
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

A Python-based Hardware Generation
Framework for Tensor Systolic

Accelerators

Supervisors

Prof. Andrea CALIMERA

Antonio CIPOLLETTA

Candidate

Nicole DAI PRÀ

December 2021

Summary

Accelerating Deep Neural Networks (DNN) with custom hardware represents
an attractive solution to meet stringent applications constraints, especially in
mobile/IoT inference scenarios where energy and area efficiency are crucial. Custom
hardware is commonly implemented using an iterative process during which the
designers identify the main computational and memory patterns of DNN workloads,
implement specific hardware structures, and assess the end-to-end performance. As
new classes of DNNs are constantly developed and novel reconfigurable platforms,
like FPGAs and CGRAs, allow the silicon to be customized after fabrication, agile
automation tools are needed to quickly navigate the design space. To this end,
in this work, a Python-based framework is proposed to generate tensor systolic
arrays, a class of accelerators widely used to perform matrix multiplication, a key
operation in DNN workloads.

The proposed framework leverages the metaprogramming capabilities of an
HDL embedded in Python to minimize the design and verification effort. In fact,
smart systolic array templates allow the user to focus on designing and verifying
new processing elements, leaving the burden of creating the routing fabric, the
control unit, and the integration tests to the generation framework. The proposed
framework is used to perform a design space exploration on the Zynq Ultrascale+
MPSoC ZCU104 Evaluation Board, assessing the effect of several knobs, namely,
array size, data bitwidth, PE structure, and sparsity support, on area occupation,
power consumption, and latency. The obtained results reveal non-trivial trade-offs,
motivating the need for such agile design tools to keep raising the efficiency of
domain-specific accelerators.

ii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1

2 Neural networks 3
2.1 Training and inference . 4
2.2 Neural Network structure overview 5

2.2.1 DNNs layers . 7
2.2.2 Convolution operation . 9
2.2.3 From convolution to GEMM 11
2.2.4 General Matrix Multiplication 11

2.3 Hardware acceleration . 15
2.3.1 Spatial Architectures . 15
2.3.2 Design-space parameters . 16

3 Systolic Arrays 21
3.1 Systolic array overview . 21
3.2 Analytical model . 22
3.3 Systolic arrays in industry and academia 25

3.3.1 Tensor Processing Unit . 25
3.3.2 Gemmini . 25

3.4 Tensor Systolic Array . 27
3.5 Accelerator/Model CoDesign . 28

3.5.1 Quantization . 28
3.5.2 Sparsity . 29

4 Hardware generation framework 33
4.1 Systolic Array . 34

4.1.1 Data plane . 34

iv

4.1.2 Control plane . 36
4.1.3 Control units . 39

4.2 Processing Element . 40
4.2.1 Scalar Processing Element 40
4.2.2 Tensorial Processing Element 43

4.3 Verification Suite . 47
4.4 Framework advantages . 49
4.5 Use case: Sparse Systolic Tensor Array 50

4.5.1 Extension of the Framework 50

5 Experimental Results 53
5.1 Experimental Setup . 53
5.2 Design Space Exploration . 57

5.2.1 Resource occupation and power estimation with different
data sizes . 58

5.2.2 Scalar systolic arrays of different sizes 59
5.2.3 Fixed number of MACs per cycle 62
5.2.4 S2TA: different data sparsity values 64

5.3 Max Frequency Analysis . 65
5.4 Performance Analysis . 66

5.4.1 Analytical Model . 66
5.4.2 Experimental Results . 67

6 Conclusions 71

Bibliography 73

v

List of Tables

4.1 Load bias signal. 37
4.2 Pass through registers’ enable signal. 38
4.3 Processing element output selection signal. 39

5.1 Power breakdown 8-bit inputs 24-bit outputs systolic arrays. 62
5.2 Comparison between a systolic tensor arrays with and without spar-

sity support. 65
5.3 Maximum frequencies reached by designs performing the same num-

ber of MAC per cycle, specifically 1024. 66
5.4 Size of the different workloads. 68
5.5 Total clock cycles required by different designs to perform the whole

computation of each workload. 69
5.6 Execution time of different designs at their maximum clock frequency

processing different workloads. 69
5.7 Theoretical peak GOPs/s and GOPs/mW. 70
5.8 Effective peak GOPs/s. 70

vi

List of Figures

2.1 Structure of a Neural Network. Image taken from [1]. 5
2.2 Structure overview of a neuron. Image taken from [2]. 6
2.3 Convolution example. Image taken from [3]. 8
2.4 3D convolution example with many filters. Image taken from [4]. . . 10
2.5 Tensor layout in memory. Image taken from [4]. 11
2.6 Im2col representation. Image taken from [4]. 12
2.7 Row-major storage and cache utilization. Image taken from [4]. . . 13
2.8 GEMM using tiling. Image taken from [5]. 14
2.9 Data vectorization. Image taken from [4]. 15
2.10 Spatial architecture’s block diagram. Image taken from [6]. 16
2.11 Output stationary dataflow. Image taken from [11]. 19
2.12 Weight stationary dataflow. Image taken from [11]. 19
2.13 Input stationary dataflow. Image taken from [11]. 20

3.1 Data movement. 22
3.2 Skewing mechanism on a output stationary scheme. Image taken

from [11]. 22
3.3 Schematic of SCALE-SIM showing and example of inputs and out-

puts. Image taken from [13]. 23
3.4 Runtime representation for each dataflow. From the left: output

stationary, weight stationary and input stationary. Image taken
from [11]. 24

3.5 Computation sequence. Image taken from [11]. 25
3.6 TPU block diagram. Image taken from [14]. 26
3.7 General schematic of Gemmini. Image taken from [15]. 27
3.8 Systolic tensor array of size 2×4×2_2×2. Image taken from [17]. . 28
3.9 Data sparsity. (a) represents random sparsity, (b) shows bleck

sparsity while in (c) DBB is presented. Image taken from [17]. . . . 29
3.10 How filter tensors are compressed when DBB is used. Image taken

from [17]. 30
3.11 Spatially unrolled datapaths. Image taken from [17]. 31

vii

3.12 Systolic tensor array of size 2×4×2_2×2 with DBB support. Image
taken from [17]. 31

4.1 Systolic array data flow. 35
4.2 Skewed data. 35
4.3 Load data control signals. 36
4.4 Load bias control signals. 37
4.5 Pass through control signals. 38
4.6 Processing element structure. 42
4.7 Tensors tiling. 44
4.8 Tensor processing element. 45
4.9 AxC tiling. 45
4.10 B tiling . 46
4.11 AxC tiling processing element. 47
4.12 B tiling processing element. 47
4.13 Structure of a sparse MAC. 51

5.1 Design flow. 54
5.2 Resource utilization vs. dynamic power consumed of a 16x16 scalar

systolic array with data of different bitwidth. 59
5.3 Resource utilization vs dynamic power consumed when scalar arrays

of different sizes are considered. Inputs data size is 6 bits, outputs
one is 20 bits. 60

5.4 Resource utilization vs dynamic power consumed when scalar arrays
of different sizes are considered. Inputs data size is 8 bits, outputs
one is 24 bits. 61

5.5 Power breakdown of a systolic array with 6-bit inputs and 20-bit
outputs (left) and 8-bit inputs and 24-bit outputs (right). 61

5.6 Power vs area with a fixed number of MAC operations per cycle.
The considered designs have 8-bit inputs and 24-bit outputs. 63

5.7 Dynamic power consumed and resources utilized by a Sparse Systolic
Tensor Array of size 2x8x2_4x4, with 8-bit inputs and 24-bit output. 64

viii

Chapter 1

Introduction

Nowadays Artificial Intelligence (AI) is used in many different fields, from identifying
diseases based on medical data to helping the user typing with its voice. One of
the most known AI technique is machine learning, specifically one of its sub-classes,
Deep Neural Networks (DNN). They typically suit applications based on image,
video or speech processing because of their accuracy in recognizing specific objects.
Neural network works in two phases: the first one is training, where the model
learn to recognize the target of the application. The second one, instead, is the
inference, which is the actual usage of a NN on the field. Training requires more
computational power and resources than inference, but, while this phase can be
executed on powerful machines, inference is commonly performed on edge devices.
This implies meeting stringent constraints on computational and memory resources
as well as on energy efficiency.

Neural networks are composed of layers. The first is the input one, the last is the
output one while all the intermediate ones are called hidden layers. DNNs present
many hidden layers of three main kinds: convolutional, pooling and fully-connected.
The majority of the computations are performed in convolutional layers, which are
based on the convolution operation. Straightforward convolution is not the most
efficient operation to implement on hardware, since it is based on several nested
loops dependent on the size of the operand matrices. Luckily, it can be mapped
to a general matrix multiplication (GEMM), which was highly optimized during
the years. To effectively speed up the processing, custom hardware accelerators
are adopted, as they are able to effectively parallelize the computation reducing
the run time. Spatial architectures are an example of such accelerators, especially
systolic arrays. They are a sub-class of spatial architectures whose data flow recall
the one of the convolution. As new solutions are constantly developed, in particular
based on reconfigurable platforms like FPGAs, agile automated tools are needed to
quickly explore the design space. To this end, this work presents a Python-based
framework to generate tensor systolic arrays.

1

Introduction

The framework exploits the metaprogramming capabilities of an HDL embedded
in Python to reduce the effort required to design and verify the architecture.
In fact, the whole structure of the array, the control units and the integration
tests are automatically generated by the framework allowing the user to focus
only on the development of new processing elements. The framework is used to
perform a design space exploration showing the effects of different knobs like data
bitwidth, array size, PE structure and sparsity support on resource occupation,
power consumption and latency. Results reveal non-trivial trade-offs, motivating
the need of developing agile automated tools to reduce design and verification
efforts. This work is structured as follows:

• Chapter 2 briefly explains neural networks structure and presents the con-
volution operation, detailing how to speed up its execution on CPU-based
systems. Moreover, it shows the spatial architectures as a solution to execute
NNs.

• Chapter 3 focuses on systolic arrays, reporting several examples in both
industry and academia.

• Chapter 4 details the structure of the framework.

• Chapter 5 assess the quality of the spatial architectures produced by the
proposed framework, analyzing the results of a design space exploration.

• Chapter 6 concludes this work presenting interesting future directions.

2

Chapter 2

Neural networks

Artificial intelligence (AI) is now part of the everyday life, so much that is used
without thinking, even though it is the outcome of many years of research. AI
includes all those techniques allowing a computer or a machine to mimic the
decision-making capabilities of human beings. One of the most know AI branch
is machine learning (ML), which uses data and algorithms to imitate the human
learning process, gradually increasing its accuracy. Machine learning, in turn, is
composed of many different sub-fields and Neural Networks (NN) is one of the
most popular. NNs were first proposed by Warren McCullough and Walter Pitts
in 1944, but, given the computation cost, the technology at that time was not able
to afford it. Another issue was the lack of data sets required to train a NN. In the
last decades, computers and, in general, technology improved a lot, making feasible
the usage of those previously proposed models. Moreover, thanks to the "big-data
phenomenon", data sets large enough to train a NN can be retrieved without much
effort. That is why artificial intelligence in now at the basis of many fields and
everyday tasks. Few examples of applications are:

• Speech recognition systems: it is the capability to process human speech into
a written format.

• Image and video processing: computer vision aims at extracting meaningful
information from an image of a video to take action based on the inputs.

• Recommendation engines: by processing the past behaviour data, the algo-
rithm can extract trends useful to tune the results showed by the engine.

• Medical field: AI systems are able to efficiently process medical data like
radiology imaging to detect possible diseases.

3

Neural networks

2.1 Training and inference
Before being able to return the expected results, neural networks have to be trained.
Training is the first phase that a NN has to go through, while the second one is
the inference, that is the actual prediction. As detailed in the following section,
neural networks consist of many neurons performing operations on weighted inputs.
Weights are not hard-coded, on the contrary, they have to be determined based
on the application where the NN is used. Training aims at tuning the weights so
that the final predictions are as accurate as possible. The accuracy of a NN can be
assessed by a loss function, hence the problem of training a neural network can
be seen as the problem of minimizing the loss function. The mean squared error
(MSE) is usually adopted. Its equation is the following:

MSE = 1
2m

mØ
i=1

(yi − ŷi)2 (2.1)

In equation 2.1, m is the number of samples, i is the index of the sample, ŷ is
the predicted outcome and y is the actual value.

The algorithm used to minimize the loss is Gradient Descent, which allows
the model to choose the direction to take to reduce the error. By applying this
algorithm, weights are updated at each iteration as follows:

wt+1
j = wt

j − α
∂L

∂wj

(2.2)

The weight at iteration t + 1 is computed by subtracting from the weight at
iteration t the derivative of the loss function with respect to the weight itself,
multiplied by the learning factor α. The partial derivatives are computationally
heavy to calculate, hence they have to be estimated by computing the error
attributable to each neuron composing the network. This is done by employing a
backward propagation algorithm.

Weights are commonly computed using the floating-point representation but,
due to the computational resources required to perform floating-point operations,
they are usually converted to integer numbers. This final step is called quantization.

Training can be of different types depending on the target of the application
and on the data set used.

• Supervised learning: it takes labeled data which are used to train the NN
comparing the results with the labels.

• Unsupervised learning: data is unlabeled and it is mainly used to discover
common patterns within the data set.

4

Neural networks

• Semi-supervised learning: it takes a data set composed of labeled and unlabeled
data.

Due to the calculations required to find the NN weights, training is the most
computationally heavy phase. Inference, instead, is a much lighter phase which
takes the trained model and classifies the given inputs. If the NN is carefully tuned,
it reaches good results in accuracy without much effort.

2.2 Neural Network structure overview
NNs are composed of many layers of neurons connected to each other. In general,
there is an input layer, different kinds of hidden layers and the output layer, as
figure 2.1 shows.

Figure 2.1: Structure of a Neural Network. Image taken from [1].

The structure of the hidden layers depends on the type of neural network. Three
kinds are popular today:

• Multi-layer Perceptrons (MLP): each layer takes all the outputs of the previous
one computing a non-linear function of their weighted sum.

• Convolutional Neural Networks (CNN): each layer is a set of non-linear
functions of weighted sums of spatially nearby subsets of outputs of the
previous layer.

• Recurrent Neural Networks (RNN): Each layer is a combination of non-linear
function of the weighted sums of the outputs of the previous layer and the
previous state.

5

Neural networks

NNs are inspired by the human brain as they consists of neurons, the nodes,
and synapses, the connections between the nodes. Each neuron receives a set of
weighted inputs from the previous layer, it performs the sum which goes though the
activation function and then it sends the output to the subsequent layer. Figure
2.2 shows an overview of the neuron structure.

Figure 2.2: Structure overview of a neuron. Image taken from [2].

The activation function is used to determine the output, specifically, if the result
of the sum exceeds a certain threshold, the neuron activates passing the data to
the next layer. There are different types of activation functions, therefore only the
commonly used ones are presented.

Threshold function. Threshold function outputs different values depending
on whether or not the input signal is above a certain threshold. One example is
the unit step function which returns the following output:

f(x) =
I

1, if x ≥ 0
0, if x < 0

(2.3)

Sigmoid function. Sigmoid function accepts any input value but returns an
output between 0 and 1. The mathematical definition is the following:

f(x) = 1
1 + e−x

(2.4)

Rectifier function (ReLU). Rectifier function returns the input value only if
it is greater than 0, otherwise the outcome is 0. It is defined as follows:

f(x) = max(0, x) (2.5)
Hyperbolic Tangent function. Hyperbolic function is similar to sigmoid but

its outputs values fall between −1 and 1. Its output is computed as follows:

f(x) = ex − e−x

ex + e−x
(2.6)

6

Neural networks

Neurons are the basic blocks composing neural networks and, as mentioned
before, they are grouped in layers. While the input and the output layers are
always present, the hidden ones may vary in kind and number depending on the
type of the neural network. Since the focus of this work is on the Deep Neural
Networks, the following section describes in details the hidden layers composing
DNNs.

2.2.1 DNNs layers
Deep Neural Networks are one of the most known examples of neural networks.
They slightly differ to the classical ones because of the depth of their hidden layers,
in fact NNs are usually composed of fewer hidden layers than DNNs. There exist
many types of deep neural networks, which are composed of different configurations
of the intermediate layers. Besides this fact, hidden layers belong to three main
categories:

• Convolutional layers

• Pooling layers

• Fully-connected layers

DNNs layers may be freely combined, but the first one is always a convolutional
one, while the last is a fully-connected one. Convolutional and pooling layers may
be preceeded and followed by any other type of layer, while the fully-connected one
must be the last before the output. In general, the first layers are used to identify
simple features, for example, in an image, colors or edges, while the closest to the
output are used to detect larger objects.

Convolutional layers

Convolutional (CONV) layers are the core of the computation and where the
majority of the operations are performed. CONV layers applies a series of filters
to the input matrix to extract a feature map. A filter, also known as kernel, is
moved across the input matrix so that, for each considered area, the dot product is
computed, generating the corresponding output matrix element. Figure 2.3 shows
an example of this operation.
In this case, the element in position (0,0) of the output matrix is computed as:

Output[0][0] = (9 ∗ 0) + (4 ∗ 2) + (1 ∗ 1) + (1 ∗ 4) + (1 ∗ 1) + (1 ∗ 0) + (1 ∗ 1) + (2 ∗ 0) + (1 ∗ 1)
= 0 + 8 + 1 + 4 + 1 + 0 + 1 + 0 + 1
= 16

7

Neural networks

Figure 2.3: Convolution example. Image taken from [3].

A filter is then moved to compute another element until the whole output matrix
is calculated. While weights values are adjusted during training phase, there are
few parameters that are fixed before it. The first one is stride, that is the distance
by which a filter moves over the input matrix. In the example before, kernel is
moved by one position to compute element (0,1), that means stride is equal to 1.
Then, there is the number of filters to be applied. This parameter defines the depth
of output matrix. The last one specifies the padding strategy to adopt. When the
filter size does not fit the input matrix, elements falling outside of the input matrix
have to be set to some value, usually 0. There are three kinds of padding strategies:

• Same padding: it ensures that the output matrix has the same size of the
input one

• Valid padding: no padding is applied. The output matrix is smaller than the
input one.

• Full padding: zeros are added to the border of the input matrix so that the
output one has a larger size.

Pooling layers

Pooling layers are in charge of reducing the size of the matrices to decrease the
computational resources required to perform the operations. Similarly to the
convolutional layers, a filter is moved across the input matrix, but, instead of being
composed of weights, it applies an aggregation function. There are two types of
pooling:

8

Neural networks

• Max pooling: from each patch covered by the filter it selects the maximum
value to send to the output.

• Average pooling: it computes the output as the average of the values covered
by the filter.

Fully-connected layers

As the name says, all the nodes are connected to the output ones as it happens
with multi-layer perceptrons. Fully-connected layers consist of neurons that apply a
non-linear transformation to the inputs through an activation function. In general,
they are used to extract even more features from the results of the previous layers.

In conclusion, DNNs are composed of many layers of three main kinds: con-
volutional, pooling and fully-connected. Besides they target different objectives,
convolutional and fully-connected layers both rely on convolution. Since it is
a computationally heavy operation, the following sections describe it in detail
providing several strategies to speed up the processing.

2.2.2 Convolution operation
The previous section provides an overview of the convolution operation, that is
the basis of the actual computation performed by DNNs. Figure 2.4 shows a
generalization of this operation, where both filters and inputs are 3D matrices
instead of being 2D as depicted in figure 2.3. A kernel has the same number of
channels (depth), as the input matrix, while, its height and width are smaller,
typically like 3x3 or 5x5. As before, shifting a filter across the input matrix and
performing the dot product generates the feature map. Moreover, more than one
kernel are usually applied to the input image, hence each time a filter is applied, a
new channel of the output matrix is generated. The result is a 3D matrix, where
the depth corresponds to the number of kernels. The example shown in picture 2.4
presents an input tensor of size Hin ×Win ×C, over which kernels of size K×K×C
are applied. The result of the convolution is an output matrix of size H ×W ×N ,
where N is the number of filters applied.

Starting from this representation, the convolution operation can be derived as
a seven nested loop as shown in listing 2.1, where N is the number of batches
of multiple inputs, Cout is the dimension called N in the example above and Cin

corresponds to C.
1 for batch in 0..N
2 for filter in 0.. C_out
3 for channel in 0.. C_in
4 for out_h in 0..H

9

Neural networks

Figure 2.4: 3D convolution example with many filters. Image taken from [4].

5 for out_w in 0..W
6 for k_h in 0..K
7 for k_w in 0..K
8 output [filter , out_h , out_w] +=
9 kernel [filter , channel , k_h , k_w] *

10 input[channel , out_h + k_h , out_w + k_w]

Listing 2.1: Naive convolution

Practically, the convolution operation can be implemented using different strategies.
One of the most adopted exploits GEMM, the GEneral Matrix Multiplication
algorithm, by mapping the convolution operation on a matrix multiplication which
has been highly optimized over the years. A seven nested loop is not the most
efficient way to implement this operation, as it prevents exploiting the data-reuse
opportunities of the algorithm, which enhance the temporal and spatial locality
of input and output operands. Specifically, the 2D convolution operator presents
many properties that can be exploited to speed up the seven nested loop. For
example, filters can be reused as the same kernel moves across the input matrix.
Hence, by isolating the patches where the filter is applied, the computation can be
parallelized. Another exploitable property is that, even if many different filters are
applied, the patches considered are always the same. This leads to another reuse
possibility which can speed up the whole computation. The architectures used to
execute a convolution have to exploit as much as possible features like data reuse
to ensure a fast processing of convolutional layers. In particular, when dealing
with CPUs, the possible improvements rely on a wise usage of the cache and a
favorable data layout in memory. The following sections present many possibilities
to improve GEMM on a CPU after detailing the mapping of a convolution on
GEMM.

10

Neural networks

2.2.3 From convolution to GEMM
Before analyzing how to map a convolution to GEMM and how to speed it up, a
few details on the layout of the matrices are explained.

Since memories are a linear one-dimensional space, multi-dimensional data
cannot be stored as is. Usually, they are saved selecting which dimension is kept
contiguous and which not. When dealing with 2D data, two are the possible
fashions: row-major and column-major. Typically, in this kind of applications, the
elements are saved following a row major approach. When dealing with tensors, as
it happens in CNNs, there are 2 more dimensions to deal with, the depth of the
matrix and the number of output channels. For this reason, two are the possible
ordering of the elements in memory: NCHW and NHWC. As picture 2.5 shows,
considering a tensor composed by N blocks, with C channels of H ·W 2D matrices,
in the former case the elements belonging to the same block are saved sequentially.
In the latter, the 2D matrices on the same channel are saved in sequence.

Figure 2.5: Tensor layout in memory. Image taken from [4].

Convolution is, after all, a dot-product between the filters and the input matrix.
If the kernels and the input data are laid out in a 2D space as in figure 2.6, the
result of the matrix multiplication between the two matrices below is the one of
the convolution. The first operand matrix is composed by flattening each filter
on a single row. The first channel is laid on the first section of the row and so on.
The second operand, instead, is generated by taking the input tensor, identifying
the patches covered by the filters and organizing them in columns. Each column is
composed by the same patch coming from different channels. The mapping from
convolution to this representation is called im2col, as it takes an image, an input
matrix, and encodes it into columns. The result of the matrix multiplication of
these two matrices is the output matrix produced by the convolution. In this way,
convolution can be transformed into a matrix multiplication.

2.2.4 General Matrix Multiplication
The general matrix multiplication is defined as CM×N += AM×K ∗BK×N , whose
pseudo-code is presented in listing 2.2.

11

Neural networks

Figure 2.6: Im2col representation. Image taken from [4].

1 for i in 0..M
2 for j in 0..N
3 for k in 0..K
4 C[i, j] += A[i, k] * B[k, j]

Listing 2.2: Matrix multiplication.

This nested loop performs the innermost operation M ∗ N ∗ K times. This
computation requires not only the ability to perform this kind of operation fast,
but also a way to retrieve data as fast as they are processed.

Locality

Usually, storage systems have a hierarchical structure which presents fast but small
and expensive memories, like caches, followed by larger and cheaper but slower
memories, like RAMs. To exploit at most the fastest memories, data reuse have to
be maximized as much as possible. One technique commonly used is loop reordering.
When working with nested loops, two iteration variables can be swapped without
changing the final output but improving data reuse. As an example, consider
a matrix multiplication executed on a CPU where cache memories are available.
Caches load an entire row at a time, hence, to exploit all of it, a matrix should be
stored in memory so that all the elements belonging to that row are used in the
computation before other data is loaded. Consider the layout represented in figure
2.6 and the algorithm in 2.2, where A corresponds to the filters and B is the input
matrix. At each iteration, the matrix multiplication algorithm multiplies a row of
A by a column of B, accumulating the results to compute the corresponding output

12

Neural networks

matrix element. If data in A is stored in row-major, each time i is incremented, is
likely that the element A[i+ 1, k] has already been loaded in cache. This does not
hold for the input matrix B, since it has to be traversed column by column. Figure
2.7 shows a visual representation of this procedure.

Figure 2.7: Row-major storage and cache utilization. Image taken from [4].

Therefore, a first improvement is rearranging the loops to iterate over all the
element of the input matrix loaded in a row. The algorithm is presented in listing
2.3.

1 for i in 0..M
2 for k in 0..K
3 for j in 0..J
4 C[i, j] += A[i, k] * B[k, j]

Listing 2.3: Matrix multiplication with loop reordering.

Tiling

Another issue given by the size of the cache is that only few data belonging to a
matrix’s row can be loaded at a time. Since in a matrix multiplication the same
rows and columns are used many times, data previously loaded may be evicted
before another iteration of the operation uses them again. Tiling can be used to
solve this problem. Instead of working on the whole output matrix, the computation
is performed on submatrices, so that all data required to fully compute one of
them can be loaded in cache. The corresponding algorithm together with a visual
representation are provided in listing 2.4 and in picture 2.8.

13

Neural networks

1

2 for i_t in 0..N/TileI:
3 for k_t in 0..K/TileK:
4 for j_t in 0..J/TileJ:
5 for i in 0.. TileI:
6 for k in 0.. TileK:
7 for j in 0.. TileJ:
8 C[i_t*TileI+i ,j_t*TileJ+j] +=
9 A[i_t*TileI+i, k_t*TileK + k] *

10 B[k_t*TileK + k, j_t*TileJ+j]

Listing 2.4: GEMM exploiting tiling.

Figure 2.8: GEMM using tiling. Image taken from [5].

Vectorization

Exploiting efficiently small memories like caches is not the only way to improve
GEMM. In fact, arithmetic intensive operations like matrix multiplication can be
decomposed into vector operations. In DNNs, the same operation is performed
on different data. Instead of computing element by element, input data can be
vectorized transforming a scalar operation into a vector one. Figure 2.9 shows an
example. Instead of computing a scalar operation on 4 data in 4 CPU cycles, with
vectorized data only 1 CPU cycle is required to compute a vector operation. This
transformation helps saving CPU cycles.

Deep Neural Networks require an arithmetic-intensive processing of thousands
of data, therefore CPUs may not be the best platform choice. Lately, custom
hardware accelerators were developed to afford the computational requirements
of DNNs. An example are spatial architectures. They are composed of a mesh of
many processing elements guaranteeing data reuse though an internal network able
to parallelize the computation. The following sections better detail their structure.

14

Neural networks

Figure 2.9: Data vectorization. Image taken from [4].

2.3 Hardware acceleration

2.3.1 Spatial Architectures
CNNs are composed of many layers, but, in most of the cases, the convolutional
ones account for the the majority of the overall operations count. Therefore, their
processing has to be extremely efficient. To do so, two aspects of the computation
have to be carefully considered. The first is that, due to the structure of a convolu-
tional layer, the same input data have to be shared among different computations.
In fact, the same filters are used over the whole input matrix, adjacent windows
share some input elements if the stride is smaller that the filter size and the same
patch is covered by many filters generating output elements on different channels.
Hence, there has to be a mechanism to share data previously loaded without
accessing the memories each time an element is required. Moreover, the partial
sums computed have to be forwarded to the next processing element to continue
the computation. The second, instead, regards the shape of the data processed.
Different layers normally work with matrices with different parameters, like spatial
size or number of input and output channels. Therefore, the accelerator has to be
flexible enough to support many possible configurations. Spatial architectures are
one of the adopted solutions because they can provide a high compute parallelism
thanks to the direct communication between the processing elements composing an
array. Moreover, they can be programmed to support different algorithms mapped
as different dataflows.

Spatial architectures are a class of accelerators designed as an array of simple
processing elements (PEs) connected in such a way to provide a high compute
parallelism. To speed up the computation and to not depend too much on the
memory latency, a distributed memory system is exploited. Moreover, PEs are
interconnected with a cheap distributed routing fabric. There are two types of
spatial architectures: fine-grained and coarse-grained. The first one is typically in

15

Neural networks

the form of an FPGA, while the second one is composed of a set of PEs connected
with an on-chip network. The coarse-grained spatial architectures are the ones
commonly used because of their organization into multiple PEs which parallelizes
the computation, while their interconnections makes possible to efficiently forward
data to be reused or further elaborated.

A spatial architecture is usually composed of a global buffer and an array of
processing engines (PEs), wich can be designed to support different algorithms.
Data is moved to and from the array through FIFOs, which communicates with
the off-chip DRAM and the global buffer. This last component is used to exploit
data reuse to hide the DRAM access latency. When dealing with CNNs, the PEs
are programmed as ALUs connected together via on-chip networks. The array
internal interconnection is effective since the partial sums can be passed from a PE
to another and the inputs can be shared among all of them. The datapath of the
PE performs multiply-and-accumulate (MAC) operations, it includes a register file
used as scratchpad, and a FIFO to control the data going in and out of the PE.
Figure 2.10 shows the block diagram of a generic spatial architecture.

Figure 2.10: Spatial architecture’s block diagram. Image taken from [6].

2.3.2 Design-space parameters
There are several different DNNs accelerators, especially since the systolic arrays
have regained interest in the latest years.

For example, NeuFlow [7] designed a systolic array that relies on a mesh of
processing elements, each of them communicating with its neighbors through FIFOs.

16

Neural networks

The architecture presented also provides a configuration bus to reconfigure the
hardware efficiently at run time, to optimize the execution of a wide variety of
neural networks.

DianNao [8] accelerator, instead, is composed of custom inner-product units.
The target of the research team was developing an accelerator where memory
transfers are minimized and performed as efficiently as possible.

Eyeriss team [6] chose to focus on the dataflow, highlighting its importance and
proposing a new one, called row-stationary. This new dataflow aims at optimizing
the energy consumption of all types of data movements.

Interstellar’s [9] researchers, adopted a different approach by exploiting Halide
[10], a domain-specific language for high-performance operator development. They
extended the compiler to generate different hardware architectures by simply chang-
ing the Halide schedule associated with the same high-level program specification.
The design space exploration performed with the generated accelerators showed that
dataflow choice is not so important as long as data reuse and resource utilization
are maximized. Moreover, they highlighted the importance of optimizing memory
hierarchy as it directly influences energy efficiency.

Each of the previously mentioned solutions explores a different section of the
design-space, demonstrating how the parameters considered affect the efficiency
and the performance of the architectures. Specifically, the design-space that has
been widely studied is composed of the following parameters:

• Dataflow

• Resource Allocation

• Loop blocking

DNN and CNN accelerators usually exploit the parallel execution of the opera-
tions on different processing elements to speed up the processing. The dataflow
scheme dictates how units communicate with each other and how data is accessed.
In general, a dataflow aims at reducing as much as possible the accesses to the slow-
est memories by carefully controlling data forwarding. A more detailed description
of the possible dataflow schemes is provided in the following section.

Performance and efficiency of an accelerator depends on resource allocation, too.
The size of the PE array and memory hierarchy affect the final throughput and cost
in terms of energy and latency to access memory. Since the cost of each memory
access grows with the memory size, it is important to design them as small as
possible, but, if a memory is too small, the eviction rate increases. Therefore, they
have to be large enough to guarantee that all data required is ready for processing,
but not larger than what workload requires, otherwise energy is wasted.

Given the cost of accessing memories, it is better to schedule the computation to
maximize the data reuse. This can be done by reorganizing the nested loop shown

17

Neural networks

in 2.1, to exploit data loaded into the smaller memories as much as possible before
evicting them. In other words, the same principles applied to the high performance
GEMM in section 2.2.4 can be exploited to improve memory usage in a spatial
architecture.

Dataflow schemes

As previously mentioned, one of the characteristics of a DNN accelerator is dataflow,
which describes how the computation is performed and how data is forwarded.
When performing a convolution, there are three main data reuse possibilities. First,
the same filter is shifted over the input matrix and each computation window
generates an output matrix element. Second, adjacent windows share some input
elements if the stride is smaller than the filter size. Third, when computing the
output elements in different channels, the same input window is used for different
filters. Thus, three main dataflow strategies can be identified based on which data
stay stationary at the PE level:

• Output stationary

• Weight stationary

• Input stationary

Figure 2.11 shows the output stationary scheme. Each processing element is
in charge of computing a single output element. Matrices’ elements are fed from
the edges of the array and then internally forwarded to the other PEs. Once the
computation is done, results have to be shifted out. In the meantime, no other
calculation can be done. This approach aims at minimizing the accumulation cost
since the partial sums are not moved between the PEs. It is particularly convenient
when data is asymmetric, i.e., when the accumulation is performed on more bits
than the input ones.

The weight stationary scheme is represented in figure 2.12. The array is pre-filled
with weights that remain stationary throughout the whole computation, maximizing
filter reuse. Elements of the input matrix come from the left edge, in this way,
each PE generates a partial sum at every clock cycle. The generated partial sums
are then reduced along each column in parallel to generate one output element per
column. If tiling strategy is applied, an external accumulator may be required to
compute the final output.

The input stationary scheme is quite similar to the weight stationary one, but
the inputs are pre-loaded into the array instead of the filters’ weights. The array
is pre-filled in such a way that each row has the elements required to compute a
given output element.

18

Neural networks

Figure 2.11: Output stationary dataflow. Image taken from [11].

Figure 2.12: Weight stationary dataflow. Image taken from [11].

Other more complex mappings of a convolution on a spatial architecture have
been lately proposed to exploit additional reuse. One example is the row stationary
dataflow adopted in Eyeriss [6] accelerator, which aims at optimizing all types of
data movement energy consumption. In particular row stationary maximize filters
and feature map reuse while minimizing partial sum accumulation costs.

It was possible by minimizing as much as possible all data movements through
the exploitation of PE local storage and the internal interconnections. With this
architecture, the research team was able to achieve better results in terms of
energy consumption when running configurations of AlexNet [12]. However, more
complex dataflow like row stationary complicates the overall system. In fact, the
memory hierarchy has to adapt to the complexity of the dataflow, the routing fabric

19

Neural networks

Figure 2.13: Input stationary dataflow. Image taken from [11].

has to be more flexible and the control units have to handle a more complicated
synchronization of the computation.

However, as highlighted in [9], dataflow choice is not crucial as long as data
reuse and resource utilization are maximized. Instead, memory hierarchy and the
effective number of computational resources actually affect energy efficiency.

20

Chapter 3

Systolic Arrays

Systolic arrays belongs to the class of the spatial architecture accelerators. They
offer a simple, regular and modular structure which is easily adjustable to the
desired application reducing the design cost. Moreover, a systolic array is composed
of many processing elements parallelizing the work and it provides a simple internal
communication network which does not require complex control logic to manage
the synchronization of the computation. These features make systolic arrays
an interesting solution on which GEMM, and consequently convolution, can be
efficiently mapped.

3.1 Systolic array overview
As a spatial architecture, a systolic array is composed of a mesh of processing
element performing multiply-and-accumulate operations. Each PE communicates
with its neighbors to forward the inputs and the computed data. As the name
suggests, data flows in the array in a systolic way, which means that, at each clock
cycle, data is moved from a PE to another, from the memory to the PEs directly
connected to it and from the last PEs to the memory again. Figure 3.1 shows
how data flows in a set of PEs. It is first loaded in the left-most unit. At the
next clock cycle it moves in the right PE an so on, until it is shifted out from
the last processing element and goes back in memory. Data like weights in the
picture below, moves with the same mechanism but from the top of the array to
the bottom.

An example of this behaviour is represented in figure 3.2, which shows the
computation on a systolic array adopting the output stationary dataflow. During a
clock cycle, each PE performs the MAC operation and then forward the data to
the neighbors. Inputs and filters are fed from the edges of the array following a
skewed approach. This means that, in the first clock cycle of the computation, the

21

Systolic Arrays

PE PE PEA_in[0]

W_in[0] W_in[1] W_in[2]

M
E
M
O
R
Y

M
E
M
O
R
Y

Figure 3.1: Data movement.

elements going into the top-left PE are sent to the array. At the following clock
cycle, the top-left PE continues to be fed with data, together with the bottom and
right neighbors, and so on.

Figure 3.2: Skewing mechanism on a output stationary scheme. Image taken
from [11].

3.2 Analytical model
To understand the effectiveness of this kind of architecture, SCALE-SIM’s [11]
research team proposed the Systolic Array Simulator (SCALE-SIM). SCALE-SIM
is a simulator developed to allow designers to quickly explore the design-space
searching for the optimization points based on the chosen architectural parameters.
It provides cycle-accurate timing, power/energy, memory bandwidth and trace
results for a specified accelerator configuration and neural network architecture,

22

Systolic Arrays

letting users to customize various micro-architectural features such as array size,
scratchpad memory size, dataflow mapping strategy, as well as system integration
parameters such as memory bandwidth. Figure 3.3 shows a schematic of SCALE-
SIM with an example of inputs and outputs.

Figure 3.3: Schematic of SCALE-SIM showing and example of inputs and outputs.
Image taken from [13].

The choice of these parameters is crucial to obtain an efficient accelerator. In
particular, the results obtained by using SCALE-SIM focus on three main aspects:

• Effect of dataflow

• Effect of memory size

• Effect of shapes

As previously detailed, a dataflow scheme dictates the mapping strategy of the
computation. Researchers were able to demonstrate that the output stationary
scheme is the best choice in terms of computation cycles and energy consumed, as
long as the OS does not show evidence of stalls. Moreover, the cost of logic within
the accelerator is assumed to be the same for the three dataflows, which may not
be true.

Data reuse is a key feature in CNNs, hence providing enough on-chip memory
can reduce the number of accesses to the off-chip memory. However, memory cost
increases with its size. The results show that, in general, there is a threshold
of bandwidth above which the gain no longer increases, which depends on the
workload considered.

When talking about the efficiency of an accelerator, the shape of a systolic array
also matters. It was shown that this aspect, together with dataflow, affects the

23

Systolic Arrays

results. For example, a short-wide array is more efficient if coupled with output
stationary or weight stationary schemes. On the contrary, square shapes are better
exploited by the input stationary scheme.

From SCALE-SIM the analytical model is derived. A systolic array deals with
operand matrices of size SR × T and T × SC respectively, where SR and SC are
the the number of rows and columns of the input matrices, while T is the number
of elements in a convolutional window. Considering the ideal case where the array
size corresponds to the output matrix size, that means having an unlimited number
of PEs, the computation follows the procedure presented in figure 3.4.

Figure 3.4: Runtime representation for each dataflow. From the left: output
stationary, weight stationary and input stationary. Image taken from [11].

Since data comes from the left and top edges, the bottom-right PE is the last
one to receive the data. In particular, this happens after SR + SC − 2 cycles. Each
processing element requires T cycles to generate the final output, so the last PE
ends its computation after SR + SC + T − 2 cycles. Moreover, other SR cycles are
required to download the outcome of the computation from the array. Therefore,
the total number of cycles required is:

τmin = 2SR + SC + T − 2 (3.1)

This reasoning holds for all the three dataflow schemes presented in the previous
section.

Having a large enough systolic array to cover all the output matrix is quite often
not feasible, so computation has to be split in chunks. As figure 3.5 shows, SR and
SC dimensions are sliced, and each tile of the matrix is computed sequentially.

Therefore, a single systolic array of size R×C computes the whole output matrix
in

ì
SR

R

í
·

ì
SC

C

í
iterations. By taking the previous analysis for the computation of

two matrices of size SR × T and T × SC respectively on a systolic array of size
R × C, with R = SR and C = SC , the resulting runtime is:

τ = (2SR + SC + T − 2)
9
SR

R

:9
SC

C

:
24

Systolic Arrays

Figure 3.5: Computation sequence. Image taken from [11].

3.3 Systolic arrays in industry and academia
Systolic arrays have been deeply studied over the latest four decades and they gained
attention both in industry and academia. This section reports two accelerators
belonging to the two aforementioned fields.

3.3.1 Tensor Processing Unit
In 2015, Google made the first step toward the usage of these kind of architectures
to run a DNN: the Tensor Processing Unit (TPU) [14]. The TPU was designed as
a co-processor in charge of running the inference of production-level ML models,
such that the interaction with the host CPU was reduced to the minimum. In
fact, instead of making the TPU fetch the instructions, the host sends them to
the TPU. Its main unit is the Matrix Multiply Unit, a 256x256 weight-stationary
systolic-array. The inputs of the unit come from the Weight FIFO and the Unified
Buffer, while the computed products are collected into the Accumulators buffer.
Figure 3.6 shows the TPU block diagram.

Tensor Processing Unit leverages the reduction in energy and area with respect
to the GPU to which the TPU was compared to. In particular, the key features
that help reaching such results reside in the structure itself: the size of the matrix-
multiplication unit, the software-controlled on chip memory, and the ability to run
the inference of a model minimizing the host CPU intervention.

3.3.2 Gemmini
Gemmini [15, 16] is an open-source modular and flexible generator of systolic array
accelerators, which supports multiple dataflows and targets ASIC implementations.
The ability to generate parameterized architecture allows the user to easily explore
the design space, and so efficient hardware and software co-design. It does not

25

Systolic Arrays

Figure 3.6: TPU block diagram. Image taken from [14].

focus on the systolic array only, but it takes also in consideration the whole system
around the array, focusing as well on the interaction with the host CPU. Many
parameters are customizable and they are listed below:

• Dataflow: weight stationary or output stationary

• Array dimension: 16x16 or 32x32

• Data bitwidth: 8 bit input 32 bit result or 32 bit input 32 bit result

• Pipeline depth: fully pipelined or fully combinational

• Memory capacity: 64 KiB or 256 KiB

• Number of memory banks: 5 or 33

• Bus width: 128 bits or 64 bits

• Host processor: rocket or BOOM

Figure 3.7 shows an overview of the architectural template.
Researchers demonstrated that specific designs generated by Gemmini were able

to achieve two to three orders of magnitude speedup on DNN inference comparing
to a CPU implementation. They also highlight the importance of a full-system
evaluation, by showing that no significant improvement can be achieved if the entire
DNN is not efficiently mapped into the whole system, i.e., host and accelerator.

26

Systolic Arrays

Figure 3.7: General schematic of Gemmini. Image taken from [15].

3.4 Tensor Systolic Array

Tensor Systolic Array (TSA) is a generalization of the classic systolic array composed
of more complex processing elements called Tensor Processing Element (TPE). Each
TPE takes a tensor of weights and a tensor of activations as inputs to performa small
matrix multiplication, instead of a simple MAC between two elements. Specifically,
the input matrices have size A × C and the operation performed is a B-way
dotproduct. Figure 3.8 shows an example of a TSA of size 2×4×2_2×2. The size
of the array is in the form: A× B × C_M ×N , where M ×N is the size of the
array, while A × B × C is the size of the TPE, in particular B is the dimension
of a DP{B} unit. The example shown in figure 3.8 considers a TPE, the red box,
which takes two tensors as operands and performs a small matrix multiplication at
each clock cycle. DP4 elements, instead, perform 4-way dot-product accumulating
into a single register.

The structure of a TPE increases, with respect to the classic SA, the so called
intra-TPE operand reuse, which represent the data reuse inside a processing element.
The increase of this parameter further amortize data movement. In fact, a whole
matrix multiplication is performed inside a TPE. Another important metric is the
inter-TPE operand reuse, which represent the array MACs to array input operands
ratio. It indicates how much the cost of reading operands from SRAM is amortized.
Inter-TPE and intra-TPE operands reuse parameters may drive the choice of a
dense tensor systolic array instead of, for example, a sparse systolic array, which is
detailed later in this chaper.

27

Systolic Arrays

Figure 3.8: Systolic tensor array of size 2×4×2_2×2. Image taken from [17].

3.5 Accelerator/Model CoDesign
With the increasing usage of DNNs, the inference is moved from the cloud to the edge
devices that present strict power and compute requirements. To match constraints
of this kind of devices, DNNs models have been adapted to execute the inference
phase using a lower precision of weights and activations. Thanks to NNs resilience
to approximations, their accuracy does not significantly decrease. Moreover, their
computation time and resources required drop, allowing the inference to be executed
on edge devices. Many solutions were proposed, like quantizing NNs parameters or
exploiting data sparsity.

3.5.1 Quantization
Quantization is one of the most common way used to decrease the computational
time and energy consumption of neural networks, however it introduces additional
noise which may decrease the overall accuracy. The basic idea is that, while training
is usually performed working of 32-bit floating point data, inference can be executed
considering NNs parameters with lower precision like 8-bit integers. This leads to a
faster execution, which reduces memory access cost and increases the computation
efficiency. Specifically, lower-bit data requires less data movement which reduces
memory bandwith saving energy. Moreover, 8-bit integer arithmetic consumes way
less energy than floating point operations. There are two main ways to quantize
data:

28

Systolic Arrays

• Post-training: it trains the NN using 32-bit floating point weights and inputs,
then it quantizes weights.

• Quantization-aware training: it quantizes weights during training.

3.5.2 Sparsity
Since CNNs imply heavy computations, exploiting properties like data sparsity
would be of great help. In general, CNNs exhibit 50–70% zeros but the saving in
computation cost gained by the sparse matrix multiplication (sGEMM) is balanced
by the overhead introduced to handle the sparseness. Moreover, zeros are typically
distributed randomly. This leads to two issues. First, the non-zero elements have
to be indexed explicitly, increasing the overhead. Second, randomness complicates
the load balancing mechanism, but this step is necessary to improve the hardware
utilization. To speed up the learning process of a neural network, few constraints
can be set. One example is constraining the distribution of zero elements. Block
Sparsity is a way to deal with sparseness, where zero and non-zero elements are
grouped into different blocks, like in figure 3.9 (b). This strategy reduces indexing
overhead and makes load balancing easier than random sparsity. However, CNNs
accuracy decreases as the block size increases. Another alternative is Density Bound
Block (DBB), which shows the advantages of block sparsity while maintaining CNN
accuracy. Density bound block relaxes the constraints of block sparsity since it
does not require the zero elements to be contiguous. Specifically, it considers data
grouped in blocks and sets a maximum number of elements which can be different
from zero. Figure 3.9 shows a visual representation of different sparsity possibilities.

Figure 3.9: Data sparsity. (a) represents random sparsity, (b) shows bleck sparsity
while in (c) DBB is presented. Image taken from [17].

This bound also leads to a limitation, that is the sparseness is fixed at design
time. In this way, only specific CNN models presenting that percentage of data
sparsity are able to fully exploit the architecture.

29

Systolic Arrays

Even though DBB may be limited by the fixed-sparsity ratio, recent works [18,
17] demonstrated that it can be efficiently exploited in sparse Neurual Networks.
Contrary to activations, weights are known in advance and so their sparseness.
This can be exploited designing a DBB sparse systolic array exactly tuned for the
application considered, where the sparsity ratio corresponds to the sparsity present
in weights. As mentioned before, density bound block introduces a constraint on
NNZ. A weight tensor is decomposed depthwise, like the blue-highlighted elements
in figure 3.10, which compose a block. Each block is then compressed keeping only
the non-zero elements and a bitmask is generated, where each index that refers to
a non-zero element is set to 1 while the others are set to 0.

Figure 3.10 shows how a tensor of weights is compressed to only store the
non-zero elements.

Figure 3.10: How filter tensors are compressed when DBB is used. Image taken
from [17].

Even if DBB can be exploited for weights, its sparseness cannot be changed
at run time. A more favorable strategy is to develop a variable density block
bound (VDBB) approach and this is what the same researchers who studied DBB
for filters’ data sparsity did. For further details refer to [18, 17]. Figure 3.11 (a)
shows a conventional dense datapath, where 8 weight-activation multiplications are
performed. When dealing with random sparsity, figure 3.11 (b), it is sufficient to
add a clock gating mechanism which detects the zero weights to reduce the energy
consumption of the whole architecture. However, many multipliers are not fully
exploited, reducing the utilization of the hardware. DBB instead, figure 3.11 (c),
works only with NNZ multipliers whose inputs are multiplexed. This is possible
thanks to the imposed bound on the non-zero elements in a weight block. The
bitmap saved together with data is used as multiplexers’ selection signal, so that
the correct activations are multiplied to the corresponding weights. Since NNZ
is fixed at design time, having a higher sparsity leads to under utilization of the

30

Systolic Arrays

hardware, as shown in figure 3.11 (d).

Figure 3.11: Spatially unrolled datapaths. Image taken from [17].

A sparse Systolic Tensor array with DBB support is shown in figure 3.12. The
external structure is the same as the one of a systolic tensor array, what changes
is the implementation of the TPE. Instead of being composed of DP4 blocks,
considering the examples, it consists of 4×4-input 2-way Sparse Dot Product
(S4DP2) units, which implements what figure 3.11 (c) shows. In this case the
sparsity ratio is set to 50%.

Figure 3.12: Systolic tensor array of size 2×4×2_2×2 with DBB support. Image
taken from [17].

Even if DBB presents a fixed-sparsity ratio which may not be suitable to all the

31

Systolic Arrays

applications, it is quite easy to implement and it increases energy efficiency with
sparsity. Section 4.5.1 describes how a sparse systolic tensor array supporting DBB
may be implemented exploiting the presented framework.

32

Chapter 4

Hardware generation
framework

Systolic arrays are extremely modular structures that can be parameterized as
required by the application. The framework presented in this chapter implements
an easy way to build a systolic array and to extend its functionalities. It leverages
the metaprogramming capabilities of an HDL language (Magma) and a verification
framework (Fault) embedded in Python, to minimize the design and the verification
effort. Specifically, the framework consists of smart systolic array templates, which
allow the user to focus on designing and verifying new processing elements, leaving
the burden of creating the routing fabric, the control unit, and the integration tests
to the generation framework. Before detailing the framework, a briefly overview of
magma is presented.

Magma [19] is a hardware construction language embedded in Python. It
provides the capabilities of a high level programming language to describe complex,
parameterizable circuits generators producing synthetizable Verilog. Its basic
abstraction is the circuit, which is a set of components wired together. From this
point of view, it is similar to Verilog, but what makes magma a powerful language
is the possibility to write programs (generators) which write other programs, in
other words, its metaprogramming capabilities. In particular, it allows a designer
to describe a structure dependent on the features of an inner module, so that,
when the inner module is defined, the whole structure is automatically created
adapting to the module specification. For example, in the presented framework, the
processing element is the basic block of a systolic array. When a PE is specified, for
example as a scalar PE or a TPE, the corresponding systolic array is automatically
generated adapting the interconnections interface to the PE specification.

The framework provides smart templates for the generation of different types of
PEs and, consequently, of the corresponding systolic arrays. Specifically, the systolic

33

Hardware generation framework

arrays proposed adopt an output stationary dataflow, which is not a limitation since
other dataflows may be supported by simply writing other similar smart templates.
Moreover, the framework provides the control units managing the computation on
the systolic array generated.

In the following sections, the structure of the framework will be presented in
details together with a test suite which is automatically set up when a new design
is generated.

4.1 Systolic Array
As already explained in section 4.1, a systolic array is a matrix of Processing
Elements (PEs). Each of them is capable of performing a specific tensor operation.

This framework is designed to easily generate systolic arrays customizable in
the following aspects:

• Number of rows.

• Number of columns.

• PE structure.

• Data bitwidth.

Once a PE is generated, it is used as argument of the function SysArrayXX,
which requires also the number of rows and columns to build the whole systolic
array. XX can be Scalar, ACTiling, BTiling, STA or S2TA depending on the array
type.

4.1.1 Data plane
Data is fed from the edges, in particular, the input matrix comes from the left side,
while the weights arrive from the top. Each PE performs an operation and forwards
data to neighbor PEs on its right and bottom sides. Before the computation, if
there is a bias, it is pre-loaded in each PE from the top edge, as shown in figure
4.1.

The systolic array is fed following a skewed approach. Considering an array that
takes one element per PE at a time, only data processed by PE[0][0] is sent at the
i-th clock cycle. At the next clock cycle, PE[0][0] continues to receive data, while
PE[0][1] and PE[1][0] start processing their data and so on, as figure 4.2 shows.

This mechanism can be generalized for a tensor systolic array. With respect
to the previous situation, a PE takes a set of data instead of a single element.
The skewing process works similarly, delaying the set of data instead of the single

34

Hardware generation framework

PE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

in_b out_c

PEPE

PEPE

in_a

out_b

in_bias

Figure 4.1: Systolic array data flow.

T Clock cycle = i Clock cycle = i+1 Clock cycle = i+2

Figure 4.2: Skewed data.

element. The delay is not applied anymore to subsequent elements, but sets. Each
input is then forwarded to the neighbor PE on the same row or column. Once the
systolic array has performed the computation, the results have to be moved from the
array to the external memories. To this end, each PE has a pass through connection
that allows data stored in a PE to be forwarded to the next one. The computed
output is available starting from the top-left element and the downloading phase

35

Hardware generation framework

will follow a skewed approach flowing from the bottom to the top. This mechanism
allow the new bias to be loaded while data is shifted out from the array avoiding
idle cycles between different computations. The overlapping of the two phases
requires two different networks to forward bias to the next PE and to move a result
through the current PE.

4.1.2 Control plane
In order to correctly handle the computation, a systolic array requires also a
control network, which is able to forward the control signals to the neighbor PEs
as it happens with the data. The control plane presented is designed to scale
efficiently with the size of the architecture. In fact, there is no control signal which
is broadcast, instead they all follow a systolic flow, which results in a low cost
scaling.

Figure 4.3 shows the connections required for loading the input matrices. They
are enable signals, used to sample the data into the PE input and output registers.
Further details about the PE will be given in Sec. 4.2.

PE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

out_reg_en
input_enable

Figure 4.3: Load data control signals.

load_bias network was designed as shown in figure 4.4 to correctly drive the
PEs internal multiplexers when loading a bias matrix.

A bias matrix comes from the top edge and, because of the skew, the leftmost
row will be the first one to be filled. Once a row is full, PEs do not have to store
other data as bias. In order to stop the column from sampling what comes from
bias port, a signal for each row is required. For example, considering that a PE

36

Hardware generation framework

PE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

load_bias

out_reg_en

Figure 4.4: Load bias control signals.

samples the bias with load_bias[i] set to 1, when dealing with a matrix with
three rows, the load_bias signal is:

ti+3 ti+2 ti+1 ti

r0 0 1 1 1
r1 0 1 1 0
r2 0 1 0 0

Table 4.1: Load bias signal.

where ti correspond to the first clock cycle in which the signal is used. This pattern
can be generalized for any number of rows setting to 1 the signal belonging to the
row which follows the one previously set to 1. Taking as an example table 4.1, if
row 0 is set to 1 at time ti, row 1 is set to 1 at the following clock cycle and so on.

After the computation, the resulting matrix is moved from the systolic array
to an external memory. As described before, data is shifted out in a skewed way,
starting from the top-left PE. Next, the neighbors on the same column and on the
same row send their results to the output port, therefore the top-left PE should be
bypassed. This mechanism is implemented by exploiting an additional register to
store the data coming from the neighbor PE on the same column. For this reason,
each PE needs an enable signal for the bypass register and a selection signal for the
multiplexer that drives the output port. Figure 4.5 shows the network exploited to
download the resulting matrix.

Control logic elements like registers or multiplexers can be easily introduced
where needed by specifying their instantiation as an high level algorithm written

37

Hardware generation framework

PE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

PEPE

pass_through
pt_data_en

Figure 4.5: Pass through control signals.

in Python.
Table 4.2 shows how to set the enable signal to sample the forwarded data using,

as an example, a systolic array with three rows. In the first clock cycle, every PE
belonging to the first column except for the last one have to sample what comes
from their bottom neighbor. In the second clock cycle, the same is done by all the
PEs except for the last two ones, and so on. The last row enable signal can be
ignored since the PEs do not have bottom neighbors.

ti+2 ti+1 ti

r0 0 1 1
r1 0 0 1
r2 0 0 0

Table 4.2: Pass through registers’ enable signal.

In table 4.3, instead, the timing sequence of pass_through signal is reported.
In the first clock cycle the top-left PE output comes from the internal accumulator
register. On the contrary, in the following clock cycle PEs belonging to the first
column have to forward data coming from the bottom neighbor. This is done by
setting the selection signal to all 1s, where pass_through[i] at 1 means that a
PE outputs the content of the bypass register. By doing so, the result computed
by PE[1][0], stored in PE[0][0] bypass register, can be downloaded. Moreover, the
data coming from PE[2][0], previously stored in PE[1][0] bypass register, will be
sampled by PE[0][0], so that it will be downloaded at the following clock cycle. In
order to shift out the whole matrix, pass through signal has to be kept to all 1s,
except for the last row, whose selection signal does not matter.

38

Hardware generation framework

ti+2 ti+1 ti

r0 1 1 0
r1 1 1 0
r2 0 0 0

Table 4.3: Processing element output selection signal.

4.1.3 Control units
The presented framework provides not only the structure of a systolic array, but
also the control units required to manage it. In this way, the generated module
requires only an interface to deal with the memories and a few control signals to
program the control units, which have to be generated by the accelerator decode
unit where the systolic array is used.

Three phases characterize the computation of a full matrix-matrix multiplication:

1. Loading of the bias matrix.

2. Actual computation.

3. Download of the resulting matrix.

For each phase there is a different control unit in charge of handle it.

Load bias control unit

Load bias control unit is in charge of loading bias matrix into the systolic array. It
is designed in order to handle control signals, as explained in the previous section,
and to generate addresses used to retrieve the data from the memory. The sequence
of load_bias signals is stored in a ROM whose entries are read sequentially to
output the correct control signal at the right clock cycle. Before generating the
addresses, the control unit requires to know the number of active rows of the
systolic array, then it starts generating the proper control signals. At each clock
cycle, it generates a set of addresses used to retrieve the matrix’ elements in a
skewed fashion and the corresponding read enable signals. The out_reg_en enable
signal is driven accordingly to the proceeding of the computation.

Load data control unit

The actual computation is handled by the load data control unit. There are two
instances of this control unit, one to manage the loading of matrix B, the other
for matrix A. A load data CU is in charge of generating the addresses and the
read enable signals to access the memories where the input data is stored. Before

39

Hardware generation framework

starting the computation, it requires to know the reduction dimension of the input
matrices. Together with the addresses, it drives also the input and output enable
signals required by the systolic array.

Pass through control unit

The pass through control unit handles the signals used to download the resulting
matrix, in particular pt_data_en and the pass_through selection signal. Since
they depend only on the size of the systolic array, their pattern is fixed and so
they are stored in a ROM, which returns, at each clock cycle, the right sequence of
control signals.

Thanks to the metaprogramming capabilities of magma, the user does not require
to manually adapt the control units to the array. In fact, when creating the systolic
array, the smart template in charge of it extracts all the required parameters from
the PE specification and then generates the control units accordingly, without any
other user effort. If any changes to the control units are required, user can find their
specification by looking at functions LoadBiasCU, LoadDataCU and ShiftOutCU.

4.2 Processing Element
The processing element is essentially a Multiply-and-Accumulate (MAC) unit in
charge of performing the actual computation. It is designed in a modular way,
with a clear division between the integration logic and the computational one, so
that operations implemented can be customized as the user wishes. This section
presents the template of the processing element using the process followed for the
development as a walk-through to better understand the final meta-structure of
the tensor PE.

4.2.1 Scalar Processing Element
The basic version of a processing element is a scalar PE, which is used to provide
a detailed explanation of its structure which is the same independently on the
operations implemented. A processing element is composed of two main blocks: one
used for the integration in the systolic array and the other actually implementing
operations. This choice derives from the need of designing a highly customizable PE.
In this way, the performed operation can be changed by acting on a single module
that implements it, instead of modifying the whole processing element. This may
seem similar to a Verilog black box modeling, but the main difference is that the
capabilities of a high level programming language like Python make the injection of
new functionalities way easier. For example, the operations performed by a scalar

40

Hardware generation framework

PE and a TPE are different, but a single change in the function describing the
operation is enough to switch from one version to another. Moreover, if a new
PE is designed, the integration in the systolic array is performed automatically,
thanks the so called high order functions provided by magma. These are functions
that takes as arguments circuit instances and return new circuit instances. An
example is reported in listing 4.1. The code snippet shows how the integration of
a PE is performed. It can be seen that the first call to braid function generates
the rows of the array. The second one instead, takes the rows previously generated
and connect them together to build the whole array. braid is a powerful function
that allows the user to specify circuit instances that compose the final circuit and,
through the definition of additional parameters, connect them in the desired way
only specifying the name of the ports independently on the data type.

1 # generate the rows of the array
2 rows = []
3 for i in range (0, self.nr):
4 rows. append (
5 m.braid ([PEScalar (self. in_bitwidth ,
6 self. out_bitwidth ,
7 self. guard_bits)()
8 for i in range (0, self.nc)],
9 joinargs =[’in_b ’, ’bias ’, ’out_b ’, ’out_c ’],

10 foldargs ={’in_a ’: ’out_a ’,
11 ’load_bias_in ’: ’load_bias_out ’,
12 ’pt_data_en_in ’: ’pt_data_en_out ’,
13 ’pass_through_in ’: ’pass_through_out ’},
14 scanargs ={’out_reg_en_in ’: ’out_reg_en_out ’,
15 ’input_enable_in ’: ’input_enable_out ’}))
16

17

18 # generate the whole array
19 sys_array = m.braid(rows ,
20 joinargs =[’in_a ’, ’out_a ’,
21 ’load_bias_in ’,
22 ’load_bias_out ’,
23 ’pt_data_en_in ’,
24 ’pt_data_en_out ’,
25 ’pass_through_in ’,
26 ’pass_through_out ’],
27 foldargs ={’in_b ’: ’out_b ’,
28 ’bias ’: ’bias_out ’,
29 ’out_c ’: ’pass_through_data ’})

Listing 4.1: PE integration in a systolic array.

Figure 4.6 shows a schematic of the PE structure, where the elements required
for the integration are grouped in the Control logic, while the ones implementing
the actual operation are represented by the datapath.

41

Hardware generation framework

A
C
C

P
T

PE

load_bias_in
pass_through_in

pt_data_en_in
out_reg_en_in

input_enable_in

load_bias_in

out_c

bias_out

out_a
out_b

pass_through_in
pt_data_en_in
out_reg_en_in
input_enable_in

Control logic

in_b bias

in_a

pass_through_data

Figure 4.6: Processing element structure.

The control logic is mainly composed by registers used to handle the internal
enable and selection signals and to forward the incoming systolic array’s control
signals to the neighbor PEs.

In the computation logic, instead, the actual operation is performed. For
example, a scalar PE generally implements a MAC. The result saturates if it does
not fit the bitwidth of the output register. The quantization strategy is implemented
in a separate function so that it can be changed as the user desires. As it can be
seen in listing 4.2, the saturation operation is described as an algorithm and the
compiler is instructed to translate the if condition as a combinational circuit by the
annotation over the definition of if_cond function. If the quantization strategy
implemented is not suitable for the application, it can be completely modified by
describing another algorithm and calling the corresponding function.

1 def saturate_output (in_bitwidth , out_bitwidth , guard_bits , io ,
tmp_sum , out_reg , idx_out_reg =-1):

2 sat_var_neg = m.sint(m. concat (
3 m. repeat (0, int(out_bitwidth) - 1), m.bits(True , 1)))
4 sat_var_pos = m.sint(m. concat (
5 m. repeat (1, int(out_bitwidth) - 1), m.bits(False , 1)))
6

7 out_c = m.Bits[out_bitwidth]()
8

9 @m. inline_combinational ()
10 def if_cond ():
11 if m. reduce (operator .and_ ,
12 tmp_sum [int (2* in_bitwidth):
13 int(out_bitwidth)]) \

42

Hardware generation framework

14 and (tmp_sum [int(out_bitwidth) - 1]):
15 # no ovf: negative number
16 out_c @= tmp_sum [: int(out_bitwidth)]
17 elif not (m. reduce (operator .or_ ,
18 tmp_sum [int (2* in_bitwidth):
19 int(out_bitwidth)])) \
20 and not (tmp_sum [int(out_bitwidth) - 1]):
21 # no ovf: positive number
22 out_c @= tmp_sum [: int(out_bitwidth)]
23 else:
24 if tmp_sum [-1]:
25 # negative overflow
26 out_c @= sat_var_neg
27 else:
28 # positive overflow
29 out_c @= sat_var_pos
30

31 ...
32 out_reg .I @= m.Mux (2,
33 m.SInt[out_bitwidth])()(out_c , io.bias ,
34 io. load_bias_in)

Listing 4.2: Naive convolution.

Finally, the accumulator register is used not only to store the output, but also
to load an initial bias. In order to bypass the PE when shifting out the results, a
pass through register is required, so that data coming from the neighbor PE can
be stored and then forwarded.

A scalar PE is generated by the PEScalar function, that takes as arguments
the following parameters:

• in_bitwidth: input data bitwidth

• out_bitwidth: output data bitwidth

• guard_bits: guard bits used in the accumulator

4.2.2 Tensorial Processing Element
The ultimate goal was to develop a tensor systolic array, which is composed by
processing elements able to deal with tensors, not only with scalar elements. As
previously mentioned in chapter 2, a matrix multiplication can be optimized first
by reordering the loops describing it, secondly by applying tiling. While loop
reordering corresponds to swapping different iterations of the loop, tiling refers to
the process of performing a matrix multiplication on sub-matrices smaller than
the original ones. The input matrices have three dimensions: N and M which
correspond to the number of matrix A rows and matrix B columns, respectively,

43

Hardware generation framework

and K that is the reduction dimension. The tiling on N is called TileA, the one
on M is TileC, while the tiling on K is referred as TileB. Listing 4.3 presents the
pseudo-code of the matrix multiplication exploiting loop reordering and tiling.

1 for n_t in 0..N/TileA:
2 for k_t in 0..K/TileB:
3 for m_t in 0..M/TileC:
4 for n in 0.. TileA:
5 for k in 0.. TileB:
6 for m in 0.. TileC:
7 C[n_t*TileA+n ,m_t*TileC+j] +=
8 A[n_t*TileA+n, k_t*TileB + k] *
9 B[k_t*TileB + k, m_t*TileB+m]

Listing 4.3: Convolution after loop reordering and tiling.

A tensor processing element (TPE) processes TileA rows from matrix A, TileC
columns from matrix B and TileB elements from the same row of A and column
of B, to perform a small matrix multiplication that generates a tile of the output
matrix. A visual representation of the TPE processing is shown in figure 4.7.
From now on TileA is also referred as a_tiling, TileB as b_tiling and TileC as
c_tiling.

Figure 4.7: Tensors tiling.

Since each PE computes more than one element of the output matrix, the size
of the systolic array required to perform the whole matrix multiplication is reduced.
Moreover, since more than one element per row (column) is processed at a time,
specifically TileB, the number of clock cycles required for the entire computation
is smaller.

The PE is designed so that there are a_tiling ∗ c_tiling MACs. Each of them
elaborates b_tiling elements coming from the matrices A and B. An example with
a_tiling = c_tiling = 2 and b_tiling = 3 is shown in figure 4.8

TPEs are generated using TPE function which, as ScalarPE, requires input and
output data bitwidth and guard bits as arguments. Moreover, it needs to know

44

Hardware generation framework

A
C
C

A
C
C

A
C
C

A
C
C

Figure 4.8: Tensor processing element.

a_tiling, b_tiling and c_tiling.
To better understand the computation of a tensor processing element, two

corner cases can be analyzed. The first one considers that b_tiling is set to 1, so
a_tiling rows and c_tiling columns of the input matrices are read element by
element by each processing element. In the second one, instead, each PE process
one row (column) considering a_tiling and c_tiling set to 1 and b_tiling
elements form each row (column) at a time.

Figure 4.9 shows a visual representation of the first scenario. Supposing to
take a_tiling rows from matrix A and c_tiling columns from matrix B, the
corresponding PE will store a_tiling ∗ c_tiling elements of the resulting matrix.

Figure 4.9: AxC tiling.

Taking many rows and columns at once means that the systolic array’s size will
be smaller than in the scalar version. However, no gain will be obtained in the
number of clock cycles required for a computation, since only one element from

45

Hardware generation framework

each row and column will be passed to a PE.
The second scenario, instead, is shown in figure 4.10, where a PE takes b_tiling

elements from each row of A and from each column of B.

Figure 4.10: B tiling

In this case, the size of the systolic array is the same as the one of the output
matrix, while the number of clock cycles required to compute the result is smaller.

As already mentioned, the differences between the PE versions reside only in the
computation logic, where different kind of operations are performed. With the first
approach, a PE elaborates many rows and columns at once, hence several MACs
are needed. An example with a_tiling = 2 and c_tiling = 2 is shown in figure
4.11, where there are a_tiling ∗ c_tiling = 4 MACs. Data coming from a matrix’
row (column) is forwarded to every MAC present on the same row (column), so
that each accumulator will store a different element of the output matrix. In the
following example A[i] is the element from the i-th row of matrix A, while B[j]
is the j-th element of matrix B. Considering the picture below, while the top-left
MAC is computing A[i] ·B[j], A[i] is forwarded to the top-right accumulator which
calculates A[i] ·B[j + 1]. The bottom row does the same, resulting in A[i+ i] ·B[j]
in the left-most accumulator and A[i+ 1] ·B[j + 1] in the other one.

The second approach, instead, does not require a PE with more than one MAC.
On the contrary, there have to be many multipliers that compute the products
between the input elements and an adder that sums them together with the
previously accumulated result. An example of such a design is shown in figure 4.12.

Consider a row of matrix A as akak−1...a2a1a0 and a column of matrix B as
bkbk−1...b2b1b0. At each clock cycle, the MAC takes b_tiling = 3 elements from
each row and column and performs element-wise multiplication. The resulting
ai · bi, ai+1 · bi+1 and ai+2 · bi+2 are summed together with the accumulator value.

Corner cases can be generated as well, exploiting functions PE_AxC_Tiling and
PE_B_Tiling. They both requires input and output data bitwidth and guard bits
as input parameters. In addition, PE_AxC_Tiling needs to know a_tiling and

46

Hardware generation framework

A
C
C

A
C
C

A
C
C

A
C
C

Figure 4.11: AxC tiling processing element.

A
C
C

Figure 4.12: B tiling processing element.

c_tiling while PE_B_Tiling takes b_tiling as arguments.
The combination of the two corner cases produces the structure of a tensor

processing element shown in figure 4.8.

4.3 Verification Suite
The presented framework provides not only a systolic array generator, but also a
verification infrastructure that fits the customizable aspects of a systolic array. In
particular, tests easily adapt to arrays of different sizes and also to different data
bitwidth. The validation tests exploit fault, a domain-specific language capable
of creating verification components and providing the same metaprogramming
facilities found in a hardware construction language like magma. By using fault, a
test is executed in two different stages. Once a designer has written a test program,
the first stage constructs the test specification, while the second one invokes a
runtime that executes the previously constructed specification. This concept in
which the user constructs a program that constructs another program is called
staged metaprogramming. Moreover, fault metaprogramming capabilities allow the

47

Hardware generation framework

designer to write a test component as functions of the design under test, making
the whole test automatically adapt to the component to be validated.

Thanks to the modularity of the generator, the PEs composing the systolic array
can be modified to perform different kind of operations. In particular, when tests
are required, most of them can be reused. In fact, the systolic array behaviour
does not change even if different PEs are utilized. What has to be changed is the
testbench that is used for the PE itself, since the operations performed may be
different from the one already implemented in the framework.

As already explained in the previous sections, the framework generates a systolic
array with its own control units. To validate the design, the systolic array is
connected to several data buffer to simulate a real system with memories, even if
their management is ideal considering that they have enough space to store the
whole set of data. Each test - whose functions can be found in the test_beh_xx
files, where xx stands for the array variants - is composed of a testbench which
validates the correct behaviour when a computation is performed, and another
testbench to check whether the bias is handled correctly or not. Since the systolic
array is not included in a complete system, they both present a function used to
manually load all the data required for the computation in the data buffers. Once
data is stored in the buffers, the tests can be executed. The testbench executing a
computation starts and programs the control units managing the data buffer, then
it waits for the computation to end. When validating the whole computation, there
is no bias loading phase. Once control units have finished, the testbench starts the
CU in charge of shifting out the resulting data and checks the elements that come
out of the array. Similarly, the second testbench starts the control unit in charge
of loading bias in the systolic array. Once data is loaded, it simply shifts it out
and check the correctness of the values.

As regards the PEs, the tests just check each functionality implemented. When
extending the framework with a new processing element’s design, these tests may
not hold anymore, hence they have to be adapted to the new implementation. An
example of this kind will be presented in section 4.5.

As already mentioned, the testbenches were developed exploiting fault. To
construct the fault test component, a testbench uses the Tester object with the
magma circuit to be tested as argument. Then, this object is used to record a series
of actions to be performed exploiting Python constructs and data types. In this way,
data can be manipulated as desired within the test procedure, leaving the burden
of actually translating it into a hardware testbench to the compiler. Fault not
only simulates the hardware architecture returning the outcome of the simulation,
but it also allow the user to generate the actual SystemVerilog testbench file. In
this way, taking as an example the aforementioned tests, a designer can create a
golden model using the matrix multiplication implemented by numpy and check
the architecture against the ooutput of the numpy function. When the compiler

48

Hardware generation framework

has to translate this kind of procedure in SystemVerilog, it converts each Python
data structure in simple raw data assigned to the signals. For example, a loop is
unrolled and the resulting testbench is composed by all the iterations in sequence
where the signals are assigned with what was defined in the original loop. This
is a powerful ability that allow the designer to simply describe a validation test
exploiting a high level program language like Python and automatically generating
the corresponding SystemVerilog testbench, which can be used as a post-synthesis
test like what is detailed in chapter 5.

Each of the previously presented tests validating the behaviour of the whole
systolic array can be reused by simply changing the generation parameters of the
array itself. Eventually, if a specific test has to be executed, one has also to change
data loaded into the buffers since they are randomly generated.

4.4 Framework advantages
Given the framework structure, there are multiple exploitable advantages, related
not only to how the systolic array generator was implemented, but also to the
provided test suite and to the potential that a hardware construction language
such as Magma can offer. The most important ones are summarized below:

• Systolic arrays are highly customizable.

• The framework can be extended with custom PEs.

• The modular structure provides an easy way to test the design.

• The generated Verilog is ready to be synthesized.

• The generated Verilog is readable.

As already presented, systolic arrays can be generated with different sizes and
data bitwidth without much effort. It is sufficient to change the parameters
at creation time. PEs that compose the array can be designed by the user,
since the whole structure does not change depending on the processing element’s
implementation. What is important is that the interface is compliant to the one
described in the framework. As regards testability, given the modularity of the
whole design, the provided test suite can be completely reused without many
changes. At most, the PE tests validating the processing element functionalities
have to be developed if they are customized. The ones testing the whole systolic
array are generated automatically. Moreover, there are the advantages that comes
with Magma. Specifically, it generates a highly readable Verilog code that is also
directly synthesizable without any change.

49

Hardware generation framework

4.5 Use case: Sparse Systolic Tensor Array
So far, the considered systolic arrays do not take into account DNN weights sparsity.
In particular, this property can be exploited to speedup the whole computation.
As already explained in section 3.5.2, a traditional tensor systolic array can be
modified in order to take advantage of the weight sparsity.

This section presents the design of a sparse systolic tensor array, where the
weight sparsity is exploited. This is meant to be a demonstration of how the
framework can be extended to implement a variation of the dense tensor systolic
array.

4.5.1 Extension of the Framework
Design Effort

Only few changes are required to design a Sparse Systolic Tensor Array (S2TA),
in fact its structure is basically the same as the one provided with the framework.
Specifically, together with the data signals already presented, there has to be one
more input, the bitmap. This is a signal used to select which elements from matrix
A are multiplied to non-zero weights. As bitmap moves like the weights matrix, its
specification can be included in in_b network, as shown in figure 4.1. In this way,
the systolic array smart template does not require any changes. On the contrary, it
is already able to automatically generate the whole structure supporting sparsity.

The major change has to be applied to the PE’s structure. Indeed, the tensor
processing element has to be extended in order to support data sparsity. This
property comes with the addition of multiplexers driven by the bitmap, that choose
the right elements belonging to matrix A.

As before, each PE is composed of a_tiling·c_tiling MACs, which now elaborate
sparsity elements at a time, instead of b_tiling. The sparsity of a design is given
by 1 − sparsity

b_tiling
, since sparsity defines how many non-zero elements are present. As

regards the inputs coming from matrix A, b_tiling of them are loaded at a time.
Since sparsity < b_tiling, they are multiplexed so that each multiplier takes the
element corresponding to a non-zero weight, based on the selection signal derived
from the bitmap. An example of the structure is shown in figure 4.13, where there
are sparsity = 2 multipliers.

In order to drive the multiplexers, a priority encoder is required. Bitmap is
supposed to be a vector where a bit at index i set to 1 means that the i-th element
of the input A is multiplied to a non-zero weight. Given that there are sparsity
bits different from zero, the selection signals are encoded one at a time. The original
bitmap is processed by the priority encoder, which is able to identify the index of
the first digit set to 1. The index just found is used to drive one of the multiplexers.
The bitmap is then masked so that the resulting signal does not have that digit

50

Hardware generation framework

A
C
C

Figure 4.13: Structure of a sparse MAC.

set to 1 anymore. This identifies the following index to be used as selection signal.
The aforementioned procedure is applied until all the non-zero bits of the original
bitmap are found.

Besides these changes, nothing else belonging to the tensor PE was modified.

Verification Effort

As mentioned in section 4.3, if the processing element is changed, the testbench
provided with the framework may not be valid anymore. In the case of the PE that
composes the S2TA, most of it can be reused, hence, with slightly changes applied
mainly because of the handling of bitmap signal, it was easily adapted. Because
of this additional signal, the systolic array’s test has changed as well. The main
adjustment is that the testbench drives also the bitmap signals, as it happens for
the PE test.

Functions overview

Before generating the whole array, a processing element has to be specified. Func-
tion SparseTPE generates a tensor processing element which support sparsity.
SparseTPE takes the following parameters as arguments:

• in_bitwidth: input data bitwidth

• out_bitwidth: output data bitwidth

• guard_bits: number of accumulator guard bits

• a_tiling: tiling on matrix A rows

• b_tiling: tiling on matrix reduction dimension

51

Hardware generation framework

• c_tiling: tiling on matrix B columns

• sparsity: number of non-zero elements

A Sparse Systolic Tensor Array is then generated by SysArrayS2TA, which takes
as arguments the number of rows and columns and the PE generator produced by
SparseTPE.

Validation tests, instead, are contained in test_beh_s2ta file.

52

Chapter 5

Experimental Results

The proposed framework is used to perform a design space exploration, targeting
the Zynq Ultrascale+ MPSoC ZCU104 Evaluation Board, to assess the performances
of different designs in terms of resources occupied, power consumed and processing
time.

5.1 Experimental Setup
Figure 5.1 shows the flow followed to design, simulate and synthesise the architec-
tures, in particular, it is composed of these steps:

• Python-based design.

• Python-based tests.

• RTL design generation.

• Logic synthesis and implementation.

• Post-implementation simulation.

• Power and area estimation.

Hardware Generation and validation

The presented framework provides functions to generate and validate a hardware
design. There is a function SynXX - where XX can be Scalar, AC, B, TSA or S2TA
depending on the desired array - which generates the hardware of a systolic array
together with its control units with the specified parameters. It requires generators
of the desired systolic array and of a bias control unit, together with the address

53

Experimental Results

Magma design
&

validation

Vivado synthesis
&

implementation

Vivado
post-implementation

simulation

Vivado
report

generation

.v

.sv

.v

.saif

Reports

Figure 5.1: Design flow.

bitwidth which control units have to use to encode memory addresses. The user
can also specify a name for the architecture if the default one is not suitable for the
application. The systolic array generator, passed as parameter to SynXX, requires
the number of rows, columns and the PE generator. A processing element, as a
systolic array, can be of different types. These are:

• Scalar

• Vectorial with tiling on the rows/columns, called ACTiling

• Vectorial with tiling on reduction dimension of input matrices, called BTiling

• Tensorial

• Tensorial supporting sparsity

54

Experimental Results

Each variant has its own function which requires different parameters. The ones
in common are the following:

• in_bitwidth: bitwidth of the input data

• out_bitwidth: bitwidth of the output data

• guard_bits: guard bits used for the accumulator

Depending on the processing element required, the following parameters have to
be passed as well:

• a_tiling: tiling on the rows

• b_tiling: tiling on the reduction dimension

• c_tiling: tiling on the columns

In case the processing element supports data sparsity, sparsity has to be
specified, too.

The bias control unit generator, instead, requires the number of rows and
columns of the systolic array, a_tiling and c_tiling. If the desired array is the
scalar version they can be simply set to 1. It also requires the address bitwidth
to encode the addresses and the size of the register used to store the number of
elements on the reduction dimension.

Once everything is specified, SynXX is used to generate the hardware design
ready to be validated. The presented framework provides several tests for the
generated architectures which validates the behaviour of a systolic array together
with the control units as if they were in a system including also memories. In fact,
each design is first connected to data buffers, through the functions DatapathXX,
and then validated. For further details on the tests structure refer to section 4.3.

Logic synthesis and implementation

After the validation phase, the architecture is almost ready to be synthesised. In this
case, synthesis and place and route are followed by a post-implementation simulation
to better estimate the switching activity, therefore, a SystemVerilog testbench is
required. Each variant of the systolic array has its own script, tb_generator_xx.
They generate the RTL netlist of a set of architectures, the ones used to perform
the design space exploration, together with the SystemVerilog testbenches for the
simulation.

The architectures may then be synthesized. A synthesizer generally optimizes,
in terms of resource occupation and power consumed, the mapping of a netlist

55

Experimental Results

to the FPGA, not necessarily exploiting all the possible resources on a board.
For example, the Zynq Ultrascale+ MPSoC ZCU104 Evaluation Board provides
not only LUTs but also DSPs, which are efficient cells particularly useful when
performing operations like MAC. They allow complex operations to reach good
performances without consuming much power. However, using this kind of cells
leads to waste LUTs for connections, hence, the resulting mapping may not be
the best one from the point of view of the synthesizer. In fact, in this case, the
synthesised architectures are hardly ever mapped on DSPs.
Since the aim of the presented design space exploration is to assess the power
consumed and the resources occupied while providing the best performance possible,
the synthesizer has to be instructed to exploit DSPs. Then, it is sufficient to anno-
tate the Verilog source code of each architecture with (* use_dsp48 = "yes" *)
in correspondence of the modules which have to be mapped on DSPs.

RTL netlists are now ready to be synthesised. Synthesis and implementation
are done by means of TCL scripts to automate the process. Each script requires
the source code to be organized is a specific way: Verilog netlists are grouped in
the src folder, testbenches are put in the tb folder and constraints are contained
in the constr folder.

The constraints .xdc files have to be created by Vivado. To do that, open a
new project and import a RTL netlist of the desired architecture. Run a synthesis.
Once it is done, open the Constraints Wizard. A new window appears, select the
target file where all the constraints will be written and confirm the choice. Open
the wizard again so that a new window is opened. Going through all the windows
of this tool allow the user to set the desired constraints like clock frequency, input
and output delays. In the presented case, the following constraints are considered:

• Clock period = 22 ns

• Maximum input delay = 12 ns

• Minimum input delay = 10 ns

• Setup time = 2 ns

• Hold time = 0 ns

Clock period changes for the sparse architectures since they are not as efficient
as the others. In particular it is set to 24 ns. Input delays changes accordingly to
be ±1 ns the edge of the clock.

Once all the architectures have their own constraints, the provided scripts can
be used to perform a synthesis. Each of them follows the same structure that first
creates a new Vivado project, setting as target board the Zynq Ultrascale+ MPSoC
ZCU104 Evaluation Board. Then the script loads the Verilog source code of an

56

Experimental Results

architecture together with the corresponding constraints. Before synthesising the
design, the following properties are set:

• STEPS.SYNTH_DESIGN.ARGS.MORE OPTIONS -value {-mode out_of_context}

• {xsim.simulate.runtime} -value {15000ns}

• {xsim.simulate.saif} -value {sw_act.saif}

The first one is a synthesis property which declare how to synthesise the design,
specifically out_of_context. Since the systolic array is not meant to be used
alone in a FPGA but it should be contained into a larger system interfacing it,
the number of I/O required is larger than the ones provided by the board. To
prevent the synthesizer from mapping systolic array inputs and outputs on I/O
ports, out_of_context mode is specified. The second and the third properties are
related to simulation. xsim.simulate.runtime sets the runtime of the simulation
to a value larger than the actual simulation time, so that the simulations certainly
ends. xsim.simulate.saif, instead, specifies the name of the switching activity
file.

After specifying the aforementioned properties, synthesis and place and route
are run.
The following step is the post-implementation simulation, so, first the tesbench is
imported, then the simulation is started.
Once it finishes, the script prints timing, power and occupation reports. Before
generating power report, the switching activity file is read.

5.2 Design Space Exploration
The proposed framework is used to perform a design space exploration targeting
the Zynq Ultrascale+MPSoC ZCU104 Evaluation Board. The generated hardware
architectures are utilized to assess the effects of the following knobs on energy
consumption, resources occupation and latency:

• Array size: 8x8, 16x16, 32x32

• Data bitwidth: 4-bit in and 16-bit out, 6-bit in and 20-bit out, 8-bit in and
24-bit out, 8-bit in and 32-bit out

• PE structure: scalar PE or tensor PE, including corner cases

• Sparsity support: yes or no

57

Experimental Results

The first experiment assess how data bitwidth affects the energy consumption
and the resources occupied. Considering that performing operations on more bits
consumes more power and resources, the total energy and resources utilization
is expected to increase with larger data bitwidth. Next, increasing a systolic
array size should lead to more power consumed and resources occupied. The
second experiment assesses how these two metrics are affected by the actual size
of the array. Moreover, an interesting scenario takes in consideration all the
possible configurations of a systolic array which perform the same number of MAC
operations per cycle. The third experiment shows how the PE structure affect
the energy consumed and the resources utilized by these set of systolic arrays.
Finally, the support of sparsity is considered showing how energy and resources
depend on the sparsity ratio. Since the generated architectures reach different
maximum clock frequencies, they are compared to show the trade-offs depending
on different configurations. Lastly, the overall performances are analyzed when
executing different workloads.

The architectures used for the design space exploration are always considered
with 6-bit inputs and 20-bit outputs and 8-bit inputs and 24-bit outputs, except
for the experiment that assess the data bitwidth effects. These are commonly used
configurations for inference. Moreover, guard bits used in PE saturation logic are
always set to 8, which is an acceptable number of bits to keep the numerical stability
of a neural network. Finally, since static power consumed by the architecture is
platform dependent and it is always the same, it is not considered in the energy
consumption metric. This fact was experimentally verified.

5.2.1 Resource occupation and power estimation with dif-
ferent data sizes

The first assessment regards how the data bitwidth affect the power consumption
and the resource occupation of a systolic array, specifically a 16x16 scalar array.
For these measurements, the bitwidth considered are the following:

• 4-bit inputs, 16-bit output

• 6-bit inputs, 20-bit output

• 8-bit inputs, 24-bit output

• 8-bit inputs, 32-bit output

Figure 5.2 shows the differences between various configurations. The left y-axis
is used for the dynamic power consumption, while the right one keeps track of
the resource number, expressed in thousands of units. As it can be seen, the

58

Experimental Results

resource count grows mainly because of the registers required to store the data.
The number of DSPs is constant except for the first configuration. DSPs are used to
implement the PE multiplier, and, since the array size is 16x16, there are 256 DSPs.
Vivado does not use DSPs to map the multipliers when the input bitwidth is 4 bits.
The reason may be that they are too small to take effective advantage in using
such resources. Multipliers, instead are mapped on a combination of CARRY8
cells and LUTs. CARRY8 is a primitive present on the ZCU104 board which is
used in conjunction to LUTs to implement fast multipliers and adders, hence this
increase the resources count. However, the power consumed by this larger number
of resources is easily surpassed by the energy required by DSPs used in the other
configurations. Therefore, the overall power consumption grows linearly with the
data bitwidth.

Figure 5.2: Resource utilization vs. dynamic power consumed of a 16x16 scalar
systolic array with data of different bitwidth.

5.2.2 Scalar systolic arrays of different sizes
Figures 5.3 and 5.4 show how the resources occupation and the dynamic power
increase with the size of a scalar systolic array. The former presents the results of
an array whose inputs and outputs sizes are 6 bits and 20 bits, respectively. The
latter considers 8-bit inputs and 24-bit outputs. The systolic arrays increasing size
leads to an increment of the resources required to map the architecture on the

59

Experimental Results

FPGA. Consequently, the dynamic power consumed increases as well. Specifically,
it increases by 3-4 times each step, almost as much as the size of the array. The
results follow the same trend independently on the data bitwidth, in fact the
differences reside only in the absolute values obtained.

Figure 5.3: Resource utilization vs dynamic power consumed when scalar arrays
of different sizes are considered. Inputs data size is 6 bits, outputs one is 20 bits.

A more detailed analysis of the dynamic power consumption is shown in figure
5.5. As it can be seen, the systolic array power prevails over the control units one,
as expected. This is due to the difference in complexity, since the control unit
is a quite simple FSM, while the systolic array is composed by many processing
elements each implementing a MAC. The results show a trend for which the size
of the array increases the power consumed, as expected. This happens for both
the data bitwidth considered. The 8x8 ring may seem strange since the shown
percentage is 0.0%, but this is due to the precision of the power reports that is not
enough to estimate the power consumption. The control unit contribution on the
power consumed is too small to be reported.

As a matter of comparison, table 5.1 shows the absolute values of the power
consumed by the 8-bit inputs and 24-bit outputs systolic arrays. It can be seen
that, as the number of rows increases by 2 times for each configuration (that is, 8,
16 and 32). As the two CUs depend on this parameter, the control units power
consumption grow 4 times, since its size depends on the number of rows of the
systolic array.

60

Experimental Results

Figure 5.4: Resource utilization vs dynamic power consumed when scalar arrays
of different sizes are considered. Inputs data size is 8 bits, outputs one is 24 bits.

Figure 5.5: Power breakdown of a systolic array with 6-bit inputs and 20-bit
outputs (left) and 8-bit inputs and 24-bit outputs (right).

61

Experimental Results

Array size Array power [mW] Control unit power [mW]
8x8 0.037 ∼ 0.000

16x16 0.109 0.004
32x32 0.419 0.015

Table 5.1: Power breakdown 8-bit inputs 24-bit outputs systolic arrays.

5.2.3 Fixed number of MACs per cycle
Figure 5.6 shows the results in terms of power consumption and resource utilization
of different architectures with 8-bit inputs and 24-bit outputs performing the same
number of MAC operations per clock cycle, specifically 1024. The plot reports, for
each design, the power consumption and the resources occupation as a function
of the scalar systolic array which is taken as a baseline. Scalar systolic array
and tensor systolic arrays are compared to show different effects caused by more
complex, but also more powerful structures like TSA with respect to a classic
systolic array. TSA corner cases are considered, too.

TSAs performing A × C MAC per cycle with a TileB equal to 1 are the
architectures returning the worst results. An increasing of the tiling size lead
to a larger data reuse inside a processing element, resulting in smaller systolic
arrays with a smaller total number of intermediate registers between PEs. Even
if the registers utilized decrease, the LUTs present consume much more than a
scalar systolic array. The expected behaviour would show a decreasing in the
number of registers and in the number of LUTs occupied as the tiling increases,
that actually happens except for the 4Ax4C case. This last configuration, after
synthesis and implementation, shows an anomalous increase of the LUTs required
as registers with no apparent reason. Moreover, the differences in power with
respect to the baseline are justified by the increasing switching activity detected
in the post-implementation simulation. As it can be seen, designs which perform
a B-way dot product lead to the best results. In particular, they present a lower
resource utilization than the baseline. One of the reason is the fewer registers
required to perform the accumulation, indeed B multiplications are accumulated on
a single register, instead of only 2 as a normal MAC. Another reason is that a scalar
systolic array of size 32x32 is four times larger than a 16x16 TSA. The resulting
TSA LUTs count is smaller, despite the higher number required to perform a
more complex accumulation operation in a TPE. The best scenario of resources
occupation and power consumption is reached by STA_4Ax16Bx4C_2x2 and
STA_2Ax16Bx2C_4x4, which consume as much power as SA_4B_16x16 requiring
fewer resources. Moreover, by comparing SA_4B_16x16 to its counterparts, where
tiling on rows and columns is introduced, it is possible to observe a lower resources
utilization but a higher power consumption.

62

Experimental Results

From these considerations it can be deduced that operating on TileB leads to
better results in terms of power consumption with respect to TileA and TileC. On
the contrary, increasing TileA and TileC helps saving resources at the cost of power
consumed by the design. This reasoning holds also if the architectures considered
take 6-bit inputs and return 20-bit outputs.

Figure 5.6: Power vs area with a fixed number of MAC operations per cycle. The
considered designs have 8-bit inputs and 24-bit outputs.

63

Experimental Results

5.2.4 S2TA: different data sparsity values
The Sparse Systolic Tensor Array is characterized as well. In particular, dynamic
power consumption and resources occupation are assessed. As before, data size
does not have a high impact on the trends of final outcomes, so results presentation
consider designs with 8-bit inputs and 24-bit outputs only. Figure 5.7 shows
the results obtained with a S2TA of size 2x8x2_4x4. As expected, the power
consumed and the resources utilized decrease when the sparsity increases. Data
sparsity directly affects the LUTs and DSPs count since less elements result in less
multipliers, mapped on the DSPs, and less LUTs to implement the adders.

Figure 5.7: Dynamic power consumed and resources utilized by a Sparse Systolic
Tensor Array of size 2x8x2_4x4, with 8-bit inputs and 24-bit output.

However, as table 5.2 reports, the maximum frequency obtained is lower than
the one reachable by the same architecture without the support for sparsity. In
particular, depending on the sparsity ratio, architectures supporting sparsity reach
half the frequency of their dense counterpart.

One source of high inefficiency is the priority encoder used to decode the bitmap
and set the multiplexer selection signals. In fact, it is implemented as a chain of
multiplexers. In particular, with a sparsity of 50%, it increases the LUTs count of
about 60% while worsening the latency of about 80%. This worsening depends on
sparsity ratio, since the number of non-zero elements directly affects the complexity
of the priority encoder. Besides this fact, sparsity helps saving resources and power
if compared to a dense systolic tensor array of same size.

64

Experimental Results

Architecture Registers LUTs DSPs Dynamic
power

Tclkmin

2x8x2_4x4 dense 7.0K 22.0K 0.5K 254.0mW 12ns
2x8x2_4x4 25% 6.6K 31.0K 0.4K 86.0mW 24ns
2x8x2_4x4 50% 6K 24K 0.2K 103.0mW 18ns
2x8x2_4x4 75% 5.5K 16K 0.1K 72.0mW 14ns

Table 5.2: Comparison between a systolic tensor arrays with and without sparsity
support.

5.3 Max Frequency Analysis

The aforementioned designs, which perform the same number of MAC per clock
cycle, present various PE complexities, resulting in different maximum reachable
frequencies. Table 5.3 reports, for each considered design, the minimum clock
period, the power consumed and the resources utilized at its maximum frequency.
DSPs are not shown because their number does not change with respect to the
one reported in the previous analysis. Since differences between architectures with
8-bit inputs and 24-bit outputs and the ones with 6-bit inputs and 20-bit outputs
do not influence the trends, the analysis is performed only on the first ones.

The best design in terms of latency is the scalar systolic array, thanks to a
simple structure of the processing elements which allow the clock period to reach
8 ns. However, a 32x32 scalar systolic array is the largest design that utilizes
more resources than all the others. Results confirm that, admitting a larger clock
period than 8 ns, systolic tensor arrays characterized by TileA and TileB only
save resources but consume a significant higher amount of power with respect to a
scalar SA. The best results in terms of power consumption are obtained by systolic
tensor arrays implementing a B-way dot product. However, TileB affects the adder
trees present in the TPEs increasing the overall latency. STA_2x16x2_4x4 and
STA_4x16x4_2x2 are examples. They are about 2.5 times slower than a scalar
SA but they obtain the best results in terms of power consumption and resource
occupation. A good trade-off between the three metrics may be reached by a
TSAs presenting tiling on rows and columns and a not too large TileB which affect
the latency. Architectures like STA_4x4x4_4x4 exploits the advantages of TileA
and TileC in terms of resource occupation, and the power reduction that comes
with TileB balances the power increasing introduced by rows and columns tiling.
Unfortunately, these gains come at the cost of latency.

One last dimension to consider is the workload executed by a systolic array.
Depending on the structure of a SA, the clock cycles required for the execution
differs. These variations combined with the array characterization in terms of

65

Experimental Results

latency, power consumed and resources occupied affect the total power and resources
required by a whole computation on a specific systolic array. Next section analyzes
this consideration.

Architecture Tclkmin Fmax Power LUTs Registers
STA 16x1x16_2x2 16 ns 62.5MHz 1,100mW 86 K 38 K
STA 8x1x8_4x4 12 ns 83.3MHz 1,300mW 88 K 45 K
STA 4x1x4_8x8 10 ns 100MHz 2,000mW 126 K 51 K
STA 2x1x2_16x16 10 ns 100MHz 1,170mW 97 K 57 K
STA 4x16x4_2x2 22 ns 45.45MHz 172mW 34 K 7 K
STA 2x16x2_4x4 22 ns 45.45MHz 170mW 38 K 11 K
STA 8x4x8_2x2 12 ns 83.3MHz 457mW 41 K 11 K
STA 4x4x4_4x4 11 ns 90.9MHz 517mW 52 K 15 K
STA 2x4x2_8x8 10 ns 100MHz 498mW 57 K 20K
STA 1x4x1_16x16 10 ns 100MHz 365mW 58 K 30 K
Scalar 32x32 8 ns 125MHz 470mW 108 K 70 K

Table 5.3: Maximum frequencies reached by designs performing the same number
of MAC per cycle, specifically 1024.

5.4 Performance Analysis

5.4.1 Analytical Model
In a systolic array, input data is fed from the left and top edges. Once the
computation in done, the resulting matrix is downloaded from the top-edge. Since
the download behaviour is not the same as the one presented in chapter 3, the
resulting analytical model is different, too.

As previously described in chapter 4, the download phase starts from the top-left
PE, then it proceeds with the right and bottom neighbors and so on. Theoretically,
once the top-left PE has finished its computation, data is ready to be downloaded.
This mechanism would work since, at each following clock cycle, the neighbors finish
the computation as well. Therefore, the results would be ready to be downloaded.
The time of computation would correspond to the time required by a PE to process
all the data, which is çK

B
è, where K is the reduction dimension of the input matrices

and B is the tiling on that dimension. Practically, given the design of the control
units, before downloading the results, the CUs have to finish loading the data. The
time required by a CU to end the computation is shown in equation 5.1, where
n_pe is the number of processing element on the edge controlled by the CU. It

66

Experimental Results

corresponds to n_rows_array for the control unit loading the input matrix and
n_cols_array for the one loading the filters.

τ(cu) = n_pe+
9
K

B

:
− 1 (5.1)

If the systolic array is not a square, the computation ends when the larger
control unit finishes the processing. Moreover, in order to start the CUs, two more
clock cycles are required. The first one to actually start it, the second one to
program it. Considering nr_a and nc_a the number of rows and columns of the
array, respectively, the resulting computation time is:

τ(computation) = max(nc_a, nr_a) +
9
K

B

:
+ 1

Once the computation is finished, the download phase can be started. The time
required to download the whole matrix is nc_a+ nc_a− 1 plus the time needed
to start the control unit which takes 1 clock cycle. The resulting download time is:

τ(download) = nc_a+ nc_a

As previously detailed in chapter 3, when processing large input matrices, many
iterations on the same systolic array are required. The effective number now
depends also on the tiling since the analysis is done considering systolic tensor
arrays. Therefore, the number of iterations is ç N

nr_a·Aè on the rows and ç M
nc_a·C è

on the columns, where N and M are the rows and columns of the resulting matrix.
A and B, instead, are the tiling parameters on the row and on the columns,
respectively. Moreover, since the CUs can be programmed once before starting the
whole computation and not at each iteration, τ(computation) can be reduces by 1,
counting it only once at the beginning. The resulting clock cycles required perform
a whole computation is:

τ =
3

max(nc_a, nr_a) +
9
K

B

:
+ nc_a+ nr_a

4 9
N

nr_a ·A

:9
M

nc_a · C

:
+ 1

5.4.2 Experimental Results
Results obtained in previous experiments showed the effects of different knobs on
power consumption, resources occupation and latency. The last assessment regards
the effects of the executed workload on the total execution time.

Workloads are selected layers from two neural networks: EfficientNet [20] and
ResNet [21]. The first two belongs to EfficientNet while the others to ResNet50
Table 5.4 presents the size of the matrices processed by each convolutional layer
and the corresponding mapping on GEMM. The reported sizes are:

67

Experimental Results

• H: output matrix height

• W : output matrix width

• Kfilter: kernel size

• Cin: input matrix channels

• Cout: output matrix channels

• N : output matrix rows

• M : output matrix columns

• K: inputs matrices reduction dimension

To map a convolution on a GEMM, each filter has to be flattened in a row
of the first operand matrix, generating a CoutK

2
filter × Cin matrix. The second

operand matrix is created by composing each column as a depthwise sequence of
patches from the input matrix, as figure 2.6 shows. The resulting matrix has size
K2

filterC ×HW . Performing a matrix multiplication between these two operands
leads to an output matrix of size Cout ×HW , where HW corresponds to M and
Cout to N . K instead indicates the reduction dimension CoutK

2
filter.

Operands size GEMM
Workloads H W Kfilter Cin Cout N M K
wl1 28 28 3 48 384 384 784 432
wl2 38 38 3 56 448 448 1444 504
wl3 28 28 3 128 128 128 784 1152
wl4 14 14 3 256 256 256 196 2304

Table 5.4: Size of the different workloads.

Table 5.5 shows the resulting clock cycles required to execute each workload.
The results are obtained considering the size of the workloads and the equation
derived in the previous section to compute the required clock cycles to execute
a workload. It can be seen that a balanced tiling executes workloads in fewer
clock cycles with respect to the other architectures. The exception is represented
by workload 4, which performs better on a design processing a larger number of
element on the reduction dimension at each time. This is due to the workload 4 K,
which is way larger than the other sizes, affecting the total cycles count. For this
reason, processing 16 elements at a time shows a higher gain with respect to the
other designs.

68

Experimental Results

Architecture Workload 1 Workload 2 Workload 3 Workload 4
Scalar 32x32 158401 386401 125801 134401
STA 2x16x2_4x4 183457 440916 131713 118401
STA 4x16x4_2x2 155233 380101 122304 116801
STA 2x4x2_8x8 155233 382201 122305 121473
STA 4x4x4_4x4 141121 351625 117601 122305

Table 5.5: Total clock cycles required by different designs to perform the whole
computation of each workload.

The best architecture in terms of clock cycles is STA_4x4x4_4x4, but clock
frequency is not considered yet. Table 5.6 shows the execution time required by
each design, considering the maximum frequency of each architecture reported in
table 5.3 and combining it with the required clock cycles presented in table 5.5. As
a matter of execution time, the best results are obtained by a 32x32 scalar systolic
array. However, as previously showed, it comes at the cost of power consumption
and resources occupation.

Architecture Fmax wl1 wl2 wl3 wl4
Scalar 32x32 125MHz 1,270ms 3,090ms 1,010ms 1,070ms
STA 2x16x2_4x4 45.45MHz 4,040ms 9,700ms 2,900ms 2,600ms
STA 4x16x4_2x2 45.45MHz 3,420ms 8,360ms 2,700ms 2,570ms
STA 2x4x2_8x8 100MHz 1,550ms 3,820ms 1,220ms 1,220ms
STA 4x4x4_4x4 90.9MHz 1,550ms 3,870ms 1,290ms 1,350ms

Table 5.6: Execution time of different designs at their maximum clock frequency
processing different workloads.

To actually assess the overall performances of each architecture, other two
metrics are considered: GOPs/s and GOP/mW. Table 5.7 shows the theoretical
peaks of each architecture in terms of GOPs/s and GOPs/mW. From the results
obtained, a scalar systolic array of size 32x32 seems to be the best choice in terms
of theoretical operations performed in a second and for GOPs/mW.

However, when looking at the effective peak performance obtained after executing
each workload, it is not the most efficient variant in terms of actual utilization. In
fact, workloads 1, 2 and 3 better exploit STA_4x4x4_4x4, reaching a utilization
factor of 90% or more. On the contrary, when executing workload 4, designs
with larger dot products like STA_2x16x2_4x4 and STA_4x16x4_2x2 provide a
utilization of 95%.

69

Experimental Results

Architecture OPs Fmax

[MHz]
Power
[mW]

GOPs/s GOPs/mW

Scalar 32x32 2048 125 470 256 0.55
STA 2x16x2_4x4 2048 45.45 172 93 0.54
STA 4x16x4_2x2 2048 45.45 170 93 0.55
STA 2x4x2_8x8 2048 100 498 205 0.41
STA 4x4x4_4x4 2048 90.9 517 186 0.36

Table 5.7: Theoretical peak GOPs/s and GOPs/mW.

Architecture WL 1 WL 2 WL 3 WL 4
Scalar 32x32 GOPs/s 205 210 230 215

Utilization % 80% 82% 89% 84%
STA 2x16x2_4x4 GOPs/s 64 67 80 88

Utilization % 69% 72% 86% 95%
STA 4x16x4_2x2 GOPs/s 76 77 86 89

Utilization % 82% 83% 92% 95%
STA 2x4x2_8x8 GOPs/s 168 171 189 190

Utilization % 82% 83% 92% 93%
STA 4x4x4_4x4 GOPs/s 168 169 179 171

Utilization % 90% 91% 96% 92%

Table 5.8: Effective peak GOPs/s.

70

Chapter 6

Conclusions

The usage of deep neural networks in different fields increased so much that inference
was moved from the cloud to edge devices. However, common edge devices present
stringent constraints in terms of power consumption and resource occupation. This
led to the development of custom architectures used to accelerate DNNs. Usually,
to design this kind of architectures, a DNN workload is first analyzed, then the
accelerator is developed and finally it is used to assess the end-to-end performance.
As new DNNs and new accelerators are constantly developed, in particular on
reconfigurable platforms like FPGAs, agile automation tools are needed to quickly
navigate the design space.

The presented framework exploits the metaprogramming capabilities of magma,
a hardware construction language embedded in Python, to generate custom sys-
tolic tensor arrays minimizing design and verification efforts. It provides smart
templates which automatically build the whole structure of a systolic array and the
corresponding control units starting from the specification of a processing element.
The framework was used to explore the design space and to assess the effects of
different knobs like data bitwidth, array size, PE structure and sparsity support, on
resource occupation, power consumption and latency. The obtained results show
that, as expected, a four times increasing size of the arrays correspond to a 3 − 4
times growth of area occupied and power consumed. In addition, increasing the
data bitwidth leads to a linear increase of power consumption and area occupation.
Moreover, they reveal a non-trivial trade-off introduced by tensor systolic arrays
characterized by tiling on input matrix rows and columns and on the reduction
dimension. Considering a fixed number of MAC per cycle, designs employing
tiling on rows and columns show a saving of about 10 − 20% in terms of resource
occupation, at the cost of power consumption, with an increase of almost 80%
and a worsening in latency. On the other hand, TPEs accumulating more than
two operands on the same register show a reduction in both area occupation and
power consumption of about 50% and 40%, respectively. This gain comes at the

71

Conclusions

cost of latency, since their complexity affect the maximum clock frequency reach
by the architecture. In addition, different workloads benefit of different systolic
array configurations, showing a clear gain when the power consumption introduced
by rows and columns tiling is balanced by the one reduced when performing high
b_tiling-way dot products. However, the execution time depends also on the maxi-
mum clock frequency of each architecture. Another way to assess the performance
of an architecture is estimate the GOPs/s and GOPs/mW. The considered 32x32
scalar array is the best choice in terms of GOPs/s with an average of 215. STAs
reach an average total amount of 175 GOPs/s while STAs with high B-way dot
products are the worst with 78 GOPs per second. However, STAs are the best
designs in terms of effective utilization reaching an average of 90% of the theoretical
estimation.

The revealed trade-offs demonstrate the need to quickly navigate the design
space to find a suitable solution for the desired DNN application. That is why
agile automation tools are required to keep raising the efficiency of domain-specific
accelerators.

Although this framework is a useful tool to reduce design and verification effort,
it may be improved even more. For example, it may be extended with additional
smart templates to support other dataflows, not only output stationary. Moreover,
control units managing the computation introduce bubbles delaying the operations.
Therefore, they may be better designed to reduce the number of clock cycles
required to perform a whole computation. Lastly, the sparse systolic tensor array
generator could be improved, with a strong focus on the logic decoding the bitmap,
which is not efficient at all.

72

Bibliography

[1] Neural Networks. IBM Cloud Education. url: https://www.ibm.com/
cloud/learn/neural-networks (visited on 11/14/2021) (cit. on p. 5).

[2] Nick McCullum. Deep Learning Neural Networks Explained in Plain English.
url: https://www.freecodecamp.org/news/deep- learning- neural-
networks-explained-in-plain-english/ (visited on 11/14/2021) (cit. on
p. 6).

[3] Convolutional Neural Networks. IBM Cloud Education. url: https://www.
ibm . com / cloud / learn / convolutional - neural - networks (visited on
11/05/2021) (cit. on p. 8).

[4] Manas Sahni. Anatomy of a High-Speed Convolution. url: https://sahnim
anas.github.io/post/anatomy-of-a-high-performance-convolution/
(visited on 11/05/2021) (cit. on pp. 10–13, 15).

[5] Alexander Matthes, Rene Widera, Erik Zenker, Benjamin Worpitz, Axel
Huebl, and Michael Bussmann. «Tuning and Optimization for a Variety of
Many-Core Architectures Without Changing a Single Line of Implementation
Code Using the Alpaka Library». In: Oct. 2017, pp. 496–514. isbn: 978-3-
319-67629-6. doi: 10.1007/978-3-319-67630-2_36 (cit. on p. 14).

[6] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. «Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks». In: ACM
SIGARCH Computer Architecture News 44.3 (2016), pp. 367–379 (cit. on
pp. 16, 17, 19).

[7] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio
Culurciello, and Yann LeCun. «Neuflow: A runtime reconfigurable dataflow
processor for vision». In: Cvpr 2011 Workshops. IEEE. 2011, pp. 109–116
(cit. on p. 16).

[8] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji
Chen, and Olivier Temam. «Diannao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning». In: ACM SIGARCH Computer
Architecture News 42.1 (2014), pp. 269–284 (cit. on p. 17).

73

https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/
https://www.freecodecamp.org/news/deep-learning-neural-networks-explained-in-plain-english/
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://sahnimanas.github.io/post/anatomy-of-a-high-performance-convolution/
https://sahnimanas.github.io/post/anatomy-of-a-high-performance-convolution/
https://doi.org/10.1007/978-3-319-67630-2_36

BIBLIOGRAPHY

[9] Xuan Yang et al. «Interstellar: Using halide’s scheduling language to analyze
dnn accelerators». In: Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems. 2020, pp. 369–383 (cit. on pp. 17, 20).

[10] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. «Halide: a language and compiler
for optimizing parallelism, locality, and recomputation in image processing
pipelines». In: Acm Sigplan Notices 48.6 (2013), pp. 519–530 (cit. on p. 17).

[11] A. Samajdar, J.M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and T.
Krishna. «A Systematic Methodology for Characterizing Scalability of DNN
Accelerators using SCALE-Sim». In: 2020 (cit. on pp. 19, 20, 22, 24, 25).

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «Imagenet classi-
fication with deep convolutional neural networks». In: Advances in neural
information processing systems 25 (2012), pp. 1097–1105 (cit. on p. 19).

[13] Ananda Samajdar, Yuhao Zhu, Paul Whatmough, Matthew Mattina, and
Tushar Krishna. «SCALE-Sim: Systolic CNN Accelerator Simulator». In:
(2019). arXiv: 1811.02883 [cs.DC] (cit. on p. 23).

[14] Norman P Jouppi et al. «In-datacenter performance analysis of a tensor
processing unit». In: Proceedings of the 44th annual international symposium
on computer architecture. 2017, pp. 1–12 (cit. on pp. 25, 26).

[15] Hasan Genc et al. «Gemmini: Enabling systematic deep-learning architecture
evaluation via full-stack integration». In: Proceedings of the 58th Annual
Design Automation Conference (DAC). 2021 (cit. on pp. 25, 27).

[16] Hasan Genc et al. «Gemmini: An agile systolic array generator enabling
systematic evaluations of deep-learning architectures». In: arXiv preprint
arXiv:1911.09925 3 (2019) (cit. on p. 25).

[17] Zhi-Gang Liu, Paul N. Whatmough, and Matthew Mattina. Sparse Systolic
Tensor Array for Efficient CNN Hardware Acceleration. 2020. arXiv: 2009.
02381 [cs.AR] (cit. on pp. 28–31).

[18] Zhi-Gang Liu, Paul N. Whatmough, Yuhao Zhu, and Matthew Mattina. S2TA:
Exploiting Structured Sparsity for Energy-Efficient Mobile CNN Acceleration.
2021. arXiv: 2107.07983 [cs.AR] (cit. on p. 30).

[19] Pat Hanrahan. Magma github. url: https://github.com/phanrahan/magma
(visited on 11/23/2021) (cit. on p. 33).

[20] Suyog Gupta and Mingxing Tan. EfficientNet-EdgeTPU: Creating Accelerator-
Optimized Neural Networks with AutoML. url: https://ai.googleblog.com
/2019/08/efficientnet-edgetpu-creating.html (visited on 11/24/2021)
(cit. on p. 67).

74

https://arxiv.org/abs/1811.02883
https://arxiv.org/abs/2009.02381
https://arxiv.org/abs/2009.02381
https://arxiv.org/abs/2107.07983
https://github.com/phanrahan/magma
https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html

BIBLIOGRAPHY

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep residual
learning for image recognition». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778 (cit. on p. 67).

75

	List of Tables
	List of Figures
	Introduction
	Neural networks
	Training and inference
	Neural Network structure overview
	DNNs layers
	Convolution operation
	From convolution to GEMM
	General Matrix Multiplication

	Hardware acceleration
	Spatial Architectures
	Design-space parameters

	Systolic Arrays
	Systolic array overview
	Analytical model
	Systolic arrays in industry and academia
	Tensor Processing Unit
	Gemmini

	Tensor Systolic Array
	Accelerator/Model CoDesign
	Quantization
	Sparsity

	Hardware generation framework
	Systolic Array
	Data plane
	Control plane
	Control units

	Processing Element
	Scalar Processing Element
	Tensorial Processing Element

	Verification Suite
	Framework advantages
	Use case: Sparse Systolic Tensor Array
	Extension of the Framework

	Experimental Results
	Experimental Setup
	Design Space Exploration
	Resource occupation and power estimation with different data sizes
	Scalar systolic arrays of different sizes
	Fixed number of MACs per cycle
	S2TA: different data sparsity values

	Max Frequency Analysis
	Performance Analysis
	Analytical Model
	Experimental Results

	Conclusions
	Bibliography

