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Abstract
We live in times where Information Technology (IT) is constantly becoming
more pervasive and ubiquitous, deeply permeating our society, from the cit-
izens’ private life to essential services, from industry to politics. The rapid
development of new IT technologies brings great benefits, but poses even
greater challenges and risks.
Cybersecurity is the discipline that deals with protecting valuable assets (i.e.,
data, devices, infrastructures, etc.) from risks such as unauthorized access
or information disclosure. Cybersecurity is a process consisting of a series of
practices, technologies and operations carried on by different means, ranging
from conforming to simple rules (e.g., enable 2-factor authentication) to the
usage of certified hardware devices aimed at granting specific levels of secu-
rity.
Hardware Security Modules (HSM) are physical devices commonly used to
safeguard valuable assets by means of dedicated capabilities in the realm of
cryptography (i.e., strong and efficient data encryption, secure cryptographic
key management, etc.) and secure data storage (i.e., anti tamper properties).
The SEcube™ (Secure Environment cube) is an HSM designed according to
a holistic approach to cybersecurity. The SEcube™ is used in both civil and
military applications; it offers an open source hardware design and both pro-
prietary software and an open source SDK developed by European research
institutions. Despite this, the open source SDK is affected by a partial lack
of coherence and usability: it involves several libraries, tools and APIs that
determine a significant learning curve to start leveraging the advantages of
the security platform.

This thesis aims at improving the usability of the SEcube™ platform by
developing an intermediate software layer having two primary goals:
i) acting as a "logic glue" between the multiple libraries, tools, and APIs of
the SEcube™ SDK;
ii) acting as an easy-to-use interface towards the cybersecurity capabilities
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of the SEcube™ Security Platform.
The software developed in this thesis is compatible with Windows and Linux
operating systems; it consists of multiple elements, including a GUI, that al-
low third-party applications to interact with the HSM using a standardized
interface based on a simple request/response protocol.
Whenever a third-party application requires a functionality provided by the
SEcube™ HSM (i.e., data encryption), it can access that functionality thanks
to the standardized interface provided by the software developed in this the-
sis. The software automatically deals with the complexity deriving from
the interaction with the HSM, greatly reducing the learning curve of the
SEcube™ Security Platform.
This application leads to a simple, unified, and user-friendly environment
that is compliant with strict security standards. This enables any developer
who is willing to make use of the SEcube™ Security Platform to implement
applications that leverage strong cybersecurity capabilities.
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Chapter 1

Introduction

The extensive digitization of services is impacting our lives on a daily basis,
influencing processes of several fields, from the private life to public contexts.
The development of new technologies leads to great benefits, but constitutes
significant risks too.
Cybersecurity is the discipline that faces the problems related to protecting
precious resources, such as devices and infrastructures, employing different
kinds of technologies, practices and actions. Cybersecurity is a complex topic
that requires specific expertise and know-how in order to leverage its advan-
tages: during the development of secure tools the help of skilled personnel
might be required, increasing costs and developing time.
Hardware Security Modules (HSM) are systems that integrate security pro-
cesses in a comprehensive and seamless way, following the so-called holistic
security approach. These platforms allow both developers and users to focus
on exploiting the supported security services at a higher level, demanding
the complex implementation and maintenance to security experts.
This thesis deals with the design and development of an application that
improves the usability and reduces the learning curve of the SEcube™ Secu-
rity Platform. The SEcube™ Security Platform is an instance of an HSM,
a special-purpose device capable of performing cybersecurity functionalities
(i.e., data encryption, key management system, etc.).
Platforms of this kind are worthwhile when arise the need of securing a local
environment, where a general-purpose device does not provide an high level
of security by itself and a dedicated reinforcing is required. It is necessary
to point out that the SEcube™ platform is not a stand-alone device, instead
it cooperates with host machines (i.e., personal computers) that can provide
the necessary resources.
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1 – Introduction

The need to work on this particular topic can be better understood by ex-
ploring the details of the following themes:
1. The SEcube™ environment complexity;

2. Pros and cons of adding an intermediary between the platform and the
user.

The SEcube™ platform offers an open source hardware design and an open
source SDK. Over time, a considerable amount of libraries and APIs have
been developed and included into the project, extending the functionalities
provided by the platform. The problem, however, is that libraries and APIs
contribute to increment the complexity of the platform, because they all have
their own protocols and conventions.
The software architecture is structured into abstraction layers, generally re-
ferred to as L0, L1 and L2: each layer is presented as a service for the upper
one and relies on services provided by the lower one.
The first level, L0, provides low-level functionalities to communicate with
the SEcube™ ; L1 implements login/logout functions and cryptographic al-
gorithms. Finally, L2 is composed of three main libraries: SEkey™ , a
key management system library; SEfile™ , a file system interface library;
SElink™ , a library focused on securing data in motion.
Furthermore, when an application needs a feature provided by the device, it
is first necessary to manually include the required libraries; then the devel-
oper has to deal with the complexity of communicating with the device in
the appropriate manner, writing code to integrate the platform capabilities
into the application.
The SEcube™ system is a sophisticated environment, growing in complexity
as it is growing in size, and requires some time to be understood and to be
used properly. As a matter of fact, an incorrect usage may lead to extend
the developing phase delaying the release, or even worse to flaws that could
compromise the integrity of the application and consequently of the whole
system.
Given these premises, adding an intermediate layer between the platform
and the user acting as a standardized interface (i.e., a middleware) leads to
positive consequences on:

• scalability and flexibility, because it simplifies the process of including
new functionalities;

• security, thanks to the ‘security by design’ principle the new layer has
been designed to be foundationally secure;
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• fault reduction;

• automation of recurrent routines.

On the other hand, this solution brings some disadvantages, such as:

• a slow-down factor to the execution time of applications;

• it might be necessary to rewrite parts of pre-existing code to integrate
the new layer;

• it might require a somewhat long time to develop an adequate solution;

• new SEcube™ functionalities will require additional time to be sup-
ported.

The application developed in this thesis is written in C/C++ and Qt, it acts
as a "bridge" between the platform and third-party applications (also referred
to as clients). Its main tasks are:

• to serve as a GUI to users, where they can connect to a SEcube™ device
and see details about the incoming requests from external applications
(i.e., a logger);

• to authenticate client applications;

• to handle the requests coming from clients, acting as a scheduler.

One of the prerogatives of this work is to reach a level of security comparable
with the one of the SEcube™ platform. To allow communication between
third-party applications and the middleware, several analysis on Inter Pro-
cess Communication (IPC) methods were held, leading to the conclusion
that there is not a intrinsic secure approach [3]: some of them (i.e., TCP
sockets) send messages in clear and suffer from sniffing attacks; others, such
as Unix-Domain sockets, are affected to unprivileged access from potentially
malicious processes.
The solution adopted in this thesis is to use a TCP socket channel along with
symmetric encryption. The communication is encrypted using AES-256 and
session keys, in order to provide data confidentiality, and it is based on a
simple request/response protocol: third-party applications send requests for
a specific feature using a predefined format; the middleware arranges the
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request in order to be compliant with the SEcube™ standards and, once it
is available, it sends back a response. Thereby, a typical "star architecture"
is formed, with the middleware acting as the central node and applications
as terminal ones.
This improvement allows to build a simple and user-friendly environment,
which is at the same time compliant with strict security standards. Develop-
ers approaching the platform do not have to worry about low-level security
details, nor they need to have a strong knowledge about cybersecurity prin-
ciples and the SEcube™ ecosystem.

The remaining of the thesis is organized as follows:
Chapter 2 gives an overview of the prevailing HSMs and their features, as

well as the main Inter Process Communication (IPC) methods.
Chapter 3 provides a detailed view about the SEcube™ Security Platform

behaviour and its libraries.
In chapter 4 the application design and implementation processes are ex-

plained, covering the details of each key component, showing also relevant
portions of code.

In chapter 5 the obtained result are presented, along with the problems
faced and some use case models.

Finally, chapter 6 presents the conclusions and explores possible improve-
ments.

Furthermore, appendix A provides a detailed list of the SEcube™ func-
tionalities supported by this work.
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Chapter 2

State of the art
This chapter discusses the general features of hardware security modules,
as well as their advantages and disadvantages. Moreover, since the soft-
ware developed in this thesis involves the cooperation of multiple processes
on the same host machine, inter-process communication methods (IPC) are
analyzed as well.

2.1 Types of HSMs
The hardware security modules market offers a variety of solutions that dif-
fer on several aspects, such as certifications (i.e. FIPS [9]), cryptographic
capabilities, performance, and cost. HSMs can be catalogued as proprietary
or open source. The latter can be furthermore divided into three categories:

• System robustness evaluators: these modules focus on performing tests
with the goal of exposing weaknesses, evaluating systems protection
against external physical attack. SASEBO boards [18], for example,
measure strength over side-channel attacks that are used to steal confi-
dential data.

• Secure SW development supporters: platforms such as the Juno Devel-
opment Board [5], that provide an environment to create general purpose
software applications, supporting advanced security features.

• Embedded SoC: single chips that usually combine a CPU, an FPGA and
a smart card that allow to implement cryptographic functionalities, like
the Zynq board proposed by Xilinx [22].
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2 – State of the art

Considering these three categories, Embedded SoC are, by far, the most ca-
pable. They usually provide a combination of hardware and software that
is suitable to many different environments; however, they are usually expen-
sive, meaning that prototyping based on Embedded SoC might not be always
feasible. System evaluators, on the other hand, only act as guardians that
do not implement any kind of cybersecurity functionality. Finally, Secure
Software Development Supporters are general-purpose systems whose secu-
rity elements usually cannot be controlled by the customer.
Another important distinction can be made among general-purpose and pay-
ment hardware security modules. The three categories previously described
fall into the general-purpose HSMs, a macro-class that includes all the devices
intended to serve different scenarios (i.e., government, military, companies,
advanced users). Contrariwise, payment platforms are focused on the finan-
cial, banking, and commercial sectors.
Finally, since the cloud paradigm has become essential for many businesses,
cloud-based HSMs are also available. In this case, they are usually defined
as HSM-as-a-Service and provide services for:

• Rent a physical HSM in a off-site data center;

• Access a virtual environment sharing an HSM;

• Retrieve security functionalities of HSM vendor’s devices.

This methodology cuts down a significant portion of expenses and allows
customers not to manage the complexity that HSMs imply. On the other
hand, customers do not have physical control of the devices.

Notice that the SEcube™ platform is an example of general-purpose embed-
ded SoC composed of three elements (a CPU, an FPGA and a smart card);
furthermore, it provides an abstraction layer independent from the crypto-
graphic operations, differently from other HSMs that use common packages
(i.e., PKCS#11 [29] interface in public key infrastructures).
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2.2 Inter-Process Communication Methods
An important aspect that must be considered for the implementation of this
work is how to let communicate two or more applications (or processes)
running on the same host machine. Modern operating systems allow pro-
cesses to share data in several ways, named Inter-Process Communication
(IPC) mechanisms. Normally, these mechanisms are adopted to implement a
client-server connection, where clients request data and servers share them.
Microsoft provides a list of questions [21] that can help to determine whether
an application can benefit by using an IPC method and which one fits best:

1. Should the application be able to communicate with other ap-
plications running on other computers on a network, or is it
sufficient for the application to communicate only with applica-
tions on the local computer?

2. Should the application be able to communicate with applications
running on other computers that may be running under different
operating systems (such as 16-bit Windows or UNIX)?

3. Should the user of the application have to choose the other ap-
plications with which the application communicates, or can the
application implicitly find its cooperating partners?

4. Should the application communicate with many different appli-
cations in a general way, such as allowing cut-and-paste opera-
tions with any other application, or should its communications
requirements be limited to a restricted set of interactions with
specific other applications?

5. Is performance a critical aspect of the application? All IPC
mechanisms include some amount of overhead.

6. Should the application be a GUI application or a console appli-
cation? Some IPC mechanisms require a GUI application.

The answers to these question, keeping in mind the application that has to
be built in this thesis, can be summarized as follows:

1. It is sufficient for the application to communicate only locally.

2. The application should be able to communicate with UNIX systems as
well.
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2 – State of the art

3. The application should be able to implicitly find its cooperating partners.

4. The communication is limited to a restricted set of interactions.

5. Performances are not a key point, however the application should not
add too much overhead.

6. The application should provide a graphical interface.

These answers allow to reduce the set of IPC methods that cover the require-
ments of this works, whose details are analyzed in the following sections.

2.2.1 Sockets
A socket is a structure that acts as an end-point in a bidirectional channel,
used to send and receive data, either locally or over networks. The lifetime
of the socket is bound to the process that created it: when a process is de-
stroyed, its sockets are destroyed too.
Network protocols define an Application Programming Interface (API) that
specifies, among the others, the structure and properties of sockets. More-
over, the API is used to manage two fundamental structures: the socket
address and the socket descriptor. The former is a combination of the net-
work protocol adopted, the IP address of the counterpart and a port number,
used to recognize the exact process we are communicating with; the latter is
a unique identifier stored in the application’s process memory, used to han-
dle locally the existing sockets. The main disadvantage that this mechanism
brings is that data are sent in clear, hence any kind of sniffing attack can be
performed.

Sockets can be divided into three main categories:

• Datagram Sockets: the so-called connectionless sockets, which use
the User Datagram Protocol (UDP). In this kind of implementation,
there is no connection setup affected by the UDP layer, so packets are
individually addressed and routed. It does not implement reliability or
ordering functions: packets sent might arrive in a different order, or they
might not arrive at all. Voice and video traffic allow occasional packet
loss, hence it is generally transmitted using UDP.

• Stream Sockets: contrary to the previous ones, these are connection-
oriented sockets which use Transmission Control Protocol (TCP). Stream
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2.2 – Inter-Process Communication Methods

sockets first establish a connection among the two communicating hosts,
then data can be sent. There are no record lengths or boundaries, so
a mechanism for distinguish information is needed (i.e., using TLV for-
mat). Since TCP guarantees reliability, packets ordering and no dupli-
cations, it is commonly used in those applications that require all data
to be delivered, such as file transfer or emails.

• Raw Sockets: often used to test new protocol implementations, these
sockets allow sending IP packets without any protocol-specific format.
Raw sockets are usually used in security-related applications or in rout-
ing protocols such as Internet Group Management Protocol (IGMP).

2.2.2 Unix domain sockets

Unix Domain Sockets (UDS) are similar to the previously presented sockets,
but data are exchanged only between processes running on the same host
machine. They support both connectionless and connection-oriented proto-
cols, while raw socket protocols are not supported.
The API for Unix Domain Socket is similar to the one of network sockets, but
communication happens entirely in the OS kernel, instead of using a network
stack. Hence, there is no need of checksum calculations or heavy headers,
unlike TCP which requires them, allowing communication to be faster and
less expensive in terms of computational resources.
Processes that implement UDSs use local files to communicate; socket de-
scriptors are now common file descriptors, so the operating system controls
who has read/write permissions on those files. The great advantage that this
approach brings is that developers can arbitrarily assign access permission
to a specific UDS file, allowing only certain users to use it.
The main problem of this solution is that file permissions can be man-
aged at user level or group level only. This means that malicious processes
running under a user (or group) allowed to access a UDS can access that
UDS too, reading or writing data that might be private. Another prob-
lem related to this aspect is that in UNIX systems there is not an effective
and portable kernel functionality that allows to get information about the
user and his group (i.e., int getpeereid(int s, uid_t *u, gid_t
*g) that retrieves user and group ids) [4].
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2.2.3 Anonymous pipes

Anonymous pipes, sometimes simply called pipes, are unidirectional data
channels that allow communication between two processes on the same host
machine; the communication is held using standard input and output. This
approach is typically used in multi-threaded applications, where the parent
process opens a pipe and then creates one or more children processes that
inherit the other end of the pipe. Bidirectional communication requires two
anonymous pipes, otherwise data are written by one process to the write-end
and buffered by the operating system until another process reads them from
the read-end of the pipe.
In Unix-like operating systems, when creating a new pipe (i.e., by calling the
pipe system call) a pair of file descriptors are returned: one refers to the
read-end, while the other refers to the write-end, and any process that has a
copy of the pipe handler can access it. This vulnerability could be exploited
by an attacker that can enumerate a process handler table and duplicate a
pipe handler poorly configured, leading to unauthorized interaction with the
other end of the pipe [1].
I/O operations are, by default, blocking functions: when a process tries to
read from an empty pipe, it is blocked until some data are available; if a
process attempts to write to a full pipe (every byte is occupied), then it is
paused until sufficient data has been read from the other end.
Pipes can also be applied in many modern operating systems to implement
pipelines in shells. A pipeline is a set of processes chained one next to the
other, so that the output of a process is served as input of the next one.
Processes are executed concurrently, starting from the first; as soon as the
result of the first process is ready, the second one can start. This mechanism
lasts until all the processes have completed their operations: in that moment,
the pipe is destroyed. Each command in a shell is executed by a process, the
list of commands are stringed together, separated by the pipe character (’|’)
in order to form a pipeline.
The following example presents a pipeline that searches the PID of a process
that is running Google Chrome [7] and kills it:

$ ps aux | grep chrome | awk ’{print $2}’ | xargs kill -
9

The result of each command is used as input of the next one, in particu-
lar:
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• ps aux: outputs the list of running processes with some details;

• grep chrome: search the string "chrome" in the processes list;

• awk ’{print $2}’: the second world of each line in the processes list is
the PID. This command takes that world;

• xargs kill -9: read from input (the result of the previous command) the
PID and kills the process with that specific value.

2.2.4 Named pipes
Named pipes (also known as FIFO, since their behaviours are similar) are
an expansion of the previously enunciated anonymous pipes, and are used as
IPC mechanism to exchange data locally among processes on the same host
machine. Instead of using standard input and output, named pipes use files
similarly to Unix Domain Sockets: processes can append data to a file and
read data from the first byte of it. Named pipes, however, use unidirectional
channels, hence full-duplex communication requires two instances.
The great advantage of this mechanism is that it is not bound to processes
lifetime, but it can last as long as the system is up; however, it can be deleted
if it is no longer useful.
Windows named pipes differ from Unix ones in some aspects, in particular:

• No command line interface is available (except for PowerShell);

• Windows named pipes cannot be created as files under normal filesys-
tems;

• Windows named pipes are volatile: once the last reference to them is
closed, they are deleted.

This method, however, is affected by some vulnerabilities too, such as client
impersonation in which named pipe server (the process that created the pipe)
temporarily assumes the security context of the client, by using the Imper-
sonateNamedPipeClient API, a Windows feature that helps performing
operations based on privileges of the client. This kind of action, if exploited
properly by malicious applications, might let them attain full control of the
system when connected to clients that have high privilege levels.
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Chapter 3

The SEcube™ Security
Platform
This chapter provides an overview about the SEcube™ Security Platform.
Knowing the technology that is embedded into the SEcube™ Security Plat-
form is important to understand the details of the software that has been
developed in this thesis, both in terms of implementations details as well as
security features.

3.1 The SEcube™ Hardware Security Mod-
ule

The SEcube™ Security Platform [23] is an open-source cybersecurity plat-
form whose core is the SEcube™ HSM, a hardware security module designed
and produced by Blu5 Group [12]. The SEcube™ is basically a small chip,
a compact 3D SiP (System-in-Package) made of three main components: a
low-power ARM Cortex-M4 processor, a high-performance FPGA, and an
EAL5+ certified security controller (also referred to as smartcard). Figure
3.1 illustrates the composition of the SEcube™ chip.
The main hardware products offered by SEcube™ are:

• SEcube™ Chip, above described;

• SEcube™ DevKit, a development board;

• USEcube™ Stick, a USB stick;
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3 – The SEcube™ Security Platform

Figure 3.1: The components of the SEcube™

The SEcube™ DevKit, shown in Figure 3.2a, is a development board enabling
the SEcube™ Chip integration into hardware and software projects. It offers
several peripherals that allow users to easily program and debug the chip,
such as a USB 2.0 to UART port, a microSD card and an Ethernet 10/100
connection. Furthermore, it has a JTAG interface to flash new firmware
versions on the device.
The USEcube™ Stick (Figure 3.2b) is a multi-purpose USB 2.0 token that
provides all the SEcube™ functionalities in a small package, compatible with
any operating system. For security reasons, rather than providing a JTAG
interface, it comes with an embedded secure bootloader, useful to prevent
unsolicited firmware manipulations.

(a) (b)

Figure 3.2: The SEcube™DevKit (a) and the USEcube™ Stick (b)

22



3.2 – The SEcube™ software architecture

The CPU embedded into the SEcube™ Chip is the STM32F429 [6], a
high-performance ARM Cortex M4 RISC processor produced by ST Micro-
electronics. The chip provides the following features [20]:

• 256 KB of SRAM,

• 180 MHz clock frequency,

• 32-bit parallelism,

• 2 MB flash memory,

• Low power consumption.

Moreover, the CPU provides a True Random Noise Generator (TRNG) em-
bedded unit, a hardware oriented mechanism of MPU (Memory Protection
Unit), and a set of executions mode that differ in privilege level, which al-
low custom security approaches (i.e. key generation functions barriers, pro-
tected memory areas, etc.). Furthermore, it supports CMSIS-DSP libraries,
to speed-up the execution of algorithms involving heavy floating-point oper-
ations.

The FPGA component is a Lattice MachXO2-7000 device based on a fast
and non-volatile logic array, connected to the CPU through a 16-bit internal
bus. It provides 47 general-purpose I/Os that can be used as a 32-bit exter-
nal bus able to transfer data at 3.2 Gb/s [20, p. 15].

The third and last component of the SEcube™ Chip is an SLJ52G EAL5+
certified security controller produced by Infineon [8]. It is connected to the
CPU via a standard ISO7816 interface, and it does not provide any interface
outside the chip, providing high-grade security primitives.

3.2 The SEcube™ software architecture
The SEcube™ offers an open SDK [27] composed of a set of libraries for both
the device and the host machine. The standard behaviour is well exposed in
Figure 3.3: end-user applications interact with the host libraries, generating
a request (i.e., a plaintext to be encrypted). The request is passed to the
device side, where the provided libraries actually execute the code needed to
satisfy the request; finally, the result is sent back to the host as a response
(i.e., the ciphertext), which is presented to the application.
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Figure 3.3: Request/response flow

Figure 3.3 shows that the SDK is composed of different elements and levels
that are analyzed in detail in the following sections.

3.2.1 SEcube™ Device-Side APIs
The firmware is the core of the SEcube™ platform. It is responsible of han-
dling the requests coming from the host side, since the board is not provided
with any operating system. The firmware performs a master-slave schema,
where the SEcube™ acts as the slave with respect to the host.
The firmware implements a basic request-response mechanism, where re-
quests coming from the host side are organized according to an ID field
that allows to identify the request type among the ones supported by the
SEcube™ . Since the firmware works in a sequential way, requests can be
served one at a time: this is an important limitation that should always be
kept in mind when developing host-side applications.
This drawback is a significant bottleneck in term of performances considering
an architecture that must support a high load. For the purpose of this work,
hence, having a centralized interface that cannot process requests concur-
rently is a notable limitation.
The firmware is divided into sub-modules, each of which deals with a specific
set of elements, in particular:

• The Security Core manages the cryptographic functionalities (i.e., AES-
256).
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• The Communication Core processes data incoming from the host and
prepares data that must be sent to the host.

• The SEkey™ Core handles the device-side interaction with the internal
Key Management System (KMS) implemented through the SEkey™
library.

• The Smart Card Driver and the FPGA Driver deal with the interaction
with, respectively, the smartcard and the FPGA.

Notice that the Smart Card Driver is not yet implemented, due to the sepcific
know-how required to develop security modules of this kind, while the FPGA
Driver is not exploited in the default configuration of the firmware. As a
consequence, every implemented algorithm is software-based and does not
leverage any kind of hardware enhancement that an FPGA would bring.

3.2.2 SEcube™ Host-Side APIs
The host-side software libraries are implemented into three hierarchical ab-
straction layers. Each layer provides a set of APIs and and it is built in order
to represent a "service" for the upper level and to rely on "services" provided
by lower ones [20, p. 23]. These layers are organized as follows:

• Level 0: the lowest layer implements basic functionalities such as com-
munication with the platform, platform initialization, and so on. It is
additionally divided into three families of APIs: provisioning, commu-
nication and commodities APIs.
This layer is responsible of allocating and keeping up the communicating
channel created through the USB interface.

• Level 1: this layer exploits basic security APIs required by secure appli-
cations, in particular: login/logout functions, key management functions
(add/delete key) and cryptographic algorithms.

• Level 2: it offers optimized and easy-to-use APIs to create a secure en-
vironment. L2 APIs are part of some library whose integration must be
effortless, without being forced to care about low-level details. This level
includes three main libraries: SEkey™ [13], SEfile™ [14] and SElink™
[15]. Since the software developed in this thesis is not designed to inter-
act with SEkey™ , no further details about it are given.
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Furthermore, a fourth layer (Level 3) has been added, it relies on L2 and
provides advanced security APIs. The only library belonging to this layer is
the Secure Database Library [17], it implements an encrypted SQL database
to securely manage a database using the standard SQLite [28] C interface.
A complete overview of the software architecture, including both sides, is
presented in the Figure 3.4. It clearly demonstrates how the host-side is
developed in an hierarchical way, while the firmware is more fragmented and
elaborated.

Figure 3.4: SEcube™ complete software architecture

3.2.3 SEfile™
Handling encrypted files in a host machine is a non trivial operation due to
several security issues that might arise. The most significant one regards
how and where to store the encryption key: the machine is not intrinsically
reliable, hence the key cannot be stored in clear. Not storing the key and
derive it from a password is not a feasible solution, considering that it only
moves the problem from the machine to the user: the chosen password might
be not strong enough and dictionary attacks could always be performed. The
SEfile™ library natively solves this problem: keys are random-generated and
are handled automatically by the SEcube™ device, in such a way that they
can be exploited regardless of the machine they are used on; moreover, files
are permanently stored encrypted.
SEfile™ is a L2 host-side library that implements a file system interface spe-
cific for the SEcube™ platform, an OS-independent cryptographic wrapper
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around the standard file system. It improves data-at-rest security, encrypt-
ing files and keeping them encrypted while used by third-party applications.
SEfile™ only adds a small overhead to the original file, appending an iden-
tifier used to recognize the key used to encrypt. Figure 3.5 depicts a general
overview of how SEfile™ works.

Figure 3.5: SEfile™ overview [19, p. 26]

A file protected with SEfile™ is divided into sectors: the first one is a header
composed of metadata (i.e., name of the file and size, algorithm used, key
ID, etc.), then a sequence of sectors contain the actual data. When a user
requires to read a portion of a file, SEfile™ computes which sectors contain
the required content considering the overhead added; those sectors are then
decrypted and stored in the RAM memory. This approach lead to reduce
the overhead time, maintaining a secure interaction.
The size of sectors can be customized, with the default size being 512 bytes.
Each sector, except for a portion of the header sector, is encrypted. More-
over, in order to guarantee data integrity and authentication, each sector is
signed with a signature computed using the HMAC-SHA256 algorithm. Fi-
nally, the name of the file is replaced with the SHA-256 digest of the original
name, which is useful to increase entropy and obfuscation of information.
The original filename, however, is maintained in an encrypted segment of
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the header sector.
It is important to notice that padding might be required to fill the empty
space in a sector that is not fully used. In order to avoid known plaintext
attacks, SEfile™ uses random padding rather than using always the same
pattern (i.e., zero padding). The typical structure of how SEfile™ builds
files is illustrated in Figure 3.6.

Figure 3.6: File organization under SEfile™ [30, p. 22]

3.2.4 SElink™
While SEfile™ focuses on data at rest, SElink™ is a library developed to
secure data in motion. The typical scenario SElink™ was designed for, is
an end-to-end communication channel among multiple parties. This library
is independent from the protocol used to communicate and it offers specific
APIs to serialize data to transmit them using a network protocol (i.e., TCP).
Moreover, in order to guarantee confidentiality, integrity and authentication,
data are encrypted using AES256-HMAC-SHA256. This library can be com-
pared to a VPN, in which each exchanged message is guaranteed to be secure.
A simplified overview of how SElink™ works is shown in Figure 3.7.
It is important to point out that SElink™ is not a tool used on top of preex-
isting software, it needs custom applications developed specifically to work
with SElink™ ; as a matter of fact, SElink™ cannot be used without a
SEcube™ device.
The great advantage of this library is that it is easy to use; the provided APIs
are only a few and developers do not need to care about low level security
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details, thus it is simple to overcome the learning curve. On the contrary, it
requires an effort to integrate the library into existing software.

Figure 3.7: Simplified SElink™ overview
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Chapter 4

Application development
This chapter discusses the implementation of the software developed in this
thesis, providing insights about the internal structure.
First, the main reasons that brought to the implementation of the software
are described; then, the architecture and the implementation of the applica-
tion are discussed.

4.1 Development motivations
The development of this work was mainly driven by the need of having a
simple interface that manages different kinds of applications which rely on
the capabilities of the SEcube™ HSM, without having to deal with its low-
level APIs, such as the ones included in L0 and L1.
Exploiting the functionalities of the SEcube™ requires to manually deal with
multiple libraries; developers need to study how libraries work and how to
integrate them with existing software. Moreover, SEcube™ libraries might be
complex for developers who do not have a decent background in cybersecurity,
leading to possible errors in the implementation and security flaws. The goal
of this thesis is to move to an approach that is simpler, more scalable and
less time consuming.
Another significant problem is that libraries, tools and APIs of the SEcube™
SDK are not fully-integrated: most of the time, each library acts as "stand-
alone" and there is not a system that encompasses all the functionalities
together providing a standardized interaction. This leads, once again, to
poor flexibility and scalability.
These few examples raise the difficulties related to not having a standard
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interface in the SEcube™ SDK:

• Increased learning curve of the SEcube™ environment.

• SEcube™ applications are more difficult to be developed.

• Application developers are required to have significant cybersecurity
knowledge.

• Developers have to deal with low-level primitives, leading to possible
security vulnerability and implementation errors;

• The manual management of libraries and tools is complex to handle in
large projects, thus not flexible nor scalable.

These problems determine the need of an intermediate layer sitting between
host-side applications and the SEcube™ HSM, reducing the complexity of
integrating the capabilities of the SEcube™ in new software as well as exist-
ing applications.
The software developed in this thesis takes care of the complex handling of
the SEcube™ and its libraries, providing an interface that is simple to under-
stand and use, likewise compliant with strict security standards. The most
important feature is that it integrates most of the SEcube™ functionalities
available, allowing new applications to exploit them without knowing the
implementation details.

4.2 Application high-level overview
This application works as a server in a TCP client-server communication,
exploiting the functionalities offered by the QTcpSocket and QTcpServer
classes [11] to handle the connections with clients. The communication is
based on a simple request-response protocol, in which packets contain an
identifier (i.e., an integer value) used to recognize the operation they refer
to. Moreover, packets include a list of input parameters filled by clients and
a list of output parameters prepared by the middleware, containing the result
of the requested operation. In order to provide confidentiality and protect
the communication from sniffing attacks, packets are encrypted using AES-
256 and a session key, generated during the client’s authentication phase.
Notice that any possible operation can be performed only when the following
conditions are satisfied:
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1. A SEcube™ device is connected to the host machine;

2. The middleware is connected to a SEcube™ device, either in admin or
user mode;

3. Clients have authenticated themselves, proving that they know the PIN
of the SEcube™ .

Figure 4.1 illustrates the typical work-flow of how requests are handled by
the middleware and how responses, including error ones, are managed. It
is important to point out that the SEcube™ device works sequentially and
cannot serve multiple requests simultaneously, hence requests are managed
as a FIFO queue and handled in the same order as they arrive, as shown in
Figure 4.2, which depicts a use case scenario with several requests coming
from different clients.

Figure 4.1: Request handling flowchart
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Figure 4.2: Simplified middleware FIFO implementation

4.3 Application implementation
The application has been developed in C/C++, it provides a GUI thanks to
the Qt toolkit. It is compatible with Windows and Linux operating systems
and it can work as a daemon application, serving requests in background.
The following sections analyze the implementation details of the main com-
ponents of this work, including the actual application developed and the
modifications made on the firmware.

4.3.1 Application start up
The first thing to do when the application is started is to connect to a
SEcube™ device. Hence, the first window that appears is the LoginWin-
dow, shown in Figure 4.3. Here a list of available devices is presented to the
user, that has to select one in order to connect to it. Moreover, the user is
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asked to choose the login mode (user or admin) and to insert the PIN of the
device. Once the user clicks on the login button, the challenge-based authen-
tication process starts. If the authentication fails, an error message appears;
otherwise the MainWindow is started and clients can can start opening con-
nections.

Figure 4.3: Login window

When the application is started, it is firstly populated the list of connected
devices displayed in the login dialogue. Notice that the list can be refreshed
any time, by simply clicking on the ‘Refresh devices list’ label located in the
top-right corner of the window.
Before clicking on the login button, the user has to:

1. Select a SEcube™ device from the available ones;

2. Choose a login mode, admin or user;

3. Insert the PIN associated to the selected device;

Then, when the user clicks on the button, the login function is triggered
and the challenge-based authentication provided by the library L1 is called.
Once the login is successfully completed, another SEcube™ functionality is
exploited to calculate the SHA-256 digest of the inserted PIN. This operation
is done in order to never store the plain value of the PIN in the flash memory,
that would be potentially dangerous in case of memory leakage.
Notice that this is the only moment when the login API is called. In case
of multiple login attempts on a device that has a user already logged in,
a L1AlreadyOpenException is thrown, due to a constraint that the
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SEcube™ imposes. Hence, third-party applications do not really perform
the login, instead they only prove that they know the PIN by responding to
a challenge. In order to achieve this behaviour, some changes were done on
the SEcube™ firmware, the details are analyzed in Section 4.3.3.
Once that these operations are completed, in case of error a message box
appears providing some information (Figure 4.4) otherwise the login dialog
is closed and the MainWindow is shown.

Figure 4.4: Login error message

4.3.2 High-level message structure
Messages exchanged among middleware and client applications are sent over
a TCP channel and are written in the TLV format (Type - Length - Value),
in particular:

1. The type is an integer ID used to recognize which operation the message
refers to;

2. The length refers to the size of the "value" field, since TCP does not
provide fixed message size;

3. Value contains all the input/output parameters related to the operation
that has to be performed and other parameters (i.e., return value and
error message).

A predefined set of structures is provided to clients, each operation defines
its own structure with the required parameters. The interaction, then, is
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simple: once the connection in established, clients have to fill the structure
corresponding to the operation they need (i.e., the Digest_Params struct
to perform the digest of a string). Then the Cereal library [16] is used to
serialize the message in the TLV format and send it over the socket.
The middleware executes the dual actions: firstly the request is deserialized,
then the parameters are taken from the "value" field and the operation spec-
ified in the "type" field is executed on the SEcube™ . A response with the
results is composed in the same way as the request and sent to the client.
Serialized requests and responses are arranged into uint8_t arrays, and a
set of constant values has been defined referring to the offsets of each field
within the array. These values are shown in the code below, where an exam-
ple of message structure is presented as well:

#define MINLEN 6 // at least 6 bytes (2B type + 4B length)
#define T_OFFSET 0 // type offset
#define T_SIZE 2 // type size
#define L_OFFSET 2 // length offset
#define L_SIZE 4 // length size
#define V_OFFSET 6 // value offset

struct KeyList_Params{
int retvalue;
std::string errmessage;
std::vector<uint32_t> keys_id;
std::vector<uint16_t> keys_len;

void reset(){
retvalue = 0;
errmessage.clear();
keys_id.clear();
keys_len.clear();

}

template <class Archive>
void serialize(Archive& archive){

archive(retvalue, errmessage, keys_id, keys_len);
}

};
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4.3.3 Client authentication
Any SEcube™ functionality supported can be exploited by third-party appli-
cations only after the authentication phase. If a client tries to send a request
for an operation (i.e., file encryption) whilst not yet authenticated, the packet
will be discarded and an error response will be sent. In particular, the client
will receive as error message: ‘Operation denied: client not authenticated’.
As previously explained, clients do not perform an actual login (by exploiting
the L1Login API), they are only demonstrating that they are aware of the
shared secret value; the authentication phase is based on a challenge-response
method, where the secret is the PIN of the SEcube™ device. To perform
this kind of operation, some changes have been made on the firmware too,
adding two new functionalities, called mw_challenge and mw_login. These
two functions work similarly to the two implemented in the actual login (called
challenge and login) and the concept is similar: generating a challenge to send to
the host and resolving its challenge. However, these new functions differ from the
original ones in some aspects, such as:

• both functions do not return an error in case of host already logged in;
• mw_challenge does not derive a session key, unlike challenge;
• mw_login does not save the value of the token, unlike login.

On the host side the authentication has also been divided into two steps:
1. Prepare challenge: in this first step, the middleware communicates with the

firmware in order to get a random value, called cc1, and the challenge; the first
value will be used by the client to compute its challenge. A packet will be sent
to the client containing these two values.

2. Compare challenge: the middleware receives from the client two values: sRe-
spExpected, the expected response to client’s challenge, computed using the
PIN of the device and cc1, and cResp, the computed response to the challenge
generated by the middleware. Then, the middleware will communicate with
the firmware in order to check if the received values are the expected ones. If
they are not, an error message is sent to the client; otherwise, a random 64-bit
salt is generated and sent to the client. This value will be used on both sides
to compute the session key used to encrypt the communication. More details
about this key are given in Section 4.3.4.

Figure 4.5 shows how the client authentication works, displaying the parameters
that each actor sends to the other and the operations performed on both sides.
It is important to point out that clients have also to specify the login mode which
they are trying to authenticate with (i.e., user or admin mode). As a matter of fact,
in order to prevent unprivileged access, connections in admin mode will be refused
when the middleware is working in user mode.
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Figure 4.5: Simplified client authentication work-flow

4.3.4 Key generation
Network sockets do not provide data confidentiality natively: packets are sent in
clear and sniffing attacks can be exploited. Considering that in the specific case
of this work packets might contain confidential data (i.e., a plain text to encrypt),
confidentiality should be always guaranteed to reduce attack surface.
Two methods have been analyzed to reach this goal:

1. Asymmetric encryption, building a public keys infrastructure into the middle-
ware;

2. Symmetric encryption, using session keys;

Even if asymmetric encryption is stronger and more secure, some problems arise
implementing this solution. In the first place, this approach increases the execu-
tion time because of its computational cost; furthermore, most importantly, the
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SEcube™ platform does not yet support asymmetric encryption. For these consid-
erations, the second approach has been carried on, exploiting symmetric encryption
using AES-256.
Each request coming from a client, except for the ones related to the authentication,
must be encrypted with a session key. Once a client is successfully authenticated, a
generateRandom function generates a 64 bit integer random number. This value
is used as cryptographic salt in the key derivation function (KDF). The key has to
be generated on both sides in the same manner, in order to produce the same result.
A PBKDF2 function is exploited to compute the key, using as input parameters:

• Password: the SHA-256 digest of the PIN.
• Salt: the previously described random value.
• Iterations: a constant value set to 150,000.

The final result is stored in the key variable, a 256-bit array.
Notice that the password used is the digest of the PIN instead of the actual PIN:
this design choice, as previously described, was made in order to protect the plain
value from any memory leakage that might expose it.
The number of iterations refers to the amount of times the function is executed. Its
value can be arbitrary, but NIST suggests:

For PBKDF2, the cost factor is an iteration count: the more times the
PBKDF2 function is iterated, the longer it takes to compute the password
hash. Therefore, the iteration count SHOULD be as large as verification
server performance will allow, typically at least 10,000 iterations. [2]

Some performances tests were held and setting the value to 150,000 is a good com-
promise: the execution time is still acceptable and the strength of the key is sufficent.
Considering a real case in which the middleware might have many connections
opened with different third-party applications, a map of keys has been defined in
the MainWindow class as follows:

std::map<QTcpSocket*, uint8_t[SESSION_KEY_SIZE]> session_keys;

In this way the key that refers to a specific socket can be immediately accessed
through its socket descriptor. The socket descriptor can be retrieved thanks to the
sender() method offered by the QTcpSocket class that returns a pointer to the
object that sent a readyRead signal [10]:

QTcpSocket* socket = reinterpret_cast<QTcpSocket*>(sender());
auto key = session_keys[socket];

When the client closes the connection, the key is removed from the map since it is
no more used, using again the map and the socket descriptor to access it directly.
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4.3.5 Handling a request
Only authenticated clients are allowed to send requests to the middleware. Once
a request arrives, the first check is performed on the client status to ensure he
completed the authentication phase: packets coming from clients that do not satisfy
this constraint are discarded, and an error response is transmitted to the sender.
To build a request three actions have to be performed:
1. The guest application has to fill a structure, providing the required input pa-

rameters;
2. The structure has to be serialized and written into an array following the TLV

format;
3. The serialized structure has to be encrypted using the session key related to

the communication;
Figure 4.6 illustrates an example of how a request to perform the SHA-256 digest
of a string is built. Notice that for the sake of simplicity the content of the packet
is shown in clear, while in a real case scenario it is encrypted with the session key.

Figure 4.6: Request in TLV format

The middleware, on the other side, will perform the dual operation, decrypting the
received packet. From the first bytes of the request, the middleware can read the
operation ID and, thanks to the Cereal library, it can deserialize the packet and fill
the corresponding structure with the input parameters. If the parameters are in a
different format from the expected one, an error message is sent to the client.
Knowing which SEcube™ functionality the client requires and the necessary param-
eters, the middleware can simply call the corresponding API and, when the result
is ready, a response is built in the same way as the request and sent to the client.
During any kind of operation, the MainWindow is showed. It has a simple interface,
shown in Figure 4.7, that contains:

• The serial number of the SEcube™ device connected;
• A counter that shows how many clients are connected;
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• A logger, showing information about the completed operations;
• A logout button.

Figure 4.7: Main window interface
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4.3.6 Autostart the application
The middleware has also been developed as an autostarted daemon application. This
means that:
1. The application is automatically executed at startup without involving the user;
2. The application can be executed in background without showing any window.

In order to autorun the middleware, some operations with the executable file of
the application has to be performed. This procedure is different depending on the
operating system, however it has been implemented in both Windows and Linux.
In particular:

• On Winows systems, a string value containing the path to the file has to be
added into the C:\WINDOWS\Start Menu\Programs\StartUp folder.

• On Linux systems, a .desktop file has to be created, containing some infor-
mation about the application (i.e., application path, type). This file will be
then added into the home/.config/autostart folder.

This is a significant feature enabled by default, but it can be disabled by the user if
required. The Settings menu, shown both in the LoginWindow and in the Main-
Window, contains a checkbox (Figure 4.8a) that allows to disable this functionality.
By clicking on this checkbox, the executable file is removed from the mentioned
folder. The reverse operation can be always performed by enabling again the check-
box.
When the application is running in background, a system tray icon (Figure 4.8b,
Windows version) is shown: this icon is presented as a SEcube™ icon and, if clicked,
allows to display again the MainWindow, enabling the interaction with the user.

(a) (b)

Figure 4.8: Settings menu (a) and the system tray icon (b)
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Chapter 5

Results and discussion
This chapter focuses on the results collected during the development of this thesis,
along with the main characteristics and advantages of the solution implemented.
The drawbacks that the chosen approach brings are then analyzed. Finally, in order
to let the reader understand better how the system works, a list of the main use
cases is given.

5.1 Results
The application developed in this thesis is based on the SEcube™ Security Platform;
the code is open source and available on GitHub [26]. This application exploits the
main security-oriented functionalities offered by the SEcube™ environment, along
with other tools and capabilities of the Qt toolkit.
This application has been developed in order to incorporate most of the SEcube™
capabilities in one single access point, building an ecosystem that is easy to use and
secure. These needs come from the partial lack of coherence of the provided SDK: it
involves a great amount of APIs and libraries that might determine a considerable
learning curve to have full control of the advantages brought by the device.
The application can work with several third-party clients at the same time, but with
one SEcube™ module only. The user has to select which device to use during the
login phase, then each client will be connected automatically to the selected one,
without the privilege of changing.
Notice also that some functionalities might not be available in "user mode": users
must login in "admin mode" in order to exploit all the supported functionalities.
Thanks to this application the interaction with a SEcube™ device has become
smoother both for experienced developers and for those approaching the platform
for the first time, by means of a standardized interface that guarantees high-level
security and a user-friendly environment, enabling any developer to implement ap-
plications that leverage strong cybersecurity functionalities.
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Here is a summary of the main features offered by this work:

• Compatibility with Windows and Linux operating systems.

• A variety of APIs to manage low-level SEcube™ functionalities.

• Support in the integration of a SEcube™ device in already existing applications,
to increase security.

• The security primitives are always performed within the SEcube™ .

• Confidentiality among the application and clients is always guaranteed thanks
to an encrypted communication based AES256 and a 32 byte symmetric key.

• Security issues and security primitives are handled automatically and are trans-
parent to the users.

• Native compatibility with several SEcube™ libraries, such as SEfile™ and
SElink™ .

• The implementation of an authentication method based on a challenge-response
approach that does not expose the shared secret (the device’s PIN);

• An easy-to-use and flexible interface that decrease the required time to fully
understand how the SEcube™ works.

5.2 Drawbacks
This application presents some drawback as well, such as:

• The SEcube™ processes requests sequentially, making the system slower in case
of several clients connected simultaneously.

• The SEcube™ SDK only supports AES-256 for encryption: no support for
asymmetric cryptography is given at the moment.

• Adding a new layer between the SEcube™ and external applications increases
the time required to perform the operations.

• New SEcube™ functionalities require some time to be integrated and sup-
ported.

• Some Linux versions do not support system tray icons, making impossible to
show an icon in the system bar while the application is running in background.

• The host to which the SEcube™ is connected must be as secure as possible,
since the device cannot detect if an attacker violates the host.

It is important to point out that some of the described drawbacks are consequences of
designing choices: in order to reach a feasible solution some trade-off are inevitable.
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5.2.1 Exposure of salt during session key generation
During client’s authentication phase, explained in details in Section 4.3.3, a session
key is generated and then used to encrypt the communication channel established
among the middleware and the client. Since symmetric encryption is used, the same
key has to be generated on both sides using a KDF that takes as input parameters
the SHA-256 digest of the PIN and a salt, whose value is generated randomly by
the middleware and sent to the client. Considering that the key does not exist yet,
the salt has to be sent in clear, hence visible by any other process that is monitoring
the communication.
A possible brute-force attack could be performed if an intruder intercepts the salt
by sniffing the messages; the attack works in the following way:
1. The attacker studies how the communication works, since the code is open-

source;
2. When a client opens a connection, the attacker starts to monitor the commu-

nication;
3. The attacker intercepts the packet that contains the salt sent in clear, and

stores its value;
4. Once the client is authenticated, he starts to send encrypted requests: the

attacker intercepts one of them, called C, and stores it;
5. The attacker performs a brute force attack to get all the possible values of the

key: the shared secret is 256-bit long, hence he computes keyi = KDF (digesti, salt),
where i = 0, ..., 2256 − 1.

6. The attacker decipher C trying every value of the key: Mi = dec(C, keyi);
7. Finally, the attacker checks all the Mi values until he finds an acceptable plain

text written in the expected format. When he finds it, he also gets the cor-
responding digesti, which is the digest of the PIN that will be then used to
exploit any future session key.

This is potentially a powerful attack because it can be performed offline and, once
the digest of the PIN is exposed, it allows to decipher any message coming from any
client by computing its session key. This attack will be effective until the value of
the PIN is modified, thus a periodic change is recommended.
However, the time required to perform this kind of brute force attack should be
considered as well. The KDF performs 150,000 iterations, increasing the execution
time required to perform it; moreover, in the worst case scenario, the attacker, to get
the correct key, has to execute the function 2256 times and, on average, 2128 times.
The time required to execute the KDF depends on the hardware used (i.e., a GPU
accelerator decreases the time) and can vary from microseconds to milliseconds.
Considering a very optimistic case in which the KDF requires 1 µs to be executed,
the average case scenario would require approximately 9 × 1024 years: a huge number
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that makes this attack harmless at least with the current hardware. A real problem
could arise in the future, with enhanced performances.

5.3 Sample use cases
Here are few use cases that show how to exploit some of the most useful features
provided, to better understand how to integrate the middleware in pre-existing ap-
plication or to build new ones. These use cases are deliberately simplified, some of
them present figures and screenshots of running applications as well.

5.3.1 Client authentication
Executed by third-party applications that want to connect to a SEcube™ device.
Preconditions: SEcube™ connected to the host, middleware running and logged in
the SEcube™ .
Postcondition: the client is successfully connected to a device.
1. Create a socket and connect to the middleware on a specified port.
2. Send a PREPARE_CHALLENGE command specifying the access type (user or

admin).
3. Compute the two challenges by calling the PBKDF2HmacSha256 API, using

as input parameters the two received values.
4. Send the two computed challenges by means of the COMPARE_CHALLENGE

command.
5. Check the return value to be sure that the authentication was successfully,

otherwise check the error message and close the socket.
6. Compute the SHA-256 digest of the PIN and call the PBKDF2HmacSha256

API to compute the session key, providing the digest and the received salt.

5.3.2 Encrypt a message
Executed by third-party applications.
Preconditions: SEcube™ connected to the host, middleware running and logged in
the SEcube™ , client authenticated.
1. Decide the plain text that has to be encrypted.
2. Decide which algorithm and mode should be used to encrypt.
3. Decide the ID of the key used to encrypt.
4. Send a ENCRYPT command, passing as parameters the text, its size, the algo-

rithm and the key ID, encrypted with the session key and serialized.
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5. The text is encrypted by the SEcube™ and sent to the client.

6. Check the return value to be sure that the operation was completed without
errors.

5.3.3 Decrypt a message
Executed by third-party applications.
Preconditions: SEcube™ connected to the host, middleware running and logged in
the SEcube™ , client authenticated.

1. Decide the cipher text that has to be decrypted.

2. Decide which algorithm and mode should be used to decrypt.

3. Decide the ID of the key used to decrypt.

4. Send a DECRYPT command, providing as parameter the text, its size, the al-
gorithm and the key ID, encrypted with the session key and serialized.

5. The text is decrypted by the SEcube™ and sent to the client.

6. Check the return value to be sure that the operation encountered no problems.

5.3.4 SEfile™ - Create a secure file
Executed by third-party applications.
Preconditions: SEcube™ connected to the host, middleware running and logged in
the SEcube™ , client authenticated.
Postcondition: an encrypted file is successfully created.

1. Decide the name of the file.

2. Decide the ID of the key used on the file.

3. Decide the flags related to opening mode and file creation.

4. Send a SECURE_OPEN command, providing the decided parameters, encrypted
with the session key and serialized.

5. The SEcube™ will open the file, giving as name the SHA-256 digest of the
decided name.

6. Check the return value to be sure that the operation was completed without
errors. An integer value will be received to handle the file as a normal file with
its file descriptor.

Notice that file should also be closed at the end, by means of the SECURE_CLOSE
command, specifying the file descriptor.
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5.3.5 SElink™ - Encrypt and serialize a message
Executed by third-party applications.
Preconditions: SEcube™ connected to the host, middleware running and logged in
the SEcube™ , client authenticated.

1. Decide the plain text that has to be encrypted and serialized.
2. Decide the ID of the key used on the plain text.
3. Send an ENCRYPT_MANUAL command, specifying the plain text, its size and

the key ID as parameters, encrypted with the session key and serialized.
4. The SEcube™ will serialize and encrypt the plain text, sending the serialized

cipher text and its size as response.
5. Check the return value to be sure that the operation was successfully completed.

Notice that the dual operation that will decrypt and deserialize an encrypted cipher
text can be performed by means of the SELINK_DECRYPT command.

5.3.6 SEwallet™ integration
SEwallet™ [30] is a password manager tool developed to be compatible with the
SEcube™ platform, with the goal of helping users to generate, store and use pass-
words in a secure way. The original version of SEwallet™ has been developed in-
tegrating the functionalities offered by the SEcube™ SDK directly into the project;
the source code has been modified in order to support the communication with the
middleware so that it can automatically handle the complexity related to security
concerns. These modification has been realized to highlight the potential of this
new interface: the integration into pre-existing applications is pretty intuitive and
simple, making the applications more reliable since the security aspects are handled
internally by the SEcube™ in the correct way.
Figure 5.1 shows a use case in which the two applications are working together.
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Figure 5.1: Example of SEwallet™ running

5.3.7 Secure Text Editor integration
Secure Text Editor [25] is a demo project, developed as an example of GUI applica-
tion working with SEfile™ . It helps to manage text files, operating as an editor for
both plain and encrypted files. As an alternative to directly including the SEfile™
library into the project, the source code has been modified in order to make it com-
municate with the middleware and take advantage of it to exploit the SEcube™
functionalities.
Figure 5.2 depicts the Secure Text Editor application running, showing the commu-
nication with the middleware as well.
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Figure 5.2: Example of Secure Text Editor running

5.3.8 Secure Image Viewer integration
Secure Image Viewer [24] is a demo project similar to the Secure Text Editor, it
exploits the functionalities provided by the SEfile™ library in order to encrypt
images. Moreover, it is composed by a GUI that allows to depict encrypted images.
Likewise previously described projects, its source code has been improved in order
to exploit all the required SEcube™ features through the middleware instead of
manually include the libraries and call the necessary APIs.
Figure 5.3 illustrates a more realistic and exhaustive scenario, where the user might
run several applications at the same time. In this example, the following applications
are running simultaneously:
1. The middleware, serving the incoming requests;
2. SEwallet™ , with a newly created password wallet;
3. Secure Text Editor, with an encrypted file opened;
4. Secure Image Viewer, with a encrypted image opened;

Notice that in order to make third-party application to communicate to the middle-
ware, it first has to be started and connected to a SEcube™ device.
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Figure 5.3: Example of multiple applications running
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Chapter 6

Conclusions
This thesis aimed at developing an application acting as an intermediary between
third-party applications and the SEcube™ Hardware Security Module.
The need of such a solution derives from a partial lack of coherence and usability
of the SEcube™ SDK, which is open source and developed by European research
institutions. As a matter of fact, the software architecture of the platform involves
several libraries and APIs that require advanced skills and knowledge about various
disciplines in order to leverage the advantages offered by the platform.
The application developed in this work allows to interact with a SEcube™ device
exploiting an easy-to-use interface towards its functionalities, in a way that is com-
pliant with strict security standards adopting, for example, the ‘security by design’
principle.
The initial target of this work has been achieved, the application developed in fact
provides a standard interface upon the SEcube™ , allowing the interaction to be
easier and conventional. Moreover, confidentiality among the application and clients
is always guaranteed thanks to symmetric encryption based on a session key. An-
other great advantage is that the application can handle requests coming from many
clients at the same time, implementing a FIFO queue. With this work, the SEcube™
environment has been improved so that it can be easily integrated within third-party
software as well as in pre-existing applications.
In conclusion, thanks to this application, the SEcube™ offers a more versatile and
flexible ecosystem. Developers can approach the platform without worrying about
low-level security details and can exploit the provided functionalities in an easier
way, building an environment that guarantees security features to personal comput-
ers or servers according to high-security standards.
The developed application still lacks on some key features that would make it a
more reliable and complete product, improving performances as well. Some pre-
existing limitations imposed by the SEcube™ platform did not allow a significant
performance enhancement (i.e., the sequential requests handling), however possible
improvements can still be put in place.
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6.1 Future works
6.1.1 White-listing filter
The current version of the application accepts connections coming from any kind of
client, without performing some sort of security checks. Consequently, a potential
malicious application could open a socket towards the middleware and try to exploit
some vulnerability. A better approach requires to implement a white-listing filter: a
mechanism that allows only a specific set of applications to connect to the SEcube™
, denying by default all the others not explicitly authorized. During authentication
phase, clients should append a predefined fingerprint to prove their identity (i.e., the
process ID); the middleware stores a list of trusted processes and accepts only re-
quests from those in the list. In order to implement such a solution, message integrity
is also required to assure accuracy and completeness of the received fingerprint.

6.1.2 Session key expiration
This application has been designed in a way that uses symmetric encryption to
ensure data confidentiality. The key used to encrypt the communication is generated
starting from the SHA256 digest of the device’s PIN and a random salt. Hence, its
value is always different, even in the case of two connections opened by the same
client, but it lasts till the communication is closed. The idea is to add an expiration
to the key, so that its value is renewed periodically. The key duration can be defined
in term of:

• time (i.e., 1 hour). This approach could be more difficult to implement because
it requires perfect synchronization among middleware and clients;

• messages (i.e., 20 requests). This approach is easier since it only requires a
circular counter implemented in the middleware.

This integration would make the whole system more reliable are robust against cyber
attacks.

6.1.3 A priority scheduler
SEcube™ does not support parallel requests handling, hence operations are executed
sequentially. The architecture of this application is based on FIFO queue, where
requests coming from clients are served in the same order as they arrive. This
mechanism is the simplest one but the throughput could be low. Other kinds of
scheduling could be adopted in order to increase performances, such as a priority
scheduler; with this approach, incoming requests are arranged in a queue ordered by
priority: higher priority requests are served before than lower ones. This solution
allows to build a hierarchical system where critical operations can be performed
immediately.
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6.1.4 SEkey™ support
This application has been built in order to support the most useful libraries and
APIs offered by the SEcube™ SDK, except for SEkey™ . In the current version,
the only APIs related to key management supported are those to manually add or
remove a certain key, using its ID to access it. Supporting SEkey™ would allow to
handle keys in a easier and more secure way, at the same time it would make the
application more complete with respect to the SEcube™ ecosystem, expanding the
features covered.

6.1.5 SEcube™ smartcard integration
The SEcube™ platform incorporates a smartcard with powerful cryptographic fea-
tures, such as asymmetric encryption. This smartcard, however, is not yet supported
by the SEcube™ firmware, therefore it cannot be used in any application related.
Integrating its capabilities would permit to benefit of great advantages, including
key agreement protocols and asymmetric encryption.
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Appendix A

Supported functionalities
This appendix presents how to interface to the functionalities supported by this
work. Table A.1 contains the list of the available commands, recognized by a 16-bit
integer value (Command ID). IDs are divided in ranges depending on the library
they refer to:

• 0-199 refers to the L1 library that manages generic operations;
• 200-399 refers to the SEfile™ library;
• 400-599 refers to the SElink™ library;
• 600-65535 are unused.

A detailed description of how to deal with each functionality is also provided, in-
cluding required parameters and an high-level workflow.

The supported L1 instructions are:
• PREPARE CHALLENGE: this is the first step to authenticate a third-party

application that wants to connect to a SEcube™ device. It requires as input
parameter the access type (admin or user) and sends, as response, two 32 char
arrays: cc1 and sc, respectively used to calculate the expected device response
to the client challenge and the client response to the device’s challenge.

• COMPARE CHALLENGE: the client authentication’s second phase. It has
two input fields: sRespExpected and cResp, the two values calculated in
the previous step. As response a 64-bit salt will be received, necessary to derive
the session key.

• ENCRYPT: this command can be used to perform the encryption of a string.
Client needs to send the plaintext, the algorithm and its mode (e.g., AES ECB)
and the key ID used to perform the encryption. The response will be encap-
sulated in a SEcube_cipher_t struct variable, that contains the ciphertext
and other information.
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• DECRYPT: the dual operation of the previous one. A SEcube_cipher struct
variable has to be filled with the ciphertext, its size and the key ID. A char
vector will be received as response, containing the plain text.

• DIGEST: used to compute the HMAC-SHA256 digest of a string. It requires
as input parameters the plain text along with its size, and a SEcube_digest
object that contains information regarding the key and the algorithm to use.
This object also contains an array where the computed digest will be placed.

• GET ALGO: this command does not require any input parameter, it simply
returns a list of the algorithms supported by the device as a vector of se3Algo
elements.

• KEYS LIST: returns the list of the stored keys, with their IDs and length.
Notice that this function only returns manually inserted keys and does not
support the interaction with SEkey.

• KEY EDIT: allows to manually edit a key. The user has to fill a se3Key_t
object with the parameters of the key to edit and he has to specify which
operation to perform (add or delete key) with an integer identifier.

The supported SEfile™ commands are:

• SECURE OPEN: it works similarly to the open syscall, but it deals with en-
crypted files. The user is asked to give the file name along with the algorithm
and the key ID that will be used during encryption. Moreover, he has to spec-
ify the flags that refer to the access mode and the creation. The function will
return a file descriptor as an integer value. Note that new files will be created
with an encrypted name, which is the SHA256 digest of the given name.

• SECURE CLOSE: given a file descriptor, it closes a previously opened en-
crypted file.

• SECURE READ: this command in used to read an encrypted file. The user
has to provide a file descriptor and the amount of bytes he wants to read. A
string will be filled with the decrypted content of the file.

• SECURE WRITE: it is used to write in an encrypted file. User must provide a
file descriptor and the plain text to write, that will be encrypted using the key
and the algorithm specified during the file’s opening phase.

• SECURE SEEK: the input parameters are a file descriptor, an offset and a
whence. This function sets the position of an encrypted file’s pointer to the
specified offset starting from the given whence (e.g., from the beginning of the
file).

• SECURE TRUNCATE: this function allows to resize an encrypted file. The
user must specify the file descriptor and the new size, expressed in bytes.
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• SECURE LS: given a string that contains the path of a folder, this function
returns a list of pairs containing the encrypted name and the decrypted name
of sub-directories and files present. Note that in case of a plain file, the two
values will be equals.

Finally, the supported SElink™ operations are:
• ENCRYPT MANUAL: this function allow to encrypt and serialize a plain text.

The user gives as input parameters the plain text as uint8_t vector, its size
and the ID of the key that will be used to perform AES256-HMAC-SHA256
encryption. As output a vector containing the serialized cipher text and its size
are provided to the user.

• DECRYPT: the dual operation of the encrypt manual. Given an encrypted
and serialized vector, this function decrypts and then deserializes the content
of the vector.

Notice that the selink_encrypt_auto function is not yet supported, since it
works using keys automatically managed by SEkey™ . The ID 402, however, has
been already designed to support this functionality
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Table A.1: Supported functionalities

Command ID Command name
0 PREPARE_CHALLENGE
1 COMPARE_CHALLENGE
4 ENCRYPT
5 DECRYPT
6 DIGEST
7 GET_ALGO
8 KEYS_LIST
9 KEY_EDIT
201 SECURE_OPEN
202 SECURE_CLOSE
203 SECURE_READ
204 SECURE_WRITE
205 SECURE_SEEK
206 SECURE_TRUNCATE
207 SECURE_LS
401 ENCRYPT_MANUAL
403 DECRYPT
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