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Summary

Visual perception and sensory feedback are key elements in any recent robotic
system. Human vision and dexterity have been analyzed and adapted to teach the
machines how to perform tasks the way people do it. The scope of this Master’s
Degree thesis is the study of computer vision and tactile perception methodologies
to realize a multisensory robotic application able to understand its surroundings
and to act with precision on the desired target. More in detail, the goal of this
project is to enable the robotic arm e.DO, developed by Comau, to play Jenga
tower through a control system based on vision and touch. The constraints given by
the rules of the game and the accurate physical interaction with objects constitute
a challenging framework for this robotic task.

The analysis of the task leads to the development of a 3D model of the tower and
a dataset of images to train a segmentation neural network. From its detections
a visual tracker estimates the pose of the specific objects in the camera. Finally,
a force sensor is implemented for feedback. The tower is modelled in a synthetic
environment with the goal of training an instance segmentation neural network
to detect and discriminate each block in the camera image. Using Blender, 2D
renderings of the tower’s 3D model constitute an image dataset to train the Yolact
neural network and allows it to understand the tower’s configuration from its
pictures. Here the game dictates how the tower is built from blocks and how it
changes in time by removing them.

The employed vision system is the position-based visual servoing, composed
by three steps adapted from the library of ViSP, an open source visual servoing
platform. The first one is post-processing on the segmented image, producing
an initial guess pose with P-n-P IPPE of the target block and its adjacent. It
initializes a model-based tracker that, given the generic 3D model of an object,
finds the real object in the camera frame, learns and detects its keypoints, then
follows its movement in subsequent frames; furthermore, the output is the pose
(translation and orientation) of the tracked object in each frame. Instead of a single
Jenga block, a group of them is tracked for an increased number of visual features,
exploiting the tower’s staticity and known geometry. The final step is a visual
control law computing a twist command (linear and angular velocities) to move the
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camera and reach the desired pose for the extraction of the tracked object. This is
achieved by mounting a RealSense D435 depth camera on the robotic arm in the
so-called eye-in-hand configuration to link the movement of camera to the arm.

Physical interaction to extract a block by pushing it is studied from the properties
of wood material, weights of blocks and their relative positions. After an estimate
of friction values a force sensor is mounted on top of the robot’s end effector to take
the real measurements. The sensor’s touch feedback allows to abort a potentially
disruptive push on the tower’s balance, because the extraction of the real blocks is
made harder by their irregularities. These avert from the ideal friction behaviour
as some blocks are not free to move but they cannot be detected by vision alone.

After developing and testing all software components separately, they are con-
nected through ROS interfaces into a final system which ultimately allows to publish
e.DO robot specific commands and actuate its joints. The work presents theory
and experiments for each unit and, in conclusion, the obtained results achieved by
the complete mechatronic system.
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Chapter 1

Introduction

1.1 Jenga, the robot and the task
Jenga is a game where wooden blocks of known and determined solid rectangular
shapes are stacked three per floor into a tower of many stories, with alternate
orientations. The player must remove one block at a time and if the tower loses
balance during the move and other blocks fall, the game ends.

Figure 1.1: Visual example of the tower, courtesy of Hasbro

The Intel Realsense D435 camera can stream both RGB color data and depth
information and it is the eye of many robotics applications as it’s compact weighting
less than 200 g and can be easily carried on board.
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Introduction

Figure 1.2: Reference of Intel Realsense D435 camera

The arm e.Do is a six-axis robot that guarantees six degrees of freedom, enabling
its end-effector to reach positions specified in 3-dimensional space with the required
3-dimensional orientation. It’s a robot designed for research and learning.
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Introduction

Figure 1.3: Robot e.DO and Jenga tower

1.2 Related work
The most recent and similar work is found in this article from MIT, Boston [1]. They
tackled the same task where a 6-axis robot manipulator autonomously plays Jenga;
their end goal was to design an artificial intelligence system able to learn the best
way to play the game and integrate the physical interactions from mathematical
models and high accuracy sensors. In particular a hierarchical architecture was
employed to first gather information from physics-based simulation environment
and then enforce them with real-world exploration thanks to a camera and a
force sensor mounted on the robot wrist. The intent was to reproduce human-like
behaviors when learning through stimuli and building beliefs and intuitions. For
the computer vision part, an eye-to-hand configuration with Jenga fixed, neural
network image segmentation and probabilistic based pose inference. The underlying
technologies, instruments and knowledge were on a high level.

The main differences with this thesis are the complete 6-axes force sensor that
can measure all directions of forces and torques; the static camera and fixed Jenga
tower position; the beliefs probabilistic learning phase; the force-based control of
the arm; the metric of numbers of consecutive extractions. In the following, a
1-axis force sensor is used taking inspiration by the main concept of the article,
but as a corrective feedback tool rather than an explorative one; the camera and
the Jenga are not constrained and in particular the first one is moved by the arm
itself in hand-eye configuration; pose estimation and 3D modelling are employed as
real-time systems.
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Introduction

Figure 1.4: Robot, setup and system architecture of the great work of MIT

The other, older, related task is in this IROS conference paper, [2]. Low-cost
components and simpler technologies were used, combining classical computer
vision algorithm with designing strategic planning to evaluate which block to
extract in the best way, from knowledge based on physics simulators. The main
concept was to strategize and understand the physics of the game while addressing
structural limitations of their devices, as 2 CMOS cameras were used, and a 5-axes
manipulator on wheels. The main differences with the following are that the e.DO
robot has all the 6 degrees of freedom and the camera is not fixed to a known
distance from the tower; the game’s physics is not used to strategize extraction;
feedback on tower stability is from a force sensor rather than their approach on
vision; pose estimation is not assumed from empiric knowledge.

Figure 1.5: Their Pioneer 5-axis robot and control subsystems
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1.3 Solution approach
This thesis is placed in the middle ground between the two previously cited works.

The analysis of the task leads to tackle the following challenges:

• From new and unknown tower’s configuration, each wood block instance must
be detected in the camera image with a high degree of generalization:

– Any heights of the tower
– Any missing blocks
– Any textures of wood
– Any positions of the tower

• Blocks are very small and require a precision in the millimeters range and
within couple of degrees to be correctly approached and extracted:

– They are well visible only if close to the camera
– Estimate must be accurate, the more the robot is close to them

• Blocks have irregularities in dimensions that cannot be detected by vision, as
they change the friction.

– Push must be delicate to avoid losing the tower’s balance
– Exploration by touch is needed to understand constrained blocks

Designing the solution of the task, the creation of a CAD model of the tower and
a custom dataset of images to train a segmentation neural network is performed.
From its initial detections and postprocessing with OpenCV [3], a visual tracker
estimates the pose of the specific objects in the camera reference frame, mounted
on the manipulator and moving with it, using that information in real-time to
approach the block. Finally, a force sensor is implemented for touch feedback.
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Chapter 2

Training dataset

2.1 Dataset and COCO format
Neural networks need a large amount of data to learn the required specific infor-
mation. The data must contain examples in the same data format the net will
encounter when used. In the case of segmentation networks the single piece of data
is composed of the following:

• An RGB image

• Identifier for wanted classes

• For each pixel, which class it belongs: its identifier

• Each object contained, the pixels that compose it: its mask

A supervised training dataset is then a group of images with detailed description
of the pictured objects. COCO, short for Common Objects in COntext, is both the
name of a large real photos dataset, 330k images which 200k annotated, figuring 80
ordinary objects and of a data annotation format. The dataset content description,
creation methods and purpose is written here [4]; however, the specific object
required in this work is not present. In the following, only the format is of interest
and a custom dataset is written complying with it using the Object Detection
annotation type; a JSON file with dictionary key-values pairs is populated alongside
the images. Basic file structure is:
{ "info": {. . . },
"licenses": [. . . ],
"images": [. . . ],
"categories": [. . . ],
"annotations": [. . . ] }

6



Training dataset

Figure 2.1: COCO annotation example, courtesy of [5]

• INFO: basics like description and date

• LICENSES: if images are under copyright

• IMAGES: list of file names with each a unique ID and pixel dimensions
{"id": 242287
"file_name": "0242287.jpg",
"height": 640,"width": 360,
"date_captured": "2013–11–14 11:18:45",}

• CATEGORIES: name and ID of each object type contained
{"supercategory": "person", "id": 1, "name": "person"},
{"supercategory": "vehicle", "id": 2, "name": "bicycle"}, ...

• ANNOTATIONS (for Object Detection): in each image the area, bounding
box corners, segmentation polygon vertices, category label of all the contained
objects
{ "id": 125686, "category_id": 58,
"segmentation": [[ 239.97, 260.24, 222.04, . . . ]],
"image_id": 242287, "area": 2765.14,
"bbox": [ 199.84, 200.46, 77.71, 70.88 ], }

Alongside the training, a validation dataset must be supplied on which the
network evaluates its performance; from just the data point of view this other
dataset has the same format.

For generic entities and objects like images of people, cars, animals, grass or sky
manual datasets have been created employing thousands of hours of manpower
with very good results. However datasets for real custom objects are very hard to
find and the more they are specific the harder it becomes.
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Training dataset

2.2 3D model and Blender synthetic scene
At the practical level a supervised dataset provides many different looks and
possibilities of target object. The result is that hundreds of different images are
required with a pixel-precise information; a single person, manually by hand, would
take dozens of hours with an accuracy far below the 100% of pixels. Time would
be wasted, and the quality of the dataset would be low and biased by the creator’s
skill and patience. For example, a single Jenga picture would take around 10-20
minutes depending on height and number of blocks. The problem of populating an
automatic, realistic, and precise custom dataset can be solved by using computer
graphics technology to create a synthetic environment where photorealistic 3D
CAD models of objects emulate their real counterparts, and then taking pictures
inside this fake world. Blender is used in this work since it offers all is needed:

• Open source: APIs to control all parameters via programming

• Modeling the single blocks as meshes, with their real dimensions

• Building the tower by duplicating and moving the blocks

• Choosing the textures on their faces

• Simulating light conditions, reflections and realistic shadow effects

• Configuring the rendering tool to take correct size pictures

• In the render, full knowledge of each pixels comes from the simulated world.

Blender version 2.92 is used in this work. Wood textures are taken from
cgbookcase.com, a free site with high quality photorealistic materials.

Figure 2.2: Blender scene and camera renderer
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2.3 Renderings with BlenderProc
BlenderProc1, presented here [6], is a modular procedural pipeline that interfaces
with Blender to use its Python API; it’s specifically designed for providing datasets
to train convolutional neural networks on synthetic environments.

Its goal is to offer the user all the customization possibilities without learning
low level details of how Blender manages its entities, but instead they can just
describe their needs and tune the parameters to achieve the desired dataset. The
result is then the generation of photorealistic images and accurate annotations.

Figure 2.3: BlenderProc segmented scene from [6]

A feature worth noting is that the authors state generation speed was not a
main objective during development and was not optimized, claiming that a dataset
of great size is usually produced and changed a small number of times.

The pipeline is configured by choosing the modules and placing them in the
right order, and then programming them with the required functions and data.
The config file is a YAML file and the user writes specific key-values pairs; these
settings will be parsed by a Python script to populate API calls to Blender.

At its core the general single run of the pipeline is shown in the figure:

Figure 2.4: BlenderProc rerun scheme
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The following module sequence will be explained in the specific use case:

1. Initializing Blender

2. Loading a Blender scene

3. Setting background

4. Randomizing textures

5. Setting lighting

6. Computing camera poses

7. Hiding some objects

8. Rendering a picture for each camera pose

9. Writing annotations for the renderings

The first module is the simplest and it prepares the empty Blender environment.
It also sets a global parameter that is the directory path to store the final output,
taken from command argument to easily change it from outside the file.

The second module is then the loader: The tower scene designed in the previous
section 2.1 is loaded into the software. Yet in this case the path to the file is taken
from the command argument: this is useful to process different scenes in different
pipeline runs. This is needed to acquire:

• the blocks 3D meshes and their relative positions

• the materials and textures files

• all custom properties

The third module is just used to apply an identificatory value to the scene
background. It must be set to 0 correctly write the annotations only for the pixels
of the objects. Blender scene background is kept empty as it wouldn’t be segmented
anyway, there is no need to produce an heavy photorealistic model in computer
graphics. A solution is shown in section 4.

The fourth module randomizes the blocks’ textures.
33 { # Randomize materials , picked from . blend scene
34 "module " : " m a n i p u l a t o r s . E n t i t yM a n i p u l a t o r " ,
35 " c on f i g " :
36 { " s e l e c t o r " :
37 { " prov ider " : " g e t t e r . E n t i t y " ,
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38 " c ond i t i on s " :
39 { # all meshes objects
40 " type " : "MESH"
41 }
42 } ,
43 " cf_randomize_materials " :
44 { # all blocks
45 " randomizat ion_leve l " : 1 ,
46 # to ensure all have material
47 " add_to_objects_without_material " : True
48 }
49 }

Listing 2.1: Texture randomizer

After loading all the Blender scene the look of the blocks is randomized by
applying the textures to all the faces. Using a high enough number of textures the
blocks will have different looks in different positions in the image. However it is
also needed that blocks with same texture are close to each other to cover the cases
of similar-looking blocks in real images, and this is done naturally by the random
nature of the sampler. Worth noting is that the tower won’t be modified anymore
for all the renders of the single run of the pipeline, and this means that multiple
runs will have each one randomization.

The fifth module configure the lights’ position, type and energy.
51 { # To sample light positions on a 3 D space
52 "module " : " l i g h t i n g . L i g h t S amp l e r " ,
53 " c on f i g " :
54 { " l i g h t s " :
55 { " l o c a t i o n " :
56 { # cuboid all around [ -0.3 ,0.3 ,0.1]
57 " prov ider " : " s am p l e r . Un i f o rm3d " ,
58 "max" : [ − 0 . 2 , 0 . 4 , 0 . 1 5 ] ,
59 "min" : [ − 0 . 4 , 0 . 2 , 0 . 0 5 ]
60 } ,
61 " type " : " POINT " ,
62 " energy " : 20
63 }
64 }
65 } ,
66 { # To load a light in fixed position
67 "module " : " l i g h t i n g . L i g h t L o a d e r " ,
68 " c on f i g " :
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69 { " l i g h t s " :
70 { " l o c a t i o n " : [ 0 . 3 , 0 . 3 , 0 . 0 7 ] ,
71 " type " : " POINT " ,
72 " energy " : 5
73 }
74 }
75 } ,

Listing 2.2: Light sampler

To ensure a good simulation of the light that could shine on the real tower, two
points of light are employed:

• one is brighter and its source position is random inside a cuboid of dimensions
[0.1,0.1,0.05]m around the point [-0.3,0.3,0.1]m

• the other is dimmer and it is fixed in position [0.3, 0.3, 0.07]m

The combination of the two have a satisfactory effect on the wood material of the
blocks; this is critical to provide a dataset that is robust to different light conditions
and that contains realistic colors on which the neural network can learn generalized
information. The most practical effect of this is that when blocks are missing,
shadows are cast inside the holes that remain in the tower and the network must
see many of these configurations to keep the association between illuminated and
shaded blocks.

The sixth module is the most important and it samples the positions of the
camera. Five different configurations of this module are used to have many random
sources of locations.

76 { # Camera position for each render
77 "module " : " c ame r a . Came raSamp l e r " ,
78 " c on f i g " :
79 { # random all around the tower
80 " cam_poses " :
81 { # number of poses
82 " number_of_samples " : 1 0 ,
83 " proximity_checks " :
84 { # avoid camera too close to ojects
85 "min" : 0 . 2
86 } ,
87 " check_pose_novelty_trans lat ion " : True ,
88 " l o c a t i o n " :
89 { # cuboid all around [0 ,0 ,0.125]
90 " prov ider " : " s am p l e r . Un i f o rm3d " ,
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91 "max" : [ 0 . 4 , 0 . 4 , 0 . 2 ] ,
92 "min" : [ − 0 . 4 , −0 . 4 , 0 . 0 5 ]
93 } ,
94 " r o t a t i on " :
95 { " format " : " l o o k_ a t " ,
96 " va lue " :
97 { # rotates to mean position
98 " prov ider " : " g e t t e r . POI "
99 } ,

100 }
101 }
102 }
103 } ,

Listing 2.3: Camera type 1 sampler

Here showing the first type with the description of the values in common with the
others.

• Number_of_samples: is the amount of locations to compute. Since one picture
is rendered from each camera location, this is also the number of renderings
produced by a single run of the pipeline

• Proximity_checks: the camera will never be placed closer than 0.2 meters
from any of the blocks, to avoid partial images.

• Rotation, look_at, Point Of Interest: camera orientation will be toward the
mean value of the positions of all the blocks, to keep them in sight regardless
of the camera positions.

• This first type of camera positions is the least constrained as it can be any
value between [0.4, 0.4, 0.2]m and [-0.4, -0.4, 0.05]m, forming a cuboid of
shapes [0.4, 0.4, 0.125]m around the point [0,0,0.125]m. With the proximity
check value set, every point around the tower except closer than 0.2 m is
eligible.

The second, third and fourth type of camera locations are very similar as they
all are placed looking at the tower’s corner, changing only which one. This is
important to ensure that a good portion of the dataset contains pictures that shows
two faces of the tower, that is the most useful and informative condition as all the
blocks can be seen, while looking at one face only of the tower the other blocks are
not shown in the image. Constraining the randomness in this way is mandatory
as the first type of camera positions cannot be trusted to produce enough specific
images even for a very high number of random samples. The three corners differ
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only for the previously chosen position of the light: the illumination and shade is
unique for each of the tower’s faces.

106 " proximity_checks " :
107 { # avoid camera too close to ojects
108 "min" : 0 . 1 5
109 } ,
110 " check_pose_novelty_trans lat ion " : True ,
111 " l o c a t i o n " :
112 { # points on a circular arc
113 " prov ider " : " s am p l e r . D i s k " ,
114 " sample_from " : " s e c t o r " ,
115 " center " : [ 0 , 0 , 0 . 0 7 ] ,
116 " rad iu s " : 0 . 4 5 ,
117 " s tar t_ang le " : 3 0 ,
118 " end_angle " : 60
119 } ,
120 " r o t a t i on " :
121 { " format " : " l o o k_ a t " ,
122 " inplane_rot " :
123 { " prov ider " : " s am p l e r . Va l u e " ,
124 " type " : " f l o a t " ,
125 "min" : −0 . 0 7 ,
126 "max" : 0 . 0 7
127 } ,

Listing 2.4: Camera type 2-3-4 samplers

Proximity_checks: is slightly less, 0.15 m here

Check_pose_novelty_translation: due to the small space of random locations,
similar positions could be sampled. This ensures that samples are always
unique among the 10, without useless repetitions

Location: points sampled inside a section of a disk with center in [0,0,0.07]m,
radius = 0.45m and start and end angle for the specific corner.
Face left in light, face right in light: start=30° and end=60°
Face left in shade, face right in light: start=120° and end=150°
Face left in light, face right in shade: start=-150° and end=-120°

Inplane_rot: camera will be randomly rotated by a max of 0.07 radians on its z
axis to simulate a tilted camera.

The seventh module is the one that deals with missing blocks.
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Figure 2.5: Camera front upper render Figure 2.6: Tilted view

104 { # Randomly hide and duplicate render
105 "module " : " o b j e c t . H i d eModu l e " ,
106 " c on f i g " :
107 { " s e l e c t o r " :
108 { " prov ider " : " g e t t e r . E n t i t y " ,
109 " random_samples " :
110 { # random number of objects , from 2 to 9
111 " prov ider " : " s am p l e r . Va l u e " ,
112 " type " : " i n t " ,
113 "min" : 2 ,
114 "max" : 9 ,
115 } ,
116 " c ond i t i on s " :
117 { # all meshes objects
118 " type " : "MESH"
119 }
120 } ,
121 }
122 } ,

Listing 2.5: Hiding module

To generate images without some blocks the hiding module is employed. This takes
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a number of random blocks and disable them for the rendering; the number itself
is a random value between 2 and 9 blocks. This module doubles the amount of
renderings for each camera pose: two images are taken where one shows all the
blocks and the other doesn’t. This brings the number to 20 renderings per run.
Like in the case of the texture randomizer module, the blocks to be hidden are
the same for all the single run of the pipeline, requiring multiple runs to change
number and entities.

Figure 2.7: Complete tower Figure 2.8: Partial tower

The eighth modules are the renderers.
123 { # Render in colors
124 "module " : " r e n d e r e r . RgbRend e r e r " ,
125 " c on f i g " :
126 { " output_key " : " c o l o r s " ,
127 " transparent_background " : True
128 }
129 } ,
130 { # Maps the segmentation for instance and ( single )

class
131 "module " : " r e n d e r e r . S e gMapRende r e r " ,
132 " c on f i g " :
133 { "map_by" : [ " i n s t a n c e " , " c l a s s " ]
134 }
135 } ,

Listing 2.6: Render modules
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Images are taken in RGB color, without the background, in the shape 512x512.
Blender have all the information to associate pixels in the image with their cor-
responding 3D object in the scene since all is simulated and the camera pose is
known. Pixels belonging to the objects are treated in an instance segmentation way
where each of them is discriminated from each other and associated with its class.
Hidden here is the use of the custom property “class_id” to define the mapping.
As explained earlier, all blocks have a class=1 property in the Blender scene.

The ninth and final module is the COCO annotation writer.
136 { # Producer of annotations in COCO style
137 "module " : " w r i t e r . C o c oA n n o t a t i o n sW r i t e r " ,
138 " c on f i g " :
139 { # RLE is default instead
140 "mask_encoding_format " : " p o l y g o n " ,
141 # appending new annotation to existing
142 " append_to_existing_output " : True
143 }
144 }

Listing 2.7: Annotation module

Describing the renders with full annotation and also adding it to the end of the
already existing one. Since the pipeline runs many times, images will add up and
annotations must keep their COCO format with new data. The chosen format is
COCO for compatibility with the neural network used. The two practical effects are
that new images are named and numbered following the last iteration’s count and
that their content description is appended at the end of the lists in the annotation
file with no repercussions on images already described.
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Figure 2.9: BlenderProc pipeline scheme
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2.4 Dataset creation and COCO format viewer
As the previous section described, a single run of the pipeline produces 20 images
and it appends the output to any previous run. In order to produce a dataset
of 800 training images the pipeline is executed 40 times; in the same way a
validation dataset of 80 images requires other 4 calls. In the terminal, a single run
is called as python BlenderProc/run.py <path/config.yaml> <path/scene.blend>
<path/outputDir> An interactive Python script is written to make all the calls to
the BlenderProc command with the following benefits:

• To store and change output directory path and Blender scene path

• Command in a for loop with programmable length

• Computation of the execution time

• To show and save the verbose terminal output

• Apply additional commands needed

1 nTimes_around=10 #times to c a l l command
2

3 time0=time . per f_counter ( ) #to count e lapsed time
4

5 #20 images each c a l l
6 #c o n f i g . yaml : camera type 1 a l l around the tower
7 #blender scene path
8 #output f o l d e r o f t r a i n i n g data , appends annotat ions at each run
9 f o r i in range ( nTimes_around ) :

10 ! python ~/ BlenderProc /run . py \
11 ~/ BlenderProc / c o n f i g s / c o n f i g . yaml \
12 ~/ Blender / jenga_scenes / jenga_scene . blend \
13 ~/ BlenderProc / outputs /OutputTrain
14

15 end0=time . per f_counter ( )
16

17 pr in t ( " \ nElapsed time con f i g 0 : " , end0−time0 )

Listing 2.8: Loop command call

To increase the realism of the images in a simple way the background is added
from 32 free stock real photos from categories like “indoor” and “office”, to generalize
the data and avoid artificial bias that the network could produce during the training
on images with only a tower and transparent background. The script used is an
utility offered by BlenderProc by giving the correct parameters, resulting in 2.11.
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Figure 2.10: Transparent back-
ground

Figure 2.11: Filled background

Worth noting is that the network isn’t interested in precisely understanding the
background’s content but due to its architecture is able to detect the tower’s blocks
and to put every other pixel in a “don’t care” class with ID=0. This makes it more
robust to the real environment where real pictures will be taken.

Camera type Images Time[s] Memory[MB]
1 200 345 66
2 200 368 69
3 200 370 69
4 200 367 69

TOTAL: 800 1450 273

Table 2.1: Training dataset info

Camera type Images Time[s] Memory[MB]
1 20 33 6
2 20 34 7
3 20 38 6
4 20 38 6

TOTAL: 80 143 25

Table 2.2: Validation dataset info
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Finally using a script it is possible to overlap the annotations on top of the
images to check if everything is working; since the description of each image is
not human readable a qualitative way by showing and saving pictures is chosen.
Courtesy of [7] in ImmersiveLimit.com.

Figure 2.12: Graphical view produced by the annotations of the image
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Figure 2.12 produced by this source annotations file of thousands of text lines.
1 " images " :
2 [ # ... other images ...
3 {" id " : 1 6 ,
4 " f i le_name " : " r gb_0016 . png " ,
5 " width " : 5 1 2 ,
6 " he ight " : 5 1 2 ,
7 } # ... other images ...
8 ] ,
9 " annotat ions " :

10 [ # ... other segmentations ...
11 {" id " : 0 ,
12 " image_id " : 1 6 ,
13 " category_id " : 1 ,
14 " area " : 1 1 2 6 ,
15 " bbox " : [ 1 5 2 , 3 3 5 , 4 1 , 3 9 ] ,
16 " segmentat ion " : [ [ 1 9 2 . 0 , 3 7 3 . 5 , 1 5 3 . 0 , 3 6 2 . 5 ,

1 5 1 . 5 , 3 3 5 . 0 , 1 9 1 . 0 , 3 4 4 . 5 , 1 9 2 . 0 , 3 7 3 . 5 ] ] ,
17 " width " : 5 1 2
18 " he ight " : 5 1 2
19 } ,
20 # ...
21 {" id " : 2 1 ,
22 " image_id " : 1 6 ,
23 " category_id " : 1 ,
24 " area " : 1 2 7 3 ,
25 " bbox " : [ 1 9 2 , 3 4 5 , 4 4 , 4 1 ] ,
26 " segmentat ion " : [ [ 2 3 5 . 0 , 3 8 5 . 5 , 1 9 3 . 0 , 3 7 3 . 5 ,

1 9 1 . 5 , 3 4 5 . 0 , 2 3 3 . 0 , 3 5 4 . 5 , 2 3 5 . 5 , 3 6 0 . 0 , 2 3 5 . 0 ,
3 8 5 . 5 ] ] ,

27 " width " : 5 1 2 ,
28 " he ight " : 5 1 2
29 } # ... other segmentations ...
30 ]

Listing 2.9: Annotation content source of the visual information
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Chapter 3

Instance segmentation
neural network

3.1 Yolact network
The problem of computing the 6D-pose of an object in the camera frame (its 3D
position and its 3D rotation with respect to the camera reference frame) is of great
importance in robotics applications and like in this case similar to manipulator’s
picking. It becomes much more challenging in cluttered scenes when the target
objects are occluded by others, since the lost visual information can cause wrong
pose estimations. Furthermore, rich textures on the surface as well as asymmetric
geometries help finding correct values and reject wrong and impossible ones. Finally,
the speed of the computation is usually very low as many iterations are needed to
form a consensus on the pose value.

For all this reasons, neural networks with end-to-end pose estimation are not
considered in this work. The use-case and the specific properties of the real objects
match all the elements that would make it refrain from their training and inferences:

• Wood blocks have great symmetries

• Wood blocks are almost textureless, with few good visual features

• High number of blocks are in the same scene

• Inside the tower, blocks are heavily occluded one from the other and only few
faces are visible

• Fast estimation is required

The design of the solution separates the pose estimation into a later stage, in
4 and making this part focus on the detection of many similar object instances
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in one image, working at the single pixel level. The two main types of image
segmentation networks are the semantic and the instance. In this work the second
type is considered: a high number of objects belonging to the same class must be
separately detected one from the other, ignoring the background; the first type
instead would deal with different object classes.

Figure 3.1: Types of segmentation, only the instance one can precisely detect
close objects. Courtesy of [8]

In particular, a Yolact instance segmentation neural network from GitHub
repository [9] is used here because of the following capabilities:

• Fully convolutional architecture

• Single shot detection

• Real-time computation (for inference on a GPU)

• Fast computation (for inference on a CPU)

• Precise object masks localization

• Ease of training and use for inference
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3.2 Training and validation results
The network is an end-to-end system, with provided Python scripts to train the
network using PyTorch that are leveraged to optimize the weights on the dataset
built in 2. The supervised annotations are required to be in COCO format; some
indications from this tutorial [7]. Training images are used to modify the weights
based on the annotations that for each pixel provide the accurate information of
its class ID. Validation, instead, is used to check if the new weights’ values increase
or decrease the quality of the inference on new images and their content is not
memorized by the network. The weights do not start from default values but a
backbone is used to perform transfer learning. These are pretrained weights that
are generic enough to extract basic information from an image without giving a
constrained meaning, and then it is used as a first filter whose outputs jumpstart
the actual learning. Configuration for the training starts with the following:

• Folder with training images and folder with validation images

• Annotation of training and annotation of validation

• Class names and ids association, including the background

• Which backbone and which pretrained weights

GPU for training Nvidia 2080
Parallel architecture CUDA available

Image size 512x512
Backbone type Resnet 101

Backbone weights resnet101_reducedfc.pth
Training size 800
Validation size 80

Table 3.1: Base info for training

Important parameters of the configuration are the constant fixed hyperparame-
ters such as maximum iterations to reach and the learning rate, momentum and
decay as they set how the weight values change during the training as their gradient
descend. Learning rate is the amplitude of the change in the gradient. The bigger,
the more the weights can move from the previous value. Momentum dictate how
important is the previous value, and it is a ration between 0 and 1, with 1 meaning
that the weight should not change. Decay is used to force a change and avoid being
constrained on local minima.

dwÍ = momentum ∗ dw − lr ∗ (grad + decay ∗ w) (3.1)
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As the training progresses, the chance of overfitting increases. This happens
because the network in the long run memorizes the training images and specialize
the weights to be perfect for those precise pixel content, but with no guarantee
that it remains generalized enough to work on new, unknown images with different
content. This is avoided by reducing the learning rate by steps after a tuned number
of iterations, so to slow the convergence of the weights to the real optimal value that
would be perfect only for the training images; the reduction is done exponentially
by dividing the learning rate at each step. Depending on the application, the user
must decide the maximum number of detections to consider inside an image to be
evaluated for the validation. Finally, the batch size is the group of images that are
evaluated together, with the goal of speeding up and reducing the specialization
to the single case, avoid biases. To note is that for 512x512 pixel images, each
batch size increase takes 1.5 GB of video card memory, VRAM, so the maximum
is constrained by the hardware.

Number of classes 1+1
Max iterations 280000

Starting learning rate 10−3

Momentum 0.9
Decay 5 ∗ 10−4

γ 0.1
Learning rate steps (150000, 200000, 250000)
Maximum detections 100

Batch size 6

Table 3.2: Hyperparameters configuration for training

The evaluation of the training quality is done comparing the bounding box and
the pixel masks with the ground truth; this means that running the network on the
validation images, the result is overlapped with the real precise annotations. The
mean average precision is the metric for each crescent correct percentage overlap:
it’s the ratio between bbox and masks overlapped with that percentage accuracy
over the total number, and it is also called IoU (Intersection over Union).

The training is stopped with the following final precision on the validation
dataset. Running time: 14 hours up to 280000 iterations.

Figure 3.2: Mean average precision (mAP) values for each IoU
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3.3 Evaluation of masks on real images
Evaluation on the training GPU is in real-time with 30 fps. Due to the lack of a
dedicated GPU on the laptop that runs the inference, the network is then used
through the CPU only, with the only difference being the computation speed as the
parallel architecture cannot be used. Quality of the inference is the same regardless,
as it only depends on the weights’ values. The code to do it is taken from this
forked repository [10] elaborated from the original.

Confidence threshold is always 0.5, below that percentage the mask is rejected.

Figure 3.3: Inference on validation dataset
High precision since synthetic model like training images

Figure 3.4: Inference on real picture
3 misses, 2 aggregations (50% confidence), 43 exact (>90% confidence)
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Figure 3.5: Missing blocks produce worse masks sometimes like in this case.

Most of the blocks are found and very few false positives are detected, but there
is the presence of a high number of blocks that are ignored. Most of the pixels are
correctly associated with their masks. Even missing blocks do not alter too much
the quality and are mostly correct.

3.4 Tower structure from inference
Through the use of postprocessing utilities provided by the network’s code base,
each single mask of the detected blocks is computed with corresponding confidence
value. Due to being only one class, the masks refer to the same object type. Then
these images are elaborated with OpenCV and Python scripts.

The resulting masks have an undulated border caused by the segmentation effort
to discriminate between one block and the others that are very similar-looking. A
polygonal approximation is performed to reduce the number of vertices of the mask
and to smooth the sides, using OpenCV implementation of the Douglas-Pecker
algorithm, with a result shown in figure. Here the epsilon value to specify the
distance between the original edge and the approximation is different for front
faces and for side blocks: the second are much less approximated to avoid artifacts.
Info at [11]. This has the added benefit to detect simple geometric shapes in the
image, in particular the small front side of a block when it is fully occluded by the
adjacent. A distinction between the small front face and the bigger/more complex
shapes is made by comparing the number of vertices and the enclosing area of the
smoothed mask.

Small front face: Exactly 4 vertices AND area less than average

Side block: More than 4 vertices

Corner detection is employed to find the vertices of the smooth shapes in the
image from the OpenCV function of Harris corners, as to compute points with high
spatial intensity derivative, from [12]. Knowing the distinction between the masks,
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special meaning is given to the corners of the small front faces: they are exactly
the vertices of the Jenga block and are associated to the 3D model. Instead, the
detections fails if shapes are not approximated beforehand, as in figure 3.7.

Figure 3.6: Corners of the small faces are highlighted in red, while those of the
bigger side blocks are in blue and not guaranteed to be 4.
Shapes are approximated to smooth polygons.

Figure 3.7: Applying the corner detection on non approximated masks, wrong
values are found.

Starting from the small front faces, all their adjacent blocks can be found with
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a search in the image. The four corners give the slope and the length of segments
that, drawn with the origin on the mask centroid, find which mask is:

• Up from positive vertical slope, in white

• Down from negative vertical slope, in blue

• Right from positive horizontal slope, in red

• Left from negative horizontal slope, in green

• Center the target block

The lines will detect if they land on another block’s mask and identify which is.
Right and left are then extended to double length, to search possible third block
inside the same floor. The result is to know which blocks compose a group with
the target block.

Figure 3.8: Search showed by drawing lines, with slope and length

Worth noting is that all this system cannot work with missing blocks as the
segmentation outputs the entire mask of the block and not only its small front face,
making it fall in either the side block category or in the front face category.
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Chapter 4

ViSP Model-based tracking
and pose estimation

4.1 Object pose estimation in camera frame
The task of finding the correspondence between 2D pixel points in an image and their
3D coordinates in a specific frame has been tackled in many ways originating specific
solutions with trade-offs between accuracy, computation effort, and assumptions on
input data. All of them stem from the perspective projection camera model on an
ideal pinhole camera and the subsequent addition of lesser-order approximations
to increase its similarity with real cameras, such as various degrees of distortion
coefficients to rectify images taken by small of fish-eye lenses, or corrective actions
to approximate errors in the projection. The goal is in any case to put in relation
the pixels in the image, projected from the scene, with the real measurement unit,
for example meters, given the knowledge of the distance from the camera.
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Figure 4.1: Perspective projection pinhole camera model

sp = KPc (4.1)
Matrix K contains the five intrinsic parameters that are specific for the camera

and for its configuration (aspect ratio and video stream quality). Their meaning is
to convert the measurement units from meters into image pixels in the corresponding
image 2D plane. They can be estimated once since they are fixed and then they
will be used as known values in the system.

K =

Fx/Lx γ u0
Fy/Ly 0 v0

0 0 1

 ≈
fx 0 u0

fy 0 v0
0 0 1

 (4.2)

Xc/Zc

Yc/Zc

Zc

 = s

u
v
1

 =

fx 0 u0
fy 0 v0
0 0 1


Xc

Yc

Zc

 (4.3)

Fx and Lx: Focal length on the camera’s x axis in meters and width size of one
pixel in meters, respectively. Their ratio forms fx = scaled focal x length as
the independent parameter.
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Fy and Ly: Focal length on the camera’s y axis in meters and height size of one
pixel in meters, respectively. Their ratio forms fy = scaled focal y length as
the independent parameter.

u0: Principal point’s coordinate on the width of the image, in pixels.

v0: Principal point’s coordinate on the height of the image, in pixels.

γ: Skew angle of the image’s axes. Assumed to be zero, leads to only four unknown
parameters.

Matrix M c
a contains the six extrinsic parameters and represents the homogeneus

transformation matrix to express 3D points from an arbitrary coordinate system in
the camera coordinate system.

M c
a =

C
R t
0 1

D
=


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 (4.4)

P hom
c = M c

aP hom
a (4.5)


Xc

Yc

Zc

1

 =


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1



Xa

Ya

Za

1

 (4.6)

R: Rotation of the arbitrary frame from the camera, defined with three independent
parameters and 3x3 matrix.

t: Translation of the arbitrary frame from the camera, defined with other three
values in meters and 3x1 vector.

The left hand side of the equation and the right-most element are the required
inputs of the system.

sp = KM c
aPa (4.7)

s

u
v
1

 =

fx 0 u0
fy 0 v0
0 0 1


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz



Xa

Ya

Za

1

 (4.8)
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(u,v,1) Normalized image coordinates of the point in pixels on a camera plane at
a distance of 1 as third coordinate. Can be seen as homogeneus vector.

(Xa, Ya, Za): 3D point coordinates in meters expressed in the arbitrary reference
frame

The calibration is the process of computing all the eleven unknown parameters in
the intrinsic matrix K and the extrinsic matrix Ma from the most general solution
of the equation called Direct Linear Transform. When the intrinsic parameters are
already known (calibrated or given) different algorithms are employed to obtain
only the extrinsic matrix, reducing the complexity of the estimation thus increasing
accuracy and speed.

An analytic-based approach is chosen to perform the computation of the object’s
frame position and orientation with respect to the camera frame, starting from
the association between an image 2D point in pixels and its 3D values in the
arbitrary object’s frame. The requirement is then to select specific keypoints (also
called features) in the object and to detect their projections in the image with
high confidence, while maximizing their number. Since one correspondence is
not enough to solve the equation, at least four points are used to concur to the
unique solution; RANSAC (Random Sample Consensus) is employed as an iterative
approach to exploit an high number of points and to make the computation more
robust to possible mismatches and wrong pairings. Pseudocode from [13], detailed
description of the approach is in the algorithm 1 that applies for the general case,
while the model and the data in the specific case are the camera projection and
the couples 2D-3D.

34



ViSP Model-based tracking and pose estimation

Algorithm 1 Random Sample Consensus procedure to fit a model into a large
quantity of data, from [13].

1: procedure RANSAC POSE(data, model, n, k, t, d)
2: ó data – A set of observations.
3: ó model – The camera projection pinhole.
4: ó n – Minimum number of data points to estimate model parameters = 4.
5: ó k – Maximum number of iterations allowed in the algorithm.
6: ó t – Threshold value to determine data points that are fit well by model.
7: ó d – Number of close data points to assert that a model fits well.
8: ó Returns: bestFit – model parameters which best fit the data.
9: iterations← 0

10: bestF it = null
11: bestErr = inf
12: while iterations < k do
13: maybeInliers← nRandomData ó n randomly selected values from

data
14: maybeModel ← modelF ittedToRandom ó model parameters fitted to

maybeInliers
15: alsoInliers← emptySet
16: for every point in data not in maybeInliers do
17: if point fits maybeModel with an error smaller than t then
18: alsoInliers← alsoInliers + point
19: end if
20: end for
21: if the number of elements in alsoInliers is > d then
22: ó This implies that we may have found a good model
23: ó now test how good it is
24: betterModel← modelF ittedToInliers ó fit to all points in

maybeInliers and alsoInliers
25: thisErr ← modelErrorInliers ó a measure of how well

betterModel fits these points
26: if thisErr < bestErr then
27: bestF it← betterModel
28: bestErr ← thisErr
29: end if
30: end if
31: iterations← iterations + 1
32: end while
33: return bestF it
34: end procedure

35



ViSP Model-based tracking and pose estimation

A first application is then the calibration of the camera intrinsic parameters.
It is a delicate process that needs real pictures taken from the specific device,
depicting an already well-known calibration board from multiple points of view.
These boards can be the following 2D patterns: an asymmetric-size chessboard
with white and black tiles on a rigid cardboard; fiducial markers tag like Aruco
or QRcodes; other specific high contrast white/black shapes. The choice is from
the accuracy of the detection algorithm used to extract and classify the specific
pattern’s points. The desired result is to exactly find all the features in the image
regardless of how skewed or tilted the board is with respect to the camera. Here the
classical chessboard is considered where the corners are the characteristic points,
and the object reference frame is placed at the origin of the grid leading to know
all the corner points positions in meters with respect to it as multiples of one tile’s
size.

Figure 4.2: Calibration from detection of tile’s corners. Origin of arbitrary frame
shown in millimeters from camera reference frame
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Two apparently concurrent concepts underly the required number of images:
reducing the noise contribute, bias and external light conditions by shooting from
many different points of view; each new camera pose adds 6 new extrinsic parameters
to the equation. However each additional image brings 8 equations: in theory 2
images are enough to find a solution as they have 16 equations with 4+12 intrinsic
and extrinsic parameters, and in practice the more the pictures, the better the
result.

Algorithm 2 Calibration procedure. Stops after the chessboard pattern with all
the corners is successfully found in 20 images.

1: procedure Intrinsic Calibration([) ]
2: while chessboards detected < 20 do
3: New different camera position
4: Take a picture
5: Search all corners points
6: Order corners into expected rows and columns
7: Associate 2D image corner with 3D grid position
8: end while
9: Solve the system: 160 equations, 4+120 unknowns

10: Keep the 4 intrinsic parameters
11: Ignore the 120 extrinsic parameters
12: return fx, fy, u0, v0 ó Camera parameters are returned
13: end procedure

Considering the delicacy of the calibration process (whose errors would affect
all the measurements) and that the parameters are specific to the device, in the
following the intrinsics are directly extracted from the Realsense D435 camera in
the specific video stream configuration that is already calibrated by the producer.
Moreover, the video streams are actually two: one from a RGB camera and the
other as depth from a stereo camera, both at 30 FPS.
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RGB[px] DEPTH[px]
Height 480 480
Width 640 640

fx 609 610
fy 327 248
u0 384 384
v0 320 240

Table 4.1: RGB and depth configuration

Finally to perform pose estimation with both cameras, since there are two points
of view but all the measurements need to be expressed in one reference frame, a
conventional choice is made to consider the RGB camera position. Knowing the
relative positions of the two cameras’ lenses and, through a geometric transformation
matrix it is easy to refer all coordinates into one of them. From 4.9, depth frame
origin is just a translation on the positive x axis.

Figure 4.3: Reference frame positions of the two cameras

M color
depth =


0.9998 0.0166 −0.0057 0.0148
−0.0166 0.9998 −0.0022 −0.0003
0.0056 0.0023 0.9999 −0.0003

0 0 0 1

 ≈

1 0 0 0.015
0 1 0 0
0 0 1 0
0 0 0 1

 (4.9)

Then a point in depth coordinate frame is referred to color frame as:

Pcolor = M color
depthPdepth (4.10)
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4.2 Features detection and tracking in the image
The goal of a computer vision tracking system is to follow a group of pixels of
interest while they change position from one camera frame image to the consecutive.
In general it enables applications that:

• Understand the direction of motion of an object

• Compute the speed of an object from fixed camera

• Provide a surrounding region to search the object in the following image

In classical computer vision there a plethora of algorithms to process one image
and extract points of interest that are generic to different objects: these points are
called visual features or keypoints. The visual features considered in the following
work are the edges and the Kanade Lucas Tomasi (KLT) keypoints; even though
they have been developed in the late 90’ and lack robustness in light conditions
they still maintain a good relevance in modern computer vision as they have a
solid mathematical basis, fast computational speed, wide range of use cases, and in
the years many applications have been built from them. A third visual information
added is the depth from the stereo camera of the Realsense D435.

Edges: Contours points of the object projection in the image. Efficient for most
objects as it does not consider texture inside the contour, only the external
points.

KLT: Keypoints extracted from the image and associated to identifier information.
It is powered by textured objects as they have many points of interest.

Depth map: map: Distance from the camera of a point in the image. Works for
any kind of objects, as long as the points are inside an optimal distance and
the stereo camera have lines of sight.

The resulting system is able to output specific keypoints in a single camera image
and assign to them descriptions of their properties and position in the image. As
the object changes position in time its points in the image move from their previous
coordinates while keeping a visual similarity; by extension the system could detect
most of the same features’ properties in the following camera frame. Tracking is
employed to reduce the complexity cost: from the assumption that the object is
not moving too fast (that is, large change in its projected image coordinates) the
search can be performed in small windows around the previous positions instead of
on the full image, with far less points to consider. Computation speed is greatly
increased and a better accuracy can be achieved at the cost of a dependency on the
relative velocity between the camera and the object. Noteworthy is that tracking

39



ViSP Model-based tracking and pose estimation

considers relative movement so it is equal if either the camera is moving and object
is static or the vice versa.

4.3 ViSP model-based tracker and 6D-pose esti-
mation

ViSP is an open source Visual Servoing Platform providing a C++ library to build
powerful computer vision applications, presented for the first time here [14]. Their
model-based tracker is at the core of the system developed to solve the task of
this work as it implements both the tracking of features and the estimation of
the object’s pose; those two elements work together and they enforce each other
to increase accuracy and detect failures. As the camera moves together with the
robotic arm a real-time 30 fps pose estimation must be achieved. The generic
model-based tracker is described here [15] and the great tutorial is found here [16].

First of all, a CAD model of the target object is given. This is the mesh
composed by the vertices as 3D coordinates in meters in an arbitrary local object’s
reference frame, then by how these points are connected to form the edges and
the faces. The result is a collection of polygons all referred to the local frame,
each convex and with the normal to the surface in the direction going outside of
the object. For a simple model all this information can be manually written in
a text file, while more complex meshes can require the graphical interface of a
CAD software and then exporting the data into the text file format. An important
additional information in the CAD model is the string name identifier of the defined
faces.

Point X Y Z
0 -W/2 H/2 0
1 -W/2 -H/2 0
2 W/2 -H/2 0
3 W/2 H/2 0
4 -W/2 H/2 L/2
5 W/2 H/2 L/2
6 W/2 -H/2 L/2
7 -W/2 -H/2 L/2

Table 4.2: CAD model definition
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1 # 3D Points
2 8 # Number o f po in t s
3 −0.0125 0 .0075 0 .0 # Point 0 : X Y Z
4 −0.0125 −0.0075 0 .0 # Point 1
5 0 .0125 −0.0075 0 .0 # Point 2
6 0 .0125 0 .0075 0 .0 # Point 3
7 −0.0125 0 .0075 0 .075 # Point 4
8 0 .0125 0 .0075 0 .075 # Point 5
9 0 .0125 −0.0075 0 .075 # Point 6

10 −0.0125 −0.0075 0 .075 # Point 7
11 # 3D Lines
12 0 # Number o f l i n e s
13 # Faces from 3D l i n e s
14 0 # Number o f f a c e s
15 # Faces from 3D po in t s
16 6 # Number o f f a c e s
17 4 6 2 3 5 name=r i g h t
18 4 0 4 5 3 name=bottom
19 4 0 1 7 4 name=l e f t
20 4 1 2 6 7 name=top
21 4 4 7 6 5 name=rea r
22 4 0 3 2 1 name=f r o n t
23 # 3D c y l i n d e r s
24 0 # Number o f c y l i n d e r s
25 # 3D c i r c l e s
26 0 # Number o f c i r c l e s

Listing 4.1: CAD model in .cao format. Faces are defined connecting the 3D
vertices, each connection defines an edge.

Figure 4.4: CAD model with object reference frame position and orientation,
edges, faces and vertices
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At this point the geometric structure of the object is known with all the
appropriate real dimensions. All points on its surface will be assumed to lay
either on the edges or on the faces. No information is given for the texture or
the appearance as they are assumed to be unknown (they are different for each
instance of the Jenga block). Two tracker systems are available that work on
different geometric concepts and visual features but that are complementary and
used together make the system much more robust.

Moving edges (ME) tracker. from the knowledge of the model’s edges as contours
of the faces, they are searched in the image as points on straight lines with high
contrast change as the edges features described in the previous section. This is
more robust when either the division between two faces is marked or if the two
faces have different colours. In any case when the connected faces form a small
angle the light will often help in providing a different contrast as one face could be
slightly darker.

In the Jenga wood block case, the edge is not marked and the faces are very
similar in colour but at least the angle between faces is always 90° and so the
light will likely shine in different ways: from figure 4.5, many edges with the floor
are found but very few in with background or between faces. Each edge will be
tracked separately but the model’s knowledge is used to search their points in
specific locations in the image by projecting the relative 3D positions to maintain
always the correct shape. In detail the moving edge tracker detects and computes
a number of points and tries to find them again in the following camera image.
The method is a convolution window that is oriented along the normal direction to
the edge, centred on each of the points. The resulting value is compared to find
the same point again and also the angle from the starting one, resulting in new
set of edge points that must agree with the new orientation of the line or else are
discarded. Parameters of this algorithm can be tuned to fit the use case:

Size: Convolution mask size

Range: Pixel distance in both directions of the normal to the edge to search

Step: Minimum distance in pixel between two consecutive points on the edge

Threshold: Likelihood value to compare the result of the convolution with

KLT tracker: from the knowledge of the model’s faces, points on them are
detected from the KLT feature extractor explained in the previous section and are
associated with the known polygon. Assumed to be on a plane whose orientation
and position is known, the 2D image position of the points has a correspondence
with their position in the 3D plane of the object. Then finding those same points
in the following camera image it is possible to compute the new position and
orientation of the plane they are on; doing this for all the faces the polygons
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Figure 4.5: Edge features are the green
points, easily found between the block
and the background. Red points are
wrong excluded.

Figure 4.6: From a greater distance,
less points are detected, 33% less.

composing the object’s mesh will be placed in space accordingly. This method
is good if the faces have notable textures whose distinct features can be easily
tracked again in the images with high precision and low number of false positives.
In detail the knowledge of the 3D model is used to perform the first detection of
the keypoints only on the image location where the face is projected. During the
movement these features will be searched but their number will decrease in time
as the face changes orientation with respect to the camera, modifying the look of
the features; in this case a new detection is performed and new fresh keypoints are
added to the search. This tracker is highly dependent on the number of points.
Parameters to be tuned are:

Mask border: Pixels to erode the perimeter of the face and not consider points
too close to the edge

Max features: Maximum number of KLT to consider in the entire image. High
number would slow down the computation

Quality: Percentage to consider good points to track on the face; features below
this threshold are discarded

Min distance: Minimum forced distance in pixels from one feature to its closest.
Low number increases the number of features on the face
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Figure 4.7: KLT=86 and leads to
wrong orientation of the model

Figure 4.8: Combined Edges +
KLT=367 yields better performance
and completes the model

Pose estimation as explained in section 4.1 is computed from the association of
3D points in the object’s reference frame with their corresponding projection in
the 2D image. Both the Moving Edges and the KLT trackers constantly compare
their results with the 6D-pose of the whole object projected in the camera to build
a consensus and from there discard wrong points and enforce correct ones.

The depth camera is then used to provide a reference of third dimension to the 2D
points in the image with two results: one is to ensure that the trackers’ algorithms
won’t choose pixels of the background as features of the object since otherwise
possible based only on edge’s contrast; the other is to speed up the convergence of
the pose estimation by restricting possible the values of Z coordinates in camera
frame of the tracked 2D points to a range close to the measured one by the stereo
camera. The advantage of this visual feature is that it does not depend on either
the textures or the look of the object like the previous two. The disadvantages are
that it depends on the optimal working range of the depth sensor and in particular
the minimum distance from the target; also it produces holes when the stereo
camera cannot see a point because occluded for one of the two lenses. Parameters
to be tuned are:

Min range: Minimum distance in meters to consider a face for depth information

Max range: Maximum distance in meters to consider a face for depth information

Depth occupancy: Percentage of points whose depth is available to consider the
face

Sample step: Pixel distance in x and y camera frame between points whose depth
is computed
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Figure 4.9: Adding the depth features the final number is way higher, EDGES +
KLT + DEPTH = 1093

An important concept is the visibility of the edges and faces: not all of them
must be considered during the tracking as the projection of the object in the camera
image will show only the front facing ones while the others will be hidden behind.
The tracked points explained above are only contained on edges and faces that can
be seen in the camera, otherwise they would never be found in the image and would
give wrong information to destabilize the system. This visibility can be checked by
comparing how the normal’s direction of one face is oriented with respect to the
camera. If the angle between the projection of the center of mass of the face and
its normal is above 90°, the entire face is discarded with all its edges expect the
edges that are marked as visible by passing this test from another face.

Stronger conditions can be applied by tuning the angle’s value, considering a face
as disappearing if α > αdisappear and appearing if α < αappear. This helps to avoid
bad features detected on a face too skewed. Noteworthy is that the condition either
excludes or keeps the entire face, never partially. This means that the polygon
must be a plane.

Angle appear: Below this angle a face is considered visible and added to tracking

Angle disappear: Above this angle a face is considered not visible and removed
from tracking

Finally for the visibility, clipping planes can be set to exclude parts of faces that
are too close, too far or outside of the Field Of View (the lateral sides). Parameters
to be tuned are:

Near clipping: Minimum distance in meters to cut close faces

Far clipping: Maximum distance in meters to cut far faces
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Field of view use: Use or not the lateral sides to cut faces that partially exit the
camera frame

Figure 4.10: Angle comparison with
the projection on the camera frame to
consider the face as visible from that po-
sition

Figure 4.11: Diagram of the field of
view to customize object visibility

4.4 Tracking blocks and handling occlusion
The vision system is applied to the task with real camera and the target object
in a series of experiments. To be noted here is that the tracking must receive
an initial guess pose to reproject the overlay of the model onto the image and
consider the starting location of the keypoints as edges and faces. In this section it
is done manually by the user associating 2D points in the image with 3D points
of the considered object model, basically reproducing the pose estimation. In the
following two sections this will be refined to produce an automated pipeline without
the user’s interaction.
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A first round of experiments is performed with the following setup:

• Single Jenga block with dimensions: 25x15x75 mm

• Block located on a uniformly colored plane and no other blocks

• Block fixed in its position

• Realsense camera moved manually

• Camera distances are: 0.18 , 0.29, 0.4 m

• Camera always oriented towards block

Figure 4.12: From a middle distance of 0.29 m on the z camera axis.

Figure 4.13: Distance of 0.18 m Figure 4.14: Distance of 0.40 m
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Analysis of advantages and disadvantages of this configuration:

OK Strong edge contrast against the background: object’s contour has no mis-
matches

OK Block is fully visible: three faces are completely seen at any time by the
camera

OK Depth values of the block helps associating 3D info

! The block is small so it covers a little number of pixels in the image when far

! It is almost textureless producing very few KLT points on faces when far

! Edges between faces are not distinct enough from wood lines

! Background depth info not interesting: similar Z distance between block points
and plane

Results and considerations are heavily affected by the distance to the camera
as tracking from a far distance (>0.3 m) is impossible: too few keypoints are
found. The pose estimation from a single still image is accurate only when the
tracker can overlay the 3D model correctly on the block with sufficient keypoints.
However tracking is easily lost: during an even slow movements of the camera some
keypoints make wrong matchings. Depth information is used only partially

A second round of experiments on the use case:

• Single Jenga block with dimensions: 25x15x75 mm

• Target block in the tower among other blocks

• Target block in external position on the tower’s layer

• Tower fixed in position

• Realsense camera moved manually

• Camera always oriented towards the tower
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Figure 4.15: The top face is occluded by other blocks causing a failure of the
tracking, mainly from the edges and the depth.

Analysis of advantages and disadvantages of this configuration:

OK Strong edge contrast with background ONLY IF it is uniformly colored

OK Strong edges between target and surrounding blocks, marked better than
edges between faces

OK Depth information helps excluding background points as they have different Z
coordinates

! Block is not fully visible: only two faces can be seen by the camera, the others
are occluded by the rest of the tower

! Block is still textureless and now even less keypoints can be seen

! Both edges and KLT keypoints find mismatches with nearby blocks, having
visually similar features

! Depth values of hidden faces are instead closer

Results and considerations are mainly referred to the occlusion of the block’s
faces, as they not only hide good features to be tracked but also provide completely
wrong data to the system: • Edges: the tracker expects an edge but instead finds
points of variable contrast in the other blocks and tries to align them. • KLT:
the tracker finds keypoints on the region where it expects the hidden face but the
plane they are on is oriented in a very different way. • Depth: the tracker finds Z
coordinates that are not further than the front face depth.
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The developed solution to the problem has the goal of greatly increasing the
number of available visual features and involves the design of new CAD models that
accounts for the specific situation of the tower. Based on empirical knowledge and
from the Jenga rules the relative positions of the blocks are known and assumed to
remain the same. They are either on the same floor and oriented in the same way
or they are one floor above or one below and they are rotated. In particular the
creation of three new CAD models that are the building blocks whose combinations
produce any possible groups. The new .cao model file is a collection of these blocks
that are sequentially loaded into the model-based tracker each adding 8 vertices,
12 edges and 6 faces.

To produce the correct geometric structure the arbitrary object reference frame
is positioned on the first block with the already shown origin and orientation, the
same as the single block. All the other additions have a translation and rotation
with respect to that frame to correctly locate them; translation is in meters while
the rotation is in the form of axis-angle in degrees. The first parameter is the
source single block .cao file that loads the vertices and faces.

1 # Block 1
2 load ( " jenga_Center . cao " , t = [ 0 . 0 ; 0 . 0 ; 0 . 0 ] , tu = [ 0 . 0 ; 0 . 0 ; 0 . 0 ] )
3

4 # Block 2
5 load ( " jenga_Right . cao " , t =[ −0.025; 0 . 0 ; 0 . 0 ] , tu = [ 0 . 0 ; 0 . 0 ; 0 . 0 ] )
6

7 # Block 3
8 load ( " jenga_Left . cao " , t = [0 . 025 ; 0 . 0 ; 0 . 0 ] , tu = [ 0 . 0 ; 0 . 0 ; 0 . 0 ] )
9

10 # Block 4
11 load ( " jenga_Left . cao " , t =[ −0.0375; −0.015; 0 . 0 1 2 5 ] , tu =[0;90 deg ; 0 ] )
12

13 # Block 5
14 load ( " jenga_Left . cao " , t =[ −0.0375; 0 . 0 1 5 ; 0 . 0 1 2 5 ] , tu =[0;90 deg ; 0 ] )

Listing 4.2: CAD model of the group loading the single models

• The first block has a translation and rotation equal to 0 vectors as its reference
frame is coincident with the group reference frame.

• The second and third blocks are located on the same floor of the first and
their rotation with respect to it is 0 (aligned to it). They are translated by 25
mm on the X axis (red axis) in positive and in negative direction respectively.

• The fourth and fifth blocks are located in different floors and they are rotated
by 90° around the Y axis (green axis). The translation to move them up and
down is 15 mm in positive and negative direction of the Y axis (green axis);
also values in X and Z are required to have the correct origin.
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Figure 4.16: Overlay the group composed of target block plus four others, built
by projecting from the initial pose

Vertices and object frames orientation are identical among the new single models
and the only difference is the name of their faces where instead of assigning a
unique string identifier, a binary value is used: either the face is called “visible” or
“occluded”. To account for the visibility problem, then, the faces called “occluded”
are removed a priori from the tracking and none of their points will be searched in
their image. The decision is taken at the moment of building the group where:

Right faces: depends on position in the group

Bottom faces: always “occluded”

Left faces: depends on position in the group

Top faces: always “occluded”

Rear faces: always “visible”

Front faces: always “visible”
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The only variables are the faces on the side producing 4 combinations, where
the last is not used.

RIGHT LEFT RESULT
"Occluded" "Occluded" Central block
"Visible" "Occluded" Right block

"Occluded" "Visible" Left block
"Visible" "Visible" -

Table 4.3: Combinations of faces visibility

16 # Faces from 3D po in t s
17 6 # Number o f f a c e s
18 4 6 2 3 5 name=occ luded #r i g h t
19 4 0 4 5 3 name=occ luded #bottom
20 4 0 1 7 4 name=occ luded #l e f t
21 4 1 2 6 7 name=occ luded #top
22 4 4 7 6 5 name=v i s i b l e #rea r
23 4 0 3 2 1 name=v i s i b l e #f r o n t

Listing 4.3: CAD model in .cao format, showing only the faces part.

On image 4.16, the first block is in the center and its only visible faces are
the front and the rear. The second, fourth and fifth blocks also have the left face
visible, while the third block has the right one instead. Different cases follow the
same reasoning and even if a block is missing the group is built without it.

1 # Block 1
2 load ( " jenga_Center . cao " , t = [ 0 . 0 ; 0 . 0 ; 0 . 0 ] , tu = [ 0 . 0 ; 0 . 0 ; 0 . 0 deg ] )
3

4 # Block 2
5 load ( " jenga_Right . cao " , t =[ −0.025; 0 . 0 ; 0 . 0 ] , tu = [ 0 . 0 ; 0 . 0 ; 0 deg ] )
6

7 # Block 3
8 load ( " jenga_Left . cao " , t =[ −0.0375; −0.015; 0 . 0 1 2 5 ] , tu =[0;90 deg ; 0 ] )
9

10 # Block 4
11 load ( " jenga_Left . cao " , t =[ −0.0375; 0 . 0 1 5 ; 0 . 0 1 2 5 ] , tu =[0;90 deg ; 0 ] )

Listing 4.4: CAD model of the group with a missing block, where there are only
four blocks

Even if the internal face is partially visible, it is removed regardless as it is
dependent on camera point of view and covered by other blocks that may or may
not be in the group. In any case its shadows and light conditions are so unstable
and different that very few good visual features could be found: they would not
really help the tracker.
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Figure 4.17: Example of tracking a group with a missing block

Disclosing here the tuned values of the parameters:

Size 5
Range 5
Step 2

Threshold 10000

Table 4.4: ME

Mask border 5
Max features 300

Quality 0.015
Min distance 8

Table 4.5: KLT

Min range 0.01 m
Max range 1.00 m

Depth occupancy 25%
Sample step 4

Table 4.6: Depth

Angle appear 75 °
Angle disappear 80 °
Near clipping 0.01 m
Far clipping 1.5 m
FOV clipping True

Table 4.7: Visibility angles and clipping faces parameters
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4.5 Learning and detecting online
The tracking of the group of objects is stable during slow movements and while
the tower appears in the camera images; however, to implement the system on
a camera mounted on the robot’s arm a greater level of robustness is taken into
account. In general the robot could perform the following operations during the
movement: 1) Starting with high velocity in the first part of the approach to the
tower 2) Tower partially leaving the field of view of the camera 3) Any abrupt
change in direction 4) Changes in the orientation of the end-effector leading to
rotations of the camera 5) Reaching joint limits and replanning the approach While
points 2) and 4) can be dealt with by correctly designing the initial position and
the control law, the others could lead to a new camera position too far from the
previous one therefore making the tracked object move too fast in the image. The
solution is then designing a computer vision system that is half tracking and half
learning and detection.

TRACKING: Performed every camera frame and it follows the object in image.

LEARNING: First phase done only once, extracting keypoints from full images
of the real tower.

DETECTION: Acting on the entire image based on learning data and it is started
only in the case if: the tracking loses the position of the target; or the tracking
finds a loss in the accuracy.

In detail, the learning begins with the extraction of features using ORB (Oriented-
FAST and Rotated BRIEF). This algorithm converts points of interest that are
visually distinct one from the other, into a database associating them with detailed
descriptors of their visual features with properties. A short explanation can be
found here [17]. The main drawback is the weakness to image scaling, which means
that it’s not robust to changes distance from the target.

The choice of the points is made with FAST (Features from Accelerated Segment
Test), a corner detection method that with high computation speed from a full
image selects keypoints in a grayscale image with the property of being darker or
lighter than all its nearby pixels.

Detection phase is instead finding again the points learned from a first image
in a new picture portraying the same scene from a slightly different distance or
angle: using the same corner detection method most of the new keypoints refer to
the same real physical point, then the extraction of features will lead to similar
descriptions of the detected points. To finally associate learned points and new
extracted, a BruteForce-Hamming matcher is employed. For each descriptor in
the new set of keypoints it computes the Hamming distance from all the learned

54



ViSP Model-based tracking and pose estimation

descriptors, returning the closest in terms of number of equal features. Performing
the operation on all the new keypoints, the percentage of matchings against not
matched is also the criteria to decide if the new image contains enough of the same
information as the reference learned one. In this case the ratio is 80%.

DETECTOR FAST
EXTRACTOR ORB
MATCHER BruteForce-Hamming

Table 4.8: Configuration of the real-time computer vision system for learning and
detecting

The implementation of this system using ViSP is done through the OpenCV
library that provides easy access to all three of the mentioned algorithms in terms of
handling of the image, the keypoints and the results; moreover, they are license-free.
Building on these utilities the application is to restrict the learning to only the single
target object to be tracked, which means that the featured keypoints to be saved
in the image are those belonging to the group of Jenga blocks; naturally following
from this is that the detection phase is only able to match those descriptors and
doesn’t consider the rest of the image. This can be performed only while the
tracking is currently active because as mentioned it has the knowledge of where the
3D model currently is located in the image. The FAST corner detection and the
ORB feature extraction still act on the entire image but the keypoints are filtered
to keep only the pixels that in the current camera frame are tracked to be on the
object. Extending the learning from 2D image to CAD object model an additional
information is stored in the feature descriptor database: for each keypoint its
corresponding 3D coordinates in the object frame. Exploiting the model-based
tracker the points on edges and faces, assumed to be located on known planes, are
associated with their projection in the image and then with the extracted keypoints.

Figure 4.18: Learning step from [18]
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Multiple points of view can build a reference database containing keypoints seen
on different faces of the group of blocks. Each new learning image could contain
new points or already saved points depending on how similar the camera positions
are; regardless, same physical points will refer to same 3D coordinates with possibly
slightly differences in features’ descriptions resulting in a richer information more
robust to viewpoint. The final purpose of the learning stage is then to combine
the generic 3D CAD model of the object with the actual textures appearing on its
surface, in the moment it’s confronted with its real-world counterpart.

Figure 4.19: Learned keypoints on the model, they are corners in the grayscale
image.

Moving on to the detection and matching stage, this is also extended to leverage
the added 3D data of the model-based learning stage. A 6D-pose estimation of
the object can be computed from the association between the keypoint and the
corresponding 3D coordinate in the object frame, resulting in an automatic re-
initialization of the model-based tracker from the new pose in the camera reference
frame. Here the detection is from the entire image while the reference database
contains only points of the object; the matcher finds many of those points but often
also false positives in nearby Jenga blocks that are naturally very similar looking.

Here the details of this pose estimation algorithm where the VVS (Virtual Visual
Servo) is the function at the core, from the work at [19]. The addition of the
RANSAC method described in the procedure 1 in section 4.1 helps to increase the
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Figure 4.20: Matching from learned image, below, into current image above. Red
points are the detected corners, green lines are the matchings, either correct or
wrong

robustness to outliers that is critical when the 2D-3D pairings originate from long
and complex computations prone to mismatches. In particular the parameters can
be tuned to the application and the quality of the matcher; in this case since the
output is the initialization pose whose accuracy is not required to be very high, a low
percentage of the consensus is enough for refinement while the large complementary
percentage of possible outliers avoids using too many wrong matchings in the
computation. Number of maximum iterations is kept high but it’s usually higher
than the number of groups of 4 keypoints, since the matcher can only find points
on the object. Values are in table 4.9.
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Pose method VVS
RANSAC consensus
percentage 20%

max iterations 200
reprojection threshold 5°

Table 4.9: Pose estimation configuration for large number of pairings

The full detection pipeline for a new image is then the following:

1. FAST corner detection on full new image

2. ORB feature extraction and description of corners

3. BruteForce-Harris matcher each keypoint

4. VVS pose estimation

5. RANSAC iterations of VVS estimation

6. Resulting pose

The computation effort is very high, and it is not suitable for running at every
single frame of a 30 fps camera stream as a run of it on a regular laptop averages
more than 33 ms, which is the time before the new frame is provided. For this
reason, the pipeline is activated only after failures of the real-time tracker and to
recover the correct current pose to reinitialize.
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Chapter 5

Force sensor
implementation

5.1 Force sensor characteristics
There is an implicit rule in the Jenga tower game that makes playing it much more
entertaining: the wooden blocks’ dimensions are purposedly not equal as there
are slight variations in width and height in the range of ±1 mm. With this small
difference when a player looks at the tower they cannot just see which blocks are
smaller or larger and so neither they can understand how adjacent blocks would
interact with each other. This means that even with perfect knowledge of the
tower’s physical properties and the ideal dynamic behaviour during one interaction,
the effective movement of the blocks is different for every configuration and in
particular the friction acting from the target block to all those around it. Since
vision is not enough to acquire all the information, players are then required to
touch before making their move. Through the feedback of their fingers they can
discover if a block resists the motion or not: with a slight push on one of them
a human can quickly understand if too much friction force is acting between the
target and the adjacent. In theory the combination of sight and touch gives the
full data to extract a block without perturbing the tower: players also look at the
tower when they explore it with the slight pushes. Not only they feel the force but
they can also see if the rest of the tower is rotating due to the interaction or if the
floors above or below are sliding away. Moving from human player to a robotic arm
some adjustments and data are needed to design the implementation. First the
sensor is placed on top of the robot’s end effector and it directly interacts with the
tower during the push. As the sensor and the robot’s finger are rigidly connected
all the force acting on one is also fully transferred to the other, expecting a reaction
normal to the physical touch interface. Second an estimate of static friction is
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computed from the ideal block’s weight. Reference values are taken from [1] and
they have quite a large variance.

Figure 5.1: Friction force per floor. In blue when blocks are free while constrained
blocks have up to 1 N

Finally the sensor’s transduction technology is chosen: piezoresistive material
that changes its electric resistance value when a strain is applied.

Figure 5.2: Schematic of a resistometric force sensor with voltage output
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Sensor’s size (constraint 1): Its width and height must be smaller than the
single face of a Jenga block to avoid hitting the adjacent blocks.

Sensor’s size (constraint 2): Its width and height must also be smaller than
the available surface of the robot’s finger to be able to firmly attach to it.

Expected force type: Compressive and normal to the surface in quasi-static
condition.

Force low range: Highly sensible to small values to have a precise differentiation
between no contact yet, very low block’s reactions and excessive force.

Force high range: Saturation from a high value is ok. Must endure some overforce
but the tower will fall instead of exerting a dangerous force reaction.

System data Sensor constraint
Jenga block size Height= [15+-1]mm Side < 14 mm

Width= [25+-1]mm
Fingertip size Length1= 11mm Side < 8 mm

Length2= 8mm
Ideal static friction Full= [0.8÷1.2]N Range: [0÷>1]N

Small= [0.4÷0.6]N

Table 5.1: Quantitative requirements for choice of the sensor

Figure 5.3: Sensor chosen

Name MicroForce FMA
Producer Honeywell

Size 5x5 mm
Force type Normal compression

Sensor technology Piezoresistive
Force range [0 ÷ 5]N

Table 5.2: Sensor’s main information
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Figure 5.4: Sensor with 3D printed
support

Figure 5.5: Sensor on robot end ef-
fector

5.2 Readings with Arduino Nano BLE
The chosen sensor combines the analogic property of the piezoresistive material
with a digital circuit that takes the measurements and offers input and output
interfaces. The core element is the piezoresistor, a material that placed under a
contact force changes the value of its electric resistance. It’s a transductor used to
convert from mechanical quantities to electric signals.

• It has maximum resistance with no strain, ideally open circuit.

• It has minimum resistance with high strain, ideally short circuit.

• It’s a passive component, needing a voltage supply to produce an electrical
output.

• Signal is computed from a measurement of resistance

The FMA Microforce is an amplified sensor with a digital interface that is used
to send a serial output to the controller. The protocol used is the Serial Protocol
Interface (SPI) in a single Master single Slave configuration where the latter can
only output data (half-duplex mode).
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PINOUT NAME DESCRIPTION
1 VS Voltage Supply
2 SS Slave Select
3 GND Ground reference
4 SCLK Synchronous Clock
5 MISO Master In Slave Out

Table 5.3: Sensor’s pinout details

SS: Slave Selection that the master sets to activate the sensor, before this the
measurements are not sent.

SCLK: Digital input synchronous clock from the connection Master to the Slave
to dictate the frequency and the timing of all the communication.

MISO: Digital output synched with the input clock. Master In Slave Out is the
line connection where the slave sends data and the master receive it. The bits
composing the measurement are sent in a serial timing.

The FMA sensor needs a Master with compatible electrical and digital quantities.
Technical details of the interface are described here.

QUANTITY MIN MAX
SPI input clock frequency 50 KHz 800 KHz

Voltage Supply 3 V 3.6 V
Current Supply 2.8 mA 3.9 mA

Digital LOW levels 0 V 20% of Voltage Supply
Digital HIGH levels 80% of Voltage Supply 3.6 V

Table 5.4: Digital and electrical operating specifications

The timing and the sequence of the SPI transfer protocol is the following as
seen from the Slave point of view. The byte is sent in Most Significant Bit First.
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Figure 5.6: Detailed single byte SPI transfer with timing

The meaning of the data output at low level is from the single bits. Two bytes
are sent by the sensor containing two different information. The first two bits are
the 4 status and they can be used to have a continuous feedback about the correct
functioning: if they are 00 everything is fine. 10 means master that is reading faster
than the next measurement is taken, causing the data to be stale and already read
before. 11 is the error status and the sensor can be broken. The remaining 14 bits
are the numbers of interest that form a digital value between 0 and 214. This is
converted later by the Master microcontroller into a force measurement in N units.

Figure 5.7: FMA sensor SPI two bytes transfer and bit content

Microcontroller Arduino Nano 33 BLE is chosen as compatible Master at first
for the electrical reasons explained below. Moreover the implementation of the
sensor in the overall system forced its position to be on top of the finger of the
robot’s end effector that is the most mobile element of the whole arm, the furthest
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point from the base and finally a critical point to place some weight.

• Arduino Nano is very small in width, height, length

• Its weight is low and can’t perturbate the dynamics when mounted

• Low consumption of power to last long even with a not very large power
supply

• Provides 3.3V of voltage supply with signals up to 3.3V in input and in output.

• Bluetooth capabilities to avoid physical connection with central computer.

Setting Arduino up to be the Master of a SPI Slave is done through the dedicated
software library that hides all the low level operations during the connection, after
configuring with the same Slave parameters for the specific use case.

Voltage supply 3.3 V
SPI Clock speed 125 KHz
Data bit order MSB First
Data mode Mode0

(CPOL=0,CPHA=0,transitionFall,captureRise)
Dedicated clock pin SCLK 13 (default)

Dedicated MISO pin 12 (default)
Chosen SS pin 9

Table 5.5: Master configuration for the SPI

Presenting the code in the Arduino language format .ino, it has first the definition
of the SPI connection and the choice of the pins that will be used in the circuit,
while keeping the dedicated pins for their sole purpose. The SPI.h library is
imported and started with the result of initializing the pins 12 (MISO) and 13
(SCLK) as output and idle. To avoid any possible miscommunications, before that
the pin 9 (SS) is set as HIGH because the sensor is idle with that. Up to now
the connection parameters are not yet used. Second the function that actually
performs the reading is written with the goal of capturing the 16 sequential bits
from the serial connection into a single variable to be parsed.

Here the master begins the transaction with the constant parameters defined
previously, then providing the clock and enabling the slave by LOW value of the
pin 9 (SS). Since in theory the SPI is a two ways communication, the library starts
reading the values only after sending a series of bit through the hypothetic MOSI
line (Master Out, Slave In); in this case the sensor has not even a pin to perform

65



Force sensor implementation

this task and never reads anything the master is sending. After the 16 bits are
transferred to the slave and the 16 bits are read on the pin 12 (MISO), the slave
is deselected by HIGH value of the pin 9 (SS) and the clock stops, ending the
transaction. The elapsed time for this is around TIME.

1 // the sensor communicates using SPI , so include the library :
2 # include <SPI.h>
3 // Slave select pin as master
4 const int SS_PIN = 9;
5 // Sensor SPI settings
6 const long SPEED = 125000; //50k to 800k Hz of clock speed
7 // MSB first
8 // MODE0 behavior
9

10 void setup () {
11 // initialize slave select pin as output and idle:
12 pinMode (SS_PIN , OUTPUT );
13 digitalWrite (SS_PIN ,HIGH); // FMA sensor idle when SS=high
14 // start the SPI library :
15 SPI.begin ();
16 }
17

18 // SPI reading of the sensor value , returns 16 bits of data
19

20 unsigned int readSPIsensor (){
21 unsigned int result16 = OUTPUT_MIN ;
22

23 // Begin SPI transaction with custom parameters
24 SPI. beginTransaction ( SPISettings (SPEED , MSBFIRST , SPI_MODE0 ));
25

26 // put slave select pin to low to notify the sensor :
27 digitalWrite (SS_PIN , LOW);
28

29 // Read 2 bytes from SPI
30 // send a random value , read the first two bytes returned :
31 result16 = SPI. transfer16 (0);
32

33 // put slave select pin to high to deselect the sensor :
34 digitalWrite (SS_PIN , HIGH);
35

36 // End SPI transaction
37 SPI. endTransaction ();
38

39 return result16 ;
40 }

Listing 5.1: Arduino code to program the SPI Master and the data reading
transfer
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The sensor’s datasheet explains how to use this binary number. As stated, the
first two bits sent are the current status of the sensor that will be the 2 most
significant bits in the number and are read by right-shifting 14 positions, then
compared with their referencing values. The remaining 14 bits are used after
placing to 00 the status bits; this wouldn’t be necessary in the status=ok condition
since those bits are 00 anyway. The sensor’s datasheet provides the way to convert
the number in a floating point value in the range of 0 to 5 N, from the already
calibrated transfer function that relates the minimum force value to a minimum
digital value, the maximum force value to a maximum digital value and the points
in between with a linear approximation. The two limits are there to avoid the
nonlinearities at the edges of the linear approximation.

Figure 5.8: Compensated and calibrated transfer function of the sensor as linear
relation
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A recalibration is done from experimental results since the compensation at 20%
and 80% was not working as expected. A lower value of 15% is needed to take the
actual minimum force as 0 N when the sensor is not in contact with anything.

Name Description Value

Conversion equation force = RANGE ∗ (Reading −MIN)
(MAX −MIN) Force [N]

Reading Transferred from sensor Variable
MIN 15% of 214 2470
MAX 80% of 214 13107

RANGE Rated maximum force 5 N

Table 5.6: Definition of constants and implementation of the transfer function
equation to compute the force value

The function in Arduino code also handles the bad status condition by returning
a conventional value of -1 to notify it.

1 // Sensor ’s bits data format , minimum , maximum , rated
2 const int STATUS_REMOVE = 0x3FFF; //2 most significant bits

of data = 001..1
3 const int FORCE_LEN = 14; //14 least significant bits of reading
4 const int OUTPUT_MAX = 0x3333; // 0.8*2^14 calibrated at max force
5 const int OUTPUT_MIN = 2470; // 0.15*2^14 calibrated at min force

( experimental )
6 const int FORCE_RATED = 5; // Newton max force
7

8 /*
9 * compute force in N from 16 bits of reading

10 * Uses formula from FMA datasheet
11 * Min and max are experimental , not rated from datasheet (min is

not 0.2*2^14)
12 * Also checks if status bits are ok
13 */
14 float computeForce ( unsigned int result16 ){
15

16 unsigned int forceBits = OUTPUT_MIN ;
17 byte statusBits = 0;
18 float forceMeasure = 0.0;
19

20 // Separate the 2 most significant bits of status , right shift of
14

21 statusBits = result16 >> FORCE_LEN ;
22

23 if ( statusBits == 0) { // status = 00: ok
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24 // remove first 2 bits of data read putting them to 0
25 forceBits = result16 & STATUS_REMOVE ;
26

27 // compute force value in Newton
28 if (forceBits >= OUTPUT_MIN )
29 forceMeasure = FORCE_RATED *( float)( forceBits - OUTPUT_MIN )/(

OUTPUT_MAX - OUTPUT_MIN );
30 else
31 forceMeasure = 0.0;
32 }
33

34 if ( statusBits == 2) { // status = 10: stale data
35 forceMeasure = -1;
36 }
37

38 if ( statusBits == 3) { // status = 11: sensor broken
39 forceMeasure = -1;
40 }
41

42 return forceMeasure ;
43 }

Listing 5.2: Arduino code implementation of the transfer function and the
handling of the sensor’s status

5.3 Bluetooth ROS node
Since the sensor and the microcontroller are placed on top of the robot’s end-
effector a physical wiring to the central computer would be not suitable during
the movements, then leveraging the Bluetooth capabilities of the Arduino NANO
33 BLE it is possible to send the data via wireless. Bluetooth Low Energy is a
communication technology that performs a short-range broadcast radio transmission
while being optimized to minimum power consumption. The two active elements of
the protocol are the peripheral device and the central device as they are respectively
the server and the client. The first is the one that advertises the data keeping it
ready to be sent and updating it periodically; the latter is instead the one that
asks for the required information in an asynchronous way and receives the current
contents. Describing the format of the advertised data, it is composed of a number
of layers down to the raw information. First, the peripheral profile is unique to
each physical device and it’s identified by a MAC address; then a service from
that device is identified by a service UUID and groups different coherent data;
specifying with a characteristic UUID it is possible to access the single piece of
data; finally the raw value is read knowing its data type. Here UUID is Universally
Unique IDentifier while the MAC address is Media Access Control.
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Figure 5.9: Scheme of layers in BLE advertisement

In this system the peripheral device is the Arduino that is programmed with
chosen identifier to start the advertisement of a single float value, while the central
device is the computer that accesses to the data by connecting with the known
IDs. Using the specific ArduinoBLE.h library it is possible to set up and manage
the connection. At first the library is imported and the parameters are set; then
the structure of the advertisement is programmed by specifying the device name
(can be used as a local non unique substitute to the MAC address), the service
standard type as float and the single characteristic standard type as float number
after choosing a UUID for both; finally it starts advertising from an initial value.

1 // library of Bluetooth connection
2 # include <ArduinoBLE .h>
3

4 // Define BLE IDs and type of communication
5 BLEService floatService ("180C"); // User defined service
6 BLEFloatCharacteristic floatCharacteristic ("2 A56", // standard

16- bit characteristic UUID
7 BLERead ); // remote clients will only be able to read this
8

9 void setup () {
10 // start the BLE library
11 if (! BLE.begin ()) { // initialize BLE
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12 while (true);
13 }
14

15 // initialize BLE comunication
16 BLE. setLocalName (" Nano33BLE "); // Set name for connection
17 BLE. setAdvertisedService ( floatService ); // Advertise service
18 floatService . addCharacteristic ( floatCharacteristic ); // Add

characteristic to service
19 BLE. addService ( floatService ); // Add service
20 floatCharacteristic . setValue (0.0); // Set init value
21 BLE. advertise (); // Start advertising
22 }

Listing 5.3: Bluetooth constant parameters setup and advertisement info

The main loop of the program is then the following , where the sensor readings
and consequent updates of characteristic are executed only if a central device is
connected: there is no use of taking measurements when no one is listening.

24 void loop () {
25 unsigned int result16 = OUTPUT_MIN ;
26 float forceMeasure = 0.0;
27

28 BLEDevice central = BLE. central (); // Wait for a BLE central to
connect

29

30 // if a central is connected to the peripheral , send sensor
values

31 if ( central ) {
32 // keep looping while connected
33 while ( central . connected ()){
34

35 result16 = readSPIsensor ();
36

37 forceMeasure = computeForce ( result16 );
38

39 // Write on bluetooth the new value
40 floatCharacteristic . writeValue ( forceMeasure );
41

42 // force wait for next iteration , 100 ms -> 10 Hz
43 delay (100);
44

45 }
46 }
47 }

Listing 5.4: Main loop that connects to Bluetooth, reads sensor, computes force
and advertises the data
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Noteworthy is the frequency of the updates that is 10 Hz forced by the delay
of 100 milliseconds, this is a tradeoff between a max value that must account for
sensor reading speed and central Bluetooth reading speed and a minimum value
that is experimentally found from pushing the tower and retracting in time to
avoid its fall. Central device acts through a ROS node that connects in asynchron
to the peripheral and reads the characteristic by knowing all the unique IDs; it
is performed through Bleak Python module that can be used to program the
device’s Bluetooth resources in a script and hide the low level details. A property
of the central reader is that it inquires the advertisement but never reads the same
value twice no matter the frequency, but instead the it waits for an update of the
measurement and collects it as soon as it changes. It then publishes the value on a
dedicated ROS topic for the rest of the system.

Figure 5.10: Advertisement asynchronous protocol with periodic updates and
arbitrary request

1 import rospy
2 from std_msgs . msg import Float32
3 import async io
4 import s t r u c t
5 from bleak import BleakCl i ent
6

7 #Address o f device , always the same f o r same board
8 ADDRESS = "A9 : 8 8 : 0 8 : 2C: E9 : C6"
9 #UUID chosen i n s i d e Arduino sketch ,16 b i t standard

10 nanoUUID=" 2A56"
11 #Arduino standard f u l l 128 b i t ID
12 charUUID=" 0000 "+nanoUUID+" −0000−1000−8000−00805 f9b34 fb "
13 #Serv i c e ID chosen i n s i d e Arduino sketch ,16 b i t standard
14 nanoServ ice=" 180C"
15

16 async de f publ i sh_sensor (mac_addr : s t r ) :
17 c l i e n t = BleakCl i ent (mac_addr )
18 await c l i e n t . connect ( )
19

20 #I f connected , i n i t i a l i z e ROS node , message , t op i c
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21 forceMsg=Float32 ( )
22 pub = rospy . Pub l i sher ( ’ s ensor_top ic ’ , Float32 , queue_size =10)
23 rospy . in it_node ( ’ s ensor_pub l i she r ’ , anonymous=False )
24 whi le not rospy . is_shutdown ( ) :
25 read ing=bytes ( await c l i e n t . read_gatt_char ( charUUID) )
26 value = round ( s t r u c t . unpack ( ’ f ’ , r ead ing ) [ 0 ] , 2)
27 forceMsg . data=value ;
28 pub . pub l i sh ( forceMsg )
29 e l s e :
30 await c l i e n t . d i s connec t ( )
31

32 i f __name__ == ’__main__ ’ :
33 t ry :
34 loop = async io . get_event_loop ( )
35 loop . run_until_complete ( publ i sh_sensor (ADDRESS) )
36 except rospy . ROSInterruptException :
37 pass

Listing 5.5: Python code of the Bluetooth reader and ROS publisher

5.4 Experiment for force threshold value

Figure 5.11: Complete scheme of the force feedback system, its different interfaces
and final output

The complete force feedback requires a threshold value to perform a binary
choice: when the push is encountering too much opposing force then the block
is considered constrained and it would make the tower fall, while if the force is
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instead very low the block is considered free to move. This is a static number that
must be the maximum allowed force. All this translates in the need for practical
experiments to take real measurements and analyze the tower’s behaviour. As
previously explained the ideal static and dynamic cannot be used and a theoretical
study of possible values is excluded.

Experiment setup is the following:
• Sensor on the robot’s finger

• Computer reading force values via Bluetooth from Arduino

• Tower with 16 floors and full 48 blocks

• Tower is destroyed and rebuilt after every set of measurements

• Robot’s movement is not affected by measurements

• Manually moving the tower to ensure the right push position and orthogonality.

• Constrained block: pushing it moves the rest of the tower

• Free block: pushing it moves the target only

Figure 5.12: Start Figure 5.13: Perturbation of the
tower

Figure 5.14: Start Figure 5.15: Free moving block
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The experiment is then conducted by controlling the arm to do two separate
movements: from starting position move directly straight ahead until a final position;
move back to starting position. Both the positions are manually defined and the
arm’s movement is a purely offline control with no knowledge of the surrounding for
a direct push. To obtain a threshold that accounts for many tower configurations
and for a general target position, the pushes are performed on all three blocks
forming a floor and from the fourth to the tenth floor. This ensure that both blocks
that are in the center and external of the floor are considered since the first have
two blocks in contact on their sides while the latter have a free side, thus possibly
having different friction values. Furthermore different floors have different weight
above them and the friction depends on it. Finally after measuring each three of
the floor, the tower is rebuilt to change configuration of smaller and larger blocks.

Blocks per floor 3
Total floors 16

Measured floors 4 to 10
Times floors are measured 3

TOTAL MEASUREMENTS 63

Table 5.7: Experiment setup data

Central computer reads the measurements and writes them on a file in the
sequence they are obtained. Supervising the experiment, for each file the actual
block’s condition is noted: constrained or free. After gathering all the data a plot
is computed and from it a threshold value is decided by keeping all the peaks of
the free blocks’ under it and all the peaks of the constrained blocks above it. The
peak values are considered as they correspond to the maximum friction force that
is the static friction; the following smaller values are either dynamic frictions or
due to the tower rotating or falling under the disruptive push.

In conclusion of the experiment another element is considered: a trade-off
between arm response speed and minimization of false positives. A high threshold
can always detect free blocks even if they offer a bit of friction, but it causes the
arm to retract only when a large force is detected that could already be affecting
the stability of the tower.
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Figure 5.16: Constrained blocks and free blocks compared to the threshold
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Chapter 6

Conclusions

6.1 Units integration and final results
The content of 4 assumed to know both the composition of the CAD model group of
blocks and its initial position and orientation with respect to the camera reference
frame as up to now they were manually provided by the user. Even the automatic
detection and the learning phase require to first start the tracker with the correct
initial information from which the keypoint features are built.

The already trained Yolact instance segmentation of chapter 3, being a more
powerful and generalized system, is employed to perform the first detection for a
starting guess of pose estimation. Thanks to the training on generalized data it
can provide an inference on a real scene with completely new Jenga blocks with
little external information. Noteworthy is that one image is processed in around 2
seconds (or 2000 ms to compare with previous timings); this computation cannot
be done in real-time and neither every few frame when the tracking is lost, but
really only once per target block.

As shown in section 3.4 the extraction of all the corners of the front faces can
be performed with confidence, while the neighbours of a target block are searched
and found. Adding here the specific information of the Jenga block’s size and with
the camera intrinsic parameters the initialization data is computed autonomously.

In particular at first the CAD model .cao format text file is written where each
line of the group file as discussed in section 4.4 corresponds to a model of one block
filling the three properties values, that are fully known. The block’s visibility type
is forced by the neighbour search group composition. Based on the content of the
up, down, left, right indices:
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• If the target has a block on its right and a block on its left, it is a central

• If the target has two blocks on its right, it is a left (external)

• If the target has two blocks on its left, it is a right (external)

• The above and below blocks are always left blocks by construction.

This results in the production of a string name pointing to the source model of
the single block, for each component of the group. Second, the translation with
respect to the target block is based on the block’s real dimensions and it descends
from the group composition, with their fixed values. Third and finally, the rotation
is either null or 90° on the second component.

Figure 6.1: Group found from target block at the center of the floor

1 # Block 1
2 load ( " jenga_Center . cao " , t = [ 0 . 0 ; 0 . 0 ; 0 . 0 ] , tu = [ 0 . 0 ; 0 . 0 ; 0 . 0 ] )
3

4 # Block 2
5 load ( " jenga_Right . cao " , t =[ −0.025; 0 . 0 ; 0 . 0 ] , tu = [ 0 . 0 ; 0 . 0 ; 0 . 0 ] )
6

7 # Block 3
8 load ( " jenga_Left . cao " , t = [0 . 025 ; 0 . 0 ; 0 . 0 ] , tu = [ 0 . 0 ; 0 . 0 ; 0 . 0 ] )
9

10 # Block 4
11 load ( " jenga_Left . cao " , t =[ −0.0375; −0.015; 0 . 0 1 2 5 ] , tu =[0;90 deg ; 0 ] )
12

13 # Block 5
14 load ( " jenga_Left . cao " , t =[ −0.0375; 0 . 0 1 5 ; 0 . 0 1 2 5 ] , tu =[0;90 deg ; 0 ] )

Listing 6.1: Automatic generated CAD
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Figure 6.2: Group found from target block at the side, with wrong detections

1 # Block 1
2 load ( " jenga_Left . cao " , t = [ 0 . 0 ; 0 . 0 ; 0 . 0 ] , tu = [ 0 . 0 ; 0 . 0 ; 0 . 0 deg ] )
3

4 # Block 2
5 load ( " jenga_Center . cao " , t =[ −0.025; 0 . 0 ; 0 . 0 ] , tu = [ 0 . 0 ; 0 . 0 ; 0 deg ] )
6

7 # Block 3
8 load ( " jenga_Left . cao " , t =[ −0.0625; 0 . 0 1 5 ; 0 . 0 1 2 5 ] , tu = [ 0 . 0 ; 90 .0

deg ; 0 . 0 ] )

Listing 6.2: Generated CAO starting from block on the side

Initial pose of the target is computed with an OpenCV Perspective-n-Points
function containing an algorithm specifically designed for coplanar points, as it is
in this case, called IPPE (Infinitesimal Plane-based Pose Estimation), based on the
projection equations of 4.1. The function needs the points in 3D object frame and
the camera intrinsic parameters, already known. The solution is the 6 unknown
extrinsic values of the pose of the object with respect to the camera from 8 sets of
equations. The requirement of having at least 4 points is guaranteed as the front
face of the block is defined by the 4 corners, while in the case of two adjacent front
faces the available points become the 8 corners (they are actually only 6 because 2
corners of the other face are already included in the first set and don’t add new
information).

The association between 2D in pixels and 3D in object frame is perfectly known
and RANSAC iterations are not needed as the consensus is 100%. All other corners,
colored in blue, do not have a direct correspondence known a priori and therefore
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Figure 6.3: The 8 points inputs for the PnP IPPE

Point(px) Coordinates(m)
A (-0.0125,-0.0125)
... ...
H (0.0375,-0.0125)

Table 6.1: Associating pixels to object coordinate frame, coplanar with z=0

are ignored; in any case PnP with 4 points is enough for a unique solution with a
good quality to start the tracking and the stronger model-based system discussed
previously.
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The complete algorithm for each new scene is shown here.

Algorithm 3 From a new tower configuration, producing a real-time pose es-
timation and tracking during the camera approach to the tower and the target
block.

1: procedure Segment Learn and Approach(New-tower-scene)
2: Unknown new tower configuration of blocks
3: Camera facing towards the tower
4: Take a single picture
5: Full tower segmentations
6: Finding all groups of blocks
7: Choose one group
8: Produce CAO model file and initial pose
9: Initialize tracking

10: for learnedPictures<6 do
11: if TrackingLost then
12: ExitWithError
13: end if
14: Reach new position
15: Take picture
16: Extract keypoints
17: Keep only those on target
18: Learn keypoints and 3D info
19: end for
20: while BlockNotReached do
21: Move toward block
22: if TrackingLost then
23: Extract Keypoints
24: Match with learned images
25: Restart tracking
26: end if
27: Estimate pose of target
28: end while
29: end procedure

In the following pages, some experiments are made with the tracking, always by
moving manually the camera.

81



Conclusions

Figure 6.4: Experimental setup with camera, tower and tracking active

Figure 6.5: Only the tracking and pose estimation, with high number of features.

Mean time 54 ms
Std deviation 10 ms

Table 6.2: Processing time during tracking, without learning and detecting
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Figure 6.6: Learning images with saved keypoints shown, during active tracking

Processing time Mean: 55 ms
of tracking Std: 19 ms
Learning Mean: 71 ms
timing Std: 12 ms

Table 6.3: Processing time of all the frames compared with the 8 extraction and
learning

Since the tracking operates on every single frame while the learning stage is
only activated 6 or 8 times, the mean time of the first is not affected while the
standard deviation is slightly increased by those events. Table 6.3 shows that the
learning stage on a single image takes a considerable amount of time, more than
single track.
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Figure 6.7: Matching from the previously learned images

Processing time Mean: 56 ms
with detections Std: 24 ms

Detection Mean: 78 ms
timing Std: 5 ms

Table 6.4: Processing time of detecting, extracting and matching when tracking
is lost

The negative effect on the overall processing time depends on how stable is
the tracking and how many times it loses the position. The detections and re-
initializations are very heavy on computation.

To obtain a very robust system, even rotations of the camera should be consid-
ered.
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Figure 6.8: Matching from other 8 images with rotated camera learned images.
Current camera image is at the center. Only 7/347 matched points

6.2 Future work
The final integrations to the manipulator’s movement control require two additional
steps. The first, calibrating the extrinsic parameters of the fixed pose of the
camera with respect to the end-effector or the robot’s base, is done through a
camera calibration algorithm specific for the configuration chosen. If eye-to-hand,
camera fixed and pose to the robot’s base. If eye-in-hand like in this case, camera
moving together with the end-effector, mounted on the robot’s wrist, and pose with
respect to the finger. The second is to adopt a Position-Based Visual Servoing with
eye-in-hand approach that, from the estimated pose of the object in the camera
frame, computes a velocity the camera should obtain to finally reach the target.
Since the camera is on top of the robot, it translated into velocity commands of
the robot’s hand.
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