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Abstract

Drones are usually designed to navigate outdoor spaces, they are often equipped
with cameras and other sensors, making them a powerful tool for surveying large
areas. In these environments a Global Navigation Satellite System (GNSS) is com-
bined with an Inertial Measurement Unit (IMU) to achieve precise positioning,
allowing successful navigation in a 3D open space. During the past years users
started to use small size drones in challenging environments, indoor places, inside
caves or near bridges, where a GNSS is not always reliable or reachable.

Classical positioning techniques are no longer efficient in these cases, so it is
necessary to develop new systems to adapt in these situations. Ultra WideBand
(UWB) sensors are used to enhance the positioning in closed environments. These
sensors allow two tags to exchange signals at high frequency in order to retrieve the
distance between each other. It is possible to fuse this information with classical
positioning methods to resolve the positioning problem in any scenario.

The goal of this thesis is to design a system that allows drones to flight in both
GNSS enabled and denied environments using UWB tags. This work explores the
main positioning techniques used in literature and introduces several sensor fusion
algorithms, aiming at comparing them in terms of both accuracy and precision.
The final intent is to achieve reliable flight in any situation without disruption of
service: referred as seamless flight.

The capabilities of the proposed method are measured in a simulated environ-
ment and then validated on a real quadcopter. In order to easily implement the
algorithms, all proposed codes are integrated in the PX4-Autopilot Robotics API.
This allows to test the same instances of the system both on the companion com-
puter, a Raspberry Pi 4 on the drone, and on the Gazebo simulation environment
on a desktop computer, without changing a single line of code.

The results of this work show the outstanding capabilities of Kalman filters to
fuse sensor’s information, with a particular focus on their nonlinear variant. Thanks
to these methods is possible to obtain a reliable pose estimate using the raw UWB
ranging data and augmenting it with predicted velocity estimate, that is vital in
achieving stable control.
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Chapter 1

Introduction

This work aims to search different sensor fusion techniques for robotic positioning
and flight in Global Navigation Satellite System (GNSS) denied environments using
Ultra WideBand (UWB) technology. This is an experimental work, where the test
bench to compare the performance of the algorithms includes the utilization of
quadcopters, both simulated and real.

Quadcopters and the majority flying vehicles are completely dependent from
GNSS services, and they are unable to locate themselves and flight in a closed
environment, where the GNSS signals are attenuated or missing, but the recent
trend to use robots in the industrial world requires methods to achieve stable and
precise flight in challenging scenarios, despite the availability of GNSS coverage.

The solution to achieve indoor positioning foresees the usage of UWB ranging
sensors, capable to measure the distance between themselves, using their unique
transmission properties. This technology allows the drone to receive the ranging
measurements from UWB anchors placed in the environment to the UWB tag
mounted on the quadcopter’s chassis. These anchors are used like GNSS satellites
to achieve passive positioning.

The goal of this thesis is to design a plug-in estimator, that coupled with a
pre-existent flight stack software, is capable to instruct it with reliable positioning
feedback. The estimator is capable to use UWB ranging measurement to estimate
the drone’s state when a GNSS is not available. The system proposed integrate both
sources of data, UWB and GNSS to achieve centimeters like precision. Moreover,
it allows to flight from a UWB enabled environment to a GNSS one, and vice versa,
without any disruption of service.

This work aims to produce a complete algorithm to be used in a real scenario, the
final system is able to achieve a reliable navigation solution in any situation, even if
the anchors are not georeferenced and placed by hand with dozens of centimeter of
placing error. The anchors must also be lightweight and consume as less power as
possible, a precise and expensive solution cannot be realistically integrated, so the
trade-off is working with ranging measurement that are noisy and contains outliers.
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Introduction

In Chapter 2 it is described a particular type of Unmanned Aerial Vehicle (UAV),
quadcopters, on which all the algorithms are presented, simulated and tested.
Quadcopters have high adaptability and low encumbrance, making them optimized
for indoor flight and able to support a wide spectrum of sensors. The focus of this
chapter is to define the dynamics of the quadcopter and to describe the architec-
ture of the flight stack in use, in order to define a way to integrate the estimator
accounting for the dynamics and software properties of the drone. In any case the
methods are abstracted to work on a wide spectrum of robots and on different
software interfaces.

Chapter 3 provides a theoretical background on the sensors typically used for
positioning, then it explores the classical positioning techniques that are known
in the literature, using mainly GNSS and Inertial Measurement Unit (IMU) infor-
mation. Then it also introduces the UWB technology and describe the methods
available to calculate the position of a tag from the ranging measurement.

The core of the thesis is presented in Chapter 4, where different methods to
extrapolate the drone’s state are proposed. UWB data is filtered and fused to the
classical sensors in order to achieve the expected results. The theory is matched
with the filter implementation, using the Python library FilterPy and Robot Oper-
ating System (ROS2) development environment. Then the estimate is feed to the
drone flight stack in order to evaluate each algorithm performance.

The first mean of evaluating the presented methods is by Software In The
Loop (SITL) simulations, thanks to PX4 Autopilot middleware it is possible to
connect the flight stack to ROS2 nodes, that implement the filters, in a simulated
environment provided by Gazebo. A plugin for Gazebo it has been developed dur-
ing this work in order to correctly simulate the UWB sensor and its noise model.
Both the ROS2 nodes and plugin code are listed in the Appendix A. All the sce-
nario simulated and the measured performances of the filters are indicated with
meaningful plots in Chapter 5.

The final part of this work consists of setting up an experimental analysis to
prove the correct functionality of the proposed solution, see Chapter 6. Using a real
quadcopter allows connecting PX4 Autopilot to a Raspberry Pi 4 that runs the filter
ROS2 node. Then a manual command to disable GNSS reception is sent during
the tests to reproduce a GNSS denied environment. Different transition between
GNSS and UWB enabled environments have been tested in a controlled space, so
the methods are reliable enough to be implemented in a complete estimator stack.
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Chapter 2

Unmanned Aerial Vehicles

A Unmanned Aerial Vehicle (UAV), commonly known as drone, is an aircraft with-
out a pilot, controlled from the ground or by a computer on board [16]. UAVs are
designed for missions where the human presence could be dangerous, unnecessary
or expensive. They need to have the circuitry on board to power themselves and to
be controlled remotely or to navigate autonomously with a preconfigured mission.

This work focus on a particular type of Vertical Take-Off and Landing (VTOL)
vehicles: quadcopters, that provide a suitable test bench for experimenting with
Global Navigation Satellite System (GNSS) denied environments. Quadcopters are
capable to withstand indoor flight, the principal space that does not provide GNSS
positioning, thanks to their high speed dynamics, low inertia and dimensions.

Figure 2.1. Schematic of reaction torque on each motor of a quadcopter [6].
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Unmanned Aerial Vehicles

2.1 Quadcopters

Quadcopters are UAVs with four rotors, two spinning clockwise and two counter-
clockwise, the rotors are directed upwards and placed in a rectangular formation
with equal distance from the center as seen in Figure 2.1.

Each rotor produce thrust and torque about is center of rotation. By changing
the rotational speed of the rotors it is possible to achieve precise flight control,
moreover their small size and low inertia make this type of vehicle simpler to control
and to use in challenging scenarios, like surveillance, search and rescue, construction
inspection and others [12].

2.1.1 Dynamics

The dynamical model of the quadcopter is the starting point to understand its
properties and to construct a suitable model to use in the estimation of the drone’s
state.

Figure 2.2. Quadcopter rigid body scheme. [1]
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2.1 – Quadcopters

The scheme in Figure 2.2 represents the rigid body scheme of a standard quad-
copter with the principal quantities. All the reference frames used in this chapter
are coherent with general literature [5].

The state of the quadcopter is described by its absolute position in the inertial
navigation frame pn; the attitude is defined by the Euler angles η representing the
orientation of the body frame with the respect of the navigation one:

pn =

x
n

yn

zn

 , η =

ϕθ
ψ

 (2.1)

The origin of the body frame is in the center of mass of the quadcopter, its linear
velocities vb and angular rates ν in the body frame are vital to control the drone’s
flight:

vb =

v
b
x

vby
vbz

 , ν =

pq
r

 . (2.2)

The quadcopter is assumed to have symmetric structure with the arms aligned with
the x and y axis, so the inertia matrix I is diagonal with Ixx = Iyy:

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 . (2.3)

2.1.2 Rotors dynamics
Each rotor i produces a force fi in the direction of the motor axis and a torque τMi

around it. Both quantities depend on the angular velocity of the motor ωi:
fi = kω2

i , τMi = bω2
i + Imω̇i; (2.4)

with k the lift constant, b the drag constant and Im the motor inertia. These 3
parameters depends on the rotor, usually the effect of ω̇i are omitted because Im is
very small.

The combined action of the 4 rotors produces a thrust Tz along the body z-axis
and a torque τ b in the direction of the corresponding body angles:

Tz =
4Ø
i=1

fi = k
4Ø
i=1

ω2
i , (2.5)

T b =

 0
0
Tz

 , (2.6)

τ b =

τϕτθ
τψ

 =

lk(−ω2
2 + ω2

4)
lk(−ω2

1 + ω2
3)q4

i=1 τMi

 ; (2.7)
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Unmanned Aerial Vehicles

where l is the distance between each rotor and the center of mass.
It is possible to control the quadcopter rotors and achieving attitude and thrust

control by controlling the four angular velocities ωi. This operation is usually done
by a mixer that converts the thrust and orientation control commands in signals
sent to the rotors Electronic Speed Control (ESC).

2.1.3 Newton-Euler equations
The rigid body dynamics are described by Newton-Euler equations in the inertial
navigation frame:

mp̈n = g + RT b, (2.8)

where g is the local gravity vector simplified as [0, 0,−g]T and R is the rotation
matrix from the body frame to the navigation frame. Instead, in the body frame,
the system is described by:

mvb + ν × (mvb) = RTg + T b (2.9)

The drone state mainly depends on the gravity effects and on the torque applied
by the rotors, not accounting for aerodynamic drag that only become significant
at high velocities. These effects are more difficult to measure with the respect of
the body frame acceleration and rotational rates, in fact the latter are measured
directly with a Inertial Measurement Unit (IMU).

From IMU data it is possible to have a direct feedback on the drone’s state,
then integration is sufficient to extract the complete set of state variables, this is
explained in Section 3.2. Even if with IMU it is possible to predict the positioning,
a direct feedback is always needed to compensate for the accumulating error in the
integrator.

2.2 PX4-Autopilot
PX4 is the Professional Autopilot. Developed by world-class developers from in-
dustry and academia, and supported by an active worldwide community, it powers
all kinds of vehicles from racing and cargo drones through to ground vehicles and
submersibles. [4]

PX4-Autopilot provides an open source flight controller software stack that con-
nects with sensors and the Radio Controller (RC) in order to control the motors.
Moreover, it provides a set of middlewares to implement complex features.

2.2.1 Flight stack architecture
The flight stack is the core of the system: it consists of a collection of guidance,
navigation and control algorithms useful to drive different types of drones, as well

14



2.2 – PX4-Autopilot

as a set of estimation filters for attitude and position. In Figure 2.3 it is shown the
connection between the building boxes of the stack.

Figure 2.3. PX4 high level flight stack [4].

The estimator is the part of the stack that this work proposes to enhance in order
to work in a GNSS denied environment, adding the support of Ultra WideBand
(UWB) ranging sensors. Chapter 4 explain how it works.

The controllers take the estimation provided and calculate the control input to
reach the desired position and attitude set point, it is essential that the estimate is
accurate and stable to obtain precise flight.

The mixer takes high level commands and translate them to individual motor
commands, ensuring that limits are not exceeded. It heavily depends on the UAV
dynamic characteristics.

2.2.2 Control stack

Figure 2.4. PX4 control stack. [4]

The control stack is the part of the system that allows the drone to flight, as
stated before it depends heavily on the correct estimation of the drone’ state. In
Figure 2.4 it is possible to acknowledge the capabilities of the controller, that is
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Unmanned Aerial Vehicles

able to allow multiple sources of control for the user. The positioning control is the
most complex and require a complete knowledge of the feedback for all the block
in the control stack: position, velocity, acceleration, attitude and angular rate.

This work focus on giving the correct feedback to the control stack in any situa-
tion, even in a GNSS denied scenario, then it let the stack deal with the actuation
of the rotors to reach correct and stable positioning.

2.2.3 Middleware
PX4 provides a set of middlewares to communicate with embedded sensors and with
the external world. One of them is the interface with the companion computer,
explained in Chapter 6, the other is the simulation layer that allows PX4 flight
code to run on a desktop computer, see Chapter 5.

The middleware functions are supported by the internal messaging API used
for inter-process navigation: uORB. The modules of the autopilot subscribe and
publish on different topics in order to exchange messages.

Thanks to the microRTPS Bridge there is an external interface to directly con-
nect to uORB topics. The bridge can run in a simulated environment, allowing to
run the entire stack in a computer without changing a single line of code. More-
over, it is possible to use a companion computer running Robot Operating Sys-
tem (ROS2) and exchange messages between ROS2 topics and PX4 ones using the
same bridge, allowing a more flexible prototyping environment.

16



Chapter 3

Positioning techniques

This chapter explains the sensors and techniques used in the positioning estimation
problem. The focus is the classical methods involving Global Navigation Satellite
System (GNSS) and Inertial Measurement Unit (IMU) along with the ones that
involve Ultra WideBand (UWB) sensors’ ranging. In chapter 4 is presented the
possibility to fuse these sources of information in order to achieve a better estimate.

3.1 Global Navigation Satellite System
Global Navigation Satellite System (GNSS) is a general term describing any satellite
constellation that provides positioning, navigation and timing services on a global
or regional basis [14]. Different systems are actually fully functional:

• Global Positioning System (GPS),

• Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS),

• BeiDou,

• Galileo.

Others have regional scope or augment the capabilities of the previous ones.

3.1.1 GNSS architecture
Each GNSS is composed by a constellation of satellites orbiting the Earth. At least
24 satellites are required to achieve global coverage. Each satellite require all the
instrumentation to power itself with solar panels and to broadcast ranging codes
and navigation data messages on several frequencies. They are also equipped with
an atomic clock to preserve stable time reference.

A GNSS is also composed of ground stations to monitor and control the satellites
orbit and provide necessary corrections and maneuvering. Monitoring stations are

17



Positioning techniques

also used to calibrate the satellites clock, instead control stations are able to plan
major satellite relocation in the event of failure.

At least the GNSS user equipment receive the signals from the constellation
with a receiver, calculates the ranging data from the antenna to each satellite, then
the navigation processor compute a position, velocity and time solution. Different
user equipments have more functionalities with increasing cost: power supply, user
interface, the capability to fuse ranging information with other sensors and multiple
constellations support.

Figure 3.1. GNSS connection scheme.

Figure 3.1 represent the connection between the space segment composed by the
satellites, the ground segment that controls them and a GNSS equipment mounted
on a tractor.

3.1.2 Ranging measurement
All GNSS signals are in the L-band of the frequency spectrum. Because L-band
waves penetrate clouds, fog, rain, storms, and vegetation, GNSS units can receive
accurate data in all weather conditions, day or night. There are circumstances
in which GNSS units may not receive signals accurately, such as inside concrete
buildings or under heavy forest canopies [15].

A GNSS signal is a combination of a carrier with ranging codes and sometime
navigation data messages. This work does not explain the complete signal trans-
mission but focus on the transformation from the ranging data to the final estimate.
The formulas and methods presented in this section are extrapolated from [5].

18



3.1 – Global Navigation Satellite System

The main information derived by the user equipment is the raw GNSS pseudo-
range measurement ρR from satellite s to antenna a. It is calculated as the difference
between the times of signal arrival sa and signal transmission st; multiplied by the
speed of light c:

ρsa,R = (tssa,a − tsst,a)c, (3.1)

neglecting all error sources.

3.1.3 Ranging error sources
Ranging data are affected by multiple error sources, some of them can be corrected
with the help of navigation data messages, others can be only smoothed. The main
sources of error are:

• satellite ephemeris and clock errors;

• ionosphere and troposphere propagation errors;

• tracking errors;

• multipath interference and Not Line Of Sight (NLOS) reception.

Satellite errors depend on the drift of the clock mounted on the satellites and
on their broadcasted orbit around the Earth. Both errors are corrected by the
control station via parameters passed at the receivers, so they are more accurate
with better clock modelling and precise orbit monitoring. These errors vary in the
order of hours or even days and contribute to a positioning error of 0.5 meters with
the respect of the GNSS constellation. [11]

Ionosphere and troposphere reflect the signal adding a considerable amount of
delay. Satellites placed with a higher elevation angle are affected more and often
removed from the positioning solution. This delay can be calculated in various
ways and change slowly over time, so its contribution to the positioning error is not
higher than 0.1 meters for the ionosphere and 0.2 meters for the troposphere.

Tracking errors occurs every time the receiving signal is attenuated, this can
be due to the receiver thermal noise, Radio Frequency (RF) interference and also
others GNSS transmitting on the same frequency. Tracking errors are correlated
over less than a second and cannot be corrected, but only smoothed.

Multipath interference and NLOS are also correlated in a few seconds, but they
can be partially corrected with reflection and signal penetration models. This type
of errors depends heavily on the environment, the presence of natural and artificial
obstacles impact the final measurement. A closed space is able to shield the receiver
from receiving any signal.
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Positioning techniques

3.1.4 Positioning
Position solution is determined using passive ranging in three spatial dimensions.
With three ranging measurements it is possible to restrict the user location to only
two points, one of them usually not viable. The receiver is not synchronized with
the constellation, so the measurements are made as pseudo-ranges that depend on
both antenna and satellite clock biases:

ρsa,R = ras + (δtac − δtsc)c, (3.2)
where ras is the true range.

The satellite clock bias δtsc is measured by the control stations and provided in
the navigation messages by the satellite. The antenna clock bias δtac is unknown
but common to all simultaneous pseudo-ranges. This means that the positioning
problem for the GNSS user equipment is four dimensional, so it requires at least
four measurements

The corrected pseudo-range measurement by means of the correlated ranging
errors are expressed in terms of satellite position ris, user antenna position ria and
receiver clock bias δρac :

ρsa,C =
ñ

(ris − ria)T (ris − ria) + δρac . (3.3)
The position of the satellite is broadcasted in the navigation messages that

describes the satellite orbit, know as ephemeris.

3.1.5 Single-epoch navigation solution
The positioning solution cannot be obtained analytically from the equation 3.3,
having a set of pseudo-ranges, because it is nonlinear. It needs to be linearized by
performing a Taylor expansion of the first order about the predicted user position
ri−ia and clock offset δa−

c . Naturally the predicted values given to the lineariza-
tion module are the one of the previous iteration of the algorithm. For m > 4
measurement the linearized form is:

ρ1
a,C − ρ1−

a,C

ρ2
a,C − ρ2−

a,C

. . .
ρma,C − ρm−

a,C

 = H i
G

C
ri+

a − ri−
a

δρa+
c − δρa−

c

D
+


δρ1+

c,ϵ

δρ2+
c,ϵ

. . .
δρm+

c,ϵ

 . (3.4)

The linearization errors are included in the residuals δρ+
c,ϵ, and the measurement

matrix is:

H i
G =



∂ρ1
a

∂xi
a

∂ρ1
a

∂yi
a

∂ρ1
a

∂zi
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∂ρ1
a

∂ρa
c

∂ρ2
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∂ρ2
a
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∂ρm
a
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∂ρm
a

∂ρa
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(3.5)
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Each time there are at least 4 simultaneous pseudo-ranges it is possible to esti-
mate the position and clock offset by means of the iterated least-squares algorithm:

C
ri+

a

δρa+
c

D
=

C
ri−

a

δρa−
c

D
+ (H i

G

T
H i

G)−1H i
G

T


ρ1
a,C − ρ1−

a,C

ρ2
a,C − ρ2−

a,C

. . .
ρma,C − ρm−

a,C

 . (3.6)

The presence of multiple pseudo-ranges allows this algorithm to reduce the mea-
surement error and to provide a better estimate, but this solution does not make
complete usage of the previous predicted state and depends on a correct initial
estimate to correctly converge. Moreover, the linearization and the assumption of
simultaneous measurement add remarkable noise to the method.

Most of these problems are fixed using a filtered solution, allowing the previous
pseudo-ranges to be helpful in the estimation. Then the usage of nonlinear methods
is preferred to cancel any form of approximation.

3.1.6 Signal geometry

The accuracy of a GNSS solution does not depend only on the ranging errors
and on the navigation method used, but also on the signal geometry. When the
signals come only from satellites on the same direction or that share a plane in
the Three Dimensional (3D) space, the rows in the measurement matrix became
more linear dependent. In the worse scenario the matrix can become singular and
positioning is no longer possible. A spread satellites formation, like the one in
Figure 3.2, produce a better estimate because each pseudo-range contribute more
to the position solution.

Figure 3.2. Optimal four satellite geometry [5].
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The effect of the signal geometry is quantified by the Dilution of precision (DOP),
the lower, the better. The positioning error is linearly dependent on the DOP
value and the ranging error, so some navigation equipment are able to estimate the
positioning accuracy by means of geometry and noise.

3.2 Inertial Measurement Unit
The Inertial Measurement Unit (IMU) combines different inertial sensors in order
to produce an accurate measure of specific force and angular rate of the body on
which they are mounted. Inertial sensors are typically accelerometers that measure
the specific force and gyroscopes for angular rates, that do not need an external
reference frame.

Figure 3.3. Schematic of a IMU. [5]

The information given by the IMU is fundamental for basic flight control because
give a reliable rate and acceleration feedback. Moreover, it can give an attitude,
velocity and position feedback by integration, but this is less accurate and affected
by drift.
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In every flight control stack, PX4 included, it is almost impossible to detach the
IMU data stream because of its vital role in the flight. Without this information
the flight result impossible, even with Radio Controller (RC) manual inputs. This
means that the IMU input management is completely in charge of the autopilot,
while other sources of information are used to correct the drift of the position and
velocity feedback.

Figure 3.3 shows that a IMU is not only in charge of the inertial sensors stream
of data, but is a complete computer able to power them, to convert and to pro-
cess inertial measurements, to provide for sensor compensation and calibration, to
interface with a data bus connected to the navigation processor. More expensive
IMUs are able to interface with a wide variety of additional sensors.

3.3 Ultra WideBand
Ultra WideBand (UWB) is a radio technology involving generation and transmis-
sion of narrow duration pulses that results in very large or wideband transmission
bandwidth. The main aspect of UWB that concern this work is its utilization in
communication and measurement systems.

The Federal Communication Commission (FCC) on the February 2002 regulated
the usage of UWB [2] in the frequency band of 3.1-10.6 GHz, for indoor usage and
peer-to-peer operation. UWB is defined by the FCC as any device where the
fractional bandwidth this greater than 0.2 or occupies more than 500MHz of the
spectrum. The formula for the fractional bandwidth is:

FractionalBandwidth = 2(fh − fl)
fh + fl

(3.7)

where fh and fl are the upper and lower frequency of the -10dB emission point.
These regulations permit the unlicensed use of the technology without interfer-

ing with other transmission in the same frequency band, requiring sufficiently low
emission levels in different applications.

3.3.1 Advantages of UWB
UWB data transmission use Pulse Position Modulation (PPM) or Time Modula-
tion (TM), with a noise-like signal that make interception and detection difficult,
combined with its low-power spectral density, it causes very little interference with
existing radio systems [8]. The main advantages of UWB are:

• it has a potentially low complexity and cost;

• it has noise-like signal;

• it is resistant to multipath and jamming;
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• it has good time domain resolution, allowing location applications.
Its low complexity derive by the nature of the signal transmission: producing a

very narrow time domain pulse does not require additional RF stages. At the same
time the reverse process of down conversion is not required in the receiver, making
it cheaper than other data transmission facilities.

The narrow time domain pulse makes UWB able to offer time precision capabil-
ities more precise than GPS and other radio systems. Together with great material
penetration and multipath resistance, UWB is a powerful tool to achieve accurate
positioning.

3.3.2 Positioning
The time precision capabilities of UWB are used to estimate with submeter preci-
sion the distance travelled by the pulse from the source. Using multiple receivers
is possible to achieve position estimation with centimeter precision.

The maximum bandwidth of a UWB signal is 7.5 GHz, this means that the time
resolution for a pulse is 133 picoseconds, this translates in a potential 4 cm spatial
uncertainty. There are different techniques for positioning in space using UWB time
measurement as Time Of Arrival (TOA) or Time difference of arrival (TDOA).

The first way is to directly solving a set of simultaneous equations based on
the TDOA measurements. It is necessary to have three measurement between the
sensor to be located, called tag, and three sensors with known position, referred as
anchors, to solve the problem in the 3D space.

The following equation express the relation between each range ρ from the anchor
a and the tag t with the respect of an inertial reference frame:

ρat =
ñ

(ra − rt)T (ra − rt). (3.8)
A more common solution for an over determined system is to linearize the equa-

tions with Taylor expansion and solve the least-square problem. There are different
methods to estimate the position with the linearized problem, but they all share
the same problems:

• they produce at least two different solutions,

• they require a good initial estimate to produce a correct first linearization.
To avoid these problems is possible to use nonlinear optimization. Different

methods can be used: Gauss-Newton, Levenberg-Marquardt, quasi-Newton, DFP
formula and BFGS formula. These algorithms are solved iteratively and produce a
better estimate the more iteration are scheduled at each epoch.

In this work it is tested and evaluated only the iterative least-square explained
in Section 3.1.5 and the Gauss-Newton method to solve the nonlinear least-square
problem. This will put a common ground on which more advanced filtered solution
are evaluated in Chapter 4.
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Chapter 4

Filtering and sensor fusion

The positioning methods cited in Chapter 3 have two major drawback:

• they are single epoch solutions, that cannot utilize previous information to
give a more stable and precise estimate;

• they don’t offer any capability to fuse information with other sensors.

This chapter unveils a technique to efficiently solve both problems: the Kalman
filter, developed by Rudolf E. Kalman [10].

The Kalman filter is a set of mathematical equations that provides an efficient
computational recursive means to estimate the state of a process, in a way that
minimizes the mean of the squared error [17].

This chapter explores the theory and the implementation of different variants of
the Kalman Filter in order to achieve accurate positioning for both Global Naviga-
tion Satellite System (GNSS) enabled and denied environments using the ranging
measurements of the Ultra WideBand (UWB) technology.

4.1 Kalman filter
The Kalman filter addresses the problem to estimate the state x ∈ Rn of a discrete-
time controlled process described by the linear state equation:

xk+1 = Axk + Buk + wk (4.1)

where u ∈ Rl is the input signal and w is the process noise described by the
distribution p(w) ∼ N(0,Q).

The filter exploit information coming from measurements z ∈ Rm described by
the equation:

zk+1 = Hxk + vk (4.2)
where v is the measurement noise described by the distribution p(v) ∼ N(0,R).
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The matrices A,B,H are assumed constant in the linear Kalman filter imple-
mentation, but they can change at each step if required:

• A is the n× n state transition matrix that describe the evolution of the state
over time;

• B is the n× l control input matrix that describe the evolution of the system
in relation of a control signal;

• H is the m × n observation matrix that relate the measurements with the
state variables.

The Kalman filter estimates a process state using a feedback loop control. The
filter predicts the process state for a discrete time and then obtains feedback in the
form of measurement. The algorithm is divided in two pieces: the time update and
measurement update equations.

Time update

It projects forward in time the current state and the covariance estimates to obtain
the a priori estimate x̄:

x̄k = Ax̄k−1 + Buk−1, (4.3)
P̄ k = AP k−1A

T + Q. (4.4)

P represent the error covariance calculated as E[(x − x̄)(x − x̄)T ]

Measurement update

Represent the feedback: enhancing the a priori estimate with measurement data
in order to obtain the a posteriori estimate x:

Kk = P̄ kH
T (HP̄ kH

T + R)−1, (4.5)
xk = x̄k + Kk(zk − Hx̄k), (4.6)
P k = (I − KkH)P̄ k. (4.7)

The first part compute the Kalman filter gain Kk that, multiplied with the residual
zk − Hx̄k, is able to correct the estimate. The last step is necessary to update the
a posteriori error covariance matrix.

4.1.1 Filter design
The design of a Kalman filter consists of defining a suitable linear state equation
that describes the system and a suitable measurement equation for each sensor,
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that relates it with the state variables. This information composes the matrices
A,B,H .

After that the determination of the process noise covariance Q and of the mea-
surement noise R are generally found via trial and error, or by system identification
data analysis. Their magnitude represents the confidence that the filter have on
the prediction model and measurement data.

At last the initial conditions influence the filter convergence, choosing a suitable
first estimate x0 and initial error covariance P 0 is vital to achieve a stable and
reliable estimate.

State variables and transition

In order to implement the filter to estimate the position of a flying service robot, as
a quadcopter, it is convenient to use the kinematics equations of a particle trajec-
tory in an inertial reference frame. These equations are general to any rigid body
moving in a Three Dimensional (3D) space, not depending on the body characteris-
tics. These assumptions make the filter implementation highly reusable on different
flying vehicle and even functional for terrestrial ones.

It is also possible to use the equation derived on Chapter 2.1.3, but they require
the knowledge of the vehicle parameters and of the control input action. With this
system it is possible to achieve better prediction, but the solution is not general
and sensible to the drone’s parameters variance.

The first step is to choose the state variables: to achieve stable control it is
necessary to have at least available the position of the drone and its instantaneous
velocity, as seen in Section 2.2.2. The acceleration prediction is needed for en-
hancing the filter performance during fast change of direction or takeoff/landing
phase.

x =

pnk
vnk
ank

 . (4.8)

Once the state variables are fixed it is possible to use the kinematics equations
to define relations between them, these relations will compose A and B matrices:

pnk+1 = pnk + vnk∆t + 1
2ank∆2

t , (4.9)

vnk+1 = vnk + ank∆t, (4.10)
ank+1 = ank , (4.11)
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with:

A =

I I∆t
1
2I∆2

t

0 I I∆t

0 0 I

 ∈ R9×9, B = 0 ∈ R9×0. (4.12)

Measurement matrix

The measurement matrix defines the relation between measurements and state
variables. In a linear Kalman filter it is impossible to define a linear equation
between pseudo-ranges and positioning, both for GNSS and UWB. The solution is
to feed the filter directly with a single-epoch solution p̃n

k :

z = p̃n
k , H =

è
I 0 0

é
∈ R3×9. (4.13)

The measurement noise matrix R ∈ R3×3 is a constant diagonal matrix with
the elements found by trial and errors, but in many cases it will be given by the
method used to found the position measurement. Many GNSS receivers are able
to produce reasonable values by Dilution of precision (DOP) calculation.

Process noise matrix

The process noise variance derive by the assumption that the acceleration of the
system is constant, see Equation 4.11. The acceleration is not actually constant
but derives from the forces seen is Section 2.1.3. It is possible to model this noise as
continuous time zero mean white noise, assuming that the small changes in velocity
average to zero over time. The equation for the discretization of the noise is:

Q =
Ú ∆t

0
A(t)QcA(t)Tdt, (4.14)

where the continuous noise is:

Qc =

0 0 0
0 0 0
0 0 Φs

 . (4.15)

The spectral density of the white noise Φs is derived by the variance of the
acceleration module, there are methods to derive this value, but they require precise
modelling and experimental data. Often this factor is a number tuned by trial
and errors, so different values will be tested to decide the one that gives better
performances.

Another model for the process noise is the piece wise white noise, where the
noise is white with zero mean, but only for a single time period. Noise between
time periods is uncorrelated:
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f(x) = Ax+ Γw (4.16)

Γ =


1
2∆2

t

∆t

1

 (4.17)

Q = E[Γw(t)w(t)ΓT ] = Γσ2
wΓT (4.18)

There is no evidence that this model works better than the previous one, but
the tuning parameter σ2

w is directly correlated to the amount of acceleration change
that we expect from the system.

Initial conditions

Choosing the state variables in the navigation frame allows us to know the initial
state of the drone as still in the origin. Putting the state variable initial value as
an array of zeros with low initial covariance.

4.1.2 Filter implementation
Filter implementation is handled by the python library FilterPy [9], this library
offers a wide set of functions to work with Kalman filters without concerning
about the implementation details. The filter will run on a Robot Operating Sys-
tem (ROS2) node, the node code is listed in Appendix A.

4.2 Extended Kalman filter
Working with linear filtering is simple and produces good results, but it comes with
some disadvantages:

• it heavily depends on the method performances to calculate the single epoch
estimate from the ranging data;

• it is impossible to exploit the information of a single ranging measurement or
to exclude a faulty one;

• the linearization adds approximation noise to the estimate.
The Extended Kalman filter (EKF) is the most used approach to work with

nonlinear problems, it handles the non linearities by linearizing the system at each
time step at the point of current estimate, then the classical Kalman filter equations
are used with the linearized system.

In our case non linearities only comes with the measurement model, where rang-
ing data contribute to the system following Equation 3.8. The EKF theory allows
also to linearize the system transition equations.
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4.2.1 Linearization
In order to find the linearized matrices A and H at each time step, the partial
derivatives of the nonlinear functions for the state transition f(x, u) and for the
measurement h(x) are used:

A = ∂f(xt, ut)
∂x

|xt,ut (4.19)

H = ∂h(xt)
∂x

|xt . (4.20)

Then A and H can be used for the matrix multiplication in the time update
and measurement update step.

4.2.2 Filter design
Finding the Jacobian for the measurement model is straightforward:

h(t) =
ñ

(x− xa)2 + (y − ya)2 + (z − za)2, (4.21)

H =


x−xa√

(x−xa)2+(y−ya)2+(z−za)2

y−ya√
(x−xa)2+(y−ya)2+(z−za)2

z−za√
(x−xa)2+(y−ya)2+(z−za)2

 , (4.22)

where x, y, z are the estimated coordinates of the drone in the navigation frame,
xa, ya, za are the coordinate of the anchor that produced the ranging data.

4.2.3 Detecting bad measurements
The nonlinear implementation of the positioning problem allow us to analyze the
incoming ranging one by one and detect the faulty ones. The technique used to
exclude bad measurements is called gating, where the gate is the algorithms that
define which measurements are valid.

The gate used in this work is the mahalanobis distance, a statistical measure of
the standard deviation distance of a point from a distribution. When a measure-
ment mahalanobis distance Dm goes above the 3.0, it is unlikely that that point
reside in the distribution and need to be discarded.

Dm =
ñ

(x− µ)TS−1(x− µ)2, (4.23)
where µ is the mean value of the distribution and S its covariance.

In reality the noises are not really Gaussian, so a higher gating distance need
to be used, trying different values with real measurements and comparing perfor-
mances.
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4.3 Unscented Kalman filter
EKF allow us to work directly with ranging, handling the nonlinear measurement
function, moreover it provides capabilities to exploit the data of each single UWB
range, including the detection of faulty readings.

The problem with EKF is that the Jacobian calculation cannot be always done
analytically and, even when possible, it is an approximation of the system that
propagates in the state estimation and noise model.

Recently Unscented Kalman Filter (UKF) is raising in popularity, it is an algo-
rithm capable to perform estimation even when the problem is highly nonlinear.
The strength of this method consist of not linearizing the initial model, but using
Monte Carlo approach to work with distributions.

UKF uses a deterministic sampling technique know as Unscented Transformation
(UT) to pick a minimal set of sample points, called sigma points, around the mean.
The sigma points are then propagated through the nonlinear functions to predict
and update the estimate.

4.3.1 Sigma points
Usually Monte Carlo methods relies on a considerable amount of random gener-
ated points, that can make the filter too slow to be implemented in an embedded
processor. It is necessary to found a restricted set of sigma points that represent
accurately the Gaussian distribution of the estimate.

Van der Merwe’s Scaled Sigma Point Algorithm

There are many algorithms in literature to select sigma points, but research and
industry have settled for the version published by Rudolph Van der Merwe in his
2004 PhD dissertation [13]. This formulation perform well on a great variety of
problems and it is tunable via three parameters: α, β and κ.

This formulation generates 2n+ 1 sigma points as shown in Figure 4.1. A larger
α spread the point further in the distribution and weight the central point more
than the other ones. Sigma point computation equation is:

χ0 = µ (4.24)

χi =
;
µ+ [

ñ
(n+ λ)Σ]i for i=1..n

µ− [
ñ

(n+ λ)Σ]i−n for i=(n+1)..2n
, (4.25)

where λ = α2(n+ κ).
The generated points have different weights and, for the central point, the weight

used for the mean value is different from the one used for covariance calculations:
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Figure 4.1. Sigma points with different α values.

Wm
0 = λ

n+ λ
, (4.26)

W c
0 = λ

n+ λ
+ 1 − α2 + β, (4.27)

Wm
i = W c

i = 1
2(n+ λ) . (4.28)

4.3.2 Filter math

This section shows the steps in the UKF algorithm, composed by the time update
and measurement update step.

Time update

The UKF predict step starts by generating the sigma point from the state variable
mean and covariance matrix, as seen in Section 4.3.1. Then the sigma points are
passed through the nonlinear process model:

Υ = f(χ,∆t) (4.29)
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The a priori sigma points Υ are used to generate the a priori estimate and covari-
ance by the UT:

x̄ =
2nØ
i=0

wmi Υi, (4.30)

P̄ =
2nØ
i=0

wci (Υi − x̄)(Υi − x̄)T + Q. (4.31)

Measurement update

The a priori sigma points are update in the measurement space, using the function
h(x):

ζ = h(Υ), (4.32)

again the UT is used to transform the a posteriori sigma point ζ in the a posteriori
mean and covariance:

µz =
2nØ
i=0

wmi ζi, (4.33)

P z =
2nØ
i=0

wci (ζi − µz)(ζi − µz)T + R. (4.34)

To compute the Kalman gain we first need to calculate the cross covariance of
the state and measurements:

P xz =
2nØ
i=0

wci (Υi − x̄)(ζi − µz)T , (4.35)

K = P xzP
−1
z . (4.36)

Once calculated the Kalman gain it is used to compute the a posteriori estimate
and covariance matrix:

x = x̄ + K(z − µz) (4.37)
P = P̄ − KP zK

T (4.38)

4.3.3 Filter implementation
The filter implementation is equivalent to the one for EKF, it is possible to use the
same matrices and sources of data. The difference is that the measurement update
is done directly using the ranging formula.

The critical part is related to the generation and handling of the sigma points,
this part is also managed by the library FilterPy [9]. The implemention work is
reduced to tune the point generator parameters.
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Chapter 5

Simulation

The methods proposed and explained in Chapter 4 have been simulated in order
to understand their advantages and disadvantages and to compare them. The goal
is to find the better method to implement in a real scenario. This chapter focus on
the results obtained by the methods in a complete scenario, without explaining in
detail the parameters tuning done in hours of simulation.

To simulate a realistic scenario it has been used the Gazebo Software In The
Loop (SITL) feature present with the PX4-Autopilot package, already cited in
Section 2.2.3. This feature allows the interaction with a simulated vehicle and
flight stack with the same characteristics of the real system.

Figure 5.1. Gazebo simulation environment while Iris is hovering.
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In Figure 5.1 the graphical environment is visualized with the default configu-
ration while the standard drone, called Iris, is hovering at 2.5 meters. From this
view it is possible to keep track of the drone’s behavior.

Figure 5.2 is an example of a real time flight plot, in this case a simple takeoff
and land is performed. The xyz coordinates are mapped as North-East-Down in
the inertial navigation frame. The VehicleLocalPosition topic indicates the posi-
tion estimated from PX4, using a noisy Global Navigation Satellite System (GNSS)
signal coupled with the Inertial Measurement Unit (IMU) data; the VehicleLocal-
PositionGroundtruth topic indicates the real position of the drone broadcasted by
the simulator.

Figure 5.2. Example of a flight in Gazebo.

It is noticeable that the z coordinate is noisier of the other ones, in a real scenario
this is caused by the common higher vertical Dilution of precision (DOP) with the
respect of the horizontal one. In the simulation this effect is reproduced by doubling
the z-axis random walk and noise density of the GNSS simulated receiver.

Then the drone does not recognize landing, the internal estimator of PX4 believes
that it is underground, this is not a problem because it happens only after the
vehicle is already landed.
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5.1 UWB Gazebo plugin
Gazebo simulation environment does not include a Ultra WideBand (UWB) sensor
plugin to include anchors and tags. Part of the work for this thesis consisted on
developing a Gazebo plugin that allows to place UWB sensors, extract ranging data
from them and simulate a noise model. The implementation characteristics of the
plugin are unveiled in the Appendix A.

The code implement a ModelPlugin: a plugin that need to be linked to a Gazebo
model. Embedding any model with the UWB plugin makes it an anchor, and
passing it the PubRange parameter makes it publish its ranging data, with the
respect of any other anchor in the environment, in a Robot Operating System
(ROS2) topic.

5.1.1 Implementation
The implementation is simple: every model embedded with the plugin publish its
real position in shared a Gazebo topic. Then if an anchor act as a tag, having
the PubRange parameter, subscribe itself to that topic and start calculating its
distance between each anchor, broadcasting it in a ROS2 topic. Other functions of
the plugin are:

• setting the publishing rate of each anchor;

• setting the reference frame for the anchors positioning;

• apply Gaussian noise to the ranging measurement with custom mean and
variance;

• apply a random offset to the anchor positioning.

In the future it can be added a better noise model exploiting the relative attitude
of the anchors and the presence of obstacle in a Not Line Of Sight (NLOS) case.

5.1.2 Usage
The plugin is used taking into account the real UWB anchors characteristics used
for the experimental phase, reported in Table 5.1.

Update rate 20 Hz
Ranging variance 0.0025 m
Anchor offset 0.2 m

Table 5.1. UWB anchors parameters
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The anchor offset accounts for the misplacement of an anchor mounted by a
human operator; for the tag mounted on the drone chassis it reproduces the offset
from the center of mass of the drone.

In a simulation eight anchors will be placed in a box formation, reproducing a
typical setup in a rectangular room. NLOS and multipath effect are not directly
accounted, it is advised to implement them in a future work.

5.2 Single sensor/epoch solutions
The simulation performed in this section use only one type of sensor to perform a
predefined set of maneuvers. As shown in Figure 5.3, the drone takeoff at 3 meters,
then perform a series of maneuvers that consist in sudden change of direction and
acceleration, at least it lands in the starting location.

Figure 5.3. Maneuvering sequence used in simulation.

The IMU is always active to allow attitude and angular rate control, completely
delegated to PX4 estimator and control stack.
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5.2.1 GNSS flight

The first flight is needed to demonstrate the standard path that the following
simulations will use and to build a common ground to compare all methods perfor-
mances.

Figure 5.4. MSE plot for GNSS flight.

The performance index used is the Mean Square Error (MSE) computed at each
time for the position solution. Then the higher value of MSE during flight will be
registered, this value describe the worse point, where the measured method can
make the control stack instable by feeding it with wrong data. A stable flight has
a higher priority then a precise one for Unmanned Aerial Vehicle (UAV)s, losing
control is cause of damage for the vehicle and the surrounding things.

The position and velocity MSE are decoupled to demonstrate the difference
between methods that provide a direct measurement on velocity and others that
cannot do it. The plot in Figure 5.4 shows a spike of MSE of 0.46 meters for the
position, the MSE relative to the velocity reach 1.1 m/s when sudden change of
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direction are performed.
The GNSS equipment used provide an already partially filtered solution and

provide also a velocity feedback that is broadcasted to the drone’s control stack.

5.2.2 UWB flight

In this simulation the UWB solution given by the least-square algorithm is feed to
the internal estimator of PX4. This solution does not provide a direct feedback on
the velocity estimate, producing a higher error when higher velocities are reached.
The positioning error reach values of 5.6 meters of position MSE and 1.0 m/s for
velocity one, see Figure 5.5.

Figure 5.5. MSE plot for UWB flight.

The estimate allows the drone to flight, but the errors weaken the control loop.
Figure 5.6 visualize a noise and instable flight, trying to flight faster in this configu-
ration will result in the loss of control, causing damage to the drone. The unfiltered
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UWB estimation have much worse performance, with the respect of GNSS one, be-
cause the GNSS solution is already filtered by the navigation processor inside the
sensor, hence the necessity to filter also the UWB data.

Figure 5.6. 3D navigation using only UWB.

5.3 Filtered solutions
Using more sophisticated single epoch solutions can solve partially this problem,
instead, using filtered ones allows the drone to be enhanced with velocity estimate
and a smoother position estimate. These methods provide a more precise and stable
feedback to the control loop, allowing accurate flight, even at higher speeds.

5.3.1 Linear filtering
Linear filtering is the easier way to enhance the estimate and give excellent result
with low velocities. As seen in Figure 5.7 the estimate is even better than the one
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of the pre-filtered GNSS solution. This result demonstrates that the UWB anchor
can be more precise than GNSS if correctly filtered.

Figure 5.7. MSE plot for Kalman flight, using only UWB.

The position MSE spikes at 0.37 meters, the velocity one at 0.07 m/s. The
plot indicated that the filter is not able to fully converge even if the drone is still.
This happens because the filter smooth only the position estimate using past data,
but does not act on the single ranging measurement to compensate for the ranging
offset.

5.3.2 Nonlinear filtering
Nonlinear filtering use directly the ranging data to find the position and velocity
estimate, this allows to fully compensate for the anchors offset. It is also possible
to use the gating techniques to filter out faulty measurements. Unscented Kalman
Filter (UKF) gives the best results, even compared with is famous counterpart:
Extended Kalman filter (EKF), but the difference is almost negligible.
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Figure 5.8. MSE plot for UKF flight, using only UWB.

With correct tuning is possible to reach a precision of the order of centimeters,
see Figure 5.8. The first part of the graph represents the estimate when the filter
is warming up, after that the error drops and the drone starts flying.

The position MSE barely cross the 10 centimeters and the velocity one is always
under 8 centimeters, even at the maximum flight speed. Figure 5.9 represent a
flight that is precise and stable enough to be used safely in a closed environment.

5.3.3 Sensor fusion
The filter is able to fuse also the GNSS data when possible, allowing the transi-
tion between GNSS enabled and denied environments. The final goal is to have a
coherent estimate in both environments and in all transitions between them. The
following simulation tries to reproduce all the meaningful transitions in a dynamic
setup: first the drone start in a GNSS only space, then it moves towards the an-
chors. Inside the anchors space the GNSS is completely shutdown, only to be
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Figure 5.9. 3D navigation using only UKF filtered UWB.

enabled when there are no anchors visible.
Figure 5.10 shows stable flight in every state, the estimation oscillates slightly

on entering the UWB enable space, this happens because the UWB reference frame
is not aligned with the GNSS one and offsets need to be estimated. Exiting the
UWB space the GNSS is enabled only when there are no anchors visible, so the
drone is working with less than 3 range for little time period.

Sensor state value Scenario
0 No sensors
1 Only GNSS
2 Only UWB
3 UWB+GNSS sensor fusion

Table 5.2. Sensor state encoding
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Figure 5.10. 3D navigation in a mixed environment.

A real scenario will never allow the drone to lose both GNSS and UWB signals,
but the drone can wait on the verge of the two spaces a reliable estimate. This
last test represented a stress test for the whole system. Figure 5.11 shows the
performance results of this test, Sensor state represent the presence of sensors as
indicated in Table 5.2.
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Figure 5.11. MSE plot in a mixed environment.
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Chapter 6

Experimental results

This chapter’s goal is to translate the methods explained until now and simulated in
Chapter 5. First the setup of the drone and of the sensors used are presented, then
two different scenarios are built to demonstrate the functionalities of the algorithms
in a real scenario.

6.1 Drone setup
The drone used is a Holibro ®X500 frame, shown in Figure 6.1: entirely carbon
fiber chassis with 16 mm arms. The kit related with this frame comes with all the
necessities to build a functioning vehicle providing space and mounting holes to
expand its capabilities. The basic setup is composed of:

• Pixhawk 4 autopilot

• Power Management PM07

• Pixhawk4 GPS

• Motors - 2216 KV880

• BLHeli S ESC 20A

• Propeller 1045

• 433MHz Telemetry Radio / 915MHz Telemetry Radio

• Power and Radio Cables

• Battery Straps

The total dimension of this setup is 410*410*300 mm, the weight is 978 Kg. To
this setup it is added a laser sensor to a Li-Po battery 4S and a Raspberry Pi 4 to
run Robot Operating System (ROS2) nodes.
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Figure 6.1. Holibro ®X500 kit [7].

6.1.1 UWB sensors
The Ultra WideBand (UWB) tag mounted on the drone and the anchors placed
on the test environment are provided by the DecaWave EVB1000 evaluation board.
The board provide the interface for the DW1000 IEEE802.15.4-2011 UWB-compliant
wireless transceiver Integrated Circuit (IC), including a microprocessor, antenna
and resident firmware.

The DW1000 IC is a transceiver that enables to develop cost-effective solutions
for precise indoor positioning within 10 centimeters. The evaluation board is con-
nected to the Raspberry Pi 4 with a Universal Serial Bus (USB).

6.2 Software stack
The software stack modules are reviewed in Figure 6.3.

The UWB sensor data and the Global Navigation Satellite System (GNSS) ones
are parsed by ROS2 nodes that acts as drivers and that can be enabled and disabled
with services. The least square UWB algorithm is always running to provide an
initial estimate and align the anchor constellation with the respect of the inertial
navigation frame. The Unscented Kalman Filter (UKF) node retrieves the sen-
sors’ data and perform estimation, the node provide also watchdogs to monitor the
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Figure 6.2. DecaWave EVB1000 evaluation board [3].

Figure 6.3. Software stack architecture.

health of the sensors and self tests to provide only a reliable estimate. Odometry
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sender is a node that perform the transformations needed to send data in the Vehi-
cleVisualOdometry topic. The internal PX4 estimator is disconnected from all the
sensors but Inertial Measurement Unit (IMU) via parameters, the estimate is sent
using the external visual odometry interface that PX4 provides. The connection
between ROS2 nodes and PX4 is achieved by means of the microRTPS Bridge.

This stack provides complete isolation of the tested interfaces to the autopilot.
If a ROS2 node, the Raspberry or even the sensors are not available, the absence
of data in the visual odometry port allows PX4 to interrupt the positioning flight
and switch to a controlled descent. If the autopilot receive data from a Radio
Controller (RC) it also detaches the whole system to give the control to the human
operator.

6.3 Test environment
Two testing scenarios are presented for evaluating the system performances. The
first one in a controlled cage, where the drone cannot hit anything and anyone,
mostly utilized for tuning and first flights. The second one is in an open field where
more complex flight path can be recreated.

6.3.1 Cage flight

Figure 6.4. Flight maneuvers in the cage.

In the cage 8 anchors are placed, fixing them on the borders of the cage, the
drone is placed in the middle. The flight plan consists in a takeoff using GNSS
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positioning, then after a maneuver the GNSS feed is interrupted and the UWB
one enabled. In Figure 6.4 the interrupted line regarding the Global Positioning
System (GPS) covariance norm represent the missing information. Another set of
maneuvers are performed in UWB only flight, then the vehicle land.

This flight demonstrates the capabilities of the system to flight in a GNSS en-
abled and denied environment without losing control and precision. Most of the
parameters tuning it has been done in this cage, until a reliable system was reached.

6.3.2 Open space flight

Figure 6.5. Flight maneuvers in an open field.

More complicated tests are conducted in open field, only after the tuning phase
is complete. In the field is not possible to place the anchors precisely because of the
absence of points of reference. Six anchors are placed using only a 5 meters tape
measure, some tripods has been used to have some of them on a different plane.

The flight presented in Figure 6.6 shows the path done by the quadcopter. After
landing and some initial movements the GNSS is jammed via software to recreate an
indoor environment, in Figure 6.5 is plotted the increasing covariance matrix norm
of the GNSS that reached a peak of 170 meters. The system is able to operate
without interruption of service, also with corrupted and noisy GNSS navigation
data.

At the end of this flight each anchor is shutdown sequentially with the drone still
flying. After reaching only 2 active anchors the estimator started to diverge, then
the stream of data was interrupted automatically by a threshold on the covariance
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Figure 6.6. 3D flight plot in an open field.

matrix norm. After that the flight control is delegated to PX4 that perform a safe
descent.

This flight in particular is the demonstration that transitions between sensors’
feed is possible and stable and that only three anchors are enough to not lose
control.
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Conclusions

The simulated and experimental results demonstrate that Ultra WideBand (UWB)
flight is possible. Not only the anchors provide easy installation and good coverage,
but with correct filtering it is possible to obtain better positioning with the respect
of classical methods.

Linear filtering is reliable enough to flight at lower speeds with a good anchors
constellation, but does not provide facilities to correct the ranging errors or to
compensate for a faulty measurement. The advantages of this method are the ease
of software integration and the low computing resources utilization.

Nonlinear filtering allows a direct control on the ranging data, this allows to
even enhance position estimate with a single anchor when coupled with other po-
sitioning system, or to exclude one faulty anchor from the estimate if it does not
behave correctly. The simulation results are astounding: centimeter like precision
is achieved. In the experimental setup it is possible to flight even when manually
covering an anchor to inject noise or by shutting down anchors and GNSS feedback
randomly during flight.

This work focused on the Unscented Kalman Filter (UKF) approach, evaluating
its performance in various scenarios. The complete setup demonstrate the capabil-
ities of the system to withstand the transition from a GNSS enabled environment
to a GNSS denied one where UWB anchors are installed, and vice versa. The drone
is able to flight at high speed during the transitions without losing its stability and
precision properties.

The work in this field is not over. The applications and scenarios that unveils
after this point are countless. First it was not possible to test the estimation
algorithm in a real indoor environment, so it is possible to design a path planning
algorithm that allows to navigate indoor and allows transitions with the outdoor
space, starting from the estimates provided by the methods presented. Moreover,
the UWB technology used is mature but the modelling used in this work is simple,
it is possible to enhance the UWB plugin capabilities to emulate Not Line Of
Sight (NLOS) propagation and signal attenuation.
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Appendix A

Code

This appendix present code fragments that allow the reader to explore the imple-
mentation details of the algorithms presented in this work.

A.1 Gazebo UWB plugin

A.1.1 ros2_px4_gazebo_uwb.hpp

1 # ifndef ROS2_PX4_GAZEBO_UWB_HPP_
2 # define ROS2_PX4_GAZEBO_UWB_HPP_
3

4 # include <gazebo / physics / physics .hh >
5 # include <gazebo / common / Plugin .hh >
6

7 namespace gazebo
8 {
9

10 class RosPx4GazeboUwbPrivate ;
11

12 class RosPx4GazeboUwb : public ModelPlugin
13 {
14 public :
15 /// Constructor
16 RosPx4GazeboUwb ();
17

18 /// Destructor
19 virtual ~ RosPx4GazeboUwb ();
20

21 // Documentation inherited
22 virtual void Load( physics :: ModelPtr model , sdf :: ElementPtr sdf)

override ;
23

24 private :
25 /// Private data pointer
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26 std :: unique_ptr < RosPx4GazeboUwbPrivate > impl_;
27 };
28

29 } // namespace gazebo
30

31 #endif // ROS2_PX4_GAZEBO_UWB_HPP_

A.1.2 ros2_px4_gazebo_uwb.cpp
1 # include <ros2_px4_gazebo / ros2_px4_gazebo_uwb .hpp >
2

3 # include <ignition /math/Rand.hh >
4 # include <gazebo_ros /node.hpp >
5 # include <gazebo_ros /utils.hpp >
6 # include <gazebo / transport / transport .hh >
7 # include <ros2_px4_interfaces /msg/ uwb_sensor .hpp >
8

9 # include <rclcpp / rclcpp .hpp >
10

11 namespace gazebo
12 {
13 class RosPx4GazeboUwbPrivate
14 {
15 public :
16 /// Callback to be called at every simulation iteration
17 /// \param[in] info Updated simulation info
18 void OnUpdate (const common :: UpdateInfo &info);
19

20 /// Callback to be called at every anchor message received by
the sensor

21 /// \param[in] msg Incoming anchor message
22 void AnchorCallback ( ConstPoseStampedPtr &_msg);
23

24 /// Pointer to the link , model and world
25 physics :: LinkPtr link_{ nullptr };
26 physics :: ModelPtr model_ { nullptr };
27 physics :: WorldPtr world_ { nullptr };
28

29 /// Pose of the link
30 ignition :: math :: Pose3d link_pose_ ;
31

32 /// The reference model and link to which calculate the pose
33 physics :: ModelPtr reference_model_ { nullptr };
34 physics :: LinkPtr reference_link_ { nullptr };
35

36 /// Gazebo node
37 transport :: NodePtr gazebo_node_ { nullptr };
38

39 /// Gazebo pub/sub to anchor broadcast
40 transport :: PublisherPtr anchor_pub_ { nullptr };
41 transport :: SubscriberPtr anchor_sub_ { nullptr };
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42

43 /// Pointer to ROS node
44 gazebo_ros :: Node :: SharedPtr ros_node_ { nullptr };
45

46 /// ROS publisher for sensor ranging data
47 rclcpp :: Publisher < ros2_px4_interfaces :: msg :: UwbSensor >::

SharedPtr sensor_pub_ { nullptr };
48

49 // Topic names
50 std :: string anchor_topic_ {"/ uwb_anchors "};
51 std :: string sensor_topic_ {"/ uwb_sensor_ "};
52

53 /// Keep track of the last update time.
54 common :: Time last_time_ ;
55

56 /// Publish rate in Hz.
57 double update_rate_ {1.0};
58

59 /// Anchor unique ID
60 std :: string anchor_id_ ;
61

62 /// Gaussian noise
63 double gaussian_noise_ ;
64 double anchor_offset_ [3] = {0, 0, 0};
65

66 /// Pointer to the update event connection
67 event :: ConnectionPtr update_connection_ { nullptr };
68 };
69

70 RosPx4GazeboUwb :: RosPx4GazeboUwb ()
71 : impl_(std :: make_unique < RosPx4GazeboUwbPrivate >())
72 {
73 }
74

75 RosPx4GazeboUwb ::~ RosPx4GazeboUwb ()
76 {
77 impl_ -> ros_node_ .reset ();
78 if (impl_ -> gazebo_node_ )
79 {
80 impl_ -> gazebo_node_ ->Fini ();
81 }
82 impl_ -> gazebo_node_ .reset ();
83 }
84

85 // Load the plugin
86 void RosPx4GazeboUwb :: Load( physics :: ModelPtr model , sdf ::

ElementPtr sdf)
87 {
88 std :: string link_name ;
89 std :: string reference_model_name ;

57



Code

90 std :: string reference_link_name ;
91

92 // Get model , world and time
93 impl_ -> model_ = model;
94 impl_ -> world_ = impl_ ->model_ -> GetWorld ();
95 impl_ -> last_time_ = impl_ ->world_ -> SimTime ();
96

97 // Configure the Gazebo node
98 impl_ -> gazebo_node_ = boost :: make_shared < transport ::Node >();
99 impl_ -> gazebo_node_ ->Init(impl_ ->world_ ->Name ());

100

101 // <update_rate > is the rate at which publish UWB packets
102 if (!sdf -> HasElement (" update_rate "))
103 {
104 gzwarn << "UWB plugin missing <update_rate >, defaults to 1.0

Hz" << std :: endl;
105 }
106 else
107 {
108 impl_ -> update_rate_ = sdf -> GetElement (" update_rate ")->Get <

double >();
109 }
110

111 // <anchor_id > is an unique ID that represent the UWB tag
112 if (!sdf -> HasElement (" anchor_id "))
113 {
114 impl_ -> anchor_id_ = std :: to_string (rand ());
115 gzdbg << "UWB plugin missing <anchor_id >, assigning random ID

: " << impl_ -> anchor_id_ << std :: endl;
116 }
117 else
118 {
119 impl_ -> anchor_id_ = sdf -> GetElement (" anchor_id ")->Get <std ::

string >();
120 }
121

122 // <link_name > is the name of the link where the UWB tag is
attached

123 if (!sdf -> HasElement (" link_name "))
124 {
125 gzerr << " Missing <link_name >, cannot proceed " << std :: endl;
126 return ;
127 }
128 else
129 {
130 link_name = sdf -> GetElement (" link_name ")->Get <std :: string >();
131 }
132

133 // Checking if the link exists
134 impl_ ->link_ = model -> GetLink ( link_name );
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135 if (! impl_ ->link_)
136 {
137 gzerr << " link_name : " << link_name << " does not exist" <<

std :: endl;
138 return ;
139 }
140

141 // <reference_model_name > is the model to be taken as reference
frame , defaults to world

142 if (!sdf -> HasElement (" reference_model_name "))
143 {
144 gzdbg << " Missing <reference_model_name >, defaults to world"

<< std :: endl;
145 reference_model_name = "world";
146 }
147 else
148 {
149 reference_model_name = sdf -> GetElement (" reference_model_name "

)->Get <std :: string >();
150 }
151

152 // <reference_link_name > is the link of <reference_model_name >
to be taken as reference frame

153 if (!sdf -> HasElement (" reference_link_name "))
154 {
155 gzdbg << " Missing <reference_link_name >, using model as

reference " << std :: endl;
156 }
157 else
158 {
159 reference_link_name = sdf -> GetElement (" reference_link_name ")

->Get <std :: string >();
160 }
161

162 // Checking if custom reference frame exists
163 if ( reference_model_name != "/world" && reference_model_name !=

"world" &&
164 reference_model_name != "/map" && reference_model_name != "

map")
165 {
166 impl_ -> reference_model_ = impl_ ->world_ -> ModelByName (

reference_model_name );
167 if (! impl_ -> reference_model_ )
168 {
169 gzwarn << "<reference_model_name > [" <<

reference_model_name << "] does not exist" << std :: endl;
170 }
171

172 impl_ -> reference_link_ = impl_ -> reference_model_ -> GetLink (
reference_link_name );

59



Code

173 if (! impl_ -> reference_link_ )
174 {
175 gzwarn << "<reference_link_name > [" << reference_link_name

<< "] does not exist" << std :: endl;
176 }
177 }
178

179 // <anchor_offset > add a constant offset from a uniform
distribution

180 if (sdf -> HasElement (" anchor_offset "))
181 {
182 double anchor_offset_std = sdf -> GetElement (" anchor_offset ")->

Get <double >();
183

184 impl_ -> anchor_offset_ [0] = ignition :: math :: Rand :: DblUniform (-
anchor_offset_std , anchor_offset_std );

185 impl_ -> anchor_offset_ [1] = ignition :: math :: Rand :: DblUniform (-
anchor_offset_std , anchor_offset_std );

186 impl_ -> anchor_offset_ [2] = ignition :: math :: Rand :: DblUniform (-
anchor_offset_std , anchor_offset_std );

187

188 gzdbg << " Adding anchor offset of: " << impl_ -> anchor_offset_
[0] << ", " << impl_ -> anchor_offset_ [1] << ", " << impl_ ->
anchor_offset_ [2] << std :: endl;

189 }
190

191 // Setting up the publisher of the anchor pose
192 impl_ -> anchor_pub_ = impl_ -> gazebo_node_ ->Advertise <msgs ::

PoseStamped >( impl_ -> anchor_topic_ , 1);
193

194 // This code is valid only if we want to publish ranging data
195 if (sdf -> HasElement (" pub_range "))
196 {
197 // Configure the ROS node from the SDF file
198 impl_ -> ros_node_ = gazebo_ros :: Node :: Get(sdf);
199

200 // Setting up anchors pose subscriber
201 impl_ -> anchor_sub_ = impl_ -> gazebo_node_ -> Subscribe (impl_ ->

anchor_topic_ , & RosPx4GazeboUwbPrivate :: AnchorCallback , impl_.
get ());

202

203 // Setting up ranges publisher
204 impl_ -> sensor_pub_ = impl_ ->ros_node_ -> create_publisher <

ros2_px4_interfaces :: msg :: UwbSensor >(
205 impl_ -> sensor_topic_ + impl_ ->anchor_id_ ,
206 impl_ ->ros_node_ -> get_qos (). get_publisher_qos (impl_ ->

sensor_topic_ + impl_ -> anchor_id_ ));
207

208 // <gaussian_noise > is the sigma value of gaussian noise to
add to range readings
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209 if (!sdf -> HasElement (" gaussian_noise "))
210 {
211 gzwarn << " Missing <gassian_noise >, defaults to 0.0" << std

:: endl;
212 impl_ -> gaussian_noise_ = 0;
213 }
214 else
215 {
216 impl_ -> gaussian_noise_ = sdf -> GetElement (" gaussian_noise ")

->Get <double >();
217 }
218 }
219

220 // Listen to the update event. This event is broadcast every
simulation iteration

221 impl_ -> update_connection_ = event :: Events ::
ConnectWorldUpdateBegin (

222 std :: bind (& RosPx4GazeboUwbPrivate :: OnUpdate , impl_.get (),
std :: placeholders ::_1));

223 }
224

225 void RosPx4GazeboUwbPrivate :: OnUpdate (const common :: UpdateInfo &
info)

226 {
227 // Check if link is destroyed
228 if (! link_ )
229 {
230 return ;
231 }
232

233 common :: Time current_time = info. simTime ;
234

235 if ( current_time < last_time_ )
236 {
237 gzwarn << " Negative update time difference detected " << std ::

endl;
238 last_time_ = current_time ;
239 }
240

241 // Rate control
242 if ( update_rate_ > 0 &&
243 ( current_time - last_time_ ). Double () < (1.0 / update_rate_ )

)
244 {
245 return ;
246 }
247

248 // Get world pose of the linked model
249 link_pose_ = link_ -> WorldPose ();
250
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251 // Get relative pose of the linked model ...
252 if ( reference_model_ )
253 {
254 // ... with the respect of the reference model ...
255 auto reference_pose = reference_model_ -> WorldPose ();
256 if ( reference_link_ )
257 {
258 // or with the respect of the reference link
259 reference_pose = reference_link_ -> WorldPose ();
260 }
261

262 link_pose_ .Pos () -= reference_pose .Pos ();
263 link_pose_ .Pos () = reference_pose .Rot (). RotateVectorReverse (

link_pose_ .Pos ());
264 }
265

266 // Fill UWB message
267 msgs :: PoseStamped * anchor_msg = new msgs :: PoseStamped ;
268 msgs :: Time * anchor_msg_time = new msgs :: Time;
269 msgs :: Vector3d * anchor_msg_vec = new msgs :: Vector3d ;
270 msgs :: Quaternion * anchor_msg_qua = new msgs :: Quaternion ;
271 msgs :: Pose * anchor_msg_pose = new msgs :: Pose;
272

273 anchor_msg_time -> set_sec ( current_time .sec);
274 anchor_msg_time -> set_nsec ( current_time .nsec);
275 anchor_msg -> set_allocated_time ( anchor_msg_time );
276

277 anchor_msg_vec ->set_x( link_pose_ .Pos ().X());
278 anchor_msg_vec ->set_y( link_pose_ .Pos ().Y());
279 anchor_msg_vec ->set_z( link_pose_ .Pos ().Z());
280 anchor_msg_pose -> set_allocated_position ( anchor_msg_vec );
281

282 // Sending orientation for a future more complex noise model
283 anchor_msg_qua ->set_x (0.0);
284 anchor_msg_qua ->set_y (0.0);
285 anchor_msg_qua ->set_z (0.0);
286 anchor_msg_qua ->set_w (0.0);
287 anchor_msg_pose -> set_allocated_orientation ( anchor_msg_qua );
288

289 anchor_msg_pose -> set_name ( anchor_id_ );
290 anchor_msg -> set_allocated_pose ( anchor_msg_pose );
291

292 anchor_pub_ -> Publish (* anchor_msg );
293 last_time_ = current_time ;
294 }
295

296 void RosPx4GazeboUwbPrivate :: AnchorCallback ( ConstPoseStampedPtr &
_msg)

297 {
298 double range;
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299

300 // Check if the sensor and the anchor are 2 separate entities
301 if (_msg ->pose ().name () != anchor_id_ )
302 {
303 // Calculate the range between sensor and anchor + gaussian

noise
304 range = link_pose_ .Pos (). Distance (_msg ->pose (). position ().x()

, _msg ->pose (). position ().y(), _msg ->pose (). position ().z());
305

306 if ( gaussian_noise_ > 0)
307 range += ignition :: math :: Rand :: DblNormal (0, gaussian_noise_

);
308

309 // Fill ROS range message
310 ros2_px4_interfaces :: msg :: UwbSensor sensor_msg ;
311

312 sensor_msg . anchor_pose . header .stamp.sec = _msg ->time ().sec ();
// @todo: Simulate transmission delay anchor -> sensor

313 sensor_msg . anchor_pose . header .stamp. nanosec = _msg ->time ().
nsec ();

314

315 sensor_msg . anchor_pose . header . frame_id = _msg ->pose ().name ();
316

317 sensor_msg . anchor_pose .pose. position .x = _msg ->pose ().
position ().x() + anchor_offset_ [0];

318 sensor_msg . anchor_pose .pose. position .y = _msg ->pose ().
position ().y() + anchor_offset_ [1];

319 sensor_msg . anchor_pose .pose. position .z = _msg ->pose ().
position ().z() + anchor_offset_ [2];

320

321 sensor_msg . anchor_pose .pose. orientation .x = _msg ->pose ().
orientation ().x();

322 sensor_msg . anchor_pose .pose. orientation .y = _msg ->pose ().
orientation ().y();

323 sensor_msg . anchor_pose .pose. orientation .z = _msg ->pose ().
orientation ().z();

324 sensor_msg . anchor_pose .pose. orientation .w = _msg ->pose ().
orientation ().w();

325

326 sensor_msg .range = range;
327

328 // Publish to ROS
329 sensor_pub_ -> publish ( sensor_msg );
330 }
331 }
332

333 GZ_REGISTER_MODEL_PLUGIN ( RosPx4GazeboUwb )
334

335 } // namespace gazebo
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A.2 UKF ROS2 node

A.2.1 ukf_positioning.py

1 #!/ usr/bin/env python3
2

3 import rclpy
4 from rclpy.node import Node
5

6 import numpy as np
7 import scipy
8

9 from filterpy . kalman import MerweScaledSigmaPoints
10 from filterpy . kalman import UnscentedKalmanFilter as UKF
11 from filterpy . common import Q_discrete_white_noise
12

13 from nav_msgs .msg import Odometry
14 from ros2_px4_interfaces .msg import UwbSensor
15 from px4_msgs .msg import DistanceSensor
16

17

18 QUEUE_SIZE = 10
19 FILTER_DIM = 9 # Linear kinematic model
20 IS_SENSOR_ALIVE_TIMEOUT = 1. # s
21 MAHALANOBIS_THRESHOLD = 6. # sigmas
22 MAX_ALLOWED_UWB_RANGE = 10. # meters
23

24

25 class UkfPositioning (Node):
26 """ UKF Positioning node """
27

28 def __init__ (self):
29 super (). __init__ (" UkfPositioning ")
30

31 self. declare_parameters ("", [
32 (" delta_t ", 0.02) ,
33 ("q", 0.1) ,
34 ("r_uwb", 0.0025) ,
35 (" r_laser ", 0.01)
36 ])
37

38 self. params_ = {
39 x.name: x.value for x in self. get_parameters (
40 [" delta_t ", "q", "r_uwb", " r_laser "]
41 )
42 }
43

44 self. filter_state_ = " Offline "
45 self. calibration_counter_ = 0
46 self. aligning_counter_ = 0

64



A.2 – UKF ROS2 node

47 self. anchor_offset_ = np.zeros (3)
48 self. last_sensor_list_ = []
49 self. sensor_wd_ = {
50 "uwb": 0,
51 "gps": 0,
52 "laser": 0
53 }
54

55 # Sigma points generator
56 sigmas = MerweScaledSigmaPoints (
57 FILTER_DIM , alpha =1e-3, beta =2., kappa =0.,
58 sqrt_method =scipy. linalg .sqrtm
59 )
60

61 def f_(x, dt):
62 f = np.array ([
63 [1., dt , 0.5* dt **2.] ,
64 [0., 1., dt],
65 [0., 0., 1.]
66 ])
67 F = scipy. linalg . block_diag (*[f]*3)
68 return F @ x
69

70 # UKF
71 self. kalman_filter_ = UKF(
72 dim_x=FILTER_DIM ,
73 dim_z=FILTER_DIM ,
74 dt=self. params_ [" delta_t "],
75 fx=f_ , hx=None ,
76 points = sigmas
77 )
78

79 # Initial estimate
80 self. kalman_filter_ .x *= 0.
81

82 # Covariance matrix
83 self. kalman_filter_ .P *= 1.
84

85 # Process noise
86 self. kalman_filter_ .Q = scipy. linalg . block_diag (
87 Q_discrete_white_noise (
88 dim =3, dt=self. params_ [" delta_t "], var=self. params_

["q"], block_size =3)
89 )
90

91 # Setting up sensors subscribers
92 self. uwb_pos_subscriber_ = self. create_subscription (
93 Odometry , " UwbPositioning / Odometry ",
94 self. callback_uwb_pos_subscriber , QUEUE_SIZE
95 )
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96 self. uwb_subscriber_ = self. create_subscription (
97 UwbSensor , "/ uwb_sensor_tag_0 ",
98 self. callback_uwb_subscriber , QUEUE_SIZE
99 )

100 self. gps_subscriber_ = self. create_subscription (
101 Odometry , " GpsPositioning / Odometry ",
102 self. callback_gps_subscriber , QUEUE_SIZE
103 )
104 self. laser_subscriber_ = self. create_subscription (
105 DistanceSensor , " DistanceSensor_PubSubTopic ",
106 self. callback_laser_subscriber , QUEUE_SIZE
107 )
108

109 # Setting up position and velocity publisher
110 self. odometry_publisher_ = self. create_publisher (
111 Odometry , "~/ Odometry ", QUEUE_SIZE
112 )
113

114 # Prediction timer
115 self.timer = self. create_timer (
116 self. params_ [" delta_t "], self. predict_callback )
117

118 self. get_logger ().info(f"Node has started : {self. params_ }")
119

120 def callback_uwb_pos_subscriber (self , msg):
121 """ Measuring UWB position offset estimate wtr of the

navigation frame
122

123 Args:
124 msg ( nav_msgs .msg. Odometry ): The UWB odometry
125 """
126

127 # Deriving the anchor offset
128 anchor_offset = np.array ([
129 msg.pose.pose. position .x,
130 msg.pose.pose. position .y,
131 msg.pose.pose. position .z
132 ]) - self. kalman_filter_ .x[[0, 3, 6]]
133

134 # Mean values until convergence , than this subscriber can
be destroyed

135 var = ( anchor_offset - self. anchor_offset_ ) / \
136 (self. aligning_counter_ + 1)
137

138 if np. linalg .norm(var) > 1e-3 or self. aligning_counter_ <
100.:

139 self. anchor_offset_ += var
140 self. aligning_counter_ += 1
141 else:
142 self. get_logger ().info(f"""
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143 Anchor reference frame aligned in {self.
aligning_counter_ } iterations :

144 Offset = {self. anchor_offset_ }
145 """)
146 self. destroy_subscription (self. uwb_pos_subscriber_ )
147 self. aligning_counter_ = -1
148

149 def callback_uwb_subscriber (self , msg):
150 """ Measuring UWB range sensor
151

152 Args:
153 msg ( ros2_px4_interfaces .msg. UwbSensor ): The UWB

message
154 """
155

156 # Must predict once first and anchor must be aligned
157 if(self. filter_state_ == " Offline " or self.

aligning_counter_ > -1):
158 return
159

160 # Storing measurement in a np.array
161 z = np.zeros( FILTER_DIM )
162 z[0] = msg.range
163

164 if z[0] > MAX_ALLOWED_UWB_RANGE :
165 return
166

167 if any(np.isnan(z)):
168 self. get_logger ().error(f" Invalid UWB data")
169 return
170

171 # Storing timestamp
172 self. sensor_wd_ ["uwb"] = self. get_clock ().now (). nanoseconds
173

174 # Storing anchor position in a np.array
175 anchor_position = np.array ([
176 msg. anchor_pose .pose. position .x,
177 msg. anchor_pose .pose. position .y,
178 msg. anchor_pose .pose. position .z
179 ])
180

181 # Measurement model for a rotated range sensor
182 def h_uwb(x):
183 h = np.zeros( FILTER_DIM )
184

185 # Range measurements
186 h[0] = np. linalg .norm(
187 x[[0, 3, 6]] - ( anchor_position - self.

anchor_offset_ ))
188 return h
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189

190 # Filter update
191 x = self. kalman_filter_ .x.copy ()
192 P = self. kalman_filter_ .P.copy ()
193 self. kalman_filter_ . update (z, R=self. params_ ["r_uwb"], hx=

h_uwb)
194

195 # Gating
196 if self. kalman_filter_ . mahalanobis > MAHALANOBIS_THRESHOLD

and self. filter_state_ == " Calibrated ":
197 self. get_logger ().warn(
198 f" Gating anchor {msg. anchor_pose . header . frame_id } @

: {self. kalman_filter_ . mahalanobis }")
199 self. kalman_filter_ .x = x.copy ()
200 self. kalman_filter_ .P = P.copy ()
201

202 def callback_gps_subscriber (self , msg):
203 """ Measuring GPS sensor
204

205 Args:
206 msg ( nav_msgs .msg. Odometry ): The GPS message
207 """
208

209 # Must predict once first
210 if(self. filter_state_ == " Offline "):
211 return
212

213 # Storing measurements in a np.array
214 z = np.zeros( FILTER_DIM )
215 z[0:6] = np.array ([
216 msg.pose.pose. position .x,
217 msg.pose.pose. position .y,
218 msg.pose.pose. position .z,
219 msg.twist.twist. linear .x,
220 msg.twist.twist. linear .y,
221 msg.twist.twist. linear .z,
222 ])
223

224 if any(np.isnan(z)):
225 self. get_logger ().error(f" Invalid GPS data")
226 return
227

228 # Storing timestamp
229 self. sensor_wd_ ["gps"] = self. get_clock ().now (). nanoseconds
230

231 # Measurement model for a GPS sensor
232 def h_gps(x):
233 h = np.zeros( FILTER_DIM )
234 h[0:6] = np.array ([x[0], x[3], x[6], x[1], x[4], x[7]])
235 return h
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236

237 # Filter update
238 R = np.eye( FILTER_DIM ) * np.array ([
239 msg.pose. covariance [0],
240 msg.pose. covariance [7],
241 msg.pose. covariance [15] ,
242 msg.twist. covariance [0],
243 msg.twist. covariance [7],
244 msg.twist. covariance [15] , 1., 1., 1., 1.
245 ])
246

247 self. kalman_filter_ . update (z, R, hx=h_gps)
248

249 def callback_laser_subscriber (self , msg):
250 """ Measuring laser sensor
251

252 Args:
253 msg ( px4_msgs .msg. DistanceSensor ): The Laser message
254 """
255

256 # Must predict once first
257 if(self. filter_state_ == " Offline "):
258 return
259

260 # Storing timestamp
261 self. sensor_wd_ ["laser"] = self. get_clock ().now ().

nanoseconds
262

263 # Storing measurements in a np.array
264 z = np.zeros( FILTER_DIM )
265 z[0] = msg. current_distance
266

267 if any(np.isnan(z)):
268 self. get_logger ().error(f" Invalid laser data")
269 return
270

271 # Measurement model for laser sensor
272 def h_laser (x):
273 h = np.zeros( FILTER_DIM )
274 h[0] = x[6]
275 return h
276

277 # Filter update
278 x = self. kalman_filter_ .x.copy ()
279 P = self. kalman_filter_ .P.copy ()
280 self. kalman_filter_ . update (z, R=self. params_ [" r_laser "], hx

= h_laser )
281

282 # Gating
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283 if self. kalman_filter_ . mahalanobis > MAHALANOBIS_THRESHOLD
and self. filter_state_ == " Calibrated ":

284 self. get_logger ().warn(
285 f" Gating laser @: {self. kalman_filter_ . mahalanobis }

")
286 self. kalman_filter_ .x = x.copy ()
287 self. kalman_filter_ .P = P.copy ()
288

289 def predict_callback (self):
290 """ This callback perform the filter predict and forward the

current
291 estimate
292 """
293

294 if (self. filter_state_ == " Calibrating "):
295 if(np. linalg .norm(self. kalman_filter_ .P) < 10.):
296 self. calibration_counter_ += 1
297

298 if (self. calibration_counter_ > 100):
299 self. get_logger ().info(" Filter calibrated ")
300 self. filter_state_ = " Calibrated "
301 self. calibration_counter_ = 0
302 else:
303 self. calibration_counter_ = 0
304

305 # Check which sensors are working
306 active_sensor_list = []
307 for sensor in self. sensor_wd_ :
308 if self. get_clock ().now (). nanoseconds - self. sensor_wd_

[ sensor ] < IS_SENSOR_ALIVE_TIMEOUT *1e9:
309 active_sensor_list . append ( sensor )
310

311 # Send estimation only if calibrated
312 if(self. filter_state_ == " Calibrated "):
313 # Check covariance norm
314 if(np. linalg .norm(self. kalman_filter_ .P) > 100.):
315 self. filter_state_ = " Diverged "
316 self. get_logger ().error(" Filter is diverging ")
317 return
318

319 # Sending the estimated odometry
320 msg = Odometry ()
321 msg. header . frame_id = " UkfPositioning "
322 msg. header .stamp = self. get_clock ().now (). to_msg ()
323

324 msg.pose.pose. orientation .x = (1. if ("gps" in
active_sensor_list )

325 else 0.) + (2. if ("uwb"
in active_sensor_list ) else 0.)

326
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327 # Position
328 msg.pose.pose. position .x = self. kalman_filter_ .x[0]
329 msg.pose.pose. position .y = self. kalman_filter_ .x[3]
330 msg.pose.pose. position .z = self. kalman_filter_ .x[6]
331

332 msg.pose. covariance [0] = self. kalman_filter_ .P [0][0]
333 msg.pose. covariance [1] = self. kalman_filter_ .P [3][3]
334 msg.pose. covariance [2] = self. kalman_filter_ .P [6][6]
335

336 # Velocity
337 msg.twist.twist. linear .x = self. kalman_filter_ .x[1]
338 msg.twist.twist. linear .y = self. kalman_filter_ .x[4]
339 msg.twist.twist. linear .z = self. kalman_filter_ .x[7]
340

341 msg.twist. covariance [0] = self. kalman_filter_ .P [1][1]
342 msg.twist. covariance [1] = self. kalman_filter_ .P [4][4]
343 msg.twist. covariance [2] = self. kalman_filter_ .P [7][7]
344

345 self. odometry_publisher_ . publish (msg)
346

347 # Filter predict only if first iteration or new sensor data
348 if active_sensor_list != [] or self. filter_state_ == "

Offline ":
349 self. kalman_filter_ . predict ()
350

351 # Log on sensor list change
352 if ( active_sensor_list != self. last_sensor_list_ ):
353 self. get_logger ().info(f" Fusion using: {

active_sensor_list }")
354 self. last_sensor_list_ = active_sensor_list
355

356 if ( active_sensor_list == [] and self. filter_state_ ==
" Calibrated "):

357 self. get_logger ().error(f"Data fusion is not
possible without data ^_^")

358 self. filter_state_ == " Offline "
359

360 # First data just arrived
361 if(self. filter_state_ == " Initialized " and

active_sensor_list != []):
362 self. filter_state_ = " Calibrating "
363 self. get_logger ().info(" Filter is calibrating ")
364

365 # First predict just happened
366 if(self. filter_state_ == " Offline "):
367 self. filter_state_ = " Initialized "
368 self. get_logger ().info(" Filter initialized ")
369

370

371 def main(args=None):

71



Code

372 rclpy.init(args=args)
373 node = UkfPositioning ()
374 rclpy.spin(node)
375 rclpy. shutdown ()
376

377

378 if __name__ == "main":
379 main ()
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3D Three Dimensional

DOP Dilution of precision

EKF Extended Kalman filter

ESC Electronic Speed Control

FCC Federal Communication Commission

GLONASS Global’naya Navigatsionnaya Sputnikovaya Sistema

GNSS Global Navigation Satellite System

GPS Global Positioning System

IC Integrated Circuit

IMU Inertial Measurement Unit

MSE Mean Square Error

NLOS Not Line Of Sight

PPM Pulse Position Modulation

RC Radio Controller

RF Radio Frequency

ROS2 Robot Operating System

SITL Software In The Loop

TM Time Modulation

TOA Time Of Arrival

TDOA Time difference of arrival
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UAV Unmanned Aerial Vehicle

UKF Unscented Kalman Filter

USB Universal Serial Bus

UT Unscented Transformation

UWB Ultra WideBand

VTOL Vertical Take-Off and Landing
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