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Abstract 
Increasing concern about climate change, air pollution and petroleum resource depletion has 
led regulators to impose more stringent standards in the automotive industry, which accounts 
for 22% of global CO2 emissions. Battery Electric Vehicles (BEVs) are the most popular 
among the different alternatives proposed, but Fuel Cell Hybrid Electric Vehicles (FCHEVs) 
are regaining attention after a setback during the last decade. 

HEVs have two or more power sources that propel the vehicle. Consequently, Energy 
Management Strategies (EMS) play a key role in the performance of such vehicles because they 
seek to optimize power split between those sources to minimize fuel consumption. Modern 
EMSs consider additional criteria, such as increasing lifecycle of components to minimize 
Well-to-Wheel (WTW) emissions, thus leading to multi-objective optimization problems. 

In this context, the present work aims at implementing a real time controller that enables to 
concurrently optimize fuel consumption, lifetime of the stack and energy utilization rate, while 
guaranteeing a Charge-Sustaining working mode of the vehicle. For this purpose, an offline 
analysis is first conducted applying Dynamic Programming (DP) to different drive cycles 
(among which WLTP and FTP75 are the most realistic ones), to obtain optimal power split 
policies by minimizing an adequate cost function while meeting constraints associated to the 
dynamics of the system. Specifically, DP is implemented in Matlab using the DPM function 
developed at ETH Zurich and a quasi-static model of the vehicle based on the architecture and 
components sizing of the Toyota Mirai 2021, the state of the art of FCHEVs. The vehicle is 
modeled through its load parameters, considering only the longitudinal dynamics. Powertrain 
components such as electric motor, battery and fuel cell stack are modeled using an efficiency 
map obtained through a data-driven approach.  

Then, the Matlab Deep Learning Toolbox is used to design and train a Feedforward Neural 
Network (FFNN) using the data obtained from the previous stage, to approximate the DP 
behavior and enable on-board implementation.  

To test its effectiveness, the NN controller obtained was implemented on a more realistic HEV 
model developed in Simulink, using Simscape libraries. Results show that the NN controller 
outperformed a simple PID in terms of overall cost (fuel consumption and battery electric 
power), computed as Gallon Equivalent. It was also observed a slightly different behavior 
between the higher fidelity model and the quasi-static one. 
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1 Introduction  
1.1 Motivation 
In recent years, climate change has become a central topic of discussion both for scientists and 
government leaders. A decarbonization policy is being requested to different sectors, specially 
to the transport sector which currently relies almost completely on fossil fuels [1]. The main 
issue is that over 90% of the vehicles in use today are equipped with Internal Combustion 
Engines (ICE), which generate combustion wastes such as nitrogen oxides (NOx), carbon 
monoxides (CO) and unburned hydrocarbons (HC), all of which are toxic to human health. 
According to the International Energy Agency (IEA), the transport sector accounts for 22% of 
global CO2 emissions responsible for climate change, which is only behind the electricity and 
heat sector. In particular, passenger cars and trucks represent the 74% of the total transportation 
emissions. Figure 1.1(a) illustrates the contribution of different economic sectors to the global 
CO2 emissions, while Figure 1.1(b) shows such contribution by transport sector. 

 

 
Figure 1.1 Contribution to the global CO2 emissions by: (a) economic sector and (b)transport sector. International Energy 

Agency. IEA and IPCC (2014) Summary for Policymakers 

As a consequence, regulators are increasing the pressure to reduce emissions from road 
vehicles. For example, EU legislation sets targets to cut CO2 emissions from cars by 37.5 % 
and vans by 31 % by 2030 (EEA, 2019; EU, 2019). Therefore, it is undeniable that it is 
necessary to find sustainable alternatives for road transportation that pollute less and are less 
dependent on oil. Table 1.1 includes a classification of these alternatives [2]. 
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Energy Resources Energy Storage 
Device Energy Converter Hybrid Vehicles 

Solar/ Wind/ 
Hydroelectric/ 

Nuclear 

Battery/ 
Ultracapacitor Motor/ Generator HEV, Plugin HEV 

and Full EV 

Hydrogen Hydrogen Tank Fuel Cell, 
Motor/Generator FCHV 

N/A Hydraulic 
Accumulator 

Hydraulic 
Motor/Pump HHV 

N/A Air Tank Air 
Motor/Compressor Compressed air HV 

N/A Flywheel N/A FHEV 

Table 1.1 Alternatives Vehicle – Source [2] 

Among all these alternatives, the most promising ones are Battery Electric Vehicle (BEV) and 
Fuel Cell Hybrid Vehicle (FCHEV), both having zero Tank-to-Wheel emissions. At this point 
it is important to highlight the difference with the Well-to-Wheel emissions, which are strongly 
dependent on the methods used to produce Electricity/Hydrogen. Indeed, both are energy 
carriers and not primary energy sources as oil. 

Although BEVs are more popular at this time, FCHEVs enable longer driving range and require 
less refueling time. On the other hand, FCHEVs face barriers such as fuel cells costs and the 
need of H2 transportation and distribution infrastructures, still at the initial development stage 
[3]. 

BEVs and FCHEVs have a relatively higher manufacturing carbon footprint than ICEVs due to 
production of batteries, fuel cells and alternative powertrain components at the beginning of 
their life. However, the total GHG emissions produced along their life cycle fall below those 
produced by ICEVs with increasing lifetime mileage [4]. Consequently, Energy Management 
Strategies (EMS) play a fundamental role, focusing not only on fuel consumption minimization, 
but also guaranteeing a longer lifecycle for components such as Fuel Cell and Battery. An EMS 
refers to a high-level control strategy which determines the power split between different 
sources to meet the total load request. 
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1.2 Aims and Objectives  
In this context, the present work aims at designing and implementing a multi-objective EMS 
controller, considering both fuel consumption and Battery/FC lifetime in the optimization 
routine. The latter is achieved ensuring smooth variations of the currents provided by both 
components, to reduce stress and expand component life, and consequently decrease WTW 
emissions of FCHEVs.  

The following sequence of activities will be carried out to achieve this objective: 

1. Describe a quasi-static vehicle model, based on the 2021 Toyota Mirai 

2. Define an adequate cost function to consider the multi-objective problem of interest 

3. Generate a set of optimal policies using the Dynamic Programming (DP) algorithm as 
an offline optimization technique for different drive cycles 

4. Create a real-time NN controller using the data generated in the previous activity 

5. Test the effectiveness of the real-time NN controller implementing it on a Simscape 
dynamic model 

 

 

1.3 Thesis Outline 
The thesis is structured as follows. This chapter presented the formulation and motivation of 
the problem of interest, and also states the aims and objectives of the work. Chapter 2 presents 
a review of some concepts relevant to the development of the work, namely the architecture 
and modeling approaches of HEV powertrains, the operation of fuel cells, the dynamic 
programming (DP) algorithm and the use of feedforward neural networks to model dynamic 
systems. On the other hand, chapter 3 addresses the modeling of the vehicle and its components, 
and chapter 4 discusses Energy Management Strategies and its implementation in this work 
using a FFNN-based controller. At last, chapter 5 presents and analyzes the results of the work, 
specifically the optimal power split policy resulting from the DPM algorithm and the 
performance of the NN controller implemented on the Simscape model, while chapter 6 
presents the conclusions and possible future works. 
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2  Literature Review 
2.1 HEV Powertrain Architectures 
According to their powertrain, vehicles may be classified as single power source vehicles, such 
as conventional ICE vehicles, and hybrid ones, which have two or more power sources that 
propel the vehicle [5]. ICE vehicles have the advantage of delivering good performance and 
long operating ranges, but they have poor fuel economy, dissipate kinetic energy when braking 
and pollute the environment. In contrast, BEVs have high energy efficiency, recovering energy 
in braking phases, and are non-pollutant; however, they allow smaller driving ranges. Now, the 
two technologies may be combined to exploit the advantages of both and overcome the 
individual limitations. 

Since the complexity of the architecture grows as the number of power sources increases, hybrid 
vehicles generally consist of only two sources, namely Primary Power Source (PPS) and 
Secondary Power Source (SPS). According to the couplings between the different power 
components, the following architectures may be defined: 

a. Series (electrical coupling) 
b. Parallel (mechanical coupling) 
c. Compound (Series-Parallel) 
d. Complex 

 
Figure 2.1 HEV Architectures: (a) Series, (b) Parallel, (c) Compound and (d) Complex - Source [6] 

Figure 2.1 presents a graphical description of each of the HEV architectures. 



                                                                   Master’s Degree Thesis 
Mechatronic Engineering - A.Y. 2020/2021 

 

 
 
 

10 
 

In a Hybrid Electric Vehicle (HEV) an electrical powertrain, such as a battery, is present, and 
this power train allows a bidirectional flow of energy to capture regenerative braking energy 
that otherwise would be dissipated. 

The series architecture is considered in this work, because it is the most common one for 
FCHEV; this architecture has a Fuel Cell as PPS, instead of an ICE. In the series architecture, 
two electric power sources are connected through a DC bus to an Electric Motor (EM) that 
propels the vehicle. The fuel tank represents the unidirectional energy source, and the FC is the 
unidirectional energy converter. On the other hand, the battery pack is a bidirectional energy 
source connected to a DC-DC converter and works as an energy bumper. The Electric Motor is 
the only component with coupled mechanically to the transmission, and can operate both as a 
motor or as a generator when braking. A vehicle controller is necessary to control operation and 
power flows, specifically to determine the split from the two power sources to fulfill the load 
requirements of the EM. This topic will be addressed in chapter 4. 

In the parallel architecture, two mechanical sources of power are coupled together through a 
mechanical coupler. In this architecture, the connection is achieved using a “torque bus” [7]. 

The compound architecture is also referred to as Series-Parallel because it has features from the 
previous configurations, with the two sources connected both mechanically through the “torque 

bus” and electrically through the DC bus. 

 

2.2 Modeling Approaches 
As stated in Chapter 1, the objective of this work is to design a multi-objective EMS strategy. 
A fundamental step towards accomplishing such objective, is to build an appropriate model of 
different vehicle components. This could result in a complex task due to the multiple 
interconnected physical subsystems and the multiple scales of the different dynamics involved 
[7]. A basic modeling technique that only involves longitudinal dynamics can adequately 
represent the vehicle for the purpose of EMS design, avoiding to increase the order of 
complexity of the system to be controlled. In longitudinal dynamics the drive cycle given is 
divided into time steps, and the state of components is computed after each time interval. 

A class of models called “Backward-Facing” are often employed in powertrain optimization 
[8]. These models do not use a driver model; a speed trajectory is rather imposed on the vehicle 
model and the torque required at wheels is computed. Following a cascade, the requirements 
for each component are determined backwards (hence its name) using efficiency maps that are 
obtained through steady-state tests, thus leading to quasi-static models that ignore transient 
behaviors of components like inductance and inertia. Backward facing models are feasible for 
a first approximation when computing fuel consumption, which is faster compared to other 
approaches because it has a relatively low computational load due to the use of larger time 
steps. However, in backward facing models the power information flow is unidirectional, i.e., 
effort (torque) and flow (speed) have the same direction, and thus the system is noncausal. 
Figure 2.2 illustrates a backward facing model. 
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Figure 2.2 Backward-Facing Model - Source [6] 

The backward facing approach is not suitable when a more realistic model is needed, as in 
Hardware in the Loop HIL tests. In this case it is preferrable to use the “Forward-Facing” 

approach, in which a driver model is introduced, usually as a PI controller, and the speed 
trajectory is no longer imposed. The driver translates the desired speed and acceleration into 
pedal commands, which further generates a request in terms of the motor torque required to 
track the desired speed trajectory. As opposed to backward facing, since the speed is not 
imposed, there may be a small error between desired and actual velocity, and the PI controller 
is in charge of diminishing this error. The forward-facing model is illustrated in Figure 2.3. 

 
Figure 2.3 Forward-Facing Model - Source [6] 

Note that the forward-facing use dynamic models, as opposed to the backward facing approach 
which was defined using quasi-static models. In the forward-facing approach the information 
flow is bidirectional, i.e., the actual output is fed back. Therefore, they give a better overview 
of the physical system for its use in a real application, also capturing the transient states and 
making it suitable for designing control systems and for implementing HIL tests. These more 
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realistic results come at the cost of a more complex model due to the presence of several state 
equations, which involves a more complex computation and thus a slower simulation because 
smaller time steps are required for solving this model numerically. 

A backward-facing model is used in the present work, first to carry out a preliminary analysis 
of fuel consumption, and then for running the dynamic programming (DP) algorithm, since its 
quasi-static nature is better suited for this purpose. Then, a forward-facing model is used for 
implementing the feedback controller, to obtain a better representation of its hypothetical 
application on a real vehicle. 

 

2.3 Fuel Cell Operating Principles 
Fuel Cells transform into electrical energy the chemical energy generated by a reaction between 
hydrogen (H2) coming from the fuel tank, and oxygen taken from the external air. The behavior 
of fuel cells is similar to the behavior of batteries, but battery capacity is determined by the 
quantity of chemicals that it holds. In contrast, in fuel cells chemicals are supplied from external 
reservoirs, and their capacity depends only on the availability of reactants, i.e., the fuel tank 
capacity. The operating principle of a fuel cell is illustrated in Figure 2.4. 

 

 
Figure 2.4 Diagram of a PEM Fuel Cell 

The H2 is oxidized at the anode, realizing electrons that pass through the load and reach the 
cathode, where the oxygen reduction takes place. This behavior is represented as 

 𝐻2 → 2𝐻+ + 2𝑒−                  1
2
𝑂2 + 2𝐻+ + 2𝑒− → 𝐻20 2.1 
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When there is no current flow, the cell has an open-circuit voltage defined by the ratio of the 
free energy of the cell reaction and Faraday constant 

 𝑉𝑜𝑐 = −∆𝐺 𝑛𝐹⁄  2.2 

where 𝑛 is the number of electrons involved. Under standard conditions and using hydrogen as 
fuel, 𝑉𝑜𝑐 = 1.229 𝑉, while when drawing current from the cell voltage 𝑉𝑜𝑐 is typically 0.6 −

0.8 𝑉 depending on current density [9]. For this reason, it is necessary to use several cells 
connected in series, which are known as fuel cell stack. The polarization curve shown in Figure 
2.5 is used to represent the relationship between the DC voltage and the current density, 
measured in 𝐴/𝑐𝑚2. 

 
Figure 2.5 Typical polarization curve for PEM fuel cells – Source [10]  

The losses in the voltage-current curve are divided in different regions. In the initial voltage 
drop, the losses are due to activation limitations at electrodes. Then the ohmic losses, which are 
due to the resistance of the electrodes to the flow of electrons, have a major role in the central 
quasi-linear region. Finally, concentration losses due to the change in reactant concentration 
are dominant in the high current density region. 

To work properly, a fuel cell stack needs the following auxiliary sub-systems and components: 

• Air circulating pump 
• Coolant circulating pump 
• Ventilation fan 
• Hydrogen circulating pump 
• Controller 
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The air circulating pump is the component with the greatest impact on the power drawn from 
the fuel cell and can account for 10% of the total output. Then the efficiency of the overall 
resulting system can be computed as 

 
𝜂𝑠𝑡𝑎𝑐𝑘 = 

𝑃𝑠𝑡𝑎𝑐𝑘 − 𝑃𝑎𝑢𝑥

𝑚𝐻2 𝐿𝐻𝑉
 2.3 

 

where 𝑚𝐻2 represents the mass of hydrogen consumed and LHV is the Lower Heating Value. 
The Higher Heating Value, which also includes the vaporization heat, can be used instead 
depending on the convention. 

Table 2.1 shows many different types of fuel cell that are available depending on the typical 
operating temperature and the electrolyte type [11]. 

Cell System Operating Temperature °C Electrolyte 

PEMFC 60-100 Solid 

AFC 100 Liquid 

PAFC 60-200 Liquid 

MCFC 500-800 Liquid 

SOFC 1000-1200 Solid 

DMFC 100 Solid 

Table 2.1 Different Fuel Cell Technologies – Source [11] 

All major types use hydrogen as fuel, except the DMFC which uses methanol. In the automotive 
sector, there is a shared consensus that Proton Exchange Membrane Fuel Cells PEMFCs are the 
most suitable technology for road transport applications. Consequently, only this type is 
considered in the present work. 

A PEMFC uses a solid polymer membrane, also referred to as Nafion (Dupont®), as the 
electrolyte. The membrane is acidic, and thus the ions transported are hydrogen ions 𝐻+ or 
protons. The typical structure of a PEMFC is shown in Figure 2.6. The membrane is coated 
with a catalyst on a carbon support. The catalyst, which constitutes the electrode, is in direct 
contact with the diffusion layer and the electrolyte to maximize the interface. The ensemble of 
electrolyte, catalyst layers and gas diffusion layers are known as Membrane-Electrode 
Assembly (MEA). 
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Figure 2.6 An exploded view of a PEMFC 

There are three critical issues with a PEMFC. The first is the realization of the catalyst, because 
noble metals are required due to the low operating temperature and the acidic nature of the 
electrolyte. The second problem concerns water management, because the polymer membrane 
must be kept humid in order to function properly: if it is excessively wet the pores of the 
diffusion layers are blocked and the reactant cannot reach the catalyst, and if it is excessively 
dry there are not enough acid ions to transport the protons; an external humidifier is usually 
employed to keep correct humidity levels, running an excess of air. The last critical point 
concerns poisoning by the platinum catalyst, which has high performance at the expense of a 
stronger affinity for CO and sulfur products than for oxygen. Poisoning affects fuel cell 
performance by binding to the catalyst and preventing hydrogen and oxygen from reaching it. 

 

2.4 Fuel Cell Vehicles 
The use of PEMFCs in EV and HEV applications has some distinct advantages, namely 

• Low temperature operation (60-100 °C) which ensures fast start-up suitable for HEVs 

• Highest power density (0.35-0.6 𝑊/𝑐𝑚2 ) compared to other fuel cell technologies  

• The solid electrolyte does not change and does not evaporate  

• Resistant to corrosion as the only liquid is water  

• Oxidant is usually air from outside 

All these advantages come at a cost in terms of expensive metals and membranes, and a high 
poisoning probability. 

Fuel cell vehicles are seen by many as the ultimate solution to increasing environmental 
problems. However, running solely on fuel cells has some disadvantages, such as a heavy power 
unit due to the low power density of the overall system and slow response.  
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Hybridization is used to overcome these problems, by coupling the fuel cell system primary 
power source with a high-voltage battery that supports the system during power peaks and 
heavy acceleration, and stores energy from regenerative braking. Due to its use in peaks, it is 
also called Peaking Power Source. The battery can also store the excess energy when the fuel 
cell power is higher than the power demanded by the load. Thus, if an appropriate control 
strategy is used there is no need to charge the battery externally in this type of configuration. A 
typical FCHEV configuration is shown in Figure 2.7 [12].  

 
Figure 2.7 Typical FCHEV configuration 

At present stage, PEMFC are much more expensive than ICEs, and many improvements need 
to be made before having a competitive price for this technology. Another issue regards the 
hydrogen fueling infrastructure: although USA and Europe have made significant investments 
in recent years, there is still very little infrastructure available worldwide. In theory, 
hydrocarbon fuel could be stored in a tank and then converted to hydrogen in an on-board 
reformer. However, many tests have been conducted and it was found that it is easier and more 
efficient to feed the required hydrogen directly from an external source into a pressurized tank 
in the vehicle to reduce power losses. This method is known as the non-reforming method.  

If FCHEVs are compared with HEVs that use ICE as their primary energy source, the first thing 
to note is that the former produces no carbon emissions or other pollutants, it is recalled that 
the analysis here focuses only on TTW emissions. On the other hand, fuel cells also have better 
efficiency; indeed, the PEMFC efficiency is in the 32-38% range considering the hydrogen 
HHV and shows the greatest efficiency at low power levels, while ICEs have a low efficiency 
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on the road, about 20-25%, which is even smaller considering total efficiency of the process. It 
should also be noted that there are many ways to produce hydrogen from renewable resources 
that could lead to zero emissions, while petroleum resources are running out.  

Compared to pure BEVs, both have zero emissions, but fuel cells offer additional advantages 
such as a longer range and a much faster refueling time compared to the time necessary to 
recharge the battery, which may take hours. In addition, the fuel cell can warm up faster in cold 
weather conditions and reach full power in less time. 

A comparative analysis of the costs, that still constitute the biggest obstacle, was carried out in 
[13] and it is summarized in Table 2.2. 

 

Total Cost 2010 2030 
Optimistic 

2030 
Pessimistic 

2030     
Average 

ICE 2200$ 2400$ 2530$ 2465$ 

FCEV 47400$ 7000$ 14060$ 10530$ 

BEV 26700$ 6200$ 9530$ 7865$ 

FCHEV 19700$ 4000$ 7330$ 5665$ 

Table 2.2 Costs for different powertrains – Source [13] 

 

2.5 Optimization Algorithm: Dynamic Programming 
2.5.1 Philosophy of the method 

Dynamic programming (DP) was developed by R. E. Bellman at the end of the 1950s. Dynamic 
programming is based on Bellman principle of optimality, which states that: 

“An optimal policy has the property that regardless of the initial states and decisions that drove 
the system to the current state, the remaining decisions must constitute an optimal policy with 
respect to such current state” [14]. 

This principle limits the number of potentially optimal policies that should be taken into 
consideration, and also implies that optimal control policies must be determined by moving 
backward from the final state [15]. 

Dynamic Programming may be applied to solve optimal control problems involving continuous 
or discrete nonlinear time-varying systems, with time-varying constraints on the inputs and 
states. The application of the principle of optimality to solve an optimal control problem is now 
illustrated [15]. 

Consider the discrete nonlinear time-varying system described by 
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 𝑥𝑘+1 = 𝐹𝑘(𝑥𝑘, 𝑢𝑘) 2.4 

 

and the associated performance index 

 
𝐽0(𝑥0) = 𝜙𝑁(𝑁, 𝑥𝑁) + ∑ ℎ𝑘(𝑥𝑘, 𝑢𝑘)

𝑁−1

𝑘=0

 2.5 

where [0, 𝑁] is the time interval of interest. Note that 𝐽i(𝑥𝑖) depends on the initial time and 
state. 

It is desired to find the control sequence {𝑢0
∗ , 𝑢1

∗, ⋯ , 𝑢𝑁−1
∗ } using the principle of optimality. 

Suppose that both the optimal control sequence {𝑢𝑘+1
∗ , ⋯ , 𝑢𝑁−1

∗ } and the optimal cost 
𝐽𝑘+1
∗ (𝑥𝑘+1) from time 𝑘 + 1 to final time 𝑁 have been computed, for all possible states 𝑥𝑘+1.  

If the arbitrary control input 𝑢𝑘 is now applied at time 𝑘 and taking into account the known 
optimal control sequence {𝑢𝑘+1

∗ , ⋯ , 𝑢𝑁−1
∗ }, the resulting cost from time 𝑘 to time 𝑁 is given by 

 ℎ𝑘(𝑥𝑘, 𝑢𝑘) + 𝐽𝑘+1
∗ (𝑥𝑘+1) 2.6 

 

According to Bellman principle of optimality, the optimal cost from time 𝑘 to time 𝑁 is 
calculated as 

 𝐽𝑘
∗(𝑥𝑘) = min

𝑢𝑘

[ℎ𝑘(𝑥𝑘, 𝑢𝑘) + 𝐽𝑘+1
∗ (𝐹𝑘(𝑥𝑘, 𝑢𝑘))] 2.7 

 

and the optimal control 𝑢𝑘
∗  is the one that minimizes (2.7). Equation (2.7) is the principle of 

optimality for discrete time systems and enables to optimize over only one control vector at a 
time by going backward from 𝑁. This equation is known as functional equation of dynamic 
programming and constitutes the basis for the computer implementation of the DP algorithm 
[15]. Additional constraints may be included, such as requiring that the states and inputs belong 
to particular admissible sets. 

 

2.5.2 The dpm function: A Matlab implementation of the DP algorithm.  

The dpm function developed by Sundström is an efficient Matlab implementation of the DP 
algorithm used in this work. The type of optimal control problem that can be solved using the 
dpm function is now formulated [16]. 

Consider the discrete time-varying nonlinear system described by the state equation 

 𝑥𝑘+1 = 𝐹𝑘(𝑥𝑘, 𝑢𝑘), 𝑘 = 0,1,⋯ ,𝑁 − 1 2.8 
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where 𝑥𝑘 ∈ 𝒳𝑘 is the state variable and 𝑢𝑘 ∈ 𝒰𝑘 is the control signal. In addition, define the 
control policy π 𝜖Π 

 π = {𝜆0, 𝜆1, ⋯ , 𝜆𝑁−1} 2.9 

where Π is the set of all admissible policies, and also define the discretized cost function 

 
𝐽π(𝑥0) = 𝑔𝑁(𝑥𝑁) + 𝜙𝑁(𝑥𝑁) + ∑[ℎ𝑘(𝑥𝑘 , 𝜆𝑘(𝑥𝑘)) + 𝜙𝑘(𝑥𝑘)]

𝑁−1

𝑘=0

 2.10 

given π and the initial state 𝑥(0) = 𝑥0, where 𝑔𝑁(𝑥𝑁) is the final cost, ℎ𝑘(𝑥𝑘, 𝜆𝑘(𝑥𝑘)) is the 
cost of applying the control signal 𝜆𝑘(𝑥𝑘) at state 𝑥𝑘, and 𝜙𝑁(𝑥𝑁) and 𝜙𝑘(𝑥𝑘) are penalty 
functions to guarantee that the final state 𝑥𝑁 and the intermediate states 𝑥𝑘 , 𝑘 = 0,1,⋯ ,𝑁 − 1, 
respectively, fulfil the corresponding constraints. The optimal control policy π𝑂 is the one that 
minimizes 𝐽π(𝑥0). 

According to the principle of optimality, dpm proceeds backward in time to evaluate the cost 
function. In order to reduce the computational cost, equally spaced input and state grids are 
defined and a linear interpolation scheme is used to avoid evaluating the model when 
proceeding backwards. In other words, in the backward pass the following cost-to-go functions 
are evaluated in the discretized state-time 

i. Step for calculating the end cost 

 𝒥N(𝑥0) = 𝑔𝑁(𝑥𝑁) + 𝜙𝑁(𝑥𝑁) 2.11 

ii. Step for calculating intermediate costs for k=N-1, ⋯,0 

 𝒥k(𝑥
𝑖) = min

𝑢𝑘∈𝒰𝑘

{ℎ𝑘(𝑥𝑖 , 𝑢𝑘) + 𝜙𝑘(𝑥
𝑖) + 𝒥k (𝐹𝑘(𝑥

𝑖 , 𝑢𝑘))} 2.12 

The optimal control is determined as the argument that minimizes the right-hand side of (2.12) 
for each 𝑥𝑖 at time index 𝑘 of the discretized state-time space [16]. 

The result of the backward pass is an optimal control signal map, which is further used in the 
forward simulation of model (2.8) starting from the initial state 𝑥0, to find the optimal control 
signal and the optimal state trajectory. In the optimal control signal map, the control signal is 
only given at discrete points of the state-space grid; therefore, an interpolation must be carried 
out when the state does not coincide with the points in the grid. The complexity of the DP 
algorithm is exponential in the number of state and input variables [16]. 

- Syntax 

The syntax and commands for using the dpm function to solve the optimal control problem 
stated above are described hereafter. The dpm function is called by means of the instruction 
[16]. 

[res dyn] = dpm(fun,par,grd,prb,options); 
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where fun is a handle to the model function, par is a user defined parameter structure passed 
to the model, grd is the grid structure, prb is the problem structure, and options is the 
option structure. In general, the output of the dpm function are two structures representing the 
output of the dynamic programming algorithm and the signals from forward simulation of the 
model using the optimal control input map.  

- Inputs 

Some of the structures required as inputs by the dpm function are: 

1. prb structure: Gives the parameters necessary to define the problem. The parameters 
included in this structure are: 

2. grd structure: Contains all the information about the state and input grids and 
constraints. 

Nx{.} number of grid points in state grid 

Xn{.}.lo lower limits for each state (vector for time-variant or scalar for fixed) 

Xn{.}.hi upper limits for each state (vector for time-variant or scalar for fixed) 

XN{.}.lo final state lower constraints 

XN{.}.hi final state upper constraints 

X0{.} initial value (only used in forward sim) 

Nu{.} number of grid points in input grid 

Un{.}.lo 
(optional) upper limits for each input (vector for time-varying or scalar for 
fixed) 

Un{.}.hi 
(optional) upper limits for each input (vector for time-varying or scalar for 
fixed) 

  
  
  
  
  
  

Ts time step (is passed to the model function) 

N number of time steps in problem (integer that defines the problem length) 

N0 (optional) start time index (only used in forward simulation) 

W{.} (optional) vectors with length N containing time varying data for the model 

  



                                                                   Master’s Degree Thesis 
Mechatronic Engineering - A.Y. 2020/2021 

 

 
 
 

21 
 

3. options structure: Defines how to use the algorithm. 

HideWaitbar hide waitbars (0/1) 

Warnings show warnings (0/1) 

SaveMap save cost-to-go map (0/1) 

UseLine use boundary line method (0/1) 

FixedGrid (used if UseLine=1) using the original grid as specified in grd or adjust 
the grid to the boundary lines (0/1) 

Iter (used if UseLine=1) maximum number of iterations when inverting 
model 

Tol (used if UseLine=1) minimum tolerance when inverting model 

InfCost a large cost for infeasible states (I=1) 

Minimize (optional) minimizing (or maximizing) cost function (0/1) default is 
minimizing 

InputType (optional) string with the same number of characters as number of inputs. 
Contains the character ’c’ if input is continuous or ’d’ if discrete (default 

is all continuous). 

gN{1} (optional) Cost matrix at the final time (must be of 
size(options.gN{1}) = [grd.Nx{1} grd.Nx{2}... 

grd.Nx{.}]) 

 

- Outputs 

On the other hand, the outputs of the dpm function are two structures, namely res and dyn.  

1. res structure: Contains the results from the forward simulation of the model when 
applying the optimal control input map. 

X{.} state trajectories 

C{.} cost trajectory 

I infeasible vector (problem is not solved if there are nonzero elements) 

signals structure containing all the signals that were saved in the model function 
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2. dyn structure: Associated with the DP algorithm, the optimal cost-to-go, and the 
optimal control input map. When the boundary line method is used the dyn structure 
also contains the boundary lines (with the states, inputs, and costs). 

B.hi Xo,Uo{.},Jo contains the cost, input, and state for the upper boundary line 

B.lo Xo,Uo{.},Jo contains the cost, input, and state for the lower boundary line 

Jo{.,.} optimal cost-to-go (indexed by input number and time index) 

Uo{.,.} optimal control input (indexed by input number and time index) 

  

 

The dpm function can be also used only for forward simulation, when the DP output structure 
dyn is precalculated. This can be very useful when changing the initial condition or when 
increasing the starting time N0 of the problem. To call the dpm function when the DP output 
structure is already calculated use 

res = dpm(dyn,fun,par,grd,prb,options); 

- Model definition 

In general, the model function should have the format: 

function [X, C, I, signals] = mymodel(inp,par) 

Its inputs are the 

1. inp structure 

X{.} current states (n+m dimensional matrix form depending on the number of inputs and 
state variables) 

U{.} current inputs (n+m dimensional matrix form depending on the number of inputs 
and state variables) 

W{.} current time-varying data (scalar) 

Ts time step 

 

2. par structure, which can contain any parameters defined by the user, which are 
necessary in the model function.  
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On the other hand, the outputs of the model are 

X{.} resulting states after applying inp.U{.} at inp.X{.} (same size as 
inp.X{.}) 

C{.} resulting cost of applying inp.U{.} at inp.X{.} (same size as 
inp.X{.}) 

I set with infeasible combinations (feasible=0, infeasible=1) (same size as 
inp.X{.}) 

signals structure with user defined signals (same size as inp.X{.}) 

 

2.6 Modeling using Neural Networks 
Neural networks (NN) have demonstrated to be an excellent alternative for modeling dynamic 
systems, due to their capability of approximating any function with arbitrary degree of accuracy 
[17] and to the excellent performance they exhibit for analyzing, extracting information, and 
identifying models from large amounts of data. 

2.6.1 Definition and elements of a neural network 

Nowadays, neural networks are part of the Machine Learning discipline. They were initially 
developed during the 1940s, trying to mimic the behavior of the human brain. Different 
definitions of neural networks have been given in the literature ([16],[19],[20]). A neural 
network consists of various nodes (also known as units or neurons) arranged in layers, which 
are connected through weights. Neural networks are capable of learning from data through a 
training process, during which the weights are adjusted in an ordered manner to successfully 
achieve a desired behavior. Among other tasks, neural networks have been successfully used to 
identify models of processes with complex dynamics; in general, this complexity is related to 
features such as nonlinearity, large number of variables, high dimension, uncertainty, among 
others, or it may simply be impractical to determine models based on physical principles. 
Indeed, neural networks are capable of approximating any functional relationship between 
variables, with arbitrary degree of accuracy[17]. 

A neural network consists of the following elements: 

a) Architecture: specifies the number of layers, the size of each layer and how these layers 
are connected, thus defining how the information flows through the network. Various 
architectures have been developed, namely feedforward, radial basis functions, support 
vector machines and recurrent neural networks, among others. Only feedforward neural 
networks are described in this work, since that is the architecture chosen here for 
modeling the dynamic systems of interest. 

b) Transfer function: specifies how to calculate the output values of the NN as a function 
of its input values. 
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c) Training or learning algorithm specifies how the weights are adjusted during the training 
process. The learning algorithms may be classified in (i) supervised, in which the target 
values are known, or (ii) unsupervised, in which the target values are not given, and the 
NN seeks to define clusters or extract probabilistic features from the data. 

 

2.6.2 Feedforward neural network (FFNN) 

a) Architecture of the FFNN 

It consists of three types of layers of nodes connected in sequence: (i) one input layer, which 
receives the inputs to the NN, (ii) one output layer, which gives the output of the NN and (iii) 
one or more hidden layers, located between the input and output layers. The information flows 
unidirectionally, from input to output layer. Note that the size of the input and output layer are 
established by the configuration of the data vectors. On the other hand, the number and size of 
the hidden layers should be chosen by the designer. Regarding this issue, a theorem by 
Kolmogorov [21] states that one hidden layer is enough to achieve arbitrary precision accuracy; 
it is recommended to use various hidden layers when it is necessary to reduce the size of such 
layers for implementation purposes. 

Figure 2.8, below, shows a FFNN with 𝑛 input nodes, 𝑚 output nodes, and 𝑝 + 2 layers, namely 
one input layer, 𝑝 hidden layers and one output layer. Each node of a layer is connected to all 
nodes of the subsequent layer, and each connection has associated a weight which is adjusted 
during the training process. Since the input nodes perform no processing on the input values 
(they just distribute them to the first hidden layer), the input layer will be denoted with the 
superscript 0. A bias is included for hidden and output nodes. Let us define as 𝑾(𝑖) (𝑖 =

0,⋯ , 𝑝 + 1) the matrix that contains the weights between layers 𝑖 − 1 and 𝑖, which have 𝐽 and 
𝐾 nodes, respectively. Then 

 

𝑾(𝑖) =

[
 
 
 
 𝑤11

(𝑖) 𝑤12
(𝑖)

𝑤21
(𝑖) 𝑤22

(𝑖)

⋯ 𝑤1𝐽
(𝑖)

⋯ 𝑤2𝐽
(𝑖)

⋮ ⋮

𝑤𝐾1
(𝑖) 𝑤𝐾2

(𝑖)
⋱ ⋮

⋯ 𝑤𝐾𝐽
(𝑖)

]
 
 
 
 

∈ ℝ𝐾×𝐽 2.13 

where 𝑤𝑘𝑗
(𝑖) represents the weight that connects node 𝑗 in layer 𝑖 − 1 and node 𝑘 in layer 𝑖. On 

the other hand, let us define as 

 

𝒃(𝑖) =

[
 
 
 
 𝑏1

(𝑖)

𝑏2
(𝑖)

⋮

𝑏𝐾
(𝑖)

]
 
 
 
 

 2.14 

the vector containing the biases of units in layer 𝑖. 
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Figure 2.8 FFNN with 𝑝 + 2 layers: one input layer, 𝑝 hidden layers and one output layer. 

b) Transfer function of the FFNN 

As stated before, the input units do not carry out any processing, they only receive the inputs 
and distribute it to the units in the hidden layer. On the other hand, the unit shown in Figure 2.9 
is a representation of the processing performed by hidden and output units, whose output 𝑦 is 
calculated as 

 
Figure 2.9 Hidden and output units of the FFNN of Figure 2.8 

 𝑦 = 𝑓(𝑏 + 𝑥1𝑤1 + 𝑥2𝑤2 + ⋯+ 𝑥𝑛𝑤𝑛) 2.15 

where 𝑥𝑖  (𝑖 = 1,⋯ , 𝑛) are the inputs, 𝑤𝑖 (𝑖 = 1,⋯ , 𝑛) are the corresponding weights, 𝑏 is the 
bias of the unit and 𝑓 is the activation function of the unit. Note that the bias is represented as 
a weight whose input is fixed at 1. Therefore, defining the input vector 𝒙 =
[1 𝑥1 𝑥2     ⋯ 𝑥𝑛]𝑇 and the weight vector 𝒘 = [𝑤0 𝑤1 𝑤2     ⋯ 𝑤𝑛]𝑇, equation 
(2.15) may be rewritten as 

 𝑦 = 𝑓(𝒙𝑇𝒘) 2.16 
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Common activation functions for the output units are the rectified linear unit (ReLU), the 
hyperbolic tangent, the sigmoid and the identity. On the other hand, the activation function of 
the hidden units is required to be nonlinear, and therefore the identity function cannot be chosen. 
The mathematical definition of these functions, and their corresponding derivatives are shown 
in Table 2.3. 

 
Figure 2.10 Common activation functions: (a) ReLU, (b) hyperbolic tangent, (c) sigmoid and (d) identity 

 

 

Activation function Mathematical definition Derivative 

ReLU 𝑓(𝑢) = {
0  𝑓𝑜𝑟 𝑢 < 0 
𝑢  𝑓𝑜𝑟 𝑢 > 0

 𝑓(𝑢) = {
0  𝑓𝑜𝑟 𝑢 < 0 
1  𝑓𝑜𝑟 𝑢 > 0

 

hyperbolic tangent 𝑓(𝑢) = 𝑡𝑎𝑛ℎ(𝑢) 𝑓′(𝑢) = 𝑠𝑒𝑐ℎ2(𝑢) 

sigmoid 𝑓(𝑢) =
1

1 + 𝑒−𝑢
 𝑓′(𝑢) =

𝑒−𝑢

(1 + 𝑒−𝑢)2
 

identity 𝑓(𝑢) = 𝑢 𝑓′(𝑢) = 1 

Table 2.3 Mathematical definition and derivative of the activation functions 
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Then, if the input vector 

 𝑿 = [𝑋1 𝑋2 𝑋3     ⋯ 𝑋𝑛]𝑇 2.17 

 

is applied to the FFNN of Figure 2.8, its output vector 

 �̂�(𝑝+1) = [�̂�1
(𝑝+1)

�̂�2
(𝑝+1)

⋯ �̂�𝑚
(𝑝+1)] 2.18 

can be calculated by means of the recursion 

 �̂�(1) = 𝑓1(𝑾
(1)𝑿 + 𝒃(1))

�̂�(2) = 𝑓2(𝑾
(2)�̂�(1) + 𝒃(2))

⋮
�̂�(𝑝) = 𝑓𝑝(𝑾(𝑝)�̂�(𝑝−1) + 𝒃(𝑝))

�̂�(𝑝+1) = 𝑓𝑝+1(𝑾
(𝑝+1)�̂�(𝑝) + 𝒃(𝑝+1))

 2.19 

where 𝑓𝑖 represents the activation function of the units of layer 𝑖 and �̂�(𝑖) is the output vector of 
the same layer. 

c) Training algorithm 

Various algorithms have been developed for training FFNNs. The backpropagation training 
algorithm, developed by Rummelhart et al. in 1986, constituted a significant step that boosted 
the research and practical applications of feedforward neural networks. The backpropagation 
algorithm uses the steepest descent method, one of the most ancient minimization techniques, 
to adjust the NN weights to minimize the mean square estimation error over the target values 
of the outputs in the training set. The steepest descent method is an iterative procedure whose 
principle is very simple: standing at any point 𝑎 of the function being minimized, the subsequent 
point 𝑏 is determined moving a small step in the direction opposite to the gradient at 𝑎, which 
represents the direction along which the function decreases at a faster rate. 

The backpropagation algorithm has two versions, namely off-line and on-line. In the former the 
weights are updated after a complete pass through all training vectors, while in the latter the 
weights are updated after each training vector is presented. In this work, the off-line version 
was used for training all neural networks; hence, only this version is described here.  

Given a set of 𝑆 training vectors 

 Input Output  

 𝑋1
1 𝑋2

1     ⋯ 𝑋𝑛
1 

𝑋1
2 𝑋2

2     ⋯ 𝑋𝑛
2 

⋮ 

𝑋1
𝑆 𝑋2

𝑆      ⋯ 𝑋𝑛
𝑆 

𝑌1
1 𝑌2

1     ⋯ 𝑌𝑚
1  

𝑌1
2 𝑌2

2     ⋯ 𝑌𝑚
2  

⋮ 

𝑌1
𝑆 𝑌2

𝑆     ⋯ 𝑌𝑚
𝑆  
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the objective function to be minimized in the off-line version of the backpropagation algorithm 
is given by 

 
𝐸 =

1

2
∑∑(𝑌𝑗

𝑠 − �̂�𝑗
𝑠)

2
𝑚

𝑗=1

𝑆

𝑠=1

 2.20 

where superscript 𝑠 identifies the training vector and subscript 𝑗 refers to the output unit, 𝑌𝑗𝑠 is 
the target value of the 𝑗th output in the 𝑠th training vector, and �̂�𝑗𝑠 is the network estimate for 
𝑌𝑗

𝑠.  

For the FFNN of Figure 2.8, the procedure to implement the backpropagation algorithm is the 
following: Set matrix 𝚫(𝑖) = 𝟎, where the term ∆𝑖𝑗

(𝑖) will be further used to update weight 𝑤𝑘𝑗
(𝑖) 

that connects node 𝑗 in layer 𝑖 − 1 and node 𝑘 in layer 𝑖. Note that 𝚫(𝑖) has the same size as 
𝑾(𝑖). For 𝑠 = 1,⋯ , 𝑆 

• Set �̂�(0,𝑠) = 𝑿(𝑠) = [𝑋1
𝑠 𝑋2

𝑠      ⋯ 𝑋𝑛
𝑠]𝑻 

• Perform forward propagation according to equations (2.19), to compute �̂�(𝑖,𝑠) for              
𝑖 = 1,⋯ , 𝑝 + 1 

• For the output layer, compute the error term 𝜹(𝑝+1,𝑠) = �̂�(𝑝+1,𝑠) corresponding to the s-
th training vector 

• Perform back propagation of the error terms corresponding to the s-th training vector, 
computing 𝜹(𝑝,𝑠), 𝜹(𝑝−1,𝑠), ⋯ , 𝜹(1,𝑠) given by the following equation (2.21) where ⨀ is 
the pointwise product and 𝑓𝑖′ is the derivative of the activation function of layer 𝑖 

 𝜹(𝑖,𝑠) = [𝑾(𝑖)]
𝑇
𝜹(𝑖+1,𝑠)⨀𝑓𝑖

′(�̂�(𝑖,𝑠))   for 𝑖 = 1,⋯ , 𝑝 2.21 

   

• Compute 

 𝚫(𝑖) = 𝚫(𝑖) + 𝜹(𝑖+1,𝑠)[�̂�(𝑖,𝑠)]
𝑇
 2.22 

   

• Update weight matrix 𝑾(𝑖) between layers 𝑖 − 1 and 𝑖 by means of equation (2.23) 
where 𝑡 denotes the epoch number and 𝜂 is the learning rate. Remember that one epoch 
is a pass through all vectors in the training set. 

 
𝑾(𝑖)(𝑡) = 𝑾(𝑖)(𝑡 − 1) − 𝜂 ∙

1

𝑆
∙ 𝚫(𝑖) 2.23 
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In general, the backpropagation algorithm converges slowly. As an alternative to overcome this 
drawback, different variants of the backpropagation algorithm [22] have been developed which 
use more efficient minimization approaches.  

One of these variants is the Levenberg-Marquardt algorithm [22], which combines steepest 
descent and Newton methods. Newton method is another iterative minimization procedure, in 
which a second order approximation of the error surface is determined at current point 𝑎 using 
a Taylor series expansion (truncated to eliminate terms of order greater than 2), and the 
subsequent point 𝑏 is equal to the point corresponding to the minimum of such quadratic 
approximated surface. In the Levenberg-Marquardt iterative algorithm, the update term is a 
linear combination of the updates of the steepest descent and Newton methods. In particular, 
the update of the steepest descent method is weighted by a variable term 𝜇 that decreases as the 
search progresses; in other words, the steepest descent method dominates when the search is 
far from the minimum, while Newton method predominates when the search is approaching the 
minimum. 

All gradient-based methods, such as the backpropagation and Levenberg-Marquardt 
algorithms, are susceptible of getting trapped in local minima. A way to cope with this issue is 
to carry out various trainings processes with different initial weights and select the one that 
exhibits the best performance. 

An important aspect that should be taken into account during the NN training process is to avoid 
overtraining. An overtrained network yields an outstanding performance on the training set, but 
its performance degrades significantly for data vectors outside such set. In this case it is 
considered that the NN has “memorized” the training set but has not captured the relationship 
between input and output variables, which is the ultimate objective. An NN with good 
“generalization capability” is one that has effectively “learned” the underlying relationship 

between input and outputs. 

A common practice to avoid overtraining involves splitting the available data in three sets: 

i. Train set: is used to train the NN 

ii. Validation set: is used to determine when to stop the training process. 

iii. Test set: is used to measure the generalization capability of the NN. 
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Figure 2.11 Typical behavior of the error on the training (solid) and validation (dotted) sets during a training process 

 

Figure above shows typical error curves on the training and validation sets during a training 
process. In general, such process starts with a set of random weights; therefore, it is expected 
that both errors are high during initial training epochs. As training evolves in time, the error of 
the NN on both sets progressively decreases until a point in which the error on the validation 
set reaches a minimum: at this epoch the training should be stopped because the NN has attained 
the best performance on the validation set, and therefore the best generalization capability. 
Further training beyond this epoch will result in a training error that keeps decreasing, i.e., the 
network is starting to “memorize” the training set. 

Figure 2.11 illustrates the ideal stopping situation of a training process, known as validation 
stop. However, gradient based algorithms may get stalled in local minima; when this happens, 
the errors may tend to remain constant or decrease very slowly even after many epochs have 
elapsed, and the training process may take much longer than desired. To avoid this undesirable 
situation, additional stopping criterion are established, such as (i) maximum number of epochs, 
(ii) a minimum value of MSE on the training set and (iii) a minimum variation of the MSE 
between two consecutive epochs.  

 

Prior to training the NN, all elements in the input and target vectors in the training set are 
linearly normalized to span the interval [−1,1], using the formula 

 
𝜃 = −1 + 2

Θ − Θ𝑚𝑖𝑛

Θ𝑚𝑎𝑥 − Θ𝑚𝑖𝑛
 2.24 

where Θ and 𝜃 represent the original and normalized values, respectively, and Θ𝑚𝑖𝑛 and Θ𝑚𝑎𝑥 
are the corresponding lower and upper bounds, respectively. The purpose of normalizing the 
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data is to have all variables vary in the same range. Then, the corresponding denormalized 
values can be obtained by means of the formula 

 
Θ = (𝜃 + 1)

Θ𝑚𝑎𝑥 − Θ𝑚𝑖𝑛

2
+ Θ𝑚𝑖𝑛 2.25 

   

2.6.3 Modeling of dynamic systems using feedforward neural networks 

Models of dynamic systems are useful for implementing advanced strategies to control such 
systems. Since FFNNs have universal approximation capabilities, they have been successfully 
used for identifying models of dynamic systems. It is important to mention that NN-based 
models constitute a “very flexible” type of nonlinear regression models; they belong to the class 

of black box models, because they reproduce the input-output behavior of the process, but their 
parameters (weights and biases) do not have physical meaning. 

A structure used very frequently to describe dynamic systems with one output and 𝑟 inputs is 
the NN-ARX (Neural Network-based Auto Regressive with eXogenous Inputs) model. This 
model estimates the output 𝑦(𝑘) at time instant 𝑘 as a function of 𝑝 previous values of the 
output and 𝑞 previous values of each of the inputs, i.e. 

�̂�(𝑘) = 𝑁𝑁[𝑦(𝑘 − 1),⋯ , 𝑦(𝑘 − 𝑝), 𝑢1(𝑘 − 1),⋯ , 𝑢1(𝑘 − 𝑞),

⋯  𝑢𝑟(𝑘 − 1),⋯ , 𝑢𝑟(𝑘 − 𝑞)] 2.26 

where 𝑦(𝑘) is the output and 𝑢𝑙(𝑘) (𝑙 = 1,⋯ , 𝑟) are the inputs, all at time instant 𝑘, 𝑝 and 𝑞 
are the orders of the model and 𝑁𝑁 represents the nonlinear function implemented by the 
FFNN. Note that the NN-ARX model (2.26), which is illustrated in Figure 2.12, has one output 
and 𝑝 + 𝑟 ∙ 𝑞 inputs. 

 
Figure 2.12 NN-ARX model with one output and 𝑝 + 𝑟 ∙ 𝑞 inputs 

The procedure for identifying a NN-ARX model of a dynamic system with one output and 𝑟 
inputs is explained hereafter. In this work, this procedure was implemented using Matlab and 
its Neural Networks Toolbox. 
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Given a data set containing 𝑆 vectors 

𝑦(1)    𝑢1(1)    𝑢2(1) ⋯ 𝑢𝑟(1) 

𝑦(2)    𝑢1(2)    𝑢2(2) ⋯ 𝑢𝑟(2) 

  ⋮            ⋮             ⋮               ⋮ 

𝑦(𝑆)    𝑢1(𝑆)    𝑢2(𝑆) ⋯ 𝑢𝑟(𝑆) 

the procedure for identifying an NN-ARX model (2.26) of the dynamic system comprises the 
following steps:  

1. Normalize the output and input data using formula (2.24). For example, considering 
variable Y, with maximum and minimum values defined as 

Y_max = 100; 

Y_min = -100; 

its normalized values can be calculated as 

Y_norm = -1+2*(Y-Y_min)/(Y_max-Y_min); 

2. Choose the orders 𝑝 and 𝑞 of the model. There is no deterministic procedure established 
for this selection. A trial-and-error approach is used here, and the model with the best 
performance is chosen. 

For example, the instructions 

ndelay_out = 2; 

ndelay_inp = 2; 

are used to configure an NN-ARX model with two previous values of the output (p=2) 
and two previous values of each of the r inputs (q=2). Since both delays are equal, a 
single delay 

ndelay = 2; 

is defined. 

3. Construct the data that will be used for training and testing the NN model, according to 
the orders chosen. It is important to remember that the original dynamic system has one 
output and 𝑟 inputs, but the NN-ARX model has one output and 𝑝 + 𝑟 ∙ 𝑞 inputs. For 
example, the first vector of this data will have the form 

NN Output NN Inputs 

𝑦(𝑝) 𝑦(𝑝 − 1) ⋯  𝑦(1)  𝑢1(𝑝 − 1)⋯ 𝑢1(1)  𝑢2(𝑝 − 1) ⋯𝑢2(1) ⋯ 𝑢𝑟(𝑝 − 1) ⋯ 𝑢𝑟(1) 

For example, for a system with output Y and inputs X1 and X2, the following 
instructions construct the data vectors with the delay previously defined 
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Y_XNN = []; 

X1_XNN = []; 

X2_XNN = [];     

for i=1:ndelay 

    Y_XNN = [Y_XNN;Y_norm(1,ndelay+1-i:end-i)]; 

    X1_XNN = [X1_XNN;X1_norm(1,ndelay+1-i:end-i)]; 

    X2_XNN = [X2_XNN;X2_norm(1,ndelay+1-i:end-i)]; 

end 

XNN = [Y_XNN;X1_XNN;X2_XNN]; 

YNN = Y(ndelay+1:end); 

The data set [XNN,YNN] has been constructed. 

4. Split the data into training, validation and tests sets. First, the data vectors obtained in 
the previous step were randomly shuffled, to guarantee that the three sets contain vectors 
corresponding to all possible operating conditions of the process. 

The following instructions are used to implements the tasks specified in this step 

S=length(XNN); 

Ish=randperm(S); 

Xsh=[]; 

Ysh=[]; 

  

for i=1:S 

    Xsh=[Xsh XNN(:,Ish(i))]; 

    Ysh=[Ysh YNN(:,Ish(i))]; 

end 

  

FNN = 0.8; 

Ntrain = floor(FNN*S); 

Xtrain = Xsh(:,1:Ntrain); 

Ytrain = Ysh(:,1:Ntrain); 
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Xtest = Xsh(:,Ntrain+1:S); 

Ytest = Ysh(:,Ntrain+1:S); 

 

Specifically, the training set [Xtrain,Ytrain] and the testing set 
[Xtest,Ytest] are created. Note that in this case, a subset of 80 % of the data 
vectors is used for training the network; the NN Toolbox will further split this subset 
into training and validation sets. The remaining 20 % of the data vectors are reserved 
for testing the network. 

5. Define the architecture of the FFNN, which involves choosing the number and size of 
the hidden layers. The instruction 

net = feedforwardnet([10 10],'trainlm'); 

creates a FFNN called net with two hidden layers, each with 10 units; the FFNN will be 
trained using the Levenberg-Marquardt algorithm ('trainlm') 

6. Train the FFNN using the Levenberg-Marquardt. Prior to training, set the stopping 
criteria. 

The piece of code 

iter = 2e3; 

net.trainParam.epochs = iter; 

net = train(net,Xsh,Ysh); 

sets the maximum number of iterations in 2000 and trains the net. 

When the train command is executed, the NN Toolbox displays the dialog box shown in 
Figure 2.13. In the Neural Network section on top, the dialog box shows the NN 
architecture.  

Then, in the Algorithm section it shows that (i) the data was randomly split into training and 
validation vectors, (ii) the Levenberg-Marquardt (LM) algorithm was used for training and (iii) 
the root mean square error (RMSE) was used as performance measure.  

The Progress section states that the training stopped after 645 iterations (epochs), which 
means that it did not reach the maximum number of epochs (2000). This is confirmed by the 
Validation Stop green check at the bottom of the dialog box, which indicates that the 
training stopped when the minimum RMSE in the validation data set was achieved. This section 
also shows that: 

(i) the training took 46 seconds 

(ii) the final RMSE was 2.56e-05 
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(iii) the final value of gradient was 0.000143 

(iv) the final value of the 𝜇 parameter in the LM algorithm was 1e-07. Remember 
that this parameter weights the steepest descent update term; hence, this 
indicates that Newton’s method was dominating the search at the end. 

(v) 50 validation checks were performed. 

At last, the buttons available in the Progress section are used to generate and display 
different performance plots. 

 

 
Figure 2.13 Dialog box displayed by the NN Toolbox to illustrate the training process 
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Finally, test the performance of the FFNN, i.e., its generalization capability. Use the test set for 
this purpose. 

The instructions 

Ytest_est = net(Xtest); 

Y_test = (Ytest+1)*(Y_max-Y_min)/2+Y_min; 

Ytest_dnorm = (Ytest_est+1)*(Y_max-Y_min)/2+Y_min; 

 

are used to assess the performance of the FFNN on the test set. In particular, the net command 
is used to determine the response of the network for the test set, and the values determined are 
further denormalized. 

This process is repeated until an NN-ARX model with satisfactory performance is obtained. 
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3 Modeling of the vehicle and its 
components 

3.1 Drive Cycle Analysis 
Legislators worldwide are faced with the problem of defining standard conditions and tests for 
evaluating vehicle emissions prior to market approval. To this end, standardized driving cycles 
are used to enable that emissions tests are carried out in a reproducible manner.  

As mentioned in Chapter 2, this thesis focuses only on longitudinal dynamics as it adequately 
represents real-world behavior when considering energy management strategies and fuel 
consumption evaluation. Thus, the driving cycles used are represented only by their 
longitudinal speeds and accelerations. Based on the driving cycle formulation, two main 
categories can be considered: modal driving cycles, which consist of constant speed and 
acceleration periods, and transient driving cycles, which include a wider range and variations 
of both speed and acceleration [23]. Modal cycles are usually adopted because they facilitate 
performing tests using a dynamometer. However, they are not able to adequately represent a 
real-world scenario. Therefore, transient cycles are preferred when a better representation of 
fuel consumption is required, because they correspond to the simulation of typical road route. 

In Europe, the preferred test was a modal driving cycle known as the NEDC (New European 
Driving Cycle). But after the Dieselgate scandal, in which it emerged that carmakers were 
manipulating results, the NEDC was replaced by the WLTP (Worldwide harmonized Light Test 
Procedure) which offers a more realistic representation of the real world. As of September 1, 
2018, WLTP is the only driving cycle accepted for testing vehicle performance in Europe. 
Depending on the Power/Weight ratio Three different classes of WLTP are acknowledged; the 
WLTP-Class 3, which is illustrated in Figure 3.1, is used for the FCHEV considered in this 
work. 

 
Figure 3.1 WLTP-Class 3 Drive Cycle 
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On the other hand, the cycles used in the US for assessment procedures are the FTP75 (Federal 
Test Procedure) shown in Figure 3.2, and the HWFET (Highway Fuel Economy Test) shown 
in Figure 3.2. Both are transient cycles intended to represent real-world driving scenarios. The 
former is used to simulate city driving conditions, including frequent start-stop operations, 
while the latter is used for highway driving. 

 
Figure 3.2 FTP75 Drive Cycle – Source [24] 

 

 
Figure 3.3 HWFET Drive Cycle 

In the highway test, the average speed is higher and relatively constant with respect to the urban 
scenario, having a complete stop only at the end of the cycle. The FTP75 and the HWFET 
driving cycles are also used in this work 
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3.2 Toyota Mirai: Vehicle Architecture and Parameters 
The state of the art in fuel cell vehicles is represented by the Toyota Mirai, which was launched 
in 2014 and its performance has been improving ever since. In 2021 it set the record for the 
longest autonomous range, a total of 1360 km on a tank of 5.65 kg of hydrogen. Therefore, its 
architecture and parameters are taken as reference to build the model, and test the controller 
performance in an application as close as possible to reality. 

Figure 3.4 illustrates the architecture and components of the Toyota Mirai 2017: 

1. Fuel cell stack 
2. Fuel cell boost converter 
3. Battery 
4. High-pressure hydrogen tank 
5. Motor 
6. Power control unit  
7. Auxiliary components 

 

 
Figure 3.4 Toyota Mirai 2017 architecture and components 
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The components of the 2021 Mirai whose specifications are available from Toyota datasheets 
are used in the model created in this work. Typical values are used for the remaining 
components. Table 3.1 summarizes the data used and compares it with the values in the 
datasheets. 

Component Mirai 2021 Model 

Vehicle   

Mass 1850 kg 1500 kg 

Frontal Area N/A 2.81 𝑚2 

Drag Coefficient N/A 0.29 

Wheel  P235/55R19 0.35 m radius 

   

Battery Lithium-ion Lithium-ion 

Power Output 310.8 V 303.9 V 

Capacity 4.0 Ah 5.3 Ah 

   

Electric Motor Permanent Magnet AC sync Permanent Magnet AC sync 

Max Power 134kW  

Max Torque 300 Nm 300 Nm 

   

Fuel Cell Stack PEMFC PEMFC 

Max Power 128kW 128 kW 

Number of Cells 330 400 

Output Density 5.4 kW/kg  

Table 3.1 Comparison Toyota Mirai and model data 
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3.3 Dynamic Model 
The first model that needs to be modified to reproduce the behavior of the 2021 Toyota Mirai 
is the dynamic model. As introduced in Chapter 2, dynamic models account for transients and 
calculate the states of each variable using very small time steps. 

The model used in this thesis was developed by the Matlab staff using Simulink and Simscape 
libraries [25]. Simscape is a physical modeling tool in the Simulink environment, that can be 
used to create physical models of components based on physical connections that can be directly 
integrated into block diagrams and other modeling paradigms. Signal flow in Simulink is 
unidirectional, whereas in Simscape signal flow between blocks is bidirectional. This is the 
difference between quasi-static and dynamic models presented in the previous chapters. 

The fuel cell and battery are connected in a DC electrical network to the motor. The control 
system determines how much power should be drawn from the battery and from the fuel cell. 
When braking, energy is fed back into the battery to recharge it. A thermal system, modeled as 
a fluid network, controls the temperature of the battery, DC-DC converters and motor. Figure 
3.5 represents the powertrain subsystem of the Simscape model. 

 
Figure 3.5 Powertrain subsystem of the Simscape Model - Source [18] 
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3.3.1 Vehicle Dynamics 

Since this is a forward-facing dynamic model, there is a driver block implemented as a PI 
controller. This controller generates pedal commands from the error in the speed, i.e., the 
difference between the reference speed and the vehicle actual speed that is fed back. The 
acceleration pedal is translated into a torque command for the EM, which is connected to the 
wheel axle via the driveline block. 

Tires are modeled using the Pacejka’s formula [26], also known as “magic formula” since there 
is no physical basis for the structure of the equations chosen, but they fit a wide range of tire 
designs and operating conditions.  

The longitudinal force is described as 

 𝐹𝑦 = 𝐷 ∙ sin [𝐶 ∙ arctan{𝐵 ∙ 𝑘 − 𝐸 ∙ (𝐵 ∙ 𝑘 − arctan(𝐵𝑘)}] 3.1 

   
where B, C, D and E are four coefficients that characterize the tire and 𝑘 is the pure longitudinal 
slip defined as the ratio between the wheel slip velocity and the wheel hub longitudinal velocity, 
i.e. 

 
𝑘 =

𝑉𝑠𝑥

|𝑉𝑥|
=

𝑟𝑤Ω − 𝑉𝑥

|𝑉𝑥|
 3.2 

 

This block also takes into account the inertia effect and the rolling resistance of the tires. It is 
connected to the vehicle body through the mechanical translational conserving port for the 
wheel hub, through which the thrust developed by the tire is transmitted to the vehicle. The 
body block takes into account body mass, air resistance, road slope and weight distribution 
between the axles due to the acceleration and the road profile. Finally, the brakes are 
represented as a cylinder that applies pressure to one or more pads that may contact the rotor of 
the shaft. The pressure of the cylinder causes the pads to exert a frictional torque on the shaft. 

 

 

3.3.2 Electric Motor 

The EM is modeled as a brushless motor, such as a Permanent Magnet Synchronous Motor 
(PSMS), which only operates within the range of torques and speed that are defined by the 
torque-speed envelope. Figure 3.6. represents a typical torque-speed envelope.  
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Figure 3.6 Torque-Speed curve for general EM 

The EM operates in torque control mode, receiving the commanded torque from the control 
block and defining the possible range of operation through interpolation with the angular 
velocity of the motor. Electrical losses are parameterized by a tabulated efficiency data, as a 
function of speed and torque.  

The torque generated is passed through the shaft and the drive block, which includes the 
transmission block (with a single gear ratio of 5) and the differential, to finally reach the wheel 
axle and transmit the desired torque. 

 

3.3.3  Battery 

The battery is modeled through a table-based block as a function of State of Charge (SOC) and 
temperature. The battery equivalent circuit, which is shown in Figure 3.7, consists of the 
fundamental battery model, the self-discharge resistor 𝑅𝑆𝐷, the charge dynamics model 
(optional), and the series resistor 𝑅0. 

 
Figure 3.7 Battery Simscape model equivalent circuit 
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The block computes the no-load voltage, or the voltage across the fundamental battery model, 
using interpolation, i.e., as 𝑣0 = 𝑣0(𝑆𝑂𝐶, 𝑇), where the SOC is given as the ratio of current 
charge to nominal battery capacity 𝑞𝑛𝑜𝑚 specified in Ampere-hour rating 

 
𝑆𝑂𝐶(𝑡) =  

1

𝑞𝑛𝑜𝑚(𝑇, 𝑛)
∫(𝑖(𝑡) −

𝑉𝑜𝑝𝑒𝑛(𝑇, 𝑛, 𝑡)

𝑅𝑆𝐷(𝑇, 𝑛)
) 𝑑𝑡 3.3 

where 𝑛 is the current number of battery cycles and T is the battery temperature. The block also 
models the series resistance 𝑅0 as a function of SOC and T. 

Terminals 1 and 2 are connected to a DC/DC converter that regulates the voltage on the load 
side and provides bidirectional current flow for regenerative braking. The equivalent circuit of 
the DC/DC converter is shown in Figure 3.8, where 𝑃𝑓𝑖𝑥𝑒𝑑 represents a constant power loss that 
is independent of the load and 𝑅𝑜𝑢𝑡 represents losses that increase with load current. The 
required current is drawn from the supply side to balance the input power, output power and 
losses, and 

 
Figure 3.8 DC/DC converter equivalent circuit 

 𝑣 = 𝑣𝑟𝑒𝑓 − 𝑖𝑙𝑜𝑎𝑑𝐷 + 𝑖𝑙𝑜𝑎𝑑𝑅𝑜𝑢𝑡 3.4 

where the voltage reference of the motor is 650V and D is the output voltage drop for the output 
current. The value of the current source, i, is calculated so that the power flowing into the 
converter is equal to the sum of the power flowing out plus the converter losses. 

 

3.3.4 Fuel Cell 

The fuel cell subsystem is not modeled with the polarization curve, but capturing the flow of 
oxygen, hydrogen, nitrogen and water in a custom Simscape domain, as shown in Figure 3.9. 
The equations for the reactions and the heat generated are implemented in the Simscape 
language. A thermal management system keeps the fuel cell at the optimal operating 
temperature, set to 80 °C. 
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Figure 3.9 Fuel Cell Subsystem – Source [18] 

Commanded current coming from the control block enters the oxygen source block, which 
comprises the humidifier, chiller and compressor block. Current is multiplied by 1.1 to account 
for the typical value of 10% losses in the compressor (as stated in chapter 2) and the pressure 
of the compressor is measured and sent to the hydrogen source block.  

Here the mass flow rate block guarantees the mass flow by increasing the pressure difference 
𝑝𝑐𝑜𝑚𝑝 − 𝑝𝑎𝑛𝑜𝑑𝑒 to an appropriate value, taking hydrogen from the fuel tank. 

The mass flow rate determined is used by the electrolyte block to compute analytically the 
resulting power output as the product of current and voltage. Reactant flow rates can be 
described as  

 
𝑚𝐻2 =

𝑖

2𝐹
𝑀𝐻2;    𝑚𝑂2 =

𝑖

4𝐹
𝑀𝑂2;     𝑚𝐻2𝑂 =

𝑖

2𝐹
𝑀𝐻2𝑂 3.5 

where 𝑚 are the flow rates that measure the reactants consumed in the cell given in 𝑔/𝑠, 𝑖 is 
the current, F is Faraday’s constant and 𝑀 are the molar masses. Afterwards the pressure of 
reactants involved is obtained, and Nernst Voltage is computed as  

 
𝐸𝑇 = 𝐸𝑇

0 + (
𝑅𝑇

𝑛𝐹
) ∗ ln

𝑝𝐻2 ∗ √𝑝𝑂2

𝑝𝐻2𝑂
 3.6 
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The final cell voltage is  

 𝑉𝑐𝑒𝑙𝑙  =  𝑁𝑐𝑒𝑙𝑙 ∗ (𝐸𝑇  −  𝑉𝑎𝑐𝑡  −  𝑉𝑜ℎ𝑚𝑖𝑐  −  𝑉𝑐𝑜𝑛𝑐) 3.7 

where 𝑉𝑎𝑐𝑡 , 𝑉𝑜ℎ𝑚𝑖𝑐 , 𝑉𝑐𝑜𝑛𝑐 represent the losses introduced in chapter 2. 

The net power generated by the system should be the difference between the power of the fuel 
cell, calculated as the product of current and voltage, and the power dissipated by the auxiliary 
power units. Now, taking into account a general loss of 10% in the compressor, the system is 
able to produce exactly the desired output current. The power consumed by the auxiliary units, 
which consists mainly of the compressor, is set as the commanded 𝑃𝑙𝑜𝑠𝑠 to be provided by the 
batteries along with the difference between 𝑃𝑒𝑚 − 𝑃𝑓𝑐. 

A DC boost converter that steps up the DC voltage driven by an attached controller and a gate-
signal generator, is at a higher level of the model, between the fuel cell and the motor. Boost 
converters are also known as step-up voltage regulators because they increase voltage 
magnitude. Its behavior is represented by the circuit shown in Figure 3.10. 

 
Figure 3.10 DC Boost converter equivalent circuit 

3.4 Quasi-Static Model 
A simpler quasi-static model is required to use the Dynamic Programming algorithm. This is 
due to the fact that the computation carried out by the DPM algorithm is slow, because it tests 
every possible combination and does not work for very small time steps, as opposed to the 
Simscape model. Moreover, since the FFNN will be trained offline using the data generated by 
the DPM, the behavior of the quasi-static model should be similar to the behavior of the 
Simscape model on which the controller is implemented at the end of this work. Consequently, 
the same parameters used in the Simscape model are implemented in the quasi-static model. 

The root mean square error calculated as 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑦�̂� − 𝑦𝑖)2

𝑛

𝑛

𝑖=1

 3.8 
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is used as the performance criterion to evaluate the fidelity of the quasi-static model with respect 
to the dynamic model. In 3.8, n is the number of observations, 𝑦𝑖 is the value of the ith sample 
of the Simscape model and 𝑦�̂� is the estimation of 𝑦𝑖 given by the quasi-static model. The RMSE 
is a good performance criterion because it penalizes high discrepancies and is also 
differentiable, which is very convenient for many minimization algorithms. 

 

3.4.1 Vehicle Dynamics 

Figure 3.11 illustrates the quantities involved in the vehicle longitudinal dynamics. As stated 
before, in quasi-static models there is no driver to translate the reference speed into pedal 
commands and there is no feedback of the vehicle speed. The speed trajectory is imposed on 
the vehicle as velocity and acceleration vectors. Torque required at wheels is calculated as 

 𝑇𝑇 = 𝐹𝑇𝑟𝑤 3.9 

where 𝑟𝑤 is the wheel radius and 𝐹𝑇 if the total tractive force at the contact patches of the tires 
given by 

 𝐹𝑇 = 𝐹𝑎𝑒𝑟𝑜 + 𝐹𝑅𝑅 + 𝐹𝐴 + 𝐹𝑖𝑛𝑐 3.10 

 
Figure 3.11 Vehicle Longitudinal Dynamics – Source [27] 

The aerodynamic force is the force exerted by the air that opposes to vehicle motion and it is 
calculated as 

 
𝐹𝑎𝑒𝑟𝑜 =

1

2
𝜌𝐶𝑑𝐴�̇�2 3.11 

 

where 𝜌 is the air density, 𝐶𝑑 the drag coefficient, 𝐴 the area of the front section of the vehicle 
and �̇� the vehicle speed with respect to air. In this case 𝜌 = 1.18 𝑘𝑔/𝑚3, 𝐶𝑑 = 0.29 and 𝐴 =

2.81 𝑚2. 

The tire goes through repeated cycles of deformation and recovery, with the energy loss of 
hysteresis dissipated as heat. The rolling resistance force 𝐹𝑅𝑅 results from a resistive moment 
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on each tire caused by the deformation of the tire and the dynamics of the contact patch. 𝐹𝑅𝑅 is 
given by 

 𝐹𝑅𝑅 = 𝜇𝑅𝑅𝑚𝑔 3.12 

where 𝜇𝑅𝑅 is the rolling resistance coefficient, 𝑔 = 9.81𝑚/𝑠2 the gravity acceleration and 𝑚 
the vehicle mass. Rolling resistance coefficients, which depend on many different factors but 
mainly on road conditions, are summarized in Table 3.2 [28]. 

 

Road Condition Rolling Resistance 

Bitumen, concrete 1.5 

Dirt-smooth, hard, dry and well maintained 2.0 

Gravel-well compacted, dry and free of loos material 2.0 

Dirt-dry but not firmly packed 3.0 

Gravel-dry not firmly compacted 3.0 

Mud-with firm base 4.0 

Gravel or sand-loose 10.0 

Mud-with soft spongy base 16.0 

Table 3.2 Typical rolling resistance values 

The inertial force 𝐹𝐴 is the force required to move the vehicle with a particular acceleration, and 
is given by 

 𝐹𝐴 = 𝑚�̈� 3.13 

where 𝑚 is the mass m and �̈� the acceleration. 

At last, 𝐹𝑖𝑛𝑐 is the gravitational force due to road inclination, i.e., 

 𝐹𝑖𝑛𝑐 = 𝑚𝑔𝑠𝑖𝑛(𝜃)  3.14 

However, in this work it is assumed that the vehicle is travelling on a flat road, so the 
gravitational force is zero. 

Another component that must be considered when attempting to increase the accuracy of the 
model is tire inertia, which is usually ignored in quasi-static models but is necessary in this case 
to match the behavior of Simscape. The tire moment of inertia 𝐽𝑤 is multiplied by the number 
of wheels. 

 𝐽𝑤 = 4 𝐼𝑤   3.15 



                                                                   Master’s Degree Thesis 
Mechatronic Engineering - A.Y. 2020/2021 

 

 
 
 

49 
 

Finally, if �̇� is defined as the angular acceleration of the wheel, the torque required at the wheels 
is 

 𝑇𝑤 = 𝑇𝑇 + 𝐽𝑤 �̇� 3.16 

The slip of the wheels is not considered in this model, as it has no relevant influence on the 
final results and is quite complicated to calculate. 

 

3.4.2 Electric Motor 

Then, the value obtained of torque required at the wheels is converted by the gearbox to torque 
requested by the EM. This implies that 

 𝑇𝐸𝑀 = 𝑇𝑤/𝑓𝑑𝑟𝑎𝑡𝑖𝑜 3.17 

where 𝑇𝐸𝑀 is the torque requested by the EM and 𝑓𝑑𝑟𝑎𝑡𝑖𝑜 is the final drive ratio, which is 5 in 
the model under consideration. 

Electric Motor maps are extracted from the Simscape model to define the operating region of 
maximum (minimum when generating) torque indexed by speed list. Using the Matlab linear 
interpolation function, 𝑇𝑚𝑎𝑥 is obtained from the crankshaft angular speed that is imposed as 
the EM angular speed. Maps are then also used to compute the efficiency using interpolation of 
the torque and speed lists. Finally, power consumed by the EM is obtained as 

 
𝑃𝐸𝑀 = {

𝑇𝐸𝑀 ∗ 𝜔𝐸𝑀 ∗ 𝜂𝐸𝑀         𝑖𝑓 𝑇𝐸𝑀 < 0
𝑇𝐸𝑀 ∗ 𝜔𝐸𝑀

𝜂𝐸𝑀
              𝑖𝑓 𝑇𝐸𝑀 > 0

 3.18 

 

When the motor act as a generator, i.e., when braking occurs, there is a maximum allowable 
regenerative energy which depends on the battery SOC; this defines the maximum allowable 
power. If negative power is greater than this maximum value, the excess power is provided by 
the disk brakes.  

Figure 3.12 compares the values of motor torque obtained from the two models, while Figure 
3.13 compares the corresponding currents, which in the quasi-static model is computed as  

 
𝑖𝐸𝑀 =

𝑃𝐸𝑀

𝑣𝑟𝑒𝑓
 3.19 
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Figure 3.12 EM Torques obtained by simulation and by the quasi-static model – WLTP Class 3 

𝑅𝑀𝑆𝐸𝑇𝐸𝑀 = 8.9872 

Except for some small discrepancies both curves almost perfectly overlap, showing that the 
quasi-static model is able to reproduce the Simscape behavior. Good results are obtained for 
the currents when fixing 650V as voltage reference in the static model, while in the Simscape 
model it exhibits very small oscillations. 

 
Figure 3.13 EM currents obtained by simulation and by the quasi-static model – WLTP Class 3 

𝑅𝑀𝑆𝐸𝑖𝐸𝑀 = 2.6468 
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3.4.3 Battery 

Once the total power request is obtained, it is split between battery and fuel cell. Then, battery 
power is given by  

 𝑃𝑏𝑎𝑡 = 𝑃𝐸𝑀 − 𝑃𝐹𝐶 + 𝑃𝑙𝑜𝑠𝑠 3.20 

which considers the power losses 𝑃𝑙𝑜𝑠𝑠 of the compressor, as seen in the Simscape model. 

The controller will be in charge of determining the power split, as presented in chapter 4. Quasi-
static maps are extracted from the Simscape model, and the DC/DC converter is not considered 
as an external component but lumped inside the battery. The battery internal resistance 𝑅0 is 
obtained through interpolation depending on the SOC. Efficiency is assumed one when 
discharging and 0.98 when charging. Then, battery voltage 𝑣 is computed using interpolation 
of the 𝑉𝑛𝑜𝑙𝑜𝑎𝑑 and SOC maps. Resulting current is calculated as 

 
𝑖𝑏 = 𝜂𝑏𝑎𝑡𝑡 ∗

𝑣 − √𝑣2 − 4𝑅0𝑃𝑏𝑎𝑡

2𝑅0
 3.21 

At each time step, the SOC is updated using its previous value and the current passing through 
the battery, according to equation 

 
𝑆𝑂𝐶𝑡+1 =

−𝑖𝑏
𝑄𝑏𝑎𝑡 ∗ 3600

+ 𝑆𝑂𝐶𝑡 3.22 

The effect of temperature is not considered in the quasi-static model and a room temperature of 
25 °C is assumed. To test the effectiveness of this model, same 𝑃𝑏𝑎𝑡 is applied to both Simscape 
and quasi-static models, and the resulting current is shown in Figure 3.14. 

 
Figure 3.14 Battery currents obtained by simulation and by the quasi-static model – WLTP Class 3 

𝑅𝑀𝑆𝐸𝑖𝑏 = 1.4592 
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In contrast, the voltage exhibits a filtered behavior, and thus a higher discrepancy  

 
Figure 3.15 Battery voltages obtained by simulation and by the quasi-static model – WLTP Class 3 

𝑅𝑀𝑆𝐸𝑣𝑏 = 4.6954 

 

3.4.4  Fuel Cell 

The last component of the powertrain that needs to be modeled is the fuel cell. Since there are 
no maps for  this element in the Simscape model, they were created using a data-driven 
approach. First, simulations are performed with the WLTP3 and FTP75 driving cycles, to obtain 
data on fuel cell performance, power losses due to auxiliaries and hydrogen consumption. 

Then, the Matlab curve fitting toolbox is used to find a correlation that describes this data. A 
quadratic polynomial is used for fuel consumption, which is measured as kg of hydrogen used 
per second. 

 
Figure 3.16 Curve fitting H2 consumption 
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On the other hand, a 3𝑟𝑑 order polynomial is fitted to the power losses due to auxiliaries, 
showing the expected exponential behavior. Indeed, Fuel Cells are significantly more efficient 
at low loads, as seen in the second chapter. 

 
Figure 3.17 Curve fitting Ploss 

In Figure 3.16 X is the power of the fuel cell which ranges from 0 kW to 60 kW, and is 
calculated as the product of voltage and current. On the other hand, Z is the power dissipation 
due to auxiliaries, with the compressor accounting for the largest share. 

Once both relations are determined a vector of 𝑃𝐹𝐶  values is created, and the corresponding 
values of 𝑃𝑙𝑜𝑠𝑠 and 𝐻2 consumption are used to build the maps. Likewise for the EM and for 
the Battery, quasi-static maps are tested considering the same sequence of 𝑃𝐹𝐶  both in the 
Simscape and quasi-static models for the WLTP Class 3 cycle. Figures 3.17 and 3.18 
respectively show the values of 𝑃𝑙𝑜𝑠𝑠 and 𝐻2 consumption, obtained with both the Simscape 
and the quasi-static models. 

 
Figure 3.18 Ploss obtained by simulation and by the quasi-static model – WLTP Class 3 

𝑅𝑀𝑆𝐸𝑃𝑙𝑜𝑠𝑠 = 28.8938 
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Figure 3.19 Fuel consumption obtained by simulation and by the quasi-static model – WLTP Class 3 

𝑅𝑀𝑆𝐸𝑚𝑓𝑢𝑒𝑙 = 5.7320 ∗ 10−7 

Models obtained in this chapter are implemented in Matlab as the fun, the handle of the DPM 
to the model function. 
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4 Energy Management Strategies 
Hybrid Electric Vehicles (HEVs) combine two power sources to meet the load demand. The 
Energy Management Strategy (EMS) is responsible for determining how the power should be 
split between both sources at every time instant during the operation of the HEV. Consequently, 
the EMS should be designed to guarantee normal operation of the vehicle, and also to provide 
better performance of the various power sources [29]. 

At present, many different types of EMS are subject of study, and the general direction is 
moving from single-objective towards multi-objective optimization problems. Indeed, the high 
cost of fuel cells at their initial stages is still one of the major obstacles in the competition of 
FCHEVs with conventional ICEs and with HEVs. In this context, at first instance the EMS 
plays a key role in reducing fuel consumption, but also in prolonging FC lifetime, thus reducing 
the total cost. 

In some papers, EMS are also referred to as Power Management Strategies PMS; these terms 
will be used as synonyms in this work.  

 

4.1 Review of EMS 
FCHEVs are relatively new and there is no extensive literature about EMS dedicated to them. 
However, since they are very similar to HEVs in terms of their operation, the review is 
conducted considering EMS applied to HEVs.  

A first classification is to categorize EMS as online and offline strategies. The former refers to 
the possibility of real-time implementation, while the latter require a-priori information about 
the driving cycle and other parameters, and thus cannot be implemented in real-time. Moreover, 
offline optimization methods are usually slow and have a high computational cost, which is 
another obstacle to their use in real vehicles. Their use is limited to analysis purposes or as 
benchmarks to check the performance of online strategies. 

Thus, offline strategies are mainly global optimization algorithms or stochastic search methods 
such as genetic algorithms, dynamic programming, particle swarm optimization, among others.  

On the other hand, online EMS comprise various other methods besides those that are based on 
optimization strategies. Indeed, when dealing with real-time implementation, the main purpose 
is to get a vehicle up and running as quickly as possible, and thus simpler implementations 
generally based on coded heuristic rules that can have various level of complexity are preferred. 
Figure 4.1 shows a that online EMS can be classified in rule-based and optimization-based 
strategies. 

Rule-based approaches are based on human expertise without prior knowledge of the driving 
condition. They have some advantages such as low computational load, easy real-time 
implementation and robustness. However, they fail in finding the optimal solution and have to 
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be re-tuned if changes are made. Rule-based EMS are in turn divided in deterministic and fuzzy 
logic.  

 
Figure 4.1 Online EMS Classification – Source [2] 

As opposed to offline optimization strategies, online optimization-based strategies are able to 
find only a suboptimal solution due to their limited knowledge of the driving conditions. The 
main philosophy of this type of implementation is to divide the whole cycle into sub-cycles, 
and find the optimal solution along this limited horizon. They have the advantage of both the 
rule-based approach, i.e., real-time implementation due to their fast computation and robustness 
features, and offline optimization. The challenge is to keep the suboptimal solutions as close as 
possible to the global optimal solutions. Table 4.1 [29] presents the advantages and 
disadvantages of the main EMSs: 

EMS Optimization Advantages Disadvantages 

Dynamic 
Programming 
DP 

Energy 
consumption 
& FC lifetime 

High accuracy of fuel 
consumption calculation, 
Used as benchmark by other 
strategies 

Difficult for real –time 
application because of the 
large computational load 

Pontryagin’s 

minimal 
principle 

Energy 
consumption 
& FC lifetime 

Computational load is 
relatively low and result is 
close to global optimization 

Calculation accuracy is 
greatly affected by the 
initial value of the 
costate variable. 

Extremum 
Seeking 

Energy 
consumption 

Calculation results are close 
to the global optimization and 
suitable for 
real vehicle operation 

Difficult to simultaneously 
optimize fuel consumption 
and fuel cell lifetime  

ECMS 
Energy 
consumption 
& FC lifetime 

Relatively high accuracy of 
fuel consumption calculation 
and high performance in 
real-time  

It involves functional 
analysis, 
which is difficult to 
understand. 

Neural 
Network 

Energy 
consumption 
& FC lifetime 

High quality in real-time 
performance, near optimal 
performance 

Large amounts of data are 
required to  
train the NN. 

Table 4.1 Review of the main EMSs 
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Neural networks EMSs are the most promising because they are able to achieve near-optimal 
performance, including multi-objective optimization, with a much lower computational cost 
than traditional algorithms. This work proposes a neural network EMS that attempts to 
approximate the performance of the Dynamic Programming algorithm using limited 
information about previous time instants. DP was chosen as a reference because it is capable of 
finding a global optimal solution. 

 

4.2 Performance evaluation criteria 
Performance criteria provide a systematic and quantitative approach to compare controllers. 
These criteria form the basis for the cost function and constraints used in the power split 
optimization routine that is carried out using the DPM algorithm. 

When analyzing alternative powertrain solutions, it is necessary to define standardized units to 
compare results in the case of alternative fuels, which have different energy densities and 
different units that make direct comparison not viable. For this purpose, the Gasoline Gallon 
Equivalent (GGE) was defined and accepted worldwide; it represents the amount of alternative 
fuel that is necessary to equalize the energy of one liquid gallon of gasoline. US liquid gallon 
is a unit of volume in imperial units  

1 𝑈𝑆 𝑔𝑎𝑙 = 3.785411784 𝐿 

and although it is not included in the International System of Units (SI), it is widely used in the 
automotive sector. Table 4.2, available from the U.S. Department of Energy website, contains 
conversion factors that state fleets and alternative fuel providers can use to report their 
compliance with Energy Policy Act EPAct requirements. 

Fuel Type Fuel Measurement 
Unit 

Conversion 
Factor GGE Calculation 

B100 Gallons 1.066 𝐺𝐺𝐸 =  𝐵100 𝑔𝑎𝑙 ∗  1.066 

CNG Hundred cubic feet 0.877 𝐺𝐺𝐸 =  𝐶𝑁𝐺 𝑐𝑐𝑓 ∗  0.877 

Diesel Gallons 1.155 𝐺𝐺𝐸 =  𝐷𝑖𝑒𝑠𝑒𝑙 𝑔𝑎𝑙 ∗  1.155 

E85 Gallons 0.734 𝐺𝐺𝐸 =  𝐸85 𝑔𝑎𝑙 ∗  0.734 

Electricity kWh 0.031 𝐺𝐺𝐸 =  𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑘𝑊ℎ ∗  0.0031 

Gasoline Gallons / / 

Hydrogen Kg 1.019 𝐺𝐺𝐸 = 𝐻2 𝑘𝑔 ∗ 1.019 

LNG Gallons 0.666 𝐺𝐺𝐸 = 𝐿𝑁𝐺 𝑔𝑎𝑙 ∗ 0.666 

LPG Gallons 0.758 𝐺𝐺𝐸 = 𝐿𝑃𝐺 𝑔𝑎𝑙 ∗ 0.758 

Table 4.2 Gasoline Gallon Equivalent Factors - Source epact site 
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Since the case under study corresponds to a FCHEV, there are two different sources, and thus 
fuel consumption is considered as the sum of the two sources expressed in GGE. To be 
competitive with respect to a conventional vehicle, the objective is to maximize the Miles per 
GGE that measure the average distance traveled per unit of energy consumed, or equivalently 
to minimize liters/100km. 

 

4.3 DPM ETH in Matlab 
As already introduced in chapter 2, the DPM function uses a model of the vehicle and computes 
every possible trajectory to find the optimal one.  

Inputs used in the prb structure are the vectors representing the drive cycle, speed and 
acceleration vectors under consideration. A major disadvantage of the DPM algorithm is its 
heavy computational load, which makes unfeasible to use the continuous time vectors extracted 
from the Simscape model. Thus, vectors are discretized in time steps of 1 second.  

The multi-objective aims of the controller, i.e. 

• Fuel consumption minimization 

• Charge-Sustaining 

• Improve fuel cell and battery lifetime 

should be considered to build the remaining structures. 

Fuel consumption minimization is achieved by setting the cost function as the sum of the GGEs 
of hydrogen and battery power, i.e., 

GE_tot = m_fuel_ge + Batt_ge; 

C{1} = (GE_tot); 

At each time step k, the following state within the feasible region is computed following the 
sets of controls and costs at each stage. The Costs-to-go are the costs associated to the 
movement from one step to another. Once all costs are computed, DPM finds the trajectory that 
minimizes the cost function over the entire path. This is illustrated in Figure 4.2. 
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Figure 4.2, Illustration of the DPM algorithm for the problem of interest 

Charge sustaining mode implies that the net energy provided by the battery during the entire 
cycle should be zero, i.e., the initial SOC should be equal to the final SOC. In this way, EMS 
ensures that the battery does not have to be charged from outside, thus exploiting the first 
advantage of fuel cell vehicles over BEVs: faster refueling time of hydrogen with respect to 
battery charging.  

The last objective, to improve both fuel cell and battery lifecycle, is necessary to reduce the 
WTW emissions, as seen in chapter 2. Common practices to reduce FC aging are the reduction 
of transient loading, and prevention of reactant starvation [30]. Battery life is dependent on a 
wide variety of parameters including current, operating temperature and the depth of discharge 
(DOD) [31].  

These objectives, namely life cycle of components and charge sustaining mode, are achieved 
by defining two different states to take into account FC and battery degradation.  

Admissible values of State of charge are set in the range from 0.65 to 0.55, with a discretization 
step of 0.001. The selected range ensures small depth of discharge and also constitutes a high 
efficiency region; indeed, moving away from these values the battery performance decreases. 
These values set the limits of the feasible region for the first state 

grd.Nx{1}    = 101;      

grd.Xn{1}.hi = 0.65;  

grd.Xn{1}.lo = 0.55; 
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To ensure charge sustaining mode, a penalty function is used to enforce the constraint that the 
final state is equal to the initial one 

%set initial state 

grd.X0{1} = 0.60;         

%final state constraints 

grd.XN{1}.hi = 0.61; 

grd.XN{1}.lo = 0.60; 

The slightly higher value of 0.61 is set to take advantage of the complete regenerative braking, 
because for the SOC lower limit of 0.55 high aggressive cycles, such as WLTP, were not giving 
feasible solutions. 

Regarding the fuel cell, smooth transitions in power output are ensured by checking the 
previous state and setting a limit on the variations. 

∆𝑃𝐹𝐶 < 5 𝑘𝑊/𝑠 

When the variation between two consecutive time steps is higher than this limit, the cost-to-go 
is set to a very high value in the options structure by choosing MyInf value.  

grd.Nx{2}    = 61;       

grd.Xn{2}.hi = 60000;   

grd.Xn{2}.lo = 0; 

Another limitation is set on the maximum value for the output power. The fuel cell has a 
maximum power of 128 kW but, as already seen in chapter 2, its efficiency decreases 
significantly at high loads. Then a power of 60kW is chosen to ensure that the fuel cell operates 
in a high efficiency range. The discretization step for 𝑃𝐹𝐶  is set at 1kW. 

Finally, the control input is defined as the ratio  

𝑢 =
𝑃𝐹𝐶

𝑃𝐸𝑀
 

This ratio defines how much power is provided by the fuel cell; the remaining part is drawn 
from the battery to meet the load demand. Alternatively, the fuel cell may provide more power 
than the requested by the motor, to charge the battery if needed. 

grd.Nu{1}    = 25;     

grd.Un{1}.hi = 1.2;    

grd.Un{1}.lo = 0; 
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The range for the control input is chosen from 0 to 1.2, with a discretization step of 0.05. DPM 
tries every possible control input and compute the cost for each one. Physical limits of the 
components are taken into account by setting a MyInf value as cost.  

% Summarize infeasible EM 

inm = (isnan(e)) + (Tem<0)  .* (Tem < MotTrqMin) +... 

                   (Tem>=0) .* (Tem > MotTrqMax); 

 

% Summarize infeasible FC 

Pfc_max = 128*1000; 

infc = (Pfc > Pfc_max); 

 

% Summarize infeasible Battery 

inb = (v.^2 < 4.*r.*Pbat) + (abs(Pbat)>Plim); 

 

At the end, the dpm function return the res structure containing all the outputs selected and 
the optimal control policy, which is then applied through a forward simulation starting from the 
given initial state. 

 

4.4 Neural Network modeling of the behavior of the DPM 
algorithm 

Once the optimal policy is determined and the forward simulation results are satisfactory, the 
data obtained are used to train a Feedforward Neural Network to reproduce, as accurate as 
possible, the behavior of the DPM algorithm. The power split decision of the DPM algorithm 
is based on three elements: 

• Total power required by the motor  
• State of Charge of the battery  
• Previous values of fuel cell power  

The total power required by the motor may be computed from the reference speed and reference 
acceleration vectors; hence, it was decided to use this information as inputs to the Feedforward 
Neural Network. The SOC is also considered, because the SOC bounds set in the previous 
paragraph should be met. At last, previous values of the fuel cell power are also included as 
inputs to the FFNN, with the purpose of preventing sudden changes. On the other hand, the 
power split produced by the DPM, expressed as the fuel cell power 𝑃𝐹𝐶 , is the output of the 
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neural network; hence, this value from the data is set as the target during the training phase. In 
summary, the FFNN has 11 inputs, corresponding to the actual and two previous values of the 
reference speed, reference acceleration and SOC and two previous values of 𝑃𝐹𝐶 , and one output 
corresponding to the current value of 𝑃𝐹𝐶; in addition, the FFNN has two hidden layers of 10 
units each. Figure 4.3 illustrates the architecture of the FFNN trained to reproduce the behavior 
of the DPM algorithm. 

 
Figure 4.3 architecture of the FFNN trained to reproduce the behavior of the DPM algorithm 

Another important step is the selection of the sample time. A time step of 1 s is used in the 
DPM function to reduce the computational load; however, since the Simscape model is a 
dynamic model, it employs a significantly finer discretization to simulate the quasi-continuous 
behavior of Simscape. Consequently, all vectors obtained from the DPM function were 
resampled with a time step of 0.2 seconds. Table 4.3 summarizes the features of the dataset 
used to train this FFNN. 

 

Inputs Output/Target Sample Time 

Speed 

Acceleration 

SOC 

𝑃𝐹𝐶(𝑡 − 1) 

𝑃𝐹𝐶(𝑡) 𝑇𝑆 = 0.2 𝑠 

Table 4.3 Features of the dataset used to train the FFNN 
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The results given by the DPM algorithm for both the WLTP3 and FTP75 driving cycles, are 
used to build the dataset for training the FFNN according to its architecture. Before using the 
data to train the FFNN, the values of each variable were normalized to span the interval [−1,1]. 
Then, to ensure that the training, validation and test sets have data from both driving cycles and 
to prevent the FFNN from overfitting the training data, the data vectors obtained from both 
driving cycles were merged and further shuffled. All these tasks were implemented using the 
instructions shown below. 

X1 = [SpeedX1; AccX1; SOCX1; PfcX1]; 

X2 = [SpeedX2; AccX2; SOCX2; PfcX2]; 

X=[X1 X2]; 

Y1 = [-1+2*(Pfc1-Pfc_min)/(Pfc_max-Pfc_min)]; 

Y2 = [-1+2*(Pfc2-Pfc_min)/(Pfc_max-Pfc_min)]; 

Y=[Y1 Y2]; 

 

%% Shuffle 

N=length(X); 

Ish=randperm(N); 

Xsh=[]; 

Ysh=[]; 

 

for i=1:N 

    Xsh=[Xsh X(:,Ish(i))]; 

    Ysh=[Ysh Y(:,Ish(i))]; 

end 

Then, the data was split into train, validation and test sets, with a 70%-15%.15% proportion, 
respectively. Finally, the FFNN is trained using the Levenberg-Marquardt algorithm. The 
dialog box of the NN Matlab Toolbox at the end of the training process is shown in Figure 4.4. 
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Figure 4.4 Neural Network toolbox dialog box at the end of the training process 

The training stops after 538 iterations due to the validation criterion, and shows good 
performance results. Then, the output vector produced by the FFNN is denormalized. and 
compared with target values in the WLTP3 cycle. Figure 4.5 plots the values estimated by the 
FFNN vs the real values given by the DPM algorithm. The RMSE is computed considering the 
error between estimated value and actual DPM output, resulting in 

𝑅𝑀𝑆𝐸𝑁𝑁 = 68.4115 

Results shows that the FFNN achieves a good approximation accuracy of the DPM behavior, 
and thus it is proceeded to implement the controller. 
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Figure 4.5 Neural Network estimation vs real DPM output for the WLTP3 cycle 

 

4.5 Controller implementation 
The implementation of the NN controller in the Simulink environment is carried out using the 
gensim Matlab function. This command takes as input the net object obtained at the end of 
the training process and the sampling time, 0.2 seconds in this case. In other words, the 
command is executed as 

gensim (net,st) 

and creates the Simulink system shown in Figure 4.6.  

 
Figure 4.6 System created by the gensim command 

Then, the block generated is implemented as the controller in the Simscape model in place of 
the original PID controller. The diagram of the controller implemented is shown in Figure 4.7. 
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Figure 4.7 Diagrama of the controller implementation 

Inputs are discretized using a zero-order-hold block with a sampling time of 0.2 seconds. Then, 
delay blocks are used to configure the vector of measured values according to the 11-input 
structure of the FFNN.  

Normalization and denormalization are carried out using two Matlab functions block, to obtain 
the commanded fuel cell power as output. To handle exceptions, a rule block is built that checks 
if the SOC is within the desired range 0.55-0.65, and modifies the commanded power if needed. 
This block is necessary because the FFNN is trained only with SOC values inside the range, 
because DPM results only obtain values in this range, but due to some differences between the 
quasi-static and the Simscape model, SOC can divert from the range causing the network to 
perform unproperly. Specifically, the following rules are used  

• 𝐼𝑓 0.55 < 𝑆𝑂𝐶 < 0.65 → 𝑃𝐹𝐶 = 𝑃𝐹𝐶𝑁𝑁  
• 𝐼𝑓 𝑆𝑂𝐶 > 0.65 → 𝑃𝐹𝐶 = 0 
• 𝐼𝑓 𝑆𝑂𝐶 < 0.55 → 𝑃𝐹𝐶 = 𝑃𝐹𝐶𝑁𝑁 + 𝑃𝐹𝐶𝑚𝑖𝑛 

The last rule adds a minimum power of 1 kW to the commanded output of the neural network. 

Finally, the rule block output is smoothed using a filter with a time constant equal to the 
sampling time of the network. 
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5  Results 
5.1 DPM results 
5.1.1 WLTP Class 3 Results  
The first cycle tested is the WLTP Class 3, for which Figure 5.1 shows speed and acceleration 
and Figure 5.2 shows the output power of the DPM algorithm and the resulting SOC trajectory. 

 
Figure 5.1 Speed and Acceleration for the WLTP3 cycle 

 
Figure 5.2 DPM Output for the WLTP3: SOC and power supply 
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From the behavior of the SOC, it is seen that the DPM algorithm meets the power demand for 
low load requests with the fuel cell and maintains the SOC close to its initial value, charging 
the battery when brake events occur. Since the fuel cell experiences a performance loss for 
higher power outputs, particularly when the aggressive region of the cycle is reached at time 
instant 1150, the battery helps boosting the fuel cell to avoid sudden increases and does not let 
the fuel cell to work in the low efficiency region. The DPM algorithm takes advantage of the 
regenerative energy coming from the motor, which could not be possible without setting to 0.61 
the constraint for the final state of SOC. 

Figure 5.3 shows the total fuel consumption resulting from applying the DPM control policy, 
for the WLTP3 driving cycle. Note that the instantaneous fuel consumption is measured in g/s, 
while the cumulative fuel consumption is given in kg. At the end of the cycle, the vehicle has 
consumed 0.137304 kg of hydrogen. The result obtained in liters/100 km are in correspondence 
with the requirements. Indeed, according to the technical roadmap of energy-saving and new 
energy vehicles, the average fuel consumption of new ICE passenger cars in 2020 and 2025 
will reach 5 liters/100 km and 4 liters/100 km, respectively [32]. It is seen that the FCHEV 
outperforms conventional vehicles with respect to Gasoline Gallon Equivalent. 

 

 
Figure 5.3 Fuel Consumption obtained in the DPM run for the WLTP3 cycle 
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5.1.2 FTP75 Results 
The same analysis was carried out for the FTP75 driving cycle. Figure 5.4 shows the cycle 
speed and acceleration profile, while Figure 5.5 shows the resulting output of the DPM 
algorithm. 

 
Figure 5.4 Speed and Acceleration of the FTP75 cycle 

 
Figure 5.5 Policy obtained in the DPM run for the FTP75 cycle 

Also, for the simulation of the FTP75 cycle, DPM is able to fulfill the requirements, with a final 
value of SOC of 0.609. Battery intervenes for high load requests, to prevent the fuel cell from 
operating in the low efficiency region.  
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The resulting fuel consumption is shown in Figure 5.6. 

 
Figure 5.6 Fuel Consumption obtained in the DPM run for the FTP75 cycle 

 

The resulting fuel consumption for this cycle is lower than for the WLTP3 cycle. This result 
was expected, because the latter is a more aggressive cycle, which is clear by looking at the 
average power request of both cycles: WLTP3 has an average 𝑚𝑒𝑎𝑛(𝑃𝑡𝑜𝑡) = 7.65 𝑘𝑊, while 
the FTP75 has a 𝑚𝑒𝑎𝑛(𝑃𝑡𝑜𝑡) = 3.66 𝑘𝑊. 

Even in this cycle, the achieved value of liters/100km is good, which is significantly below the 
standards imposed to conventional vehicles. 
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5.2 Comparison between models 
Chapter 3 shows that the performance of the quasi-static model is satisfactory compared to the 
Simscape model. However, in that section the sample time was 0.2 seconds and the components 
are considered separately. In contrast, the sampling time used to run the DPM is 1 second, to 
reduce the computational load typical of that algorithm. For this reason, a slightly different 
behavior is expected when using the Simscape model, and the following test is carried out to 
quantify these differences. 

First, the DPM policy computed offline is applied directly on the Simscape model for the 
WLTP3 cycle. Then, the difference between the two SOC profiles, the obtained in the DPM 
offline run and the one resulting from the direct application of the DPM policy on the Simscape 
model. The purpose of performing this test only for the WLTP3 cycle is to demonstrate that 
even if the Neural Network controller is able to approximate the DPM with reasonable 
accuracy, it is not able to satisfactorily reproduce the offline results when implemented in real 
time; however, the discrepancies obtained are acceptable. 

 
Figure 5.7 Comparison of SOC in Simscape and in the DPM applying same policy 

It can be seen in Figure 5.7 that both SOCs follow similar trajectories, but they are slightly 
different. Indeed, the resulting 𝑅𝑀𝑆𝐸 = 0.0068 represents approximately 1% of SOC 
maximum value. On the other hand, Figure 5.8 shows the curves corresponding to fuel 
consumption for both cases; note that the two curves almost perfectly overlap, which is also 
verified by the negligible difference between the values of hydrogen consumed at the end of 
the cycle, which were 𝐻2𝑆𝐼𝑀 = 0.1375 𝑘𝑔 for the Simscape model and 𝐻2𝐷𝑃𝑀 = 0.1373 𝑘𝑔 
obtained in the DPM offline run. 
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Figure 5.8 Comparison of fuel consumption in Simscape and in the DPM applying the same policy 

 

5.3 Real-Time Neural Network Controller 
The final test to be conducted is the real-time implementation of the NN controller obtained in 
chapter 4. To assess its performance, it is compared with the original PID controller 
implemented in the Simscape model, which is presented in Figure 5.9. 

 
Figure 5.9 Original PID controller implemented in Simscape 

In its original version, the PID controller is not able to guarantee the charge sustaining mode, 
and thus it is modified for such purpose. After a trial-and-error tuning approach, the gains of 
the PID controller were set as  

𝐾𝑃 = 100;  𝐾𝐼 = 10;  𝐾𝐷 = 15 
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It is important to remark that the tuning process for processes with complex dynamics is one of 
the major issues with PID controllers. Gains that show a good performance for one cycle may 
not behave well for other cycles, and the controller needs to be re-tuned. Moreover, it is not 
possible to set constraints for the variables when using the PID controller.  

The sigmoid block is used to turn on/off the fuel cell when the power request is close to its 
optimal value of 6.5 kW. 

 

5.3.1 WLTP Class 3 Results 
The NN controller was able to control the vehicle to successfully track the reference speed 
profile, as can be seen in Figure 5.10 which displays plots of the actual and reference vehicle 
speeds. 

 
Figure 5.10 Vehicle speed using NN controller for the WLTP3 cycle 

The vehicle tracks the reference speed with a delay of 0.2 seconds, due to the driver response 
and the vehicle dynamics. A maximum difference of 0.8 km/h between both curves occurs in 
the high velocity region. Similar performance was also obtained for the remaining control 
configurations and cycles; therefore, the profiles of actual and reference vehicle speed will not 
be shown in further simulations. 

To better highlight the advantages of the proposed controller over the original one, the driving 
cycle is repeated periodically. The results obtained using the NN controller are shown in Figure 
5.11 
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Figure 5.11 Results using NN controller for the WLTP3 cycle 

The NN controller reproduces the DPM policy with small discrepancies in the SOC trajectory. 
Indeed, it goes out of the imposed limits of 0.55-0.65 in the most demanding regions, but 
ensures a final SOC value of 0.61 as it is seen in the DPM. The SOCs obtained with the PID 
and NN controllers are compared in Figure 5.12; note that the PID controller is not able to 
guarantee that the SOC remains within the established range nor the final state constraint. 

 
Figure 5.12 Comparison of SOC for the NN and PID controllers for the WLTP3 cycle 
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Another notable difference is the higher depth of discharge DoD that the battery experiences 
when the PID controller is used, which can be also seen from the Simscape results for the 
number of discharge cycles shown in Figure 5.13. This results in premature battery aging. 

 
Figure 5.13 Number of battery discharge cycles for the NN and PID controllers for the WLTP3 cycle 

The NN controller also shows a better performance regarding fuel consumption minimization, 
which is the most important objective, while guaranteeing to fulfill the established limits. Figure 
5.14 compares fuel consumption in terms of final kg of hydrogen and in liters/100 km of GGE. 

 
Figure 5.14 WLTP3 Fuel Consumption comparison NN and PID 
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After repeating the cycle twice, the NN controller achieves a lower fuel consumption, 𝐻2𝑁𝑁 =

0.2764 𝑘𝑔 compared to 𝐻2𝑃𝐼𝐷 = 0.2829 𝑘𝑔, and is also in correspondence with the DPM 
results computed offline. 

 

5.3.2 FTP75 Results 
The same procedure is used for the FTP75 driving cycle, which it is repeated twice to emphasize 
results that are shown in Figure 5.15. 

 
Figure 5.15 Results using the NN controller for the FTP75 cycle 

For this case, the NN controller is not able to guarantee a final SOC of 0.60. This issue is 
probably due to the less aggressive behavior of the FTP75 with respect to the WLTP3. Indeed, 
the NN controller keeps the SOC at a lower value waiting for braking events to occur, but in 
this cycle the braking phases are much less. However, it should be noted that the SOC at time 
instant 2475, i.e., at the end of the first cycle is 𝑆𝑂𝐶2475 = 0.5733, which is very similar to the 
SOC at time instant 4950 obtained as 𝑆𝑂𝐶4950 = 0.5745. 

This led to the conclusion that even if it is not achieved that the final SOC is equal to the initial 
one, the controller is robust enough to guarantee charge sustaining mode, recovering from the 
end of the first cycle without a reduction of the SOC value. The only difference is that it keeps 
the SOC at a slightly lower value, to take advantage of all the regenerative braking energy while 
not exceeding the higher limit of 0.65. 
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Compared with the PID controller, the NN controller still shows better performance for the 
battery life cycle. In figure 5.16 the two different SOCs are compared, where it can be seen that 
the DoD is higher for the PID, while the NN controller is more stable. This is also observed in 
the number of discharge cycles that are shown in Figure 5.17, with final values of 0.93 for the 
NN controller and 1.03 for the PID. 

 

 
Figure 5.16 SOCs for the NN and PID controllers for the FTP75 cycle 

 
Figure 5.17 Numbers of battery discharge cycles for the NN and PID controllers for the FTP75 cycle 
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The fuel consumption results are shown in Figure 5.18. Comparing the results of the NN 
controller and of the DPM, the total hydrogen consumed in kg is very close to the one obtained 
offline. On the other hand, with respect to the PID controller it shows a better fuel economy, 
since 𝐻2𝑁𝑁 = 0.1721 𝑘𝑔 and 𝐻2𝑃𝐼𝐷 = 0.1807 𝑘𝑔 

 

 
Figure 5.18 FTP75 Fuel Consumption for the NN and PID controllers for the FTP75 cycle 
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6 Conclusions and future work 
This thesis proposed a controller based on a feedforward neural network (FFNN) for real-time 
implementation of an Energy Management Strategy, that determines the power split between 
the fuel cell and the battery to meet the load demand in a Fuel Cell Hybrid Electric Vehicle 
(FCHEV). Specifically, the FFNN was trained to reproduce the behavior of a DPM algorithm. 
In order to achieve this purpose, a quasi-static model is first created using the Toyota Mirai 
components and the Simscape dynamic model as reference. Results show that the quasi-static 
model was able to approximate the dynamic model with a satisfactory accuracy. Then, an 
optimization routine is implemented with the DPM algorithm to find the optimal policy that 
establishes such power split for two driving cycles, namely WLTP Class 3 and FTP75, while 
meeting all constraints imposed. As expected, the DPM uses as much regenerative braking as 
possible and both the fuel cell and the battery are operated in their most efficient regions.  

Then, the data obtained for the two driving cycles was used to train the FFNN. After training 
the FFNN using the Matlab NN Toolbox, the neural network showed a very good performance 
in terms of RMSE between the estimated and real values of the DPM policy. To assess the 
discrepancies between the two models, it was also tested the direct implementation of the 𝑃𝐹𝐶  
sequence determined by the DPM algorithm. Simscape model behaved slightly different from 
the quasi-static model used in DPM, but constraints were still meet and the fuel consumption 
obtained was equal for both models.  

Finally, the neural network controller was implemented in place of the original PID controller, 
and their performances were further compared. The NN was able to adequately capture the 
behavior of the DPM algorithm, and outperformed the original PID controller in both cycles 
tested. To better remark the advantages of the proposed EMS, both WLTP3 and FTP75 cycles 
were run periodically. The hydrogen consumption was 6.5 g for the WLTP3 and 8.6 g for the 
FTP75, which represents more than 2% saving in the former and almost 5% in the latter, when 
considering Tank-to-Wheel performance. Expanding the analysis to the Well-To-Wheel 
emissions, the proposed controller has additional advantages such as the improvement of life 
cycles for both components; this is the major issue for the FCHEVs to be competitive with 
conventional vehicles, since the FCHEV have a higher footprint at first stages of life.  

As future work, it will be attempted to further improve the performance of the NN controller, 
using a model which better reproduces the dynamic behavior. On the other hand, alternatives 
will be assessed to remove or improve the rule blocks incorporated in the controller 
implementation to handle exceptions; in particular, it will be evaluated to train a neural network 
to manages SOC values outside the DPM limits. Another issue observed in the results is the 
different behavior when lower aggressive cycles are used; this problem could be handled by 
using two different NN controllers depending on the speed profile recognized, namely Urban 
and Highway. Finally, it could be tested in real vehicles or prototype to assess its performance. 
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