
POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Mater’s Degree Thesis

Design of a customizable
simulation infrastructure for noisy

quantum circuits

Supervisors:
Prof. Maurizio Zamboni
Prof. Mariagrazia Graziano
Prof. Giovanna Turvani

Candidate:
Simone Pont

December 2021

Summary

In the last years, quantum computing has grown in popularity becoming one of the
most promising computational paradigms. Its advantage is the increase of the den-
sity of information, achieved by using superposition, and a potential speed-up
in the convergence to an optimal solution through entanglement. To fully explore
the possibilities that quantum algorithms can offer and to reliably estimate the per-
formance of a real quantum computer in a practical scenario, a classical quantum
circuit simulator is needed.
In this thesis, a classical simulator infrastructure, capable to simulate noisy quan-
tum circuits, was developed. This infrastructure should be placed at the end of a
toolchain dedicated to the creation of quantum circuits which is under development
at the VLSI Lab of Politecnico di Torino. The simulator has been developed using
the C++ language, which allows greater degrees of optimization in terms of compu-
tational cost. The simulation methodology is based on the Schrödinger formalism:
quantum states are represented by their wave functions and unitary operators act
on them. The main issue is that the complexity grows exponentially with the
number of qubits n: according to Dirac notation, states are described by using vec-
tors of 2n complex amplitudes, and operators by using 2n × 2n unitary matrices.
Two different representations of quantum states and quantum gates have been ex-
plored and implemented: the Array based and the Decision Diagram (DD)
based. In the former, quantum states and gates are described using mono and
bi-dimensional arrays. In the latter, they are described using graphs that try to
optimize the representation by exploiting the redundancies of the elements of
vectors and matrices. In both cases, the advantages and disadvantages in terms of
performance and memory occupation have been investigated.
The implemented simulator can work with two different approaches to model the
noise. The first one is the most employed in scientific literature and it is based on
the use of some super-operators {K1,K2, · · · ,Km}, called Kraus operators, acting
on the state. Considering that the non-ideality phenomena described by these oper-
ators are usually applied after every gate, the computational cost and the memory
occupation of the overall simulation increase. The second methodology is based
on a compact model developed by the VLSI Lab research group at Politecnico di
Torino. In this approach, the effects of relaxation and decoherence are described
respectively by a single vector (relaxation vector) and matrix (decoherence matrix),
minimizing the needed resources. They are directly applied to the density matrix
describing the quantum state through the element-by-element product.
The simulator is based on a customizable modular structure that leads to a

1

versatile simulation. Configuration files can be used to change the settings of the
simulator, such as the representation or the noise model that have to be used.
Moreover, the circuit to be simulated can be defined by hand or by exploiting the
OpenQASM 2.0 language.
In the first two chapters, the key concepts about quantum theory and quantum
computation are introduced. In particular, the problems related to the classical
simulation of quantum circuits are highlighted.
In the third chapter, the structure of the implemented simulator is reported,
underling the interactions between its different modules. Then, the approach used
to implement the noiseless simulation is described.
A more detailed analysis of the Array-based simulation and the classes used to
implement it is reported in the fourth chapter. This is the standard representation
to describe quantum states and gates, based on the Eigen libraries. Then, Decision
Diagrams are introduced in the fifth chapter, focusing on their possible usage in the
quantum circuit simulation. Their compact structure, obtained by exploiting the
redundancies inside the states and gates, can limit the memory occupation. How-
ever, their performance is greatly affected by the characteristics of the considered
circuit.
In the sixth chapter, the noisy simulation is considered and the two implemented
noise models are described. The introduction of non-ideality phenomena changes
the simulation approach: quantum systems must be associated with mixed states
that are described by using density matrices instead of state vectors. Moreover,
the noise effects must be considered during the simulation, increasing its complexity.
The seventh chapter contains the analysis of the obtained results concerning the
simulation time and the memory usage. The different configurations are compared
to identify the most suitable one for every need.
Finally, the possible improvements and the future prospects are presented
in the last chapter. In particular, the possibility to integrate new and optimized
modules to improve the developed infrastructure is highlighted.

2

Table of contents

1 State Of The Art 1
1.1 Quantum Theory . 1
1.2 Quantum Computation . 3

2 Quantum Circuit Simulation 6
2.1 Classical Simulation Of Quantum Circuits 6

3 Simulator Structure 10
3.1 Simulation Approach . 10
3.2 Simulator Behavior . 11
3.3 Code Structure . 13
3.4 Circuit Class . 16

3.4.1 Condensed-Gate Simulation 21
3.5 CircOpenQASM Class . 24
3.6 Simulator Internal Library . 30

4 Array Representation 32
4.1 C++ Basic Implementation . 33

4.1.1 ArrayStateVector Class . 33
4.1.2 OperatorArray Class . 34

4.2 Array-Based Simulation . 37

5 Decision-Diagram Representation 40
5.1 Decision Diagram Theory . 40

5.1.1 Implemented Structure . 49
5.2 C++ Basic Implementation . 52

5.2.1 DDStateVector Class . 52
5.2.2 DDSqMatrix Class . 57
5.2.3 OperatorDD Class . 64

5.3 Improvements . 68

6 Noisy Simulation 76
6.1 Noise In Simulation . 76

6.1.1 Standard Noise Model . 79
6.1.2 Compact Noise Model . 80

6.2 C++ Implementation . 82
6.2.1 ArrayDensityMatrix and DDDensityMatrix Classes 83

I

6.2.2 NoiseModel Class . 84
6.2.3 Noise Model Library . 86

6.3 Noisy Simulator Behavior . 87

7 Obtained Results 92
7.1 Tools And Benchmarks . 92

7.1.1 Massif Log File . 94
7.2 Simulator Validation . 95
7.3 Ideal Simulation Results . 97

7.3.1 “Condensed Gate” Simulation Results 107
7.4 Noisy Simulation Results . 108

7.4.1 Standard Noise Model Results 109
7.4.2 Compact Noise Model Results 113

7.5 Overall Comparison . 113

8 Conclusion 121
8.1 Summary . 121
8.2 Possible Improvements And Future Prospects 122

Bibliography 124

II

List of tables

3.1 Table containing all the gates of the internal library. 31
7.1 Comparison between the quantum state probability distribution af-

fected by numerical errors obtained with the implemented simulator
and the correct one deriving from Qiskit. 97

7.2 Obtained results from the simulation of generic quantum circuits con-
sidering noiseless simulation using state vectors. 98

7.3 Obtained results from the simulation of generic quantum circuits con-
sidering the noiseless simulation using density matrices. 103

7.4 Obtained results from the noiseless simulation of generic quantum
circuits considering the “condensed gate” optimization. 108

7.5 Obtained results from the simulation of generic quantum circuits af-
fected by Bit-Phase Flip error. 109

7.6 Obtained results from the simulation of generic quantum circuits af-
fected by Depolarizing errors. 112

7.7 Obtained results from the simulation of generic quantum circuits af-
fected by decoherence and relaxation errors described by the compact
model analyzed in Section 6.1.2. 113

III

List of figures

1.1 Example of the graphical representation of a generic quantum circuit. 4
2.1 Comparison between a circuit with “separated” and “merged” gates. . 8
3.1 General behavior of the simulator. 13
3.2 General structure of the simulator’s code. The classes are reported

in the rectangles and the implemented library in the hexagon. The
dependencies between them are indicated by arrows. 14

3.3 Directory tree containing the simulator files. 16
3.4 Algorithm used to reorder a quantum state applying SWAPs opera-

tions to it. 19
3.5 Algorithm used for the basic noiseless simulation of a generic quantum

circuit. 20
3.6 Example of the overlap between two gates after having applied the

needed SWAPs. 22
3.7 Algorithm used for the optimized condensed-gate simulation of a

generic quantum circuit. 23
3.8 General algorithm used to read an OpenQASM 2.0 file and generate

the related circuit. 28
4.1 Algorithm used to apply the operator to a generic reordered state

vector. 36
4.2 Detail of the noiseless Array-based simulator structure. 38
4.3 Simulator behavior during the noiseless Array-based simulation. . . . 39
5.1 Basic structure of a Decision Diagram representing a generic mono-

dimensional array. 41
5.2 Comparison between the basic structure of a DD and the one that

exploits the redundancies inside the elements of the represented mono-
dimensional array. 42

5.3 Comparison between the structure of a DD with and without edge
weights. 43

5.4 Optimal structure of a Decision Diagram representing a generic mono-
dimensional array. 44

5.5 Decision Diagram used to represent a three qubits state vector. 46
5.6 Decision Diagram representation of a three qubits state vector with

highlighted the path used to access the amplitude −1√
2
. 47

5.7 Decision Diagram used to represent the two qubits matrix associated
to the CH gate. 48

IV

5.8 Decision Diagram representation of the matrix associated to the CH
gate with highlighted the path used to access the element 1√

2
. 49

5.9 Decision Diagram used by the simulator to represent a three qubits
state vector. 50

5.10 Comparison between the DD representation of the matrix associated
to the CH gate used by the simulator and the one with the minimum
number of nodes. 51

5.11 General algorithm for the creation of a DD state vector. 54
5.12 Algorithm for the creation of the bottom level of the DD state vector. 55
5.13 Algorithm for the creation of the intermediate levels of the DD state

vector. 56
5.14 Comparison between the tree structure of the DDStateVec and the

DDSqMatrix. 58
5.15 Comparison between the tree structure of the DDSqMatrix without

and with the termination nodes. 59
5.16 General algorithm for the creation of a DD representing a generic

matrix. 60
5.17 Algorithm for the creation of the bottom level of a matrix’s DD. . . . 61
5.18 Algorithm to fill a bottom level node accessing the correct 2x2 sub-

matrix. 62
5.19 Algorithm for the creation of the upper levels of a matrix’s DD. . . . 63
5.20 DD representation of two matrices and the related tensor product. . . 66
5.21 Algorithm for the calculation of a tensor product between two matri-

ces represented using Decision Diagrams. 67
5.22 General algorithm for the calculation of the recursive row-column

product between two matrices represented using Decision Diagrams. . 70
5.23 Algorithm for the calculation of the intermediate levels of the re-

cursive row-column product between two matrices represented using
Decision Diagrams. 72

5.24 Algorithm for the calculation of the last level of the recursive row-
column product between two matrices represented using Decision Di-
agrams. 73

5.25 Algorithm used to set (reset) a certain qubit of the quantum state. . 75
6.1 General algorithm used to simulate a noisy circuit. 89
6.2 Simulator behavior during the noisy Array-based simulation. 90
6.3 Detail of the noisy Array-based simulator structure. 91
7.1 Example of the graphical representation of the memory usage trend

during the program execution. On the horizontal and vertical axes are
reported respectively the progression of the program and the allocated
memory. 94

V

7.2 Simple quantum circuit used to analyze the effects of numerical errors
inside the simulator. 96

7.3 Simulation time of the QFT and IQFT circuits depending on the
considered number of qubits in the case of noiseless simulation with
state vectors. 99

7.4 Memory occupation of the QFT and IQFT circuits depending on the
considered number of qubits in the case of noiseless simulation with
state vectors. 100

7.5 Trend of memory usage in the noiseless simulation of the iqft 8 circuit
using the Array-based state vectors. 102

7.6 Trend of memory usage in the noiseless simulation of the iqft 8 circuit
using the DD-based state vectors. 102

7.7 Comparison between the simulation time of the QFT and IQFT noise-
less circuits using state vectors and density matrices. 104

7.8 Comparison between the memory occupation of the QFT and IQFT
noiseless circuits using state vectors and density matrices. 105

7.9 Trend of the memory usage in the noiseless simulation of the adder medium
circuit using the Array-based density matrices. 106

7.10 Trend of the memory usage in the noiseless simulation of the adder medium
circuit using the DD-based density matrices. 107

7.11 Trend of the memory usage in the noisy simulation of the qft 9 circuit
using the Array-based representation. 110

7.12 Trend of the memory usage in the noisy simulation of the qft 9 circuit
using the DD-based representation. 111

7.13 Comparison between the simulation time of small circuits considering
different possible configurations. 115

7.14 Comparison between the simulation time of intermediate circuits con-
sidering different possible configurations. 116

7.15 Comparison between the average memory occupation of small circuits
considering different possible configurations. 118

7.16 Comparison between the average memory occupation of intermediate
circuits considering different possible configurations. 119

VI

Chapter 1

State Of The Art

In this chapter, the basic quantum computing theory is introduced. The mathemat-

ical knowledge of complex numbers and complex vector spaces is required to fully

understand its content. The initial chapters of [1] and [2] can be used to acquire

this knowledge.

1.1 Quantum Theory

In the last years, quantum computing has grown in popularity becoming one of

the most promising computational paradigm. Indeed, it can improve the density

of information and the computational power of a certain system. Its possible ap-

plications are multiple and include several fields, such as machine learning, physics

simulations, algorithm optimizations and quantum chemistry [3, 4, 5].

Classical digital computer operates using bits as basic unit of information. In con-

trast, quantum computers are based on the use of qubits, i.e. two-level quantum-

mechanical systems that belongs to C2 complex Hilbert vector spaces. While a bit

can assume only two possible states (0 and 1), a qubit can be in a coherent su-

perposition of both. Considering the Dirac notation [2] and using the orthogonal

states |0⟩ = [1 0]T and |1⟩ = [0 1]T as basis, the pure state |ϕ⟩ of a qubit is a linear

combination of them:

|ϕ⟩ = α|0⟩+ β|1⟩, (1.1)

where α ∈ C and β ∈ C are known as complex amplitudes (or probability ampli-

tudes) and satisfy αα∗+ββ∗ = 1. A graphical representation of the state of a single

qubit can be obtained by using the Bloch sphere [2].

If n qubits are combined in an unique system, the state |φ⟩ of the latter is a weighted
superposition of the 2n orthogonal basis vectors |xi⟩ of the corresponding Hilbert

1

1 – State Of The Art

space [2]:

|φ⟩ =
2n−1∑
i=0

αi|xi⟩, with αi ∈ C and
2n−1∑
i=0

αiα
∗
i = 1. (1.2)

A generic basis {|xi⟩} for the n-qubit systems can be expressed as {|bn−1bn−2 · · · b1b0⟩}
where bn−1,bn−2, · · · ,b1,b0 ∈ {0, 1}. For example, in the case of a two-qubit system

(n = 2), a valid basis is {|00⟩,|01⟩,|10⟩,|11⟩}. It important to underline that the

proposed basis is not the only one that can be used. In an n-qubit system, any basis

of the Cn space can be employed. However, the considered one is the most used in

the quantum computing notation and it will be adopted from now on.

In a multi-qubit system, some superpositions can be represented more compactly as

tensor products of smaller states. An example is the state 1√
2
(|01⟩+ |11⟩) that can

be expressed as 1√
2
(|0⟩ + |1⟩)⊗ |1⟩. However, not all the possible states can be de-

scribed in this way because the qubits influence each other. The states that cannot

be decomposed to a tensor product between smaller states are called “entangled”

(for more details refer to chapter 3.1.3 of [2]). Superposition and entanglement are

the two main reasons for the increase of information density in a quantum system

compared to a classical one [6].

Another important aspect of quantum systems that must be analyzed is their behav-

ior during measurements. The measurement operation modifies the quantum state

of the system and collapses it to a specific basis state with a certain probability

(for more details refer to chapter 3.1.4 of [2]). The result of the measurement is

not deterministic and depends on the amplitudes associated with every state. In

particular, measuring a single qubit in the state |ϕ⟩ = α|0⟩+ β|1⟩ changes its state
to one of the two bases adopted for the measurement. Considering to work with

the standard basis (|0⟩ and |1⟩) the measurement outcome is |0⟩ with probability

αα∗ and |1⟩ with probability ββ∗. In both cases, the final state is collapsed and the

superposition is lost. The measurement in a multi-qubit system can be implemented

by simply measuring one by one all the qubits of the system. In this situation, the

entanglement is important because the outcome of a certain qubit is affected by the

measurement of another one in an entangled state. For example, supposing to have

the state 1√
2
(|00⟩ + |11⟩) and measure the first qubit to be 0 (1), the measurement

of the second qubit will definitely be 0 (1).

2

1 – State Of The Art

1.2 Quantum Computation

Now that the main concepts of the basic quantum theory have been introduced, it is

important to describe how they can be applied to quantum computation. A generic

n-qubit system is usually called quantum register and is used to store information

about the evolution of the state through a quantum circuit. As in classical logical

computation, the circuits are composed of different gates (called quantum gates

or operators) that modify the quantum state. These quantum gates are reversible

and described by unitary matrices that define their effects on the quantum state

[7]. Considering that the biggest part of the boolean logic gates is not reversible,

the basic quantum gates have generally a different behavior compared to them.

However, all the classical gates can be emulated by using quantum gates. The

effect of a generic quantum gate described by the matrix U on a certain quantum

register in the state |φ⟩ is obtained by doing the product between the matrix U and

the vector |φ⟩ (containing the probability amplitudes of the state), as reported in

Equation (1.3):

|φ′⟩ = U |φ⟩, (1.3)

where |φ′⟩ is the vector describing the state after the application of the gate.

The basic quantum gates operate with a limited amount of qubits, usually less than

three, the most important ones are reported in Table 3.1. However, bigger gates

acting on multiple qubits simultaneously can be generated by combining simple

gates. This can be done using the Kronecker product (or tensor product) between

the matrices representing the different gates that have to be combined. Multiple

consecutive quantum gates compose a quantum circuit and collections of quantum

circuits are used to execute more sophisticated quantum algorithms. In every al-

gorithm, some final or intermediate measurements are then performed to retrieve

the needed information from the quantum register. Moreover, multiple quantum

algorithms can be concatenated and combined (also with the classical computation)

to solve complex problems.

To summarize, in the abstract level quantum computation is composed by:

� One or multiple quantum registers used to store the information about the

quantum system;

3

1 – State Of The Art

� Multiple quantum gates that compose the quantum circuits in charge to exe-

cute the quantum algorithm;

� Multiple measurements used to extract the needed information from the reg-

isters.

Figure 1.1 reports the commonly used graphical representation of a simple quantum

circuit.

|0⟩ H SWAP

|1⟩ •

|1⟩ Z

|0⟩ SWAP

Figure 1.1: Example of the graphical representation of a generic quantum circuit.

On the left part, the initial quantum state is reported using the Qiskit notation

[8]: the qubits are ordered from the least to the most significant one, starting from

the top. Each qubit of the state is associated with a horizontal line where the

operators related to that qubit are placed. After the initial state, all gates that

compose the circuit are reported ordered from left to right. Each single-qubit gate

is represented by a square containing its identifier (refer to Table 3.1 to know the

employed identifiers) and it is placed on the line corresponding to its target qubit.

In the case of controlled gate, the identifier is again positioned on the line related

to the target qubit, while a black dot is placed on all the lines corresponding to

the control qubits. These dots are connected with the gate symbol by means of a

vertical line. Finally, in the case of multiple target gates, an identifier is placed on

all the lines related to the targets qubits and they are connected using a vertical

line.

As in the classical world, multiple architectures, compilers, and specific languages for

quantum computing have been proposed during the years. However, today’s most

employed language to describe quantum circuits is the Open QASM [9]. It is a simple

text language developed by IBM with syntax elements of C and assembly. This

language can represent universal physical circuits starting from simple one-qubit and

4

1 – State Of The Art

two-qubits built-in gates. Indeed, it is always possible to decompose a multi-qubit

operator into universal gates acting on one or two qubits [10]. Different versions and

variants of this language are present, however, the implemented simulator refers to

the Open QASM 2.0.

5

Chapter 2

Quantum Circuit Simulation

In this chapter, the methodology employed to simulate quantum circuits by using

classical computers is described underlying the motivations behind its study and

implementation.

2.1 Classical Simulation Of Quantum Circuits

Since the availability and the gate fidelity of real quantum hardware are today

limited, simulators running on classical computers are needed to fully explore the

possibilities that quantum algorithms can offer. These simulators are used to eval-

uate the possible applications of quantum computers and to estimate the reachable

quantum speed-up. Moreover, simulation is needed to obtain the theoretical evolu-

tion of the quantum state through the circuit, which is used to verify the correct

behavior of real quantum devices. The results obtained using simulation are com-

pared to the ones obtained with the quantum hardware to check their correctness

and identify possible errors. This is fundamental also for the development of error-

correcting codes [11]. Another important advantage of the classical simulation is

that the system is always under control and accessible. Differently from real quan-

tum devices, all the probability amplitudes of the quantum state can be determined

explicitly. The data can be accessed in a deterministic way and not only through

measurements. Finally, the classical simulation can also consider the non-ideality

phenomena inside the quantum circuits and estimate their effects on the system

(a more detailed description is reported in Chapter 6). Summarizing, a classical

quantum circuit simulator is helpful to:

� study the behavior of quantum devices without the need of having the access

to them;

6

2 – Quantum Circuit Simulation

� evaluate and improve the performance of quantum algorithms and architec-

tures;

� evaluate the speed-up obtained with quantum hardware compared to the clas-

sical one;

� verify the correct behavior of the developed quantum devices comparing their

outcomes with the simulated ones;

� study and develop error-correcting codes;

� have always access to the complete information about the system;

� consider the non-idealities of the real hardware and study their effects on the

system.

For all these reasons, the development of a classical simulator is today very impor-

tant. Multiple simulation techniques were studied and developed, almost all of them

are based on one of the three core paradigms of quantum mechanics [12]:

� Schrödinger formalism: it represents quantum states by their wave func-

tions, using vectors with 2n complex amplitudes (Dirac notation). Operators

are described with unitary matrices and combined using tensor products. They

are used to modify the states.

� Feynman formalism: it computes probabilities of individual outcomes with-

out computing intermediate quantum states. Superposition is not considered

during simulation: only one basis state is analyzed at a time and then the

results are combined [13, 14].

� Heisenberg formalism: it considers the evolution of the operators and not

of the states [15].

The most used is the Schrödinger formalism because it is straightforward, provides

full information of all the possible outcomes, and can be easily parallelized on dis-

tributed architectures to improve its efficiency. This formalism is the one used also

in the simulator presented in this work. The main problem of all these approaches is

related to the exponential increase of complexity with the growth of the considered

7

2 – Quantum Circuit Simulation

number n of qubits. Indeed, the states must be described by storing 2n complex

amplitudes and the operators must be applied to them using 2n × 2n unitary matri-

ces. Clearly, optimizations are needed to limit the problem and have a reasonable

simulation [16, 17, 14]. Some of them are also based on the utilization of a different

and more compact representation of states and operators [18, 19]. The most popular

quantum computing frameworks based on the Schrödinger simulation are: ProjectQ

[20], Microsoft Azure [21], IBM Qiskit [8].

As mentioned in Chapter 1, unitary matrices are applied to the quantum states to

describe the effects of quantum gates. These matrices are obtained by calculating

the tensor product between smaller matrices associated with the different qubits of

the system, in particular:

� the qubits related to a certain operator are associated with the matrix describ-

ing it;

� the qubits without any operator are associated with identity matrices.

Considering, for example, the circuit represented in Figure 1.1, the first operator is

the Hadamard gate (H). The matrix describing the effects of that operator on the

quantum state is calculated as:

U = I ⊗ I ⊗ I ⊗H (2.1)

Usually, a single gate is applied at every simulation step, so a single operator matrix

and multiple identities are considered. However, there is the possibility to merge

multiple non-overlapping gates and consider their effects together. Figure 2.1 reports

the comparison between a simple circuit where the gates are considered one by one

separately and the same circuit with multiple gates applied at the same time.

|1⟩ H • H Z

|0⟩ H •

|0⟩ Y Z H Y
(a) Separated Gates.

|1⟩ H • H Z

|0⟩ H •

|0⟩ Y Z H Y
(b) Merged Gates.

Figure 2.1: Comparison between a circuit with “separated” and “merged” gates.

8

2 – Quantum Circuit Simulation

The equivalence of these two circuits can be proved by using the property ex-

pressed in Equation (2.2), referring for the first merging of Figure 2.1:

(I ⊗ I ⊗H) · (Y ⊗ I ⊗ I) = Y ⊗ I ⊗H, (2.2)

where ⊗ indicates the tensor product, I is the identity matrix, H the Hadamard

gate and Y the Pauli-Y gate. This equivalence will be the basic principle of the

implemented optimization of the simulation described in Section 3.4.1.

To conclude this chapter, it is important to say that the implemented simulator

relies on two different representations, both based on the Schrödinger formalism:

� Array based representation: it is the standard approach in which mono

and bi-dimensional arrays are used to store the state vectors and the matrices

of operators (Chapter 4).

� Decision Diagram based representation: it is a different approach where

states and operators are stored using graphs (Chapter 5). Its purpose is to

have a more compact representation in case of redundant elements on the

states and gates.

9

Chapter 3

Simulator Structure

In this chapter, the general structure of the simulator and the key principles of its

behavior are described and analyzed.

3.1 Simulation Approach

Before starting the description of the simulator’s structure and its implementation,

it is necessary to clarify the approach used for the simulation of a generic quantum

circuit. The main purpose of the simulation is to consider an initial quantum state

and calculate its evolution through the different quantum gates of the circuit. First

of all, the circuit must be created considering all the gates and their related target(s)

and control(s) qubits. After that, a valid initial state must be considered to start the

simulation. During the simulation, the complete circuit is crossed and the gates are

applied one by one to the quantum state. Every time a gate is applied, the quantum

state is partially or entirely modified depending on the gate’s characteristics. In the

end, after having applied all the circuit’s gates, the quantum state reaches its final

value and the simulation is completed.

The simulation is based on the Schrödinger formalism: it represents quantum states

by their wave functions and quantum gates by unitary matrices. The modified state

after a certain gate is obtained doing the product between the original state (before

the gate) and the matrix related to that gate. This matrix must have the same

dimension of the state and can be obtained doing Kronecker products between the

matrices associated with the different qubits. In particular, the qubits related to

the gate are associated with the gate’s matrix while the others are associated with

identity matrices.

10

3 – Simulator Structure

This approach is quite simple and straightforward but has two main problems:

� Long simulation time: all the gates must be applied one by one to the state

(multiple products between the state and the gates’ matrices);

� Large amount of needed memory: the states and the gates’ matrices have

exponential growth with respect to the number of qubits.

To limit these problems and have a reasonable simulation in terms of time and mem-

ory occupation, some optimizations are performed and two different representations

for quantum states and gates are investigated: the Array based and the Decision-

Diagram based.

A simulation approach similar to the described one is used also in the case of noisy

simulations. The main differences are related to the description used to define quan-

tum states and the methodology used to apply noisy quantum gates. For a more

detailed and accurate analysis of the noisy simulation, refer to the related Chapter 6.

3.2 Simulator Behavior

The implemented simulator is based on the simulation approach described in the

previous section and can work in four different configurations:

� Ideal simulation with Array based representation;

� Ideal simulation with Decision-Diagram based representation;

� Noisy simulation with Array based representation;

� Noisy simulation with Decision-Diagram based representation.

Two different representations for quantum states and gates can be used: the Array

based and the Decision-Diagram (DD) based. Their implementation and the theory

behind them will be described in detail in the related Chapter 4 and Chapter 5.

For now, it is sufficient to say that the vectors and the matrices are represented

using mono and bi-dimensional arrays in the former and using graphs in the latter.

Moreover, the noisy configurations differ from the ideal ones because in them the

11

3 – Simulator Structure

quantum states are described using density matrices. For this reason, the simulation

using these configurations is generally slower.

During the creation of the circuit and its simulation, a single configuration must be

chosen, and it is not possible to use a mixture of them. For example, it is not possible

to have a circuit represented using the Array based representation and simulate it

using a state represented by Decision-Diagrams. This choice was taken because, even

if the “mixed simulation” could be theoretically implemented, it would practically

imply a big worsening of performance with no real advantages.

After having chosen the wanted configuration for the simulator and having set all

the related parameters (see the documentation [22] for more detail about them),

the circuit can be created by hand or by reading an OpenQASM 2.0 [9] file. To

do this, the two classes Circuit and CircOpenQASM are employed: the first is

used to create and manage a generic quantum circuit starting from its gates, the

second is used to read an OpenQASM 2.0 file and generate the related circuit (as

a Circuit object). In both cases, during the creation of the circuit, the gates are

represented as objects of the OperatorDD or the OperatorArray classes, depending

on the chosen representation. After that, an initial state must be defined before

starting the simulation, and, for this reason, other four classes are employed, one

for each configuration:

� ArrayStateVec in case of ideal simulation with Array based representation;

� DDStateVec in case of ideal simulation with Decision-Diagram based repre-

sentation;

� ArrayDensityMatrix in case of noisy simulation with Array based representa-

tion;

� DDDensityMatrix in case of noisy simulation with Decision-Diagram based

representation.

Finally, the simulation can be run by directly using the functions of the CircOpen-

QASM and Circuit classes. If no errors are encountered, the simulation proceeds

until the end of the circuit. At this point, the final quantum state is available

and can be measured and/or used as starting state for another simulation. The

12

3 – Simulator Structure

described procedure can be applied also to multiple circuits, defined as multiple

CircOpenQASM or Circuit objects, but they cannot be simulated in parallel at the

same time. This means that if more than one circuit is present, the previous steps

must be applied sequentially to every circuit one by one: the simulation of the next

circuit cannot start until the previous one is terminated. It is important to underline

that the final state obtained after the simulation of a certain circuit can be used as

the initial state for another simulation of the same circuit or another one, as long

as the configuration remains the same.

The described simulator’s behavior is represented and summarized in the Figure 3.1.

Chose the

working

 configuration

 Generate the

 circuit

Define an

initial

quantum state

Start the

simulation

Obtain the

final

quantum state

 The gates

are described as

"Operator"

(Array or DD)

objects

The state

is described by

using a state
vector or a

denisty matrix

 The

simulation

settings and the
NoiseModel

class are defined

The final

state vector or

density matrix is
calculated

 The methods

of the

"Operator" and
NoiseModel

classes are used

Figure 3.1: General behavior of the simulator.

3.3 Code Structure

The C++ implementation of the simulator is based on different classes that recipro-

cally interact with each other. They form a tree structure that has at its top the

more abstract classes which do not depend on the chosen configuration and that are

used to generate the circuit and manage the simulation. Under them, other more

specific classes are defined to describe the quantum states and the quantum gates

in all the possible configurations. Inside these classes, all the low-level calculations

are implemented using different algorithms depending on the used representation.

In all cases, some well-known libraries are used to simplify data management. The

described tree structure is reported in Figure 3.2, where the arrows indicate the

13

3 – Simulator Structure

classes’ dependencies.

Circuit

CircOpenQASM

OperatorArray OperatorDD

ArrayDensityMatrix ArrayStateVector DDStateVector DDDensityMatrix

NoiseModel

DDSqMatrix

OperatorLibrary.hpp

Figure 3.2: General structure of the simulator’s code. The classes are reported in the
rectangles and the implemented library in the hexagon. The dependencies between
them are indicated by arrows.

It is important to say that the Eigen libraries [23] are used in all the classes

related to both the Array and the Decision-Diagram based representations. In the

14

3 – Simulator Structure

Array-classes, they are used to describe vectors and matrices, while in the DD-classes

they are used only to manage the complex numbers. Indeed, in those situations,

other specific data structures are implemented and used (refer to the related Chap-

ter 5 for more information about them). Another important aspect that has to be

underlined is the fact that the file OperatorLibrary.hpp is shared between the two

representations. This is because it contains some functions related to the library

operators that are representation-independent and can be used by both the Opera-

torArray and the OperatorDD classes.

All the files and the related classes will be analyzed in detail in the following. How-

ever, to have a better understanding of how the simulator is implemented, it is

necessary to give an initial brief description of them. Starting from the top of the

tree:

� CircOpenQASM : class used to read an OpenQASM 2.0 file, generate the

related circuit and simulate it;

� Circuit : class used to describe and simulate a generic quantum circuit using

the Array or the DD representation;

� NoiseModel : class used to define the noise model in case of non-ideal simu-

lation;

� OperatorArray and OperatorDD : classes used to describe a generic quan-

tum gate storing information about its matrix, its targets, its controls and its

name (in case of library operator);

� ArrayStateVec and DDStateVec: classes used to describe a generic quan-

tum state through its state vector in case of ideal simulation;

� ArrayDensityMatrix and DDDensityMatrix : classes used to describe

a generic quantum state through its density matrix in case of noisy simulation;

� DDSqMatrix : class used to represent a generic square matrix using the

Decision-Diagrams.

15

3 – Simulator Structure

To have a successful compilation and obtain a valid executable, all the needed li-

braries must be installed and all the source files must be placed in the correct di-

rectories. In particular, a directory has to be chosen to place all the representation-

independent files and inside it, two sub-directories called Array-based and DD-based

must be created. They must contain all the files related to the two different repre-

sentations. An example of the correct organization is reported in the Figure 3.3.

Figure 3.3: Directory tree containing the simulator files.

For more information about the compilation procedure and the usage of the

Makefile, refer to the simulator’s documentation.

3.4 Circuit Class

This class is used to create, manage and simulate a generic quantum circuit. Two

template parameters define which representation is used by the class to describe

quantum states and operators. In this way, it can be used for the ideal and noisy

simulations with both the Array and DD based representations. It is based on an

16

3 – Simulator Structure

std::vector containing all the circuit’s gates described as OperatorArray or Opera-

torDD objects. As mentioned before, all the gates must use the same representation

and mixed circuits cannot be generated. The gates are stored following the order

they are applied to the initial quantum state, in particular, the first applied gate is

placed in the first position of the vector. The final dimension of the vector depends

on the number of quantum gates that compose the circuit and is controlled dynami-

cally during the creation of the circuit. It is important to underline that this vector

can be composed of every type of quantum gate but the simulation can be run only

in the case of one or two-qubits gates. This is due to the simulation algorithms

that work considering a maximum of two qubits related to each gate. Even if this

is a strong limitation, it must be taken into account that the bigger gates can be

generally decomposed into one and two-qubits gates allowing their simulation [10].

This decomposition is not automatically done by the Circuit class but must be done

before the creation of the circuit. An example is present in the class CircOpenQASM

for the management of the Toffoli gate: in that situation, the gate is decomposed

into multiple one and two-qubits gates that emulate its behavior (see the related

Section 3.5 for more details).

Various public and private methods are used to implement the different circuit’s

functionalities, in particular, they can be divided into:

� methods to create and modify the circuit;

� methods to obtain information about the circuit;

� methods to set and execute the simulation.

Most of the mentioned methods have a trivial implementation, however, some of

them need to be analyzed in more detail to better understand their behavior. They

are the ones used to add a certain gate to the circuit and the ones used to simulate

the circuit. To have more flexibility during the creation of the circuit, a gate can be

added in three different ways:

� the gate is provided as an OperatorArray or OperatorDD object;

� the gate’s matrix and the related target(s) and control(s) are provided;

17

3 – Simulator Structure

� the name of a library gate, its target(s), control(s) and parameter(s) are pro-

vided.

In the first case, the gate can be directly pushed into the vector, while in the other

two a new OperatorArray or OperatorDD object has to be created starting from the

provided data and then added to the vector.

Regarding the simulation methods, there is the possibility to have a complete or

partial simulation of the circuit and, in both cases, the changes of the quantum

state can be shown after the application of every gate or only at the end of the

simulation. In this way, the user has complete control of the simulation and can

retrieve all the information about the evolution of the quantum state crossing the

circuit gate by gate. Moreover, in the case of ideal simulation, an optimized algo-

rithm is implemented to speed up the simulation (described in Section 3.4.1).

The basic simulation follows the approach described in the previous Section 3.1: all

gates are applied one by one to the quantum state in the correct order. In the case

of noisy simulation, the noise is applied to the state depending on the considered

model (see the related Chapter 6 for more details). To apply a single gate to the

state the related methods of the OperatorArray or OperatorDD are used (refer to

Section 4.1.2 and Section 5.2.3 for more details). However, to have a correct behav-

ior of these methods, the quantum state must be reordered before the application

of the gate. In particular, all the qubits related to the gate must be in consecutive

positions and, in the case of controlled gates, the target must be placed in the least

significant position. From now on, the situation of a controlled two-qubits gate will

be considered, however, the behavior is similar for a gate with two targets. A sim-

ple algorithm is used to reorder the quantum state moving the control qubit until it

reaches the correct position. When necessary, SWAPs operations are iteratively used

to swap two near qubits until the wanted order is reached, as reported in Figure 3.4.

18

3 – Simulator Structure

Start

Consider the qubit
that has to be moved

Is

the previous (next)

qubit the one

to reach?

Apply a SWAP between the
considered qubit and the

nearer one in target's
direction

Consider the qubit after the
SWAP

No Yes

Are the two

considered qubit in the

correct order?

Apply a final SWAP
to obtain the wanted

order

End

YesNo

Figure 3.4: Algorithm used to reorder a quantum state applying SWAPs operations
to it.

Once the reordering is complete, the quantum gate can be correctly applied to the

quantum state.Then, the state must return in its original order: the control qubit

must be moved again until it reaches its original position. The same algorithm is

used to do this, but, in this case, the SWAPs are applied in the opposite order.

This procedure is not computationally negligible because multiple SWAPs are ap-

plied to the quantum state. Considering for example a 5 qubits circuit and a CX

gate with the control on qubit 0 and the target on qubit 4 a total of 8 SWAPs

are needed only to apply that single gate. This procedure must be done for each

controlled gate with no-consecutive target and control qubits, greatly affecting the

total simulation time.

19

3 – Simulator Structure

The described algorithm for the basic noiseless simulation is summarized in Fig-

ure 3.5.

Start

Get the initial quantum
state

Apply the correct
number of SWAP

operators to obtain the
two qubits one close to

the other

Apply the operator

Apply the correct
number of SWAP

operators needed to
return in the initial

configuration

End

Consider the first gate
that must be simulated

Two-qubits gate?

Apply the operator

If requested, show the
new quantum state

after the application of
the gate

Last gate?
Show and return the

final quntum state after
having applied all gates.

Yes

Yes

No

No

Consider the next gate
in the circuit

Figure 3.5: Algorithm used for the basic noiseless simulation of a generic quantum
circuit.

20

3 – Simulator Structure

In the case of partial simulation of the circuit, the algorithm is the same but the

starting and ending gates are chosen by the user and can be different from the first

and the last gate of the circuit. When the noise is considered during the simulation,

it is applied to the quantum state accordingly to the defined model. Usually it

is considered just after the application of a certain gate, however a more detailed

discussion is reported in Section 6.3.

3.4.1 Condensed-Gate Simulation

The key concept of this optimized simulation is to group some not overlapping and

consecutive gates and apply them together to the quantum state. In this way, the

number of products needed to complete the simulation is lowered and so is the

computational cost and the execution time. To do this, during the creation of the

circuit, the gates must be divided into different groups. Each group is composed of

consecutive non-overlapping gates that can be “condensed” during the simulation.

An example of the group creation is reported in Figure 2.1.

To correctly manage the group division, a boolean vector is used to define if a

certain gate is at the end of a group or not. Once the circuit is completed and all the

groups are correctly created, the simulation can be launched. The circuit is crossed

gate by gate but the quantum state is updated only at the end of a group and

not at every new gate. Also, the Kronecker products needed to generate the final

matrix to be applied to the state are done only at the end of a group considering

multiple gate matrices together and not only one. The qubits related to all the gates

contained in the group are associated with the corresponding gate’s matrices and

identity matrices are associated only with the free qubits.

Like in the case of basic simulation, SWAPs are needed to correctly reorder the

state before and after the application of a group of gates. For this reason, during

the group creation, a hypothetical overlap between two gates occurs also when they

share a qubit near to their targets. This is because after the reordering that qubit

will be occupied by a control and so the real overlap will be present. The Figure 3.6

can be used to better understand what is a hypothetical overlap.

21

3 – Simulator Structure

|0⟩ X

|0⟩ H

|0⟩ •
(a) No overlap.

=⇒ Application of the SWAPs =⇒
|0⟩ X

|0⟩ • H

|0⟩
(b) Overlap.

Figure 3.6: Example of the overlap between two gates after having applied the
needed SWAPs.

It happens because, during the simulation, the target qubit of every gate cannot

be moved except if swapped with the related control. This is because the target is

used as a reference for the application of the gate and must remain in the original

position to obtain the correct Kronecker product.

The Figure 3.7 reports the complete described algorithm used for the condensed-gate

simulation. The “qubits vector” represents the vector used to store the matrices as-

sociated with the different qubits of the circuit. At the beginning of every block it is

initialized defining every element as an identity. Then, only the matrices associated

to the qubits related to the gates of the considered block are modified. Finally,

the elements of this vector are used to obtain the final matrix by calculating the

Kronecker product between them.

22

3 – Simulator Structure

Start

Generate the default
matrices of the
"qubits vector"

(identity matrices)

Consider the first
operator, if present

Is the

operator

 present?

Apply swaps if
needed and save

them

Add the current
matrix in the correct

position of the
"qubits vector"

End of

block?

Do the Kronecker
product of all

matrices of the block

Pass to next operator

Apply the obtained
final matrix to the

state vector

Reset the matrices of
the "qubits vector" (to

identity matrices)

Apply again the
needed swaps (the

saved ones)

Pass to next
operator, if present

End

Yes

Yes

No

No

Figure 3.7: Algorithm used for the optimized condensed-gate simulation of a generic
quantum circuit.

To conclude the description of this optimized simulation approach it must be

underlined that this algorithm has an important drawback: the quantum state is

23

3 – Simulator Structure

not updated after every gate but only after a complete group of gates. This means

that some information about the evolution of the state through the circuit is lost.

Moreover, this approach cannot be used in the case of noisy simulations because

in them the quantum state must be updated after every gate, considering also the

noise errors. For all these reasons, the described optimization can be enabled or not

during the initial configuration of the simulator (see the related documentation for

more details [22]).

3.5 CircOpenQASM Class

The class is used to automatically create a circuit reading an OpenQASM 2.0 file,

simulate it, and obtain information about all the related registers and gates. Before

starting the description of its internal structure and the implemented algorithms, it

is necessary to specify that this class has some limitations. In particular, the target

file must satisfy some conditions:

� It must be an OpenQASM 2.0 file with no errors and a correct syntax. The

most common syntax errors are detected and signaled causing the controlled

termination of the file reading. Instead, more complex errors inside the state-

ments, such as the instantiation of an unknown gate, are usually managed by

ignoring the statement that contains the error but sometimes can make the

program crash.

� All the comments must start in a new line: it is not possible to have a comment

in the same line of a statement;

� All the lines must contain a single statement;

� Custom gates (both unitary and opaque) cannot be declared or instantiated;

� Only the gates belonging to the internal library (see Section 3.6 for more

details) can be instantiated with the corresponding identifier;

� The expressions used in the parametrized gates must be simple and cannot

use parentheses;

24

3 – Simulator Structure

� Only circuits with one qreg and one creg can be simulated (even if the data

structure could handle more registers, the algorithms cannot do this);

� The barrier and if statement are not considered;

These conditions restrict the number of OpenQASM files that can be used but reduce

also the complexity and the time needed to implement the algorithms to read them.

This choice was made because, due to the limited amount of time, the priority

was given to the development and optimization of the simulator kernel instead of

this class. However, even with these limitations, the class allows automatizing the

creation of the circuit, improving also the testing and profiling phases.

Internally, the class is composed of two different std::vectors containing the list

of the circuit’s cregs and qregs and by a Circuit object containing the generated

quantum circuit. Moreover, some flags used to set the simulation parameters are

stored, together with the location of the file to be read and its name. Two similar

structs are defined to manage the cregs and the qregs; they are composed by:

� A string containing the name of the register;

� An integer value containing the dimension of the register (defined as the num-

ber of register’s bits or qubits);

� An integer value defining the offset of the register: it is helpful to correctly

handle multiple registers during simulation (not implemented);

� A variable used to store the content of the register.

To correctly run the simulation, the information contained in all the qregs should

be combined to generate the complete quantum state that is capable of correctly

handling the entanglement between the different qubits. The offset value can be used

to do this correctly. However, in the current implementation, it is not used because

the simulation algorithms work only with a single creg and qreg. This is mainly due

to the fact that the classes used to store the content of the qregs (ArrayStateVector,

DDStateVector, ArrayDensityMatrix, DDDensityMatrix) do not have methods to

combine their information. In conclusion, even if the data structure is capable of

correctly handling the presence of multiple qregs, the basic classes used to define

25

3 – Simulator Structure

them have not this functionality and the simulation algorithms are limited to work

with only one qreg.

Some public and private methods are present in the class to read the file, modify

and simulate the circuit, configure the simulation parameters and access the data.

Many of them have a trivial implementation that is mainly based on the functions

of lower-level classes. For example, the simulation is run directly using the methods

of the Circuit object containing the read quantum circuit. A more detailed analysis

is necessary only for the methods related to the file reading. This is useful also to

better understand the previously described limitations of this class.

The reading of the file is done line by line until its end. First of all, the first

non-comment line is detected and its correctness is checked (it must contain the

information about the OpenQASM version). Then, the reading continues deleting

the initial and final whitespaces of each line and ignoring the comments. Each line is

parsed to detect the statement type and the related parameters and/or arguments.

After that, the effect described by the statement is immediately applied to the circuit

except for the barrier and if that are correctly detected but nothing is done and

for the measure that can be postponed depending on the settings (a more detailed

description on how the postponed measurements are managed is reported at the end

of this section). This behavior clearly does not allow the identification of a custom

gate declaration. This is because, to correctly identify and analyze a gate declaration

statement, multiple lines should be read and analyzed altogether. This is the main

reason why the gate declaration is not managed by this class. Obviously, if the

declaration of custom gates is not available, also the instantiation of these gates is

not possible. It is important to say that, even if the custom gates are not completely

managed, not only the two built-in gates of the OpenQASM 2.0 (U and CX) can

be used. In particular, all the gates related to the internal library of the simulator

(see Section 3.6) are automatically managed without the need for their declarations

in the file. This behavior is implemented to have the possibility of using a bigger

variety of gates without increasing the complexity of the algorithms needed to detect

and translate the declaration statements. It is fundamental that the names used to

instantiate these gates are unambiguous and equal to the ones used in the internal

library (Section 3.6). In this way, the Quantum Experience standard header [9] is

correctly handled by this class. It is a library of basic gates from which almost all

26

3 – Simulator Structure

quantum circuits can be derived. To conclude, it must be said that the CCX gate

(Toffoli gate) can be used even if it is not present in the simulator library. This is

because, when detected, it is automatically decomposed into multiple library gates

that emulate its behavior. The choice to handle the CCX gate even if the simulator

can work with only single or two-qubits gates was made for two main reasons:

� The CCX is a common gate and its correct management is important not to

further limit the class;

� The CCX gate is part of the Quantum Experience standard header.

The drawback of this approach to handling the CCX gate is that its simulation is

longer: multiple gates are used and they must be applied one by one to the state.

For this reason, no other gates are handled by decomposing them.

In the Figure 3.8, the described algorithm to read an OpenQASM 2.0 file is reported.

27

3 – Simulator Structure

Start

Open the file and
start reading it

Detect the first

 non-comment line

Is the

OpenQASM

version?

Detect the next

non-comment line of

the file

Report the error and
close the fie

End

YesNo

File ended?

Parse the line to
obtain the contained

information
End

YesNo

If or barrier
statement?

measure

statement?

No Yes

Apply the effect of
the statement to the

circuit

Postponed
measurement?

YesNo

No Flag the presence of
a measurement

Yes

Figure 3.8: General algorithm used to read an OpenQASM 2.0 file and generate the
related circuit.

28

3 – Simulator Structure

The line parsing is done by creating a std::vector that contains all the information

related to the statement: its name, its arguments and its parameters. These data

are then used to modify the circuit accordingly to the statement type, in particular:

� include statement: the method to read a file is called again to read the

target file before going on;

� Register declaration: a new creg or qreg struct is created, filled with the

related information and added to the related vector;

� Gate application: a new gate is added to the Circuit object (only in case of

library gates);

� Measurement: if the measurements are postponed the current statement is

stored, if not the simulation is run and the registers are updated with the

result of the measurement;

� reset statement: the target qubit(s) is (are) prepared in |0⟩;

� if, barrier statements: the detection of the statement is reported but noth-

ing is done;

� Wrong statement: an error message is sent and the statement is ignored.

In the case of a postponed measurement, the simulation is not automatically done

when a measure statement is found. In this way, the file can be completely read and

the circuit generated without having intermediate simulations. All the encountered

measure statements and their position are stored and used only when the final mea-

surement and simulation are requested. In both cases of postponed measurements

or not, the creg and the qreg are updated by the result of the measure. In particular,

the bits of the creg will contain the result of the measurement and the qubits of the

qreg are forced in the related state. Each qubit involved in the measurement is set

to its |1⟩ state or reset to its |0⟩ state, depending on the measurement’s result. This

can be obtained applying to the considered qubit the matrix |1⟩⟨1| or the matrix

|0⟩⟨0| respectively. However, in the DD representation, a specific and optimized

algorithm is used to modify the graph crossing it only once (more details can be

29

3 – Simulator Structure

found in the related Section 5.3). After that, the quantum state must be normalized

to obtain the collapsed state after the measure:

� In case of the state represented using a state vector the normalization is ob-

tained dividing each element by the l2 norm of the state;

� In case of the state represented using a density matrix the normalization is

obtained dividing each element by the Frobenius norm of the state;

It is important to notice that the division by the norm can be seen also as the scalar

multiplication between the state and the reciprocal of the norm. This property is

used in the DD representation where the scalar multiplication can be implemented

in a very efficient way (see the related Section 5.3 for more details).

3.6 Simulator Internal Library

Before starting a more detailed description of the lower-level classes of the simulator

and the two used representations, it is necessary to briefly describe the used gate

library. This library contains some of the most common one and two-qubits gates

reported in Table 3.1. The library is contained in the header file OperatorLibrary.hpp

and is composed by three main functions:

� PrintLibrary : to print the list of library gates;

� IsLibOp: to check if a certain gate is part of the library;

� DefineOperator : to define an OperatorArray or OperatorDD object con-

taining the library gate.

It is important to underline that this library does not directly implement the gates

but it is used to generate the related OperatorArray or OperatorDD objects. In

particular, it uses some functions of those two classes to generate the optimized

representation of the library gate when necessary. In this way, even if the internal

description of the gate matrix is different in the two representations, the general

management of library gates is the same.

30

3 – Simulator Structure

Identifier Description
I Identity operator (single qubit)
H Hadamard operator
X Pauli-X operator
Y Pauli-Y operator
Z Pauli-Z operator

SQX Square-root of NOT operator
P Phase shift operator
S Square-root of Z operator

SDG Conjugate of the square-root of Z operator
T Square-root of S operator

TDG Conjugate of the square-root of S operator
U1 Single qubit rotation on Z-axis (same as P)
U2 Single qubit rotation on X + Z axis
U3 Single qubit generic rotation gate with 3 Euler angles
RX Rotation-X operator
RY Rotation-Y operator
RZ Rotation-Z operator
RXX Parametric 2-qubit X⊗X interaction (rotation about XX)
RYY Parametric 2-qubit Y⊗Y interaction (rotation about YY)
RZZ Parametric 2-qubit Z⊗Z interaction (rotation about ZZ)
CH Controlled Hadamard operator
CX Controlled not operator
CY Controlled Pauli-Y operator
CZ Controlled Pauli-Z operator
CP Controlled Phase shift operator
CU1 Controlled single qubit rotation on Z axis (same as CP)
CU3 Controlled single qubit generic rotation on with 3 Euler angles
CRZ Controlled rotation-Z operator
SWAP Swap operator

SQSWAP Square-root of swap operator

Table 3.1: Table containing all the gates of the internal library.

31

Chapter 4

Array Representation

In this chapter, the standard representation for state vectors and matrices and its

basic C++ implementation is described, underlining the related advantages and limi-

tations. This representation, usually known as Array-based representation, describes

the state vectors and the matrices of operators using 1D or 2D arrays whose ele-

ments are complex numbers. These arrays follow the Dirac notation and for this

reason, there is an exponential increase of their sizes with respect to the increasing

of the number of qubits n. In particular:

� The state vectors are represented by using an array of 2n entries, known as

probability amplitudes.

� The operators are represented by using 2n × 2n unitary matrices.

The evident exponential growth of the data is the biggest problem related to the

Array representation, as it produces an exponential increase of both memory occu-

pation and simulation time. Considering, for example, to work with a quite simple

circuit composed of 16 qubits (n = 16) the state vectors would be composed by

216 = 65536 probability amplitudes. During the simulation, the effect of each gate

on the entire quantum state would be represented by a matrix with 216×216 ≃ 4 ·109

entries that must be multiplied by the state vector. It is easy to understand how

the computational cost of these operations is very high, resulting in a very slow

execution in classical machines. Regarding the memory occupation, the situation

could be even worse because each entry (for both the state vectors and the matrices

of operators) is a complex number that occupies at least 32 bits (2 floating-point

numbers are needed). In this situation a generic matrix could reach the dimension

of 232 · 4B = (4 · 232)B = 16GB!

Despite this problem, the Array representation is today used with some optimiza-

tion in many simulators [8, 21, 16]. This is because it can be implemented very

32

4 – Array Representation

easily and many algorithms used for matrix calculations were already investigated,

optimized, and grouped in well-known libraries [23] [24, 25] in the past. Moreover,

the dimensional growth of both the state vectors and matrices of operators does not

depend on the circuit characteristics (differently from the DD representation) but

only on the number of considered qubits.

4.1 C++ Basic Implementation

The simulation structure based on the Array representation was not completely

implemented from scratch but uses some free libraries that offer optimized and well-

tested algorithms to work with vectors and matrices. Two classes, called ArrayStat-

eVec and OperatorArray, are present: the former is used to describe a quantum

state, while the latter defines a generic quantum operator and its related informa-

tion. In both cases the Eigen libraries [23] were chosen for the vectors and matrices

management.

4.1.1 ArrayStateVector Class

This template class is used to generate and manage a vector describing a certain

quantum state. The state is stored in memory using the Array representation and

several private and public methods are used to implement all the needed function-

alities. In particular, they can be divided into four categories:

� methods to generate and modify the state vector;

� methods to combine different state vectors together and apply operations to

them;

� methods to access the information stored in the state vector;

� methods for the overloading of operands.

In addition to them, multiple constructors are implemented to have bigger flexibility

in the creation of objects.

Most of the mentioned methods are based directly on functions provided by Eigen

33

4 – Array Representation

libraries, so that their implementation is well tested and optimized. Only few of

them are implemented from scratch. They are mainly the setters and getters and,

as their structure is very simple, it is not necessary to analyze them.

To store the probability amplitudes of the state vector, a Dense matrix of the Eigen

libraries composed by only one row and nq columns is used. This data structure

is considered, instead of the standard array, to better interface this class with the

OperatorArray objects that describe the circuit gates and that are based on the

Eigen libraries too.

This class seems useless as it could be replaced almost entirely by the Eigen libraries,

without the need to encapsulate their data structure and functions inside a new class.

However, the class is used to maintain the same interface that is present in the

DDSateVector class where a state vector is stored using the DD representation. In

this way a generic external structure can work with these two classes interchangeably,

using the same methods. This is a key point of the simulator structure that, as

mentioned before, can work equally with both the Array and the DD representations.

4.1.2 OperatorArray Class

This class is used to define, modify and manage a generic operator using the Array

representation. Each object of this class represents a single operator (or gate) of the

circuit and contains information about the related matrix (represented as a Dense

matrix of the Eigen libraries), its target(s), its control(s), and its parameters if any.

A string is also used to store an identifier for the commonly used operators (“library

operators”). In this way the related matrix can be left empty and retrieved from the

internal library (Section 3.6) only when needed, leading to a good memory saving.

This approach is also useful to reduce duplicates: if two or more “library gates” are

present, only their identifier is duplicated in each OperatorArray object, while the

associated matrix is stored once in the internal library and it is then retrieved by

each object only when it is needed.

Many public and private methods are used to manage the operator and to create

the correct interface with the external structure. In particular, there are:

� methods to create and modify the operator using the Array representation for

its matrix;

34

4 – Array Representation

� methods to create the operators related to important quantum gates (“library

operators”);

� methods to combine different operators and apply operations to them;

� methods to access the information stored in an operator;

� methods for the overloading of the operands.

Furthermore, multiple constructors are implemented to have bigger flexibility.

Also in this case, almost all methods are based on the functions of the Eigen libraries

or have a trivial implementation. Only few of them, related to the application of the

operator to a certain quantum state, need a better analysis. They can be divided

in two categories:

� The operator is applied to a state vector representing only target+control

qubits.

� The operator is applied to a generic state vector representing more qubits than

the needed ones.

In the former, the operator is directly applied to the state vector and the final state

is returned as a result. This can be performed without any issue because the state

vector and the matrix describing the operator are related to the same number of

qubits. The situation is different in the second case where the state vector represents

more qubits than the ones associated with the operator. In this case, the Kronecker

product is needed to obtain the final unitary matrix that has to be applied to the

state, as described in Section 3.1. The algorithm related to this second version is

reported in Figure 4.1.

35

4 – Array Representation

Start

Consider the last
qubit

Get the matrix
related to the current

qubit

First

considered

qubit?

Obtain the new temporary
matrix applying the tensor
product between the old
temporary matrix and the
one related to the current

qubit

Set the temporary matrix
equal to the one related to

the current qubit.

Two-qubit

operator?

Consider the next
qubit

Is the

current qubit

a target?

No

No

No

Skip the next qubit
and consider the

very next one

Last

qubit?

Multiply the final
temporary matrix and
the initial state vector

to obtain the final
state

End

No

Yes

Yes

Yes

Yes

Figure 4.1: Algorithm used to apply the operator to a generic reordered state vector.

36

4 – Array Representation

The state vector must be first reordered to have the target and the controls

close to each other. This reordering is not performed directly by the methods of

the OperatorArray class, which work considering an already reordered vector, but

must be performed in advance. For this purpose, the previously described algorithm,

based on the application of consecutive SWAP operations (reported on Figure 3.4)

of the Circuit class (Section 3.4), can be used.

Finally, in case of a noisy simulation, the procedure to apply the operator to a

certain quantum state is almost the same. The only difference is that the states are

described using matrices, therefore the final multiplication between the temporary

matrix and the state vector is substituted by the formula reported in Equation (6.5)

(see Chapter 6 for more details).

4.2 Array-Based Simulation

Before moving to the analysis of the Decision-Diagram representation, it is important

to summarize the general behavior and the utility of the described classes for the

Array-based representation. Figure 4.2 reports in more details the parts of the

simulator structure related to the noiseless Array-based representation.

37

4 – Array Representation

Circuit

Library gates stored into

OperatorArray

ArrayStateVectorOperatorLibrary.hpp

Composed by gates

described as

Calculates the evolution of

a state described as

Applied to states

described as

Figure 4.2: Detail of the noiseless Array-based simulator structure.

The Circuit class uses many OperatorArray objects to describe the gates of the

quantum circuit. The quantum states are instead represented by using ArrayStat-

eVector objects. During the simulation, an ArrayStateVector object is used to store

the evolution of the quantum state through the circuit (see Section 3.1 for more

details on the simulation approach). Every time a new gate is encountered, it is ap-

plied to the quantum state using the methods of the OperatorArray object, already

described. The obtained result, after the application of the gate, is an ArrayStat-

eVector representing the new quantum state.

The simulation proceeds in this way until all gates are applied and the final quantum

state is evaluated and stored in the related ArrayStateVector object. The described

behavior during the simulation process is reported and summarized in Figure 4.3.

38

4 – Array Representation

Consider

a circuit

composed of

multiple gates

Consider

an initial

quantum state

Apply

all the gates

one by one

to the state

Obtain

the final

quantum state

The gates are

described as

OperatorArray

objects

The state is
represented by

using an

ArrayStateVector

object

The methods

of the

OperatorArray
class are used

The

ArrayStateVector

object containing
the initial state is

updated

Figure 4.3: Simulator behavior during the noiseless Array-based simulation.

It is important to clarify that, in case of condensed-gate simulation (Section 3.4.1),

the simulation proceeds quite differently but the interactions between the Opera-

torArray and ArrayStateVector classes remain the same.

The behavior here discussed is maintained also by the Decision-Diagram represen-

tation, however in this last case gates are described using OperatorDD objects (Sec-

tion 5.2.3) and states using DDStateVector objects (Section 5.2.1).

39

Chapter 5

Decision-Diagram Representation

In this chapter, the key principles of the Decision-Diagram (DD) representation and

the possible advantages in terms of memory usage when it is adopted are described

and analyzed. The C++ implementation is also discussed.

5.1 Decision Diagram Theory

A Decision-Diagram (DD) is an acyclic, direct, unidirectional, tree-structured graph

that can be used to store the information contained inside a generic n-dimensional

array. In its simplest form, every node has a single entering edge and multiple

exiting edges. The graph starts from a single root node and the data are stored

inside multiple leaf nodes. In Figure 5.1 an example of a DD used to represent a

mono-dimensional array is reported. The shown DD is a simple binary tree where

each node has two children. To access a single data, the tree is crossed starting

from the root until a leaf is reached. Every time a node is encountered, one of the

two paths exiting from it has to be taken. The path to follow depends on which

data has to be retrieved from the graph. For example, considering again the tree in

Figure 5.1, the path to access the value ‘0’ located on the right part of the graph is

the following: right edge at the root level (level 0), right edge at the intermediate

level (level 1), left edge at the bottom level (level 2).

40

5 – Decision-Diagram Representation

Legend

Generic
node

Leaf node
containing

a data

Edge
between

nodes

Root (level 0)

Level 1

Level 2

Leaves
(level 3)

Figure 5.1: Basic structure of a Decision Diagram representing a generic mono-
dimensional array.

The advantage of this representation is that it can minimize its size by exploiting

the redundancies between the elements of the represented array. To do this, the

duplicated paths are merged and each node can have more than one entering edge.

Figure 5.2 reports the comparison between the simplest DD structure and the one

that exploits redundancies.

41

5 – Decision-Diagram Representation

Root (level 0)

Level 1

Level 2

Leaves
(level 3)

Basic DD structure

DD that exploits the redundancies

Root (level 0)

Level 1

Level 2

Leaves
(level 3)

Figure 5.2: Comparison between the basic structure of a DD and the one that
exploits the redundancies inside the elements of the represented mono-dimensional
array.

As it can be observed, the second structure reduces a lot the tree size, without

losing any information. To access the desired data, the tree is again crossed from

the root to the leaves, but this time different paths can share the same nodes and

edges. The time needed to cross all the tree and to retrieve a data is almost the

42

5 – Decision-Diagram Representation

same, however, the memory occupation is greatly reduced.

The tree size can be reduced again by using weighted edges that allow the exploita-

tion of more redundancies. The paths terminating with values that have the same

divisors can be partially merged. A comparison between the previous tree and the

one with weighted edges is reported in Figure 5.3.

DD without edge weights

Root (level 0)

Level 1

Level 2

Leaves
(level 3)

DD with edge weights

Root (level 0)

Level 1

Level 2

Leaves
(level 3)

Figure 5.3: Comparison between the structure of a DD with and without edge
weights.

43

5 – Decision-Diagram Representation

The number of nodes of this last structure is greatly reduced compared to the

initial one. The data are no more stored only on the leaf nodes but also on the

edges. In particular, the tree must be crossed as before and the final value related

to a certain path is obtained by multiplying the weights of all the considered edges.

For example, considering the path already used in Figure 5.1 to access the data ‘0’,

the final value is calculated as: 1 · 1 · (−2) · 0 · 5 = 0.

The structure with weighted edges is surely the one that has the minimum number

of nodes. However, it is not always true that also memory occupation is minimized.

This is because the edges, that before were simply pointers, have now a weight

associated with them. In most cases, the consequence is a worsening in terms of

memory usage. The issue can be partially solved considering to store only the

meaningful weights: the not-unitary ones. Moreover, the management of the edges

with a null weight can be optimized. If these edges are traversed during the access

to a certain datum, the calculated final value is surely zero. For this reason, it is

not necessary to continue crossing the tree after having encountered one of them:

all the edges with a null weight can become null pointers and there is no need to

store any weight. The optimized version of the tree structure with weighted edges

is reported in Figure 5.4.

Legend

Generic
node

Leaf node
containing

a data

Edge
between

nodes

Edge
weight

Root (level 0)

Level 1

Level 2

Leaves
(level 3)

Figure 5.4: Optimal structure of a Decision Diagram representing a generic mono-
dimensional array.

44

5 – Decision-Diagram Representation

When the Decision Diagram is used to represent an n-dimensional array instead

of a mono-dimensional one, the tree structure remains almost the same. The only

difference is in the number of edges exiting from each node. In particular, a DD

representing an n-dimensional array is composed of nodes with 2n exiting edges.

Thus, each new level of the tree has a bigger growth. However, more redundancies

can be present in the stored data and so more optimizations can be implemented.

Before describing how these structures can be used to store the information about the

vectors and matrices needed to represent quantum states and gates, it is important

to underline also the related drawbacks:

� The time required to access a certain value stored inside them is generally

higher than the one needed in case of the standard n-dimensional array struc-

ture. This is because the wanted data must be retrieved by crossing all the

graph and not only by accessing a specific memory location.

� They are useful only in case of redundancies inside the represented n-dimensional

array. If the redundancies are few or they are not present at all, these data

structures are generally worse than the standard ones also in terms of memory

occupation.

� The operations of creation and the modification of the graph are usually com-

putationally expensive.

The application of Decision-Diagrams in the field of quantum circuit simulation is

deeply investigated in [12]. They can be used to store the information related to the

state vectors and the matrices of the operators. In the first case, a binary tree is used

to store the probability amplitudes of the quantum state. Every level of the tree is

associated to a certain qubit starting from the most significant one that is related

to the root node. The structure of the graph can be any among those described

before (Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4). However, to optimize the

representation, the one with weighted edges (Figure 5.4) is usually adopted. All

nodes can have multiple entering edges arriving from the nodes of the upper level

and have always two exiting edges that point to the nodes belonging to the lower

level. In the optimal structure, the bottom level nodes, that are associated with the

least significant qubit, point to a single termination with a unitary weight. This is

45

5 – Decision-Diagram Representation

because the information about the final value is entirely stored inside the weights

of the edges. Figure 5.5 reports an example of the described tree structure to store

the probability amplitudes of a simple three-qubits quantum system represented by

the following vector:

φ =

[
0,0,1

2
,0,1

2
,0,−1√

2
,0

]T
.

q2

q1 q1

q0

Legend

Generic i-th
level node

Termination
node

Edge
between
nodes

Edge
weight

qi

Root (level 0)
Associated with qubit 2

Level 1
Associated with qubit 1

Termination

Level 2
Associated with qubit 0

Figure 5.5: Decision Diagram used to represent a three qubits state vector.

To retrieve the amplitude associated to a certain state the tree must be crossed level

by level, following a path that depends on that state. At each level, a single node is

traversed. If the qubit associated with that level is set to |0⟩ (|1⟩) in the considered

state, the left (right) edge exiting from the node of that level has to be taken to

access the next level. Figure 5.6 reports again the DD representation of the vector

mentioned before but in this case the path to reach the amplitude −1√
2
, associated to

the state |110⟩, is highlighted:

46

5 – Decision-Diagram Representation

q2

q1 q1

q0

Legend

Generic i-th
level node

Termination
node

Edge
between
nodes

Edge
weight

qi

Root (level 0)
Associated with qubit 2

Level 1
Associated with qubit 1

Termination

Level 2
Associated with qubit 1

Figure 5.6: Decision Diagram representation of a three qubits state vector with
highlighted the path used to access the amplitude −1√

2
.

As expected, the followed path is: right edge at the top level (associated to q0),

right edge at the intermediate level (associated to q1), left edge at the bottom level

(associated to q2). The related final value, obtained multiplying the termination by

the weights of the traversed edges, is equal to: 1
2
· 1 · −

√
2 · 1 · 1 = −1√

2
.

A similar structure is used to store the operator matrices that define the gates of

the circuit. The tree is again structured in different levels, each associated with

the qubits of the operator. The difference is that, in this case, every node has four

(and not only two) exiting edges that point to the bottom level. This is because the

matrix is a bi-dimensional data structure and not a mono-dimensional one like the

vector. Figure 5.7 reports the DD structure used to represent the matrix associated

to a Controlled-Hadamard (CH) gate, in particular:
1 0 0 0

0 1 0 0

0 0 1√
2

1√
2

0 0 1√
2

−1√
2

.

47

5 – Decision-Diagram Representation

q1

q0 q0

Root (level 0)
Associated with qubit 1

Level 1
Associated with qubit 0

Termination

Legend

Generic i-th
level node

Termination
node

Edge
between
nodes

Edge
weight

qi

Figure 5.7: Decision Diagram used to represent the two qubits matrix associated to
the CH gate.

The approach to cross the graph and retrieve the wanted data is similar to the

one described before. However, this time each node has four possible exiting edges

pointing to four nodes of the lower level. The choice is done considering the binary

value of the row and column addresses of the element that must be accessed. Each

level is associated with a bit of the two addresses starting from their most significant

bits (MSBs). At every level, a new bit is considered for both addresses and the path

is chosen considering the following rule:

� if both the row and column bits are at ‘0’ the leftmost path is taken;

� if the row is at ‘0’ and the column bit is at ‘1’ the central-left path is taken;

� if the row is at ‘1’ and the column bit is at ‘0’ the central-right path is taken;

� if both the row and column bits are at ‘1’ the rightmost path is taken.

The proposed approach for matrix access is only a practical and simplified rule that

works but has no connection with the theory behind quantum operators. To have a

more detailed explanation on how the DD is crossed considering that the represented

matrix describes a quantum operator, refer to chapter 5.1.2 of [12].

Figure 5.8 reports again the DD representation of the CH gate and highlights the

path used to reach the element 1√
2
positioned in the row 2 (binary value 10) and

column 3 (binary value 11):

48

5 – Decision-Diagram Representation

q1

q0 q0

Root (level 0)
Associated with qubit 1

Level 1
Associated with qubit 0

Termination

Legend

Generic i-th
level node

Termination
node

Edge
between
nodes

Edge
weight

qi

Figure 5.8: Decision Diagram representation of the matrix associated to the CH
gate with highlighted the path used to access the element 1√

2
.

As described before, the path to follow depends on the binary values of the row

and column addresses (starting from the MSBs): rightmost edge at the top level

(both the row and column bits are at ’1’), central-left edge at the bottom level (the

row bit is at ’0’ and the column bit is at ’1’).

5.1.1 Implemented Structure

To conclude this analysis, it is necessary to describe the structure that is internally

used by the simulator to represent vectors and matrices. The one chosen to represent

state vectors is a mixture between the tree with weighted edges and the one without

them reported in Figure 5.4 and Figure 5.3. It is characterized by edge weights but

it does not completely exploit its benefits. In particular, only the paths that are

exactly the same are merged. Instead, the ones with only a partial similarity are

left separated. This representation has a very simple implementation but has some

drawbacks inherited from both the two starting structures:

� The presence of a weight associated with the edges increases a lot the total

memory occupation.

� The tree is not completely minimized because only part of the redundancies

that can be exploited using weighted edges are effectively considered.

49

5 – Decision-Diagram Representation

Figure 5.9 reports an example of the DD resulting from the representation of the

following vector:

φ =

[
0,0,1

2
,0,1

2
,0,−1√

2
,0

]T
.

q2

q1 q1

q0 q0

Figure 5.9: Decision Diagram used by the simulator to represent a three qubits state
vector.

No improvements were applied to this structure because priority was given to the

definition and the optimization of the DD structure representing matrices, which is

fundamental when noise is considered. Indeed, in the case of noisy simulation, both

quantum gates and quantum states are described using matrices (see Chapter 6 for

more details). The chosen structure is similar to the one reported in Figure 5.4 where

only the meaningful weights are stored. However, fewer redundancies are exploited

and only the paths that are exactly the same are merged. Figure 5.10 reports the

comparison between the optimized tree described before (Figure 5.7) and the one

used by the simulator:

50

5 – Decision-Diagram Representation

q1

q0 q0

q1

q0 q0

DD with minimum nodes DD used by the simulator

Figure 5.10: Comparison between the DD representation of the matrix associated
to the CH gate used by the simulator and the one with the minimum number of
nodes.

The main difference is that the total number of nodes (and so the memory

occupation) is slightly higher in the structure used by the simulator. However, the

creation of the tree is computationally cheaper because fewer redundancies have

to be investigated. The result is a balanced structure that can be generated in a

reasonable time and has a good memory occupation.

Finally, it must be also considered that the computational cost of the algorithms

used to combine different Decision Diagrams generally depends on their size. For

this reason, the structure with the minimal number of nodes is the optimal one

when the DDs are rarely generated and often combined. This happens to the matrix

representing the quantum state (density matrix) during the noisy simulation (see the

related Chapter 6 for more details). Indeed, it is generated only once but combined

multiple times to calculate the evolution of the state through the circuit. In this

case, the structure that minimizes the number of nodes is generally better. However,

due to the limited amount of time, an optimized structure for this purpose was not

implemented and the balanced one described before is again used.

51

5 – Decision-Diagram Representation

5.2 C++ Basic Implementation

The simulation structure based on the Decision-Diagram representation is imple-

mented starting from two basic classes: DDStateVector and DDSqMatrix. The

former is used to generate and manage a vector representing a generic quantum

state while the latter is used to create a square matrix that can be used to represent

both a quantum gate and a density matrix, anyway, the two classes are based on

the DD representation. Next, another class, called OperatorDD, was implemented

to describe a generic quantum operator in which the matrix is represented as a

DDSqMatrix object.

These three classes, which contain the main differences with respect to the Array

based simulation, can be considered the core of the Decision-Diagram simulation.

For this reason, a more detailed analysis of them is reported, describing the key

algorithms and underlying the advantages and disadvantages in their application.

5.2.1 DDStateVector Class

It is a template class used to generate and manage a vector to describe a certain

quantum state. The state is stored in memory using the Decision-Diagram represen-

tation and all the related operations are implemented in accordance. As mentioned

before, the representation is implemented using a binary tree that has as many levels

as the number of the qubits of the state. Each node of the tree is defined as a struct

containing different information:

� two pointers to the node’s children;

� two values representing the weights of the two child’s edges;

� a boolean flag used by some algorithms to detect if the node has been traversed

or not.

All the termination nodes have null children and the final weights corresponding to

the related amplitude of the state. The class stores only a variable containing an

initial weight common to state amplitudes and the pointer to the top node (called

also “head”) from which all the others can be consecutively accessed traversing the

52

5 – Decision-Diagram Representation

tree. Moreover, various private and public methods are used to implement all the

needed functionalities, in particular they can be divided into:

� methods to create and modify the DD representation of the state vector;

� methods to combine different DD state vectors together and apply operations

to them;

� methods to access the information stored in the DD state vector;

� methods for the overloading of the operands.

In addition to them, multiple constructors are implemented to have bigger flexibility

in the creation of the objects.

Many of the mentioned methods have a trivial implementation and they will not be

described. However, few of them consider more complex algorithms that must be

analyzed. This happens in particular for the methods used to generate the Decision-

Diagram representation of a certain state vector and for the ones used to combine

them. In most cases, the generation of a new DD state vector is based on the creation

of the boolean tree starting from the bottom level and raising up until its head. In

this way, the tree is generated level by level considering the already existing children

nodes and creating the related parents. The general algorithm for the creation of a

generic DD state vector is reported in Figure 5.11:

53

5 – Decision-Diagram Representation

Start

Generate bottom
level of the DD

Start from the next
upper level N-2

(n=N-2)

Top level

reached?

(n==0?)

Generate the next
level (n-1) and
delete the not

needed nodes of the
current level

Move to upper level

(n--)

End

YesNo

A

B

C

D

Figure 5.11: General algorithm for the creation of a DD state vector.

The discussed algorithm represents a basic version, without any optimization,

and the obtained DD does not completely exploit the benefits of weighted edges.

However, also in this primary implementation, the two blocks between the edges

A-B and C-D are quite complex. They are the algorithms used to generate a single

level of the tree (the bottom or the intermediate levels) and they are respectively

expanded in Figure 5.12 and Figure 5.13:

54

5 – Decision-Diagram Representation

Start

(A)

Consider the first
amplitude

pi=0 corresponding
to the basis state

|00...0>

Detect (if already
present) or create the

node related to pi

Null

amplitude?

(pi==0?)

Set the
corresponding edge's

weight equal to pi

(wi%2=pi)

Set the
corresponding edge's

weight equal to 0

(wi%2=0)

Mark the node as
leaf by setting the

child pointer to
nullptr

Consider the next
amplitude of the

state vector

(i++)

No more

amplitudes?

(i==2N?)
End (B)

YesNo

Yes

Figure 5.12: Algorithm for the creation of the bottom level of the DD state vector.

55

5 – Decision-Diagram Representation

Start

(C)

Consider the first
node of the current

level (n)

Detect or create its
parent

Both edges

 of current node

have null weight?

(w0=w1=0?

In parent node, set a null
pointer as child

(child_ptr=nullptr).

Set the weight of the

corresponding edge equal
to 0

(child_w=0)

In parent node, point this
node as child

(child_ptr=*current_node).

Set the corresponding edge's

weight equal to 1

(child_w=1)

Delete the current
node

Last node of

 current level?

Consider the next
node of current level

End

(D)

YesNo

YesNo

Figure 5.13: Algorithm for the creation of the intermediate levels of the DD state
vector.

In both the algorithms there is a block used to detect or create a parent node

when necessary. Its implementation is similar in the two algorithms and its cor-

rect behavior is important for the creation of an optimized tree with the minimum

number of nodes. Another important aspect of these algorithms is the capability to

56

5 – Decision-Diagram Representation

auto-detect and delete the useless node during the creation of the tree limiting the

tree size and so the memory usage.

5.2.2 DDSqMatrix Class

This template class is used to generate and manage a square matrix, which dimension

is of a power of two, using the Decision-Diagram representation. In this case, the

representation is implemented using a tree in which each node can have up to four

children. Each node of the tree is defined as a struct containing different information:

� four pointers to the children of a node;

� four boolean flags representing which edge has a not-unitary weight;

� an std::vector with up to four elements containing all the not-unitary edge

weights;

� a boolean flag used to detect if the node has been traversed or not when the

tree is crossed;

� a boolean flag signaling if the node is a termination or not.

The struct is quite different from the one characterizing the DD state vector. This

is because the generated tree will be generally bigger and so some modifications

are needed to limit the memory occupation for each node. The main difference

is that in this case not all the weights are always stored but only the not-unitary

ones. In this way, a small overhead is present, due to the need of storing the

four boolean flags. However, considering that most of the edge weights are usually

unitary, the final result is a reasonable memory saving. Another difference regards

the management of the termination nodes. In the DDStateVec class the termination

nodes are the bottom level nodes: each of them has two null children and two

valid weights representing the amplitudes of the related state. Instead, in this class,

the termination nodes are additional nodes with null children and only one weight

that are pointed by the nodes in the last level of the tree. Each termination node

has a different weight and so multiple bottom level nodes can point to the same

57

5 – Decision-Diagram Representation

termination. In this way, if the matrix has identical elements, the final tree has a

bigger number of nodes but a lower memory occupation because the final weights

are stored only once. The Figure 5.14 reports the two different tree structures

considering to work with two qubits:

q1

q0 q0

q1

q0 q0

Legend

qi Generic

i-th level node

Termination
node

Edge weight

DDStateVec tree DDSqMatrix tree

Figure 5.14: Comparison between the tree structure of the DDStateVec and the
DDSqMatrix.

In the DDSqMatrix structure one more final level of termination nodes is needed.

However, these terminations can be shared between different nodes of the upper level

and the related weight is stored only once. Instead, in the case of DDStateVec, the

absence of termination nodes leads to a repetition of the final weights and so to a

bigger memory occupation. It must be also said that the dashed edges with the

associated weight equal to ’0’ represent null pointers that do not occupy memory. A

better comparison is reported in Figure 5.15 where the two approaches are applied

to the same matrix:

58

5 – Decision-Diagram Representation

q1

q0 q0

Legend

qi Generic

i-th level node

Termination
node

Edge weight

Structure without
terminations

Structure with
terminations

q1

q0 q0

Figure 5.15: Comparison between the tree structure of the DDSqMatrix without
and with the termination nodes.

The structure without termination nodes has to repeat the ’−1’ final edge weight

three times and so three complex numbers must be used to store the same value.

Instead, the structure with the termination nodes stores it only once in the related

termination. The drawback of this second structure is that a complete node, and not

only a complex value, must be used to store the final weight. However, considering

that the memory occupation of a termination node is mainly due to its weight, the

final result is a good memory saving.

Like in the DDStateVec, the class does not store all the tree but only its initial weight

and the pointer to its head, however in this case also an std::vector containing

pointers to all the termination nodes are saved. Moreover, various private and

public methods are used for the implementation of all the needed functionalities, in

particular:

� methods to create and modify the DD representation of the matrix;

� methods to create the optimized DD representation of the matrices represent-

ing the most important quantum gates;

� methods to combine different DD matrices and apply operations to them;

� methods to access the information stored in the DD square matrix;

� methods for the overloading of the operands.

59

5 – Decision-Diagram Representation

In addition to them, multiple constructors are implemented to have bigger flexibility

in the process of creating objects.

Only a few of the mentioned methods have not a trivial implementation and must

be described in detail. This happens in particular for the methods used to generate

the Decision-Diagram representation of a certain matrix and for the ones used to

apply operations. Also in this case, the generation of a generic DD is based on the

creation of the tree starting from the bottom level and raising up until the head.

The general algorithm, reported in Figure 5.16, is very similar to the one used in

the DDStateVec class (Figure 5.11): the tree is generated level by level considering

the already existing children nodes and creating the related parents.

Start

Generate bottom
level of the DD

Start from the next
upper level N-2

(n=N-2)

Top level

reached?

(n==0?)

Generate the next
level (n-1) and
delete the not

needed nodes of the
current level

Move to upper level

(n--) End

YesNo

A

B

C

D

Set the head pointer
and its related

weight

Figure 5.16: General algorithm for the creation of a DD representing a generic
matrix.

The main difference with the algorithm used in the DDStateVec class is related

60

5 – Decision-Diagram Representation

to the creation of the bottom level and the termination nodes because the complete

matrix must be accessed considering 2x2 sub-matrices in the correct order. This is

achieved using a row and a column offset and implementing the algorithm reported

in the following picture:

Start

(A)

Set the row and
column offesets to 0

Generate a new node
and add it to the

current level

Fill the generated node
considering the offsets to

access the correct 2x2
submatrix of the complete

matrix

Are all

submatrices

considered?

Update the row and
column offsets to
consider the next

submatrix

End

(B)

No Yes

Is the

 needed node already

present?

Find the needed
node and point it

No Yes

Figure 5.17: Algorithm for the creation of the bottom level of a matrix’s DD.

The row and column offsets are managed by using two boolean arrays updated

hierarchically. These arrays are used to access the correct 2x2 sub-matrix and fill

the new node. The algorithm used to implement this is reported in the following

picture:

61

5 – Decision-Diagram Representation

Start

Consider the first
element of the 2x2

submatrix related to
the current offsets

Is the current

element already a

termination?

Generate a new
termination related

to the current
element and get its

pointer

Get the pointer to
the already existing

termination

No Yes

Add the generated
termination to the
terminations list

Use the obtained
pointer as the related
child of current node

All the 4

submatrix elements

 considered?

Pass to the next
submatrix element

End
No Yes

Figure 5.18: Algorithm to fill a bottom level node accessing the correct 2x2 sub-
matrix.

After the creation of the bottom level, the general algorithm starts the gener-

ation of upper levels until the its end. This time the used algorithm, reported in

Figure 5.19 is almost the same as the one seen before for the DDStateVec (Fig-

ure 5.13):

62

5 – Decision-Diagram Representation

Start

(C)

Consider the first
node of the current

level (n)

Detect its parent
(upper level node)

Do all edges

 of current node

have null weight?

(wi=0?)

In parent node set a null
pointer as child

(child_ptr=nullptr) and set
the corresponding weight

flag to false.
In parent node point this

node as child
(child_ptr=*current_node)
and set the corresponding

weight flag to false

Delete the current
node

Last node of

 current level?

Consider the next
node of current level

End

(D)

YesNo

YesNo

Are four

current level nodes

considered?

No Yes

Detect the upper level
node containing the next
four current level nodes
and consider it again in

the generation of the
upper level

Are the next

4 current level nodes

children of an already

generated upper

level node?

Generate a new
upper level node

(parent)

No Yes

Skip the next three
current level nodes

Figure 5.19: Algorithm for the creation of the upper levels of a matrix’s DD.

Also in this case, during the generation of the tree, all the useless nodes are

deleted to save memory and reduce the tree dimension.

63

5 – Decision-Diagram Representation

5.2.3 OperatorDD Class

This final class is used to define, modify and manage a generic operator (or gate)

of the circuit using the Decision-Diagram representation. As for the OperatorArray

class (Section 4.1.2), each object of this class store the matrix of the operator (defined

as a DDSqMatrix object) and all the related information. Also in this class, a string

is used to store an identifier for the commonly used operators (“library operators”)

so that the related matrix is not stored in each object of the class and retrieved only

when necessary.

In order to have the possibility to easily interchange the Array-based and the DD-

based representation at a higher level, the public methods related to this class are

the same that have been described for the OperatorArray class. In particular, we

have again:

� methods to create and modify the operator using the DD representation for

its matrix;

� methods to create operators related to important quantum gates (“library

operators”);

� methods to combine different operators and apply operations to them;

� methods to access the information stored in the operator;

� methods for the overloading of the operands.

As usual, multiple constructors are also implemented to have bigger flexibility.

The algorithms related to the different methods are the same as the OperatorArray,

however, some of them have an internal implementation that is quite different. This

is because the matrix representation and the functions to access and modify it are

different: in the OperatorArray class the matrix is seen as an object of the Eigen

library while in this case, it is a DDSqMatrix. These differences are more significant

in the private methods that directly work on the operator’s matrix. An example

is the case of a library operator that has to retrieve its matrix from the internal

library: in case of OperatorArray, the matrix is simply generated and assigned by

the method while in the case of OperatorDD a new DDSqMatrix object must be

64

5 – Decision-Diagram Representation

created and then assigned to the operator’s matrix.

An important improvement is present in the calculation of the tensor product (Kro-

necker product) between the matrices of the two operators. This is because using

the DD representation, this operation can be performed in a very simple way: the

terminations of one DD are connected to the root of the other. The resulting tree

is a new DD representing the matrix that contains the result of the tensor product.

An example is reported in Figure 5.20:

65

5 – Decision-Diagram Representation

q1

q0 q0

q0

DD representing the second
matrix (Z gate)

DD representing the first
matrix (CH gate)

q1

q0 q0

Resulting DD after the
tensor product

q0

Figure 5.20: DD representation of two matrices and the related tensor product.

66

5 – Decision-Diagram Representation

This operation is directly performed by the DDSqMatrix class with some dedi-

cated methods. The general algorithm used for this purpose is trivial and reported

in Figure 5.21:

Start

Set the first child of all
terminations of the first
DD with the pointer to
the head of the second

DD.

Save the new obtained
DD generated by the

concatenation of the two
starting DDs

Split again the two
original DDs setting the

first child of all the
terminations of the first

DD to nullptr

End

Figure 5.21: Algorithm for the calculation of a tensor product between two matrices
represented using Decision Diagrams.

It can be noticed that this algorithm has a very low computational cost: it sim-

ply consists of modifying the pointers of the termination nodes. For this reason, the

calculation of a tensor product using the DD-based representation is generally faster

than the same operation performed using the Array-based representation. This helps

to reduce the total simulation time when Decision Diagrams are used. Indeed, that

operation is often performed during the simulation of a quantum circuit: to apply

an operator to the quantum state multiple tensor products are used, as reported

in Figure 4.1. It is important to underline that, using the algorithm reported in

Figure 5.21, the newly generated tree representing the result of the tensor product

67

5 – Decision-Diagram Representation

contains termination nodes also in the middle of it. This is more evident in Fig-

ure 5.20 where the terminations of the first matrix become intermediate nodes of

the result tree. In that situation, the intermediate “termination nodes” are only

transition nodes used to connect the two original DDs and consider the weights

stored inside them. They do not correspond to a real level of the tree associated

with a certain qubit. All the other algorithms are aware of this structure and are

implemented accordingly.

5.3 Improvements

When vectors and matrices are represented using Decision Diagrams their memory

usage is generally reduced. However, the tree structure increases the computational

cost and the execution time of the standard algorithms used to implement many

basic operations. This is because every time a single data has to be accessed it

must be retrieved by crossing all the DD and not by simply pointing to a certain

memory location as in the standard representation. Some of these algorithms can

be modified by exploiting the tree structure to improve their efficiency. Sometimes,

the obtained speed-up can also overcome the performance of the same operation

performed by using the standard representation. One example is the scalar product

for both vectors and matrices that can be implemented very easily using the DD

structure with weighted edges: only the weight associated with the edge entering into

the root node (“initial weight”) has to be modified. A single scalar multiplication

is needed independently on the vector or matrix dimension. This is because all the

data stored inside the DD are always retrieved by starting from that weight. Instead,

in the standard representation, one multiplication is needed for every element of the

vector or matrix.

Another operation that can be improved for both vectors and matrices is the row-

column product. From now on, the description is reported considering to work with

matrices, however, the same property can be applied also to vectors. The key idea

is to use the property reported in Equation (5.1) to calculate the product of two

matrices M and N by considering the products of their sub-matrices Mij and Nij

68

5 – Decision-Diagram Representation

[18]:

M ·N =

[
M00 M01

M10 M11

]
·

[
N00 N01

N10 N11

]
=

=

[
M00N00 +M01N10 M00N01 +M01N11

M10N00 +M11N10 M10N01 +M11N11

]
=

=

[
M00N00 M00N01

M10N00 M10N01

]
+

[
M01N10 M01N11

M11N10 M11N11

] (5.1)

Recursion can be used to reiterate the property until two 4x4 matrices are consid-

ered and the calculations can be done directly with their elements. At this point,

recursion stops and the multiple obtained results are combined to determine the

final overall product. In the DD structure, each node can be considered as the

root node of a new matrix described by the tree starting from it. The children of

that node represent its four sub-matrices. So, every new level of the overall tree

is composed of the sub-matrices of the upper level nodes. For this reason, a new

level of recursion corresponds to a new level of the tree. The Figure 5.22 reports the

described algorithm used to calculate recursively the row-column product between

two matrices (in the algorithm the matrices and sub-matrices are represented by the

nodes of the tree):

69

5 – Decision-Diagram Representation

Start

Clear of the result
vector.

Is one of

the node a

termination?

Last level reached? Are both nodes
terminations?

No

No No

Access the children
nodes in correct

order and recall the
algorithm increasing

the level variable
(recursion)

Take the first child
of the termination
node and recall the
algorithm without

increasing the level
variable (recursion)

Do all the needed
calculations and fill

the result vector
with them (stop the

recursion)

Take the first child
of both nodes and

recall the algorithm
without increasing
the level variable

(recursion)

Yes

Yes Yes

End

(Stop recursion)

"End"

(With single
recursion)

"End"

(With multiple

recursion)

Update the weights
considering the

current edge

Fill the result vector
with the vector
obtained by the

recall

Fill the result vector
with the vectors
obtained by the
multiple recalls

Figure 5.22: General algorithm for the calculation of the recursive row-column prod-
uct between two matrices represented using Decision Diagrams.

It is necessary to say that the portion of this algorithm related to the identi-

fication and management of termination nodes (right part), is needed to correctly

handle the used tree structure. In particular, considering how the Kronecker prod-

ucts are generated, it is possible to have “termination nodes” in the middle of the

tree. They are only transition nodes that do not correspond to a real new level of

the tree and so they have not to start a multiple recursion. They are considered

70

5 – Decision-Diagram Representation

only to correctly update the related path weight.

Figure 5.23 reports the portion of the algorithm used to reiterate the recursion and

calculate the partial row-column product in case of intermediate levels:

71

5 – Decision-Diagram Representation

Start

Consider the first
"row" of node1 and
the first "column" of

node2

Recall the general
algorithm (using the

correct child of
node1 and node2 as
arguments) to obtain

the first mpy

Are all

"columns" of node2

considered?

Are all

"rows" of node1

considered?

No

Increment the
considered "column"

of node2

YesIncrement the
considered "row" of

node1

No

End

Yes

Recall the general
algorithm (using the

correct child of
node1 and node2 as
arguments) to obtain

the second mpy

Fill the result vector
with the sum of the
two obtained partial

vectors

Figure 5.23: Algorithm for the calculation of the intermediate levels of the recursive
row-column product between two matrices represented using Decision Diagrams.

The behavior of final levels, in which recursion stops and only the calculations

72

5 – Decision-Diagram Representation

between the elements of the matrices are implemented, are reported in Figure 5.24:

Start

Consider the first
"row" of node1 and
the first "column" of

node2

Calculate the current
row-col product

considering the weights
until now and the
termination values

Fill the result vector
with the obtained

value

Are all

"columns" of node2

considered?

Are all

"rows" of node1

considered?

No

Increment the
considered "column"

of node2

YesIncrement the
considered "row" of

node1

No

End

Yes

Figure 5.24: Algorithm for the calculation of the last level of the recursive row-
column product between two matrices represented using Decision Diagrams.

In the described algorithms, a “result vector” is used to store the partial results

obtained at every level of recursion. When recursion stops these vectors are com-

bined to obtain a final one containing the elements of the product matrix. A proper

method is then used to generate the DD representing the final matrix starting from

this vector.

73

5 – Decision-Diagram Representation

The recursive algorithm can be theoretically used also in the case of a product be-

tween a matrix and a vector. However, the structure of the implemented simulator

does not allow it. Future improvements could be implemented to optimize this as-

pect.

A similar approach based on the Equation (5.2) can be used to improve also the

sum between two DDs:

M +N =

[
M00 M01

M10 M11

]
+

[
N00 N01

N10 N11

]
=

[
M00 +N00 M01 +N01

M10 +N10 M11 +N11

]
(5.2)

This operation is not needed in case of noiseless simulation but becomes neces-

sary when noise errors are considered (see the related Chapter 6 for more details).

The algorithm used to implement the recursive sum is similar to the one reported

in Figure 5.22, the only difference is how the sub-matrices are combined together

(Equation (5.2) is used instead of Equation (5.1)).

Finally, two operations used only during the quantum circuit simulation can be also

improved. They are the ones needed to set or reset a certain qubit to its |1⟩ or |0⟩
state. To do this in the standard representation (Array-based), a specific matrix

(|1⟩⟨1| or |0⟩⟨0|) must be applied to the considered qubit. In that situation, the

computational cost is similar to the one needed when a generic gate is applied to

the state. Instead, using the DD structure, these operations can be performed more

efficiently by crossing the tree only once and modifying it properly. In particular,

the tree is traversed until the level related to the considered qubit is reached and

then the exiting edges of every node in that level are modified. When the qubit has

to be set (reset) to |1⟩ (|0⟩) only the rightmost (leftmost) edge is left unchanged

while all the others are set as null pointers. The described approach, summarized

in Figure 5.25, can be used for both state vectors and density matrices.

74

5 – Decision-Diagram Representation

Start

Cross the tree until
the level associated
to the wanted qubit

is reached

More nodes to be
considered?

No Yes

Consider the first
node of that level

End

Set all the exiting edges
of the node as null

pointers execpt for the
rightmost (leftmost)

Consider the next
node of the level

Clear the paths that are no
more reachable (related to

the nullified edges)

Figure 5.25: Algorithm used to set (reset) a certain qubit of the quantum state.

75

Chapter 6

Noisy Simulation

In this chapter, the effects related to the introduction of the noise during the sim-

ulation are introduced and analyzed. Moreover, the implemented classes used to

consider the noisy simulations are described.

6.1 Noise In Simulation

The real quantum hardware is affected by non-ideality phenomena that randomly

introduce errors in the state of the qubits. Quantum devices are often based on

noisy registers without any quantum error correction technique. For this reason,

their real behavior could be significantly different from the one described with an

ideal simulation. Considering that the access to quantum hardware is still limited,

carrying on an experimental analysis of these effects is problematic. So, it is im-

portant to characterize the noise in the classical simulation. Different researchers

are involved in the creation of mathematical models that can be used to efficiently

and reliably define the noise effects during a classical simulation [26, 27]. Today, the

most used is the one based on the Kraus operators (Section 6.1.1) that, in practice,

is considered a standard. However, other models are also investigated and proposed

to optimize the noise management [28].

Introducing noise errors changes the simulation approach for two reasons:

� The deterministic formulation is no more valid because the noise relies on

probabilistic effects;

� The system is in a mixed state (described by a density matrix) and no more

in a pure state (described by a state vector).

The main consequence is that quantum states must be described using density ma-

trices. A density matrix is a data structure used to describe a mixed state, i.e. a

76

6 – Noisy Simulation

collection of multiple possible states where each of them can appear with a certain

semi-classical probability [2]. A particular state |φi⟩ of the N possible states can

appear with a certain probability pi. The density matrix related to a certain mixed

state is defined as:

ρ =
N∑
i=1

pi|φi⟩⟨φi|. (6.1)

For a more detailed description of what a mixed state is and how it can be repre-

sented by a density matrix refer to chapter 2.4 of [2].

Until now, the quantum states were always considered as pure states and described

using state vectors. A pure state can be seen as a special case of mixed state where

pi = 1 for a certain i and pj = 0 for i ̸= j. From now on, this description is no

more sufficient and must be replaced by the use of density matrices that allow the

management of mixed states. The density matrix ρ related to a generic pure state

φ can be obtained as:

ρ = |φ⟩⟨φ|. (6.2)

The Equation (6.3) reports an example of the generation of a density matrix ρ

starting from a pure state represented by the state vector |φ⟩:

|φ⟩ =
[

1√
2
,0,0,

1√
2

]T
→ ρ = |φ⟩⟨φ| =


1
2

0 0 1
2

0 0 0 0

0 0 0 0
1
2

0 0 1
2

 (6.3)

When the state is described using a state vector, the probabilities of measuring

specific basic states can be obtained by squaring its elements. Instead, in the case

of density matrix, they are reflected in the diagonal elements of the matrix.

A noisy circuit can be seen as a system in a mixed state affected by probabilistic

effects. To consider this aspect, the simulation approach previously described in

Section 3.1 must be slightly modified:

� Quantum states must be described by using density matrices;

� Quantum gates must be applied to the state considering also the noise errors

related to them.

77

6 – Noisy Simulation

Different types of noise errors are possible and they can be modeled in different

ways. The implemented simulator considers two noise models:

� the standard one based on the Kraus operators (Section 6.1.1);

� a more compact model developed by the VLSI research group of the Politecnico

di Torino (Section 6.1.2) [28].

In both cases, during the simulation, the noise model is applied to the quantum state

separately from the operators. In the first situation, the ideal operator is applied to

the state and then the Kraus operators are considered. In this way, the quantum

state has initially an ideal evolution and only after the noise errors are introduced.

On the contrary, when the compact model is considered, the non-ideality phenom-

ena are considered before the application of the gates, starting from the second one.

In the noiseless simulation, the effect of a certain quantum operator on a quan-

tum state is calculated by performing the row-column product between the vector

describing the state (|φ⟩) and the matrix U describing the operator:

|φ′⟩ = U |φ⟩, (6.4)

where |φ′⟩ is the state after the application of the operator.

Instead, in the case of noisy simulation, the density matrix ρ′ that describes the

state after the application of an ideal operator U , is obtained by calculating two

row-column products [2]:

ρ′ = UρU †, (6.5)

where ρ is the density matrix representing the initial state and U † is the conjugate-

transpose of the operator U .

It can be noticed how the usage of density matrices instead of state vectors worsens

the simulation performance even without the introduction of noise errors. The

simulation time is longer because the computational cost of applying an operator

to a state vector is greatly increased. Moreover, more memory is necessary to store

the states described as matrices instead of vectors. These drawbacks are present in

both the Array-based and DD-based representations but are necessary to have the

possibility of handling noise errors.

78

6 – Noisy Simulation

Before starting the description of the two considered noise models, it is important

to underline that the worsening in both memory usage and simulation time is more

evident when the noise errors are applied. This worsening partially depends on

the used noise model and on how it is applied to the quantum state. However, it

must be said that the DD-based representation is generally more affected. This is

because noise errors reduce the redundancies inside the quantum state and so the

improvements that the Decision Diagrams can offer.

6.1.1 Standard Noise Model

Physical noise errors in quantum systems are generally characterized by using a series

of super-operators {K1,K2,K3,...,Km}, called Kraus operators [29], that satisfy the

Equation (6.6):
m∑
i=1

K†
iKi = I. (6.6)

A matrix is associated with each operator and they are applied to the quantum

state, described by the density matrix ρ, following the Equation (6.7):

m∑
i=1

KiρK
†
i . (6.7)

The most important single-qubit noises and the related operators are reported in

Section 6.2.3. All of them are described by matrices associated with a certain prob-

ability p that defines the noise intensity.

In the case of two-qubits gate, the Kraus operators are obtained considering the

Kronecker product between the single-qubit operators related to the two qubits of

the gate. In particular, if one qubit is affected by the operators {K1, K2} and the

other by the operators {C1, C2} the two-qubits gate is affected by the resulting

operators {K1 ⊗ C1, K1 ⊗ C2, K2 ⊗ C1, K2 ⊗ C2} [29].

79

6 – Noisy Simulation

6.1.2 Compact Noise Model

A compact formalism to describe relaxation and decoherence is proposed by the

VLSI Lab research team of Politecnico di Torino [28]. These two dynamic non-

ideality phenomena depend on the interactions between the not perfectly isolated

qubits and an external environment. They are common to all technologies for quan-

tum computing and are considered two of the main problems limiting the perfor-

mance of the real hardware.

The effects of relaxation and decoherence can be described in a simplified way with-

out the need to store all the related Kraus operators. For a single qubit the following

matrix can be used for each qubit to describe both phenomena in time domain t:[
(a− a0)e

− t
T1 + a0 be

− t
T2

b∗e
− t

T2 (a0 − a)e
− t

T1 + 1− a0

]
, (6.8)

where a and a0 are the probabilities of measuring the qubit in |0⟩⟨0| for t = 0 and

t → ∞, respectively, and T1 and T2 are the relaxation and effective decoherence

time constants of the qubit.

In an n-qubit system, the model proposed in [28] can be exploited to simplify the de-

scription of decoherence and relaxation phenomena, which are considered separately.

In particular, decoherence can be modeled with a matrix D defined as:

D =
0⊗

i=n−1

Di = Dn−1 ⊗ · · · ⊗D0, (6.9)

where
⊗

indicates the Kronecker product and Di is the decoherence matrix of the

ith qubit (associated with the decoherence time constant T2i):

Di =

 1 e
− t

T2i

e
− t

T2i 1

 . (6.10)

Only the matrix D has to be applied to the state to determine the effects of deco-

herence on the quantum system. The element-by-element (Hadamard) product is

used for this purpose.

80

6 – Noisy Simulation

The approach used to evaluate the total lost probability due to relaxation is a little

more complex. However, a single vector r⃗ with dimension 2n, called “relaxation

vector”, is needed instead of a complete 2n × 2n matrix:

r⃗ =
0⊗

i=n−1

[
1

e
− t

T1i

]
=

[
1 , e

− t
T10 , · · · , e

−
∑n−1

i=0
t

T1i

]T
=

= [r0,0 , r1,1 , · · · , r2n−1,2n−1]
T

(6.11)

In Equation (6.11) n is the number of qubits of the state and T1i is the relaxation

time constant of the ith qubit.

The probability lost by each eigenstate |k⟩ of the quantum state represented by the

density matrix ρ can be calculated as (1 − rk,k)ρk,k. Moreover the Equation (6.12)

can be used to calculate the total lost probability:

Plost tot. =
2n−1∑
k=0

(1− rk,k)ρk,k. (6.12)

After that, a certain probability amount is assigned at each eigenstate, as reported

in Equation (6.13):

Pacquired by |k⟩ =
w|k⟩∑
k w|k⟩

Plost tot., (6.13)

where w|k⟩ represents the weight associated with each eigenstate and can be calcu-

lated considering which qubits have been employed from the begin of the circuit, as

reported in Equation (6.14):

w|k⟩ =
∑
l∈Q

1

T1l

(1− bl). (6.14)

In Equation (6.14), Q represents the set of the qubits employed at least once from

the beginning of the circuit, while bl is the binary value ({0,1}) assumed by the

qubit l in the eigenstate |k⟩. In this way, the states with an higher weight are the

ones with a higher number of bl = 0 and a lower relaxation time constants T1l .

Finally the density matrix ρ representing the quantum state is updated considering

81

6 – Noisy Simulation

the Equation (6.15) that affects only the main diagonal:

ρk,k = (1− rk,k)ρk,k + Pacquired by |k⟩. (6.15)

The steps needed to evaluate relaxation can be summarized as:

1 compute the probability lost for every eigenstate;

2 compute Plost tot.;

3 evaluate the eigenstates |k⟩ affected by relaxation;

4 compute all the w|k⟩ and Pacquired by |k⟩;

5 update the quantum state accordingly to Equation (6.15).

This approach can limit memory usage and, in some situations, improve the simula-

tion time respectively to the traditional approach because only a single matrix de-

scribing the decoherence and a vector containing the effects of relaxation are needed

instead of the multiple Kraus matrices (refer to Section 7.4.2 for more details).

6.2 C++ Implementation

The noisy simulation is based on the reuse of the classes implemented for the noiseless

simulation with only two necessary modifications:

� The quantum states are described using two new classes (ArrayDensityMatrix,

DDDensityMatrix) and no more using the ArrayStateVec and the DDStateVec;

� A new class called NoiseModel is implemented to define the noise model used

during the simulation.

This is possible because the other classes of the simulator, such as the ones used to

describe and manage the circuit (Section 3.5, Section 3.4) and its gates (Section 4.1.2,

Section 5.2.3), can work with both noiseless and noisy systems.

82

6 – Noisy Simulation

6.2.1 ArrayDensityMatrix and DDDensityMatrix Classes

These two classes are used to represent and manage a quantum state described by

its density matrix using the Array-based and the DD-based representations. They

share the same external interface so that they can be used interchangeably by the

simulator. However, their internal implementation is quite different and dependent

on the used representation. The ArrayDensityMatrix class is based on the Eigen

libraries [23]. It uses a Dense matrix to represent the density matrix and the differ-

ent methods are mainly implemented using the functions of the library. Instead, in

the DDDensityMatrix class, the density matrix is defined as a DDSqMatrix object

(Section 5.2.2) and the related methods are used to manage it.

The available public methods are almost the same of the ones present in the Ar-

rayStateVec (Section 4.1.1) and DDStateVec (Section 5.2.1) classes. This is because

all of them describe a quantum state and must have a common interface to correctly

interact with the other objects. The methods can be divided into four categories:

� methods to generate and modify the density matrix;

� methods to combine different density matrices together and apply operations

to them;

� methods to access the information stored in the density matrix;

� methods for the overloading of the operands.

It is important to underline that, in both classes, the density matrix can be generated

starting from a certain vector containing a pure state by exploiting the formula

reported in Equation (6.2).

The methods of the OperatorArray (Section 4.1.2) and OperatorDD (Section 5.2.3)

classes are used to apply the operators to the quantum states, as already described

in the case of noiseless simulation. However, in this situation, these methods identify

the presence of a mixed state and use Equation (6.5) to modify the quantum state,

instead of Equation (6.4) that is correct only in the case of pure states.

83

6 – Noisy Simulation

6.2.2 NoiseModel Class

This class is used to define a noise model and apply it to a certain quantum state. It

has a data structure capable of handling both the previously analyzed noise models

(Section 6.1.1 and Section 6.1.2). The standard model is described by storing the

related Kraus operators, while in the compact one the parameters t, T1 and T2 that

are retrieved from a configuration file. The model can be generated in three different

ways:

� By directly defining the operators that describe the effects of the noise in the

standard model. This is done giving the Kraus matrices as input.

� By using one of the standard noise models stored inside the internal library

(Section 6.2.3). In this case, a string identifier is stored and the Kraus opera-

tors are retrieved only when necessary (as for the library of the operators).

� By defining the configuration file from which the parameters of the compact

model can be retrieved.

Considering that the standard and the compact models are based on different data

structures and algorithms, the information about both of them can be present inside

this class at the same time. In this way the two models can be used at the same

time without the need to redefine them. Different methods are then used to apply

the wanted model to a certain quantum state. In particular, a single method can

be used to apply the compact model, while three different methods can be used to

apply the standard model to all qubits, to multiple qubits, or to a single qubit. Ob-

viously, before applying the noise to a certain quantum state with a specific method,

the corresponding model must be previously defined. For example, it is not possible

to apply the standard noise model until the related Kraus operators are properly

defined.

Considering the standard noise model, different approaches can be used to apply it

to a certain quantum state. In the case of multiple or all qubits, the noise can be

applied to the wanted qubits altogether or one by one. When different non-ideality

phenomena are considered together, the two approaches generate different results.

In the first case, the noise is applied to the qubits at the same time, considering the

84

6 – Noisy Simulation

possible interaction between all the involved phenomena. To do this, the needed

Kraus matrices are generated by calculating the Kronecker product between the

single-qubit Kraus operators, as described in Section 6.1.1. Instead, in the second

case, the noise is applied to the qubits separately, one after the other. The behavior

is the same of applying consecutively the noise to a single different qubit. In this

second situation, the final result depends also on the sequence of the qubits to which

the noise is applied.

In the developed simulator it is not possible to have different noises associated with

the qubits at the same time (see the Figure 6.2 for more details), so the two ap-

proaches lead to the same results. The first approach uses a more complex algorithm

to consider the noise but it is applied only once after every operator. On the con-

trary, the second one has a more trivial implementation but multiple applications

are needed, one for each qubit related to the noisy gate. For this reason, the second

one is usually better when operators with a low number of qubits are considered.

An example of the application of a simple noisy CH gate (refer to Section 3.6 for

more details) to the state |10⟩ is analyzed to better clarify the differences between the

two possible approaches. The considered noise model is described by the following

Kraus operators:

K1 =
√
0.4

[
1 0

0 1

]
, K2 =

√
0.6

[
0 −i

i 0

]
;,

describing a Bit-Phase flip error with probability p = 0.4 (refer to Section 6.2.3 for

more details).

In the first described approach, four Kraus matrices are generated combining the

original two, in particular the new operators are {K1⊗K1,K1⊗K2,K2⊗K2,K2⊗K1}.
They are then applied to the quantum state accordingly to Equation (6.7) and the

probability distribution of the final state is

|00⟩ → 0.24

|01⟩ → 0.36

|10⟩ → 0.16

|11⟩ → 0.24

Instead, when the second approach is considered, the two original Kraus matrices

are not combined together. They are applied to the state as they are but two times:

85

6 – Noisy Simulation

one considering the noise related to the target qubit and one considering the noise

related to the control. In this way the two qubits are considered separately one after

the other. As mentioned before, the final result is, in the implemented structure,

the same of the one obtained with the first approach.

The choice to implement both approaches even if, in the developed simulator, they

lead to the same results, was made also because in this way the structure is ready to

be improved becoming capable of managing multiple noise models in two different

ways.

6.2.3 Noise Model Library

To simplify and optimize their management, the Kraus operators related to the

six most important single qubit noise models [29] are already stored inside the

NoiseModel class. They are:

� Bit Flip : the state of a qubit randomly flips from |0⟩ to |1⟩ (or vice versa).

It can be represented by the following matrices:

K1 =
√
p

[
1 0

0 1

]
, K2 =

√
1− p

[
0 1

1 0

]
;

� Phase Flip : the phase of the qubit changes as if a Z gate were applied. It

can be represented by the following matrices:

K1 =
√
p

[
1 0

0 1

]
, K2 =

√
1− p

[
1 0

0 −1

]
;

� Bit-Phase Flip : the combination of the two previous errors: the qubit flips

its state and changes its phase. It can be represented by the following matrices:

K1 =
√
p

[
1 0

0 1

]
, K2 =

√
1− p

[
0 −i

i 0

]
;

� Amplitude Damping : model of the decay process of the qubits. It can be

represented by the following matrices:

86

6 – Noisy Simulation

K1 =

[
1 0

0
√
1− p

]
, K2 =

√
1− p

[
0

√
p

0 0

]
;

� Phase Damping : loss of coherence between different basis states. It can be

represented by the following matrices:

K1 =
√
p

[
1 0

0
√
1− p

]
, K2 =

√
1− p

[
0 0

0
√
p

]
;

� Depolarizing : reduction of the qubits entanglement and polarization. It

can be represented by the following matrices:

K1 =
√

1− 3p
4

[
1 0

0 1

]
, K2 =

√
p

2

[
0 1

1 0

]
,

K3 =
√
p

2

[
0 −i

i 0

]
, K4 =

√
p

2

[
1 0

0 −1

]
;

The value p in the matrices represents the noise probability and can assume a value

between 0 and 1, which is proportional to the noise intensity. In particular, for the

first three cases, the noise is close to zero when p is close to 1. On the contrary, for

the last three models, the noise is close to zero when also p is close to zero.

The NoiseModel class internally stores a copy of the Kraus operators related to

these six noise models. When one of them is needed, the matrices are retrieved and

applied to the quantum state without the need to define them by hand. In this way,

only one identifier and not the complete set of Kraus operators can be used to refer

to these six models.

6.3 Noisy Simulator Behavior

The general behavior of the simulator is similar in both the noiseless and noisy sim-

ulation. The main difference is that, in the second case, an appropriate noise model

must be defined and used during the simulation. In the current implementation,

the wanted noise model must be chosen before the simulation and it is applied to

87

6 – Noisy Simulation

the quantum state after that one new gate is considered. For now, it is not possible

to run a complete simulation with different noise models. However, multiple par-

tial simulations can be launched to consider different models for different sections

of the circuit. This solution works but has a big loss in performance because the

complete simulation must be divided into multiple less-optimized “sub-simulations”

that increase the total simulation time and memory usage. This is because the

configuration of the simulator and in particular the noise model has to be modified

accordingly before every new “sub-simulation”. For this reason, even if the simula-

tion with multiple noise models can be theoretically performed by the simulator, no

methods are implemented to automatically manage it.

Considering to work with a single standard noise model for the complete simulation,

the noise is applied to the quantum state after that the effect of a gate is considered.

The Figure 6.1 reports graphically the described behavior:

88

6 – Noisy Simulation

Apply the next ideal
gate to the quantum

state

Apply the noise
related to the gate

just considered

Set all the
simulation

parameters and
define the noise

model

Run the simulation
starting from the

first considered gate

Define an intial
quantum state
described by a
density matrix

More gates to

be simulated?

Start

Yes
End

No

Figure 6.1: General algorithm used to simulate a noisy circuit.

When the compact noise model (Section 6.1.2) is considered the only difference

is that the noise is applied before every gate except for the first one.

Considering that the noise must be applied at every gate, the optimized simulation

approach described in Section 3.4.1 cannot be used. This is because that optimiza-

tion is based on considering the effect of multiple gates and applying them together

to the state and not one by one. Thus, the noise cannot be considered after every

single gate to which it is related, but only at the end of a certain block.

Different approaches can be used to apply the noise to the quantum state. As men-

tioned in the description of the NoiseModel class (Section 6.2.2), the standard noise

model can be applied to a single qubit, to multiple qubits together, or to multi-

ple qubits one by one. Four different approaches can be chosen before starting the

89

6 – Noisy Simulation

simulation of a circuit:

� The noise is applied only to the qubits related to the previous gate (target(s)

+ control(s)) separately;

� The noise is applied only to the qubits related to the previous gate (target(s)

+ control(s)) altogether;

� The noise is applied to all the qubits of the state separately;

� The noise is applied to all the qubits of the state altogether;

Clearly, the last two options lead to a higher computational cost because the noise

must be applied to all qubits, even the ones that are not affected by the previously

considered gate. However, those approaches can be used to consider a worst-case

scenario where all the qubits are always affected by the noise. This is because, in

those situations, the total effect on the quantum state must be calculated by mixing

together all the effects generated by the noise to all the considered qubits.

The more detailed behavior of the simulator in case of noisy simulation is reported

in Figure 6.2.

Consider

a circuit

composed of

multiple gates

Consider

an initial

quantum state

Apply

all the gates

 and the related

noise to the state

Obtain

the final

quantum state

The gates are

described as

OperatorArray

objects

 The state is a
mixed state

described by
using a density

matrix

 The methods

of the

OperatorArray
and NoiseModel

classes are used

 The density
matrix

describing the
final state is
calculated

Define the

model used to
describe the

effect of the

noise

The model is
defined using the

NoiseModel
class

Define

 the approach

used to apply

the noise

 Some flags

are used to

define how the
noise is applied

to the state

Figure 6.2: Simulator behavior during the noisy Array-based simulation.

Finally, it is important to summarize the interaction between the different im-

plemented classes, as already done in case of noiseless simulation (Figure 4.2). Fig-

ure 6.3 reports the simulator structure in case of noisy Array-based simulation.

90

6 – Noisy Simulation

Circuit

Library gates stored into

OperatorArray

ArrayDensityMatrixOperatorLibrary.hpp

Composed by gates

described as

Calculates the evolution of

a mixed state described as

Applied to mixed

 states described as

Applied after every gate

to mixed states described as

NoiseModel

Non idealities

described with

Figure 6.3: Detail of the noisy Array-based simulator structure.

As for the noiseless simulation, the Circuit class uses multiple OperatorArray

objects to describe the gates of the quantum circuit. However, this time, also a

NoiseModel object, describing the noise model to be used during the simulation,

is associated with the circuit. The model must be defined before the start of the

simulation and is then applied to the quantum state as reported in Figure 6.1.

The quantum states are mixed states described using the ArrayDensityMatrix class.

An ArrayDensityMatrix object is used to store the evolution of the state during the

simulation. Every time a gate is encountered, it is applied to the state and the effect

of the noise is considered using the appropriate methods of the NoiseModel class. As

described before, the noise can be applied using different approaches depending on

the simulator settings. After that all the gates and the related noises are applied, the

simulation ends and the final quantum state is obtained as an ArrayDensityMatrix

object.

In case of DD-based representation, the structure is the same but the considered

classes to describe gates and states are respectively the OperatorDD (Section 5.2.3)

and the DDDensityMatrix.

91

Chapter 7

Obtained Results

In this chapter, the results about the simulation time and the memory occupation

obtained by the implemented infrastructure are reported and analyzed. Different

working configurations of the simulator are considered and compared to identify

their advantages and disadvantages.

7.1 Tools And Benchmarks

First of all, it is important to define the profiling tools and the benchmarks used to

obtain the analyzed results. The set of considered quantum circuits is composed by:

� a circuit used to solve linear equations, working on 3 qubits and described in

the linearsolver.qasm file;

� a simple adder working on 4 qubits and described in the adder small.qasm

file;

� a phase estimation circuit, working on 5 qubits described in the phaseest.qasm

file;

� a more complex adder working on 10 qubits and described in the

adder medium.qasm file;

� multiple circuits implementing the Quantum Fourier Transform (QFT) with

different parallelism (from 2 to 10 qubits), described in the qft n.qasm files

(n is the considered number of qubits);

� multiple circuits implementing the Inverse Quantum Fourier Transform (IQFT)

with different parallelism (from 2 to 10 qubits), described in the iqft n.qasm

files (n is the considered number of qubits);

92

7 – Obtained Results

The QFT and IQFT circuits are taken from the master thesis of Luca Nurisso [30]

while the others are retrieved from a repository of an existing QASM Benchmark

Suite, QASMBench [31]. From now on, these circuits will be referenced in the tables

and graphs by using the name of the Open QASM file describing them (without the

.qasm extension). For example, the first-mentioned circuit on the previous list will

be identified as linearsolver. Multiple parallelisms for the QFT and IQFT circuits

are considered to analyze the performance of the same circuit working on a different

number of qubits.

Various simulations with different settings were run on these circuits to profile their

behavior and performance. The two considered metrics are the simulation time and

the memory occupation. The first one is calculated using directly the functions of

the C++ time.h library. It is important to underline that, in the reported results,

the generation of the circuit starting from the .qasm file is considered part of the

simulation time (for more details refer to the related Section 3.5). In particular, a

timer is started at the beginning of the file reading and it is stopped at the end of

the simulation, after having printed the final results. The elapsed time is considered

the total simulation time.

The information about the memory occupation are obtained by using the massif

tool of the Valgrind profiler [32, 33]. This tool is useful to obtain information

about the trend of the allocated memory during the execution of the code (see the

related Section 7.1.1 for more details). The data retrieved from its log files are then

elaborated to find the average and the peak values of the memory usage that are

reported in this chapter. It is important to underline that the employed tool gives

information only about the dynamic memory. However, the portion of static memory

used by the simulator is very limited and its contribution to the total allocation is

negligible compared to the dynamic one.

All the simulations used to obtain the described results have been performed on the

private server of the VLSI Lab research group at Politecnico di Torino, having the

following characteristics:

� CPU: Intel® Xeon® Gold 6134;

� Clock: 3.20GHz;

� Cores: 8 (however the simulations are run on a single core and thread);

93

7 – Obtained Results

� Cache: 24.75MB L3 cache;

7.1.1 Massif Log File

The log file generated by the massif tool can be employed to obtain information

about the memory allocation during the program execution. A graphical represen-

tation can be obtained by using the ms print command, an example is reported in

Figure 7.1.

Figure 7.1: Example of the graphical representation of the memory usage trend
during the program execution. On the horizontal and vertical axes are reported
respectively the progression of the program and the allocated memory.

The progression of the program, in terms executed instructions, and the memory

occupation are respectively reported on the horizontal and vertical axes. Vertical

bars represent the measurement of memory usage at a certain time period and are

called snapshots. Three different types of snapshots can be present:

� Normal : only basic information is reported in the log file. They are repre-

sented in the graph by using ‘:’ characters;

� Detailed : more details about the allocation are reported in the log file. They

are represented in the graph by using ‘@’ characters;

94

7 – Obtained Results

� Peak : a detailed snapshot recording the point where the greatest memory

occupation is present. It is represented in the graph by using ‘#’ characters.

The information about the average and peak memory usage reported from now on

can be obtained from these graphs and log files. The complete information about the

memory occupation trend during the execution is reported only in some significant

situations.

7.2 Simulator Validation

Before starting the description of the obtained results, it is important to clarify

the methodology employed to check the correct behavior of the simulator. First

of all, the different modules composing the simulator have been tested individu-

ally. For this purpose, specific test-benches have been adopted to validate all the

implemented functionalities. Then, after having verified the correct behavior of all

the developed modules, also the complete simulator infrastructure has been tested.

Initially, some simple custom circuits have been employed to validate the different

simulation steps. In this phase the online simulator Quirk [34] was used to com-

pare the obtained results. This approach is helpful to take always under control the

evolution of the state through the circuit. However, with the increase of the system

complexity, it becomes time-consuming because the circuit generation cannot be

automatized. For this reason, when bigger circuits are considered, the validation

of the simulation outcomes has been performed by comparing them with the ones

obtained with commercial simulators. In particular, the distribution of probabilities

associated with the final quantum state after the simulation is compared to the one

achieved with Qiskit framework [8].

Some differences were present in the outcomes of the tested circuits. The differ-

ent simulation steps were analyzed to find the problem and it was noticed that

they mainly derive from numerical errors occurred during the simulation. Indeed,

while the implemented simulator employs complex amplitudes represented by using

a couple of 32-bit floating point values, Qiskit is based on the Pyhton language

that works with a different numerical precision. The errors on the final states are

generally negligible in case of noiseless simulation but become more evident when

95

7 – Obtained Results

noise is introduced. This is mainly due to two reasons:

� more calculations are needed to apply noisy quantum gates to the system and

so more numerical errors arise;

� the mixed quantum states affected by non-ideality phenomena have a more

distributed probability and so the numerical errors combine and grow faster.

Thus, even if the outcomes of noisy simulations have usually the same trend of the

the ones obtained with Qiskit, the final individual amplitudes can have also a quite

big error. To clarify the problem an example is analyzed. The circuit reported

in Figure 7.2 is simulated considering a Bit-Phase flip noise (refer to Section 6.2.3

for more details) with probability p = 0.4 and all the intermediate distributions

assumed by the quantum state are compared with the ones obtained with Qiskit

(Table 7.1).

|0⟩ H •

|0⟩ X •

|0⟩ X

Figure 7.2: Simple quantum circuit used to analyze the effects of numerical errors
inside the simulator.

96

7 – Obtained Results

State Simulator After the first gate After the second gate After the third gate

|000⟩ Implemented 0.500 0.260 0.128
Qiskit 0.480 0.268 0.132

|001⟩ Implemented 0.500 0.240 0.132
Qiskit 0.520 0.237 0.124

|010⟩ Implemented 0 0.240 0.120
Qiskit 0 0.277 0.130

|011⟩ Implemented 0 0.260 0.120
Qiskit 0 0.218 0.119

|100⟩ Implemented 0 0 0.120
Qiskit 0 0 0.113

|101⟩ Implemented 0 0 0.120
Qiskit 0 0 0.114

|110⟩ Implemented 0 0 0.132
Qiskit 0 0 0.155

|111⟩ Implemented 0 0 0.128
Qiskit 0 0 0.112

Table 7.1: Comparison between the quantum state probability distribution affected
by numerical errors obtained with the implemented simulator and the correct one
deriving from Qiskit.

There are also some rare situations where the different errors compensate them-

selves and so the final result is the correct one.

The described methodology has been employed to validate both the noiseless and

the noisy simulation procedures, except for the situation where the compact noise

model is considered (Section 6.1.2). Indeed, in that case, the amplitudes of the

final quantum state were compared to the ones obtained by the MATLAB model

described in [28], detecting again some differences related to the numerical errors.

All the problems related to the discrepancies between the simulation outcomes and

the correct ones could be solved by increasing the simulator precision or by applying

some error correcting algorithms that are not present in this implementation.

7.3 Ideal Simulation Results

First of all, the noiseless simulation based on state vectors is considered for both

the Array-based and the DD-based representations. Table 7.2 reports the obtained

97

7 – Obtained Results

results concerning the simulation time and the memory occupation for some of the

analyzed circuits. They are ordered placing at the top of the table the circuit with

the smaller parallelism and at the bottom the one with the larger one.

Circuit
Simulation Time [s] Average Memory Occupation [KiB]
Array DD Array DD

linearsolver 7.330× 10−3 s 8.861× 10−3 s 21.240KiB 24.264KiB
qft 4 1.547× 10−2 s 2.586× 10−2 s 21.240KiB 22.622KiB
iqft 4 8.071× 10−3 s 2.638× 10−2 s 21.184KiB 22.621KiB

adder small 1.188× 10−2 s 4.450× 10−2 s 23.807KiB 25.752KiB
phaseest 1.007× 10−1 s 7.680× 10−1 s 45.363KiB 45.470KiB
qft 7 4.367× 10−1 s 4.610 s 127.62KiB 32.065KiB
iqft 7 4.438× 10−1 s 4.617 s 136.66KiB 32.399KiB

adder medium 1.648× 102 s 2.187× 103 s 7061.1KiB 71.341KiB

Table 7.2: Obtained results from the simulation of generic quantum circuits consid-
ering noiseless simulation using state vectors.

When small parallelism is considered, the results obtained with the two represen-

tations are very similar. With the increase of the number of considered qubits, the

Decision Diagrams become much slower than the standard Array representation but

their memory usage is greatly reduced. This trend is more evident in the QFT and

IQFT circuits, where more redundancies are present and so a more compact repre-

sentation can be generated. Figure 7.3 and Figure 7.4 report respectively the trend

of simulation time and memory usage with the increase of the number of considered

qubits, in linear and logarithmic scale.

98

7 – Obtained Results

2 3 4 5 6 7 8
qubits

5

10

15

20

25

30

tim
e

[s
]

Simulation time using state vectors

QFT Vector Array
QFT Vector DD
IQFT Vector Array
IQFT Vector DD

(a) Simulation time (linear scale).

2 3 4 5 6 7 8
qubits

10-2

10-1

100

101

tim
e

[s
] (

lo
g)

Simulation time using state vectors (logarithmic scale)

QFT Vector Array
QFT Vector DD
IQFT Vector Array
IQFT Vector DD

(b) Simulation time (logarithmic scale).

Figure 7.3: Simulation time of the QFT and IQFT circuits depending on the con-
sidered number of qubits in the case of noiseless simulation with state vectors.

99

7 – Obtained Results

2 3 4 5 6 7 8 9 10
qubits

1000

2000

3000

4000

5000

6000

7000

O
cc

up
ie

d
m

em
or

y
[K

iB
]

Memory occupation using state vectors

QFT Vector Array
QFT Vector DD
IQFT Vector Array
IQFT Vector DD

(a) Memory occupation (linear scale).

2 3 4 5 6 7 8 9 10
qubits

102

103

O
cc

up
ie

d
m

em
or

y
[K

iB
] (

lo
g)

Memory occupation using state vectors (logarithmic scale)

QFT Vector Array
QFT Vector DD
IQFT Vector Array
IQFT Vector DD

(b) Memory occupation (logarithmic scale).

Figure 7.4: Memory occupation of the QFT and IQFT circuits depending on the
considered number of qubits in the case of noiseless simulation with state vectors.

100

7 – Obtained Results

The increase of simulation time is more gentle when the Array-based representa-

tion is considered. On the contrary, the memory occupation grows slower when DDs

are employed. Thus, each of the two approaches can be used to optimize a specific

aspect of the simulation, depending on the requirements. This trend is mainly due

to the structure employed in the DDStateVec class (Section 5.2.1) to represent state

vectors using Decision Diagrams. Indeed, the main focus was the reduction of the

memory occupation taking into account an acceptable increase of the computational

cost for the stored data access.

The results show also that the differences between the QFT and IQFT circuits are

very limited, in particular the ones related to the simulation time (the two lines

related to the same representation are almost always overlapped). This is normal

in the Array-based simulation where the data structure related to a certain paral-

lelism is similar: the dimension of the quantum states and matrices depends only

on the number of considered qubits and not on the considered benchmark. Instead,

the redundancies inside the quantum states exploited by the Decision Diagrams are

usually more affected by the characteristics of the simulated circuit. In this situa-

tion, the differences are minimized because the QFT and the IQFT are both quite

redundant algorithms. However, in general, the DDs are a more dynamic structure:

the tree describing the quantum state changes its shape and dimension every time

a gate is applied to it and the amplitudes are modified.

Figure 7.5 and Figure 7.6 report the trend of the memory usage obtained with the

massif tool (Section 7.1.1) for the iqft 8 circuit considering respectively the noiseless

Array-based and the DD-based simulation.

101

7 – Obtained Results

Figure 7.5: Trend of memory usage in the noiseless simulation of the iqft 8 circuit
using the Array-based state vectors.

Figure 7.6: Trend of memory usage in the noiseless simulation of the iqft 8 circuit
using the DD-based state vectors.

The memory usage in the simulation performed considering the Array-based

representation is quite constant and only a few “holes” are present. Indeed, the

102

7 – Obtained Results

allocated memory to store the quantum states and gates is always the same and

does not depend on the values assumed by their elements. Instead, in the DD-based

simulation, the behavior is more irregular because the data structure is more dy-

namic, and so the allocated memory varies a lot.

Some simulations have been also performed considering working with density matri-

ces but still referring to noiseless circuits. That situation is very uncommon because,

normally, using matrices instead of vectors worsens the performance of the simula-

tor. However, the obtained results, reported in Table 7.3, can be used to highlight

the possible advantages of employing matrices represented by Decision Diagrams.

Circuit
Simulation Time [s] Average Memory Occupation [KiB]
Array DD Array DD

linearsolver 2.018× 10−2 s 1.246× 10−2 s 24.211KiB 23.581KiB
qft 4 2.484× 10−2 s 1.495× 10−2 s 31.872KiB 24.593KiB
iqft 4 2.520× 10−2 s 2.390× 10−2 s 29.756KiB 24.599KiB

adder small 2.547× 10−2 s 2.199× 10−2 s 35.547KiB 30.330KiB
phaseest 6.912× 10−1 s 1.394 s 95.696KiB 155.24KiB
qft 7 1.147× 101 s 1.317 s 936.21KiB 134.66KiB
iqft 7 1.149× 101 s 1.733 s 836.41KiB 156.43KiB

adder medium 2.743× 103 s 2.170× 102 s 74 981.3KiB 5365.5KiB

Table 7.3: Obtained results from the simulation of generic quantum circuits consid-
ering the noiseless simulation using density matrices.

Differently from the previous analysis (Table 7.2), the obtained results show

that the DD-based representation is the optimal choice in almost all the situations,

regarding both the simulation time and the memory occupation. The only exception

is the phaseest circuit. This is mainly because matrices are usually more redundant

than vectors, and so the resulting DDs are more compact. However, it is important

to compare these outcomes with the ones obtained using state vectors and identify

the best configuration for noiseless simulations. In Figure 7.7 and Figure 7.8, the

results obtained with the QFT and IQFT circuits are employed for this purpose.

103

7 – Obtained Results

2 3 4 5 6 7 8
qubits

20

40

60

80

100

120

tim
e

[s
]

Simulation time using state vectors and density matrices

QFT Density Array
QFT Density DD
IQFT Density Array
IQFT Density DD
QFT Vector Array
QFT Vector DD
IQFT Vector Array
IQFT Vector DD

(a) Simulation time (linear scale).

2 3 4 5 6 7 8
qubits

10-2

10-1

100

101

102

tim
e

[s
] (

lo
g)

Simulation time using state vectors and density matrices (logarithmic scale)

QFT Density Array
QFT Density DD
IQFT Density Array
IQFT Density DD
QFT Vector Array
QFT Vector DD
IQFT Vector Array
IQFT Vector DD

(b) Simulation time (logarithmic scale).

Figure 7.7: Comparison between the simulation time of the QFT and IQFT noiseless
circuits using state vectors and density matrices.

104

7 – Obtained Results

2 3 4 5 6 7 8 9 10
qubits

1

2

3

4

5

6

O
cc

up
ie

d
m

em
or

y
[K

iB
]

104 Memory occupation using state vectors and density matrices

QFT Density Array
QFT Density DD
IQFT Density Array
IQFT Density DD
QFT Vector Array
QFT Vector DD
IQFT Vector Array
IQFT Vector DD

(a) Memory occupation (linear scale).

2 3 4 5 6 7 8 9 10
qubits

102

103

104

O
cc

up
ie

d
m

em
or

y
[K

iB
] (

lo
g)

Memory occupation using state vectors and density matrices (logarithmic scale)

QFT Density Array
QFT Density DD
IQFT Density Array
IQFT Density DD
QFT Vector Array
QFT Vector DD
IQFT Vector Array
IQFT Vector DD

(b) Memory occupation (logarithmic scale).

Figure 7.8: Comparison between the memory occupation of the QFT and IQFT
noiseless circuits using state vectors and density matrices.

105

7 – Obtained Results

From the plots, it can be noticed that the overall fastest simulation is again

obtained with the Array-based representation using state vectors. However, good

results are also achieved considering to work with density matrices represented using

Decision Diagrams. In that situation, the simulation time is also lower than the one

obtained by using DD state vectors. This is because the structure implemented to

represent matrices (Section 5.2.2) is generally more optimized than the one used for

the vectors (Section 5.2.1). Concerning the memory occupation, the DDs are again

the best choice.

Also in this case, the trend of memory allocation can be analyzed for both the

Array-based (Figure 7.9) and the DD-based (Figure 7.10) representations.

Figure 7.9: Trend of the memory usage in the noiseless simulation of the
adder medium circuit using the Array-based density matrices.

106

7 – Obtained Results

Figure 7.10: Trend of the memory usage in the noiseless simulation of the
adder medium circuit using the DD-based density matrices.

Decision Diagrams show again a more irregular trend compared to the one ob-

tained with the Array-based simulation. This is again because their structure is

dynamic and varies a lot during the simulation.

In conclusion, the analysis performed considering to work with density matrices,

even if they are not necessary for noiseless simulations, shows that the Decision

Diagram structure is more optimized in this situation. For this reason, they seem

the optimal choice in the case of noisy simulation. However, it must be taken into

account that noise reduces the redundancies inside the quantum states and so the

benefits of the DD-based representation. A more detailed analysis is performed in

the related Section 7.4.

7.3.1 “Condensed Gate” Simulation Results

Before starting the analysis of the results obtained in case of noisy simulation, it is

necessary to briefly describe the benefits obtained using the optimized simulation

procedure described in Section 3.4.1. The key idea of this optimization is to merge

some non-overlapping gates and simulate them together in the same simulation step.

This approach can reduce the computational cost and so the time needed for the

107

7 – Obtained Results

simulation. However, the improvements are strongly dependent on the circuit char-

acteristics: many consecutive non-overlapping gates must be present to have a good

optimization. Moreover, it must be considered that a small increase of the com-

putational cost is present during the creation of the circuit when this optimization

is considered. This overhead is usually negligible compared to the total simulation

time.

Table 7.4 reports the comparison between the simulation time of some generic cir-

cuits with and without the described optimization. The information about memory

usage are not reported because this approach does not affect it in a significant way.

Circuit

Simulation Time
With Optimization

Simulation Time
Without Optimization

Array DD Array DD
linearsolver 1.68× 10−2 s 1.20× 10−2 s 1.15× 10−2 s 1.80× 10−2 s

qft 4 6.41× 10−3 s 1.68× 10−2 s 8.02× 10−3 s 2.32× 10−2 s
iqft 4 1.00× 10−2 s 2.02× 10−2 s 1.53× 10−2 s 1.93× 10−2 s

adder small 1.45× 10−2 s 3.69× 10−2 s 1.26× 10−2 s 3.86× 10−2 s
phaseest 1.01× 10−1 s 7.55× 10−1 s 1.02× 10−1 s 8.01× 10−1 s
qft 7 4.15× 10−1 s 4.52 s 4.44× 10−1 s 5.41 s
iqft 7 4.36× 10−1 s 4.61 s 4.40× 10−1 s 5.36 s

adder medium 1.36× 102 s 1.99× 103 s 1.65× 102 s 2.19× 103 s

Table 7.4: Obtained results from the noiseless simulation of generic quantum circuits
considering the “condensed gate” optimization.

The results show that the optimized approach is better only when more than 4

qubits are considered, while it is generally worse in the benchmarks with smaller

parallelism. This is mainly because, in the circuits with a reduced number of qubits,

it is difficult to have a situation where multiple non-overlapping gates are present.

Moreover, in those situations, the simulation time is short and the overhead due to

the optimization is more evident.

7.4 Noisy Simulation Results

In the case of noisy simulation, multiple results have been obtained for the different

possible noise models. However, in this section, only the most meaningful results

108

7 – Obtained Results

are reported. In particular, they are the ones related to:

� Bit-Phase Flip error with probability p = 0.3, chosen because it can be modeled

easily;

� Depolarizing error with probability p = 0.3, chosen because it is based on a

computationally expensive model;

� Decoherence and Relaxation errors, chosen because they are very common in

quantum hardware and can be described by using the compact model.

The effect of the noise is always considered together with the application of every

gate. In the first and second situation, the Kraus operators are employed to describe

the noise (Section 6.1.1). At each simulation step, they act only on the qubits re-

lated to the previous applied gate, one by one. In the third case, the compact noise

model (Section 6.1.2) is considered.

7.4.1 Standard Noise Model Results

Table 7.5 reports the obtained results for the simulation time and the memory

occupation considering the Phase-Bit Flip error.

Circuit
Simulation Time [s] Memory Occupation [KiB]
Array DD Array DD

linearsolver 1.113× 10−3 s 3.121× 10−2 s 26.687KiB 48.923KiB
qft 4 3.365× 10−2 s 4.308× 10−2 s 35.871KiB 30.439KiB
iqft 4 2.736× 10−2 s 4.069× 10−2 s 36.366KiB 33.446KiB

adder small 4.001× 10−2 s 8.002× 10−2 s 40.140KiB 56.557KiB
phaseest 1.230 s 1.669× 101 s 107.95KiB 506.93KiB
qft 7 2.166× 101 s 5.757 s 1688.1KiB 577.47KiB
iqft 7 2.172× 101 s 9.929 s 1688.1KiB 648.01KiB

adder medium 4.749× 104 s 3.811× 105 s 78 492.85KiB 49 543.01KiB

Table 7.5: Obtained results from the simulation of generic quantum circuits affected
by Bit-Phase Flip error.

As expected, there is a worsening of the simulator performance when the noise is

considered. This is more evident in the case of DD representation because the noise

109

7 – Obtained Results

errors reduce the redundancies inside the quantum states and so their compactness.

Indeed, in this situation, Decision Diagrams are the optimal choice only to simulate

some quite big and redundant circuits like the qft 7 and the iqft 7. In all the other

circumstances they are overcome by the Array-based simulation.

Figure 7.11 and Figure 7.12 report the trend of memory occupation when the noisy

simulation is considered for both the two representations.

Figure 7.11: Trend of the memory usage in the noisy simulation of the qft 9 circuit
using the Array-based representation.

110

7 – Obtained Results

Figure 7.12: Trend of the memory usage in the noisy simulation of the qft 9 circuit
using the DD-based representation.

The allocation in the Array-based representation is, as usual, quite constant in

time because the data structure needed to store quantum states and gates is fixed

during the execution. On the contrary, the memory usage of the Decision Diagrams

grows with the progress of the simulation. Indeed, every time that a gate and the

related noise are applied to the quantum state, the redundancies inside it are reduced

and the size of the DD increases.

When the Depolarizing noise is considered, there is a further performance worsening.

This is because its effect must be described by using a larger number of Kraus

operators and so an higher computational cost is required (for more details see

the related Section 6.1.1 and Section 6.2.3). The obtained results are reported in

Table 7.6.

111

7 – Obtained Results

Circuit
Simulation Time [s] Memory Occupation [KiB]
Array DD Array DD

linearsolver 2.596× 10−2 s 8.039× 10−2 s 30.641KiB 97.477KiB
qft 4 3.718× 10−2 s 6.240× 10−2 s 47.430KiB 215.77KiB
iqft 4 3.686× 10−2 s 6.346× 10−2 s 47.398KiB 173.80KiB

adder small 8.083× 10−2 s 2.205× 10−1 s 51.797KiB 149.84KiB
phaseest 1.827 s 3.166× 101 s 150.14KiB 1152.7KiB
qft 7 3.216× 101 s 1.889× 101 s 1688.4KiB 12 105.3KiB
iqft 7 3.210× 101 s 3.385× 101 s 1688.4KiB 9506.4KiB

adder medium 5.879× 104 s 4.013× 105 s 119 659KiB 171 895KiB

Table 7.6: Obtained results from the simulation of generic quantum circuits affected
by Depolarizing errors.

Generally, the DD representation is worse considering both the memory usage

and the simulation time. This is due to the reduction of the redundancies inside

the quantum states: Decision Diagrams become bigger and the advantages deriving

from their structure are limited. Also the IQFT circuits, which are quite redundant,

perform better with the Array-based representation when this noise model is con-

sidered.

From Table 7.5 and Table 7.6, it can be noticed that the differences about the

memory occupation of the Array-based simulation using the two noise models are

almost null. Indeed, as mentioned before, the data structure required by the Array-

based representation depends principally on the number of considered qubits and

it is slightly affected by the circuit characteristics. For this reason, using that rep-

resentation, the memory usage is almost the same for all the possible non-ideality

phenomena described with the “standard model” (Section 6.1.1). Instead, the DD-

base simulation is greatly affected by the circuit topology and the considered noise

errors. Both the simulation time and the memory occupation considerably depend

on the number of redundancies inside the quantum states. For this reason, the ob-

tained results for this representation are very different in the two considered noisy

simulations.

112

7 – Obtained Results

7.4.2 Compact Noise Model Results

The last considered noise model is the one describing the effects of decoherence and

relaxation. Table 7.7 reports the results obtained when the compact noise model

(Section 6.1.2) is considered during simulation to describe the effects of these non-

ideality phenomena. In this situation only the small benchmarks with less than 5

qubits are considered because the parameters of the model are available only for

these circuits.

Circuit
Simulation Time [s] Memory Occupation [KiB]
Array DD Array DD

linearsolver 1.441× 10−2 s 1.491× 10−2 s 28.84KiB 40.71KiB
qft 4 3.120× 10−2 s 3.193× 10−2 s 45.52KiB 30.31KiB
iqft 4 1.548× 10−2 s 1.294× 10−1 s 45.49KiB 25.58KiB

adder small 3.365× 10−2 s 1.351× 10−1 s 46.88KiB 102.5KiB

Table 7.7: Obtained results from the simulation of generic quantum circuits affected
by decoherence and relaxation errors described by the compact model analyzed in
Section 6.1.2.

The simulation times are generally lower than the ones obtained considering the

depolarizing error while are higher than the ones concerning the Bit-Phase flip noise.

Moreover, also the memory occupation is lower in all the considered benchmarks.

However, his comparison is not so meaningful because the considered non-ideality

phenomena are different. These results can be used only to have an idea of the

performance of the compact model.

7.5 Overall Comparison

To conclude this analysis, it is necessary to consider an overall comparison between

the most important results obtained until now. Six different configurations are

compared, in particular:

� Ideal simulation using state vectors, with both the Array-based and the DD-

based representation;

113

7 – Obtained Results

� Ideal simulation using density matrices, with both the Array-based and the

DD-based representation;

� Noisy simulation considering a Bit-Phase Flip noise with p = 0.3, with both

the Array-based and the DD-based representation;

In all situations, the same set of circuits are used as benchmarks, divided into

two categories depending on their parallelism. The “small circuits” are the ones

composed of less than 5 qubits, while the “intermediate circuits” are the ones with

5 to 10 qubits. Figure 7.13 and Figure 7.14 report the comparison between the six

different configurations for the small and intermediate set of circuits.

114

7 – Obtained Results

Simulation time of small circuits

linearsolver (3) qft_4 (4) iqft_4 (4) adder_small (4)
Circuit

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

tim
e

[s
]

Ideal Vector Array
Ideal Vector DD
Ideal Density Array
Ideal Density DD
Noisy Array
Noisy DD

(a) Linear scale.

Simulation time of small circuits (logarithmic scale)

linearsolver (3) qft_4 (4) iqft_4 (4) adder_small (4)
Circuit

10-2

10-1

tim
e

[s
] (

lo
g)

Ideal Vector Array
Ideal Vector DD
Ideal Density Array
Ideal Density DD
Noisy Array
Noisy DD

(b) Logarithmic scale.

Figure 7.13: Comparison between the simulation time of small circuits considering
different possible configurations.

115

7 – Obtained Results

Simulation time of intermediate circuits

phaseest (5) qft_7 (7) iqft_7 (7) adder_medium (10)
Circuit

0

0.5

1

1.5

2

2.5

3

3.5

4

tim
e

[s
]

105

Ideal Vector Array
Ideal Vector DD
Ideal Density Array
Ideal Density DD
Noisy Array
Noisy DD

(a) Linear scale.

Simulation time of intermediate circuits (logarithmic scale)

phaseest (5) qft_7 (7) iqft_7 (7) adder_medium (10)
Circuit

10-1

100

101

102

103

104

105

106

tim
e

[s
] (

lo
g)

Ideal Vector Array
Ideal Vector DD
Ideal Density Array
Ideal Density DD
Noisy Array
Noisy DD

(b) Logarithmic scale.

Figure 7.14: Comparison between the simulation time of intermediate circuits con-
sidering different possible configurations.

116

7 – Obtained Results

Concerning the ideal simulation, the DDs obtain better results when density ma-

trices are employed to describe noiseless quantum states but they cannot compete

with the Array-based state vectors. Indeed, these last minimize the execution time,

independently from the simulated circuit. However, when noise is introduced, the

situation changes a little. If small circuits are considered, the Array-based repre-

sentation is still optimal but its advantages are strongly reduced. Moreover, the

Decision Diagrams become the most advantageous choice for the simulation of in-

termediate circuits.

The same analysis can be performed also considering the memory usage. The com-

parison between the results obtained for the small and intermediate circuits are

reported respectively in Figure 7.15 and Figure 7.16.

117

7 – Obtained Results

Average memory occupation of small circuits

linearsolver (3) qft_4 (4) iqft_4 (4) adder_small (4)
0

10

20

30

40

50

60

70

80

O
cc

up
ie

d
M

em
or

y
[K

iB
]

Ideal Vector Array
Ideal Vector DD
Ideal Density Array
Ideal Density DD
Noisy Array
Noisy DD

(a) Linear scale.

Average memory occupation of small circuits (logarithmic scale)

linearsolver (3) qft_4 (4) iqft_4 (4) adder_small (4)

25

30

35

40

45

50

55

60

65
70
75
80

O
cc

up
ie

d
M

em
or

y
[K

iB
] (

lo
g)

Ideal Vector Array
Ideal Vector DD
Ideal Density Array
Ideal Density DD
Noisy Array
Noisy DD

(b) Logarithmic scale.

Figure 7.15: Comparison between the average memory occupation of small circuits
considering different possible configurations.

118

7 – Obtained Results

Average memory occupation of intermediate circuits

phaseest (5) qft_7 (7) iqft_7 (7) adder_medium (10)
0

1

2

3

4

5

6

7

8

O
cc

up
ie

d
M

em
or

y
[K

iB
]

104

Ideal Vector Array
Ideal Vector DD
Ideal Density Array
Ideal Density DD
Noisy Array
Noisy DD

(a) Linear scale.

Average memory occupation of intermediate circuits (logarithmic scale)

phaseest (5) qft_7 (7) iqft_7 (7) adder_medium (10)
101

102

103

104

105

O
cc

up
ie

d
M

em
or

y
[K

iB
] (

lo
g)

Ideal Vector Array
Ideal Vector DD
Ideal Density Array
Ideal Density DD
Noisy Array
Noisy DD

(b) Logarithmic scale.

Figure 7.16: Comparison between the average memory occupation of intermediate
circuits considering different possible configurations.

119

7 – Obtained Results

In the noiseless simulation the use of state vectors reduces the needed resources.

In particular, the Array-based representation minimizes the required memory when

small circuits are considered, while the DDs achieve better results with the increase

of the number of considered qubits. This is because when higher parallelism are

considered the Decision Diagrams can generally exploit more redundancies and ob-

tain a more compact structure.

From the plots it can be noticed also the difference between the memory usage when

density matrices are used to simulate noiseless or noisy circuits. The introduction

of the errors related to the non-ideality phenomena always increases the needed re-

sources. However, the worsening related to the Decision Diagrams is generally more

evident. Indeed, the advantages of that representations in case of noiseless simula-

tion are maintained also when noise is introduced only in some redundant circuits,

such as the ones related to the QFT and IQFT.

120

Chapter 8

Conclusion

In this final chapter, a summary of the achieved results is reported together with a

discussion about the possible improvements and the future prospects.

8.1 Summary

The goal of this thesis was the development of a classical infrastructure capable of

simulating noisy quantum circuits. This infrastructure can be employed after the

logical and layout synthesis to verify the correctness of the designed circuit, taking

into account also the errors and the non-ideality phenomena that affect the real

quantum hardware. The simulator employs two different representations of quan-

tum states and gates: the Array-based (Chapter 4) and the Decision Diagram-based

(Chapter 5). Moreover, two different models can be used to consider the effects of

the noise during the simulation (Section 6.1.1 and Section 6.1.2). The implemented

structure can work with multiple configurations: different settings and parameters

are used to customize the simulation procedure. First of all, the type of simula-

tion (noiseless or noisy), the employed representation, and the noise model that has

to be applied in the case of noisy circuits are chosen. Then, more specific actions

can be taken to configure secondary traits of the simulator. In particular, various

approaches can be considered for the circuit generation, the state measurements,

the noise application, and the internal optimizations. All these features and their

combinations broaden considerably the simulator workspace.

The results obtained by the simulation of simple quantum circuits show that the

Array representation is generally the best one to have a faster noiseless simula-

tion. However, when non-ideality phenomena are introduced, the optimal solution

concerning the simulation time depends mostly on the considered circuit and noise

121

8 – Conclusion

model. Regarding the memory occupation, the DD-based representation requires

fewer resources in almost all noiseless simulations. This is due to the compact struc-

ture employed to represent vectors and matrices. The benefits are less evident in

the case of noisy simulation because the introduction of noise errors reduces the

redundancies inside the quantum states.

8.2 Possible Improvements And Future Prospects

The developed simulator is based on a quite complex modular structure with mul-

tiple integrated features. Even if it can already perform different tasks, further

improvements can be implemented. Many of them can be focused on the optimiza-

tion of some algorithms or simulation steps, while others can rely on the addition of

new features or modules. Considering the first category, some possibilities are:

� The improvement of the Decision Diagram structure used to store state vectors,

indeed, this is the less-optimized part of the simulator. In particular more

redundancies can be exploited by implementing the tree reported in Figure 5.5.

� The modification of the DD structure used in the case of noisy simulation.

The tree reported in Figure 5.4 can be used to minimize the computational

cost when two DD matrices are combined;

� The utilization of sparse vectors and matrices in the Array-based representa-

tion to minimize the occupied memory.

� The parallelization of the code execution. Some parts of the simulation, espe-

cially in the case of Array-based representation, can be easily parallelized. In

this way, the total execution time can be greatly reduced, as already demon-

strated by some researches [14, 17].

Regarding the addition of new features the most important are:

� The addition of new representations for vectors and matrices. Some possibili-

ties are based on the DDs, like the LIMDD [19] or the BDD [35], while others

are more generic and optimize the operations between vectors and matrices

[27].

122

8 – Conclusion

� The introduction of new approaches to the simulation, considering also the

Feynman [13], Heisenberg [15] or hybrid formalism [36, 14].

� The addition of a module capable of handling also other versions of the Open

QASM language [9], such as the 3.0.

� The development of a higher-level module to manage the simulation. The

python language can be used for this purpose.

� The possibility to interface with the Qiskit [8] environment.

� The development of a more interactive user interface. The implementation of

a Graphical User Interface (GUI) can be also considered.

These are only a small part of the possible improvements that the implemented

simulator can support. Indeed, the employed modular structure can be easily inte-

grated with new and specialized modules, opening the doors to future optimization.

This can be helpful to further broaden the simulator workspace.

Another possibility is to realize specific improvements and integrate special-purpose

modules to optimize the simulation of a precise set of circuits. Until now, the im-

plemented infrastructure is quite generic and not so specialized. This is because it

was developed to be placed at the end of a toolchain dedicated to the creation of

generic quantum circuits. However, if the target circuits and their technology are

known in advance, there is the possibility to optimize their simulation, acting on

some specific steps. On the contrary, the structure can be made even more generic

using a complementary approach and integrating general-purpose modules.

In conclusion, the developed simulator is a quite generic working structure that can

be used as it is or become the starting point for different types of applications and

improvements.

123

Bibliography

[1] Noson S. Yanofsky and Mirco A. Mannucci. QUANTUM COMPUTING FOR

COMPUTER SCIENTISTS. Cambridge University Press, 2008.

[2] Mikio Nakahara and Tetsuo Ohmi. QUANTUM COMPUTING From Linear

Algebra to Physical Realizations. Taylor and Francis Group, LLC, 2008.

[3] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sum-

ner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen,

Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan

Kwek, and AlÃ¡n Aspuru-Guzik. Noisy intermediate-scale quantum (nisq) al-

gorithms, 2021. arXiv:2101.08448.

[4] Ashley Montanaro. Quantum algorithms: an overview. npj Quantum Infor-

mation, 2(1), Jan 2016. URL: http://dx.doi.org/10.1038/npjqi.2015.23,

doi:10.1038/npjqi.2015.23.

[5] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79,

Aug 2018. URL: http://dx.doi.org/10.22331/q-2018-08-06-79, doi:10.

22331/q-2018-08-06-79.

[6] Richard Jozsa. Entanglement and quantum computation. arXiv preprint

quant-ph/9707034, 1997.

[7] David P DiVincenzo. Quantum gates and circuits. Proceedings of the Royal

Society of London. Series A: Mathematical, Physical and Engineering Sciences,

454(1969):261–276, 1998.

[8] Qiskit: An open-source framework for quantum computing, 2021. doi:10.

5281/zenodo.2573505.

[9] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open

quantum assembly language, 2017. arXiv:1707.03429.

[10] A. M. Krol, A. Sarkar, I. Ashraf, Z. Al-Ars, and K. Bertels. Efficient de-

composition of unitary matrices in quantum circuit compilers, 2021. arXiv:

2101.02993.

[11] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M.

Gambetta. Validating quantum computers using randomized model circuits.

124

http://arxiv.org/abs/2101.08448
http://dx.doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
http://dx.doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
http://arxiv.org/abs/1707.03429
http://arxiv.org/abs/2101.02993
http://arxiv.org/abs/2101.02993

Bibliography

Physical Review A, 100(3), Sep 2019. URL: http://dx.doi.org/10.1103/

PhysRevA.100.032328, doi:10.1103/physreva.100.032328.

[12] Alwin Zulehner and Robert Wille. Introducing Design Automation for Quan-

tum Computing. Springer Nature Switzerland AG, 2020. URL: https:

//doi.org/10.1007/978-3-030-41753-6.

[13] Andrew Shi. Recursive path-summing simulation of quantum computation,

2017. arXiv:1710.09364.

[14] Yasunari Suzuki, Yoshiaki Kawase, Yuya Masumura, Yuria Hiraga, Masahiro

Nakadai, Jiabao Chen, Ken M. Nakanishi, Kosuke Mitarai, Ryosuke Imai, Shiro

Tamiya, and et al. Qulacs: a fast and versatile quantum circuit simulator for

research purpose. Quantum, 5:559, Oct 2021. URL: http://dx.doi.org/10.

22331/q-2021-10-06-559, doi:10.22331/q-2021-10-06-559.

[15] Simon Anders and Hans J. Briegel. Fast simulation of stabilizer cir-

cuits using a graph-state representation. Physical Review A, 73(2), Feb

2006. URL: http://dx.doi.org/10.1103/PhysRevA.73.022334, doi:10.

1103/physreva.73.022334.

[16] Aneeqa Fatima and Igor L. Markov. Faster schrödinger-style simulation of

quantum circuits, 2020. arXiv:2008.00216.

[17] Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-Prieto, Adrián Pérez-

Salinas, Diego Garćıa-Mart́ın, Artur Garcia-Saez, José Ignacio Latorre, and

Stefano Carrazza. Qibo: a framework for quantum simulation with hardware

acceleration, 2020. arXiv:2009.01845.

[18] Alwin Zulehner and Robert Wille. Matrix-vector vs. matrix-matrix multiplica-

tion: Potential in dd-based simulation of quantum computations. pages 90–95,

03 2019. doi:10.23919/DATE.2019.8714836.

[19] Lieuwe Vinkhuijzen, Tim Coopmans, David Elkouss, Vedran Dunjko, and Al-

fons Laarman. Limdd a decision diagram for simulation of quantum computing

including stabilizer states, 2021. arXiv:2108.00931.

[20] Damian S. Steiger, Thomas Häner, and Matthias Troyer. Projectq: an

open source software framework for quantum computing. Quantum, 2:49,

Jan 2018. URL: http://dx.doi.org/10.22331/q-2018-01-31-49, doi:10.

22331/q-2018-01-31-49.

[21] Microsoft. Azure qdk. Accessed on 15/10/2021. URL: https://azure.

125

http://dx.doi.org/10.1103/PhysRevA.100.032328
http://dx.doi.org/10.1103/PhysRevA.100.032328
https://doi.org/10.1103/physreva.100.032328
https://doi.org/10.1007/978-3-030-41753-6
https://doi.org/10.1007/978-3-030-41753-6
http://arxiv.org/abs/1710.09364
http://dx.doi.org/10.22331/q-2021-10-06-559
http://dx.doi.org/10.22331/q-2021-10-06-559
https://doi.org/10.22331/q-2021-10-06-559
http://dx.doi.org/10.1103/PhysRevA.73.022334
https://doi.org/10.1103/physreva.73.022334
https://doi.org/10.1103/physreva.73.022334
http://arxiv.org/abs/2008.00216
http://arxiv.org/abs/2009.01845
https://doi.org/10.23919/DATE.2019.8714836
http://arxiv.org/abs/2108.00931
http://dx.doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/

Bibliography

microsoft.com/en-us/resources/development-kit/quantum-computing/.

[22] Simone Pont. Simulator documentation, Dec 2021. Accessed on

05/12/2021. URL: https://drive.google.com/drive/folders/

1X7PcJsN-0fD6W3MZFi1jHZrGIF6zcKJ3?usp=sharing.

[23] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3, 2010. Accessed on

20/11/2021. URL: http://eigen.tuxfamily.org.

[24] Boost C++ libraries. Accessed on 05/11/2021. URL: https://www.boost.

org/.

[25] Boris Schling. The Boost C++ Libraries. XML Press, 2011.

[26] Thomas Grurl, Jürgen Fuß, and Robert Wille. Considering decoherence errors

in the simulation of quantum circuits using decision diagrams, 2020. arXiv:

2012.05629.

[27] Song Cheng, Chenfeng Cao, Chao Zhang, Yongxiang Liu, Shi-Yao Hou,

Pengxiang Xu, and Bei Zeng. Simulating noisy quantum circuits with

matrix product density operators. Physical Review Research, 3(2), Apr

2021. URL: http://dx.doi.org/10.1103/PhysRevResearch.3.023005, doi:

10.1103/physrevresearch.3.023005.

[28] Mario Simoni, Giovanni Amedeo Cirillo, Giovanna Turvani, Mariagrazia

Graziano, and Maurizio Zamboni. Towards compact modeling of noisy quantum

computers: A molecular-spin-qubit case of study. J. Emerg. Technol. Comput.

Syst., 18(1), 2021. doi:10.1145/3474223.

[29] Zhimin Wang, Zhaoyun Chen, Shengbin Wang, Wendong Li, Yongjian gu,

Guoping Guo, and Zhiqiang Wei. A quantum circuit simulator and its ap-

plications on sunway taihulight supercomputer. Scientific Reports, 11, 01 2021.

doi:10.1038/s41598-020-79777-y.

[30] Luca Nurisso. Scomposizione di matrici unitarie per la realizzazione di circuiti

quantistici in openqasm 2.0. Dec 2021. Politecnico Di Torino.

[31] Qasmbench circuits repository. Accessed on 05/12/2021. URL: https://

github.com/uuudown/QASMBench.

[32] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight

dynamic binary instrumentation. In Jeanne Ferrante and Kathryn S. McKinley,

editors, PLDI, pages 89–100. ACM, 2007. URL: http://dblp.uni-trier.de/

db/conf/pldi/pldi2007.html#NethercoteS07.

126

https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://azure.microsoft.com/en-us/resources/development-kit/quantum-computing/
https://drive.google.com/drive/folders/1X7PcJsN-0fD6W3MZFi1jHZrGIF6zcKJ3?usp=sharing
https://drive.google.com/drive/folders/1X7PcJsN-0fD6W3MZFi1jHZrGIF6zcKJ3?usp=sharing
http://eigen.tuxfamily.org
https://www.boost.org/
https://www.boost.org/
http://arxiv.org/abs/2012.05629
http://arxiv.org/abs/2012.05629
http://dx.doi.org/10.1103/PhysRevResearch.3.023005
https://doi.org/10.1103/physrevresearch.3.023005
https://doi.org/10.1103/physrevresearch.3.023005
https://doi.org/10.1145/3474223
https://doi.org/10.1038/s41598-020-79777-y
https://github.com/uuudown/QASMBench
https://github.com/uuudown/QASMBench
http://dblp.uni-trier.de/db/conf/pldi/pldi2007.html#NethercoteS07
http://dblp.uni-trier.de/db/conf/pldi/pldi2007.html#NethercoteS07

Bibliography

[33] Valgrind website. Accessed on 20/11/2021. URL: https://valgrind.org.

[34] Gidney C and contributors. Quirk. quantum circuit simulator. Accessed on

15/10/2021. URL: https://github.com/Strilanc/Quirk.

[35] Yuan-Hung Tsai, Jie-Hong R. Jiang, and Chiao-Shan Jhang. Bit-slicing the

hilbert space: Scaling up accurate quantum circuit simulation to a new level,

2020. arXiv:2007.09304.

[36] Lukas Burgholzer, Hartwig Bauer, and Robert Wille. Hybrid schrödinger-

feynman simulation of quantum circuits with decision diagrams, 2021. arXiv:

2105.07045.

127

https://valgrind.org
https://github.com/Strilanc/Quirk
http://arxiv.org/abs/2007.09304
http://arxiv.org/abs/2105.07045
http://arxiv.org/abs/2105.07045

	State Of The Art
	Quantum Theory
	Quantum Computation

	Quantum Circuit Simulation
	Classical Simulation Of Quantum Circuits

	Simulator Structure
	Simulation Approach
	Simulator Behavior
	Code Structure
	Circuit Class
	Condensed-Gate Simulation

	CircOpenQASM Class
	Simulator Internal Library

	Array Representation
	C[4]++ Basic Implementation
	ArrayStateVector Class
	OperatorArray Class

	Array-Based Simulation

	Decision-Diagram Representation
	Decision Diagram Theory
	Implemented Structure

	C[4]++ Basic Implementation
	DDStateVector Class
	DDSqMatrix Class
	OperatorDD Class

	Improvements

	Noisy Simulation
	Noise In Simulation
	Standard Noise Model
	Compact Noise Model

	C[4]++ Implementation
	ArrayDensityMatrix and DDDensityMatrix Classes
	NoiseModel Class
	Noise Model Library

	Noisy Simulator Behavior

	Obtained Results
	Tools And Benchmarks
	Massif Log File

	Simulator Validation
	Ideal Simulation Results
	"Condensed Gate" Simulation Results

	Noisy Simulation Results
	Standard Noise Model Results
	Compact Noise Model Results

	Overall Comparison

	Conclusion
	Summary
	Possible Improvements And Future Prospects

	Bibliography

