
POLITECNICO DI TORINO

Master degree course in Mechatronic Engineering

Master Degree Thesis

Design of an autonomous system
able to follow a moving person

Supervisors
prof. Marco Vacca

Candidato
Nicola Sestu
matricola: 276140

A.a 2020/2021

Abstract

In this thesis the idea is to create a cart that automatically follows a specific human,
this idea can be applied for example inside super markets.
To do this I have tried some techniques and technologies that can be used to build
a robot able to automatically follow a human.
The initial goal was to build a subsystem that does not move but that was capable
to identify and follow a person using a camera able to move.
The first version of this subsystem included a raspberry pi 2b with a raspberry
pi camera module V1, moved by a 2DOF hat controlled by the raspberry, using
Tensorflow lite and OpenCV for computer vision and image recognition I obtained
performances of 1fps, after upgrading the system with the NCS2 that is an accel-
erator for neural networks from intel I obtained a speed of 4fps using Openvino.
It was necessary to change the hardware, the second version of the subsystem lead
us to use a raspberry pi 4b with the NCS2 and a raspberry pi camera module V2,
gaining results around 20fps, so an application that was 20 times more powerful
than the first idea.
Since the image recognition algorithm was working I have decided to build the
moving platform of the robot.
The moving frame of the robot is a four motor platform controlled by the raspberry
pi through a motor driver, connected to a battery pack with a USB output able to
deliver 5V-2A with 20100mha capacity.
Since the battery had a USB interface a Buck-Boost converter with the same input
was needed in order to regulate the voltage and current drained by the driver of
the motors.
The system built until this point was able to follow a moving person but it was
difficult to keep track of the target, so I tried to calibrate the code in order to
recognize the color of the clothes of the user in order to keep track of it even if
other people were in the scene.
This method was impossible to apply because even a small change in the light con-
ditions lead to completely lose track of the user, so I moved to infrared signals to
identify the user.
The implementation was done connecting an IR receiver to the raspberry and a
powerful IR Led to an arduino uno in order to send the signals, the idea worked

ii

but was discarded because in noisy environment the infrared signals were unusable.
The next solution was based on a bluetooth low energy (BLE) technology, used to
triangulate the position in space using the RSSI of the target mobile phone.
During the tests the precision was realistic until the device was too far, but also
in this case people or walls could interfere with the tracking system, resulting in
wrong measurements.
The final solution used a raspberry pi as the core of the system, combined with
the stm32f401re microcontroller and its IKS01A3 shield with mounted on board an
accelerometer, a gyroscope and a magnetometer, this allowed us to estimate pose
and position of the user and of the robot in space with the aim to keep a fixed
relative distance between the two, but the drift due to the double integration of
the acceleration was too much in order to have a reliable system.
In conclusion the solution works and it is very promising but to get reliable results
more complex sensors fusion technologies like a GPS or sensors to measure the
speed of the robot’s wheels are needed.

iii

Summary

The aim of the thesis was to design, build and test a robot capable of automatically
follow a human, testing different techniques and technologies for the identification
and tracking of a specific person.
The system should be applied for example to create smart carts inside super mar-
kets.

The initial work was focused on learning and searching in literature the most used
techniques, hardware and software for this type of application.
The most common techniques, employs computer vision and image recognition, in-
frared tracking and neural networks.
The hardware goes from basic and less powerful microcontrollers to more efficient
and complex solutions that use powerful hardware with high computational power.

Computer vision and image recognition for the tracking of the user was the first
idea that was designed and tested.
At first I tested a raspberry pi 2b with a raspberry pi camera module.
Implementing a neural network using python and Tensorflow lite the performance
were not enough for a realtime system, the system was operating at an average of
1fps.
To improve the results I have added an accelerator for neural networks made by
Intel, the neural compute stick 2 (NCS2), that uses a custom version of OpenCV
named OpenVino.
OpenVino is used in order to communicate with the NCS2, this solution helps the
raspberry pi because the inference is done on the external dedicated hardware.
Optimizing the code I was able to obtain around 4fps, that were not suitable for
the project.
The system needed to be upgraded to gain better performances, a raspberry pi 4b
with the NCS2 and a raspberry pi camera module V2 was than used, improving
the average speed to 20fps.

The second step of the thesis involved the building of the robot capable to move
and follow a moving person.

iv

The idea is pretty simple, a four motor platform controlled by the raspberry pi
through a motor driver.
The platform is built in such a way that it allows to easily place a battery used as
a generator and power supply for both the raspberry and the drivers.
A Buck-Boost converter with a USB input was used in order to regulate the voltage
and current drained by the driver of the motors, the USB interface was necessary
because the battery used was a simple battery pack for smartphones and tablet
with a 20100mhA capacity and an output of 5V-2A.
At first there were some problems related to the draining of the current when the
motors were controlled, due to the high impulse current absorption.
The issue was fixed by simply applying a PWM to control them, resulting in a
slightly slower system but more robust.

The system built until this point was able to follow a moving person but it was
difficult to keep track of the target, the techniques used in this case were complex
algorithm that required a lot of computational power so a new simpler solution was
developed, which included other devices and techniques rather than the computer
vision and image recognition alone.
This choice was made because the system wasn’t able to keep track of a specific
user in complex environment where other humans were present, so the system was
calibrated to recognize the color of the clothes of the user, in order to keep track
of it even if other people were in the scene.
This method was impossible to apply because even a small change in the light con-
ditions lead to completely lose track of the user.
The next solution was to use infrared signals to identify the user.
The implementation was done connecting an IR receiver to the raspberry and a
powerful IR Led to an arduino uno in order to send test signals.
The concept was based on the idea of a wearable device that was capable to send
signals to the robot in order to easily identify the user even if the system wasn’t
able to always keep it into its field of vision.
At first the idea worked but was discarded because in noisy environment the in-
frared signals were not reliable, also in a scene full of other people or walls the
signals to noise ratio was too low.

The third solution tested was based in the use of the smartphone of the user as
identifier for the tracking algorithm, in order to lock and track the user also in
difficult scenarios.
This solution was based on the bluetooth low energy (BLE) technology.
The idea behind this solution was to triangulate the position in space of the smart-
phone of the user, using three BLE devices able to measure the Receive Signal
Strenght Indicator (RSSI) of the target mobile phone.
The hardware used to do this were 3 stm32f401re microcontrollers equipped with

v

a BlueNRG shield used for bluetooth low energy applications.
The microcontrollers were equally placed on a circumference, resulting in a equi-
lateral triangle on the plane, this arrangement was perfect in order to gain the
maximum precision from the system, but in the test phase also this solution re-
sulted not reliable enough.
During the tests in fact the precision was realistic until the device was too far,
around 20cm (maximum) from the circumference the measurements where good
enough to have the position in space, but also in this case people or walls could
interfere with the tracking system, resulting in inaccurate measurements.

Since the above ideas didn’t work a final solution have been developed using inertial
measurement units (IMU’s) to track the user and the robot in space, calculating
the distance between them and using it to keep the robot always near the person.
Also in this case a raspberry pi was used as the main computational power for the
system, combined with 2 stm32f401re microcontrollers and their IKS01A3 shield
that mounted on board an accelerometer, a gyroscope and a magnetometer.
This technology was applied to our project in order to estimate pose and position
of the user and of the robot in space with the aim to keep a fixed relative distance
between the two.
During the implementation phase the results were not precise and the drift due to
the double integration of the acceleration was too much in order to have a reliable
system.

The results obtained however demonstrates that this solution works, and it al-
lows to create a robot that is able to follow a specific person in every conditions, if
additional sensors and sensor fusion techniques are used in combination with the
IMU.
This solutions will be implemented and tested as future work.

vi

Contents

Abstract iii

Summary iv

List of Tables ix

List of Figures x

1 State of art 1

2 Introduction 5

3 Raspberry setup with Openvino 7

4 Pan-Tilt camera control 13
4.1 Hardware and software components 13
4.2 Control code for tracking of the user 15

5 Robot position control 19
5.1 Hardware design and implementation of the circuit 19
5.2 Software implementation for the robot’s movements 21

6 Identification strategies 23
6.1 Computer vision and image recognition identification techniques . . 23

6.1.1 Color detection . 24
6.1.2 QR code detection . 24

6.2 Infrared communication technique for the identification of the user . 26
6.2.1 Infrared protocols . 26
6.2.2 Raspberry Rx - Arduino Tx project 28

6.3 Bluetooth low energy triangulation for tracking and Identification of
the user . 30
6.3.1 BLE technology . 30

vii

6.3.2 Setup and implementation of the STM32F401RE with X-
NUCLEO-BNRG2A1 . 32

6.3.3 Coding the BlueNRG2A1 34
6.3.4 Raspberry pi code for tracking and identification using blue-

tooth . 38
6.4 Inertial Measurement Unit position tracking identification technique 42

6.4.1 Setup and implementation of the STM32F401RE with X-
NUCLEO-IKS01A3 . 44

6.4.2 Coding the IKS01A3 . 51
6.4.3 Raspberry pi 4 position estimation coding 54
6.4.4 MATLAB position estimation algorithm 56

7 Conclusions and future work 61

Appendices 65

A Openvino setup 67
A.1 Openvino setup tutorial . 67
A.2 Openvino setup test . 69

B PAN-TILT HAT codes 73
B.1 PCA9685 control library . 73
B.2 PAN-TILT HAT test code . 75

C Camera control algorithm 77

D Robot’s position control 79

E Identification techniques 81
E.1 Color detection identification code 81
E.2 Infrared detection code . 82
E.3 Infrared and computer vision fusion 83
E.4 STM32 BLE communication code 87
E.5 Raspberry triangulation code . 101
E.6 STM32 IMU code . 104
E.7 Raspberry 3D IMU code . 121
E.8 Raspberry 2D IMU code . 126
E.9 MATLAB IMU algorithm . 130
E.10 MATLAB plotting algorithm . 133

Bibliography 141

viii

List of Tables

7.1 Computer vision and image recognition results 61
7.2 Infrared and bluetooth low energy maximum distance 62

ix

List of Figures

2.1 Assembled system for only computer vision and image recognition . 6
3.1 Neural compute stick 2 . 8
3.2 Raspberry + NCS2 workflow . 10
3.3 Visual representation of deep neural networks 11
3.4 Visual representation of artificial neural networks 12
4.1 2-DOF Hat with schematics . 14
4.2 Workflow camera control algorithm 16
5.1 Buck boost converter and L6205N motor driver 19
5.2 Pin and motors electrical scheme 20
5.3 Workflow motor control algorithm 21
6.1 Visual representation of the NEC protocol 27
6.2 Visual representation of the R5C protocol 28
6.3 Final pin configuration . 34
6.4 Visual representation of the bluetooth system’s space configuration 39
6.5 Triangulation uncertainty . 40
6.6 Real and estimate position comparison 41
6.7 Real and estimate position difference 42
6.8 Simple accelerometer representation 43
6.9 Simple gyroscope representation . 44
6.10 Simple magnetometer representation 44
6.11 Final IMU pin configuration . 46
6.12 Right handed reference frames and primary rotations 47
6.13 Drift representation . 54
6.14 Walking motion detection . 58
6.15 IMU’s reference frame animation 59
6.16 Tilt compensated accelerometer . 59
6.17 Accelerometer . 59
6.18 High filtered linear position . 60
6.19 High filtered linear velocity . 60

x

Chapter 1

State of art

The human following robotics is one of the most challenging task in the robotics
field, and one of the most important.

This type of application can be very useful in a lot of different scenarios, for example
in a warehouse a following robot could be used by an employee to move heavy loads
while walking through the facility, or in a shop scenario a human following robot
could be used by the customers to carry their shopping while moving completely
hands free.

Nowadays the field of interactive robots is becoming more and more effective, this
thesis was inspired by some of the most relevant projects that are present on the
IEEE portal, most of them based on computer vision and image recognition.

In [1] the hardware used for the application is a combination of a Jetson TX1
with a ZED stereo camera, with this equipment the solution that is presented
in the paper uses Human Detection Algorithm with Histogram of Oriented
Gradient features (HOG) by a Support Vector Machine (SVM) in combination
with a predictor Kalman filter.
The target is found using a model pretrained to recognize a specific person, then the
extraction of the background and the identification of the colors simplify the track-
ing, but since the execution time is too high in case this procedure is repeated for
every frame, a prediction algorithm is applied in order to reduce the computations
and effort of the whole system, achieving a smaller execution time but maintaining
also a good precision and accuracy.

For [2] a PID controller has been designed, in order to achieve good perfor-
mance even with low computational power, in fact due to this constraint the paper
deals with only a 2D application.

1

State of art

The method described inside the paper shows how they have managed to pre-
process every frame, dealing with extreme light conditions or environment change
it is still possible to enhance the interested feature points.
Like the paper above [1] the background is subtracted in order to follow the back
of the head of the user, with a pretrained model that allows to track and follow the
designed human operator.
The tracking is made through the mathematical procedure briefly described in the
study and thanks to this even with just a PID controller the whole system is capa-
ble to maintain a stable 25fps in a dynamic environment.

Paper [3] uses a completely different approach, since there is no computer vision
and no image recognition.
In fact the important components used in this experiment are a Nintendo Wii
camera, a ATMega 128 processor, and four powerful IR-Leds.
The concept behind this paper is that in poor light conditions a mobile robot can
track a human operator knowing it’s relative position thanks to the IR technology,
in fact as we can see in the study, the procedure shows how through the Wii cam-
era, that is used like a wearable device, the robot can calculate its relative position
using the data transmitted from the camera attached to the person, through wire-
less connection and follow the operator.
In the paper are also shown all the calculus and the mathematical procedure in
order to estimate the relative position, and also is possible to notice that the accu-
racy is about 1.5cm, which means that the whole system could track in a precise
way the designed target.
It is relevant to say that the drawbacks are the need for a wireless connection and
also the camera as a wearable device.

Research [4] is based on a Raspberry Pi 2B used as the processing unit, and
an Arduino UNO as the control unit, used to control the electrical and electronic
components such as motors and sensors.
The objective of this paper is to develop a lightweight algorithm capable of track-
ing a person using computer vision and image recognition, with the help of some
other sensors such as a magnetometer, an encoder and a ultrasonic sensor for the
distance.
The algorithm described is based on a color tag that is placed on the human op-
erator, this approach permits to clearly identify the target without using too much
computational effort but leading anyway to a really slow system, the performance
reported on the paper says that the raspberry is capable of processing three frames
per second, that as shown in the research is enough supposing that the operator is
a slow moving object, but in a dynamic environment scenario this technique is not
suitable.

2

State of art

In [5] we have a similar approach to the previous paper but with a really higher
computational power, it is also mentioned that the human following feature is only
one of the whole project, that basically is a robot designed in order to help in the
automotive manufacturing, so it is necessary to carry heavy loads and manipulate
them, in fact the robot can handle loads up to 20kg.
The peculiarities of this robot is that the vision based algorithm is somehow per-
sonalized for every human operator, in fact it is written that at start up are needed
60 seconds in order to take photos of the target and then elaborate a desired image
that will help the robot in the identification and tracking of the desired person.
In the paper this is done using a special image on the operator, it is like a tag that
helps the robot in its operations, leading to a more efficient tracking.
As we can see it is more complicated and powerful than the approach of [4], as
said in the research the tracking is based on a non-vector space controller, but
the critical drawback is that this algorithm is really heavy and can run only on
powerful hardware, plus the need for a wearable tag.

The [6] approach is one of the most accurate, in fact the project is based on a
adaptive control of a non-linear system, which means that the system is stud-
ied and built for this specific purpose, leading to a perfect tracking and following
of the desired target, without issues even in dynamic environments with a lot of
people or light changing conditions.

The solution proposed in [7] is based on the analysis of the walking pattern of
the target.
The core of the robot is the SICK LMS200 as a LRF (laser range finder), which
permits to measure precisely the motion, distance and angles covered by the human
operator while walking, store the data and remember them in order to track the
walking motion of the desired person even in a crowded environment.
Of course this is a very interesting and accurate solution, but the whole system is
very expensive and requires a very high computational power.

As we can see in [1, 2] the whole system is designed to track the person itself
with specific algorithms that helps to delete the background isolating the user in
order to obtain the desired performances, this techniques requires high computa-
tional power or ad hoc tuning in the case of the PID design.

In [3] the approach is pretty different, indeed the system is based in a wearable
device that the user should use in order to be recognized and tracked by the robot.

3

State of art

The approach that we see in [4, 5] is easier from the computational point of view, in
fact the tracking of the user is done through the help of a tag that is placed on the
human, this allows the whole system to neglect other people on the scene, resulting
in a lighter algorithm that requires less power and can run also on a raspberry pi,
or in the case of the second one, it makes easier the work of the robot that even
with powerful hardware has the possibility to spend computational power on other
relevant and specific features.

The [6, 7] projects are more complex, in fact prediction algorithm are used in
order to distinguish the user from other humans and maintain the tracking of the
same person even in chaotic scenarios with obstacles and other people in the scene.

As stated above, the techniques are pretty different but most of them use computer
vision and image recognition as the core of the whole system, obstacle avoidance is
extremely important, and the tracking of the user is different in every project, we
have more complex and powerful solution as well as more simple and light, but all
of them are reliable and has obtained good performances.

4

Chapter 2

Introduction

The aim of this thesis is to design from scratch, build and test a human following
robot, using computer vision and image recognition for the tracking of the user,
with a system that allows also the robot to identify a specific human.

Also all the assembly and motors control algorithm are needed for this project,
with the possibility to add features for the obstacle avoidance.

In the following pages the steps for the accomplishment of the main task will be
analyzed, dividing it in smaller and easier minor tasks completed in chronological
order.

It was decided to base the system on a raspberry pi microcomputer, but dur-
ing the test phases it was noticed that it doesn’t have the necessary computational
power for the image recognition, so it was decided to add an accelerator for neural
networks.

A raspberry pi cam v2 was used for the computer vision and a 2dof hat for its
movement control and tracking of the user. The raspberry was placed on top of a
support that has 4 wheels, each driven by a dc motor, attached to a driver placed
between motors, power supply and the pi.

The techniques implemented in order to track the human operator were pretty
different.
The first two that were tested relies on computer vision and image recognition, one
was a technique for the tracking of the user based on a color tracking algorithm
and the other one was a tag tracking algorithm.
Another implementation tested for the user identification was an infrared tracking
algorithm.

5

Introduction

As it is possible to notice this techniques are the same reported in the papers
from the state of art chapter.
Moving to a different direction it was needed to implement and test techniques that
have a completely different approach.
One of the new techniques is the triangulation and tracking of the user through the
BLE (Bluetooth Low Energy) technology.
The last implementation regarding the tracking algorithm is done using IMUs (In-
ertial Measurement Unit).

Figure 2.1: Assembled system for only computer vision and image recognition

6

Chapter 3

Raspberry setup with
Openvino

The first idea was to use a raspberry pi 2b with a pi cam v1, and the most
suitable tool for this system was TensorFlow Lite [8].
TensorFlow Lite is a lighter and less powerful tool than TensorFlow, but it is de-
signed for mobile devices that usually do not have the same computational power as
the computers, a few example are smartphones, embedded systems or IoT devices.
The key features of TensorFlow Lite are the following:

• Small latency: since there is no communication with a server.

• Privacy: no data leaves the device in which TensorFlow Lite is running.

• Connectivity: the connection with internet is not required.

• Size: the models are a lot smaller than TensorFlow.

• Power Consumption: since no internet connection is needed and the models
are lighter, the inference is more efficient resulting in a power consumption
optimized for mobile.

After setting up the tools from a fresh Raspbian installation the obtained were of
at most 1fps, that for obvious reasons were not satisfactory for the application, so
it was decided to stay on the raspberry pi system but with the upgraded version,
using a raspberry pi 4 with a pi cam v2.

The raspberry pi 4 also has a limited computational power so in order to get
better performance it was added the Neural Compute Stick 2 (from now on it
will be called NCS2 [9]) from Intel.

7

Raspberry setup with Openvino

NCS2 is a USB stick that offers an easy access to neural network functionality, it
is equipped with Intel Movidius Myriad X Vision Processing Unit (VPU)
which has a dedicated hardware accelerator for Deep Neural Network (DNN)
interference.

Figure 3.1: Neural compute stick 2

The use of NCS2 requires a custom tool provided by Intel, calledOpenvino [10] in
order to interface the raspberry with the accelerator to obtain better performances
in the inference algorithm execution, since all the prediction and detection is left
to it.
A complete guide for the setup of the tool and its dependencies is left in the sec-
tion A.1.

Openvino is a toolkit that grants access to fast application development and offers
a lot of different solutions to a lot of different tasks.
Inside Openvino there is a OpenCV community version compiled for the intel
hardware, also Openvino is open source, its source code is available and can be
downloaded from github, it means that for everyone that is interested it can be
customized and built from source.

A basic knowledge of OpenCV[11] is needed in order to understand the toolkit
provided by Intel.
OpenCV is a powerful open source library for computer vision and image recogni-
tion, available and compatible with a lot of programming language, such as python,
c++, java and so on.

8

Raspberry setup with Openvino

The best way to use it is with python, in combination with numpy that is another
library highly optimized for numerical operations, increasing the capability of the
designed app to handle complicated computer vision and image recognition scenar-
ios.

Basically what is done inside the python code is first the initialization of the sys-
tem, and then the check to assure that the setup is working properly.
The procedure is done as follows:

• Creation of a net object from a model in caffe network format:
net = cv2.dnn.readNetFromCaffe(prototxt,model)

• Specify the NCS2 as the target for the inference:
net.setPreferableTarget(cv2.dnn.DNN_TARGET_MYRIAD)

• Creation of the object for image acquisition from camera:
vs = VideoStream(usePiCamera=True).start()

As it is possible to notice, the two first steps are really important for our specific
application, otherwise it is not possible to use the NCS2.

After the initialization, the core of the program is an infinite loop in which:

• A frame is captured from the vs object:
frame = vs.read()

• After some manipulation the image is converted into blob format:
blob = cv2.dnn.blobFromImage(frame, 0.007843, (300, 300), 127.5)

• Pass the blob to the NCS2:
net.setInput(blob)

• Retrieve the detections from NCS2:
detections = net.forward()

• After some manipulation of the data obtained from the NCS2, merging them
with the frame it is possible to display it in order to see in real time the input
of the camera:
cv2.imshow("Frame", frame)

This is basically the bone structure of the project, the decisions are based on the
detections of the camera, regarding the control of the 2dof hat, and the control of
the position and motion of the robot, but this topics will be discussed in the next
chapters.

9

Raspberry setup with Openvino

In this next page there is a visual transposition of the algorithm described above,
for sake of completeness and understanding the Figure 3.2 is a simple workflow
to understand the main cycle of the program.

A simple python script to test that the installation and setup went smoothly is
attached in section A.2, in order to reproduce what was done in this chapter is
necessary to use the same models and procedure.

Capture the frame

Raspberry pi cam v2

Raspberry pi 4

Resize and convert it
to blob opencv2

format

Pass the blob to the NCS2

Neural Compute Stick 2

Receive the image
Make detection and

send back the
processed image

Check detections,
accuracy and image

processing

Display the image

Monitor

Figure 3.2: Raspberry + NCS2 workflow

In the figure it is clear that the raspberry pi camera is attached to the main com-
puting device that is the raspberry.
The raspberry takes frame by frame the images of the environment from the camera
and manipulates them in order to send the correct information to the NCS2.
The image that is received by the NCS2 is than analyzed and the results that come
from the inference are then returned to the raspberry that can analyze and print
on screen the results in real time.

10

Raspberry setup with Openvino

Deep Neural networks

DNN (Deep Neural networks) are a key aspect for the computer vision and image
recognition algorithm that is used in the project, so it is important to clarify some
aspects that regard this topic.
The difference between DNN and other type of networks relies in the fact that the
DNNs has more than two layers.
The DNNs also has sophisticated mathematical models that allows them to process
the data.
The neural networks in general are a technology that tries to mimic the human
brain capabilities to understand and manipulate unstructured data, such as pattern
recognition and the processing of data through different layers of neural connec-
tions.
The DNN are networks that have an input layer, an output layer and at least one
hidden layer in between. Each one of them perform a specific task that regards
ordering and sorting the data, this process is called feature hierarchy.

Figure 3.3: Visual representation of deep neural networks

To better understand the DNNs it is needed to know the process that stay behind
its development.

11

Raspberry setup with Openvino

At first it is needed the ML (Machine Learning), that is a framework used to auto-
mate with its algorithms the statistical models, like for example a linear regression
model, in order to make better predictions.
A model makes prediction but they are not always accurate, so a model in which
is present machine learning can change its weights in order to be more precise and
makes less mistakes.
A model that has the ability to learn from the obtained results is the starting point
for the creation of a ANN (artificial neural network).
The ANNs used their hidden layer to store and measure how the inputs are impor-
tant for the outputs, and also makes associations between combinations of inputs.

Figure 3.4: Visual representation of artificial neural networks

So as it is noticeable from the two images Figure 3.3 and Figure 3.4 they have
different hidden layers.
In fact this is a property of the deep neural networks, DEEP refers to the fact that
they are multiple hidden layers deep.
This feature anyway leads to a problem, since the model is trained to predict and
tune using machine learning it is impossible to know how it precisely works, even
if the single nodes values are known.
This because the the deep networks technology allows the model to make its own
generalization and store them in a hidden layer.

12

Chapter 4

Pan-Tilt camera control

In this chapter will be discussed the hardware and software components used for
the control algorithm of the raspberry pi camera, that allows the robot to track
efficiently the user, moving the camera such that the target will be always bounded
in a central region of its angle of view.

4.1 Hardware and software components
For how the project was thought it was needed a 2dof manipulator in order to deal
with the pan and tilt control for the camera mobility, the idea behind this imple-
mentation stands in the fact that the camera should always maintain the target in
its viewing angle, the most suitable way for this application was to move directly
the camera instead of the whole robot.

It was decided to equip the Raspberry with the Waveshare 2-DOF Pan-Tilt
Hat[12], that comes with a board adapted for the Standard 40PIN GPIO ex-
tension header of the Raspberry, see Figure 4.1.

The HAT is equipped with the PCA9685 mounted on board as a PWM driver,
the PWM resolution of this driver is of 12 bits and it permits to easily control the
two servomotors mounted inside the joints of the arm in which the camera will
be placed.
To control the motion of the Pan-Tilt system in python it is possible to use a library
made up for the PCA9685 that is present in section B.1.
The PCA9685 python library allows to easily control the motion of the camera
with a simple list of methods that uses I2C communication present on the GPIO
ports of the raspberry.

13

Pan-Tilt camera control

The structure needed in order to work properly with this hardware needs to follow
the steps indicated below:

• Initialize the PWM for the PCA9685 creating an object from the library:
pwm = PCA9685()

• Set the PWM frequency, in this case for this servo motors is 50Hz:
pwm.setPWMFreq(50)

• Control the servos with:
pwm.setRotationAngle(motor,angle)
The motor variable can be 1 or 0, 1 stands for the PAN servo that can go from
0 to 180 degrees, while 0 stand for the TILT servo that can go from 90 to 180
degrees.

• Remember to clean the communication port and registers that the class is
using with the method present in the library, otherwise it can lead to minor
damage or anyway is not possible to use the communication with the next run
of the program:
pwm.exit_PCA9685()

The key methods stated above are the simplest and efficient way to control the
HAT with python.

After the installation of the hardware and software components on the raspberry
you can test the HAT with the code in section B.2.
The test code at run time tilt the camera from 90 to 180 degrees and pan the
camera from 0 to 180 degrees in an infinite loop, just to be sure that the library
and the installation is working properly without any issue.

PAC101

PAC102
COC1

PAC201

PAC202 COC2
PAC301

PAC302 COC3
PAC401

PAC402 COC4

PAC502

PAC501 COC5 PAH102

PAH103

PAH104

PAH105

PAH101

COH1

PAH203

PAH202

PAH201

COH2

PAH301

PAH302

PAH303

COH3

PAH401 PAH402 PAH403COH4

PAIC104 PAIC105 PAIC106
PAIC103 PAIC102 PAIC101 COIC1

COlogo1

PAP1040

PAP1039

PAP1036

PAP1035

PAP1032

PAP1031

PAP1028

PAP1027

PAP1022

PAP1021

PAP1018

PAP1017

PAP1014

PAP1013

PAP1010

PAP109

PAP106

PAP105

PAP102 PAP104

PAP103PAP101 PAP107

PAP108

PAP1011

PAP1012

PAP1015

PAP1016

PAP1019

PAP1020

PAP1023

PAP1024

PAP1025

PAP1026

PAP1029

PAP1030

PAP1033

PAP1034

PAP1037

PAP1038
COP1

PAPCA1015PAPCA1016PAPCA1017PAPCA1018

PAPCA1014PAPCA1013PAPCA1012PAPCA1011PAPCA101 PAPCA102 PAPCA103 PAPCA104 PAPCA105 PAPCA106 PAPCA107 PAPCA108 PAPCA109 PAPCA1010

PAPCA1019PAPCA1020PAPCA1021PAPCA1022PAPCA1023PAPCA1024PAPCA1025PAPCA1026PAPCA1027PAPCA1028

COPCA1

PAR101

PAR102
COR1PAR201

PAR202
COR2PAR301

PAR302
COR3PAR401

PAR402
COR4PAR501

PAR502
COR5

PAR601

PAR602 COR6
PAR701

PAR702 COR7
PAR801

PAR802 COR8PAR901

PAR902 COR9PAR1001

PAR1002 COR10

PAR1102

PAR1101 COR11PAR1202

PAR1201 COR12 PAR1302

PAR1301 COR13PAR1402

PAR1401 COR14

PAU101

PAU103
PAU102

PAU105

PAU104

COU1
PAU201

PAU202

PAU203

PAU206

PAU205

PAU204

COU2

PAC101 PAC401

PAC502

PAH403

PAIC101

PAP101 PAP1017

PAPCA1028

PAR102 PAR202 PAR302 PAR402 PAR502 PAR1202 PAR1402

PAU105PAU201

PAU203

PAC202

PAH101PAH202 PAH302

PAP102 PAP104

PAR1102 PAR1302

PAU101

PAU103

PAPCA101

PAR501

PAR1002

PAPCA102

PAR401

PAR902

PAPCA103

PAR301

PAR802

PAPCA104

PAR201

PAR702

PAPCA105

PAR101

PAR602

PAP1024

PAC102

PAC201 PAC301

PAC402

PAC501

PAH102

PAH203 PAH303

PAH401

PAIC103

PAP106

PAP109

PAP1014 PAP1020

PAP1025

PAP1030 PAP1034

PAP1039

PAPCA1014

PAPCA1023PAPCA1024PAPCA1025

PAR601 PAR701 PAR801 PAR901 PAR1001

PAU102

PAH105

PAIC105

PAP1010

PAP1021PAP1019

PAC302

PAU104

PAH402

PAIC102

PAP1032

PAP1033

PAP1012

PAP1035

PAH301

PAPCA106

PAH201

PAPCA107 PAPCA108 PAPCA109 PAPCA1010 PAPCA1011 PAPCA1012 PAPCA1013

PAPCA1015PAPCA1016PAPCA1017PAPCA1018PAPCA1019PAPCA1020PAPCA1021PAPCA1022
PAIC104

PAP105

PAPCA1026

PAR1401

PAU205

PAH104

PAR1301

PAU206

PAP1023

PAIC106

PAP103

PAPCA1027

PAR1201

PAU202

PAH103

PAR1101

PAU204

Figure 4.1: 2-DOF Hat with schematics

14

4.2 – Control code for tracking of the user

4.2 Control code for tracking of the user
The code is structured as a basic decision algorithm in python, what is used as a
decision variable for the movements of the camera are empirically measured thresh-
olds.
The thresholds are measured in pixels and are placed both vertically and horizon-
tally, therefore the robot is able to adjust its angle of vision in the two axes easily.

Since the bounding box can vary a lot even if the target is still, probably due
to light conditions and camera quality it was needed to reduce the uncertainty
through a mean that will results almost the same at every iteration.
The mean is calculated for the vertical and for the horizontal axis taking the edge of
both data and dividing them by two, retrieving the theoretical center of the target,
from which we can draw a cross that helps along with the thresholds, without this
method it is not possible to evaluate the position of the human due to the rapid
change in the dimensions of the bounding box.
The thresholds are positioned such that if the target moves:

• Under 220 pixels or above 500 pixels horizontally the camera will pan of +10
or -10 degrees:

1 if(startX+endX)/2<220:
2 if pan<180:
3 pan=pan+10
4 pwm.setRotationAngle(1,pan)
5 elif(startX+endX)/2>500:
6 if pan>0:
7 pan=pan-10
8 pwm.setRotationAngle(1, pan)

• Under 190 pixels or above 390 pixels vertically the camera will tilt of +5 or -5
degrees:

1 if(startY+endY)/2<190:
2 if tilt>110:
3 tilt=tilt-5
4 pwm.setRotationAngle(0,tilt)
5 elif(startY+endY)/2>390:
6 if tilt<180:
7 tilt=tilt+5
8 pwm.setRotationAngle(0, tilt)

15

Pan-Tilt camera control

• Since the robot is designed to stay on the ground and the point of view that it
has of the space is under the target it was added also a constraint that locks
the camera from tilting up too much, this condition would lead to a situation
in which the system is in a state in which is necessary a reset:

1 if startY<70:
2 if tilt>110:
3 tilt=tilt-5
4 pwm.setRotationAngle(0, tilt)

The Figure 4.2 underneath explains visually how the algorithm works but for a
more detailed explanation and comprehension of the control flow, Appendix C
contains the portion of code inside the main loop of the program in which the con-
trol algorithm takes place.

Figure 4.2: Workflow camera control algorithm

16

4.2 – Control code for tracking of the user

As described in the figure above the computer vision and image recognition algo-
rithm will run in the infinite loop that is responsible for the human detection.
If a detection is done then the bounding box measured data are manipulated in
order to obtain a mean value that is stable in time, since the bounding box dimen-
sions could change widely even if the target stays still, this is due to light conditions
and camera recording quality.
The mean instead is a value that stays almost the same during detections and so
it can be used in order to focus on the center of the target and maintain the right
moving trajectory.
With the data of the center of the target is possible to draw a cross on the frame
that is used during the test phases to have a visual output to understand what the
robot is aiming.
Having this data is possible through the thresholds mentioned above, to control the
Pan-Tilt HAT at which the camera is attached.
In fact the center of the person at which the robot is aiming is fundamental in order
to understand if the view angle of the camera needs to be adjusted.
The control algorithm in fact takes place when the person is moving out the thresh-
olds, acting like described in the previous pages.

17

18

Chapter 5

Robot position control

In this chapter are present a brief explanation of the components used in the devel-
opment of the body of the robot and its movement control, with also a discussion
on the code that allows the robot to autonomously move following the target.

5.1 Hardware design and implementation of the
circuit

The robot uses 4 DC motors for its motion, that are driven by a L6205N motor
driver.

Since the robot is a moving device it needs to be powered by a small source of
energy that its capable to carry by himself, in the case of this project it was de-
cided to use a battery pack with 20100mA capacity.

To power up the circuit it was needed a buck-boost converter that has a USB
interface as input and a positive-negative output in order to apply the needed volt-
age to our circuit.
The converter and motor driver are shown in the Figure 5.1 underneath.

Figure 5.1: Buck boost converter and L6205N motor driver

19

Robot position control

The circuit was soldered by hand on a matrix board, cut such that it could
easily fit on the robot’s platform with also the battery pack and the buck-boost
converter.

Figure 5.2: Pin and motors electrical scheme

During tests it was noticed a not negligible voltage drop from the power supply,
due to the transient of the motors, this problem affects also the working condi-
tions of the raspberry pi that was performs better if connected directly to the 220V
through its charger.

The drop of the voltage has been easily corrected using the PWM (Pulse Width
Modulation) to control the motors, in this way the transient does not effect directly
the power supply, resulting in a more stable and reliable solution that allows the
movements of the robot to be more precise even if slower.
This choice also permits a stable power transmission to the raspberry that can
operate without continuous voltage drops due to the motor operations.

20

5.2 – Software implementation for the robot’s movements

5.2 Software implementation for the robot’s move-
ments

The code for the motor control algorithm is placed in an external thread in order
to operate independently with respect to the main thread completely dedicated to
the computer vision and image recognition algorithm.

Since the camera has a limited angle of vision it is necessary to rotate the whole
robot in order to always keep track of the target during its movements, this is done
thanks to the moving platform equipped with four DC motors, each one of them
is attached to a wheel.
The two side of the body are controlled separately, with this technique the robot is
able to turn right or left staying in place, similar to a tank this moveset is perfect
for the application because small, rapid and precise adjustement in the robot pose
are needed in order to continuously track the human target.
With this approach the robot is programmed to rotate clockwise or counterclock-
wise, and to move forward or backwards.

Figure 5.3: Workflow motor control algorithm

21

Robot position control

In Figure 5.3 is presented a simplified workflow of the motor control algo-
rithm, as stated above the algorithm is implemented inside a thread, this is done
in order to always run the motor control algorithm independently, with respect of
the main thread.
The program starts with the initialization of all the peripherals, including the
NCS2 and the 2DOF hat, right before the main cycle dedicated to the com-
puter vision and image recognition algorithm, the motor control thread is started.

After the initialization of the control variables and pins used to control the driver
and consequently the motors, the thread starts to run in an infinite loop in which a
decision tree is used in order to determine which action is necessary to do to always
keep the human inside the camera field of vision.
In the figure is possible to see how the bounding box of the detection is used in
order to decide how to move the robot, what basically the algorithm tries to do is
to always keep a fixed distance between the robot and the person, resulting in a
target that should be always centered inside the camera vision.
If the midpoint of the horizontal values of the bounding box is moved at the ex-
tremes of the field of vision of the robot’s camera, and the 2DOF Hat is almost at
the end of its range of motion then the motors are controlled in order to move the
body left or right, trying to keep the person centered.

In the case the robot is already centered with respect of the person, what the
algorithm does is decide if the distance from the human is acceptable, this is done
computing the area of the bounding box, it is intuitive to say that if the bounding
box area stays under a certain threshold then the robot moves forward, while in the
contrary, if the bounding box area stays above a certain threshold than the robot
moves backwards.

This operations are done in parallel to those of the camera, that in the same time
tries to keep the person locked inside its field of vision using the 2DOF hat pre-
sented in the previous chapter.
A brief explanation of the control algorithm of the camera is present in section 4.2.

The code relative to the control strategy treated in this chapter is located in Ap-
pendix D.

22

Chapter 6

Identification strategies

The system built until this point was capable to move and recognize a single hu-
man.
With this approach the robot was able to follow a person but due to the limita-
tions in the hardware and computational power it was not possible to implement
an algorithm capable to identify a specific human using just computer vision and
image recognition.
At this point of the project it was needed a solution that could be applied to the
system that is capable of tracking efficiently a human, the solution needs to be
reliable and robust in order to track the person also in difficult scenarios in which
are present other people, walls or other obstacles.
In literature most of the techniques that are used for this purpose required high
computational power and since it is not suitable for this application it was decided
to implement and test different new approaches.
In the following sections the techniques and technologies that will be treated com-
prehends computer vision and image recognition, infrared communication, BLE
triangulation and IMU position tracking.

6.1 Computer vision and image recognition iden-
tification techniques

Since the computational power of the system was limited, the approaches with
computer vision and image recognition algorithm tested for this application were
two in particular.
A color detection algorithm and a QR code detection identifier algorithm were
tested in order to recognize, track and follow only a specific person.

23

Identification strategies

6.1.1 Color detection
For the application it was needed a technique that would allow the robot to identify
a specific human with respect to the people or obstacle present in the scene.
The first solution implemented to solve this problem was color detection using com-
puter vision.

With OpenCV it is possible to tune hue, saturation and value (HSV) in or-
der to isolate specific colors, this means that with a trial and error procedure is
very easy to understand which combination of these parameters allows the robot
to identify the user by means of its clothes color.
The tuning was done in real-time using a window created with the cv2.namedWindow()
OpenCV function, with a total of 6 changeable parameters: Hue min, Hue max,
Saturation min, Saturation max, Value min, Value max.
In this way it is possible to tune the HSV during the execution of the program,
having an instant visual output, useful for the trial and error procedure.

This solution was implemented and tested in a simple scenario, the environment
had an artificial source of light and only one person in it.
After the manual color detection phase a test phase was done, in order to do this
the person that had to be recognized by the camera moved inside the controlled
scene but the results were not satisfactory.
In fact the human inside the camera’s field of vision is recognized but only in certain
points of the room, this was due to the fact that the change in light conditions could
lead to a completely different tonality of the color detected by the camera, proving
that even the slightest change for this parameter was crucial for the detection.
In order to improve this technique an hardware upgrade could help but it is for
sure needed an accurate and precise test phase, the code in section E.1 could be
used in order to test different camera types and evaluate their performance under
test.

6.1.2 QR code detection
Since the solution above was not suitable for the application, a new approach was
implemented.
The next approach starts from the idea of a wearable tag, in this case it was chosen
a Quick response (QR) code as identification method.

The QR code was used instead of a barcode because compared to the traditional
two dimensional barcode it is easier to read by the digital devices.
This technique allows the human to have a unique identifier thanks to the infor-
mation that the QR code can store, in this case the test was performed with a tag
that stored a random identification string.

24

6.1 – Computer vision and image recognition identification techniques

The identification and decoding of the informations from the QR code is really fast,
thanks to its square-shape and its configuration matrix like, in which the pixels are
easily distinguishable since they have just two colors, black and white.
Thanks to this the contrast created inside the square of the QR code makes it easier
to read the information, even for old cameras.
The QR code is also really useful because it can store an amount of information
such that also really heavy and long strings of data can be used as identifier, giving
the possibility to think of an application that can be widespread without having
different robots interfering with each other.

During test phases this approach turned out to be the easiest and simpler method
to track a specific human, the amount of computational power needed in order to
implement this solution were really low and so it was really suitable for the hard-
ware present in the application.
The tracking and identification of the user, following this approach is incredibly
robust and reliable, but the main drawbacks reside in the real possible application,
in this way indeed the human should always wear a particular jacket or piece of
clothing in which every side of it should have at least one or two QR code from
every angle.
So for the purpose of this project, being this an application that should not be
invasive and usable in every field without the necessity of special equipment, for
example in a supermarket this solution was unfeasible.
Another drawback is the fact that in really chaotic scenarios with people and ob-
stacles moving inside the scene, this simple tracking method can not work anymore
due to the fact that a direct clean vision of the target is needed for the robot in
order to proceed with the human following algorithm, otherwise it is not possible
to track and identify a specific human.

The idea is really valid and could be implemented in other projects with other
purposes or embedded inside this project for future works.
It is needed to say that an hardware upgrade regarding the camera is needed be-
cause the resolution and quality of the frames are not enough if the QR code stays
too far away from the camera or under severe change in light conditions.

25

Identification strategies

6.2 Infrared communication technique for the iden-
tification of the user

The next solution uses the infrared (IR) technology for the identification and
tracking of a specific human.
The infrared technology was chosen because it was suitable for the project since
it is a wireless mobile technology that can be used for devices communication in
short ranges.
This technique was approached since the idea for the robot is to operate in common
places, like for example supermarkets, and so it is needed a technology that does
not affect animals like ultrasounds and others techniques that could hurt pets in
any case.

6.2.1 Infrared protocols
Infrared communication like said before is safe from animals point of view.
An infrared LED in fact produce light that is not visible to the human eye, the
wavelength of this type of signals ranges typically around 950 nanometers.
The easiest method to apply in order to communicate with infrared technology is
to leave the IR LED on, representing a logical 1 for a certain period of time or turn
it off for a certain amount of time, to represent a logical 0.
But unfortunately since the environment is full of many other sources of infrared
radiation this approach would not work, to overcome this issue the standard used
in IR communication for the signals frequencies, is around 38KHz, slightly different
frequencies are available but in general this is the most common.
Flashing on and off the IR LED to represent data bits is not the right approach, in
order to work with infrared signals a suitable protocol is needed, otherwise is not
possible to understand what the data means, both transmitter and receiver side.

NEC protocol

So to communicate correctly one of the standard used is called NEC protocol.
This standard is used a lot in infrared communication, in fact it is common to have
applications or devices that communicate with each other using this approach.
The NEC protocol uses a technique called pulse distance encoding to distinguish
between the two logic states.
The carrier frequency is of 38KHz and the logic states are encoded using pulses of
different lengths to distinguish between HIGH and LOW.
In the next figure it is possible to observe how a infrared signal could be encoded
in order to approach this communication standard.

26

6.2 – Infrared communication technique for the identification of the user

Figure 6.1: Visual representation of the NEC protocol

In Figure 6.1 there are many elements to explain.
The binary values are encoded as follows:

• Logical 1: 562.2µs high signal followed by a 1.687ms low signal

• Logical 0: 562.2µs high signal followed by a 562.2µs low signal
While the rules to follow regarding the NEC protocol in order to send correct signals
are:

• A 9ms leading high pulse

• A 4.5ms low signal

• The 8-bit address of the device

• The logical inverse of the first eight bits

• The 8-bit command

• the logical inverse of the command in bits

• A final 562.2µs high signal to signify the end of the message
The inverse of the address and of the message is used as a checksum to verify that
the data received are correct.
The message and the address can be also of 16-bits, NEC protocol also support
repeating messages.

27

Identification strategies

R5C protocol

Another protocol is called R5C or Philips protocol. The R5C uses the Manch-
ester encoding to distinguish between the logical bits in transmitted messages.
The protocol uses a 36KHz carrier frequency and all the messages requires the same
amount of time to be transmitted.

Figure 6.2: Visual representation of the R5C protocol

In Figure 6.2 the binary values are encoded as follows:

• Logical 1: 889µs low signal followed by a 889µs high signal

• Logical 0: 889µs high signal followed by a 562.2µs low signal

The message frame has the following parts:

• Two high start bits

• A toggle bit that can be used to detect repeated signals

• Five address bits

• Six command bits

Every message is transmitted in a 24.892ms window.

6.2.2 Raspberry Rx - Arduino Tx project
The standards discussed above are the main techniques used in the IR communi-
cation.
In the implementation of this idea for the project, an Arduino UNO was used in
order to drive the test IR LED transmitter (TSAL6200), while on the other side
an IR receiver (TSOP946) was connected to the GPIO ports of the Raspberry Pi
4.

28

6.2 – Infrared communication technique for the identification of the user

For test purposes a simple code was developed, on the Arduino side a continuous
train of 1 signal was sent, in order to measure just the performances on the receiver
side, and evaluate if it was suitable for our application.
Since the idea was to develop a wearable device, like a pair of bracelets with sol-
dered in its circumference equally spaced IR LEDs, the robot should be able to
recognize a human and follow the one that is sending the correct code.
The bracelets from the project concept are able to send signals at 360 degrees, so
it should be possible for the robot to receive the signal from every position, having
mounted on itself different IR receivers.
The idea was to mount an IR receiver on every side and corner of the robot, trying
to maximize the receiving surface with the least amount of receivers, since every
one of them has a 45 degrees field of vision.
In order to test this solution a code was developed to analyze the receiver capabil-
ities.
The code in section E.2 was used to test the receiver previously connected to the
raspberry pi 4.
Also a code capable to use this technology with the previously developed computer
vision and image recognition algorithm can be found in section E.3.

The solution presented in this section was developed and then tested in order to
evaluate its performances.
During test phase the algorithm with the IR technology fusion performed really
well, the robot was capable to understand if the human that it was following was
the real target.
The development phase was stopped obtaining just a system that was able to wait
in idle until the person was returned in the scene, since the technology was difficult
to apply in the project user case scenario.
The solution worked but an hardware upgrade is needed in order to obtain a robust
and functioning system, the main drawbacks are the difficulties that exist in the
working environment
Unfortunately the technology has problems working on long to mid ranges, because
the IR LED and the IR receiver are not powerful enough to send and receive mes-
sages if the distance is more than 40/60cm.
Another reason why this technology would not fit well in our project is the fact
that the IR signals can’t pass through obstacles, walls or people.
So in a super market or in a warehouse the application of this technique is impossi-
ble, but the experiments and tests results are promising and can be used for other
purposes and future works.

29

Identification strategies

6.3 Bluetooth low energy triangulation for track-
ing and Identification of the user

Since the main problem of the previous approaches was that obstacles or people
in the scene would interfere in the tracking solution, because it was needed the
direct communication from the human to the robot, it was decided to implement a
technology that could work efficiently even in this scenarios.
The technology implemented in this solution is the Bluetooth Low Energy
(BLE), in particular, the hardware used for this project was a raspberry pi 4
mounted on the robot, connected in serial communication with 3 stm32f401re
microcontrollers with mounted on top a X-NUCLEO-BNRG2A1 shield for blue-
tooth and wifi communication.

6.3.1 BLE technology
For the project was chosen the bluetooth technology because it is a short range (less
than 100m), low power, low cost wireless communication that should work better
with respect to the other solutions, because the communication can take place even
with obstacles between the transmitter and the receiver.
Allowing the person to walk freely without taking care if the robot can physically
see it or not.
The bluetooth radio frequency transceiver operates in a 2.4GHz band, the same
range of frequencies used by the Wi-Fi.
The process of connecting wireless device is one of the complexity associated with
the bluetooth technology.
The method used by the bluetooth and wireless technology is based on the principle
of "device inquiry" and "inquiry scan".
When the devices that use bluetooth as their method of communication needs to
connect with each other, they "listen" on the known range of frequencies for devices
that are actively inquiring.
When a device is detected, the one that is scanning will respond with it’s address
and all the information needed in order to be identified.
So the connection process can be described as follows:

• Inquiry process: The devices that don’t know each other, in order to discover
themselves must run an inquiry to understand if there are other devices in the
area.
The device that is inquiring scan the nearby space, while the other devices
that are listening will respond with their basic information, such as address
and device type.

• Paging (Connecting) process: This is the process that occur when con-
necting two bluetooth devices.

30

6.3 – Bluetooth low energy triangulation for tracking and Identification of the user

To do this it is necessary for both the devices to know the address of the other,
that is known thanks to the inquiry step described above.

• Connection process: After the paging process will start the connection
between the two devices, during the connection there are different states in
which a device can be:

– Active mode: This is the mode in which usually the devices operates in
order to send or receive data.

– Sniff mode: The device is less active and falls in power-saving mode
listening for requests only at a set interval, for example every 100ms.

– Hold mode: This state is sent by the master device, it tells to go into
a sleep mode for a certain amount of time and then return to an active
state.

– Park mode: This is the deepest sleep mode, the master commands to a
slave to enter this state and if needed to wake up.

Since the application needs to continuously track the device, it is needed an imple-
mentation that is capable from the smartphone side to always send data.
So it was suitable for the project to use a smartphone in order to emulate a beacon,
in this way it is possible to not directly establish a connection between the robot
and the user’s device but it is possible to measure precisely the device received
signal strength indicator (RSSI).

Beacons

A bluetooth beacon is a device that works based on bluetooth low energy technol-
ogy.
The device repeatedly transmits a constant signal that can be detected by other
devices, just like a lighthouse but instead of transmitting a light beam, the com-
munication happens using radio frequencies, so it is invisible and can be used even
if in the environment are present different types of obstacles.
The main applications in which beacons are involved are:

• Room-level monitoring: Occupancy of rooms and buildings measuring how
many bluetooth devices are present.

• Manage visitors flow: This can be done by measuring how many unautho-
rized bluetooth devices enter a building or a specific area in a company or
workplace.

• Indoor location localization: It is possible placing different beacons in a
specific area and measuring the RSSI relative to every device in the scene to
understand the location of the target bluetooth device.
Such measurements allows to estimate through triangulation the position.

31

Identification strategies

The implementation done in this project uses a similar approach of the indoor
location localization application described above.

6.3.2 Setup and implementation of the STM32F401RE with
X-NUCLEO-BNRG2A1

Since the hardware chosen for the BLE tracking and identification application,
is a stm32f401re microcontroller with mounted on top a x-nucleo-bnrg2a1, a
detailed explanation of the software and procedure used to program the tracking
platform is needed.
The microcontrollers are programmed using the software platforms developed by
STMicroelectronics, STM32CubeIDE and STM32CubeMX.
After the installation of this two software platforms it is needed to install also the
software package X-CUBE-GNSS1 in CubeMX in order to use the shield.

With the software package installed it is possible to create a new project, choose
the right board in which the program will run and start to code.
After the steps above the CubeMX software will create a default project with the
standard pins already initialized.
For the sake of simplicity STMicroelectronics allows to choose from a variety of
different software packages and middleware in which is present also the X-CUBE-
GNSS1 package downloaded and installed before.
Clicking in the software packages menu it is possible to include them in the project,
it is important to include the package that is needed for the BLE shield in order
code properly.
With the package it is also available a guide with all the necessary documentation.
In the documentation are present the configuration steps for the pins, the periph-
erals and the middleware, this guidelines should be followed to configure properly
the board in order to correctly communicate with the shield.
The right configuration for this particular application is the following:

• PA_6 and PA_7: Respectively SPI1 MISO and MOSI.

• PA_8: Reset for the BlueNRG-2 (GPIO_Output).

• PB_3: Clock SPI.

• PA_0 and PA_1: Respectively for the external interupt (GPIO_EXTI0)
and chip select (GPIO_Output).

• SPI1: Set the SPI1 from the connectivity list.

– Master full-duplex mode.
– 8 bit data.

32

6.3 – Bluetooth low energy triangulation for tracking and Identification of the user

– Two edge clock.

– Prescaler for the Baud Rate set in order to have Hclock
Prescaler

≤ 1000Kbit
s

For exmple a 64MHz clock with a prescaler of 64.

• USART: Already set by default for the stm32f401re.

• Software packs: check the Wireless BlueNRG-2 box and in the platform
settings set:

– Exti Line → PA0-WKUP.

– BUS IO driver → SPI1.

– CS Line → PA1.

– Reset Line → PA8.

• System view: go to NVIC in order to set the interupt, then set EXTI Line
0 as external interupt.

After this operations in order to generate all the needed files for the project is
mandatory to go to the project manager section to name the project and select
advanced as application structure.
When this steps are accomplished it is possible to generate the project folder with
all the code needed for the application just clicking on GENERATE CODE in
the top right corner.
The final pin configuration should look as in Figure 6.3.
All the steps described above were needed because this type of hardware are quite
complicated and a wrong setup could easily ruin all the work, since this was the
first application with bluetooth technology in the project, it was needed quite a
careful setup since it is not easy as the infrared implementation for the tracking of
the user described in section 6.2

33

Identification strategies

Figure 6.3: Final pin configuration

6.3.3 Coding the BlueNRG2A1
The coding phase that regards the stm32 microcontroller is developed on the soft-
ware platform STM32CubeIDE, and the beacon simulation is done using an an-
droid app installed on the user smartphone called Beacon simulator by Vincent
Hiribarren.
The code developed for this implementation can be found in section E.4.
The majority of the code is autogenerated from the steps that were described above,
so the focus has to be placed in the while(1) loop, in which is developed the stan-
dard bluetooth procedure to discover other devices.

34

6.3 – Bluetooth low energy triangulation for tracking and Identification of the user

The code part is the following:

1 while (1)
2 {
3 /*Activate and read the event list*/
4 hci_user_evt_proc();
5 /*Start the general scan*/
6 ret = aci_gap_start_general_discovery_proc(0x4000, 0x4000,0x00,0x01);
7

8 if (ret != BLE_STATUS_SUCCESS)
9 {

10 PRINT_DBG("Failure.\r\n")
11 char buffer[100];
12 sprintf(buffer,"%x\r\n",ret);
13 HAL_UART_Transmit(&huart2,(uint8_t*)buffer,strlen(buffer),10);
14 }
15

16 HAL_Delay(100);
17

18 /*Terminate the scan without waiting for a timeout process*/
19 ret=aci_gap_terminate_gap_proc(0x02);
20

21 if (ret != BLE_STATUS_SUCCESS)
22 {
23 PRINT_DBG("Failure.\r\n")
24 char buffer[100];
25 sprintf(buffer,"%x\r\n",ret);
26 HAL_UART_Transmit(&huart2,(uint8_t*)buffer,strlen(buffer),10);
27 }
28 }

As the comments highlights, in this piece of code the main functions are:

• hci_user_evt_proc(): It is a processing function that must be called in
order to read the event list and trigger their respective callback.

• aci_gap_start_general_discovery_proc(uint16_t scanInterval, uint16_t
scanWindow, uint8_t own_address_type, uint8_t filterDuplicates):
This is the function that commands the controller to start the active scanning
procedure.
To terminate the procedure is needed either the aci_gap_terminate_gap_procedure()
function, or a timeout.

35

Identification strategies

The devices discovered in this procedure are returned by evt_le_advertising_report.
The parameters are:

– scanInterval: This is the time interval between every scan, from 0x0004
to 0x4000, that corresponds in seconds to 2.5ms to 10240ms.

– scanWindow: This is the time duration of a scan, that should be less or
equal to the scan interval.

– own_address_type: Type of address used during advertising pub-
lic_addr (0) static_random_addr (1).

– filterDuplicates: Duplicate filtering enabled or not, 0x00 will not filter
duplicates, 0x01 will filter duplicates.

• aci_gap_terminate_gap_proc(): It is the function to terminate the spec-
ified GAP procedure.

The functions in the code above trigger an important event called hci_le_ ad-
vertising_report_event, in order to communicate correctly all the required data
using the serial communication, a dedicated portion of code was developed for this
event.
The code of the function is:

1 /* This callback is called when an advertising report is received */
2 void hci_le_advertising_report_event(uint8_t Num_Reports,Advertising_Report_t
3 ,Advertising_Report[])
4 {
5 if(user_detected==0)
6 {
7 int8_t RSSI = Advertising_Report[0].RSSI;
8 if(RSSI>=-60)
9 {

10 user_detected=1;
11 for(uint8_t loop = 0; loop < 6; loop++)
12 {
13 bdaddr_cb[loop] = Advertising_Report[0].Address[loop];
14 }
15 }
16 }
17 else
18 {
19 user_check=0;
20 for(uint8_t loop = 0; loop < 6; loop++)
21 {

36

6.3 – Bluetooth low energy triangulation for tracking and Identification of the user

22 if(bdaddr_cb[loop] == Advertising_Report[0].Address[loop])
23 {
24 user_check++;
25 }
26 }
27 if(user_check==6)
28 {
29 char buffer[100];
30

31 /* BLE IDENTIFIER */
32

33 //uint8_t identifier[3]="A\r\n";
34 //uint8_t identifier[3]="B\r\n";
35 uint8_t identifier[3]="C\r\n";
36 HAL_UART_Transmit(&huart2,identifier,3,10);
37

38

39 for(uint8_t loop = 0; loop < 5; loop++)
40 {
41 sprintf(buffer,"%d:",bdaddr_cb[loop]);
42 HAL_UART_Transmit(&huart2,(uint8_t*)buffer,strlen(buffer),10);
43 }
44 sprintf(buffer,"%d\r\n",bdaddr_cb[5]);
45 HAL_UART_Transmit(&huart2,(uint8_t*)buffer,strlen(buffer),10);
46

47

48 /* type of the peer address (PUBLIC_ADDR,RANDOM_ADDR) */
49 uint8_t bdaddr_type = Advertising_Report[0].Address_Type;
50

51 sprintf(buffer,"%d\r\n",bdaddr_type);
52

53 HAL_UART_Transmit(&huart2,(uint8_t*)buffer,strlen(buffer),10);
54

55 /* event type (advertising packets types) */
56 uint8_t evt_type = Advertising_Report[0].Event_Type ;
57

58 sprintf(buffer,"%d\r\n",evt_type);
59

60 HAL_UART_Transmit(&huart2,(uint8_t*)buffer,strlen(buffer),10);
61

62 /* RSSI value */
63 int8_t RSSI = Advertising_Report[0].RSSI;

37

Identification strategies

64

65 sprintf(buffer,"%d\r\n",RSSI);
66

67 HAL_UART_Transmit(&huart2,(uint8_t*)buffer,strlen(buffer),10);
68 }
69 }
70 }

The portion of code cited above is structured so that an identification of the hu-
man’s target smartphone is done between line 5 and 17, if the user is already
detected than the normal communication algorithm takes place, sending the data
through serial communication.

The identification of the user’s smartphone is done scanning the nearby area search-
ing for every bluetooth device
If the smartphone’s beacon application is working properly with maximum power
transmission, then it will be one of the different devices that will be identified.
Since for the project it is necessary to isolate and observe only the smartphone of
the person, the code is structured such that it will store in memory only the address
of the device that is sufficiently near to the microcontroller.
If the algorithm aknowledge its presence than the communication algorithm starts
from line 17 to the end, sending the required data through serial communication.
The full code that can be replaced in the main file of the project, after its creation
described in the subsections above, can be found in section E.4, in particular
the code parts highlighted in the lines above are located between line 293-322 and
508-583.

6.3.4 Raspberry pi code for tracking and identification us-
ing bluetooth

After all the steps done until this point, in the project the focus was directed to
the triangulation algorithm.
The 3 microcontrollers with their shield attached were connected through a usb
hub (that has all the ports needed) to the usb port of the raspberry.
The whole system where tested under this conditions, the three microcontrollers
were placed on a circumference near the raspberry, and the smartphone used for
the test was placed at the center of this circumference for the initialization of the
shields.

38

6.3 – Bluetooth low energy triangulation for tracking and Identification of the user

A visual representation of what has just been explained is contained in Figure 6.4.

Figure 6.4: Visual representation of the bluetooth system’s space configuration

So, through the RSSI data that the triangulation system delivers to the raspberry,
the robot can estimate where the human is in space.
The code is structured so that three different serial connections are opened at the
same time, this is possible thanks to the fact that every device is administrated by
a thread that is able to retrieve the data and filter them in order to have a RSSI
signal that is as smooth as possible.
Since the class of the serial communication and signal filtering is coded in order
to run inside a designated thread the first lines of the code are reserved to the
initialization of the different Dev objects (device objects) and to their coordinate
identification in space.
The code was developed and tested under different conditions, at first the idea was
to know the position in three dimensions, but using the RSSI the results were not
precise enough in order to have a reliable system, so after some tests the approach
chosen was two dimensional.
The computations done for the triangulation starts from the fact that the contact
point between 3 sphere in the space is unique and so it is the point in which the
person should be in space.
But unfortunately since there are uncertainties due to the RSSI measurements it is
impossible to estimate a exact point in space, but there will be a 3D area in which
it is probable to find the user.

39

Identification strategies

As said before since in 3D space it is a difficult calculation and it requires much
computational power and a more complex algorithm it was decided to translate the
problem in 2D
So in order to obtain a compass that is able to give an estimation of the position
of the user the problem was constrained into a two dimensional plane.

Figure 6.5: Triangulation uncertainty

As shown in Figure 6.5 the uncertainty is located in a portion of plane in which
the three circumferences are near each other but they do not intersect precisely.
After the initialization phase described in the previous page the code is than struc-
tured inside an infinite loop as follows.

In the loop a check is made to be sure that every bluetooth device is working
properly and each one of them is tracking the same object, if this condition is true
than a method called getRSSI() is called to obtain the current filtered RSSI value,
from this point a calibration is done, and the rest of the code is composed by the
mathematical computations needed in order to estimate the position of the user.
In the test phase, the results were precise in the first 20/25cm outside the center
of the circle in which the three microcontroller were placed.

40

6.3 – Bluetooth low energy triangulation for tracking and Identification of the user

BLE results

The solution works, but inside a small area around the microcontrollers, after that
the results were completely wrong due to the tolerance of the RSSI that after 30cm
was always around -90dB, leading to wrong estimation.
As it is possible to notice from Figure 6.6 and Figure 6.7 the error measured
after the 20cm circle discussed before is not negligible.
Another drawback for this solution was that obstacles between the transmitter and
the receiver would interfere in the measurements of the RSSI values, leading to a
wrong estimation of the position.
From the test results it was observed that for the tracking technique it was necessary
an hardware upgrade both for receiver and transmitter, since the power transmis-
sion and reception were too weak in order to measure medium-long distances.
But the results were promising, in fact even if the signal power was too low in order
to directly measure the distance of the device, it was enough to send information.
This idea led the project to a different technique that will be analysed in the next
section.

Figure 6.6: Real and estimate position comparison

41

Identification strategies

Figure 6.7: Real and estimate position difference

6.4 Inertial Measurement Unit position tracking
identification technique

The next implementation for a functioning and robust tracking system was based
on Inertial Measurement Units (IMU).
IMUs are devices that measure the acceleration and the angular rate of the object
to which they are attached.
They typically consist in a Gyroscope to measure angular rate, in a Accelerom-
eter to measure force and acceleration, and in a Magnetometer to measure the
magnetic field that surround the system.
The magnetometer is not always present on IMUs but its implementation combined
with filtering algorithms helps in applications known as Attitude and Heading
Reference System (AHRS).
The idea is to measure from the different sensors on board, acceleration, angular
rate and magnetic orientation, retrieving the orientation and the position in space,
both for the robot and for the human.
This data then should be sent to the raspberry in order to be analysed and used
for the computation of the relative distance between the robot and the person.

42

6.4 – Inertial Measurement Unit position tracking identification technique

To deeply understand the application it was needed a research in literature to learn
how the different sensors works, in this way it is easier to approach and solve the
problems that regard this implementation.
The accelerometer is one of the sensors that compose the IMU and its the only one
that is responsible for measuring the inertial acceleration and change in velocity
over time.
The accelerometers can be found in different forms, mechanical accelerometer,
quarts accelerometer andMicro-electromechanical systems (MEMS) accelerom-
eter.
The MEMS accelerometer is the one mounted inside the shield used for the appli-
cation, it is essentially a mass suspended by springs.
The mass is called proof mass and the axis in which it is a allowed to move are
called sensitivity axis.
When a linear acceleration is present the mass is caused to shift to one side with
the amount of displacement proportional to the acceleration.

Figure 6.8: Simple accelerometer representation

The inertial sesnsor that measure the angular rate of an object is called gyroscope.
The gyroscopes like the accelerometers are divided in different configuration, such as
mechanical, fiber-optic (FOGs), ring-laser (RLGs), and quartz/MEMS gyroscopes.
The MEMS gyroscope used in the application works using a vibrating mechanical
element to sense the angular velocity.
Since there are not any mechanical rotating parts that requires bearings is very
easy to miniaturize.

43

Identification strategies

The sensor that measures the strength and direction of a magnetic field is called
magnetometer.
MEMS magnetometer usually measure the surrounding magnetic fields by using
magnetoresistance.
Magnetometers that rely on magnetoresistance are made up of permalloys that
change resistance due to changes in the magnetic fields.

Figure 6.9: Simple gyroscope rep-
resentation

Figure 6.10: Simple magnetome-
ter representation

A single inertial sensor can only sense a measurement along a single axis.
Triad are orthogonal cluster of three individual sensors mounter together in order
to measure in three dimensions.
This configuration of individual sensor are usually called 3-axis inertial sensor, be-
cause the sensor can provide measurements relative to a 3D space.
The X-NUCLEO-IKS01A3 is a 9-axis system, because it has mounted on top ac-
celerometers, gyroscopes and magnetometers.

6.4.1 Setup and implementation of the STM32F401RE with
X-NUCLEO-IKS01A3

As in the previous chapter, for this application were used two stm32f401re micro-
controllers but this time the shield is the X-NUCLEO-IKS01A3.
The idea is to send the data of the IMUs through the bluetooth technology, in order
to be processed by the raspberry pi 4.
In this subsection will be treated how to get the correct setup in order to start the
project with the X-NUCLEO-IKS01A3.
The first task is, like in the previous chapter, to install the software package that
allows to program the board.
As before in STM32CubeMX with the install/remove button the software package
window will pop up, in this case the package that is needed for the implementation
is X-CUBE-MEMS1.

44

6.4 – Inertial Measurement Unit position tracking identification technique

After installing the software package, in order to create a project STM32CubeMX
will help giving different options regarding the target board and shield, after choos-
ing the stm32f401re for the project the pin configuration setup will show up.
The setup will open with the default pin configuration, after that the software
package is needed for the project, going in the software packs menu it is possible
to select X-CUBE-MEMS1.
For this board different codes and setup were tested and developed, but the last
project coded and tested is the most optimized.
In order to achieve this solution the STM gives some test application pre-coded in
order to better understand the functioning and implementation using the IKS01A3
shield, in particular in the documentation are present a simple description of every
application that regards this shield and its previous versions, the IKS01A2 and
IKS01A1.
The application that is needed for the project is the IKS01A3_DataLogFusion,
in this sample application made up by STM are present all the needed information
for the robot, including quaternions and linear acceleration (brief theory in sec-
tion 6.4.1).
All the dependencies relative to the application can be auto-filled using the software
package manager.
As the application for the BLE triangulation in subsection 6.3.2 the documenta-
tion for this software package can be found inside the package manager, it contains
all the main functions and applications explained, but for further documentation
the STM site of the shield contains everything that regards the software packages
and hardware specification of the board.
In the documentation is described also step by step the pin setup for every ap-
plication, so in order to start properly the coding phase with the right pin and
middleware setup an overview of this steps needs to be taken.

The pin configuration is as follows:

• PB_9 and PB_8: Respectively as I2C1_SDA and I2C1_SCL.
Also enable the I2C1 from the connectivity list with 400KHz clock speed.

• PA_8: Reset for the BlueNRG-2 (GPIO_Output).

• PB_3: Clock SPI.

• USART: Already set by default for the stm32f401re.

• Software packs: check the Board extension IKS01A3, Sensor STM32
MotionFX Library and Device MEMS1 Application boxes and in the
platform settings set:

– TIMER → TIM1_8:Internal Clock.

45

Identification strategies

– BSP BUTTON → GPIO:EXTI.
– BSP USART → USART Asynchronous.
– IKS01A3 BUS IO driver → I2C:I2C.
– BSP LED → GPIO:Output.

• System view: go to NVIC in order to set the interupt, then set EXTI Line
15:10 and TIM3 as interupt.

To finish the setup procedure and start coding just it is necessary to go in the
project manager, select the toolchain and the name of the project.
After this operations the button generate code will create the project folder and
open STM32CubeIDE.
At the end of this phase it is important that everything is set as described above,
the final pin configuration should look as in Figure 6.11.

Figure 6.11: Final IMU pin configuration

46

6.4 – Inertial Measurement Unit position tracking identification technique

Brief introduction on quaternions and rotation matrices

Since quaternions and rotation matrices are an important tool in robotics it is nec-
essary to discuss about their use in the project.
The quaternion is one of the many mathematical ways to identify the orientation
of an object in space with respect to a fixed reference frame.
Another representation for example are the Euler angles rotation matrices, but the
quaternions compared to them are a more compact form, are numerically more
stable and computationally more efficient from the computer point of view.
It is important to remark that quaternions gives information only on the orienta-
tion of the body but not on the position, to do this it should be used a Roto-
Translation matrix but it is less efficient from a computational point of view.
Instead the quaternions can be used in order to identify the orientation in which a
body is moving and than compute the position in a different vector.
Quaternions are so powerful that they are the default mathematical object used to
define the orientation on Robotic Operative System (ROS).
Since quaternions are an extention of complex numbers they can be represented by
a vector of four values, the four values are one scalar and three element unit vector.
The representation of the quaternion can be write as:

q = a+ bi+ cj + dk =⇒ q =


a
bi
cj
dk

 =⇒ q =


q0
q1
q2
q3

 =⇒ q =
[
q0
q

]

Where q0 is the angle of rotation represented by a scalar, q1, q2 and q3 is the axis
of rotation to which the action of rotation is performed.
While rotation matrices are more intuitive there are problems related to possible
singularities that can occur in particular rotation.
Rotation matrices are 3x3 matrices that describe the rotation of a reference frame
with respect to another one, using the right hand rule.
There are three main rotation matrices that corresponds to the three primary ro-
tations around x, y and z axis.

O

X

Y

Z

Right handed reference frame

O

X

X

Z

Right handed X rotation

O

Y

Y

Z

Right handed Y rotation

O

Z

Y

Right handed Z rotation

X

Figure 6.12: Right handed reference frames and primary rotations

47

Identification strategies

The three main rotation around the principal axis can be represented with the
following three rotation matrix:

Rx =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 Ry =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 Rz =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


The combination of rotations using the rotation matrices with the Euler angles
results in a sequence of matrix multiplication from the first rotation to the last,
there are more complex rules in this case if the rotations are done with respect to
a fixed frame or with respect to the moving reference frame.
For sake of completeness the following rotations are supposed to be done with
respect to the mobile and fixed reference frame.
If for example we have a rotation about the X-axes of φ degrees, then a rotation
about the fixed Y-axes of θ degrees and a final rotation about the mobile Z-axes of
ψ degrees, the resulting rotation matrix from the combination of this rotations can
be computed as follows:

Rz(ψ)y(θ)x(φ) = Rz(ψ) ·Ry(θ) ·Rx(φ)

⇓cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 ·
 cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

 ·
1 0 0
0 cosφ − sinφ
0 sinφ cosφ


Computing from the right to the left we have that:

Ry(θ) ·Rx(φ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ·
1 0 0
0 cosφ − sinφ
0 sinφ cosφ


⇓ cos θ sin θ sinφ sin θ cosφ

0 cosφ − sinφ
− sin θ cos θ sinφ cos θ cosφ


And then:

Rz(ψ) ·Ry(θ)x(φ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 ·
 cos θ sin θ sinφ sin θ cosφ

0 cosφ − sinφ
− sin θ cos θ sinφ cos θ cosφ


⇓

48

6.4 – Inertial Measurement Unit position tracking identification technique

cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ
sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ
− sin θ cos θ sinφ cos θ cosφ


This were the standard operation to be done in order to manipulate an object using
the rotation matrices, instead a rotation using quaternions is much more powerful,
more robust (since there are no singularities), and has a higher computational
efficiency.
To understand the computation of the resulting quaternion is necessary to know
the mathematical properties of this object.
Since the quaternion is an extension of complex numbers the multiplication between
two of them would be:

(q0 + q1i+ q2j + q3k) · (p0 + p1i+ p2j + p3k)

⇓
q0p0 − q1p1 − q2p2 − q3p3

(q0p1 + q1p0 + q2p3 − q3p2)i
(q0p2 + q2p0 − q1p3 + q3p1)j
(q0p3 + q3p0 + q1p2 − q2p1)k


Now the properties of a given quaternion q = q0 + q1i+ q2j + q3k are:

• Conjugate:
q∗ = q0 − q1i− q2j − q3k

• Norm:
|q| =

√
q2

0 + q2
1 + q2

2 + q2
3

• Inverse:
q−1 = q∗

|q|2

With this information is now possible to compute a rotation using quaternions.
A coordinate vector in 3D space can be written as a pure quaternion, meaning
that his quaternion form has zero real part q = 0 + xi+ yj + zk.
So a rotation qR from a coordinate frame qA to a coordinate frame qB can be
expressed as:

qB = qR · qA · q∗
R

This were the main properties and computations that are needed for both rotation
matrices and quaternions.
It is easy to understand that quaternions are computationally more efficient and

49

Identification strategies

robust, but rotation matrices are really usefull in case there is no need for a really
fast and stable system.
Since in the section above this topics were covered, is important to know that
conversions can be done both from qaternions to rotation matrix and viceversa,
but most importantly from the quaternions it is possible to retrieve roll, pitch and
yaw angles.
From quaternion to rotation matrix:

R = 2 ·

q
2
0 + q2

1 − 0.5 q1q2 − q0q3 q0q2 + q1q3
q0q3 + q1q2 q2

0 + q2
2 − 0.5 q2q3 − q0q1

q1q3 − q0q2 q0q1 + q2q3 q2
0 + q2

3 − 0.5


From rotation matrix to quaternion:

tr(R) = R11 +R22 +R33 = 4q2
0 − 1

In this equation tr stands for trace of R.
So we have now that:

|q0| =
√
tr(R) + 1

4

And so we can compute:

|q1| =
√
R11

2 + 1− tr(R)
4

|q2| =
√
R22

2 + 1− tr(R)
4

|q3| =
√
R33

2 + 1− tr(R)
4

While for the conversion from quaternion to roll, pitch and yaw angles we have
that: φθ

ψ

 =


atan2(2(q0q1+q2q3)

1−2(q2
1+q2

2))
asin(2(q0q2 − q3q1))
atan2(2(q0q3+q1q2)

1−2(q2
2+q2

3))



50

6.4 – Inertial Measurement Unit position tracking identification technique

6.4.2 Coding the IKS01A3

Since in the chapter above were treated the setup of the stm32f401re and its IMU
shield, with a brief discussion about the rotational mechanics of rigid bodies and
some of its mathematical object, it is now possible to fully understand the data
and the computations that are needed in order to obtain a full working system.

For this application were tested different algorithms and functions, one of the most
important is for sure the Madgwick AHRS algorithm.
This solution were implemented on a completely custom code, retrieving the raw
data from the shield’s accelerometer, gyroscope and magnetometer it was possible
to obtain the quaternions that indicates the orientation of the object (in this case
the board itself) with as a reference the starting position.
This method was discarded since it was not possible to obtain good measurements
because the algorithm didn’t take in consideration the pure translation of the ob-
ject, this particular leads the system to think a rotation was done when instead the
board only moved across the table.

It was needed a method that grants through filters and calibration a result that
was realistic and that neglect every translation, translating the data in order to
only consider pure rotation even if the body is moving.
So in this case after different version of the code and Kalman filter implementa-
tions it was decided to change approach, instead of creating a completely custom
application the idea was to search for a project that has the specification for this
implementation and customize the final code, in order to obtain the required results.

It was really helpful the folder containing the set of applications provided by STM,
in fact one of this application has most of the important features that were needed
for the project, the application name is IKS01A3_DataLogFusion.
This application was developed in order to demonstrate how the MotionFX mid-
dleware developed by STM could be used.
This application was developed in order to be used with another software developed
by STM, called Unicleo-GUI.
The Unicleo-GUI offers different options such as the temperature and humidity
measurements and other features that are not needed in the project.
But the whole application has inside a real-time motion sensor data fusion that
allows the board to precisely measure its orientation taking as reference frame the
magnetic north of the earth.
It also has really important built-in features like the gyroscope bias compensation
and hard iron calibration for the magnetometer.
The code is written inside the autogenerated project inside the source folder,in the
file named app_mems.c.

51

Identification strategies

The functions dedicated to the calibration and other major modification like the
sensors initialization that were done in order to use this application in the project
can be found in section E.6.

1 static void FX_Data_Handler()
2 {
3 uint32_t elapsed_time_us = 0U;
4 MFX_input_t data_in;
5 MFX_input_t *pdata_in = &data_in;
6 MFX_output_t data_out;
7 MFX_output_t *pdata_out = &data_out;
8

9 /* Convert angular velocity from [mdps] to [dps] */
10 data_in.gyro[0] = (float)GyrValue.x * FROM_MDPS_TO_DPS;
11 data_in.gyro[1] = (float)GyrValue.y * FROM_MDPS_TO_DPS;
12 data_in.gyro[2] = (float)GyrValue.z * FROM_MDPS_TO_DPS;
13

14 /* Convert acceleration from [mg] to [g] */
15 data_in.acc[0] = (float)AccValue.x * FROM_MG_TO_G;
16 data_in.acc[1] = (float)AccValue.y * FROM_MG_TO_G;
17 data_in.acc[2] = (float)AccValue.z * FROM_MG_TO_G;
18

19 /* Convert magnetic field intensity from [mGauss] to [uT / 50] */
20 data_in.mag[0] = (float)MagValue.x * FROM_MGAUSS_TO_UT50;
21 data_in.mag[1] = (float)MagValue.y * FROM_MGAUSS_TO_UT50;
22 data_in.mag[2] = (float)MagValue.z * FROM_MGAUSS_TO_UT50;
23

24 gcvt(data_in.acc[0],6,ax_send);
25 gcvt(data_in.acc[1],6,ay_send);
26 gcvt(data_in.acc[2],6,az_send);
27

28 /* Run Sensor Fusion algorithm */
29 BSP_LED_On(LED2);
30 DWT_Start();
31 MotionFX_manager_run(pdata_in, pdata_out, MOTION_FX_ENGINE_DELTATIME);
32 elapsed_time_us = DWT_Stop();
33 BSP_LED_Off(LED2);
34

35 data_to_send.quaternion[0]=pdata_out->quaternion[0];
36 data_to_send.quaternion[1]=pdata_out->quaternion[1];
37 data_to_send.quaternion[2]=pdata_out->quaternion[2];
38 data_to_send.quaternion[3]=pdata_out->quaternion[3];

52

6.4 – Inertial Measurement Unit position tracking identification technique

39

40 gcvt(data_to_send.quaternion[0],6,quat0_send);
41 gcvt(data_to_send.quaternion[1],6,quat1_send);
42 gcvt(data_to_send.quaternion[2],6,quat2_send);
43 gcvt(data_to_send.quaternion[3],6,quat3_send);
44

45 data_to_send.rotation[0]=pdata_out->rotation[0];
46 data_to_send.rotation[1]=pdata_out->rotation[1];
47 data_to_send.rotation[2]=pdata_out->rotation[2];
48

49 gcvt(data_to_send.rotation[0],6,rot0_send);
50 gcvt(data_to_send.rotation[1],6,rot1_send);
51 gcvt(data_to_send.rotation[2],6,rot2_send);
52

53 data_to_send.linear_acceleration[0]=pdata_out->linear_acceleration[0];
54 data_to_send.linear_acceleration[1]=pdata_out->linear_acceleration[1];
55 data_to_send.linear_acceleration[2]=pdata_out->linear_acceleration[2];
56

57 gcvt(data_to_send.linear_acceleration[0],6,acc0_send);
58 gcvt(data_to_send.linear_acceleration[1],6,acc1_send);
59 gcvt(data_to_send.linear_acceleration[2],6,acc2_send);
60

61 snprintf(dataOut, MAX_BUF_SIZE,
62 "\r\n%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\r\n", quat0_send,
63 quat1_send,quat2_send,quat3_send,rot0_send,rot1_send,rot2_send,
64 acc0_send,acc1_send,acc2_send,ax_send, ay_send, az_send);
65 printf("%s", dataOut);
66 }

The code above is an extract of what is inside the section E.6, this is the core of
the application.
In this portion of code every useful data is stored and transformed into a string,
thanks to the gcvt() function it is possible to transform the float values into strings
with the precision needed for the project.
The very important function that implements a very well designed Kalman filter
is MotionFX_manager_run() that allows, given in input the raw data, to es-
timate with high precision other parameters such as quaternions, gravity vector,
linear acceleration, heading and euler angles.
After the process of filtering and estimation, the data retrieved from the Kalman
filter function are processed like said above and then everything is formatted in
order to be sent through serial with the snprintf() and printf() functions.

53

Identification strategies

6.4.3 Raspberry pi 4 position estimation coding
The first codes as stated in the previous section had the idea to estimate position
and orientation from the raw data retrieved from accelerometer, gyroscope and
magnetometer.
Unfortunately this simple idea didn’t work well since all the designed Kalman filters
and approaches tested during this phase led to inaccurate measurements.
In Figure 6.13 is possible to notice how the drift due to the double integration
led to inaccurate results, the green line represents the real up and down movement
but as in figure the red line that represents the estimation, diverge, exploiting the
behaviour encountered in test phase.

Figure 6.13: Drift representation

After the last implementation on the stm32f401re discussed earlier it was decided
to use the precise measurements of the quaternion and linear acceleration made by
the microcontroller and use them to compute the position.
It is on the coding phase of the raspberry pi that the first problems regarding the
noise shows up.
In fact in order to estimate the next position using the current orientation and
current position is necessary to do a double integration, that due to the noise on

54

6.4 – Inertial Measurement Unit position tracking identification technique

the measurements is impossible to obtain in a robust and precise manner.
This led to the idea of filters implementation, since the Kalman filter is working
on the microcontroller the only thing to implement on the raspberry was a filter
capable of getting rid of all the noise that was coming from the measurements.
In fact the code implementation has a built-in butter highpass digital filter,
both in the 2D and 3D implementation that are present in the appendix of this
thesis.

3D version

In this version of the code the main focus were on the quaternion and their usage
inside the algorithm to get the position of the board.
In fact if is needed for future project, a function for the conversion from quaternion
to rotation matrix can be found in the file of this implementation.
But since this approach didn’t work well, due to limitations and singularities it was
decided to proceed using directly the filtered roll, pitch and yaw angles delivered
from the microcontroller in order to compute the position with a simpler algorithm.
In this code also a visual implementation in real time was developed, but due to
the errors in the measurements and computation it was not working.
To avoid and reduce the drift caused by the noise of the measurements, a filter was
implemented using the signal object from scipy library.
The scipy library is very useful and offers a lot of tools for different situations, in
fact inside the library is present also a signal object, that is used in our project to
design and implement a digital filter.
The filter used is a butter highpass digital filter of first order.
This filter is pretty simple but a small reduction in the error was noticed after the
tests phase, still not enough to avoid the propagation of the errors in the double in-
tegration, the drift is too much in order to have precise and reliable measurements.
It was added also a calibration phase in which a number of predetermined samples
are stored at the start of the application, and the mean is then subtracted to the
measurements retrieved in the working scenario, trying to reduce the fixed noise
component.
It is necessary to say that during time slight improvement were made, but unfor-
tunately it was not enough in order to obtain satisfactory results.
The code discussed can be found in section E.7

2D version

The 2D version of the code is implemented also on the raspberry using the same
methodologies of the 3D version.
Python and its scipy library were used to implement like in the 3D version a filter
capable of reducing the noise in the measurements.
The aim of this test code was to see if with more constraints on the algorithm, so

55

Identification strategies

reducing the degrees of freedom it was possible to obtain better results.
Unfortunately even if the results were better it was not enough for the application.
The measurements were stable if the board was stationary but with some rapid
movements the drift propagation becomes too big in order to obtain reliable results.
The code discussed for the 2D application can be found in section E.8.

Conclusion

From the results obtained in this phase it was clear that the problem was the drift,
so even if the measurements were not satisfactory they were useful to understand
the functioning and the possible solutions of this problems related to the IMUs
usage.
So it was decided to test this type of application using more complex and precise
algorithm with the help of matlab, switching from the raspberry to a more powerful
and efficient personal computer.

6.4.4 MATLAB position estimation algorithm
As stated in the previous section the decision for the IMU tracking was to develop
an algorithm capable of tracking the human position using MATLAB.
This decision was due to the lack of power and code optimization needed in order
to obtain a robust and reliable result using the raspberry pi 4 and python.
Since in literature this solution is often implemented with custom and really pow-
erful neural network, or optimized sensor fusion algorithm using also other tech-
nologies like the GPS or speed sensors mounted on the wheels, it was needed a test
that would help in future work to understand if this approach is possible with just
an IMU.
The code developed for this application was a modification of a code made by a
student named Zio Leonardo.
Basically the structure of the code is made such that it is possible to acquire new
data from each run, thanks to the previous coding phase of the stm32f401re micro-
controller, this was possible because the format and the data acquisition algorithm
are developed in order to retrieve them in real time.
It is also possible to store and run a specific dataset for a future analysis, this allows
to test a specific user case scenario and analyze the problems and possible solution
without retesting in real life the same conditions.
In this case the Kalman filter already implemented inside the board is not useful
anymore and the data needed are just the raw data that comes from the measure-
ments of the accelerometer, the gyroscope and the magnetometer.
This data are then manipulated by the MATLAB builtin function ahrsfilter.
This function allows to combine accelerometer, gyroscope and magnetometer mea-
surements to estimate the device orientation.

56

6.4 – Inertial Measurement Unit position tracking identification technique

It is a similar to the Kalman filter already implemented in the stm32f401re mi-
crocontroller, but in this way it is possible to have instead of the quaternions, the
rotation matrices relative to the reference frame captured at the starting point of
the algorithm.
After the implementation of the ahrsfilter it is possible to obtain the accelerations
for every time step computed with the directions indicated by the rotation matri-
ces.
From this it is possible to obtain the linear accelerations, subtracting the gravity
vector.
Having the linear acceleration always relative to the fixed reference frame it is pos-
sible to start the double integration process, obtaining the speed and the position
in time relative to the measurements performed at each time step.
But a very important difference with respect to the python code developed on the
raspberry pi is the fact that the algorithm does not run in real-time.
This is due to the necessity for the matlab filtering algorithm to have all the data
vector to filter.
This technique is extremely more precise, in fact the results are really close to re-
ality.
The need for the complete vector is necessary for the filtfilt() matlab filtering
function.
The function process the input data performing a zero-phase digital filtering in both
forward and backwards direction, meaning that after the first run of the filtering
algorithm it comes backwards, obtaining an incredible results especially in starting
and ending position.
The results are then plotted using the function SixDofAnimation() produced by
xioTechnologies that grants a perfect animation of the data obtained.
The system was putted under test in different conditions, one of them and also the
first was a simple movement of the board on the desk.
Since this solution worked really well compared to the python implementation dis-
cussed earlier it was then putted under stress tests to see how precise the system
could be.
For standard and not too fast movements the data measured were very precise,
the animation on the pc was equal to the movements done with the board, but
for faster movements, like shacking the board or moving it in random directions
with fast change in acceleration led to results that were not inline with the working
condition.
The other conditions were running and walking with the board attached to the
body.
It seems that in this working condition the constant acceleration due to the type
of movements are recognized as noise and filtered by the algorithm, not taking into
account the displacement that is caused by the walking or running person.
Anyway the animation shows a up and down movement, so it seems that is possible

57

Identification strategies

to count the steps done by the human that is walking or running, but this method
is for sure not robust or reliable in order to have precise results.
In Figure 6.14 is represented the data retrieved from the walking test phase.
The green line represents the movement done by the IMU attached to the human
and the red line the estimated position.
As said before it is noticeable that the estimation only track the oscillatory move-
ment without taking into account any displacement due to the walk of the person.

Figure 6.14: Walking motion detection

Some of the result obtained in the test phase of the IMU are illustrated from Fig-
ure 6.15 to Figure 6.19.

58

6.4 – Inertial Measurement Unit position tracking identification technique

Figure 6.15: IMU’s reference frame animation

In the figure above is represented the IMU’s reference frame in the final position of
the test phase.
This model and animation is really important because allows to observe and un-
derstand visually the estimation that is computed through the algorithm.

While in the figure below it is possible to observe the results relative to the ac-
quisition of the raw data regarding the 3 axis of the accelerometer.
It is possible to see that the accelerometer data are corrected through a tilt com-
pensation algorithm that allows the system to have a higher precision.

Figure 6.16: Tilt compensated ac-
celerometer Figure 6.17: Accelerometer

59

Identification strategies

In Figure 6.18 and in Figure 6.19 are highlighted the results that regards filtered
linear position and velocity.
As it is possible to see both the velocity and the position have a transient in which
they reach a peak and after a plateau, meaning that the algorithm is capable to
recognize the moving state and the steady state.
In fact all the oscillation and displacements that are detected and plotted in the
animation function are recognized from this particular portion of code that allows
to retrieve this results.
In particular this are the data that are obtained after the double integration pro-
cess, and as it is noticeable they are devoid of drift, that was the main problem of
the implementation described using python and the raspberry.

Figure 6.18: High filtered linear position Figure 6.19: High filtered linear velocity

So the results discussed above were satisfactory and even if the system is not com-
plete, this tests shows how it is possible to achieve a working system with the IMU.
The results will be used for future work combining other sensors to correct the
IMU measurements, probably using GPS and more complex algorithms or neural
networks.

60

Chapter 7

Conclusions and future work

The objective of the thesis was to create a system able to follow a specific person,
this final chapter will be used to recap and comment the results obtained during
the whole development.

As described and discussed in the previous chapters, the project is possible and
the results obtained are very promising, they will be the basis from which future
work and projects will start.
This chapter will summarize some of the most important results obtained during
the development and testing phase.

Starting from the initial configuration with the raspberry pi model 2B+ and 4
it is really interesting to analyze the results obtained with and without the NCS2
and the openvino environment.
The results obtained for the computer vision and image recognition algorithm are
summarised in Table 7.1:

Raspberry pi 2B+ Raspberry pi 4
OpenCV <1 fps Not tested

TensorFlow Lite <1 fps Not tested
Without Openvino <1 fps Around 4/5 fps
With Openvino Around 3/4 fps Around 16/20 fps

Table 7.1: Computer vision and image recognition results

61

Conclusions and future work

The image recognition algorithm combined with tag reading or color detection
are good approaches but they need a more powerful hardware both camera and
raspberry should be upgraded in order to obtain satisfactory results.
At the end of the thesis it was decided to leave the image recognition algorithm for
the identification of the user and use other techniques in order to accomplish this
task.
In future works this decision will allow to use the camera and computer vision
to detect and avoid obstacle in the scene, so the camera will be very useful for
the obstacle avoidance algorithm recognizing and avoiding obstacles and people or
moving objects on the scene.

The next results are obtained from the infrared and bluetooth technology used
for the recognition of the user.
During the test phases both the IR and BLE approach results, were not suitable
for the project, due to the problems relative to the possible objects or people that
could stand between the human and the robot.
In this case the IR technology would be not enough since the light can’t reach the
receiver and so it is not possible to identify the user.
For the BLE this problem is almost the same, in the sense that if an object is
placed between the human and the robot the radio signals would be less powerful
and so the RSSI computation would not be precise, leading to an estimation of the
position that is not correct.

The IR technology could anyway be implemented for other tasks such has ob-
stacle detections, the results and study done on this technology for the thesis will
be useful for future work in the obstacle avoidance project for the robot.
The BLE technology is not suitable for the triangulation of the user, for this pur-
pose an hardware upgrade is needed with more powerful receiver, but the actual
hardware is suitable for the communication algorithm with the IMU of the user,
leaving the possibility to analyse and estimate the position of the person with other
technologies but with the BLE technique as core for the communication.
The results obtained from this two technologies are summarised in Table 7.2:

IR BLE
Maximum distance About 40/60cm About 20/25cm

Table 7.2: Infrared and bluetooth low energy maximum distance

62

Conclusions and future work

The last technique for the identification of the user uses the IMUs technology to
estimate the position of the human.
The idea is to fuse the bluetooth communication and IMU measurements to obtain
a wireless working system capable of following the target without the need of a
camera.
To test if the IMU approach would work as results stated above the python project
inside the raspberry was not satisfactory and a more complex and numerically sta-
ble algorithm was developed inside MATLAB using a personal computer.
The results with this technique led to a possible implementation and sensor fusion
in future works, using other technologies like the GPS to correct the measurements
of the IMU or neural networks designed to avoid the drift and estimate in a precise
way the position.
Another idea in the future projects is to use the magnetic field of the user’s phone
in order to identify and track its movements, but for now the results obtained from
all this technologies and tests are promising and would be used as an important
base for the future projects.

63

64

Appendices

65

Appendix A

Openvino setup

A.1 Openvino setup tutorial
1 Please start from a fresh raspbian installation in order

to avoid any issue
2

3 Updates :
4 sudo apt -get update && sudo apt -get upgrade
5

6 Install CMake developer tools:
7 sudo apt -get install build - essential cmake unzip pkg -

config
8

9 Video lii needed for openvino :
10 sudo apt -get install libjpeg -dev libpng -dev libtiff -dev
11 sudo apt -get install libavcodec -dev libavformat -dev

libswscale -dev libv4l -dev
12 sudo apt -get install libxvidcore -dev libx264 -dev
13

14 GTK:
15 sudo apt -get install libgtk -3-dev
16 sudo apt -get install libcanberra -gtk*
17

18 Numerical optimization for openCV:
19 sudo apt -get install libatlas -base -dev gfortran
20

21 Python3 developer tools:
22 sudo apt -get install python3 -dev
23

24 Install Openvino :
25 cd ~
26 wget https :// download .01. org/opencv /2020/ openvinotoolkit

/2020.1 --->
27 ---> / l_openvino_toolkit_runtime_raspbian_p_2020 .1.023.

tgz

67

Openvino setup

28 tar -xf l_openvino_toolkit_runtime_raspbian_p_2020 .1.023.
tgz

29 mv l_openvino_toolkit_runtime_raspbian_p_2020 .1.023
openvino

30

31 Setup Openvino :
32 nano ~/. bashrc
33

34

35

36 Scroll at the and of the file and write:
37 # OpenVINO
38 source ~/ openvino /bin/ setupvars .sh
39

40 Save and exit
41

42 Run the bash:
43 source ~/. bashrc
44

45 Custom USB rules for the NCS2:
46 sudo usermod -a -G users "$(whoami)"
47

48 After this logout and log back in
49

50 Then set the rules:
51 cd ~
52 sh openvino / install_dependencies / install_NCS_udev_rules .

sh
53

54 Install Pip:
55 wget https :// bootstrap .pypa.io/get -pip.py
56 sudo python3 get -pip.py
57

58 Install Virtual environment (this is done in order to
prevent errors or conflict with the other libraries or

project inside the raspberry):
59 sudo pip install virtualenv virtualenvwrapper
60 sudo rm -rf ~/get -pip.py ~/. cache/pip
61

62 To finish , open:
63 nano ~/. bashrc
64

65 Scroll down write:
66 # virtualenv and virtualenvwrapper
67 export WORKON_HOME =$HOME /. virtualenvs
68 export VIRTUALENVWRAPPER_PYTHON =/ usr/bin/ python3
69 source /usr/local/bin/ virtualenvwrapper .sh
70 VIRTUALENVWRAPPER_ENV_BIN_DIR =bin
71

72 Save and exit and:

68

A.2 – Openvino setup test

73 source ~/. bashrc
74

75 Create the virtual environment :
76 mkvirtualenv openvino -p python3
77

78

79

80

81

82 Install all the packages on the ve:
83 workon openvino
84 pip install numpy
85 pip install " picamera [array]"
86 pip install imutils
87

88 Test python installation :
89 python
90 import cv2
91 cv2. __version__
92 This should be the result '4.2.0 - openvino '
93 exit ()
94

95 If you want a fast ready to use script at startup create
a bash file with inside:

96 #!/ bin/bash
97 echo " Starting Python 3.7 with OpenCV - OpenVINO 4.2.0

bindings ..."
98 source ~/ openvino /bin/ setupvars .sh
99 workon openvino

100

101 Save it and run it with:
102 source ~/ start_openvino .sh

A.2 Openvino setup test
To test the openvino setup create a .py named openvino_test and copy the script
underneath, the caffemodel and the prototxt file can be retrieved from the professor
Vacca.

1 # USAGE
2 # python openvino_test .py --prototxt MobileNetSSD_deploy .

prototxt
3 #--model MobileNetSSD_deploy . caffemodel
4

5 # import the necessary packages
6 from imutils .video import VideoStream
7 from imutils .video import FPS
8 import numpy as np
9 import argparse

69

Openvino setup

10 import imutils
11 import time
12 import cv2
13

14 # construct the argument parse and parse the arguments
15 ap = argparse . ArgumentParser ()
16 ap. add_argument ("-p", "--prototxt ", required =True ,
17 help="path to Caffe 'deploy ' prototxt file")
18 ap. add_argument ("-m", "--model", required =True ,
19 help="path to Caffe pre - trained model")
20 args = vars(ap. parse_args ())
21

22 # initialize the list of class labels MobileNet SSD was
trained to

23 # detect , then generate a set of bounding box colors for
each class

24 CLASSES = [" background ", " aeroplane ", " bicycle ", "bird",
"boat",

25 "bottle", "bus", "car", "cat", "chair", "cow", "
diningtable ",

26 "dog", "horse", " motorbike ", "person", " pottedplant ", "
sheep",

27 "sofa", "train", " tvmonitor "]
28 COLORS = np.random. uniform (0, 255, size =(len(CLASSES), 3)

)
29

30 # load our serialized model from disk
31 print("[INFO] loading model ...")
32 net = cv2.dnn. readNetFromCaffe (args[" prototxt "], args["

model"])
33

34 # specify the target device as the Myriad processor on
the NCS

35 net. setPreferableTarget (cv2.dnn. DNN_TARGET_MYRIAD)
36

37 # initialize the video stream , allow the cammera sensor
to warmup ,

38 # and initialize the FPS counter
39 print("[INFO] starting video stream ...")
40 vs = VideoStream (usePiCamera =True).start ()
41 time.sleep (2.0)
42 fps = FPS ().start ()
43

44 # loop over the frames from the video stream
45 while True:
46 # grab the frame from the threaded video stream and

resize it
47 # to have a maximum width of predetermined pixels
48 frame = vs.read ()
49 frame = imutils .resize(frame , width =800)

70

A.2 – Openvino setup test

50

51 # grab the frame dimensions and convert it to a blob
52 (h, w) = frame.shape [:2]
53 blob = cv2.dnn. blobFromImage (frame , 0.007843 , (300 ,

300) , 127.5)
54

55 # pass the blob through the network and obtain the
detections and

56 # predictions
57 net. setInput (blob)
58 detections = net. forward ()
59

60 # loop over the detections
61 for i in np.arange (0, detections .shape [2]):
62 # extract the confidence (i.e., probability)

associated with
63 # the prediction
64 confidence = detections [0, 0, i, 2]
65

66 # filter out weak detections by ensuring the `
confidence ` is

67 # greater than the minimum confidence
68 if confidence > args[" confidence "]:
69 # extract the index of the class label from the
70 # `detections `, then compute the (x, y)-coordinates

of
71 # the bounding box for the object
72 idx = int(detections [0, 0, i, 1])
73 box = detections [0, 0, i, 3:7] * np.array ([w, h, w,

h])
74 (startX , startY , endX , endY) = box.astype("int")
75

76 # draw the prediction on the frame
77 label = "{}: {:.2f}%".format(CLASSES [idx],
78 confidence * 100)
79 cv2. rectangle (frame , (startX , startY), (endX , endY)

,
80 COLORS[idx], 2)
81 y = startY - 15 if startY - 15 > 15 else startY +

15
82 cv2. putText (frame , label , (startX , y),
83 cv2. FONT_HERSHEY_SIMPLEX , 0.5, COLORS[idx], 2)
84

85 # show the output frame
86 cv2.imshow("Frame", frame)
87 key = cv2. waitKey (1) & 0xFF
88

89 # if the `q` key was pressed , break from the loop
90 if key == ord("q"):
91 break

71

Openvino setup

92

93 # update the FPS counter
94 fps.update ()
95

96 # stop the timer and display FPS information
97 fps.stop ()
98 print("[INFO] elasped time: {:.2f}".format(fps. elapsed ())

)
99 print("[INFO] approx. FPS: {:.2f}".format(fps.fps ()))

100

101 # do a bit of cleanup
102 cv2. destroyAllWindows ()
103 vs.stop ()

72

Appendix B

PAN-TILT HAT codes

B.1 PCA9685 control library
1 #!/ usr/bin/python
2

3 import time
4 import math
5 import smbus2 as smbus
6

7 # ===
8 # Raspi PCA9685 16- Channel PWM Servo Driver
9 # ===

10

11 class PCA9685 :
12

13 # Registers /etc.
14 __SUBADR1 = 0x02
15 __SUBADR2 = 0x03
16 __SUBADR3 = 0x04
17 __MODE1 = 0x00
18 __MODE2 = 0x01
19 __PRESCALE = 0xFE
20 __LED0_ON_L = 0x06
21 __LED0_ON_H = 0x07
22 __LED0_OFF_L = 0x08
23 __LED0_OFF_H = 0x09
24 __ALLLED_ON_L = 0xFA
25 __ALLLED_ON_H = 0xFB
26 __ALLLED_OFF_L = 0xFC
27 __ALLLED_OFF_H = 0xFD
28

29

30

31

32

73

PAN-TILT HAT codes

33 def __init__ (self , address =0x40 , debug=False):
34 self.bus = smbus.SMBus (1)
35 self. address = address
36 self.debug = debug
37 if (self.debug):
38 print(" Reseting PCA9685 ")
39 self.write(self.__MODE1 , 0x00)
40

41 def write(self , reg , value):
42 "Writes an 8-bit value to the specified register /

address "
43 self.bus. write_byte_data (self.address , reg , value)
44 if (self.debug):
45 print("I2C: Write 0x%02X to register 0x%02X" % (

value , reg))
46

47 def read(self , reg):
48 "Read an unsigned byte from the I2C device"
49 result = self.bus. read_byte_data (self.address , reg)
50 if (self.debug):
51 print("I2C: Device 0x%02X returned 0x%02X from reg

0x%02X" % (self.address , result & 0xFF , reg))
52 return result
53

54 def setPWMFreq (self , freq):
55 "Sets the PWM frequency "
56 prescaleval = 25000000.0 # 25 MHz
57 prescaleval /= 4096.0 # 12-bit
58 prescaleval /= float(freq)
59 prescaleval -= 1.0
60 if (self.debug):
61 print(" Setting PWM frequency to %d Hz" % freq)
62 print(" Estimated pre -scale: %d" % prescaleval)
63 prescale = math.floor(prescaleval + 0.5)
64 if (self.debug):
65 print("Final pre -scale: %d" % prescale)
66

67 oldmode = self.read(self. __MODE1);
68 newmode = (oldmode & 0x7F) | 0x10 # sleep
69 self.write(self.__MODE1 , newmode) # go to

sleep
70 self.write(self.__PRESCALE , int(math.floor(prescale))

)
71 self.write(self.__MODE1 , oldmode)
72 time.sleep (0.005)
73 self.write(self.__MODE1 , oldmode | 0x80)
74 self.write(self.__MODE2 , 0x04)
75

76

77

74

B.2 – PAN-TILT HAT test code

78

79 def setPWM(self , channel , on , off):
80 "Sets a single PWM channel "
81 self.write(self. __LED0_ON_L +4* channel , on & 0xFF)
82 self.write(self. __LED0_ON_H +4* channel , on >> 8)
83 self.write(self. __LED0_OFF_L +4* channel , off & 0xFF)
84 self.write(self. __LED0_OFF_H +4* channel , off >> 8)
85 if (self.debug):
86 print(" channel : %d LED_ON: %d LED_OFF : %d" % (

channel ,on ,off))
87

88 def setServoPulse (self , channel , pulse):
89 "Sets the Servo Pulse ,The PWM frequency must be 50HZ"
90 pulse = pulse *4096/20000 #PWM frequency is 50

HZ ,the period is 20000 us
91 self.setPWM(channel , 0, int(pulse))
92

93 def setRotationAngle (self , channel , Angle):
94 if(Angle >= 0 and Angle <= 180):
95 temp = Angle * (2000 / 180) + 501
96 self. setServoPulse (channel , temp)
97 else:
98 print("Angle out of range")
99

100 def start_PCA9685 (self):
101 self.write(self.__MODE2 , 0x04)
102 #Just restore the stopped state that should be set

for exit_PCA9685
103

104 def exit_PCA9685 (self):
105 self.write(self.__MODE2 , 0x00)#Please use

initialization or __MODE2 =0 x04

B.2 PAN-TILT HAT test code

1 import time
2 import RPi.GPIO as GPIO
3 from PCA9685 import PCA9685
4

5 try:
6 print ("This is an PCA9685 routine ")
7 pwm = PCA9685 ()
8 pwm. setPWMFreq (50)
9 pwm. setRotationAngle (1, 90)

10

11 while True:
12

13 for i in range (0 ,180 ,1):

75

PAN-TILT HAT codes

14 pwm. setRotationAngle (1, i)
15 time.sleep (0.01)
16

17 for i in range (180 ,0 , -1):
18 pwm. setRotationAngle (1, i)
19 time.sleep (0.01)
20

21 for i in range (90 ,180 ,1):
22 pwm. setRotationAngle (0, i)
23 time.sleep (0.01)
24

25 for i in range (180 ,90 , -1):
26 pwm. setRotationAngle (0, i)
27 time.sleep (0.01)
28

29 except:
30 pwm. exit_PCA9685 ()
31 print ("\ nProgram end")
32 exit ()

76

Appendix C

Camera control algorithm

1 if CLASSES [idx]=="person":
2 label = "{}: {:.2f}%".format(CLASSES [idx],
3 confidence * 100)
4 midX=int ((startX+endX)/2)
5 midY=int ((startY+endY)/2)
6 cv2.line(frame ,(midX ,midY -30) ,(midX ,midY +30) ,COLORS[idx

],2)
7 cv2.line(frame ,(midX -30, midY) ,(midX +30, midY),COLORS[idx

],2)
8 y = startY - 15 if startY - 15 > 15 else startY + 15
9 cv2. putText (frame , label , (startX , y),

10 cv2. FONT_HERSHEY_SIMPLEX , 0.5, COLORS[idx], 2)
11 if (startX+endX)/2 <220:
12 if pan <180:
13 pan=pan +10
14 pwm. setRotationAngle (1, pan)
15 elif (startX+endX)/2 >500:
16 if pan >0:
17 pan=pan -10
18 pwm. setRotationAngle (1, pan)
19 if (startY+endY)/2 <190:
20 if tilt >110:
21 tilt=tilt -5
22 pwm. setRotationAngle (0, tilt)
23 elif (startY+endY)/2 >390:
24 if tilt <180:
25 tilt=tilt +5
26 pwm. setRotationAngle (0, tilt)
27 if startY <70:
28 if tilt >110:
29 tilt=tilt -5
30 pwm. setRotationAngle (0, tilt)
31 break

77

78

Appendix D

Robot’s position control

1 class motors(threading .Thread):
2

3 def __init__ (self , threadID):
4 threading .Thread. __init__ (self ,daemon=True)
5 self. threadID = threadID
6

7 def run(self):
8 global startX
9 global endX

10 global startY
11 global endY
12 global pan
13 global tilt
14 global motor_start
15

16 pwm = PCA9685 ()
17 pwm. setPWMFreq (50)
18

19 GPIO. setmode (GPIO.BCM)
20

21 GPIO.setup (21, GPIO.OUT) #enable
22 GPIO.setup (20, GPIO.OUT)
23 GPIO.setup (16, GPIO.OUT)
24

25 GPIO.setup (26, GPIO.OUT) #enable
26 GPIO.setup (19, GPIO.OUT)
27 GPIO.setup (13, GPIO.OUT)
28

29 forward = (20 ,13)
30 GPIO.output(forward , GPIO.LOW)
31 f_pwm=GPIO.PWM(forward ,50)
32

33 backwards = (16 ,19)
34 GPIO.output(backwards , GPIO.LOW)

79

Robot’s position control

35 b_pwm=GPIO.PWM(backwards ,50)
36

37 rigth = (13 ,16)
38 GPIO.output(rigth , GPIO.LOW)
39 r_pwm=GPIO.PWM(right ,50)
40

41 left = (20 ,19)
42 GPIO.output(left , GPIO.LOW)
43 l_pwm=GPIO.PWM(left ,50)
44

45 while True:
46 if motor_start :
47 if pan <80:
48 #GPIO.output(left , GPIO.HIGH)
49 l_pwm.start (40)
50 sleep (0.3)
51 #GPIO.output(left , GPIO.LOW)
52 l_pwm.stop ()
53 pan =80
54 pwm. setRotationAngle (1, pan)
55 if pan >100:
56 #GPIO.output(rigth , GPIO.HIGH)
57 r_pwm.start (40)
58 sleep (0.3)
59 #GPIO.output(rigth , GPIO.LOW)
60 l_pwm.stop ()
61 pan =100
62 pwm. setRotationAngle (1, pan)
63 while (endX -startX)*(endY -startY) <100000:
64 #GPIO.output(forward , GPIO.HIGH)
65 f_pwm.start (40)
66 #GPIO.output(forward , GPIO.LOW)
67 f_pwm.stop ()
68

69 while (endX -startX)*(endY -startY) >150000:
70 #GPIO.output(backwards , GPIO.HIGH)
71 b_pwm.start (40)
72 #GPIO.output(backwards , GPIO.LOW)
73 b_pwm.stop ()
74

75 else:
76 GPIO.output(forward , GPIO.LOW)
77 GPIO.output(backwards , GPIO.LOW)

80

Appendix E

Identification techniques

In this appendix are present all the codes related to the identification techniques
discussed in the chapters above.

E.1 Color detection identification code

1 frameHeight = 480
2 cap = cv2. VideoCapture (1)
3 cap.set(3, frameWidth)
4 cap.set(4, frameHeight)
5

6

7 def empty(a):
8 pass
9

10 cv2. namedWindow ("HSV")
11 cv2. resizeWindow ("HSV", 640, 240)
12 cv2. createTrackbar ("HUE Min", "HSV", 0, 179, empty)
13 cv2. createTrackbar ("HUE Max", "HSV", 179, 179, empty)
14 cv2. createTrackbar ("SAT Min", "HSV", 0, 255, empty)
15 cv2. createTrackbar ("SAT Max", "HSV", 255, 255, empty)
16 cv2. createTrackbar ("VALUE Min", "HSV", 0, 255, empty)
17 cv2. createTrackbar ("VALUE Max", "HSV", 255, 255, empty)
18

19

20 while True:
21

22 success , img = cap.read ()
23 imgHsv = cv2. cvtColor (img , cv2. COLOR_BGR2HSV)
24

25 h_min = cv2. getTrackbarPos ("HUE Min", "HSV")
26 h_max = cv2. getTrackbarPos ("HUE Max", "HSV")
27 s_min = cv2. getTrackbarPos ("SAT Min", "HSV")
28 s_max = cv2. getTrackbarPos ("SAT Max", "HSV")

81

Identification techniques

29 v_min = cv2. getTrackbarPos ("VALUE Min", "HSV")
30 v_max = cv2. getTrackbarPos ("VALUE Max", "HSV")
31 print(h_min)
32

33 lower = np.array ([h_min , s_min , v_min])
34 upper = np.array ([h_max , s_max , v_max])
35 mask = cv2. inRange (imgHsv , lower , upper)
36 result = cv2. bitwise_and (img , img , mask=mask)
37

38 mask = cv2. cvtColor (mask , cv2. COLOR_GRAY2BGR)
39 hStack = np.hstack ([img , mask , result])
40 cv2.imshow('Horizontal Stacking ', hStack)
41 if cv2. waitKey (1) && 0xFF == ord('q'):
42 break
43

44 cap. release ()
45 cv2. destroyAllWindows ()

E.2 Infrared detection code

1 import RPi.GPIO as GPIO
2 from time import sleep # needed for the delay
3

4 GPIO. setmode (GPIO.BCM)
5 GPIO.setup (18, GPIO.IN) # IR receiver port
6 # Define a threaded callback function to run in another
7 #thread when events are detected
8 def my_callback (channel):
9 if GPIO.input (18): # if port 25 == 1

10 print ("Rising edge detected on 18")
11 else: # if port 25 != 1
12 print (" Falling edge detected on 18")
13 # when a changing edge is detected on port 25, regardless

of whatever
14 # else is happening in the program , the function

my_callback will be run
15 GPIO. add_event_detect (18, GPIO.BOTH , callback = my_callback

)
16

17 print (" Program will finish after 30 seconds or if you
press CTRL+C\n")

18 try:
19 sleep (30) # wait 30 seconds
20 print (" Finished ")
21 finally :
22 GPIO. cleanup () # clean up GPIO ports

82

E.3 – Infrared and computer vision fusion

E.3 Infrared and computer vision fusion

1 # USAGE
2 # python openvino_real_time_object_detection .py --

prototxt MobileNetSSD_deploy . prototxt --model
MobileNetSSD_deploy . caffemodel

3

4 # import the necessary packages
5 from imutils .video import VideoStream
6 from imutils .video import FPS
7 import numpy as np
8 import argparse
9 import imutils

10 import time
11 import cv2
12

13 import threading
14 import RPi.GPIO as GPIO
15 from time import sleep
16

17 from PCA9685 import PCA9685
18

19 GPIO. setmode (GPIO.BCM) # set up BCM GPIO numbering
20 GPIO.setup (18, GPIO.IN)
21

22 def my_callback (channel):
23 global user
24 global counter
25

26 user=True
27 counter =0
28

29 class control (threading .Thread):
30

31 def __init__ (self , threadID):
32 threading .Thread. __init__ (self ,daemon=True)
33 self. threadID = threadID
34

35 def run(self):
36 global user
37 global pan
38 global counter
39 global flag
40 pwm = PCA9685 ()
41 pwm. setPWMFreq (50)
42 while True:
43 if flag:
44 while True:
45 counter +=1
46 if counter >10:

83

Identification techniques

47 if user == True:
48 pwm. setRotationAngle (1, 0)
49 pan =0
50

51 user=False
52

53 if pan <180:
54 pan +=10
55 pwm. setRotationAngle (1, pan)
56 else:
57 pwm. setRotationAngle (1, 0)
58 pan =0
59 sleep (0.3)
60

61

62

63

64 if __name__ ==" __main__ ":
65

66 global pan
67 pan =90
68 global tilt
69 tilt =165
70 global user
71 user=True
72 global counter
73 counter =0
74 global flag
75 flag=False
76

77 GPIO. add_event_detect (18, GPIO.BOTH , callback =
my_callback) #IR DETECTIONS

78

79 thread= control (1)
80 thread.start ()
81

82 pwm = PCA9685 ()
83 pwm. setPWMFreq (50)
84 pwm. setRotationAngle (1, pan)
85 pwm. setRotationAngle (0, tilt)
86

87 # construct the argument parse and parse the arguments
88 ap = argparse . ArgumentParser ()
89 ap. add_argument ("-p", "--prototxt ", required =True ,
90 help="path to Caffe 'deploy ' prototxt file")
91 ap. add_argument ("-m", "--model", required =True ,
92 help="path to Caffe pre - trained model")
93 ap. add_argument ("-c", "--confidence ", type=float ,

default =0.5 ,
94 help=" minimum probability to filter weak detections ")

84

E.3 – Infrared and computer vision fusion

95 ap. add_argument ("-u", "--movidius ", type=bool , default
=0,

96 help=" boolean indicating if the Movidius should be
used")

97 args = vars(ap. parse_args ())
98

99 # initialize the list of class labels MobileNet SSD was
trained to

100 # detect , then generate a set of bounding box colors
for each class

101 CLASSES = [" background ", " aeroplane ", " bicycle ", "bird"
, "boat",

102 "bottle", "bus", "car", "cat", "chair", "cow", "
diningtable ",

103 "dog", "horse", " motorbike ", "person", " pottedplant ",
"sheep",

104 "sofa", "train", " tvmonitor "]
105 COLORS = np.random. uniform (0, 255, size =(len(CLASSES),

3))
106

107 # load our serialized model from disk
108 print("[INFO] loading model ...")
109 net = cv2.dnn. readNetFromCaffe (args[" prototxt "], args["

model"])
110

111 # specify the target device as the Myriad processor on
the NCS

112 net. setPreferableTarget (cv2.dnn. DNN_TARGET_MYRIAD)
113

114 # initialize the video stream , allow the cammera sensor
to warmup ,

115 # and initialize the FPS counter
116 print("[INFO] starting video stream ...")
117 vs = VideoStream (usePiCamera =True).start ()
118 time.sleep (2.0)
119 fps = FPS ().start ()
120

121

122

123 # loop over the frames from the video stream
124 while True:
125 flag=True
126 # grab the frame from the threaded video stream and

resize it
127 # to have a maximum width of 400 pixels
128 frame = vs.read ()
129 frame = imutils .resize(frame , width =720 , height =480)
130

131 # grab the frame dimensions and convert it to a blob
132 (h, w) = frame.shape [:2]

85

Identification techniques

133 blob = cv2.dnn. blobFromImage (frame , 0.007843 , (300 ,
300) , 127.5)

134

135 # pass the blob through the network and obtain the
detections and

136 # predictions
137 net. setInput (blob)
138 detections = net. forward ()
139

140 if user == True:
141 # loop over the detections
142 for i in np.arange (0, detections .shape [2]):
143 # extract the confidence (i.e., probability)

associated with
144 # the prediction
145 confidence = detections [0, 0, i, 2]
146

147 # filter out weak detections by ensuring the `
confidence ` is

148 # greater than the minimum confidence
149 if confidence > args[" confidence "]:
150 # extract the index of the class label from the
151 # `detections `, then compute the (x, y)-

coordinates of
152 # the bounding box for the object
153 idx = int(detections [0, 0, i, 1])
154 box = detections [0, 0, i, 3:7] * np.array ([w, h

, w, h])
155 (startX , startY , endX , endY) = box.astype("int"

)
156

157 # draw the prediction on the frame
158 if CLASSES [idx]=="person":
159 label = "{}: {:.2f}%".format(CLASSES [idx],
160 confidence * 100)
161 #cv2. rectangle (frame , (startX , startY), (endX

, endY),
162 # COLORS[idx], 2)
163 midX=int ((startX+endX)/2)
164 midY=int ((startY+endY)/2)
165 cv2.line(frame ,(midX ,midY -30) ,(midX ,midY +30) ,

COLORS[idx],2)
166 cv2.line(frame ,(midX -30, midY) ,(midX +30, midY),

COLORS[idx],2)
167 y = startY - 15 if startY - 15 > 15 else

startY + 15
168 cv2. putText (frame , label , (startX , y),
169 cv2. FONT_HERSHEY_SIMPLEX , 0.5, COLORS[idx],

2)
170 if (startX+endX)/2 <220:

86

E.4 – STM32 BLE communication code

171 if pan <180:
172 pan=pan +10
173 pwm. setRotationAngle (1, pan)
174 #cv2. putText (frame ," TURN LEFT " ,(50 ,240) ,cv2

. FONT_HERSHEY_SIMPLEX ,4 ,(255 ,255 ,255))
175 elif (startX+endX)/2 >500:
176 if pan >0:
177 pan=pan -10
178 pwm. setRotationAngle (1, pan)
179 #cv2. putText (frame ," TURN RIGHT " ,(50 ,240) ,

cv2. FONT_HERSHEY_SIMPLEX ,4 ,(255 ,255 ,255))
180 if (startY+endY)/2 <120:
181 if tilt >90:
182 tilt=tilt -10
183 pwm. setRotationAngle (0, tilt)
184 elif (startY+endY)/2 >360:
185 if tilt <180:
186 tilt=tilt +10
187 pwm. setRotationAngle (0, tilt)
188 break
189

190 # show the output frame
191 cv2.imshow("Frame", frame)
192 key = cv2. waitKey (1) & 0xFF
193

194 # if the `q` key was pressed , break from the loop
195 if key == ord("q"):
196 break
197

198 # update the FPS counter
199 fps.update ()
200

201 # stop the timer and display FPS information
202 fps.stop ()
203 pwm. exit_PCA9685 ()
204 print("[INFO] elasped time: {:.2f}".format(fps. elapsed

()))
205 print("[INFO] approx. FPS: {:.2f}".format(fps.fps ()))
206

207 # do a bit of cleanup
208 cv2. destroyAllWindows ()
209 vs.stop ()

E.4 STM32 BLE communication code

1 /* Includes -------------------------------------*/
2 # include "main.h"
3

87

Identification techniques

4 /* Private includes
--*/

5 /* USER CODE BEGIN Includes */
6

7 # include <stdlib.h>
8 # include <string.h>
9 # include <stdio.h>

10

11

12 # include " bluenrg1_aci .h"
13 # include " bluenrg1_hci_le .h"
14 # include " bluenrg1_events .h"
15 # include "hci_tl.h"
16 # include " bluenrg_utils .h"
17 //# include "osal.h"
18

19 /* USER CODE END Includes */
20

21 /* Private typedef
---*/

22 /* USER CODE BEGIN PTD */
23

24 void APP_UserEvtRx (void *pData);
25 void hci_init (void (* UserEvtRx)(void* pData), void* pConf

);
26 tBleStatus Add_SWServW2ST_Service (void);
27 tBleStatus Add_HWServW2ST_Service (void);
28

29 /* USER CODE END PTD */
30

31 /* Private define
--*/

32 /* USER CODE BEGIN PD */
33

34 uint8_t bdaddr_cb [6];
35 uint8_t user_detected =0;
36 uint8_t user_check =0;
37

38 /* USER CODE END PD */
39

40 /* Private macro
--*/

41 /* USER CODE BEGIN PM */
42

43 __IO uint8_t set_connectable = 1;
44 __IO uint16_t connection_handle = 0;
45 __IO uint8_t notification_enabled = FALSE;
46 __IO uint32_t connected = FALSE;
47

48 /* Hardware Characteristics Service */

88

E.4 – STM32 BLE communication code

49

50 #define COPY_UUID_128 (uuid_struct , uuid_15 , uuid_14 ,
uuid_13 , uuid_12 , uuid_11 , uuid_10 , uuid_9 , uuid_8 ,
uuid_7 , uuid_6 , uuid_5 , uuid_4 , uuid_3 , uuid_2 , uuid_1
, uuid_0) \

51 do {\
52 uuid_struct [0] = uuid_0; uuid_struct [1] = uuid_1;

uuid_struct [2] = uuid_2; uuid_struct [3] = uuid_3; \
53 uuid_struct [4] = uuid_4; uuid_struct [5] = uuid_5;

uuid_struct [6] = uuid_6; uuid_struct [7] = uuid_7; \
54 uuid_struct [8] = uuid_8; uuid_struct [9] =

uuid_9; uuid_struct [10] = uuid_10 ; uuid_struct [11] =
uuid_11 ; \

55 uuid_struct [12] = uuid_12 ; uuid_struct
[13] = uuid_13 ; uuid_struct [14] = uuid_14 ; uuid_struct
[15] = uuid_15 ; \

56 }while (0)
57

58 #define COPY_HW_SENS_W2ST_SERVICE_UUID (uuid_struct)
COPY_UUID_128 (uuid_struct ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0
x01 ,0x11 ,0xe1 ,0x9a ,0xb4 ,0x00 ,0x02 ,0xa5 ,0xd5 ,0xc5 ,0 x1b)

59 #define COPY_ENVIRONMENTAL_W2ST_CHAR_UUID (uuid_struct)
COPY_UUID_128 (uuid_struct ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0
x01 ,0x11 ,0xe1 ,0xac ,0x36 ,0x00 ,0x02 ,0xa5 ,0xd5 ,0xc5 ,0 x1b)

60 #define COPY_ACC_GYRO_MAG_W2ST_CHAR_UUID (uuid_struct)
COPY_UUID_128 (uuid_struct ,0x00 ,0xE0 ,0x00 ,0x00 ,0x00 ,0
x01 ,0x11 ,0xe1 ,0xac ,0x36 ,0x00 ,0x02 ,0xa5 ,0xd5 ,0xc5 ,0 x1b)

61 /* Software Characteristics Service */
62 #define COPY_SW_SENS_W2ST_SERVICE_UUID (uuid_struct)

COPY_UUID_128 (uuid_struct ,0x00 ,0x00 ,0x00 ,0x00 ,0x00 ,0
x02 ,0x11 ,0xe1 ,0x9a ,0xb4 ,0x00 ,0x02 ,0xa5 ,0xd5 ,0xc5 ,0 x1b)

63 #define COPY_QUATERNIONS_W2ST_CHAR_UUID (uuid_struct)
COPY_UUID_128 (uuid_struct ,0x00 ,0x00 ,0x01 ,0x00 ,0x00 ,0
x01 ,0x11 ,0xe1 ,0xac ,0x36 ,0x00 ,0x02 ,0xa5 ,0xd5 ,0xc5 ,0 x1b)

64

65 /* USER CODE END PM */
66

67 /* Private variables
--*/

68 UART_HandleTypeDef huart2;
69

70 /* USER CODE BEGIN PV */
71

72 #define SENSOR_DEMO_NAME 'B','l','u','e','N','R','G'
73 #define BDADDR_SIZE 6
74

75 /* Hardware Characteristics Service */
76

77 /* USER CODE END PV */
78

89

Identification techniques

79 /* Private function prototypes
---*/

80 void SystemClock_Config (void);
81 static void MX_GPIO_Init (void);
82 void SystemClock_Config (void)
83 {
84 RCC_OscInitTypeDef RCC_OscInitStruct = {0};
85 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
86

87 /** Configure the main internal regulator output
voltage

88 */
89 __HAL_RCC_PWR_CLK_ENABLE ();
90 __HAL_PWR_VOLTAGESCALING_CONFIG (

PWR_REGULATOR_VOLTAGE_SCALE2);
91 /** Initializes the RCC Oscillators according to the

specified parameters
92 * in the RCC_OscInitTypeDef structure .
93 */
94 RCC_OscInitStruct . OscillatorType =

RCC_OSCILLATORTYPE_HSI ;
95 RCC_OscInitStruct . HSIState = RCC_HSI_ON ;
96 RCC_OscInitStruct . HSICalibrationValue =

RCC_HSICALIBRATION_DEFAULT ;
97 RCC_OscInitStruct .PLL. PLLState = RCC_PLL_ON ;
98 RCC_OscInitStruct .PLL. PLLSource = RCC_PLLSOURCE_HSI ;
99 RCC_OscInitStruct .PLL.PLLM = 8;

100 RCC_OscInitStruct .PLL.PLLN = 64;
101 RCC_OscInitStruct .PLL.PLLP = RCC_PLLP_DIV2 ;
102 RCC_OscInitStruct .PLL.PLLQ = 7;
103 if (HAL_RCC_OscConfig (& RCC_OscInitStruct) != HAL_OK)
104 {
105 Error_Handler ();
106 }
107 /** Initializes the CPU , AHB and APB buses clocks
108 */
109 RCC_ClkInitStruct . ClockType = RCC_CLOCKTYPE_HCLK |

RCC_CLOCKTYPE_SYSCLK
110 | RCC_CLOCKTYPE_PCLK1 |

RCC_CLOCKTYPE_PCLK2 ;
111 RCC_ClkInitStruct . SYSCLKSource =

RCC_SYSCLKSOURCE_PLLCLK ;
112 RCC_ClkInitStruct . AHBCLKDivider = RCC_SYSCLK_DIV1 ;
113 RCC_ClkInitStruct . APB1CLKDivider = RCC_HCLK_DIV2 ;
114 RCC_ClkInitStruct . APB2CLKDivider = RCC_HCLK_DIV1 ;
115

116 if (HAL_RCC_ClockConfig (& RCC_ClkInitStruct ,
FLASH_LATENCY_2) != HAL_OK)

117 {
118 Error_Handler ();

90

E.4 – STM32 BLE communication code

119 }
120 }
121

122 static void MX_USART2_UART_Init (void);
123 /* USER CODE BEGIN PFP */
124

125 /* USER CODE END PFP */
126

127 /* Private user code
--*/

128 /* USER CODE BEGIN 0 */
129

130 /* USER CODE END 0 */
131

132 /**
133 * @brief The application entry point.
134 * @retval int
135 */
136 int main(void)
137 {
138 /* USER CODE BEGIN 1 */
139

140 /* USER CODE END 1 */
141

142 /* MCU Configuration
---*/

143

144 /* Reset of all peripherals , Initializes the Flash
interface and the Systick . */

145 HAL_Init ();
146

147 /* USER CODE BEGIN Init */
148

149 /* USER CODE END Init */
150

151 /* Configure the system clock */
152 SystemClock_Config ();
153

154 /* USER CODE BEGIN SysInit */
155

156 /* USER CODE END SysInit */
157

158 /* Initialize all configured peripherals */
159 MX_GPIO_Init ();
160 MX_USART2_UART_Init ();
161 /* USER CODE BEGIN 2 */
162

163 hci_init (APP_UserEvtRx , NULL);
164

165 uint8_t ret;

91

Identification techniques

166 uint16_t service_handle , dev_name_char_handle ,
appearance_char_handle ;

167 uint8_t device_name [] = { SENSOR_DEMO_NAME };
168 uint8_t hwVersion ;
169 uint16_t fwVersion ;
170 uint8_t bdaddr_len_out ;
171 uint8_t config_data_stored_static_random_address = 0

x80; /* Offset of the static random address stored in
NVM */

172

173 uint8_t bdaddr[BDADDR_SIZE];
174

175 /* Sw reset of the device */
176 hci_reset ();
177 /**
178 * To support both the BlueNRG -2 and the BlueNRG -2N

a minimum delay of 2000 ms is required at device boot
179 */
180 HAL_Delay (2000);
181

182 /* get the BlueNRG HW and FW versions */
183 getBlueNRGVersion (& hwVersion , & fwVersion);
184

185 PRINT_DBG ("HWver %d\nFWver %d\r\n", hwVersion ,
fwVersion);

186

187 ret = aci_hal_read_config_data (
config_data_stored_static_random_address ,

188 & bdaddr_len_out ,
bdaddr);

189

190 if (ret) {
191 PRINT_DBG ("Read Static Random address failed .\r\n")

;
192 }
193

194 if ((bdaddr [5] & 0xC0) != 0xC0) {
195 PRINT_DBG ("Static Random address not well formed .\r

\n");
196 while (1);
197 }
198

199 /* Set the TX power -2 dBm */
200 ret = aci_hal_set_tx_power_level (1, 4);
201 if (ret != BLE_STATUS_SUCCESS)
202 {
203 PRINT_DBG ("Error in aci_hal_set_tx_power_level () 0x

%04x\r\n", ret);
204 }
205 else

92

E.4 – STM32 BLE communication code

206 {
207 PRINT_DBG (" aci_hal_set_tx_power_level () --> SUCCESS

\r\n");
208 }
209

210 /* GATT Init */
211 ret = aci_gatt_init ();
212 if (ret != BLE_STATUS_SUCCESS)
213 {
214 PRINT_DBG (" aci_gatt_init () failed: 0x%02x\r\n", ret

);
215 }
216 else
217 {
218 PRINT_DBG (" aci_gatt_init () --> SUCCESS \r\n");
219 }
220

221 /* GAP Init */
222 ret = aci_gap_init (GAP_CENTRAL_ROLE , 0, 0x07 , &

service_handle , & dev_name_char_handle ,
223 & appearance_char_handle);
224 if (ret != BLE_STATUS_SUCCESS)
225 {
226 PRINT_DBG (" aci_gap_init () failed: 0x%02x\r\n", ret)

;
227 }
228 else
229 {
230 PRINT_DBG (" aci_gap_init () --> SUCCESS \r\n");
231 }
232

233 /* Update device name */
234 ret = aci_gatt_update_char_value (service_handle ,

dev_name_char_handle , 0, sizeof(device_name),
235 device_name);
236 if(ret != BLE_STATUS_SUCCESS)
237 {
238 PRINT_DBG (" aci_gatt_update_char_value () failed: 0x

%02x\r\n", ret);
239 }
240 else
241 {
242 PRINT_DBG (" aci_gatt_update_char_value () --> SUCCESS

\r\n");
243 }
244

245 /* BLE Security v4.2 is supported : BLE stack FW
version >= 2.x (new API prototype) */

246 ret = aci_gap_set_authentication_requirement (BONDING ,

93

Identification techniques

247

MITM_PROTECTION_REQUIRED ,
248

SC_IS_SUPPORTED ,
249

KEYPRESS_IS_NOT_SUPPORTED ,
250 7,
251 16,
252

USE_FIXED_PIN_FOR_PAIRING ,
253 123456 ,
254 0x00);
255 if(ret != BLE_STATUS_SUCCESS)
256 {
257 PRINT_DBG (" aci_gap_set_authentication_requirement ()

failed: 0x%02x\r\n", ret);
258 }
259 else
260 {
261 PRINT_DBG (" aci_gap_set_authentication_requirement ()

--> SUCCESS \r\n");
262 }
263

264 PRINT_DBG ("BLE Stack Initialized with SUCCESS \r\n");
265

266

267 /* USER CODE END 2 */
268

269 /* Infinite loop */
270 /* USER CODE BEGIN WHILE */
271

272 // uint8_t myTxData [13]=" Hello world\r\n";
273 // HAL_UART_Transmit (& huart2 ,myTxData ,13 ,10);
274 while (1)
275 {
276 hci_user_evt_proc (); // NEEDED TO READ EVENT LIST AND

ACTIVATE THEM
277 ret = aci_gap_start_general_discovery_proc (0 x4000 , 0

x4000 ,0x00 ,0 x01);
278 // uint8_t myTxData [13]=" Hello world\r\n";
279 if (ret != BLE_STATUS_SUCCESS)
280 {
281 PRINT_DBG (" Failure .\r\n")
282 char buffer [100];
283 sprintf (buffer ,"%x\r\n",ret);
284 HAL_UART_Transmit (& huart2 ,(uint8_t *) buffer ,

strlen(buffer) ,10);
285 }
286

287 // HAL_UART_Transmit (& huart2 ,myTxData ,13 ,10);

94

E.4 – STM32 BLE communication code

288 HAL_Delay (100);
289 ret= aci_gap_terminate_gap_proc (0 x02);
290 if (ret != BLE_STATUS_SUCCESS)
291 {
292 PRINT_DBG (" Failure .\r\n")
293 char buffer [100];
294 sprintf (buffer ,"%x\r\n",ret);
295 HAL_UART_Transmit (& huart2 ,(uint8_t *)

buffer ,strlen(buffer) ,10);
296 }
297 /* USER CODE END WHILE */
298

299

300 /* USER CODE BEGIN 3 */
301 }
302 /* USER CODE END 3 */
303 }
304

305 /**
306 * @brief System Clock Configuration
307 * @retval None
308 */
309 /**
310 * @brief USART2 Initialization Function
311 * @param None
312 * @retval None
313 */
314 static void MX_USART2_UART_Init (void)
315 {
316

317 /* USER CODE BEGIN USART2_Init 0 */
318

319 /* USER CODE END USART2_Init 0 */
320

321 /* USER CODE BEGIN USART2_Init 1 */
322

323 /* USER CODE END USART2_Init 1 */
324 huart2. Instance = USART2;
325 huart2.Init. BaudRate = 115200;
326 huart2.Init. WordLength = UART_WORDLENGTH_8B ;
327 huart2.Init. StopBits = UART_STOPBITS_1 ;
328 huart2.Init.Parity = UART_PARITY_NONE ;
329 huart2.Init.Mode = UART_MODE_TX_RX ;
330 huart2.Init. HwFlowCtl = UART_HWCONTROL_NONE ;
331 huart2.Init. OverSampling = UART_OVERSAMPLING_16 ;
332 if (HAL_UART_Init (& huart2) != HAL_OK)
333 {
334 Error_Handler ();
335 }
336 /* USER CODE BEGIN USART2_Init 2 */

95

Identification techniques

337

338 /* USER CODE END USART2_Init 2 */
339

340 }
341

342 /**
343 * @brief GPIO Initialization Function
344 * @param None
345 * @retval None
346 */
347 static void MX_GPIO_Init (void)
348 {
349 GPIO_InitTypeDef GPIO_InitStruct = {0};
350

351 /* GPIO Ports Clock Enable */
352 __HAL_RCC_GPIOC_CLK_ENABLE ();
353 __HAL_RCC_GPIOH_CLK_ENABLE ();
354 __HAL_RCC_GPIOA_CLK_ENABLE ();
355 __HAL_RCC_GPIOB_CLK_ENABLE ();
356

357 /* Configure GPIO pin Output Level */
358 HAL_GPIO_WritePin (GPIOA , GPIO_PIN_1 | LD2_Pin |GPIO_PIN_8 ,

GPIO_PIN_RESET);
359

360 /* Configure GPIO pin : B1_Pin */
361 GPIO_InitStruct .Pin = B1_Pin;
362 GPIO_InitStruct .Mode = GPIO_MODE_IT_FALLING ;
363 GPIO_InitStruct .Pull = GPIO_NOPULL ;
364 HAL_GPIO_Init (B1_GPIO_Port , & GPIO_InitStruct);
365

366 /* Configure GPIO pin : PA0 */
367 GPIO_InitStruct .Pin = GPIO_PIN_0 ;
368 GPIO_InitStruct .Mode = GPIO_MODE_IT_RISING ;
369 GPIO_InitStruct .Pull = GPIO_NOPULL ;
370 HAL_GPIO_Init (GPIOA , & GPIO_InitStruct);
371

372 /* Configure GPIO pins : PA1 LD2_Pin PA8 */
373 GPIO_InitStruct .Pin = GPIO_PIN_1 | LD2_Pin | GPIO_PIN_8 ;
374 GPIO_InitStruct .Mode = GPIO_MODE_OUTPUT_PP ;
375 GPIO_InitStruct .Pull = GPIO_NOPULL ;
376 GPIO_InitStruct .Speed = GPIO_SPEED_FREQ_LOW ;
377 HAL_GPIO_Init (GPIOA , & GPIO_InitStruct);
378

379 /* EXTI interrupt init */
380 HAL_NVIC_SetPriority (EXTI0_IRQn , 0, 0);
381 HAL_NVIC_EnableIRQ (EXTI0_IRQn);
382

383 }
384

385 /* USER CODE BEGIN 4 */

96

E.4 – STM32 BLE communication code

386

387 /* USER CODE END 4 */
388

389 /**
390 * @brief This function is executed in case of error

occurrence .
391 * @retval None
392 */
393 void Error_Handler (void)
394 {
395 /* USER CODE BEGIN Error_Handler_Debug */
396 /* User can add his own implementation to report the

HAL error return state */
397 __disable_irq ();
398 while (1)
399 {
400 }
401 /* USER CODE END Error_Handler_Debug */
402 }
403

404 #ifdef USE_FULL_ASSERT
405 /**
406 * @brief Reports the name of the source file and the

source line number
407 * where the assert_param error has occurred .
408 * @param file: pointer to the source file name
409 * @param line: assert_param error line source number
410 * @retval None
411 */
412 void assert_failed (uint8_t *file , uint32_t line)
413 {
414 /* USER CODE BEGIN 6 */
415 /* User can add his own implementation to report the

file name and line number ,
416 ex: printf (" Wrong parameters value: file %s on line

%d\r\n", file , line) */
417 /* USER CODE END 6 */
418 }
419 #endif /* USE_FULL_ASSERT */
420

421

422 uint8_t getBlueNRGVersion (uint8_t *hwVersion , uint16_t *
fwVersion)

423 {
424 uint8_t status;
425 uint8_t hci_version , lmp_pal_version ;
426 uint16_t hci_revision , manufacturer_name ,

lmp_pal_subversion ;
427

97

Identification techniques

428 status = hci_read_local_version_information (&
hci_version , &hci_revision , & lmp_pal_version ,

429 & manufacturer_name ,
& lmp_pal_subversion);

430

431 if (status == BLE_STATUS_SUCCESS) {
432 * hwVersion = hci_revision >> 8;
433 * fwVersion = (hci_revision & 0xFF) << 8;

// Major Version Number
434 * fwVersion |= ((lmp_pal_subversion >> 4) & 0xF) << 4;

// Minor Version Number
435 * fwVersion |= lmp_pal_subversion & 0xF;

// Patch Version Number
436 }
437 return status;
438 }
439

440 void APP_UserEvtRx (void *pData)
441 {
442 uint32_t i;
443

444 hci_spi_pckt * hci_pckt = (hci_spi_pckt *) pData;
445

446 if(hci_pckt ->type == HCI_EVENT_PKT)
447 {
448 hci_event_pckt * event_pckt = (hci_event_pckt *)

hci_pckt ->data;
449

450 if(event_pckt ->evt == EVT_LE_META_EVENT)
451 {
452 evt_le_meta_event *evt = (void *) event_pckt ->data;
453

454 for (i = 0; i < (sizeof(hci_le_meta_events_table)/
sizeof(hci_le_meta_events_table_type)); i++)

455 {
456 if (evt -> subevent == hci_le_meta_events_table [i].

evt_code)
457 {
458 hci_le_meta_events_table [i]. process ((void *)evt

->data);
459 }
460 }
461 }
462 else if(event_pckt ->evt == EVT_VENDOR)
463 {
464 evt_blue_aci * blue_evt = (void *) event_pckt ->data;
465

466 for (i = 0; i < (sizeof(
hci_vendor_specific_events_table)/sizeof(
hci_vendor_specific_events_table_type)); i++)

98

E.4 – STM32 BLE communication code

467 {
468 if (blue_evt ->ecode ==

hci_vendor_specific_events_table [i]. evt_code)
469 {
470 hci_vendor_specific_events_table [i]. process ((

void *) blue_evt ->data);
471 }
472 }
473 }
474 else
475 {
476 for (i = 0; i < (sizeof(hci_events_table)/sizeof(

hci_events_table_type)); i++)
477 {
478 if (event_pckt ->evt == hci_events_table [i].

evt_code)
479 {
480 hci_events_table [i]. process ((void *) event_pckt

->data);
481 }
482 }
483 }
484 }
485 }
486

487

488 /* This callback is called when an advertising report is
received */

489 void hci_le_advertising_report_event (uint8_t Num_Reports
, Advertising_Report_t Advertising_Report [])

490 {
491 /* Advertising_Report contains all the expected

parameters .
492 User application should add code for decoding the

received
493 Advertising_Report event databased on the specific

evt_type
494 (ADV_IND , SCAN_RSP , ..)
495 */
496 /* Example : store the received Advertising_Report

fields */
497

498 if(user_detected ==0){
499 int8_t RSSI = Advertising_Report [0]. RSSI;
500 if(RSSI >= -60){
501 user_detected =1;
502 for(uint8_t loop = 0; loop < 6; loop ++) {
503 bdaddr_cb [loop] = Advertising_Report [0].

Address [loop];
504 }

99

Identification techniques

505 }
506 }else{
507 user_check =0;
508 for(uint8_t loop = 0; loop < 6; loop ++) {
509 if(bdaddr_cb [loop] == Advertising_Report [0].

Address [loop]){
510 user_check ++;
511 }
512 }
513 if(user_check ==6){
514 char buffer [100];
515

516 /* BLE IDENTIFIER */
517

518 // uint8_t identifier [3]="A\r\n";
519 // uint8_t identifier [3]="B\r\n";
520 uint8_t identifier [3]="C\r\n";
521 HAL_UART_Transmit (& huart2 ,identifier ,3 ,10);
522

523

524 for(uint8_t loop = 0; loop < 5; loop ++) {
525 sprintf (buffer ,"%d:",bdaddr_cb [loop]);
526 HAL_UART_Transmit (& huart2 ,(uint8_t *) buffer ,

strlen(buffer) ,10);
527 }
528 sprintf (buffer ,"%d\r\n",bdaddr_cb [5]);
529 HAL_UART_Transmit (& huart2 ,(uint8_t *) buffer ,

strlen(buffer) ,10);
530

531

532 /* type of the peer address (PUBLIC_ADDR ,
RANDOM_ADDR) */

533 uint8_t bdaddr_type = Advertising_Report [0].
Address_Type ;

534

535 sprintf (buffer ,"%d\r\n",bdaddr_type);
536

537 HAL_UART_Transmit (& huart2 ,(uint8_t *) buffer ,
strlen(buffer) ,10);

538

539 /* event type (advertising packets types) */
540 uint8_t evt_type = Advertising_Report [0].

Event_Type ;
541

542 sprintf (buffer ,"%d\r\n",evt_type);
543

544 HAL_UART_Transmit (& huart2 ,(uint8_t *) buffer ,
strlen(buffer) ,10);

545

546 /* RSSI value */

100

E.5 – Raspberry triangulation code

547 int8_t RSSI = Advertising_Report [0]. RSSI;
548

549 sprintf (buffer ,"%d\r\n",RSSI);
550

551 HAL_UART_Transmit (& huart2 ,(uint8_t *) buffer ,strlen
(buffer) ,10);

552 }
553 }
554

555 /* address of the peer device found during discovery
procedure */

556 // Osal_MemCpy (bdaddr_cb , Advertising_Report [0]. Address
,6);

557

558 /* length of advertising or scan response data */
559 // uint8_t data_length = Advertising_Report [0].

Length_Data ;
560

561 /* data_length octets of advertising or scan response
data formatted are

562 on Advertising_Report [0]. Data field: to be stored/
filtered based on

563 specific user application scenario */
564 } /* hci_le_advertising_report_event () */
565

566

567 /* *********************** (C) COPYRIGHT
STMicroelectronics ***** END OF FILE *** */

E.5 Raspberry triangulation code

1 import serial;
2 import io;
3 import time;
4 import os;
5 import threading
6

7

8 # the ports are devA = '/dev/ ttyACM0 '
9 # devB = '/dev/ ttyACM1 ' and devC = '/dev/ ttyACM2 '

10

11 class BLE(threading .Thread):
12

13 def __init__ (self ,port):
14 threading .Thread. __init__ (self ,daemon=True)
15 self. startDev =True
16 self.port=port
17 self. prevRSSI =100

101

Identification techniques

18 self. currRSSI =100
19 self. smoothRSSI =0
20 self.alpha =0.75
21 self.s=serial.Serial(port=self.port , baudrate

=115200 ,
22 timeout =1, xonxoff =False , rtscts=False , dsrdtr=

True)
23

24 def run(self):
25 while True:
26 try :
27 # configure the serial connections (the

parameters differs on
28 #the device you are connecting to)
29

30 #s=serial.Serial(port ='/dev/ ttyACM0 ',
baudrate =115200 ,

31 # timeout =1, xonxoff =False , rtscts=False ,
dsrdtr=True)

32 try:
33 for line in self.s:
34 #print(line)
35 if len(line) >5 and self. startDev :
36 self. address =line
37 self. startDev =False
38 if len(line)==5:
39 if self. prevRSSI ==100:
40 self. prevRSSI =int(str(

line)[2:5])
41 else:
42 self. currRSSI =int(str(

line)[2:5])
43 self. smoothRSSI =(self.

alpha*
44 self. currRSSI +(1- self.

alpha)*self. prevRSSI)
45 self. prevRSSI =self.

currRSSI
46 break
47

48 except KeyboardInterrupt :
49 self.s.close ()
50 print('Program exit!')
51 break
52 except :
53 print("BLE ", self.port ," not connected "

)
54 print('Program exit!')
55 break
56

102

E.5 – Raspberry triangulation code

57 def getAdd(self):
58 if not(self. startDev):
59 return self. address
60 else:
61 return -1
62

63 def getRSSI (self):
64 if not(self. startDev):
65 return self. smoothRSSI
66 else:
67 return -1
68

69 #IF TRUE NOT PAIRED , IF FALSE PAIRED
70 def getStatus (self):
71 return self. startDev
72

73

74 if __name__ == '__main__ ' :
75

76 DevA=BLE('/dev/ ttyACM0 ')
77 DevA.start ()
78 DevB=BLE('/dev/ ttyACM1 ')
79 DevB.start ()
80 DevC=BLE('/dev/ ttyACM2 ')
81 DevC.start ()
82 # Devices center
83 xa =0.004
84 ya=0
85 xb = -0.2
86 yb=0
87 xc=0
88 yc =0.1
89 while True:
90 if DevA.getAdd ()!=-1 and DevA.getAdd ()== DevB.

getAdd () and
91 DevB.getAdd ()== DevC.getAdd ():
92 if not(DevA. getStatus ()):
93 #print (" The RSSI A is ",DevA. getRSSI ())

#+43)
94 da =10**((-68 - DevA. getRSSI ())/(10))
95 #print (" The distance from A is: ",da ,"m")
96 time.sleep (0.5)
97 if not(DevB. getStatus ()):
98 #print (" The RSSI B is ",DevB. getRSSI ())

#+43)
99 db =10**((-68 - DevB. getRSSI ())/(10))

100 #print (" The distance from B is: ",db ,"m")
101 time.sleep (0.5)
102 if not(DevC. getStatus ()):

103

Identification techniques

103 #print (" The RSSI C is ",DevC. getRSSI ())
#+48)

104 dc =10**((-68 - DevC. getRSSI ())/(10))
105 #print (" The distance from C is: ",dc ,"m")
106 time.sleep (0.5)
107 va =((db**2-dc **2) -(xb**2-xc **2) -(yb**2-yc **2)

)/2
108 vb =((db**2-da **2) -(xb**2-xa **2) -(yb**2-ya **2)

)/2
109 y=(vb*(xc -xb)-va*(xa -xb))/((ya -yb)*(xc -xb) -(

yc -yb)*(xa -xb))
110 x=(va -y*(yc -yb))/(xc -xb)
111 print("User position X: ",x,"m Y: ",y,"m")

E.6 STM32 IMU code

1 #ifdef __cplusplus
2 extern "C" {
3 #endif
4

5 /* Includes

*/

6 # include " app_mems .h"
7 # include "main.h"
8 # include <stdio.h>
9

10 # include " stm32f4xx_hal .h"
11 # include " stm32f4xx_nucleo .h"
12 # include "com.h"
13 # include " demo_serial .h"
14 # include " bsp_ip_conf .h"
15 # include " fw_version .h"
16 # include " motion_fx_manager .h"
17

18 /* Private typedef

*/

19 /* Private define
--
*/

20 #define DWT_LAR_KEY 0 xC5ACCE55 /* DWT register unlock
key */

21 #define ALGO_FREQ 100U /* Algorithm frequency 100 Hz */
22 #define ACC_ODR ((float) ALGO_FREQ)
23 #define ACC_FS 4 /* FS = <-4g, 4g> */
24 #define ALGO_PERIOD (1000U / ALGO_FREQ) /* Algorithm

period [ms] */

104

E.6 – STM32 IMU code

25 #define MOTION_FX_ENGINE_DELTATIME 0.01f
26 #define FROM_MG_TO_G 0.001f
27 #define FROM_G_TO_MG 1000.0f
28 #define FROM_MDPS_TO_DPS 0.001f
29 #define FROM_DPS_TO_MDPS 1000.0f
30 #define FROM_MGAUSS_TO_UT50 (0.1f/50.0f)
31 #define FROM_UT50_TO_MGAUSS 500.0f
32

33 #define MAX_BUF_SIZE 256
34

35 typedef struct
36 {
37 float rotation [MFX_NUM_AXES]; /* yaw , pitch

and roll */
38 float quaternion [MFX_QNUM_AXES]; /* quaternion

*/
39 float gravity [MFX_NUM_AXES]; /* device

frame gravity */
40 float linear_acceleration [MFX_NUM_AXES]; /* device

frame linear acceleration */
41 float heading ; /* heading */
42 float headingErr ; /* heading

error in deg */
43 } dataformat ;
44

45 /* Public variables
--
*/

46 volatile uint8_t DataLoggerActive = 0;
47 volatile uint32_t SensorsEnabled = 0;
48 char LibVersion [35];
49 int LibVersionLen ;
50 volatile uint8_t SensorReadRequest = 0;
51 uint8_t UseOfflineData = 0;
52 offline_data_t OfflineData [OFFLINE_DATA_SIZE];
53 int OfflineDataReadIndex = 0;
54 int OfflineDataWriteIndex = 0;
55 int OfflineDataCount = 0;
56 uint32_t AlgoFreq = ALGO_FREQ ;
57 uint8_t Enabled6X = 0;
58 static int32_t PushButtonState = GPIO_PIN_RESET ;
59

60 /* Extern variables
---*/

61 /* Private macro ------------------------------------*/
62 /* Private variables

--*/
63 static MOTION_SENSOR_Axes_t AccValue ;
64 static MOTION_SENSOR_Axes_t GyrValue ;
65 static MOTION_SENSOR_Axes_t MagValue ;

105

Identification techniques

66 static float PressValue ;
67 static float TempValue ;
68 static float HumValue ;
69 static volatile uint32_t TimeStamp = 0;
70 static volatile uint8_t MagCalRequest = 0;
71 static MOTION_SENSOR_Axes_t MagOffset ;
72 static uint8_t MagCalStatus = 0;
73

74 static char dataOut [MAX_BUF_SIZE];
75 static char ax_send [MAX_BUF_SIZE], ay_send [MAX_BUF_SIZE],

az_send [MAX_BUF_SIZE];
76 static char gx_send [MAX_BUF_SIZE], gy_send [MAX_BUF_SIZE],

gz_send [MAX_BUF_SIZE];
77 static char mx_send [MAX_BUF_SIZE], my_send [MAX_BUF_SIZE],

mz_send [MAX_BUF_SIZE];
78 static char quat0_send [MAX_BUF_SIZE], quat1_send [

MAX_BUF_SIZE], quat2_send [MAX_BUF_SIZE], quat3_send [
MAX_BUF_SIZE];

79 static char rot0_send [MAX_BUF_SIZE], rot1_send [
MAX_BUF_SIZE], rot2_send [MAX_BUF_SIZE];

80 static char grav0_send [MAX_BUF_SIZE], grav1_send [
MAX_BUF_SIZE], grav2_send [MAX_BUF_SIZE];

81 static char acc0_send [MAX_BUF_SIZE], acc1_send [
MAX_BUF_SIZE], acc2_send [MAX_BUF_SIZE];

82

83 dataformat data_to_send ;
84

85 /* Private function prototypes
---*/

86 static void MX_DataLogFusion_Init (void);
87 static void MX_DataLogFusion_Process (void);
88 static void FX_Data_Handler (TMsg *Msg);
89 static void Init_Sensors (void);
90 static void RTC_Handler (TMsg *Msg);
91 static void Accelero_Sensor_Handler (TMsg *Msg);
92 static void Gyro_Sensor_Handler (TMsg *Msg);
93 static void Magneto_Sensor_Handler (TMsg *Msg);
94 static void Pressure_Sensor_Handler (TMsg *Msg);
95 static void Temperature_Sensor_Handler (TMsg *Msg);
96 static void Humidity_Sensor_Handler (TMsg *Msg);
97 static void TIM_Config (uint32_t Freq);
98 static void DWT_Init (void);
99 static void DWT_Start (void);

100 static uint32_t DWT_Stop (void);
101

102 void MX_MEMS_Init (void)
103 {
104 /* USER CODE BEGIN SV */
105

106 /* USER CODE END SV */

106

E.6 – STM32 IMU code

107

108 /* USER CODE BEGIN MEMS_Init_PreTreatment */
109

110 /* USER CODE END MEMS_Init_PreTreatment */
111

112 /* Initialize the peripherals and the MEMS components
*/

113

114 MX_DataLogFusion_Init ();
115

116 /* USER CODE BEGIN MEMS_Init_PostTreatment */
117

118 /* USER CODE END MEMS_Init_PostTreatment */
119 }
120

121 /*
122 * LM background task
123 */
124 void MX_MEMS_Process (void)
125 {
126 /* USER CODE BEGIN MEMS_Process_PreTreatment */
127

128 /* USER CODE END MEMS_Process_PreTreatment */
129

130 MX_DataLogFusion_Process ();
131

132 /* USER CODE BEGIN MEMS_Process_PostTreatment */
133

134 /* USER CODE END MEMS_Process_PostTreatment */
135 }
136

137 /* Exported functions
---------------------------------------*/

138 /**
139 * @brief Period elapsed callback
140 * @param htim pointer to a TIM_HandleTypeDef structure

that contains
141 * the configuration information for TIM

module.
142 * @retval None
143 */
144 void HAL_TIM_PeriodElapsedCallback (TIM_HandleTypeDef *

htim)
145 {
146 if (htim -> Instance == BSP_IP_TIM_Handle . Instance)
147 {
148 SensorReadRequest = 1;
149 }
150 }
151

107

Identification techniques

152 /* Private functions
---------------------------------------*/

153 /**
154 * @brief Initialize the application
155 * @retval None
156 */
157 static void MX_DataLogFusion_Init (void)
158 {
159 float ans_float ;
160

161 /* Initialize button */
162 BSP_PB_Init (BUTTON_KEY , BUTTON_MODE_EXTI);
163

164 /* Check what is the Push Button State when the button
is not pressed . It can change across families */

165 PushButtonState = (BSP_PB_GetState (BUTTON_KEY)) ? 0 :
1;

166

167 /* Initialize LED */
168 BSP_LED_Init (LED2);
169

170 /* Initialize Virtual COM Port */
171 BSP_COM_Init (COM1);
172

173 /* Initialize Timer */
174 BSP_IP_TIM_Init ();
175

176 /* Configure Timer to run with desired algorithm
frequency */

177 TIM_Config (ALGO_FREQ);
178

179 /* Initialize (disabled) sensors */
180 Init_Sensors ();
181

182 /* Sensor Fusion API initialization function */
183 MotionFX_manager_init ();
184

185 /* OPTIONAL */
186 /* Get library version */
187 MotionFX_manager_get_version (LibVersion , & LibVersionLen

);
188

189 /* Enable magnetometer calibration */
190 MotionFX_manager_MagCal_start (ALGO_PERIOD);
191

192 /* Test if calibration data are available */
193 MFX_MagCal_output_t mag_cal_test ;
194 MotionFX_MagCal_getParams (& mag_cal_test);
195

108

E.6 – STM32 IMU code

196 /* If calibration data are available load HI
coefficients */

197 if (mag_cal_test . cal_quality == MFX_MAGCALGOOD)
198 {
199 ans_float = (mag_cal_test . hi_bias [0] *

FROM_UT50_TO_MGAUSS);
200 MagOffset .x = (int32_t) ans_float ;
201 ans_float = (mag_cal_test . hi_bias [1] *

FROM_UT50_TO_MGAUSS);
202 MagOffset .y = (int32_t) ans_float ;
203 ans_float = (mag_cal_test . hi_bias [2] *

FROM_UT50_TO_MGAUSS);
204 MagOffset .z = (int32_t) ans_float ;
205

206 MagCalStatus = 1;
207 }
208

209 DWT_Init ();
210

211 BSP_LED_On (LED2);
212 HAL_Delay (500);
213 BSP_LED_Off (LED2);
214

215 /* Start receiving messages via DMA */
216 UART_StartReceiveMsg ();
217 }
218

219 /**
220 * @brief Process of the application
221 * @retval None
222 */
223 static void MX_DataLogFusion_Process (void)
224 {
225 static TMsg msg_dat ;
226 static TMsg msg_cmd ;
227

228 if (MagCalRequest == 1U)
229 {
230 // Debouncing
231 HAL_Delay (50);
232

233 // Wait until the button is released
234 while ((BSP_PB_GetState (BUTTON_KEY) ==

PushButtonState));
235

236 // Debouncing
237 HAL_Delay (50);
238

239 MagCalRequest = 0;
240

109

Identification techniques

241 // Reset magnetometer calibration value
242 MagCalStatus = 0;
243 MagOffset .x = 0;
244 MagOffset .y = 0;
245 MagOffset .z = 0;
246

247 // Enable magnetometer calibration
248 MotionFX_manager_MagCal_start (ALGO_PERIOD);
249 }
250

251 /* if (SensorReadRequest == 1U)
252 {
253 SensorReadRequest = 0;*/
254

255 // Acquire data from enabled sensors and fill Msg
stream

256 // RTC_Handler (& msg_dat);
257 Accelero_Sensor_Handler (& msg_dat);
258 Gyro_Sensor_Handler (& msg_dat);
259 Magneto_Sensor_Handler (& msg_dat);
260 // Humidity_Sensor_Handler (& msg_dat);
261 // Temperature_Sensor_Handler (& msg_dat);
262 // Pressure_Sensor_Handler (& msg_dat);
263

264 // Sensor Fusion specific part
265 FX_Data_Handler (& msg_dat);
266

267 // Send data stream
268 /* INIT_STREAMING_HEADER (& msg_dat);
269 msg_dat .Len = STREAMING_MSG_LENGTH ;
270

271 if (UseOfflineData == 1U)
272 {
273 OfflineDataCount --;
274 if (OfflineDataCount < 0)
275 {
276 OfflineDataCount = 0;
277 }
278

279 OfflineDataReadIndex ++;
280 if (OfflineDataReadIndex >= OFFLINE_DATA_SIZE)
281 {
282 OfflineDataReadIndex = 0;
283 }
284

285 if (OfflineDataCount > 0)
286 {
287 SensorReadRequest = 1;
288 }
289 }

110

E.6 – STM32 IMU code

290 UART_SendMsg (& msg_dat);
291 }*/
292 // printf (" CIAO ");
293 }
294

295 /**
296 * @brief Initialize all sensors
297 * @param None
298 * @retval None
299 */
300 static void Init_Sensors (void)
301 {
302 BSP_SENSOR_ACC_Init ();
303 BSP_SENSOR_GYR_Init ();
304 BSP_SENSOR_MAG_Init ();
305 BSP_SENSOR_PRESS_Init ();
306 BSP_SENSOR_TEMP_Init ();
307 BSP_SENSOR_HUM_Init ();
308

309 BSP_SENSOR_ACC_SetOutputDataRate (ACC_ODR);
310 BSP_SENSOR_ACC_SetFullScale (ACC_FS);
311 }
312

313 /**
314 * @brief Handles the time+date getting / sending
315 * @param Msg the time+date part of the stream
316 * @retval None
317 */
318 static void RTC_Handler (TMsg *Msg)
319 {
320 uint8_t sub_sec = 0;
321 RTC_DateTypeDef sdatestructureget ;
322 RTC_TimeTypeDef stimestructure ;
323 uint32_t ans_uint32 ;
324 int32_t ans_int32 ;
325 uint32_t RtcSynchPrediv = hrtc.Init. SynchPrediv ;
326

327 if (UseOfflineData == 1)
328 {
329 Msg ->Data [3] = (uint8_t) OfflineData [

OfflineDataReadIndex]. hours;
330 Msg ->Data [4] = (uint8_t) OfflineData [

OfflineDataReadIndex]. minutes ;
331 Msg ->Data [5] = (uint8_t) OfflineData [

OfflineDataReadIndex]. seconds ;
332 Msg ->Data [6] = (uint8_t) OfflineData [

OfflineDataReadIndex]. subsec;
333 }
334 else
335 {

111

Identification techniques

336 (void) HAL_RTC_GetTime (&hrtc , & stimestructure ,
FORMAT_BIN);

337 (void) HAL_RTC_GetDate (&hrtc , & sdatestructureget ,
FORMAT_BIN);

338

339 /* To be MISRA C -2012 compliant the original
calculation :

340 sub_sec = ((((((int) RtcSynchPrediv) - ((int)
stimestructure . SubSeconds)) * 100) / (RtcSynchPrediv +

1)) & 0xFF);
341 has been split to separate expressions */
342 ans_int32 = (RtcSynchPrediv - (int32_t) stimestructure

. SubSeconds) * 100;
343 ans_int32 /= RtcSynchPrediv + 1;
344 ans_uint32 = (uint32_t) ans_int32 & 0xFFU;
345 sub_sec = (uint8_t) ans_uint32 ;
346

347 Msg ->Data [3] = (uint8_t) stimestructure .Hours;
348 Msg ->Data [4] = (uint8_t) stimestructure . Minutes ;
349 Msg ->Data [5] = (uint8_t) stimestructure . Seconds ;
350 Msg ->Data [6] = sub_sec ;
351 }
352 }
353

354 /**
355 * @brief Sensor Fusion data handler
356 * @param Msg the Sensor Fusion data part of the stream
357 * @retval None
358 */
359 static void FX_Data_Handler (TMsg *Msg)
360 {
361 uint32_t elapsed_time_us = 0U;
362 MFX_input_t data_in ;
363 MFX_input_t * pdata_in = & data_in ;
364 MFX_output_t data_out ;
365 MFX_output_t * pdata_out = & data_out ;
366

367 /* if ((SensorsEnabled & ACCELEROMETER_SENSOR) ==
ACCELEROMETER_SENSOR)

368 {
369 if ((SensorsEnabled & GYROSCOPE_SENSOR) ==

GYROSCOPE_SENSOR)
370 {
371 if ((SensorsEnabled & MAGNETIC_SENSOR) ==

MAGNETIC_SENSOR)
372 {*/
373 /* Convert angular velocity from [mdps] to [dps]

*/
374 data_in .gyro [0] = (float) GyrValue .x *

FROM_MDPS_TO_DPS ;

112

E.6 – STM32 IMU code

375 data_in .gyro [1] = (float) GyrValue .y *
FROM_MDPS_TO_DPS ;

376 data_in .gyro [2] = (float) GyrValue .z *
FROM_MDPS_TO_DPS ;

377

378 /* Convert acceleration from [mg] to [g] */
379 data_in .acc [0] = (float) AccValue .x * FROM_MG_TO_G

;
380 data_in .acc [1] = (float) AccValue .y * FROM_MG_TO_G

;
381 data_in .acc [2] = (float) AccValue .z * FROM_MG_TO_G

;
382

383 /* Convert magnetic field intensity from [mGauss]
to [uT / 50] */

384 data_in .mag [0] = (float) MagValue .x *
FROM_MGAUSS_TO_UT50 ;

385 data_in .mag [1] = (float) MagValue .y *
FROM_MGAUSS_TO_UT50 ;

386 data_in .mag [2] = (float) MagValue .z *
FROM_MGAUSS_TO_UT50 ;

387

388 gcvt(data_in .acc [0],6, ax_send);
389 gcvt(data_in .acc [1],6, ay_send);
390 gcvt(data_in .acc [2],6, az_send);
391

392 /* gcvt(data_in .gyro [0],6, gx_send);
393 gcvt(data_in .gyro [1],6, gy_send);
394 gcvt(data_in .gyro [2],6, gz_send);
395

396 gcvt(data_in .mag [0],6, mx_send);
397 gcvt(data_in .mag [1],6, my_send);
398 gcvt(data_in .mag [2],6, mz_send);*/
399

400 // snprintf (dataOut , MAX_BUF_SIZE , "\r\n%s, %s, %s,
%s, %s, %s, %s, %s, %s\r\n", ax_send , ay_send , az_send
,

401 // gx_send , gy_send , gz_send , mx_send , my_send ,
mz_send);

402 // printf ("%s", dataOut);
403

404

405 /* Run Sensor Fusion algorithm */
406 BSP_LED_On (LED2);
407 DWT_Start ();
408 MotionFX_manager_run (pdata_in , pdata_out ,

MOTION_FX_ENGINE_DELTATIME);
409 elapsed_time_us = DWT_Stop ();
410 BSP_LED_Off (LED2);
411

113

Identification techniques

412 data_to_send . quaternion [0]= pdata_out -> quaternion
[0];

413 data_to_send . quaternion [1]= pdata_out -> quaternion
[1];

414 data_to_send . quaternion [2]= pdata_out -> quaternion
[2];

415 data_to_send . quaternion [3]= pdata_out -> quaternion
[3];

416

417 gcvt(data_to_send . quaternion [0],6, quat0_send);
418 gcvt(data_to_send . quaternion [1],6, quat1_send);
419 gcvt(data_to_send . quaternion [2],6, quat2_send);
420 gcvt(data_to_send . quaternion [3],6, quat3_send);
421

422 // snprintf (dataOut , MAX_BUF_SIZE , "\r\ nQuaternion :
[%s , %s, %s, %s]\r\n", quat0_send ,quat1_send ,
quat2_send , quat3_send);

423 // printf ("%s", dataOut);
424

425 data_to_send . rotation [0]= pdata_out -> rotation [0];
426 data_to_send . rotation [1]= pdata_out -> rotation [1];
427 data_to_send . rotation [2]= pdata_out -> rotation [2];
428

429 gcvt(data_to_send . rotation [0],6, rot0_send);
430 gcvt(data_to_send . rotation [1],6, rot1_send);
431 gcvt(data_to_send . rotation [2],6, rot2_send);
432

433 // snprintf (dataOut , MAX_BUF_SIZE , "\r\ nRotation : [%s
, %s, %s]\r\n", rot0_send ,rot1_send , rot2_send);

434 // printf ("%s", dataOut);
435

436 /* data_to_send . gravity [0]= pdata_out -> gravity [0];
437 data_to_send . gravity [1]= pdata_out -> gravity [1];
438 data_to_send . gravity [2]= pdata_out -> gravity [2];
439

440 gcvt(data_to_send . gravity [0],6, grav0_send);
441 gcvt(data_to_send . gravity [1],6, grav1_send);
442 gcvt(data_to_send . gravity [2],6, grav2_send);*/
443

444 // snprintf (dataOut , MAX_BUF_SIZE , "\r\ nGravity : [%s
, %s, %s]\r\n", grav0_send ,grav1_send , grav2_send);

445 // printf ("%s", dataOut);
446

447 data_to_send . linear_acceleration [0]= pdata_out ->
linear_acceleration [0];

448 data_to_send . linear_acceleration [1]= pdata_out ->
linear_acceleration [1];

449 data_to_send . linear_acceleration [2]= pdata_out ->
linear_acceleration [2];

450

114

E.6 – STM32 IMU code

451 gcvt(data_to_send . linear_acceleration [0],6, acc0_send)
;

452 gcvt(data_to_send . linear_acceleration [1],6, acc1_send)
;

453 gcvt(data_to_send . linear_acceleration [2],6, acc2_send)
;

454

455 // snprintf (dataOut , MAX_BUF_SIZE , "\r\ nLinear
acceleration : [%s , %s, %s]\r\n", acc0_send ,acc1_send
, acc2_send);

456 // printf ("%s", dataOut);
457

458 snprintf (dataOut , MAX_BUF_SIZE , "\r\n%s,%s,%s,%s,%s,%
s,%s,%s,%s,%s,%s,%s,%s\r\n", quat0_send ,

459 quat1_send ,quat2_send ,quat3_send ,rot0_send ,
rot1_send ,rot2_send ,

460 acc0_send ,acc1_send ,acc2_send ,ax_send , ay_send ,
az_send);

461 printf("%s", dataOut);
462

463 (void)memcpy (&Msg ->Data [55] , (void *) pdata_out ->
quaternion , 4U * sizeof(float));

464 (void)memcpy (&Msg ->Data [71] , (void *) pdata_out ->
rotation , 3U * sizeof(float));

465 (void)memcpy (&Msg ->Data [83] , (void *) pdata_out ->
gravity , 3U * sizeof(float));

466 (void)memcpy (&Msg ->Data [95] , (void *) pdata_out ->
linear_acceleration , 3U * sizeof(float));

467

468 (void)memcpy (&Msg ->Data [107] , (void *) & (
pdata_out -> heading), sizeof(float));

469 (void)memcpy (&Msg ->Data [111] , (void *) & (
pdata_out -> headingErr), sizeof(float));

470

471 Serialize_s32 (&Msg ->Data [115] , (int32_t)
elapsed_time_us , 4);

472 /* }
473 }
474 }*/
475 }
476

477 /**
478 * @brief BSP Push Button callback
479 * @param Button Specifies the pin connected EXTI line
480 * @retval None.
481 */
482 void BSP_PB_Callback (Button_TypeDef Button)
483 {
484 MagCalRequest = 1U;
485 }

115

Identification techniques

486

487 /**
488 * @brief Handles the ACC axes data getting / sending
489 * @param Msg the ACC part of the stream
490 * @retval None
491 */
492 static void Accelero_Sensor_Handler (TMsg *Msg)
493 {
494 /* if ((SensorsEnabled & ACCELEROMETER_SENSOR) ==

ACCELEROMETER_SENSOR)
495 {
496 if (UseOfflineData == 1)
497 {
498 AccValue .x = OfflineData [OfflineDataReadIndex].

acceleration_x_mg ;
499 AccValue .y = OfflineData [OfflineDataReadIndex].

acceleration_y_mg ;
500 AccValue .z = OfflineData [OfflineDataReadIndex].

acceleration_z_mg ;
501 }
502 else
503 {*/
504 BSP_SENSOR_ACC_GetAxes (& AccValue);
505 /* }
506

507 Serialize_s32 (&Msg ->Data [19] , (int32_t) AccValue .x, 4)
;

508 Serialize_s32 (&Msg ->Data [23] , (int32_t) AccValue .y, 4)
;

509 Serialize_s32 (&Msg ->Data [27] , (int32_t) AccValue .z, 4)
;

510 }*/
511 }
512

513 /**
514 * @brief Handles the GYR axes data getting / sending
515 * @param Msg the GYR part of the stream
516 * @retval None
517 */
518 static void Gyro_Sensor_Handler (TMsg *Msg)
519 {
520 // if ((SensorsEnabled & GYROSCOPE_SENSOR) ==

GYROSCOPE_SENSOR)
521 // {
522 /* if (UseOfflineData == 1)
523 {
524 GyrValue .x = OfflineData [OfflineDataReadIndex].

angular_rate_x_mdps ;
525 GyrValue .y = OfflineData [OfflineDataReadIndex].

angular_rate_y_mdps ;

116

E.6 – STM32 IMU code

526 GyrValue .z = OfflineData [OfflineDataReadIndex].
angular_rate_z_mdps ;

527 }*/
528 // else
529 //{
530 BSP_SENSOR_GYR_GetAxes (& GyrValue);
531 //}
532

533 /* Serialize_s32 (&Msg ->Data [31] , GyrValue .x, 4);
534 Serialize_s32 (&Msg ->Data [35] , GyrValue .y, 4);
535 Serialize_s32 (&Msg ->Data [39] , GyrValue .z, 4);*/
536 // }
537 }
538

539 /**
540 * @brief Handles the MAG axes data getting / sending
541 * @param Msg the MAG part of the stream
542 * @retval None
543 */
544 static void Magneto_Sensor_Handler (TMsg *Msg)
545 {
546 float ans_float ;
547 MFX_MagCal_input_t mag_data_in ;
548 MFX_MagCal_output_t mag_data_out ;
549

550 /* if ((SensorsEnabled & MAGNETIC_SENSOR) ==
MAGNETIC_SENSOR)

551 {
552 if (UseOfflineData == 1)
553 {
554 MagValue .x = OfflineData [OfflineDataReadIndex].

magnetic_field_x_mgauss ;
555 MagValue .y = OfflineData [OfflineDataReadIndex].

magnetic_field_y_mgauss ;
556 MagValue .z = OfflineData [OfflineDataReadIndex].

magnetic_field_z_mgauss ;
557 }
558 else
559 {*/
560 BSP_SENSOR_MAG_GetAxes (& MagValue);
561

562 if (MagCalStatus == 0U)
563 {
564 mag_data_in .mag [0] = (float) MagValue .x *

FROM_MGAUSS_TO_UT50 ;
565 mag_data_in .mag [1] = (float) MagValue .y *

FROM_MGAUSS_TO_UT50 ;
566 mag_data_in .mag [2] = (float) MagValue .z *

FROM_MGAUSS_TO_UT50 ;
567

117

Identification techniques

568 mag_data_in . time_stamp = (int) TimeStamp ;
569 TimeStamp += (uint32_t) ALGO_PERIOD ;
570

571 MotionFX_manager_MagCal_run (& mag_data_in , &
mag_data_out);

572

573 if (mag_data_out . cal_quality == MFX_MAGCALGOOD)
574 {
575 MagCalStatus = 1;
576

577 ans_float = (mag_data_out . hi_bias [0] *
FROM_UT50_TO_MGAUSS);

578 MagOffset .x = (int32_t) ans_float ;
579 ans_float = (mag_data_out . hi_bias [1] *

FROM_UT50_TO_MGAUSS);
580 MagOffset .y = (int32_t) ans_float ;
581 ans_float = (mag_data_out . hi_bias [2] *

FROM_UT50_TO_MGAUSS);
582 MagOffset .z = (int32_t) ans_float ;
583

584 /* Disable magnetometer calibration */
585 MotionFX_manager_MagCal_stop (ALGO_PERIOD);
586 }
587 }
588

589 MagValue .x = (int32_t)(MagValue .x - MagOffset .x);
590 MagValue .y = (int32_t)(MagValue .y - MagOffset .y);
591 MagValue .z = (int32_t)(MagValue .z - MagOffset .z);
592 /* }
593

594 Serialize_s32 (&Msg ->Data [43] , MagValue .x, 4);
595 Serialize_s32 (&Msg ->Data [47] , MagValue .y, 4);
596 Serialize_s32 (&Msg ->Data [51] , MagValue .z, 4);
597 }*/
598 }
599

600 /**
601 * @brief Handles the PRESS sensor data getting / sending .
602 * @param Msg the PRESS part of the stream
603 * @retval None
604 */
605 static void Pressure_Sensor_Handler (TMsg *Msg)
606 {
607 if ((SensorsEnabled & PRESSURE_SENSOR) ==

PRESSURE_SENSOR)
608 {
609 if (UseOfflineData == 1)
610 {
611 PressValue = OfflineData [OfflineDataReadIndex].

pressure ;

118

E.6 – STM32 IMU code

612 }
613 else
614 {
615 BSP_SENSOR_PRESS_GetValue (& PressValue);
616 }
617

618 (void)memcpy (&Msg ->Data [7], (void *)&PressValue ,
sizeof(float));

619 }
620 }
621

622 /**
623 * @brief Handles the TEMP axes data getting / sending
624 * @param Msg the TEMP part of the stream
625 * @retval None
626 */
627 static void Temperature_Sensor_Handler (TMsg *Msg)
628 {
629 if ((SensorsEnabled & TEMPERATURE_SENSOR) ==

TEMPERATURE_SENSOR)
630 {
631 if (UseOfflineData == 1)
632 {
633 TempValue = OfflineData [OfflineDataReadIndex].

temperature ;
634 }
635 else
636 {
637 BSP_SENSOR_TEMP_GetValue (& TempValue);
638 }
639

640 (void)memcpy (&Msg ->Data [11] , (void *)&TempValue ,
sizeof(float));

641 }
642 }
643

644 /**
645 * @brief Handles the HUM axes data getting / sending
646 * @param Msg the HUM part of the stream
647 * @retval None
648 */
649 static void Humidity_Sensor_Handler (TMsg *Msg)
650 {
651 if ((SensorsEnabled & HUMIDITY_SENSOR) ==

HUMIDITY_SENSOR)
652 {
653 if (UseOfflineData == 1)
654 {
655 HumValue = OfflineData [OfflineDataReadIndex].

humidity ;

119

Identification techniques

656 }
657 else
658 {
659 BSP_SENSOR_HUM_GetValue (& HumValue);
660 }
661

662 (void)memcpy (&Msg ->Data [15] , (void *)&HumValue ,
sizeof(float));;

663 }
664 }
665

666 /**
667 * @brief Timer configuration
668 * @param Freq the desired Timer frequency
669 * @retval None
670 */
671 static void TIM_Config (uint32_t Freq)
672 {
673 const uint32_t tim_counter_clock = 2000; /* TIM counter

clock 2 kHz */
674 uint32_t prescaler_value = (uint32_t)((SystemCoreClock

/ tim_counter_clock) - 1);
675 uint32_t period = (tim_counter_clock / Freq) - 1;
676

677 BSP_IP_TIM_Handle .Init. Prescaler = prescaler_value ;
678 BSP_IP_TIM_Handle .Init. CounterMode = TIM_COUNTERMODE_UP

;
679 BSP_IP_TIM_Handle .Init.Period = period;
680 BSP_IP_TIM_Handle .Init. ClockDivision =

TIM_CLOCKDIVISION_DIV1 ;
681 BSP_IP_TIM_Handle .Init. AutoReloadPreload =

TIM_AUTORELOAD_PRELOAD_DISABLE ;
682 if (HAL_TIM_Base_Init (& BSP_IP_TIM_Handle) != HAL_OK)
683 {
684 Error_Handler ();
685 }
686 }
687

688 /**
689 * @brief Initialize DWT register for counting clock

cycles purpose
690 * @param None
691 * @retval None
692 */
693 static void DWT_Init (void)
694 {
695 CoreDebug ->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk ;
696

697 DWT ->CTRL &= ~ DWT_CTRL_CYCCNTENA_Msk ; /* Disable
counter */

120

E.7 – Raspberry 3D IMU code

698 }
699

700 /**
701 * @brief Start counting clock cycles
702 * @param None
703 * @retval None
704 */
705 static void DWT_Start (void)
706 {
707 DWT ->CYCCNT = 0; /* Clear count of clock cycles */
708 DWT ->CTRL |= DWT_CTRL_CYCCNTENA_Msk ; /* Enable counter

*/
709 }
710

711 /**
712 * @brief Stop counting clock cycles and calculate

elapsed time in [us]
713 * @param None
714 * @retval Elapsed time in [us]
715 */
716 static uint32_t DWT_Stop (void)
717 {
718 volatile uint32_t cycles_count = 0U;
719 uint32_t system_core_clock_mhz = 0U;
720

721 DWT ->CTRL &= ~ DWT_CTRL_CYCCNTENA_Msk ; /* Disable
counter */

722 cycles_count = DWT ->CYCCNT; /* Read count of clock
cycles */

723

724 /* Calculate elapsed time in [us] */
725 system_core_clock_mhz = SystemCoreClock / 1000000 U;
726 return cycles_count / system_core_clock_mhz ;
727 }
728

729 #ifdef __cplusplus
730 }
731 #endif
732

733 /* *********************** (C) COPYRIGHT
STMicroelectronics ***** END OF FILE *** */

E.7 Raspberry 3D IMU code

1 import serial;
2 import io;
3 import time;
4 import os;

121

Identification techniques

5

6 import numpy as np
7 from numpy.linalg import inv , norm
8 from operator import add
9 import math

10 from scipy import signal
11

12 def quaternion_rotation_matrix (Q):
13 """
14 Covert a quaternion into a full three - dimensional

rotation matrix.
15

16 Input
17 :param Q: A 4 element array representing the

quaternion (q0 ,q1 ,q2 ,q3)
18

19 Output
20 :return: A 3x3 element matrix representing the full 3

D rotation matrix.
21 This rotation matrix converts a point in the

local reference
22 frame to a point in the global reference

frame.
23 """
24 # Extract the values from Q
25 q0 = Q[0]
26 q1 = Q[1]
27 q2 = Q[2]
28 q3 = Q[3]
29

30 # First row of the rotation matrix
31 r00 = 2 * (q0 * q0 + q1 * q1) - 1
32 r01 = 2 * (q1 * q2 - q0 * q3)
33 r02 = 2 * (q1 * q3 + q0 * q2)
34

35 # Second row of the rotation matrix
36 r10 = 2 * (q1 * q2 + q0 * q3)
37 r11 = 2 * (q0 * q0 + q2 * q2) - 1
38 r12 = 2 * (q2 * q3 - q0 * q1)
39

40 # Third row of the rotation matrix
41 r20 = 2 * (q1 * q3 - q0 * q2)
42 r21 = 2 * (q2 * q3 + q0 * q1)
43 r22 = 2 * (q0 * q0 + q3 * q3) - 1
44

45 # 3x3 rotation matrix
46 rot_matrix = np.array ([[r00 , r01 , r02],
47 [r10 , r11 , r12],
48 [r20 , r21 , r22]])
49

122

E.7 – Raspberry 3D IMU code

50 return rot_matrix
51

52 if __name__ == '__main__ ' :
53 start_serial =True
54

55 dt =0.01
56 p_old=np.array ([0 ,0 ,0])
57 v_old=np.array ([0 ,0 ,0])
58

59 #time.sleep (5)
60

61 calibration =True
62 cal =0
63

64 px=0
65 py=0
66 pz=0
67

68 vx=0
69 vy=0
70 vz=0
71

72 pFIX =[0 ,0 ,0]
73

74 sos=signal.butter (1 ,0.2/(1/ dt),btype='highpass ',
analog=False ,output='sos ')

75 while True:
76 try :
77 # configure the serial connections (the

parameters differs on the device you are connecting to
)

78 with serial.Serial(port='/dev/ ttyACM0 ',
baudrate =115200 , timeout =0.1 , xonxoff =False , rtscts=
False , dsrdtr=True) as s:

79 try:
80 for line in s:
81 #t1 = time.time ()
82 #print(line.decode ("utf -8"))
83 data=line.decode("utf -8").split("

,")
84 i=0
85 if len(data) >2:
86 for num in data:
87 data[i]= float(num)
88 i=i+1
89 #print(data)
90 quaternions =data [0:4]
91 #print(quaternions)
92 rotation =data [4:7]
93 #print(rotation)

123

Identification techniques

94 linear_acceleration =[x*9.8
for x in data [7:10]]

95 accelerometer_raw =[x*9.8 for
x in data [10:13]]

96 #print(accelerometer_raw)
97 if calibration :
98 if cal ==0:
99 acc_cal =[

linear_acceleration [0], linear_acceleration [1],
linear_acceleration [2]]

100 # acc_cal =[
accelerometer_raw [0], accelerometer_raw [1],
accelerometer_raw [2]]

101

102 else:
103 # acc_cal =[(acc_cal

[0]+ linear_acceleration [0]) /2,(acc_cal [1]+
linear_acceleration [1]) /2,(acc_cal [2]+
linear_acceleration [2]) /2]

104 # acc_cal =[acc_cal [0]+
accelerometer_raw [0], acc_cal [1]+ accelerometer_raw [1],
acc_cal [2]+ accelerometer_raw [2]]

105 # acc_cal =list(map(add
,acc_cal , accelerometer_raw))

106 acc_cal =list(map(add ,
acc_cal , linear_acceleration))

107 cal=cal +1
108 if cal ==500:
109 calibration =False
110 print(acc_cal)
111 acc_cal =[x/cal for x

in acc_cal]
112 print(acc_cal)
113

114 #print(acc_cal)
115

116 else:
117 # accelerometer_raw =[

accelerometer_raw [0]- acc_cal [0], accelerometer_raw [1]-
acc_cal [1], accelerometer_raw [2]- acc_cal [2]]

118 #print(acc_cal)
119 for i in range (3):
120 if abs(

accelerometer_raw [i]) <0.1:
121 accelerometer_raw

[i]=0
122 #print(accelerometer_raw)

124

E.7 – Raspberry 3D IMU code

123 linear_acceleration =np.
array ([linear_acceleration [0]- acc_cal [0],
linear_acceleration [1]- acc_cal [1], linear_acceleration
[2]- acc_cal [2]])

124 #print (" Non filtrato ")
125 #print(

linear_acceleration)
126

127 # linear_accelerationHP =
signal. sosfilt (sos , linear_acceleration)

128 #print (" Filtrato ")
129 #print(

linear_accelerationHP)
130

131 #vx=v_old [0] +
linear_acceleration [0]* dt

132 #vy=v_old [1] +
linear_acceleration [1]* dt

133 #vz=v_old [2] +
linear_acceleration [2]* dt

134

135 #vx=(accelerometer_raw
[0]* math.cos(rotation [0])+ accelerometer_raw [1]* math.
cos(rotation [0]+90))*dt

136 #vy=(accelerometer_raw
[0]* math.sin(rotation [0])+ accelerometer_raw [1]* math.
sin(rotation [0]+90))*dt

137

138 vx=vx+ linear_acceleration
[0]* dt

139 vy=vy+ linear_acceleration
[1]* dt

140 vz=vz+ linear_acceleration
[2]* dt

141

142 v=np.array ([vx ,vy ,vz])
143 #print (" Velocity not

filtered : ",v)
144 vHP=signal. sosfilt (sos ,v)
145 #print (" Velocity filtered

: ",vHP)
146 #v=np.array ([vx ,vy ,vz])
147

148 #v_old=v
149

150 #print(v)
151

152 #px=p_old [0] + v[0]* dt
153 #py=p_old [1] + v[1]* dt
154 #pz=p_old [2] + v[2]* dt

125

Identification techniques

155

156 #p=np.array ([px ,py ,pz])
157

158 #p_old=p
159

160 #px=px + vx*dt *1000
161 #py=py + vy*dt *1000
162

163 pxMOB=vHP [0]* dt
164 pyMOB=vHP [1]* dt
165 pzMOB=vHP [2]* dt
166

167 pMOB=np.array ([pxMOB ,
pyMOB ,pzMOB])

168

169

170

171 #print (" Position not
filtered ",p)

172 pHP=signal. sosfilt (sos ,
pMOB)

173 #print (" Position filtered
: ",pHP)

174

175 rot_mat =
quaternion_rotation_matrix (quaternions)

176

177 pFIX=list(map(add ,pFIX ,
rot_mat@pHP))

178

179 print(pFIX)
180

181 #print(px ,py)
182

183 except KeyboardInterrupt :
184 s.close ()
185 print('Program exit!')
186 break
187 except :
188 s.close ()
189 print("An error occurred ")
190 print('Restart ')

E.8 Raspberry 2D IMU code

1 import serial;
2 import io;
3 import time;

126

E.8 – Raspberry 2D IMU code

4 import os;
5

6 import numpy as np
7 from numpy.linalg import inv , norm
8 from operator import add
9 import math

10 from scipy import signal
11

12 if __name__ == '__main__ ' :
13 start_serial =True
14

15 dt =0.01
16 p_old=np.array ([0 ,0 ,0])
17 v_old=np.array ([0 ,0 ,0])
18

19 #time.sleep (5)
20

21 calibration =True
22 cal =0
23

24 px=0
25 py=0
26

27 vx=0
28 vy=0
29

30 sos=signal.butter (1 ,0.2/(1/ dt),btype='highpass ',
analog=False ,output='sos ')

31 while True:
32 try :
33 # configure the serial connections (the

parameters differs on the device you are connecting to
)

34 with serial.Serial(port='/dev/ ttyACM0 ',
baudrate =115200 , timeout =0.1 , xonxoff =False , rtscts=
False , dsrdtr=True) as s:

35 try:
36 for line in s:
37 #t1 = time.time ()
38 #print(line.decode ("utf -8"))
39 data=line.decode("utf -8").split("

,")
40 i=0
41 if len(data) >2:
42 for num in data:
43 data[i]= float(num)
44 i=i+1
45 #print(data)
46 quaternions =data [0:4]
47 #print(quaternions)

127

Identification techniques

48 rotation =data [4:7]
49 #print(rotation)
50 linear_acceleration =[x*9.8

for x in data [7:10]]
51 accelerometer_raw =[x*9.8 for

x in data [10:13]]
52 #print(accelerometer_raw)
53 if calibration :
54 if cal ==0:
55 acc_cal =[

linear_acceleration [0], linear_acceleration [1],
linear_acceleration [2]]

56 # acc_cal =[
accelerometer_raw [0], accelerometer_raw [1],
accelerometer_raw [2]]

57

58 else:
59 # acc_cal =[(acc_cal

[0]+ linear_acceleration [0]) /2,(acc_cal [1]+
linear_acceleration [1]) /2,(acc_cal [2]+
linear_acceleration [2]) /2]

60 # acc_cal =[acc_cal [0]+
accelerometer_raw [0], acc_cal [1]+ accelerometer_raw [1],
acc_cal [2]+ accelerometer_raw [2]]

61 # acc_cal =list(map(add
,acc_cal , accelerometer_raw))

62 acc_cal =list(map(add ,
acc_cal , linear_acceleration))

63 cal=cal +1
64 if cal ==500:
65 calibration =False
66 print(acc_cal)
67 acc_cal =[x/cal for x

in acc_cal]
68 print(acc_cal)
69

70 #print(acc_cal)
71

72 else:
73 # accelerometer_raw =[

accelerometer_raw [0]- acc_cal [0], accelerometer_raw [1]-
acc_cal [1], accelerometer_raw [2]- acc_cal [2]]

74 #print(acc_cal)
75 for i in range (3):
76 if abs(

accelerometer_raw [i]) <0.1:
77 accelerometer_raw

[i]=0
78 #print(accelerometer_raw)

128

E.8 – Raspberry 2D IMU code

79 linear_acceleration =np.
array ([linear_acceleration [0]- acc_cal [0],
linear_acceleration [1]- acc_cal [1], linear_acceleration
[2]- acc_cal [2]])

80 #print (" Non filtrato ")
81 #print(

linear_acceleration)
82

83 # linear_accelerationHP =
signal. sosfilt (sos , linear_acceleration)

84 #print (" Filtrato ")
85 #print(

linear_accelerationHP)
86

87 #vx=v_old [0] +
linear_acceleration [0]* dt

88 #vy=v_old [1] +
linear_acceleration [1]* dt

89 #vz=v_old [2] +
linear_acceleration [2]* dt

90

91 #vx=(accelerometer_raw
[0]* math.cos(rotation [0])+ accelerometer_raw [1]* math.
cos(rotation [0]+90))*dt

92 #vy=(accelerometer_raw
[0]* math.sin(rotation [0])+ accelerometer_raw [1]* math.
sin(rotation [0]+90))*dt

93

94 vx=vx+(
linear_acceleration [0]* math.cos(rotation [0])+
linear_acceleration [1]* math.cos(rotation [0]+90))*dt

95 vy=vy+(
linear_acceleration [0]* math.sin(rotation [0])+
linear_acceleration [1]* math.sin(rotation [0]+90))*dt

96

97 v=np.array ([vx ,vy])
98 #print (" Velocity not

filtered : ",v)
99 vHP=signal. sosfilt (sos ,v)

100 #print (" Velocity filtered
: ",vHP)

101 #v=np.array ([vx ,vy ,vz])
102

103 #v_old=v
104

105 #print(v)
106

107 #px=p_old [0] + v[0]* dt
108 #py=p_old [1] + v[1]* dt
109 #pz=p_old [2] + v[2]* dt

129

Identification techniques

110

111 #p=np.array ([px ,py ,pz])
112

113 #p_old=p
114

115 #px=px + vx*dt *1000
116 #py=py + vy*dt *1000
117

118 px=px + vHP [0]* dt
119 py=py + vHP [1]* dt
120 p=np.array ([px ,py])
121 #print (" Position not

filtered ",p)
122 pHP=signal. sosfilt (sos ,p)
123 print(" Position filtered :

",pHP)
124

125 #print(px ,py)
126

127 except KeyboardInterrupt :
128 s.close ()
129 print('Program exit!')
130 break
131 except :
132 s.close ()
133 print("An error occurred ")
134 print('Restart ')

E.9 MATLAB IMU algorithm

1 clear all
2 close all
3 clc
4

5 %% Data acquisition
6

7 STM32F401RE = serialport (" COM3 " ,115200);
8

9 samples = 3000;
10

11 for i=1: samples
12 data = readline (STM32F401RE);
13 data_split = strsplit (data ,',');
14 if length(data_split) < 2
15 i = i -1;
16 else
17 data_converted = str2double (data_split);
18 Data(i ,:)= data_converted ;

130

E.9 – MATLAB IMU algorithm

19 if i >=1000
20 disp(data_converted)
21 end
22 end
23 end
24

25 %% Data manipulation
26 ts =10/1000; % sempling time
27

28 %save data for x, y, z axis. /1000*9.81 to transform from
milliG to m/s^2

29 %save gyr data for x, y, z axis /1000 to transform from
milli -dps to dps

30 acc =[Data (: ,1) *9.81 , Data (: ,2) *9.81 , Data (: ,3) *9.81];
31 gyr =[Data (: ,4) , Data (: ,5) , Data (: ,6)];
32 mag =[Data (: ,7) , Data (: ,8) , Data (: ,9)];
33

34

35 % Process data through AHRS algorithm (calcualte
orientation)

36 R = zeros (3,3, length(acc));
37 ifilt = ahrsfilter ('SampleRate ', 1/ts ,'OrientationFormat '

,'Rotation matrix ');
38 R = ifilt(acc , gyr * (pi /180) ,mag);% gyr must be rad/s,

acc must be m/s^2
39 for i = 1: length(acc)
40 R(:,:,i) = R(:,:,i) ';
41 end
42

43 % Calculate 'tilt -compensated ' accelerometer
44 tcAcc = zeros(size(acc)); % accelerometer in Earth frame
45

46 for i = 1: length(acc)
47 tcAcc(i ,:) = R(:,:,i) * acc(i ,:) ';
48 end
49

50 % Calculate linear acceleration in Earth frame (
subtracting gravity)

51 linAcc = tcAcc - [zeros(length(tcAcc), 1), zeros(length(
tcAcc), 1),

52 ones(length(tcAcc), 1)]*9.81;
53

54

55 % integrate to find velocity
56 linVel = zeros(size(linAcc));
57 for i = 2: length(linAcc)
58 linVel(i ,:) = linVel(i -1 ,:) + linAcc(i ,:) * ts;
59 end
60 %high pass filter the velocity to remove drift
61 order = 1;

131

Identification techniques

62 filtCutOff = 0.1;
63 [b, a] = butter(order , (2* filtCutOff)/(1/ ts), 'high ');
64 linVelHP = filtfilt (b, a, linVel);
65

66 % integrate to find position
67 linPos = zeros(size(linVel));
68 for i = 2: length(linVelHP)
69 linPos(i ,:) = linPos(i -1 ,:) + linVelHP (i ,:) * ts;
70 end
71 %high pass filter the position to remove drift
72 order = 1;
73 filtCutOff = 0.1;
74 [b, a] = butter(order , (2* filtCutOff)/(1/ ts), 'high ');
75 linPosHP = filtfilt (b, a, linPos);
76

77 %plots
78 figure (1);
79 hold on;
80 plot(acc (: ,1) , 'r');
81 plot(acc (: ,2) , 'g');
82 plot(acc (: ,3) , 'b');
83 xlabel('sample ');
84 ylabel('m/s^2');
85 title('Accelerometer ');
86 legend('X', 'Y', 'Z');
87

88 % Plot
89 figure (2);
90 hold on;
91 plot(tcAcc (: ,1) , 'r');
92 plot(tcAcc (: ,2) , 'g');
93 plot(tcAcc (: ,3) , 'b');
94 xlabel('sample ');
95 ylabel('m/s^2');
96 title('''Tilt - compensated '' accelerometer ');
97 legend('X', 'Y', 'Z');
98

99 % Plot
100 figure (3);
101 hold on;
102 plot(linVelHP (: ,1) , 'r');
103 plot(linVelHP (: ,2) , 'g');
104 plot(linVelHP (: ,3) , 'b');
105 xlabel('sample ');
106 ylabel('g');
107 title('High -pass filtered linear velocity ');
108 legend('X', 'Y', 'Z');
109 % Plot
110 figure (4);
111 hold on;

132

E.10 – MATLAB plotting algorithm

112 plot(linPosHP (: ,1) , 'r');
113 plot(linPosHP (: ,2) , 'g');
114 plot(linPosHP (: ,3) , 'b');
115 xlabel('sample ');
116 ylabel('m');
117 title('High -pass filtered linear position ');
118 legend('X', 'Y', 'Z');
119

120

121 % viewer = HelperOrientationViewer ('Title ',{' with mag '})
122 % ifilt = ahrsfilter ('SampleRate ', 1/ts);
123 % for i=1: size(acc ,1)
124 % qimu = ifilt(acc(i ,:) , gyr(i ,:) * (pi /180) ,mag(i ,:)

);
125 % viewer(qimu);
126 %
127 % end
128

129 SamplePlotFreq = 5;
130 samplePeriod =ts;
131 SixDOFanimation (linPosHP (1000: samples -1 ,:) , R, ...
132 'SamplePlotFreq ', SamplePlotFreq , 'Trail '

, 'Off ', ...
133 'Position ', [9 39 1280 720] , ...
134 'AxisLength ', 0.1, 'ShowArrowHead ', false

, ...
135 'Xlabel ', 'X (m)', 'Ylabel ', 'Y (m)', '

Zlabel ', 'Z (m)', 'ShowLegend ', false , 'Title ', '
Unfiltered ' ,...

136 'CreateAVI ', false , 'AVIfileNameEnum ',
false , 'AVIfps ', ((1/ samplePeriod) / SamplePlotFreq));

E.10 MATLAB plotting algorithm

1 function fig = SixDOFanimation (varargin)
2

3 %% Create local variables
4

5 % Required arguments
6 p = varargin {1}; % position of body
7 R = varargin {2}; % rotation matrix of

body
8 [numSamples dummy] = size(p);
9

10 % Default values of optional arguments
11 SamplePlotFreq = 1;
12 Trail = 'Off ';
13 LimitRatio = 1;

133

Identification techniques

14 Position = [];
15 FullScreen = false;
16 View = [30 20];
17 AxisLength = 1;
18 ShowArrowHead = 'on';
19 Xlabel = 'X';
20 Ylabel = 'Y';
21 Zlabel = 'Z';
22 Title = '6DOF Animation ';
23 ShowLegend = true;
24 CreateAVI = false;
25 AVIfileName = '6DOF Animation ';
26 AVIfileNameEnum = true;
27 AVIfps = 30;
28

29 for i = 3:2: nargin
30 if strcmp(varargin {i}, 'SamplePlotFreq '),

SamplePlotFreq = varargin {i+1};
31 elseif strcmp(varargin {i}, 'Trail ')
32 Trail = varargin {i+1};
33 if(~ strcmp(Trail , 'Off ') && ~strcmp(Trail , '

DotsOnly ') && ~strcmp(Trail , 'All '))
34 error('Invalid argument . Trail must be '

'Off '', ''DotsOnly '' or ''All ''.');
35 end
36 elseif strcmp(varargin {i}, 'LimitRatio '),

LimitRatio = varargin {i+1};
37 elseif strcmp(varargin {i}, 'Position '), Position

= varargin {i+1};
38 elseif strcmp(varargin {i}, 'FullScreen '),

FullScreen = varargin {i+1};
39 elseif strcmp(varargin {i}, 'View '), View =

varargin {i+1};
40 elseif strcmp(varargin {i}, 'AxisLength '),

AxisLength = varargin {i+1};
41 elseif strcmp(varargin {i}, 'ShowArrowHead '),

ShowArrowHead = varargin {i+1};
42 elseif strcmp(varargin {i}, 'Xlabel '), Xlabel =

varargin {i+1};
43 elseif strcmp(varargin {i}, 'Ylabel '), Ylabel =

varargin {i+1};
44 elseif strcmp(varargin {i}, 'Zlabel '), Zlabel =

varargin {i+1};
45 elseif strcmp(varargin {i}, 'Title '), Title =

varargin {i+1};
46 elseif strcmp(varargin {i}, 'ShowLegend '),

ShowLegend = varargin {i+1};
47 elseif strcmp(varargin {i}, 'CreateAVI '),

CreateAVI = varargin {i+1};

134

E.10 – MATLAB plotting algorithm

48 elseif strcmp(varargin {i}, 'AVIfileName '),
AVIfileName = varargin {i+1};

49 elseif strcmp(varargin {i}, 'AVIfileNameEnum '),
AVIfileNameEnum = varargin {i+1};

50 elseif strcmp(varargin {i}, 'AVIfps '), AVIfps =
varargin {i+1};

51 else error('Invalid argument .');
52 end
53 end;
54

55 %% Reduce data to samples to plot only
56

57 p = p(1: SamplePlotFreq :numSamples , :);
58 R = R(:, :, 1: SamplePlotFreq : numSamples) * AxisLength

;
59 if(numel(View) > 2)
60 View = View (1: SamplePlotFreq :numSamples , :);
61 end
62 [numPlotSamples dummy] = size(p);
63

64 %% Setup AVI file
65

66 aviobj = [];
% create null object

67 if(CreateAVI)
68 fileName = strcat(AVIfileName , '.avi ');
69 if(exist(fileName , 'file '))
70 if(AVIfileNameEnum)

% if file name exists and enum
enabled

71 i = 0;
72 while(exist(fileName , 'file '))

% find un -used file name by
appending enum

73 fileName = strcat(AVIfileName ,
sprintf ('%i', i), '.avi ');

74 i = i + 1;
75 end
76 else

% else file name exists and
enum disabled

77 fileName = [];
% file will not be created

78 end
79 end
80 if(isempty (fileName))
81 sprintf ('AVI file not created as file already

exists.')
82 else

135

Identification techniques

83 aviobj = avifile (fileName , 'fps ', AVIfps , '
compression ', 'Cinepak ', 'quality ', 100);

84 end
85 end
86

87 %% Setup figure and plot
88

89 % Create figure
90 fig = figure('NumberTitle ', 'off ', 'Name ', '6DOF

Animation ');
91 if(FullScreen)
92 screenSize = get(0, 'ScreenSize ');
93 set(fig , 'Position ', [0 0 screenSize (3)

screenSize (4)]);
94 elseif (~ isempty (Position))
95 set(fig , 'Position ', Position);
96 end
97 set(gca , 'drawmode ', 'fast ');
98 lighting phong;
99 set(gcf , 'Renderer ', 'zbuffer ');

100 hold on;
101 axis equal;
102 grid on;
103 view(View (1, 1), View (1, 2));
104 title(i);
105 xlabel(Xlabel);
106 ylabel(Ylabel);
107 zlabel(Zlabel);
108

109 % Create plot data arrays
110 if(strcmp(Trail , 'DotsOnly ') || strcmp(Trail , 'All '))
111 x = zeros(numPlotSamples , 1);
112 y = zeros(numPlotSamples , 1);
113 z = zeros(numPlotSamples , 1);
114 end
115 if(strcmp(Trail , 'All '))
116 ox = zeros(numPlotSamples , 1);
117 oy = zeros(numPlotSamples , 1);
118 oz = zeros(numPlotSamples , 1);
119 ux = zeros(numPlotSamples , 1);
120 vx = zeros(numPlotSamples , 1);
121 wx = zeros(numPlotSamples , 1);
122 uy = zeros(numPlotSamples , 1);
123 vy = zeros(numPlotSamples , 1);
124 wy = zeros(numPlotSamples , 1);
125 uz = zeros(numPlotSamples , 1);
126 vz = zeros(numPlotSamples , 1);
127 wz = zeros(numPlotSamples , 1);
128 end
129 x(1) = p(1 ,1);

136

E.10 – MATLAB plotting algorithm

130 y(1) = p(1 ,2);
131 z(1) = p(1 ,3);
132 ox (1) = x(1);
133 oy (1) = y(1);
134 oz (1) = z(1);
135 ux (1) = R(1 ,1 ,1:1);
136 vx (1) = R(2 ,1 ,1:1);
137 wx (1) = R(3 ,1 ,1:1);
138 uy (1) = R(1 ,2 ,1:1);
139 vy (1) = R(2 ,2 ,1:1);
140 wy (1) = R(3 ,2 ,1:1);
141 uz (1) = R(1 ,3 ,1:1);
142 vz (1) = R(2 ,3 ,1:1);
143 wz (1) = R(3 ,3 ,1:1);
144

145 % Create graphics handles
146 orgHandle = plot3(x, y, z, 'k.');
147 if(ShowArrowHead)
148 ShowArrowHeadStr = 'on';
149 else
150 ShowArrowHeadStr = 'off ';
151 end
152 quivXhandle = quiver3 (ox , oy , oz , ux , vx , wx , 'r', '

ShowArrowHead ', ShowArrowHeadStr , 'MaxHeadSize ',
0.999999 , 'AutoScale ', 'off ');

153 quivYhandle = quiver3 (ox , oy , oz , uy , vy , wy , 'g', '
ShowArrowHead ', ShowArrowHeadStr , 'MaxHeadSize ',
0.999999 , 'AutoScale ', 'off ');

154 quivZhandle = quiver3 (ox , ox , oz , uz , vz , wz , 'b', '
ShowArrowHead ', ShowArrowHeadStr , 'MaxHeadSize ',
0.999999 , 'AutoScale ', 'off ');

155

156 % Create legend
157 if(ShowLegend)
158 legend('Origin ', 'X', 'Y', 'Z');
159 end
160

161 % Set initial limits
162 Xlim = [x(1) -AxisLength x(1)+ AxisLength] * LimitRatio

;
163 Ylim = [y(1) -AxisLength y(1)+ AxisLength] * LimitRatio

;
164 Zlim = [z(1) -AxisLength z(1)+ AxisLength] * LimitRatio

;
165 set(gca , 'Xlim ', Xlim , 'Ylim ', Ylim , 'Zlim ', Zlim);
166

167 % Set initial view
168 view(View (1, :));
169

170 %% Plot one sample at a time

137

Identification techniques

171

172 for i = 1: numPlotSamples
173

174 % Update graph title
175 if(strcmp(Title , ''))
176 titleText = sprintf ('Sample %i of %i', 1+((i

-1)* SamplePlotFreq), numSamples);
177 else
178 titleText = strcat(Title , ' (', sprintf ('

Sample %i of %i', 1+((i -1)* SamplePlotFreq), numSamples
), ')');

179 end
180 title(titleText);
181

182 % Plot body x y z axes
183 if(strcmp(Trail , 'DotsOnly ') || strcmp(Trail , '

All '))
184 x(1:i) = p(1:i ,1);
185 y(1:i) = p(1:i ,2);
186 z(1:i) = p(1:i ,3);
187 else
188 x = p(i ,1);
189 y = p(i ,2);
190 z = p(i ,3);
191 end
192 if(strcmp(Trail , 'All '))
193 ox (1:i) = p(1:i ,1);
194 oy (1:i) = p(1:i ,2);
195 oz (1:i) = p(1:i ,3);
196 ux (1:i) = R(1 ,1 ,1:i);
197 vx (1:i) = R(2 ,1 ,1:i);
198 wx (1:i) = R(3 ,1 ,1:i);
199 uy (1:i) = R(1 ,2 ,1:i);
200 vy (1:i) = R(2 ,2 ,1:i);
201 wy (1:i) = R(3 ,2 ,1:i);
202 uz (1:i) = R(1 ,3 ,1:i);
203 vz (1:i) = R(2 ,3 ,1:i);
204 wz (1:i) = R(3 ,3 ,1:i);
205 else
206 ox = p(i ,1);
207 oy = p(i ,2);
208 oz = p(i ,3);
209 ux = R(1,1,i);
210 vx = R(2,1,i);
211 wx = R(3,1,i);
212 uy = R(1,2,i);
213 vy = R(2,2,i);
214 wy = R(3,2,i);
215 uz = R(1,3,i);
216 vz = R(2,3,i);

138

E.10 – MATLAB plotting algorithm

217 wz = R(3,3,i);
218 end
219 set(orgHandle , 'xdata ', x, 'ydata ', y, 'zdata ', z

);
220 set(quivXhandle , 'xdata ', ox , 'ydata ', oy , 'zdata

', oz ,'udata ', ux , 'vdata ', vx , 'wdata ', wx);
221 set(quivYhandle , 'xdata ', ox , 'ydata ', oy , 'zdata

', oz ,'udata ', uy , 'vdata ', vy , 'wdata ', wy);
222 set(quivZhandle , 'xdata ', ox , 'ydata ', oy , 'zdata

', oz ,'udata ', uz , 'vdata ', vz , 'wdata ', wz);
223

224 % Adjust axes for snug fit and draw
225 axisLimChanged = false;
226 if((p(i ,1) - AxisLength) < Xlim (1)), Xlim (1) = p(

i ,1) - LimitRatio * AxisLength ; axisLimChanged = true;
end

227 if((p(i ,2) - AxisLength) < Ylim (1)), Ylim (1) = p(
i ,2) - LimitRatio * AxisLength ; axisLimChanged = true;
end

228 if((p(i ,3) - AxisLength) < Zlim (1)), Zlim (1) = p(
i ,3) - LimitRatio * AxisLength ; axisLimChanged = true;
end

229 if((p(i ,1) + AxisLength) > Xlim (2)), Xlim (2) = p(
i ,1) + LimitRatio * AxisLength ; axisLimChanged = true;
end

230 if((p(i ,2) + AxisLength) > Ylim (2)), Ylim (2) = p(
i ,2) + LimitRatio * AxisLength ; axisLimChanged = true;
end

231 if((p(i ,3) + AxisLength) > Zlim (2)), Zlim (2) = p(
i ,3) + LimitRatio * AxisLength ; axisLimChanged = true;
end

232 if(axisLimChanged), set(gca , 'Xlim ', Xlim , 'Ylim '
, Ylim , 'Zlim ', Zlim); end

233 drawnow ;
234

235 % Adjust view
236 if(numel(View) > 2)
237 view(View(i, :));
238 end
239

240 % Add frame to AVI object
241 if(~ isempty (aviobj))
242 frame = getframe (fig);
243 aviobj = addframe (aviobj , frame);
244 end
245

246 end
247

248 hold off;
249

139

Identification techniques

250 % Close AVI file
251 if(~ isempty (aviobj))
252 aviobj = close(aviobj);
253 end
254

255 end

140

Bibliography

[1] T.-H. Tsai and C.-H. Yao, “A Real-time Tracking Algorithm for Human Fol-
lowing Mobile Robot,” in 2018 International SoC Design Conference (ISOCC),
(Daegu, Korea (South)), pp. 78–79, IEEE, Nov. 2018.

[2] S. Jiang, L. Li, M. Hang, and T.-y. Kuc, “An Adaptive 2D Tracking Approach
for Person Following Robot,” in 2017 International Symposium on Computer
Science and Intelligent Controls (ISCSIC), (Budapest), pp. 147–151, IEEE,
Oct. 2017.

[3] Q. K. Dang and Y. S. Suh, “Human-following robot using infrared camera,”
in 2011 11th International Conference on Control, Automation and Systems,
pp. 1054–1058, 2011.

[4] M. S. Hassan, A. F. Khan, M. W. Khan, M. Uzair, and K. Khurshid, “A
computationally low cost vision based tracking algorithm for human following
robot,” in 2016 2nd International Conference on Control, Automation and
Robotics (ICCAR), (Hong Kong, Hong Kong), pp. 62–65, IEEE, Apr. 2016.

[5] L. Jiang, W. Wang, Y. Chen, and Y. Jia, “Personalize Vison-based Human Fol-
lowing for Mobile Robots by Learning from Human-Driven Demonstrations,”
in 2018 27th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), (Nanjing), pp. 726–731, IEEE, Aug. 2018.

[6] P. Petrov, V. Georgieva, I. Kralov, and S. Nikolov, “An Adaptive Control
Scheme for Human Following Behavior of Mobile Robots,” in 2020 XI Na-
tional Conference with International Participation (ELECTRONICA), (Sofia,
Bulgaria), pp. 1–4, IEEE, July 2020.

[7] Yoonchang Sung and Woojin Chung, “Human tracking of a mobile robot with
an onboard LRF (Laser Range Finder) using human walking motion analy-
sis,” in 2011 8th International Conference on Ubiquitous Robots and Ambient
Intelligence (URAI), (Incheon), pp. 366–370, IEEE, Nov. 2011.

[8] “TensorFlow Lite | ML per dispositivi mobili e periferici.” TensorFlow Lite site.
[9] “Intel® Neural Compute Stick 2.” NCS2 site.
[10] “OpenVINO™ Toolkit Overview - OpenVINO™ Toolkit.” Openvino site.
[11] “Opencv.” OpenCV site.
[12] “2-DOF Pan-Tilt HAT - Waveshare Wiki.” 2-DOF Waveshare Wiki.

141

https://www.tensorflow.org/lite?hl=it
https://www.intel.com/content/www/us/en/develop/hardware/neural-compute-stick.html
https://docs.openvinotoolkit.org/latest/index.html
https://opencv.org/
https://www.waveshare.com/wiki/Pan-Tilt_HAT

	Abstract
	Summary
	List of Tables
	List of Figures
	State of art
	Introduction
	Raspberry setup with Openvino
	Pan-Tilt camera control
	Hardware and software components
	Control code for tracking of the user

	Robot position control
	Hardware design and implementation of the circuit
	Software implementation for the robot's movements

	Identification strategies
	Computer vision and image recognition identification techniques
	Color detection
	QR code detection

	Infrared communication technique for the identification of the user
	Infrared protocols
	Raspberry Rx - Arduino Tx project

	Bluetooth low energy triangulation for tracking and Identification of the user
	BLE technology
	Setup and implementation of the STM32F401RE with X-NUCLEO-BNRG2A1
	Coding the BlueNRG2A1
	Raspberry pi code for tracking and identification using bluetooth

	Inertial Measurement Unit position tracking identification technique
	Setup and implementation of the STM32F401RE with X-NUCLEO-IKS01A3
	Coding the IKS01A3
	Raspberry pi 4 position estimation coding
	MATLAB position estimation algorithm

	Conclusions and future work
	Appendices
	Openvino setup
	Openvino setup tutorial
	Openvino setup test

	PAN-TILT HAT codes
	PCA9685 control library
	PAN-TILT HAT test code

	Camera control algorithm
	Robot's position control
	Identification techniques
	Color detection identification code
	Infrared detection code
	Infrared and computer vision fusion
	STM32 BLE communication code
	Raspberry triangulation code
	STM32 IMU code
	Raspberry 3D IMU code
	Raspberry 2D IMU code
	MATLAB IMU algorithm
	MATLAB plotting algorithm

	Bibliography

