, regardless its representation.
For its realization four different models have been defined, trained and compared,
one for the MEL-spec MER approach, and three for the RAW-audio MER
approach.
To instantiate the dataset, the models and perform their training, the following
classes are provided:

• Shared Dataset Object

• DatasetMusic2emotion.emoMusicPTDataset

• DatasetMusic2emotion.emoMusicPTSubset

• DatasetMusic2emotion.emoMusicPTDataLoader

• MEL-spec task:

• Model.MEL_baseline

• Model.MEL_Runner

• RAW-audio task:

• Model.TorchM5

• Model.TorchM11

• Model.TorchM18

• Model.Runner

4.3.1 Shared Dataset Object
The dataset which has been taken into account is the one described in section
3.4 whose labels have been previously remapped using algorithm 1 thus is could
be thought, thus instantiated, in two different modes by means of the boolean
slice_mode class parameter:
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• emoMusicPTDataset(slice_mode=False, env=bundle) for song-level sam-
ples

• emoMusicPTDataset(slice_mode=True, env=bundle) for slice-level sam-
ples

The dataset class extends the map-style torch.utils.data.Dataset and has the
following peculiarities:

When slice_mode=True the emoMusicPTDataLoader.__getitem__ returns a
500ms slice of the song of type torch.Tensor([1, 22050]) with its associated
categorical emotion label and its __len__ is equal to 744 * 61 = 45,385 samples
(61 slices per song), whereas when slice_mode=False the dataloader returns the
whole 30s excerpt of the song of type torch.Tensor([1, 1345050]) with the
global categorical label.
The default mode is the raw-audio with slice_mode=False. Different experiments
have been conducted, resulting in better performances when the dataset is not in
slice_mode. A visual representation of two modalities is depicted in Figure 4.2.

Figure 4.2: emoMusicPTDataset raw-audio slice modes
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To preserve the dataset classes distribution both in training and test set the
Subsets indexes (90%-10%) were calculated using:

sklearn.model_selection.StratifiedShuffleSplit
which ensures the two classes distributions to be equals. Figure 4.3 shows the
classes distribution, evidencing that the dataset is strongly unbalanced.
NOTE: the total number of 30s excerpts is 744, leading to have 669 samples for
TrainingSet and 75 for TestSet

Figure 4.3: Train-Test classes distribution

To cope with the unbalanced dataset problem the CrossEntropyLoss criterion
method is provided with a np.ndarray of size n_classes which contains values
to perform a classes probability re-weighting which aims to solve the samples
imbalance.
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Re-Weighting modes

As we can read in Table 4.1, 4.2 column cwm we have three values: None, freq,
max. The first value points that no re-weigthing is performed, while the other two
are different in the implementation.

I. Freq: Frequency re-weight Mode

Given the frequency class distribution vector:
[140, 11, 127, 38, 9, 29, 48, 242] → sum = 744

The freq-weights-vector is build as: wi = 1/fi obtaining the following vector of
weights:
[0.00714286, 0.00900901, 0.00787402, 0.02631579,0.11111111, 0.03448276,
0.02083333, 0.00413223]

II. Max: Max Frequency re-weight Mode

Given the frequency class distribution vector:
[140, 11, 127, 38, 9, 29, 48, 242] → sum = 744, max = 242

The max-freq-weights-vector is build as: wi = max/fi obtaining the following
vector of weights:
[1.72857143, 2.18018018, 1.90551181, 6.36842105, 26.88888889, 8.34482759,
5.04166667, 1]

4.3.2 MEL-spec task
When performing the Mel-Spectrogram task the Dataset constructor is provided
with boolean melspec=True variable and the bundle object brings information on
how the Mel-Spectrograms have to be constructed. In particular, for this task,
bundle object will contain the following additional informations:

• n_fft: 5120

• hop_length: 2560

• n_mel: 526

• sample_rate: 44100
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The emoMusicPTDataset.__init__() function will define a transformation used
by the __getitem__ every time a new sample is picked from the dataset. This
transformation is composed by the following operations:

• S = librosa.features.melspectrogram(waveform, sr, n_mel, n_fft,
hop_length, fmax=8000)

• S = librosa.power_to_db(S, ref=np.max)

• S = torch.from_numpy(S)

• S = S.expand(3, -1, -1)

• S = torchvision.transform.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])(S)

The input of the transformation is a np.ndarray([1, 1345050], i.e. (n_channel,
time), which is then passed to the power_to_db() function and its output is
converted in a torch.Tensor([1, 526, 526]) expanded to have the three RGB
channels as the first dimension, resulting in a torch.Tensor([3, 526, 526]), i.e.
(..., n_mels, time) : (n_channels, H, W), which after being Normalized is fed into
the architecture.
It’s worth noticing that no mel-spectrogram image is stored on the disk, because
every time the DataLoader pick an .mp3 sample it generates this representation
on-the-fly and use it as input for the Network.
Figure 4.3.2 shows four different on-the-fly generated inputs from four different 30s
excerpts.
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The chosen architecture for this task is the pretrained version of the ResNet
(Residual Network), an artificial neural network (ANN) that mimics the pyramidal
cells in the cerebral cortex by means of the use of skip connections, or shortcuts, to
jump over some layers in order to avoid the problem of vanishing gradient which
basically originates from activation functions together with the Network depth
growth: gradients calculated during the backpropagation would be so small that
the weights and biases of the initial layers will not be updated effectively during
training.
There are small ResNet architectures such as ResNet18 and ResNet34 and big ones
like ResNet50, ResNet101, ResNet152.
Figure 4.4 shows the difference between a standard block and a residual one.
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Figure 4.4: Stardard vs Residual Block

The main advantages this architecture brings are related to an overall speedup of
the training phase, a better handling of the vanishing gradient problem and authors
of [43] have empirically demonstrated that this kind of network is easier to be
optimized thus it can better exploit depth to gain accuracy. Figure 4.5 represents
the ResNet18 architecture with skip-connections on top.

Figure 4.5: ResNet18 architecture
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Training Settings

Training phase was conducted performing a grid search over the values depicted in
Table 4.1 and 4.2 to select the best model basing on the overall accuracy on test
set.
To train a general Deep Neural Network the basic elements that are needed are the
following:

Loss function: used to measure how wrong are the network’s predictions.
Backpropagation algorithm: it is in charge of computing the gradient ofthe

loss function w.r.t the weights of the network for a given input-output pair by
means of the chain-rule. Gradients tell how much each weight is contributing to
the loss, thus to reduce the related error the weight can be changed.

Optimizer: uses the gradients to find the network’s parameters, i.e. weights
and biases, which minimize the loss function.

The optimizer chosen for the ResNet training is the Adam Optimizer, while
the Loss function is the Cross Entropy Loss.

Cross Entropy

For each class, a loss value is calculated with equation 4.1 where X is the classi,
p(X) is the probability of X in Ground-truth vector and q(X) is the probability of
X in Prediction vector:

L(X) = −p(X) · log [q(X)] (4.1)

Then all class losses are summed up together, giving the CrossEntropyLoss (eq.
4.2):

CrossEntropy = −
Ø
x

p(x) · log [q(x)] (4.2)

An example of Ground-truth (left) and Predicted (right) vectors is provided below:

GT =

 1
0
0

 P =

 0.8
0.1
0.1


Ground truth and Predicted vectors for 3 class example
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TrainingSettings bs ep lr wd m cwm d
I.0 32 120 0.0001 1e-5 0.8 None 0.2
I.1 32 120 0.0001 1e-5 0.8 None 0.25
I.2 32 120 0.0001 1e-5 0.8 None 0.5
II.0 32 120 0.0001 1e-5 0.8 Freq 0.2
II.1 32 120 0.0001 1e-5 0.8 Freq 0.25
II.2 32 120 0.0001 1e-5 0.8 Freq 0.5
III.0 32 120 0.0001 1e-5 0.8 Max 0.20
III.1 32 120 0.0001 1e-5 0.8 Max 0.25
III.2 32 120 0.0001 1e-5 0.8 Max 0.5

Table 4.1: Training Settings for ResNet18

TrainingSettings bs ep lr wd m cwm d
IV.0 16 120 0.0001 1e-5 0.8 None 0.2
IV.1 16 120 0.0001 1e-5 0.8 None 0.25
IV.2 16 120 0.0001 1e-5 0.8 None 0.5
V.0 16 120 0.0001 1e-5 0.8 Freq 0.2
V.1 16 120 0.0001 1e-5 0.8 Freq 0.25
V.2 16 120 0.0001 1e-5 0.8 Freq 0.5
VI.0 16 120 0.0001 1e-5 0.8 Max 0.20
VI.1 16 120 0.0001 1e-5 0.8 Max 0.25
VI.2 16 120 0.0001 1e-5 0.8 Max 0.5

Table 4.2: Training Settings for ResNet18

Here acronyms written in tables 4.1, 4.2 columns are evidenced:

• bs: batch size

• ep: number of epochs

• lr : learning rate

• wd: weight decay

• m: momentum

• cwm: criterion weight mode3

3Explained in section 4.3.1
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• d: dropout

The Training lifecycle is handled by MEL_Runner Object which is in charge of
training the model, storing relevant data, computing statistics and plots, thus
evaluating the model itself.
Figure 4.6 represents the Training lifecycle implemented in creativeAI repository.

Figure 4.6: Sequence Diagram of ResNet18 Training
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4.3.3 RAW-audio task

As said in chapter 2, section 2.1 new approaches tend to use directly the waveform
as input of an 1D-CNN.
There are a few models made for different tasks, and the ones used for MER are
usually built to implement the dimensional-approach [18], but since the music
dataset has been transformed into a categorical one to have aligned labels with
ArtEmis dataset, in this section are presented the architectures used to perform
the categorical MER task.
Moreover, the use of raw-audio avoid the "feature-engineering" process which is
often challenging, time-expensive and could lead to find some heuristic designed
features which might not be optimal for the predictive task.
Architectures are adopted from paper [17] and are used to perform the MER task
although they were built for Speech Audio Recognition (SAR) task, thus the aim
of the work is to see if they are capable of working in another domain knowledge
w.r.t. the one that originated their construction.
The names of the end-to-end models implemented are: M5, M11, M18. Their
constructors are respectively Model.TorchM5, Model.TorchM11, Model.TorchM18
and the object handling the Training Phase is Model.Runner.

Models use a large receptive field in the first convolutional layer to mimic the
bandpass filters, and very small (ks=3) receptive fields subsequently, to control
the model capacity. Figure 4.7 is taken from paper [17] and represents the M3
model with an input length of 32000 and the first receptive field length of 80.
The implemented models take this idea but the way first convolutional layer is

Figure 4.7: Input audio is represented by a channel or (kfm) adopted from [17]
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dimensioned is different.
The model constructor is provided with a dictionary called hyperparameters
containing:

• n_input: it is the real audio channel (mono = 1)

• n_output: the number of classes

• kernel_size: (ksz) it is the first kernel receptive field

• kernel_stride: (ksf = ks // 2) the kernel shift to compute the 1D convo-
lutions along the signal

• kernel_features_maps: (kfm) corresponds to n_channel in the nn.conv1d
constructor

• slice_mode: (sm) whether the emoMusicPTDataset is in slice-mode or not

• slice_mode=True: the .mp3 file enter in the pre-processing pipeline 3.7
executed on-the-fly, outputting a torch.Tensor([1,1, 22050])

• slice_mode=False: input is 30s excerpt torch.Tensor([1, 1, 1345050])

The input of the nn.Conv1d is expected to have shape (N, Cin, L) thus the
output size will be (N, Cin, Lout), where:

Lout =
C

Lin + 2 · padding − dilation · (ksz − 1)− 1
ksf

+ 1
D

(4.3)
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Here follows the dumps of models TorchM5 (Fig. 4.8) and TorchM11 (Fig.
4.9) with ks=1760, ks=880 and kfm=64, the deepest model representation is avoided
because it is equal to the TorchM11 with the addition of 7 convolutional layers
all with the small receptive field represented by ks=3.

Figure 4.8: TorchM5

Figure 4.9: TorchM11
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Training Settings

Loss function used is CrossEntropyLoss, Optimizer is Adam.
Table 4.3 contains the shared TrainingSettings among the three models. Hyperpa-
rameters are depicted in Table 4.4 and for each raw of tab 4.3 all rows of 4.4 have
been tried for the Model Selection step.

Total configurations

9TrainingSettings * [10 * 4Hyperparameters{I-IV} + 5 * 4Hyperparameters{V-
VIII}] = 540.

Has been empirically seen how processing very small batches increased the network’s
performances, thus the only batch sizes analyzed are [2, 4, 8]: the smallest the
batch is, the better performances are. NOTE: As M18 is the deepest network, to
achieve similar result compared to the other models, it has been trained for 350
epochs.

TrainingSettings bs ep lr wd m cwm
I.0 2 250 0.001 0.00001 0.9 None
I.1 4 250 0.001 0.00001 0.9 None
I.2 8 250 0.001 0.00001 0.9 None
II.0 2 250 0.001 0.00001 0.9 Freq
II.1 4 250 0.001 0.00001 0.9 Freq
II.2 8 250 0.001 0.00001 0.9 Freq
III.0 2 250 0.001 0.00001 0.9 Max
III.0 4 250 0.001 0.00001 0.9 Max
III.0 8 250 0.001 0.00001 0.9 Max

Table 4.3: Shared Training Settings
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Hyperparameters ksz ksf kfm sm
I[0-9] 110 55 [8, 64, 128, 256, 512] [False, True]
II[0-9] 220 110 [8, 64, 128, 256, 512] [False, True]
III[0-9] 440 220 [8, 64, 128, 256, 512] [False, True]
IV[0-9] 880 440 [8, 64, 128, 256, 512] [False, True]
V[0-4] 1100 550 [8, 64, 128, 256, 512] False
VI[0-4] 1320 660 [8, 64, 128, 256, 512] False
VII[0-4] 1540 770 [8, 64, 128, 256, 512] False
VIII[0-4] 1760 880 [8, 64, 128, 256, 512] False

Table 4.4: Hyperparameters summary

All training lifecycle is handled by Runner Object which is in charge of training
the model, storing relevant data, computing statistics and plots, thus evaluating
the model itself.
Figure 4.10 represents the Training lifecycle implemented in creativeAI repository.
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Figure 4.10: Sequence Diagram of TorchM[5-11-18] Training
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4.4 creativeAI.imageSide
This package contains software elements which compose a baseline for the generation
process.
The Generator in Figure 4.1 is a Generative Adversarial Network, in charge
of generating artworks coming from the ArtEmis dataset. Most of the work
related to this section was spent in the identification of a suitable dataset and on
the label alignment discussed in chapter 3, section 3.3. Furthermore to train a
conditionalGAN model the dataset was re-organized in 8 subfolders, in order to
allow the use of the ImageFolder pyTorch class to have the object of the dataset.
Inside the creativeAI package following classes are provided:

• GenerativeModel.DCGAN which contains the Deep Convolutional GAN model
of paper [29]

• GenerativeModel.CDCGAN which contains the conditioned version of the model
above

• a fine-tuned version of ArtEmis Classifier which might be used to realize an
Auxiliary Classifier GAN

NOTE: this is a starting point, thus for the models a small version of the dataset
was used composed by 2782 abstract images of size (64x64). Some training samples
are visible in Figure 4.11.

69



Experimental Setup and Results

Figure 4.11: Abstract Gallery for DCGAN tests

4.4.1 DCGAN

The model is the one pointed in paper [29], in Figure 4.12 is possible to see the
architecture of the Generator, whereas in Figure 4.13 the Discriminator’s one.

Figure 4.12: Generator architecture
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Figure 4.13: Discriminator architecture

Training Settings

The training settings were designed following the DCGAN paper mentioned above
together with the architectures’ design.

TrainingSettings batch size img size n channels epochs
64 (64, 64) 3 100

Table 4.5: Training Settings for DCGAN

The Generator G maps the latent space vector of size nz = 100 to data-space.
It creates images of size (3x64x64) through a series of strided 2D-Convolutional
Transpose layers followed by a 2D Batch Normalization layer and a ReLU activation
function. Hyperparameters of G are:

• nz: the length of latent space vector

• ngf: the length of the features maps propagated inside G

• nc: the number of channels in the output image

All the weights are initialized from a Normal distribution with mean = 0 and
std=0.02.

The Discriminator D is a binary classifier which takes an input image of size
3x64x64 and tells if the image is real rather than fake through a Sigmoid function,
as commonly done in classification networks.
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Loss function is the BinaryCrossEntropyLoss (i.e. nn.BCELoss()) defined in
equation 4.4:

ü(x, y) = L = {l1, . . . , lN}Û, ln = − [yn · log xn + (1− yn) · log(1− xn)] (4.4)

Optimizers are Adam optimizer with, as specified in the paper, lr = 0.002 and
β1 = 0.5.
Fixed Noise is a fixed batch of latent vectors drawn from a Gaussian distribution
that are periodically fed into G during training to watch if going on with the
iterations the images generated become as desired.

Training Phase

The training of a GAN is almost an ’art form’ thus an invalid set of hyperparameters
could lead the model to collapse, having a few elements to understand what went
wrong. The training loop was build following Algorithm 1 from Goodfellow’s paper
while implementing some tips from ganhacks GitHub repository [44].

• different mini-batches for real and fake have been constructed

• G’s objective function was changed in order to maximize logD(G(z))

The Discriminator is trained taking in account that it has to maximize the proba-
bility of correctly classifying a given input as real or fake by means of maximizing
log(D(x)) + log(1−D(G(z))).
Due for the separate mini-batches this is calculated in two steps:

• a batch of real samples is constructed, forwarded through D, the loss log(D(x))
is calculated and then the gradients are calculated in a backward pass.

• a batch of fakes samples with current G is created, forwarded through D,
the loss log(1−D(G(z))) is calculated and gradients are accumulated in the
backward pass.

• Discriminator optimizer’s step is called with the gradients accumulated both
from real and fake batches

The Generator wants to minimize log(1−D(G(z))) aiming to generate better fakes,
but since Goodfellow has shown that this does not provide sufficient gradients the
goal of G is changed to maximize log(D(G(z))).
This is achieved with the following steps:
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• Generator’s output is classified by Discriminator in the first part of the training

• G’s loss is computed using real labels as Ground Truth

• G’s gradients are computed in a backward pass

• G’s parameters are updated with an optimizer step

NOTE: the Ground Truth labels are used to allow the log(1− x) part of BCELoss()
to be replaced with log(x), accomplishing Goodfellow’s hint.

4.4.2 conditional DCGAN
The presented DCGAN architecture has been modified to be conditioned by the
emotion labels. To achieve this the following hyperparameters have been added:

• ne: the length of the embedded label to be concatenated to z

• n_classees: the number of classes, 8 in our case

The Generator G was modified as follows:

• the first convTranspose2d() takes the z length plus the embed_size = 64

• forward() pass takes class labels of the current batch, creates an embed-
ding (64, 64, 1, 1) and concatenates it with the images Tensor obtaining a
torch.Tensor([64, 164, 1, 1])

The Discriminator D:

• the first Conv2d() takes one additional channel, used for label handling

• forward() pass receives class labels of the current batch, creates an embed-
ding (64, 1, 64, 64) and concatenates it with the images Tensor obtaining a
torch.Tensor([64, 4, 64, 64])
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4.5 Results
This section reports results of the experiments.
For each model the classification confusion matrix together with evaluation measures
explained in chapter 3, section 3.5 are reported. Moreover, are reported the following
quantitative metrics:

• General accuracy

• General macro avg

• General weighted avg

• Per-class precision

• Per-class recall

• Per-class f1-score

Discussion on results is written in section 4.5.2.

4.5.1 MEL-spec task
TrainingSettings and Hyperparameters in figures and tables captions, refers to
tables 4.2 and 4.1.

Figure 4.14: Loss and Accuracy on Test Set for TrainingSettings[II.0]
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emotion-class precision recall f1-score support
amusement: 0 0.42 0.71 0.53 14
contentment: 1 0.50 0.36 0.42 11
awe: 2 0.31 0.31 0.31 13
excitement: 3 0.00 0.00 0.00 4
anger: 4 0.00 0.00 0.00 1
disgust: 5 0.00 0.00 0.00 3
fear: 6 0.00 0.00 0.00 5
sadness: 7 0.69 0.75 0.72 24

Table 4.6: Classification Report for Set II.1

metric precision recall f1-score support
accuracy 0.48 75
marco avg 0.24 0.27 0.25 75
weighted avg 0.43 0.48 0.44 75

Table 4.7: Classification Report cont for Set II1

Figure 4.15: Loss and Accuracy on Test Set for TrainingSettings[V.1]
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emotion-class precision recall f1-score support
amusement: 0 0.45 0.64 0.53 14
contentment: 1 0.33 0.18 0.24 11
awe: 2 0.31 0.31 0.31 13
excitement: 3 0.00 0.00 0.00 4
anger: 4 0.00 0.00 0.00 1
disgust: 5 1.00 0.33 0.50 3
fear: 6 0.00 0.00 0.00 5
sadness: 7 0.57 0.83 0.68 24

Table 4.8: Classification Report for TrainingSettings[V.1]

metric precision recall f1-score support
accuracy 0.48 75
marco avg 0.33 0.29 0.28 75
weighted avg 0.41 0.48 0.42 75

Table 4.9: Classification Report cont for TrainingSettings[V.1]

4.5.2 RAW-audio task

TrainingSettings and Hyperparameters in figures and tables captions, refers to
tables 4.3 and 4.4.

TorchM5

Although this model is not deep as the M11 and M18 version its perfomances are
near to the other model’s.
Loss and Accuracy plots for the best configuration are depicted in Figure 4.16.
By comparing confusion matrices in figures 4.17 and 4.18 the best pair (Train-
ingSettings, Hyperparameters) is (I.0-IV.2).
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Figure 4.16: Loss and Accuracy on Test Set for [I.0-IV.1] pair

Figure 4.17: Loss and Accuracy on Test Set for [I.0-IV.1] pair
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Figure 4.18: Loss and Accuracy on Test Set for [I.0-IV.2] pair

emotion-class precision recall f1-score support
amusement: 0 0.50 0.07 0.12 14
contentment: 1 0.00 0.00 0.00 11
awe: 2 0.00 0.00 0.00 13
excitement: 3 0.50 0.25 0.33 4
anger: 4 0.00 0.00 0.00 1
disgust: 5 0.33 0.33 0.33 3
fear: 6 0.00 0.00 0.00 5
sadness: 7 0.35 0.83 0.49 24

Table 4.10: Classification Report for [I.0-IV.2] pair

metric precision recall f1-score support
accuracy 0.31 75
marco avg 0.21 0.29 0.16 75
weighted avg 0.25 0.31 0.21 75

Table 4.11: Classification Report cont [I.0-IV.2] pair
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TorchM11

Figure 4.19: Loss and Accuracy on Test Set for [II.0-III.2] pair

Figure 4.20: Loss and Accuracy on Test Set for [II.0-III.2] pair
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emotion-class precision recall f1-score support
amusement: 0 0.38 0.21 0.27 14
contentment: 1 0.00 0.00 0.00 11
awe: 2 0.50 0.46 0.48 13
excitement: 3 0.50 0.25 0.33 4
anger: 4 0.00 0.00 0.00 1
disgust: 5 0.00 0.00 0.00 3
fear: 6 0.00 0.00 0.00 5
sadness: 7 0.47 0.75 0.58 24

Table 4.12: Classification Report for [II.0-III.2] pair

metric precision recall f1-score support
accuracy 0.37 75
marco avg 0.23 0.21 0.21 75
weighted avg 0.33 0.37 0.34 75

Table 4.13: Classification Report cont [II.0-III.2] pair

TorchM18

Figure 4.21: Loss and Accuracy on Test Set for [II.0-V.2] pair
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Figure 4.22: Loss and Accuracy on Test Set for [II.0-V.2] pair

emotion-class precision recall f1-score support
amusement: 0 0.32 0.50 0.39 14
contentment: 1 0.50 0.09 0.15 11
awe: 2 0.75 0.23 0.35 13
excitement: 3 1.00 0.25 0.40 4
anger: 4 0.00 0.00 0.00 1
disgust: 5 0.00 0.00 0.00 3
fear: 6 0.00 0.00 0.00 5
sadness: 7 0.51 0.88 0.65 24

Table 4.14: Classification Report for [II.0-V.2] pair

metric precision recall f1-score support
accuracy 0.44 75
marco avg 0.39 0.24 0.24 75
weighted avg 0.48 0.44 0.38 75

Table 4.15: Classification Report cont [II.0-V.2] pair
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Considerations

Model Modality best f1-score : class best accuracy
ResNet18 Mel-spec 0.72 : sadness 48%
TorchM18 Raw-audio 0.65 : sadness 44%
TorchM11 Raw-audio 0.58 : sadness 37%
TorchM5 Raw-audio 0.49 : sadness 31%

Table 4.16: MER task model performances summary

Although class re-weighting techniques were utilized, the predicted class more
correctly still is the most present in the dataset.
Classifiers’ results are poor to be used in a real-context application, underlining
the challenges of this task might be emphasized even more by a weak test samples
support to perform experiments.
However as seen in literature, the new end-to-end 1D-CNN approach is comparable
with the standard Mel-spectrogram 2D-CNN one, even in the MER task. Although
the TorchM18 model does not have residual connections, has performances similar
to the ResNet18 ones, thus it should be examined if a deeper 1D-CNN model with
residual connections could overcome it.

Exploring the model’s internal features maps it has been found that the
sizes of the features maps are of the form (X, Y, 3) thus, interpreting them as
images where the first dimension is the RGB channel. Figure 4.23 shows the sizes
of features maps for the TorchM5 model.
As said by authors of paper [45] we can interpret this finding pointing that end-to-
end 1D-CNN are able to learn Frequency Decomposition and Phase Invariance
without any pre-processing step, thus it is possible to see that the CNN has learned
the filterbanks which are used when a Spectrogram is created.
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Figure 4.23: Internal kernel features map dimensions
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4.5.3 DCGAN
The DCGAN was trained for 100 epochs, without any generation target but only
to see the convergence of the model, thus no metric for a quantitative evaluation
has been implemented. Moreover each epoch consists in 44 iteration.
Figure 4.24 shows both G and D losses during training loop. Images in Table 4.17

Figure 4.24: Generator and Discriminator Losses over 100 epochs (4400 iterations)

show batches of images generated every 1000 iterations during the training process.
In Figure 4.25 represents real samples against the fakes generated at the end of the
training loop.
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Table 4.17: Left to Right: iteration 1000, 2000, 3000, 4000

Figure 4.25: Real vs Fakes
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Chapter 5

Conclusions

This work represents an attempt to be the basis for the development of the deep
learning project described, concerning the artistic field. Many issues raised during
the work’s conducting, proving that the thesis idea was not composed by easy
tasks.
On the first hand, it has been proved that Music Emotion Recognition is an
hard challenge for several reasons, first of all for its intrinsic subjectivity. On
the other, time and effort were spent on the research thus the pre-processing of
suitable datasets useful for the realization of the project idea, taking time away
from generative analysis but at the same time giving it a solid starting point from
a data point of view.
Besides the ’structural’ problems related to MER, the work aimed to give a
comparison between the two different input treatment modalities.
The evidence is that the new 1D-CNN approach achieves similar results as the
2D-CNN one. Raw waveforms avoid hand-crafted features, which theoretically
should exploit modeling capability of deep learning models, at the expense of
an high computational cost together with the need of data availability. What
representation is preferable is not still clear, thus there remain many open research
questions related to scenarios in which one representation is better than the other.
The models used to perform the raw-audio modality were taken by the Speech
domain so it is possible to assert that even if in their domain of application they
perform well, the representations from the raw audio they learn are not enough to
allow the generalization across domains.
Besides what audio representation is preferable, there are doubts on which model is
better to be fed with raw waveform. From existing literature, there is not a single
answer because several research groups have achieved state-of-art with different
models on the same tasks.
Moreover, chosen an architecture, it is hard to understand how to change its design
to meet the goal of emotion prediction, since emotion is one of the most difficult
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feature to be modeled hence captured.
The generative process is, instead, at its starting point although a baseline is
provided. Since GANs models need a lot of data to be successfully trained, the
discovery of the ArtEmis dataset is certainly a good finding for the future of this
work, because it contains 81k artworks related to the affective dimension. The
baseline provided is the DCGAN of the paper [29] modified to be conditioned on
emotion classes.
Although this part has still to be explored the generative process wants to represent
a possible, different, application of an emotion classifier, aimed at enabling AI the
possibility to create visual art in a new way, inspired by music, as many human
artists do.
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