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“There is a crack in everything.
That’s how the light gets in.”

- Leonard Cohen





Summary

In the last years, scaling down of conventional CMOS technology decelerated
due to several reasons such as increase of power density and appearance of non-
idealities. Molecular electronics is one emerging nanotechnology that attracted
the attention of the scientific community because molecules represent the ultimate
limit of miniaturization and molecular devices are potentially faster than CMOS
transistors. However, a crucial problem of this technology is the too low ON current
and the great process variability that affects conduction properties. The undeniable
potential of molecular electronics pushed a lot of researchers to bet on this field
and one of the most theoretically studied topic is the interaction between light and
molecular junctions. Studying illuminated junctions is of particular interest for
several reasons. Using light it is possible to characterize process variability retrieving
also additional information on vibrational activity of the junction. Moreover, Light
can potentially control transport mechanisms, enhancing or suppressing determined
conduction channels. In the optical frequency range, Localized Surface Plasmons
(LSPs) can be excited in the electrodes, thus adding complexity to the system, but
giving also the possibility to exploit other physical phenomena. The purpose of this
thesis is twofold. Firstly, a literature review is provided in order to give to future
readers an exhaustive introduction on this topic. Furthermore, an in depth analysis
of photo-assisted tunneling (PAT) is done by considering two approximated models:
Tien-Gordon and Floquet. In particular, a computationally efficient Matlab®

simulator, called EE-BESD-PAT, has been developed to implement these models.
Then the results are compared to those of more sophisticated available commercial
tools and are validated on experimental measurements.

The first chapter gives an introduction of the topic to the reader, justifying the
reasons behind studying the interaction between light and single-molecule junctions.
This field developed through different branches over the years and the most relevant
ones are described. First, Raman scattering is introduced, giving essential notions
to understand Raman spectroscopy. Then the sub-field of photochromic switches
is described providing an accurate historical reconstruction of the studies on photo-
isomerization of the molecular channel. Eventually the main topic of this thesis
is introduced, that is photo-assisted tunneling in single-molecule junctions with
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possible localized surface plasmons excitation.
The second chapter aims to describe most studied and used models to understand

photo-assisted tunneling in molecular junctions. In particular three models are
presented showing their assumptions and limits of validity: Tien-Gordon, Floquet
and NEGF-SCBA. The first is the simplest one, but most used in experimental
papers because easier to apply. Increasing complexity, there is Floquet model, that
is the most studied model for molecular wires coupled with an electromagnetic
radiation in tight-binding approximation. Instead, the last model is the most
complex and general based on first order Born Approximation in the frame of
NEGF theory, which is implemented in the commercial software QuantumATK
developed by Synopsys®.

Eventually, the third chapter describes the implementation of Tien-Gordon and
Floquet model starting from EE-BESD: an efficient and effective model for nanocom-
puting design, used to evaluate the current in molecular junctions with smaller
computational time. Then the simulator, named EE-BESD-PAT, is validated by
comparison with experimental results, obtainded from a Suspended Wire Molecular
Junction (SWMJ) based on octane (C8), and with QuantumATK simulations of a
terthiophene (3TT) molecular junction. The main result of the comparison is that
Floquet model performs better than Tien-Gordon one. In particular, the shape
and order of magnitude predicted for 3TT junction is the same of QuantumATK,
but with the advantage of much shorter computational time (minutes compared to
days/weeks). Concerning the experimental validation, again Floquet performs bet-
ter than Tien-Gordon predicting the same current enhancement of the experiment
in a certain range of bias voltages.

In conclusion, this thesis gives an important introduction to the field often
named ‘single-molecule optoelectronics’ and provides an efficient simulator that
can be used for photocurrent prediction allowing a possible fast prototyping of
optoelectronic molecular devices. Moreover EE-BESD-PAT has the potential to be
embedded in a circuit level simulator, thus paving the way to photonic circuits in
which some component can be a molecular device.
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Chapter 1

Introduction

In December 1959, R. D. Feynman delivered his famous speech “There’s Plenty of
Room at the Bottom” [1] that have inspired through the decades scientists and
engineers to study smaller and smaller physical systems up to the manipulation
of single atoms. In 60 years, the vision of this brilliant and inspiring person has
been concretized since we actually live in a world where the electronics around us
is based on transistors with nanoscale dimensions.

One of the emerging nanotechnology inspired by Feynman’s speech is molecular
electronics that attracted the attention of the scientific community for several
reasons. In the last years the scaling of the conventional CMOS technology slowed
down since shrinking allows to increase the number of transistors per chip but with
an inevitable increase of the power density that must be dissipated. Moreover, the
reduction of size of a CMOS transistor implies a lot of non-idealities that can affect
the behavior of the device such as Short Channel Effect, threshold voltage roll-off,
Drain Barrier Lowering (DIBL) and quantum mechanical effects (like quantum
confinement and tunneling through the gate dielectric). Nowadays these effects are
dealt by the current transistor design, the FinFET, but further reducing the size
of the electronic channel towards the physical limit of 8 nm, imposed by the De
Broglie wavelength at room temperature, is a fatal step leading to a complete loss
of control over the electrons flowing in the channel [2].

The Semiconductor Industry is facing a wall that must be overcome to move
toward a better technology that is faster, cheaper and with lower power consump-
tion. One possible path is to rethink the conventional CMOS solution and try
to implement alternative technologies. The molecular one belongs to the set of
proposals that have the aim to go “beyond CMOS”, trying to solve the critical
issues and adding new characteristics to a future electronics.

Molecular devices are based on conduction of single molecules placed in a gap
between two contacts that, in common cases, are metals or graphene nanoribbons.
This type of junction can be smaller than conventional CMOS devices since the
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channel dimension is basically determined by the size of the molecule. To have an
idea, one of the first and most studied junction is the one with benzene ring that has
a characteristic length of the order of 1 nm. Molecules represent the ultimate limit
of miniaturization [2] and their small size can lead to a huge scalability. Moreover,
the MolFET (MolecularFET) are potentially faster than CMOS transistors, due
to a low number of electrons moving through the junction, with a smaller current
density. Nevertheless, all that glitters is not gold: these advantages come with
other critical points that must be solved before a possible introduction of molecular
technology in a large scale production.

One point is about the small ON current leading often to a too low ION/IOF F

ratio (few tens). Also the charge transport is much more difficult: coherent
tunneling regime is involved and accurate simulations, computationally expensive
ab-inito methods, are required to model it. In addition to this, the crucial problem
of this technology concerns mainly the fabrication: it is true that ideally an infinite
number of molecules could be studied and synthesized with a considerable low cost
due to Self-Assembled Monolayer (SAM) techniques, however they are not easy to
manipulate and integrate on a substrate. Scanning Tunneling Microscopy (STM)
is the main tool to have a selective control of matter at the nanoscale, but it is not
easy to employ it in a high-volume production. Despite this, the major issue to deal
with is the high process variation that is crucial for the performance of a molecular
device. For instance, the variability of adsorption sites on the contacts should
be controlled with high precision since is one important factor involved in the
hybridization of molecular orbitals with the frontier ones of the contacts. Different
adsorption sites can lead to different coupling with the contacts and therefore a
different IV characteristic of the device. Break-Junction (BJ) platforms (as the
one in fig. 1.1) are the instrument used to develop the gap aimed to accept the
molecule. Depending on the specific physical process used to generate the gap, it
is possible to distinguish between Mechanically Controlled BJ (MC-BJ), Feedback
Controlled Electromigration BJ (FCE-BJ) or other BJ in combination with STM
(STM-BJ). Nowadays, using these techniques, the maximum yield reachable for
molecular devices is in the order of 25% ÷ 40% [2] that is too low for a potential
short-term solution alternative to CMOS.

The undeniable potential of molecular electronics pushed a lot of researchers
to bet on this field, with the hope to find ways which can ameliorate and make
it mature as a long-term solution. In particular, a lot of research is focused on
how external agents can influence the charge transport through the junction. Such
external influence could be of different nature. For example, the action of a gate
(back or frontal) can electrostatically control the current and increase the ON-OFF
ratio. Instead, other type of interactions lead to sensoristic application: an external
compound in proximity of the molecular junction can bond to the molecule altering
the characteristic, thus varying the electrical output which could be a clear signal
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Figure 1.1: Example of MC-BJ exploited to perform Raman spectroscopy for studying adsorption
site variability. The electrodes are deposited over a flexible substrate (in orange) making an
almost point-contact conductance (ideally one atom is in common between them). A rod under
the platform pushes the sample against the counter supports in order to induce stress and create
the nanogap that will welcome the desired molecule (benzenedithiol in this case). Irradiating the
junction (red cylinder) is possible to perform Raman spectroscopy at the same time of conductance
measurements.

of the presence of a certain chemical species. Another stimuli, that is the focus of
this thesis, is the interaction of light with a single-molecule junction. With respect
to other agents, the influence of light on transport properties of the junction has
been studied in a large variety of contexts, especially in the last two decades . In a
review dated April 2012 [3], M. Galperin and A. Nitzan, two experts in the field,
pointed out three main reasons why the interaction of molecular junctions with
light has long been perceived as “an obviously needed development”:

i. Characterization: As said above variability is a problem that has to be
dealt with. Sometimes even the existence of the molecular bridge between
the leads (the terminal parts of the contacts over which the molecule is
bonded) is uncertain. Optical techniques, as Raman spectroscopy, can be
used to characterize the junction and can be implemented with a Near-field
Scanning Optical Microscope (NSOM). This technique can supply the same
information of the Inelastic Electron Tunneling Spectroscopy (IETS), the main
characterization tool in molecular electronics, but with the advantage of a
higher resolution derived from the different frequency of the incident radiation
and the scattered one by the junction.

ii. Control: Light is potentially a control tool that can affect the transport
properties of the junction by inducing photophysical or photochemical processes
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that change the junction electronic structure and/or conformation. The
possibility to control the junction with light could be a valid alternative to
the common use of a gate contact, which is less efficient in systems of nano-
dimensions. Complementary to this application is the emission of light owing
to conduction. Thinking about it, emission of light from organic devices is
not so strange since OLED (Organic Light Emitting Diode) displays are well
established today. However, an OLED is constituted by an active “organic”
region that is much more extended than a junction made by a single molecule
where the emission derives from a hopping charge transport and not from a
tunneling one. Nevertheless, experimental evidences exist for single-molecule
junctions and research is moving also in this direction.

iii. Complexity: The dimensions of the leads are characteristic of systems that
sustain Localized Surface Plasmons (LSP), i.e. collective electronic oscillations
localized at the metal-dielectric interface of nanostructures, which have dimen-
sions smaller or comparable with the wavelength of the exciting field. These
plasmons, oscillating coherently with the field, can give rise to strong focusing
(implying strong intensity enhancement) and sub-wavelength resolution of
electromagnetic effects. The interaction between plasmons and molecules
is the base of the so called molecular plasmonics. The excitation of LSP
adds complexity to the conductive properties of the junction but at the same
time gives the possibility to study new physics and take advantage of new
phenomena, as it is the case for Raman Spectroscopy (see section 1.1)

The crossover between molecular electronics and molecular plasmonics gives
rise to an emerging field that could be named “single-molecule optoelectronics”,
whose boundaries are not well defined since represents the union of the two fields.
However, the main goal is clear: study and develop single-molecule devices that
can be controlled by, or control, the electromagnetic field. As underlined in [3],
although experimental results concerning key-arguments exist, theoretical works
greatly exceeds the experimental ones both in number and in variety of considered
phenomena. The reasons could be the difficulties in realizing reproducible observa-
tions and the rare availability in a laboratory of the adequate instrumentation to
perform measurements of molecular electronic transport. This is a limitation that
must be overcome since, without a large amount of data, is difficult to validate
models and make further steps towards a solid technological application.

In the following sections I will briefly present the main topics, already mentioned
above, and results concerning the interaction of light with molecular junctions
in order to give the reader an exhaustive, as far as possible, landscape of what
research has been focused on in the last two decades. Then, in the next chapter, I
will focus more on what really has been the topic of this work, i.e. the modeling of
photo-assisted tunneling (PAT) in molecular junctions.
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1.1 Raman Spectroscopy

In this section I will introduce Raman Spectroscopy and I will argue why is
important in molecular electronics. The theoretical part follows the notes I have
taken in 2019 attending F. Giorgis’s course “Materials and characterizations for
Micro and Nanotechnologies” at Politecnico di Torino.

Raman Spectroscopy is part of optical characterization techniques which acquires
the dynamic fingerprint information of molecules in real-time under ambient condi-
tions. This technique is based on the acquisition and spectral analysis of the field
scattered by a sample (which can be for example a crystalline system, micro-crystals
in an amorphous matrix or molecules). When photons impinge on the sample there
is a certain probability they interact with the vibrational activity of the analyzed
system. In fig. 1.2 it is possible to see a simplified Jablonski diagram used to
represent the energy states of a discrete levels system. Three possible interactions
can happen: one elastic scattering and two possible inelastic scattering. The first
one is called Rayleigh scattering and it is the most likely to happen (corresponding
to biggest arrows in fig. 1.2) since collective vibrations (generally called “phonons”)
are not involved. The impinging photons are scattered back (that implies a change
in momentum) with the same amount of energy of their initial state. Considering
photons in infrared or optical spectrum, their energy is lesser than the one needed
to excite the electrons, that means photons are not absorbed and then emitted
back because their energy is not sufficiently large. Nevertheless, it is possible to
describe the scattering process defining what are usually called “virtual states”.
These states are not proper of the system, but allow to describe scattering in two
steps considering a fictitious transition to a state with following de-excitation. On
the other hand, when phonons interact with the incident radiation, something
different can happen. Phonons are quasi-particles that carry a certain amount of
momentum and energy with them, therefore when interacting with photons (see
fig. 1.3), the conservation of momentum and energy must be respected. When a
phonon is created from the initial photon the process is called Stokes scattering and
the final energy of the photon is smaller than the initial one. On the contrary, when
a phonon is absorbed from the vibrational environment of the system the process
is called Anti-Stokes scattering and the final energy is greater than the initial one.
These scattering events are less probable since they are multi-body interactions
with the involvement of an additional particle with respect to the elastic case. For
this reason, the arrows representing Stokes and Anti-Stokes event in fig. 1.2 are
smaller than the ones for Rayleigh. Moreover, the arrows referred to Stokes are
bigger than the one for Anti-Stokes because the absorption of phonons is related
to their thermal distribution. In other words: there must be present phonons for
absorption (not possible at zero temperature) while emission is always possible and
therefore it has a bigger probability to happen.
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Figure 1.2: Jablonski diagram describing different scattering processes for a system having
discrete energy levels (as a molecule is). In Rayleigh scattering no collective vibration (generally
called “phonon”) of the molecule is involved and the scattered field has the same frequency of the
incident one. In Stokes scattering the interaction with the system leads to emission of phonons
that reduces the energy of the riemitted photons. On the other hand, the Anti-Stokes scattering
concerns the absorption of phonons by the incident photons, therefore their final energy is higher
than their starting one. For more information see the text.

Analyzing the frequency of the inelastic scattering field by means of a notch filter,
that removes the Rayleigh component (not meaningful in Raman spectroscopy), it
is possible to retrieve information about the vibrational activity of the system. In
particular, for the case of molecules, different bonds can have different stretching,
scissoring or rocking activity. Knowing the “Raman” shift of the analyzed field,
i.e. the variation of photon energy, it is possible to recognize different types of
bonds and related activities. It is worth underlining that the registered intensity of
the shift is generally very low but exist ways to increment the signal. One way is
to consider an incident photon energy large enough to excite electrons, i.e. make
them absorb the incident radiation. In this case virtual states are not needed and
we talk about of “resonant” Raman spectroscopy. There exist also other ways to
enhance the inelastic scattering in which plasmons play a crucial role and they will
be described below.

Coming back to molecular electronics, how is this technique applied? The
incident field is focused on the junction by means of an objective lens. The junction
is created on a BJ platform thanks to which electrical measurements can be
performed simultaneously with the optical spectroscopy analysis (fig. 1.1). However,
obtaining the optical signals from the junction is difficult for several reasons:

• mismatch between the optical diffraction limit and the length scale of molecules;

• injection of light in nanogaps is challenging;

6



1.1 – Raman Spectroscopy

• scattered field could be damped by the metallic contacts.

(a) Stokes (b) Anti-Stokes

Figure 1.3: Feynman diagrams of Raman inelastic scattering events.

Although seems difficult to inject light directly in the junction due to its
diffraction limit, it is possible to overcome these limitations either exploiting the
same geometry of the junction or using a more sophisticated experimental setup.
Both solutions are based on the excitation of localized plasmons: in the first case
the impinging laser excites the LSP in the leads while in the second case the
excitation happens on a tip (made of, or coated with, a metal) of a STM. Due to
the resonance of plasmons, a huge intensity enhancement of the field in a localized
point of space is observed: in this way light for Raman spectroscopy can be injected
into the nanogaps between the electrodes.

These two characterization techniques are called Surface-Enhanced Raman
Spectroscopy (SERS) and Tip-Enhanced Raman Spectroscopy (TERS). The LSP
couples with the field only if the frequency is below the plasma frequency: in
this case the generated enhancement of the local field can be huge reaching the
order of 1010. This value can be controlled by the shape and size of the metallic
nanostructures and the distance between them. Moreover, the polarization of
light is important to have an efficient coupling to the LSP of the leads (generally
obtained with a polarization parallel to transport direction). In addition to this
effect, a chemical enhancement can also take place: it accounts for resonant Raman
scattering resulting from the charge transfer resonance taking place between the
metal and the molecular orbitals. This effect contributes with an enhancement
in the order of 103. Overall, these contributions leads to a remarkable sensitivity
up to single molecule detection that is an outstanding result for a non-destructive
characterization technique.

A hybridized electrical-spectroscopic technique for characterizing current-
carrying junctions can feasibly be developed. It is worth reporting that strong
temporal correlation between the Raman response and the conductance mea-
surement was found in nanogaps, confirming single molecule sensitivity of the
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nanogaps. An example is reported in [4] where a single-molecule junction made of
benzenedithiol (BDT) and gold contacts is studied using a MC-BJ as the one in
fig. 1.1. Temporal measures of the vibrational activity and conductance are taken
into consideration. Before creating the gap, the value of conductance is around
G0 = 2q2/h ≈ 7.748×10−5 S that is the conductance quantum for a perfect atomic
contact. In this time interval the Raman shift is related to weak background
signals. After the creation of the gap and consequent adsorption of benzene, the
conductance drops to 10−2G0 and the optical response increases (corresponding to
evident peaks in the Raman spectrum). These are clear signals that adsorption
occurred and exists a certain temporal correlation between optical and electrical
measurements. This correlation can be utilized to study adsorption sites whose
variability is a crucial point as commented above. In fact, in this paper, S. Kaneko
et al. assert that the Raman activity they observed was related to a specific site,
the “bridge” type, i.e. when the two sulfur atoms are strongly bonded with terminal
gold atoms of the contacts. In this way it could be possible not only to know the
creation of the junction but also its type, with related electrical properties, just
using optical techniques. This result is a good starting point for future researches
dealing with variability and underlines how important is knowing the details of
interaction of light with molecular junctions.

It is worth saying that there exists a number of papers focused on possible
practical application of Raman spectroscopy, thought not only as a simple charac-
terization tool. For example, S. Kaneko et al. [5] observed the possible dependence
of Raman response from the applied voltage. In [5] an aminobenzethiol molecule is
taken in consideration: Increasing the applied bias from 0 to 0.2 V, an additional
peak in the Raman spectrum appears (at ∼ 1142 cm−1) and it is related to a
bending mode of the C-H bond. This can be explained taking into consideration
charge transfer resonance between the contacts and molecular orbitals. In this
case, increasing the voltage, the LUMO (Lowest Unoccupied Molecular Orbital)
decreases in energy and, considering the broadening of the level consequent to
hybridization with frontier orbitals of the contacts, it becomes available for charge
transfer (from the contact to the molecule) increasing in this way Raman response.
The appearing of a new peak depending on the applied bias could be exploited as
a possible “optical switch”: light intensity at a certain frequency is generated only
if a threshold voltage is applied to the junction. Of course this is not easy to be
integrated in a circuit, but this did not stop other groups to work on this topic.
In [6], H. Bi et al. made a study similar to the one reported above but choosing
a tetramethylated-terphenyl-dithiol as molecule under analysis. The four methyl
groups make the molecule highly sterically hindered with non planar configuration.
This reduces the polarizability of the molecule, proportional to the overlapping
of π-orbitals, which is strictly correlated to Raman response. Applying a voltage
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of 1 V, transient charging effects induce conformational changes and increase π-
conjugation with a consequent restore of Raman activity. They proved a ratio of
nearly two orders of magnitudes between the signal in the ON state and the one
in OFF state (with no applied bias). This result is similar to the one commented
above even if the physical explanation behind the measures is different.

These examples are just the beginning of a branch concerning the interaction
between light and molecular junction. Only in recent years, papers regarding logic
gates, implemented using Raman activity, started to come out. A recent example
[7], dated 2020 and signed again by H. Bi, shows how logic operations, and not
only a simple switch, can be optically induced. Similar to a standard gate, they
considered as inputs (A, B and C) the light coming from three corresponding
near-field microscopes and focused on a junction with oligo(phenylene-ethynylene)
(OPE-3). Signal A and B comes from the sides whereas C from the top. Depending
on the combination of the signals, the junction is illuminated with a different
symmetry that influences the optical response. They realized that, with no signal
C, the peak in the Raman spectrum at 1400 cm−1 was present only if the light from
input A and B was turned on. This is equivalent to an AND gate and, it turned out,
that they were able to prove also other functions as OR, XNOR, TRUE and NOT,
just combining different inputs and considering specific peaks in the spectrum. This
work tells us again that there is a strong interest in studying in deep the interaction
of light with molecular junctions. It is clear that these attempts to exploit the
optical response are less manageable, thinking about a possible insertion in an
integrated circuit. Moreover, they are less “conventional” , i.e. they are not similar
to solid-state optoelectronic devices that are well known. An optically controlled
molecular switch can be obtained also with other mechanisms, much more feasible
for practical implementations. In the following section an other branch of molecular
optoelectronics is described and it seems to be among the most promising proposals
in the field.

1.2 Photochromic switching
In molecular electronics the active region of a device is a single molecule con-
nected to two contacts. The molecules used in this context consist of a molecular
backbone and anchoring groups on both ends used to bond the molecule to the
leads (determining in this way the coupling characteristic of the interface). The
molecular backbone can be composed by a photochromic unit, i.e. a molecule that
undergoes structural changes (called isomerization) upon irradiation with light, at
a specific frequency, in isolation condition. The resulting isomer has a different
conformation since the covalent bonds rearrange and the conjugation throughout
the molecule can be turned on and off [8]. Because of the change in quantum
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confinement, the electronic structure of the molecule will also be modified, resulting
in a change that is reflected by different properties such as absorption spectrum,
energy states, dielectric constant and redox potential under light irradiation [9].
Photo-isomerization can also be reversible using an electromagnetic field at an
other frequency. Nevertheless, things become less trivial when photochromes are
put inside a gap between contacts: photo-isomerization can be reversible or not
depending on the type of molecule and on the coupling strength. The most promis-
ing photoswitching molecules are diarylethene, azobenzene, dihydropyrene and
spiropyran [9]. These molecules are of great interest since they have two isomers
with opposite conducting properties. The goal is to exploit light in order to switch
between these two conformations. The “closed” form is conjugated delocalizing
p-orbitals, whereas the “open” form is nonconjugated with localized p-orbitals [9].
Therefore, The HOMO-LUMO gap (HLG) and the related electrical conductance
are modified depending on the isomer. The closed form is identified with the ON
state, whereas the open form is related to the OFF state. In this way is possible to
open or close the conduction channel irradiating the junction with light with two
specific wavelengths.

Figure 1.4: Molecular switch between two Au electrodes. The photochromic unit is a dithienyl-
cyclopentane (DTC) connected by a thiophene ring and a thiol group to both sides. Conduction
through the molecule occurs via an alternation of single-double carbon bonds, which extends
throughout the whole molecule. By exposing the junction to visible light is possible to switch
from closed to open form. The reversed process, verified in the isolated molecule, is induced
by UV radiation, but in this case is not observed due to quenching of the excited state in the
presence of the electrodes [8],[9],[10].

Photoswitches made with diarylethenes are the most studied because of their
additional attractive properties: they have a fast photoresponsibility, excellent

10



1.2 – Photochromic switching

thermal stability, fatigue resistance, high photoreaction quantum yield (i.e. the
effectiveness of light absorption to induce photoisomerization) and good perfor-
mances in both solution and solid phases [11]. Moreover, their length change
upon isomerization is negligible. This allows for minimal mechanical stress when
a molecule between two electrodes changes conformation. On the other hand,
molecules like azobenzenes have isomers, even more than two, with different length
[12] and this affects the resulting coupling, making it less controllable.

Focusing on the first class, diarylethene is the general name of a class of com-
pounds that have aromatic groups bonded to each end of a carbon–carbon double
bond [13]. The most employed molecules belonging to this class are dithienylethenes,
i.e. alkenes with a thiophene ring on either side [13] (shown in fig. 1.4). A common
alkene used for this application is cyclopentane that give rise to dithienylcyclopen-
tane (DTC) which is a photochromic molecule under study for photoswitching. In
2003, D. Duric´ et al. [8] demonstrated the one-way response of the photoswitch
depicted in fig. 1.4. Using a MC-BJ and irradiating the junction with light in the
visible range (λ = 546 nm) it was possible to pass from the conducting state to the
insulating state. The reversed process, normally induced by UV light (λ = 313 nm)
on the isolated molecule, was not observed for the photochrome located in the gap.
This one-way response was attributed to quenching of the excited state (or limited
photoexcitation) in the presence of the electrode [10]. Such limitation occurred
through strong interface couplings produced, in this case, by the covalent bond
between the thiol groups and the gold contacts. This behavior was explained by
taking in consideration potential curves, related to the isolated molecule, of the
ground and excited state depending on the distance between the carbon atoms (i.e.
the reaction coordinate) responsible for the ring closure [8]. When electrons in a
ground state absorb a certain energy from light, they are excited. Subsequently,
the electrons relax to another ground state and the molecular form is changed [9].
This mechanism is shown in fig. 1.5 and it is referred to the result obtained in [8]
but can be related to a generic photoswitch. D. Duric´ et al. justified the absence
of closing process observing that the position of C point, along the potential curve
S1 of the excited state, is in proximity of the gold Fermi level. As a consequence,
an efficient hybridization of the gold states with the first excited molecular one is
taking place at the right side of the ground state maximum [8]. This quenching
does not allow the relaxation from the excited closed form to the open ground state
(point A), but it could be possible for different positions of point C.

Later, in 2005, J. He et al. found that the photo-isomerization is reversible for
DTC molecules when H atoms in cyclopentane are substituted by six F atoms
(fluorined-DTC) [14]. Also other types of electrodes were considered, in particular
carbon-based contacts since they have extraordinary and modulable electronic
properties, in addition to natural compatibility with molecules for creating stable
bonds [15]. In order to change molecule-electrode interface and obtain reversible
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Figure 1.5: Potential energy of a DTP molecule. S0 and S1 are the potential energy of the
ground state and excited state depending on the reaction coordinate (different for every type of
molecules). A and B are the ground state of closed and open conformation. Electrons absorbing
UV light are excited to state S1. Then, along the reaction coordinate, they can relax towards A.
The reverse process is the opposite, from A to B. The position of C point, related to a relative
minimum of S1, determines the possible inhibition of closing process, favoring the relaxation of
the excited closed form towards B.

isomerization, electrodes as graphene nanoribbons (GNR) or carbon nanotubes
(CNT) have been investigated [16],[17]. It turned out that considering DTC,
connected to GNR by means of two phenyl rings and terminal amine groups, the
opposite unidirectional switching (from the open to the closed form) is observed [16].
Also in this case a quenching results from the coupling produced by the covalent
amide linkages. In 2016, C. Jia et al. proved that changing the interface between
the central unit and the electrodes, proposed in their previous work [16], could
allow reversible photoswitching between the two isomers. As reported in [18], they
decrease the coupling with GNR electrodes adding three methylene groups (CH2) to
the molecular backbone. In this way, reversible photoswitching was achieved with an
ON/OFF ratio ∼ 102, stability over a year and high reproducibility with 46 devices
with more than 100 cycles. Although this achievement is considered a keystone and
a guidance for future diarylethene-based molecular junctions, it arrives with some
drawbacks. Introducing methylene groups to break the conjugation between the
photochrome and electrodes is a sword with two edges [11]. Decreasing the coupling
reduces also the observed conductance since, as underlined by C. Jia and coworkers,
the system moves from the Landauer regime to Coulomb blockade regime. This
result is one of the most important concerning photoswitching with diarylethenes
and confirms again how crucial is the role played by the molecule-electrode coupling
strength in determining the performance of the device.

Applications involving photochromes are multiple and many of them are reported
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in [11], [15], [19]. Concerning molecular information processing, AND and OR logic
gates, implemented with Au-molecule-Au junctions, were demonstrated exploiting
multiple external stimuli such as light/pH or light/electrochemical oxidation [11].
Photochromes can also be used for functionalization of other materials with the
aim of modulating their properties (conductivity, absorption, magnetism, fluores-
cence etc.) with light. In this context, functionalized carbon-based materials are
investigated for sensing application, solar thermal storage and memory device [15],
whereas organic semiconductors functionalized with photochromes are studied to be
employed in OLED (Organic Light Emitting Diode), OFET (Organic Field-Effect
Transistor) and OLET (Organic Light Emitting Transistor) [19].

As already said, diarylethenes are the most promising photochromes, therefore
further improvements and optimization are still needed to reach their full potential.
Most reported diarylethenes are lacking of high photofatigue resistance to achieve
the desired robustness. In general, they could undergo switching in 10-20 cycles
or even less [11]. Photochromic quantum yield is another issue that decreases the
working efficiency [11]. Moreover, photoisomerization using visible/near-infrared
frequencies is a long-pursuing goal to reduce phototoxicity and the background
signal [11].

In light of what just discussed, it is possible to say that photochromic switching
is one of the most promising branch concerning control of electronic devices with
electromagnetic fields. However, a better control of the interfacial electronic coupling
is required, as already commented, since crucial for reversible isomerization and
conducting properties. This field needs further insights since the same isomerization
process is not fully understood. The nature of the barrier between the two stables
states and the dynamics of the related barrier crossing process, in current carrying
junctions, are not well known in every case [3], thus the possible reversibility of the
photochrome cannot generally be predicted. Moreover, light is generally considered
as an external trigger for the molecule without taking into account the influence
that can have on the transport process since it is turned off after photoisomerization
is complete. On the other hand, solid-state optoelectronic devices are normally
subjected to a prolonged external stimulus and, since the main target is to develop
single-molecule optoelectronic devices, it is required a study of photo-assisted
transport in molecular junctions, that is the topic of this thesis and is introduced
in the next section.

1.3 Photo-assisted transport in molecular junc-
tions

The interaction of light with optoelectronic devices has been widely studied over
the years, in particular the effects on transport properties which are the base of
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nowadays light detectors and photovoltaic cells. The dimensions of these devices
is crucial since determines the amount of radiation absorbed by the electronic
environment. Decreasing sizes towards nanometric scale adds complexity to the
system under study, not only for the analysis of transport properties, but also
for what concerns the optical response of the device. Molecular junctions belong
to this context since their dimensions are intrinsically nanometric and because
their optical response, as already mentioned above, is complex and difficult to be
determined. In the following I will show how light can influence charge transport in
different ways. Each of them has a different weight on the overall current flowing
through an illuminated molecular junction and, for this reason, it is important to
elucidate which effect is the dominant one for the specific system under analysis.
This is not easy to be done since depending on the photon energy, the incident
power, the type of molecule and contacts there could be one dominant process or
another or more of them.

The mechanisms involved in the modulation of current can be divided in two
groups described as follows:

i. Indirect modulation: Light can induce possible thermal effects which in turn
influence transport properties. In this way light indirectly modulates transport.

ii. Direct modulation: The electromagnetic radiation is directly involved in charge
transport, therefore becoming photo-assisted.

It is not always easy to understand if the increase of current is caused by a
thermal or an optical effect. In many experiments it is important to study how the
variation of temperature in the leads can change the conductance of the junction,
as it is done in [20], [21], [22]. Then, knowing the possible variation, it is possible
to rule out thermal effects, if negligible with respect to the optical ones, or they
can be identified as the main reason of conduction enhancement.

Before describing the main photo-induced thermal effects and introduce the
PAT in the context of molecular junctions, in the next subsection I will describe
in general localized surface plasmons since they play a fundamental role both in
indirect and direct charge transport modulation.

1.3.1 Localized Surface Plasmons
As already mentioned above, localized surface plasmons are placed at the metal-
dielectric interface of nanostructures, such as nanoparticles (NPs), which can be
excited by electromagnetic radiation if its frequency is around the surface plasmon
resonance ωLSP R. Around this frequency, the screening action of conduction
electrons combined with the restoring force due to Coulombic attraction between
electrons and nuclei, gives rise to collective electronic oscillations with frequency
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equal to the one of the incident field [23]. This phenomenon implies two main
results [23]:

• The electric field is enhanced near the surface of the nanostructure. In this
way is possible to focus an electromagnetic field beyond the diffraction limit,
thus reaching light injection with sub-wavelength resolution.

• The optical absorption has a maximum at ωLSP R. Differently from planar
metal surfaces, for which most of the incident light is reflected (in the range
of optical frequencies), nanostructures can efficiently absorb at the resonance
frequency since they can collect light from an area larger than their physical
size (antenna effect) [24].

Besides these impressive results, there is another advantage of using nanostruc-
tures. Their resonance frequency ωLSP R can be tuned changing the design and,
in particular, the geometry. For example, if two metallic NPs are considered, it
is possible to tune ωLSP R varying the shape, the distance between them or the
dielectric permittivity of the surrounding. It is easy to understand that two NPs
shaped as two bowtie antennas would enhance more the field in the gap between
them than spherical NPs.

It is important to notice that, in the framework of molecular junctions, the
molecule connecting two nanostructured contacts varies the apparent dielectric
function of the environment [25]. Moreover the length of the molecule determines
the gap size, i.e. the distance between the contacts. In the light of what said
above, it is possible to state that changing the characteristics of the molecule placed
inside the junction allows to tune ωLSP R, but also the coupling between plasmon
modes (i.e. different allowed oscillating modes) and the electronic structure of the
molecule. Indeed, as I will describe more in detail below, localized plasmons can be
excited and can interact in more ways inside molecular junctions. The possibility
to tune ωLSP R permits to easier observe phenomena depending on the coupling
between molecule and plasmons. Of particular importance is the relation between
the tunneling current and the plasmonic response of the contacts (for more details
see subsection 1.3.3). The interest in studying plasmons in molecular junctions is
justified also by the facts that the resonance frequency of most common metal NPs
(such as Au-NPs or Ag-NPs) is in the visible range or near-IR that corresponds
to typical excitation of molecules [25]. This field of research takes the name of
molecular plasmonics which represents an important piece in the puzzle, for deeply
understanding PAT in single-molecule junctions.

In order to analyze thermal effects, it is of great importance understand what
happens after plasmon excitation. LSPs do not have a long timelife, i.e. they
are subjected to unavoidable loss processes. Indeed they decay through different
mechanisms, which can be radiative or non-radiative. These decay pathways diphase
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electronic oscillations and damps the population relative to plasmon modes. For
what concerns radiative decay, the amplified electromagnetic field is attenuated
by re-emission of photons in the far-field by means of scattering processes. This
phenomenon can be crucial in experiments since allows to detect excited plasmons
by placing objective lens in the proximity of the nanostructure. On the other
hand, non-radiative decay can occur following different pathways. The principal
mechanism is called Landau damping and is the most studied since involved in
NPs. Other non-radiative pathways exist and are more relevant for photo-assisted
transport in molecular junctions, thus they will be described later in subsection
1.3.3.

Landau damping is responsible of hot carriers generation and consequent thermal
dissipation which are directly related to thermal effects involved in indirect charge
transport modulation. For this reason, now an exhaustive description of the process
will be given following the one of M. Brongersma and coworkers in [24]. The overall
process can be divided in different steps (each one with a typical time scale) that
are shown in fig. 1.6, taking as example a metallic NP, and described as follows:

Figure 1.6: Representation of hot carriers generation by Landau damping and consequent system
relaxation in a metallic NP. (a) LSP is excited by external incident radiation. (b) Through Landau
damping process hot electron-hole carriers are generated and give rise to a highly non-thermal
distribution. (c) Electronic population relaxes, through electron-electron scattering events, to a
thermal distribution characterized by a temperature higher than the one of the lattice. (d) The
electronic system comes back to the initial equilibrium condition by means of electron-phonon
scattering. The exceeding energy is transferred as heat to the surrounding.
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a. At t = 0 s a localized surface plasmon is excited and the near-field is enhanced.
The excitation is represented in the top panel by the oscillating electronic
cloud around the NP, while the enhancement is evident in the bottom panel
from the higher density of flux lines.

b. After excitation Landau damping takes place. The electromagnetic field en-
hanced by localized plasmonic oscillation is a time dependent perturbation
which can induce electronic transitions inside the NP. The absorption of plas-
mon quanta leads to the generation of hot electron-hole pairs on a timescale
τL ranging from 1 fs to 100 fs. As a consequence, carrier distribution becomes
highly non-thermal, as apparent in the bottom panel of 1.6(b). This distri-
bution depends on different parameters such as the geometry, the resonance
frequency (itself depending on geometry), plasmon mode and the electronic
structure of the particle (i.e. the considered metal). In particular, since the
hot electron-hole pairs generation depends on absorption, it is possible to
tune in someway the hot carriers population by varying the imaginary part
of the dielectric constant of the NP. This is important since it can reduce
or increase the efficiency of hot electron injection from NP (or other nanos-
tructured systems) to another nanometric system such as molecules adsorbed
on the NP. The hot electron injection efficiency is particularly relevance for
energy harvesting devices and, in the case of molecular junctions, for indirect
modulation of transport (more details in subsection 1.3.2).

c. For high photon energy, a small fraction of hot electrons can escape from the
system, without energy loss, since they gain an energy greater than the working
function of the metal. If detected, it is possible to obtain information on
their kinetic energy and momentum (same principle of optical characterization
techniques such as UPS or XPS). Nevertheless, this fraction of electrons is
very small and in ‘standard’ plasmonic metals the working function is greater
then the resonance frequency (W > ℏωLSP R) therefore electrons cannot escape
into vacuum. In this case what happens is a redistribution of energy in the hot
electron population (which coarsly is Ehot ∈ [EF , EF + ℏωLSP R]) by means of
electron-electron scattering, such as Auger processes, between the hot carriers
and the many lower energy electrons. This mechanism has been extensively
studied in extended metal surfaces but not so much in nanostructures. For
the first, time-resolved studies say that the characteristic timescale τe−e for
electron-electron scattering ranges from 100 fs to 1 ps. In this time interval
the highly non-thermal distribution relaxes to a thermal one characterized by
an (effective) temperature of the electronic population (Tel) greater then the
lattice temperature (Tlat), therefore another relaxation process is needed to
come back to initial equilibrium condition.
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d. Equilibrium between electrons and the lattice is achieved through inelastic
scattering processes, such as optical electron-phonon scattering. This type
of process has an efficiency (scattering rate) that decreases with the electron
energy. Thanks to electron-electron scattering, hot carriers lose energy and,
as a consequence, inelastic electron-phonon scattering rate increases. Over a
timescale τph of some ps, Tel relaxes to the temperature of the lattice and so
the electronic system is returned back to the situation before LSP excitation.
The last step consists of heat transferred to the surrounding of the metallic
structure. This process can happen in a time interval τheat ranging from 100 ps
to 10 ns depending on the NP characteristics, but also on the conduction
properties of the surrounding environment.

It is worth to underline that the reasoning of this subsection are general and can
be related to plasmon excitation in the contacts of molecular junctions. Furthermore,
other phenomena involving localized plasmons exist, as already mentioned above,
and they will be described later while describing direct interaction between photons
and molecular junctions. On the other hand, what just explained about LSP is
enough to well understand indirect modulation charge transport that will now be
described.

1.3.2 Indirect modulation
All thermal effects, induced by an incident field on a junction, are related to the
absorption of photons in the leads with possible plasmon excitation and related
unavoidable loss mechanisms. In fig. 1.7 the most important indirect modulation
processes are shown and they are described here following the review done by L.
Chen et al. [10]:

a. The left panel of fig. 1.7 describes the additional contribution from hot electrons
to the tunneling current. Hot electrons are generated by absorption of light
by the contacts and consequent electron-hole pair generation, that is by far
more efficient at resonance frequency with related Landau damping. These
electrons can tunnel through the unoccupied molecular orbitals located at
higher energies, but only if they are sufficiently close to the junction (closer
than the inelastic mean free path at the corresponding energy). This means
they must tunnel before they have equilibrated with the bulk of the electron gas
(so on the timescale τL). If the hot electrons are mainly generated by plasmons,
the photocurrent should depend also on the polarization and wavelength of
the plasmon excitations. It is worth notice that a net short-circuit current (i.e.
a photocurrent due to hot electrons contribution) at zero bias is possible only
if the hot carriers production is unbalanced between both sides of the junction,
so that a net flow of electrons can appear. A net short-circuit hot electron
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(a) Hot electrons (b) Thermal expansion

(c) Thermoelectricity

Figure 1.7: Indirect modulation processes. (a) Hot electrons generated by photon absorption in
the electrodes can tunnel through higher unoccupied molecular orbitals (smaller arrow), thus
contributing to the overall current. (b) Thermal expansion due to local increase of temperature
around the electrodes changes the coupling between the molecule and the electrodes, with a
consequent variation of junction characteristics. (c) A Temperature gradient across the junction
unbalances the electronic distribution inside the contacts and hence increases the electron flux
from one side of the junctions to the other (equivalent to an enhancement of the current).

current implies a photovoltage in open-circuit condition because carriers
accumulates at the two sides of the junction developing a potential drop. This
is a clear signal for possible energy harvesting applications exploiting molecular
junctions. This reasoning about net short-circuit current is general and can
be applied not only to hot carriers, but also to every other processes involved
in photocurrent generation. There must be an asymmetric situation between
the two contacts to see the appearing of a net short-circuit current. This
concept will be resumed next in this work and is of fundamental importance
for studying the interaction of light with any junction.

b. In the right panel the effects of thermal expansion are taken in consideration.
It occurs when optical absorption locally increases the temperature of the
metal electrodes making them expand. This implies a decrease of nanogap
size, but also a change of coupling between the molecule and the contacts.
As a consequence, charge transfer rates between electrodes and molecules are
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different, therefore modifying the current-voltage characteristic. Of course
this process can also be triggered by simply heating the junction to modulate
its characteristics. It is important notice that in this case the temperature
variation is the same for the two electrodes, therefore a net short-circuit current
is not developed.

c. The bottom panel considers another effect that is thermoelectricity. Light
illumination can unbalance the temperature across the junction due to different
heating of the contacts and induce an additional contribution to current: the
ensuing temperature change ∆T induces a photothermoelectric effect on the
junction conductance, creating a thermo-voltage and hence an additional
tunneling current. Consequently, a photovoltage is generated in the open-
circuit limit and can be expressed as ∆Vth = −S∆T , where S is the Seebeck
coefficient of the junction [26]. This mechanism would be extremely relevant
for future molecular devices aimed to convert both thermal and optical energy
in electrical one.

These processes have been theoretically tackled in different ways and, although
the number of experimental papers on illuminated molecular junctions is limited,
there are examples of measurements of these phenomena. In [21] E-D. Fung and
coworkers analyzed the contribution of hot-electrons in a molecular junction made
from 4,4’-bipyridine bound to Au electrodes. They confirmed that hot electron
transport is the dominant mechanism when the radiation wavelength is absorbed
by the contacts and the hot carriers relaxation time is long enough. Concerning
instead photothermoelectric effects, P. Reddy et al. in [26] measured the Seebeck
coefficient for 1,4-benzenedithiol, 4,4’-dibenzenedithiol, and 4,4”-tribenzenedithiol
by applying a temperature bias (i.e. a gradient) and then measuring the consequent
voltage drop. Lastly, thermal expansion effects are generally taken in consideration
in experiments by characterizing the dark current of the junction for different
temperature and verifying that the maximum thermal difference induced by the
incident optical power does not significantly change the current.

Although photo-induced thermal effects have been extensively described in this
subsection, in the following I will essentially neglect their contribution to focus more
the attention on photo-assisted transport. Nevertheless is extremely important
have them in mind and know when they can affect significantly the current. Next
topic to analyze is the direct interaction of the radiation field with charge transport,
that is introduced here following.

1.3.3 Direct modulation
Direct modulation effects are physical phenomena resulting from direct involvement
of an incident radiation field on the charge transport of a molecular junction.
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Depending on the photon energy with respect to the characteristic levels of the con-
sidered system, it is possible to divide the direct modulation transport mechanisms
in adiabatic (Eph <HLG) and non-adiabatic (Eph >HLG).

Adiabatic photo-assisted tunneling

Adiabatic processes are typically considered when the electromagnetic field is in the
microwave range. In this situation the radiation frequency is well below the LSP
resonance, therefore the field is mostly reflected due to collective screening action
of electrons. Under these conditions, electronic excitation in the molecule may be
disregarded, since the radiation frequency is too low, and the effect of the field is to
adiabatically modulate the potential energy for each quasiparticle level in the leads,
that means the energy levels are rigidly shifts over time while maintaining the same
population across the levels. In other words carriers distribution remains the same.
Studying charge transport considering these assumptions is equivalent to study
tunneling transport through a time dependent potential barrier [3]. One of the
most known and most studied solution of the problem was proposed by P. K. Tien
and J. P. Gordon in 1963 [27] and predicts the following physical process: Electrons
in the source can absorb or emit a certain number of energy quanta and then
tunnel elastically across the junction through molecular orbitals (or better through
transmission channels) that could have been not available for their starting energy.
This mechanism is called adiabatic photo-assisted tunneling and is responsible for
the opening of additional conduction channels in the single-electron transmission
function [10] as it is depicted in fig. 1.8(a). The Tien-Gordon (TG) model will be
accurately described in the next chapter since it is the most employed model in a
large number of experimental papers. It is important to understand it and know
its limitations. A crucial point to underline is that models like TG do not consider
field quantization, therefore it is not correct to talk about absorption or emission
of ‘real’ photons from electrons. It is better talking about absorption or emission
of electromagnetic energy quanta which modulate the quasiparticle energy [28].

An other interesting observation on adiabatic processes is that they could be
equivalently realized by mechanical perturbation, for instance acoustic waves, with
oscillation frequency in the same range of microwaves. This is possible since only
the potential energy of the quasiparticle states is involved in the process and it can
be modulated in other ways in addition to the electromagnetic one.

It is worth underling that the subdivision between adiabatic and non-adiabatic
processes is merely arbitrary because in molecular junction the molecular orbitals,
due to strong coupling with the electrodes, hybridize with the frontier orbitals
of the metal, with a consequent broadening of the molecular density of states.
Electronic transitions in the molecule can happen also for photon energy smaller
than the HLG and thus non-adiabatic phenomena should be consider also in the
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low frequency regime if strong coupling is considered. On the other hand, this
division can be considered more correct in the case of weakly coupled molecules.

(a) Adiabatic PAT (b) Non-adiabatic PAT

Figure 1.8: Photo-assisted tunneling mechanisms. (a) In adiabatic PAT the energy of electrons
inside the leads is adiabatically modulated, inducing the absorption or emission of energy quanta,
which can lead to elastic tunneling through available molecular orbitals. (b) In non-adiabatic
PAT internal molecular transitions are allowed, thus transport mechanism changes from elastic
to inelastic. During tunneling electrons can absorb or emit photons with consequent change of
transmission channel.

Non-adiabatic (resonant) photo-assisted tunneling

Non-adiabatic processes correspond to transport mechanisms in which inter-level
transitions between molecular orbitals can happen, typically considering radiation
frequency in the optical range. In fig. 1.8(b) this type of PAT is described. Initially
an electron with energy corresponding to available states in the molecule can tunnel
into it. Then, while crossing the gap between the electrodes, it can absorb (the
case of fig. 1.8(b)) or emit photons with consequent transmission through another
channel. This mechanism can lead in general to a ‘resonant’ current amplification
due to opening of additional conduction channels. Resonant optical transitions can
lead also to other effects depending on the symmetry of the junctions. These effects
will be commented below after having described possible transmission symmetries
of a molecular junction.

As said above, the photon energy involved in these processes is in the optical
range, that is also the range of LSPs resonance excitation. The presence of a
molecule near the LSPs inside the electrodes supplies additional channels for energy
transfer by means of photo-assisted tunneling events. Therefore, in the case of
molecular junctions, two additional damping mechanisms set in and complete the
list of non-radiative damping processes, that are represented in fig. 1.9. Panel (a)
depicts the already described Landau damping, while (b) and (c) are new processes
described as follows:
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(a) Landau damping (b) CID (c) PIRET

Figure 1.9: Non-radiative damping processes. (a) Landau damping is responsible of hot electrons
generation, which can then tunnel through the junction increasing the total current. (b) Chemical
Interface Damping (CID) is responsible of charge transfer from the electrode to the molecule by
absorption of plasmonic quanta. This process is similar to adiabatic PAT, but here the process is
triggered by plasmonic response of the system. (c) Plasmon-Induced Resonance Energy Transfer
(PIRET) corresponds to energy transfer from the LSP to the molecule through dipole-dipole
interaction. In this way electrons in occupied molecular orbitals can be excited in unoccupied
ones and then tunnel through the electrodes. This process is equivalent to a non-adiabatic PAT,
but here energy quanta are supplied by a plasmon mode.

i. Chemical Interface Damping (CID): Process similar to hot electron generation,
but in this case carriers are directly excited, due to absorption enhancement
at LSP resonance, into electronic levels of the attached molecule [29]. Then
the excited electrons can tunnel elastically through the molecule at an energy
greater than the one of their initial state. This process is similar to the
adiabatic PAT, but in this case the transport mechanism is triggered by the
plasmonic (local) field and not by the incident one.

ii. Plasmon-Induced Resonance Energy Transfer (PIRET): This mechanism re-
sults from the dipole-dipole interaction between the localized excited plas-
mon and the molecule. This interaction obeys a power law as a function
of distance, thus it is expected to be more charge-transfer efficient than hot
electron tunneling, contribution that decreases exponentially with distance
[29]. More specifically, the energy exchanged between the excited plasmon and
the molecule induces a transition for an electron to an unoccupied molecular
orbitals at higher energy. Then this electron can tunnel towards the contacts
contributing to the overall current. This process is analogous to non-adiabatic
PAT which is here driven by the plasmonic response of the system. PIRET
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becomes more important when there is an overlapping between LSP resonance
and molecule absorption spectrum, considering a sufficiently slow decay of the
LSP to maintain the collective behavior [29].

It is worth notice that CID and PIRET are bidirectional mechanisms since
energy exchange can also happen from the molecule to the plasmonic mode. In
these cases they are not damping processes but exciting mechanisms. For instance,
if an electron inside the molecular channel is in an excited state due to absorption
of photons from the incident field, de-excitation is possible due to coupling between
the molecule and the LSP, that in this case is excited by the release of energy from
the electron.

What just described concludes the discussion on LSP damping processes and
underlines their important role in PAT. Although these phenomena should always
be taken in consideration when analyzing a real system, in Chap. 2-3 only the effect
of field amplitude amplification due to LSP resonance excitation is considered in
order to simplify the description of charge transport.

Symmetries

Before analyzing most studied applications exploiting PAT, an other important
argument should be addressed that regards possible symmetries characterizing
a system. It is known that in quantum mechanics a system is described by an
Hamiltonian Ĥ(x⃗, t) that depends on spatial and time variables. Considering under
analysis a single-molecule junction, in the absence of radiation the system can be
described in stationary condition by a single electronic transmission coefficient
T (E), that is identical for an electron transmitted from the left to the right electrode
and vice versa. Instead, when an incident radiation is considered, the driven system
cannot be described by a single transmission coefficient, but is characterized by
two transmission spectra which depend on time: one for the electrons tunneling
from left to right (TRL(t, E)) and one for electrons tunneling from right to left
(TLR(t, E)). In general TRL(t, E) /= TLR(t, E) and, depending on symmetry, a
certain relation is established between them. As it will be later proved in Chap. 2,
these transmission spectra can be expanded in Fourier series, thus transforming the
time dependent problem to an independent one. The components of the expansion
are expressed as T (n)

RL (E), T (n)
LR (E) that refers to processes involving n photons:

absorption if n > 0 or emission if n < 0. This procedure can be done only if the
electron-electron interaction is considered by a mean field and not explicitly inside
the Hamiltonian of the molecule (see [30]).

To understand how these coefficients vary with symmetry, three different opera-
tors acting on space and time variables are introduced:

– Parity operator ⇒ ŜP : x⃗→ −x⃗
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– Time-reversal operator ⇒ ŜT : t→ −t

– Generalized time shift operator ⇒ ŜG : t→ t+ t0

A system obeys a symmetry if its Hamiltonian is invariant under a symmetry
operation Ŝ = (Ŝ+)−1, i.e. if Ŝ+Ĥ(x⃗, t)Ŝ = Ĥ(x⃗, t) [30]. Ŝ can be one of the
operators described above or can be a combination of them. In particular, three
symmetries are described here below and related transmission processes are depicted
in fig. 1.10.

(a) Time-reversal symmetry (b) Time-reversal parity

(c) Generalized parity

Figure 1.10: Scattering processes representing an electron with energy E transmitted through
the junction after absorbing n energy quanta. In the panels are described also symmetry related
processes (red dashed lines) corresponding to (a) time-reversal symmetry, (b) time-reversal parity
and (c) generalized parity.

a. Time-reversal symmetry. The symmetry operator correspond to ŜT and the
Hamiltonian obeys the relation Ĥ(x⃗, t) = Ĥ(x⃗,−t). As a consequence, the
transmission coefficients obey the relation T

(n)
RL (E) = T

(−n)
LR (E + nℏω), that

means scattering processes represented in fig.1.10(a) occurs with the same
probability. Going into more detail, time-reversal symmetry allows to state
that an electron with initial energy E, transmitted from left to right absorbing
(emitting) n energy quanta, can return to its initial state if time is rewinded,
thus its time reversal counterpart is equivalent to an electron with initial
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energy E + nℏω transmitted from right to left that emits (absorbs) n energy
quanta to reach a final state at energy E, that corresponds to the initial one
of the considered electron. Time-reversal is typically broken by a magnetic
field (not considered in this work) since it is described by an axial vector
that under time reversion changes its direction [30]. It is worth notice that a
time-independent system in the absence of magnetic fields is a particular case
that respects this symmetry since all components of transmission with n /= 0
are zero and that T (0)

RL(E) = T
(0)
LR(E) = T (E) [30].

b. Time-reversal parity. The symmetry operator is defined as ŜT P = ŜT ŜP :
(x⃗, t)→ (−x⃗,−t) that is a combination of time-reversal and parity operators.
In this case the Hamiltonian obeys also spatial parity which corresponds
to systems with identical molecule-electrode charge transfer rate for both
sides of the junction. The reasoning about time-reversal symmetry can be
repeated but with additional interchanging between left and right, as it is
shown in fig. 1.10(b), with transmission probabilities related as T (n)

RL (E) =
T

(−n)
RL (E + nℏω). It is important to highlight that this symmetry relates

two scattering processes going in the same direction, thus implying possible
correlation effects which are intriguing and with possible applications for
non-adiabatic electron pumping (see below) [30].

c. Generalized parity. The corresponding symmetry operator is ŜGP = ŜGŜP :
(x⃗, t)→ (−x⃗, t+ T /2) that combines the parity operator with a time shift by
half a driving period of a simple sinusoidal or cosinusoidal monochromatic
field [30]. It is possible to demonstrate that, for systems characterized by this
symmetry, transmission probabilities obey the relation T (n)

RL (E) = T
(n)
LR (E), that

means there is no difference between right and left electrodes considering the
same scattering process identified by the index n. Here below the implications
to have this symmetry will be given and, for the rest of this work, it will be
the symmetry characterizing the simulated molecular junctions.

To recap what just said, time-reversal symmetry is always present, except when
are considered the effects of a magnetic field, whereas parity is present when there is
no difference between right and left (in the context of molecular junctions when lead-
molecule coupling is the same for left and right electrode). An additional symmetry
can characterize the system when an incident electric field can be expressed in
a simple sinusoidal or cosinusoidal form, thus leading to identical transmission
probabilities (T (n)

RL (E) = T
(n)
LR (E)). With this in mind is now possible to describe

possible application of field driven molecular junctions.
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Applications

Photo-assisted transport is involved in a lot of different applications, some of
them of particular interest for researchers because regarding energy harvesting
devices, others concerning ‘standard’ optoelectronic devices such as light emitters or
detectors. Below most studied applications in the framework of molecular junctions
are presented, further justifying the importance of studying their interaction with
light.

• Optical rectification

A suitably polarized electric field incident to a (un)biased molecular junction
can induce an additional AC current with time average different from zero, thus
adding a contribution also to DC current through photo-assisted tunneling. This
mechanism is equivalent to current rectification, which can be demonstrated starting
from conventional circuit theory. Considering adiabatic limit, i.e. a microwave
radiation, the incident field can be modeled as an oscillating bias potential. The
reason is that the radiation wavelength is larger than the size of the gap, therefore
most of the field is incident on the contacts inducing a potential drop. This is
equivalent to apply an AC potential to the junction, that is of course a simplification
which can be done under certain conditions, described later in Chap. 2. Under
this approximation, it is possible to express the potential applied to an electrode
as V (t) = VDC + VAC cos(ωt) and considering VAC << VDC the current can be
expanded in powers of VAC in the following way:

I(V ) = I(VDC) + ∂I

∂V

-----
VDC

VAC cos(ωt) + 1
2
∂2I

∂V 2

-----
VDC

V 2
AC cos2(ωt) + . . .

Truncating at second order and expanding with trigonometric formulas the squared
cosine, it is possible to rewrite the above expression as:

I(V ) = I(VDC)+ 1
4
∂2I

∂V 2

-----
VDC

V 2
AC + ∂I

∂V

-----
VDC

VAC cos(ωt)+ 1
4
∂2I

∂V 2

-----
VDC

V 2
AC cos2(2ωt)

Looking at the final expression it is possible to identify the second term (time-
independent) as an additional contribution to DC current, but only if the second
derivative of current with respect to the potential is different from zero. This is
generally true for a given applied bias, thus a photocurrent is established through
an optical rectification. Nevertheless, a net current in short-circuit condition is
developed only if ∂2I

∂V 2

---
VDC=0

/= 0. The demonstration given above is useful to
understand that the behavior of molecular junctions subjected to small oscillating
potentials are not so different from more known rectifiers and that with a simple
reasoning is possible to justify the additional photocurrent resulting from the
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irradiation of the junction. Nevertheless, molecular systems are much more complex
and it is not always possible to consider the case of small oscillating potentials.
In particular, in the field of mesoscopic physics, the net short-circuit current
described above assumes the name of quantum ratchet, that is another name
to identify rectification at zero bias or, better, the conversion of AC forces into
directed motion without any net bias [30]. Quantum ratchets are based on quantum
mechanical processes (like PAT in molecular junctions) and, depending on the
radiation frequency involved, they can be identified by different names such as
adiabatic and non-adiabatic electron pump. Adiabatic electron pumps are ratchets
based on adiabatic PAT, thus a net short-circuit current can be generated while the
system does not abandon its ground state [31]. On the other hand, non-adiabatic
electron pumps refer to ratchets based on resonant PAT. However, both types of
pump are characterized by breaking of generalized parity, which can be done in
two different ways:

– Considering a level structures coupled asymmetrically with the electrodes and
under the influence of a harmonic incident radiation by means of dipole-field
interaction [30]. This can be achieved in molecular junctions considering
different anchoring groups for left and right contacts. In this case the device
is called ‘rocking ratchet’.

– Considering a symmetric system where generalized parity is broken dynamically
by the incident field that is a mix of higher harmonics [30]. For example this can
be achieved by an electric field with the form E(t) = E0,1 cos(ωt)+E0,2 cos(2ωt).
Shifting time by T /2, the fundamental harmonic assumes the same value
whereas the higher one changes sign, therefore generalized parity is broken.

The need of symmetry breaking can be understood following simple reasoning
for both types of electron pump. In adiabatic pump the asymmetry allows to have
∂2I
∂V 2

---
VDC=0

/= 0, thus developing a net short-circuit current that in open-circuit
condition correspond to a photo-voltage. Instead in non-adiabatic pumps the
asymmetry can be reflected into different coupling of the levels between left and
right. For example, if in a molecular junction the HOMO level is coupled more
strongly to one electrode whereas the LUMO level is coupled more strongly to the
other, a photo-voltage can establish in unbiased condition. This can intuitively be
understood in the following way. A photon impinging on the junction, having an
energy equal to the HLG, can excite an electron from the HOMO to the LUMO.
Then, in the higher energy orbital, it can be transmitted preferentially to one of
the two electrodes and therefore developing a net current.

To the light of what just said, practical applications in the energy-harvesting field
exploiting asymmetric single-molecule junctions are possible. A very recent article
[22] published in August 2021 by a research group of the University of Cambridge
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working at the NanoPhotonics Centre, is one of the first experimental works that
demonstrates the establishment of a non-zero photocurrent under short-circuit
condition for asymmetric molecular junctions. More into detail, they considered
a type of geometry called NanoParticle on Mirror (NPoM) where one electrode
is a gold substrate while the other is a gold nanoparticle. The gap is filled by
a SAM which can be composed of symmetric or asymmetric molecules. For the
symmetric case they considered molecules such as alkanedithiols and verified the
generation of photocurrent, for finite bias, caused by LSP field enhancement. On
the other hand, considering alkanes with different anchoring groups at the two sides
(for example thiol and amine group) or considering ferrocene-based alkanethiol,
they measured an optical response in the unbiased molecular junctions which is
promising for future photovoltaic applications. Moreover, they identified good
candidates in conjugated oligophenylene molecules with asymmetric functional
groups to maximize the optical responsivity.

For what concerns symmetric junctions, a straightforward application is to use
single-molecule junctions as photodetectors. There is a number of experimental
papers related to measurement of photocurrent in biased molecular junctions. For
example in [32], [20], [33] Y. Selzer and coworkers analyze the possible excitation of
surface plasmons in Suspended Wire Molecular Junctions (SWMJ) and in Sqeezable
Break Junctions (SBJ) while considering symmetric molecules such as alkanedithiols
and 2,7-diaminofluorene. In their works they measured current amplification when
the junctions were illuminated and justified their results taking in consideration
surface plasmons excitation at the considered optical frequency. These works of
course imply a possible application in the field of photodetectors, however they did
not study the single-molecule junctions with the methodology used for detectors,
thus studying quantum efficiency, responsivity, limit of detection, temperature
dependence and also noise analysis. Nevertheless, there exists a recent work dated
December 2020 [34] by S. Saxena et al. who designed a photodetector based
on a SAM-junction. The considered SAM were composed by nitroazobenzene
oligomers or two-component oligomers (thus a bilayer) such as anthraquinone-
bisthienyl benzene (AQ-BTB) or anthraquinone-tetraphenyl porphyrin (AQ-TPP).
The length of these molecules are in the range from 14.6 nm to 100 nm, therefore
coherent tunneling is not guaranteed in these devices. However, longer molecular
layers allow to have a greater area interacting with the field, that is an advantage
in photo-detectors. The measured responsivity of the resulting junctions is not
competitive with other organic detectors made of thicker molecular films or with
conventional solid-state devices. Despite this, molecular junctions composed by
short molecules allow to have low dark current, therefore further reducing the limit
of detection. As written by S. Saxena et al. “The wavelength selectivity, potential
response to NIR and UV light outside the range of silicon detectors, low voltage
operation, and low dark noise of molecular photodetectors are advantages which
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may be tailored to specific applications”.

• Light emitting single-molecule junctions

Other important components in optoelectronics are light sources and an obvious
question is if it is possible to obtain them using molecular junctions. As already
mentioned, photo-assisted tunneling can occur through absorption or emission
of energy quanta, therefore theoretically seems possible to develop light emitting
single-molecule junctions. However, the emission efficiency is in general low due
to strong coupling with metallic electrodes that establishes highly efficient non-
radiative channels. Therefore carriers are elastically transmitted and the emission
is quenched. There are several procedure to decouple the molecule from metallic
surfaces to avoid quenching [35] such as:

Figure 1.11: Emission processes depicted on an energy levels diagram of a molecular junction
studied with STM. Process (A) corresponds to direct excitation of localized surface plasmons
in the tip. (B) refers to transitions between electronic/vibrational levels inside the bias window
that correspond to emitted photons with energy ℏω ≤ eV . The emitted radiation can couple to
plasmon modes of the tip that are therefore indirectly excited. (C) Hot carriers tunneling across
the junction can also emit photons similarly to process (B) but their energy can be ℏω > eV .

– Inserting a thin (in)organic insulating layer, as metal oxides, between molecule
and electrodes.

– Adding a molecular layer between molecule and electrodes.

– Using ‘molecular’ approches like synthesize molecules with particular features
that aim to reduce charge transfer coupling. For example is possible to produce
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a molecule with a tripodal anchor at one side, thus reducing coupling (see
reference [10]).

– Lifting a molecular wire laid on a substrate with a STM tip, thus reducing
coupling at the tip side. An example in literature is described in [36] where a
polythiophene molecular wire is considered.

– Changing metallic electrodes with carbon-based contacts, for example using
CNTs that lead to a smaller lead-molecule coupling [10].

Although what said above is relevant in practice, from a theoretical point of view
light emission can occur following different transport mechanisms. The latter are
now described taking as example a STM experiment that is represented in fig. 1.11.
An electron tunneling from the tip to the substrate can follow three different paths
(A,B and C) involving light emission:

A. An electron lying around the Fermi level can couple with a surface plasmon
mode of the tip. Before tunneling across the gap, it loses energy in favor of the
plasmon mode, that is therefore excited. Then, the electron tunnels through
transmission channels located at lower energy, whereas surface plasmon starts

Figure 1.12: Diagram summarizing main processes involved in excitation and decay of localized
surface plasmons.

31



Introduction

to decay. If radiative damping process is efficient, a far-field photon is emitted
and has energy equal to the one lost by the electron. This mechanism can
be summarized saying that tunneling current is coupled to a plasmon mode,
which is ’directly’ excited.

B. If two molecular levels are located in the bias window, i.e. the energy interval
between the Fermi levels of the electrodes, they will both be partially occupied
and, if optical transitions between them are not forbidden by selection rules,
transitions from the higher-energy level to the lower-energy level will occur
resulting in photon emission [28]. Moreover, vibrational levels of corresponding
electronic states are likely involved during transmission, thus broadening the
actual emission spectrum of the single-molecule junction. For this process the
photon energy respects the relation ℏω ≤ eV since both levels must belong
to the bias window of size eV . In this case V is the magnitude of the bias
applied between tip and substrate, whereas e is the elementary charge. It
is fundamental to underline that the emitted photons can correspond to an
actual light source that is detected in the far-field, but can also couple to
a plasmon mode. In this case a plasmon is indirectly excited by a two step
process: First photons are emitted through inelastic tunneling and then the
emitted radiation excites a plasmon mode. If radiative, the effects of plasmon
excitation is an enhancement of emitted field but with a reshaped spectrum.
In the context of molecular plasmonics, direct excitation is preferred from the
indirect one since it does not depend on electronic transitions which occur
over a nanosecond scale. This allows to design devices that are faster and not
band limited by the energy difference between the levels.

C. Hot electrons lying at energy greater than the tip Fermi level can first be
transmitted to electronic/vibrational states outside the bias window and then,
similarly to path B, they can emit photons reaching a lower-energy state. The
main difference is the constraint on photon energy. For this process ℏω > eV ,
thus it is not limited by the applied bias. Besides hot carriers transport
there are also other mechanisms involving emission of photons with ℏω > eV .
For example, this type of emission has been observed in [37] for a single C60
molecule. The authors attributed the emission above threshold to the possible
contribution of 2-electron processes. In general this phenomenon can likely
occur when electron-electron interaction is strong and thus charge fluctuations
on the molecule give rise to additional noise at optical frequencies, beyond
the shot noise of the current that is injected to the tip [37].

The above discussion concludes the description of light emitting single-molecule
junctions, which surely have a crucial rule for the design of fully molecular pho-
tonic circuits, but also complete the description of mechanisms involved in LSPs
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(summarized in fig. 1.12).

• Other applications

Over the years a great number of applications exploiting PAT have been investi-
gated from a theoretical point of view, but that do not have a clear experimental
evidence. The research group composed by S. Kohler, J. Lehnmann and P. Hänggi
studied for years molecular wires using a simplified model considering tight-binding
approximation. With this model, they predicted phenomena not mentioned above.
For example in [38] they described a possible application of PAT as current router.
They verified that current flows through different electrodes by varying the incident
field polarization. The same phenomenon is described by U. Peskin and M. Galperin
in [39] but considering a zero dimensional model (0D) in the framework of NEGF
(Non-Equilibrium Green’s Function). An other interesting application is described
by Kohler and coworkers in [30] where coherent destruction of tunneling (CDT) is
predicted when considering an illuminated junctions. This has of course a direct
application in molecular transistors since one can imagine to exploit radiation to
reduce the off current and thus increasing the ION/IOF F ratio. However, both CDT
and molecular routers do not have experimental evidence, therefore they are not
described here more into detail.

This concludes the introduction to the field of illuminated single-molecule
junctions, hoping to have given exhaustive reasons why it is important to study
PAT. Next chapter is focused on the description of the main physical models
used in literature to study the contribution of PAT in single-molecule junctions.
They will be formally introduced after having briefly described charge transport in
single-molecule junctions using a simplified zero-dimensional model that can be
generalized in the language of NEGF. The description of these models is crucial
since their implementation in Matlab® would be the topic of Chap. 3.
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Chapter 2

Photo-assisted tunneling
models

In this chapter I will describe three models, starting from the simplest one and
gradually increasing complexity, that are most used in literature to study PAT
through single-molecule junctions. Before doing this, an introduction to conduction
in 0D-systems (such as molecules) is given in order to have a complete picture of
conduction in molecular junctions, but also because in Chap. 3 this simple model,
based on independent levels, would be the base on which different PAT mechanisms
will be implemented. In the following chapters I will use as convention “e” to
indicate the elementary charge and “i” for the imaginary unit instead of “j” that
is more used in the electronic engineering field. This is justified by the fact that
molecular electronics is a “hot” topic also for physicists, especially when light is
involved. The majority of papers are signed by them, hence I decided to align with
their convention.

2.1 Conduction in 0D-systems
In systems like nanocrystals or molecules the electrons are confined along the
three dimensions that are in the order of λDeB, i.e. the characteristic De Broglie
wavelength of the electrons. These 0D-systems are generally called quantum dots
and are characterized by discrete energy levels whose corresponding electronic
wavefunctions are localized in space. Nevertheless conduction is possible when
two metallic electrodes, representing big reservoirs of electronic states, are put
close to the system that, in our case, is represented by a molecule bridging the
electrodes. The electronic wavefunctions corresponding to molecular orbitals would
no more be localized on the molecule but they would spread into the contacts.
Similarly, the eigenfunctions of the frontier atoms of the metals would ‘spill over’
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into the molecular channel. The resulting effect is that the levels inside the molecule
‘gains’ part of the contact states, thus the molecular DOS is no more a sequence
of delta functions (corresponding to discrete levels) but would be broadened due
to the acquired states. This can be understood also taking in consideration the
uncertainty principle. When isolated, the escape time of an electron from the
molecule is infinite, thus the spread in energy of the corresponding energy state is
infinitesimal. On the other hand, if the molecule is put near two metallic contacts,
the same electron can leave the molecule, thus having a finite escape time, that
corresponds to a finite spread of the energy level. Right from the uncertainty
principle is possible to define a coupling factor, between the molecule and a lead,
which is related to the escape rate of electrons and is expressed as γ = ℏ/τ where
at the denominator there is the electron escape time.

This mechanism is in general referred as hybridization of molecular orbitals
with the ones of the contacts and occurs especially when exists a strong coupling
between the molecule and the metals, that means when the molecule is covalently
bonded at the two sides. Under this condition is possible to describe transport in
single-molecule junctions using a simple model based on independent conduction of
different energy levels. The latter must be computed with ab-initio simulations, such
as Density functional theory (DFT), or semi-empirical simulations, like extended
Hückel theory (EHT), since other approximations, such as bounding box, do not
allow to retrieve quantitative results in the case of molecular junctions. Here
the electronic levels of the molecule are considered as already obtained from an
ab-initio simulation of the electronic structure and then used to compute charge
transport. The independent levels model will now be introduced, first focusing on
the conduction of a single level Ei, including or not spectral broadening, and then
generalizing the results. The following discussion is taken from the book “Quantum
Transport. Atom to Transistor” by S. Datta [40], that is a simple but effective
introduction to quantum transport, and from the notes of course “Nanoelectronic
Systems ” taught by professor M. Graziano and G. Piccinini during academic year
2020-2021 at Politecnico di Torino.

Conduction through a discrete energy level

The situation considered in this paragraph is the one shown in fig. 2.1 where only
one energy level enters, for now, in the calculation. The level is strongly coupled
to the electrodes that are indicated with the conventional names: source and drain.
A bias is applied between them, therefore shifting their Fermi levels and creating
the so called bias window (BW), that is the energy range between the Fermi levels
of the contacts. Since source and drain are characterized by different Fermi-Dirac
distributions, the system is in a non-equilibrium state and each contact tries to
bring the molecular channel (i.e. the single level in this case) in equilibrium to itself.
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To be more precise, the source keeps pumping electrons into the channel, since it
has the higher Fermi level, hoping to establish equilibrium. On the other hand,
drain keeps pulling electrons out of the channel in order to bring the system to its
own equilibrium. In the end equilibrium is never established and the molecular
channel is forced into a non-equilibrium state.

It is possible to quantify the net flux between the contacts and the molecule
considering a discrete energy level Ei inside the BW (broadening is not considered
at the moment):

– The source, identified from now on as contact 1 (S=1), would like to see an
average number of electrons Ni inside the i-th level equal to 2 · fF D(Ei−EF,1)
(factor 2 for spin degeneracy). The net current across the left interface is
proportional to 2 · fF D(Ei − EF,1)−Ni:

I1 = eγi,1

ℏ
(2 · fF D(Ei − EF,1)−Ni) (2.1)

– Similar reasoning applies to drain (from now on D=2), whose net current
crossing right interface is:

I2 = eγi,2

ℏ
(2 · fF D(Ei − EF,2)−Ni) (2.2)

(a) Discrete level (b) Broadened level

Figure 2.1: Band diagram for a single conducting energy level where in (a) is discrete (unphysical
situation since the level is strongly coupled with the electrodes) and in (b) broadening is taken in
consideration.

Looking at eq. 2.1 and 2.2 is possible to make some observations. First, in steady-
state condition the occupation of the level inside the BW would be something
intermediate between the distribution of the contacts. Secondly, the ratios γi,1/ℏ
and γi,2/ℏ, having in mind what mentioned above, are related to the escape time of
an electron from the corresponding i-th level. It is known also that γi,1 and γi,2 are
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the coupling factors that arises from contacting the molecule with the electrodes.
These factors will be important in the following when addressing the broadening
problem.

At steady-state the net currents flowing in the left and right electrode are equal
in magnitude but have opposite sign I1 = −I2, that implies also I1 + I2 = 0.
Inserting in this relation eq. 2.1 and 2.2 we obtain an expression for the average
number of electrons in level i:

Ni = 2 · γi,1f1(Ei) + γi,2f2(Ei)
γi,1 + γi,2

(2.3)

where f1(E) = fF D(E − EF,1) and f2(E) = fF D(E − EF,2) for brevity. This
equation confirms what observed above, i.e. the average occupation of the i-th
level corresponding to energy Ei is a weighted average of what the two contacts
would like to impose.

Putting the expression for Ni in eq. 2.1 it is possible to retrieve a formula for
the current I = I1 = −I2 under steady-state:

I = 2e
ℏ
γi,1 · γi,2

γi,1 + γi,2
[f1(Ei)− f2(Ei)] (2.4)

Starting from this equation we can make some considerations:

– If f1(Ei) = f2(Ei) no current is flowing and this is reasonable since the system
is at equilibrium.

– If Ei >> EF,1, EF,2 the level is well above the electrochemical potentials of
the electrodes, that implies f1(Ei) ≃ f2(Ei) ≃ 0. Therefore no net current is
flowing and the level is empty (Ni = 0).

– If Ei << EF,1, EF,2 the level is well below the electrochemical potentials of the
electrodes, that implies f1(Ei) ≃ f2(Ei) ≃ 1. Again no net current is flowing,
but in this case the level is occupied by two electrons (Ni = 2).

• Ei ∈ BW implies f1(Ei) /= f2(Ei) that is the only case allowing current to
flow.

Summarizing, current flow is the result of a continuous transfer of electrons by
means of tunneling across the 0D-system. Electrons in the source develop a net
current only reaching the drain through energy levels inside the BW.

To include broadening of the energy levels in this derivation is convenient to
recall the concept of Density Of States (DOS), that is the number of states available
for a certain energy value. Considering a discrete level in a 0D-system, the DOS
just consists of a delta function located at the energy of the level:

DOSi(E) = δ(E − Ei) (2.5)
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where the subscript ‘i’ is used to remember that in this case the DOS is referred to
only one level.

With this expression we can rewrite eq. 2.4 and 2.3 exploiting the properties of
delta function. We can include the DOS in these equations by inserting an integral
over energy and evaluating the Fermi-Dirac distributions at the integrating variable
E:

Ni = 2
γi,1 + γi,2

Ú +∞

−∞
DOSi(E)[γi,1f1(E) + γi,2f2(E)]dE (2.6)

I = 2e
ℏ
γi,1 · γi,2

γi,1 + γi,2

Ú +∞

−∞
DOSi(E)[f1(E)− f2(E)]dE (2.7)

Now we are ready to consider the case of level broadening represented in
fig. 2.1(b).

Level broadening

As already said above, broadening occurs when there is a strong coupling between
the molecule and the contacts. Moreover, the parameter related to it is γi (corre-
sponding to i-th energy level) that is also proportional to the electron escape time.
Increasing the coupling between molecule and electrodes would also increase γi

which is now exploited to define the level spread in energy. In general broadening is
described by an energy-dependent function γi(E) which can be computed by more
sophisticated techniques such as NEGF. As first approximation, γi is considered
constant (as done above) and is possible to associate a Lorentzian function to the
corresponding DOS of the level. Having in mind that the coupling factor results
from the contributions of both electrodes (γi = γi,1 + γi,2), the broadened DOS is
expressed as follows:

DOSB
i (E) =

γi

2π

(E − Ei)2 + (γi

2 )2 (2.8)

Equations 2.6 and 2.7 are still valid. The only difference is the use of a Lorentzian
DOS that is indicated by the apex ‘B’. An example representing this phenomenon
is shown in fig. 2.1(b). In this case the level spreads outside the BW, therefore the
overall current would be less with respect to the discrete case since the contributions
coming from the tails are not included in the integration. Another important point
is that, in case of broadening, a current flow can appear even if the energy level is
outside the BW because there would be some tail states of the Lorentzian inside
the window.

Before generalizing this result to the case of multi-level 0D-systems, there are
two other phenomena to be analyzed that concern the effects on the energy levels
when a bias is applied to the electrodes.
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Fermi level of the dot and charging effect

Up to now only a single energy level has been considered. However a quantum dot
is characterized by more than one level and has its own Fermi level that determines
the occupation of the states. For example in molecules it is known to be between
LUMO and HOMO levels since it determines the last (mostly) occupied orbital
(i.e. HOMO). Nevertheless, a question arises in non-equilibrium condition: “how
the Fermi level of the dot is influenced by an applied bias VDS?”. To answer this
question is useful to consider a capacity model as the one in fig. 2.2.

Figure 2.2: Capacitive model of a 0D-system.

The two electrodes are modeled with a corresponding capacitance (CS and CD)
and using simple circuit theory is possible to compute the potential VDOT dropping
on the quantum dot:

VDOT = VDS ·
CD

CD + CS

(2.9)

Therefore, if we consider source Fermi level as fixed, the drain Fermi level
EF,2 will shift in energy by a quantity equal to −qVDS, while the electrochemical
potential of the dot will be shifted down by −qVDOT . The overall effect is to shift
all the energy levels of the dot, thus varying their position in energy which is
crucial for conduction. In case of symmetric junctions, where the quality of the
two electrodes is the same, the two capacitances are equal CD = CS. Under this
condition the potential dropping on the dot is VDOT = 1/2 · VDS, thus the Fermi
level of the dot EF,DOT takes always the value (EF,1 − EF,2)/2 + EF,2 that is in
the middle of the BW. In this case is possible to see the problem with a different
point of view. We can imagine to maintain the levels of the dot at their original
equilibrium position and then, when a bias is applied, the source Fermi level is
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lift by 1/2 · VDS while the drain Fermi level is lowered by −1/2 · VDS. The overall
result is the same, but the effect of VDS is taken in consideration when varying the
electrochemical potentials of the contacts when a bias is applied. In this special
case of symmetric junctions the problem is simplified since it is no more needed to
sum an additional potential to the energy levels for considering the effect of bias.
In the following this would be the case considered for practical implementation of
charge transport.

Another effect, called charging effect, is also induced when biasing the junction.
Specifically this effect is related to the variation of occupation of the levels when
a current flows in the system. At equilibrium each i-th level hosts N0,i electrons,
while out of equilibrium hosts Ni electrons evaluated with eq. 2.6. The two values
are not equal, thus there is a variation of the total charge inside the dot. Defining
as N0 the total number of electrons in the dot at equilibrium and as N the number
of electrons in non-equilibrium condition, the total charge variation can be simply
quantified by the following expression:

∆Q = −e
Ø

i∈DOT

(Ni −N0,i) = −q(N −N0) (2.10)

The additional charge influences the potential of the dot, therefore is important
to study the corresponding contribution. Using again a capacitive model and
evaluating the effect of an additional electron w.r.t. equilibrium condition, the
potential due to charging effect can be expressed as:

U = e2

CD + CS

(N −N0) = U0(N −N0) (2.11)

The potential above must be added to the energy levels, which are shifted in
energy as consequence. This is important because is at the base of the so-called
Coulomb blockade. When an energy level enters in the BW, the number of electrons
hosted by the level varies. The resulting potential can, for instance, shift up the
level delaying its entrance in the BW and so blocking its contribution to conduction.
This effect is particularly important in weakly coupled 0D-systems since U0 is bigger
than the thermal (kBT ) and broadening (γ) scale. For strongly coupled systems,
such as covalently bonded molecules, U0 is smaller than the scales just mentioned.
However, it is fundamental to consider charging effect in order to have significant
results to compare with more sophisticated models. An important problem arises
from the evaluation of the total number of electrons. Summing up all the electrons
hosted by each level and considering the shift due to charging effect we arrive to
this expression:

N =
Ø

i∈DOT

2
γi,1 + γi,2

Ú +∞

−∞
DOSB

i (E − U)[γi,1f1(E) + γi,2f2(E)]dE (2.12)
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The total number of electrons depends on the potential U , but the latter depends
itself on the total number of electrons N . It is impossible to evaluate analytically
an expression for these two quantities and the only possible solution is to find
them self-consistently. One can start considering in the first iteration the number
of electrons in non-equilibrium condition without considering charging effect and
then, in next iterations, evaluate U and N using equations 2.11 and 2.12. At each
cycle the potential U can be updated following this procedure:

Unew = Uold + α(Ucalc − Uold) (2.13)

Uold is the potential used in each iteration to evaluate N using eq. 2.12 and Ucalc

is the potential obtained from eq. 2.11 using the updated number of electrons. For
the next iteration (for instance k + 1) the potential is updated adding a portion of
the difference between the potential used in that iteration (k) and the potential
computed as described above. The parameter α is in general lower than 1 and can
assume values like 0.1-0.5, but in general not smaller than this. The self-consistent
procedure is repeated until the potential reaches a value within a certain tolerance.
Using the resulting self-consistent potential, renominated USCF where SCF stands
for Self-Consistent Field, is now possible to evaluate the current. This will be done
in the next paragraph summing also all the contributions coming from different
levels.

Independent channels model

As first approximation we can consider the conduction channels identified by the
energy levels of the 0D-system as independent. This assumption is of course very
coarse but with some necessary changes it can produce good quantitative results.
The main consequence of having more levels is that when increasing VDS the BW
becomes larger and can include more than one level (always considering charging
effect that delays the entrance in the window). For what concerns equations, the
main difference is that now we must sum all the terms relative to different channels.
Before obtaining the expression of the current, here below is shown the equation of
the total DOS considering the SCF as already computed.

DOS(E − USCF ) =
Ø

i∈DOT

DOSB
i (E − USCF )

=
Ø

i∈DOT

γi

2π

(E − USCF − Ei)2 + (γi

2 )2

(2.14)

Using this equation is now possible to rewrite current flow in eq. 2.7 as:

I = 2e
ℏ

Ø
i∈DOT

γi,1 · γi,2

γi,1 + γi,2

Ú +∞

−∞
DOSB

i (E − USCF )[f1(E)− f2(E)]dE (2.15)
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Equation 2.15 is the final result to compute the total current flowing through a
multilevel quantum dot. Nevertheless this equation is not very familiar for people
working in the field of mesoscopic physics. They prefer to introduce the already
cited concept of transmission probability of an electron for tunneling from source
to drain. In this framework transmission can be introduce by grouping some terms
in the above equation:

T (E − USCF ) =
Ø

i∈DOT

2π · γi,1 · γi,2

γi,1 + γi,2
DOSB

i (E − USCF ) (2.16)

where 2π comes from developing the reduced Planck constant.
Finally with this equation we can write the current in a form that can be seen

as an extension of Landauer formula for 0D-systems:

I = 2e
h

Ú +∞

−∞
T (E − USCF )[f1(E)− f2(E)]dE (2.17)

This is the main result of conduction in 0D-systems adopting the scheme in fig. 2.3
that summarizes what said up to this point. It is worth underline that to compute
the IV characteristic the self-consistent procedure must be repeated for each value
of Vds and then use the SCF in the Landauer formula to obtain the value of current.

Figure 2.3: Scheme summarizing the self-consistent procedure. After convergence is achieved,
the SCF is used to compute the DOS, transmission and current.

Considerations on single-molecule junctions

The independent channels model can be used for a general 0D-system, hence also
for single-molecule junctions. The energy levels used in the model are related to the
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molecular orbitals and the coupling factors depend on the anchoring groups used to
bond the molecule to the electrodes. It is worth notice also that conduction in a real
molecular junction is influenced by other factors. The type of molecule is of course
important. Conjugated molecules would be more conductive than saturated ones
since electrons are bounded to the molecule but with wavefunctions that are spread
along the whole system. In turn, conjugation is influenced by torsion angle between
adjacent rings with optimal condition when they are in the same plane. Another
factor related to the chosen molecule is its length. Longer molecular channels are
characterized by lower coupling factors since an electron has a lower probability
of being transmitted through the molecule. In addition to this, longer conjugated
molecules have smaller HLG and the number of transmission peaks increases.

All these factors, essentially related to the type of considered junction, can be
included in the simplified model. However, there are some aspects that go beyond
this simplified description. For instance the potential inside the molecule has been
described by simply a scalar value but this is of course an approximation. One
should solve a Poisson equation in order to obtain a correct potential depending
on space variables, that is what ab-initio simulators do. Another problem is
related to transmission channels. They correspond to different levels but often
are superimposed and it is difficult to extrapolate coupling coefficients for all the
energy levels. Nevertheless, there is an effect that is crucial and is completely
neglected by the described model, which is the polarization of molecular orbitals
by an applied bias. When applying a VDS the molecule feels an electric field
that modifies the electronic clouds. They are shifted in space and their shape
are deformed. It is almost impossible to understand the effects that a bias would
have on transmission since the molecular orbitals can be modified in such a way
that the transmission of a certain channel is enhanced whereas the one of another
is suppressed. Therefore using the simplified model does not lead to a current
comparable to the one computed by other more complex models. But hope is the
last to die. Indeed it is possible to modify this simple model to include the effect
of polarization. This is done in EE-BESD [41] that is an efficient and effective
method for molecular FET modeling developed by A. Zahir et al. at Politecnico di
Torino. It will be presented in Chap. 3 where I will explain how to modify it to
include PAT.

A bridge towards NEGF

This paragraph has the goal to connect what just described here to a much more
complete and rigorous theory that is NEGF. Here I will not give an exhaustive
description of the theory, but only essential information needed to make comparisons
between the model described in this section and what is the gold standard of
quantum transport. NEGF formalism is conceptually different with respect to other
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conventional quantum mechanics theory. In general what is usually done is to study
the free oscillations of a system under study. In the case of NEGF the perspective
is different since this theory aims to study non-equilibrium ‘open’ systems that
interact with the environment (an example can be a molecule interacting with the
contact reservoirs). The approach of this theory is to study the total response of
the system (molecules plus contacts) when an input impulse is considered. The
impulse response is represented by the retarded Green’s function, GR, that is called
in this way because there cannot be a response before an impulse is applied. From
a mathematical point of view exists also an advanced Green’s function, GA, which
is related to time-reversal symmetry of the system, i.e. when the time variable is
rewinded. These functions are defined on two times, one referred to the perturbation
(t′) and one to the response(t). However, under steady-state condition, only the
time difference τ = t− t′ is meaningful, therefore is possible to Fourier transforming
the Green’s functions in the energy domain, thus simplifying the computation.

GR,A(E) =
Ú +∞

−∞
e

i
ℏEτGR,A(τ)dτ (2.18)

The time dependent functions are then computed with the following equations:

GR(E) = [EI −H − ΣR]−1 (2.19)
GA(E) = [GR(E)]† (2.20)

Equation 2.19 is the so called “Dyson’s equation” that is at the basis of the theory.
It allows to compute the retarded Green’s function of the total system starting
from the Hamiltonian of the active device (a molecule, a nanocrystal, etc.) and
including the interaction with the contacts. This is done by defining a retarded
contact self-energy ΣR

1,2. Because the two reservoirs are considered at their own
equilibrium (established by the external bias) is possible to define a total contact
self-energy adding the two contributions: ΣR = ΣR

1 + ΣR
2 . Dyson’s equation is an

incredible result since allows to treat the interaction of the active system with the
reservoirs which could be theoretically of infinite dimensions. The theory models
this interaction defining a self-energy that essentially is added to the Hamiltonian.
In general it is said that the interaction with the contacts is folded inside the
Hamiltonian, hence reducing the dimensions of the problem. It is important to
underline that Dyson’s equation is not restricted to contact interaction but could
be exploited to consider other external influences. For example it is possible to
define a ‘phonon’ self-energy that includes in the problem scattering processes
between electrons and phonons. On the other hand, when only contact self-energy
is considered, the type of transport predicted by the theory is coherent, i.e. elastic
with no scattering mechanisms.

Instead, for what concerns the advanced Green’s function, eq. 2.20 relates the
two functions showing that GA is just the transpose complex conjugate of GR.
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It is possible to make also other observations on the above equations. The
variable E corresponds to the energy of a ‘test’ electron injected in the device from
the contacts, i.e. it corresponds to the input stimulus. In conventional quantum
mechanics the energy spectrum of a system is in general the unknown of the problem,
instead in NEGF is just a variable characterizing the input stimulus and can be
varied as you like. All the above quantities (Hamiltonian, self-energy, Green’s
functions) depend on the input energy, thus the solution of Dyson’s equation should
be computed for each value of an energy-grid. Inside the equation, the energy
variable is multiplied by the identity matrix (in the case of non orthogonal basis set
it should be substituted with the overlapping matrix) having dimensions depending
on the considered basis set. This means that also all the other quantities between
square brackets are matrices, that is not so strange in quantum mechanics. We
would have vectors only if the chosen basis set diagonalizes all the quantities,
that is almost never the case. In light of this we can say that an inversion of a
matrix is involved in the Dyson’s equation. This represents the main drawback
of NEGF. The price to pay for an accurate and complete model is to compute a
matrix inversion that is computationally very inefficient. To summarize, NEGF
simulations are accurate but slow.

In the previous paragraphs a lot of effort was put into explain what is broadening
and how it can be considered in the computation of current. But in the framework
of NEGF? How does it enter in the theory? As already said contact self energy
is the quantity that takes into account what happens at the interface with the
reservoirs. For each contact is possible to define a broadening function (matrix)
corresponding to the anti-Hermitian part of the contact self-energy:

Γ1 = i[ΣR
1 − ΣA

1 ] , Γ2 = i[ΣR
2 − ΣA

2 ] (2.21)
Γ = Γ1 + Γ2 (2.22)

where the advanced contact self-energy is defined as ΣA
1,2 = [ΣR

1,2]†. Now the
problem is to understand why this matrix Γ1,2, depending on energy, is related
with broadening. To understand this, a good point is to notice that the eigenvalues
of the device are no more related to the only Hamiltonian, but now they can
obtained from H + ΣR. But this matrix is not Hermitian because ΣR possesses an
anti-Hermitian part, therefore the resulting eigenvalues are complex constituted
by a real part H + ℜ{ΣR} and an imaginary part Im{ΣR}. The real part of the
energy is renormalized by ℜ{ΣR} which is generally small. On the other hand, the
imaginary part of energy is the mathematical tool used to describe finite life-time
of an eigenstate, that can be seen as the corresponding concept of escape time
mentioned above. The finite life-time is directly related to broadening through
the uncertainty principle, therefore if there is a link between Γ and Im{ΣR} we
could understand why is called broadening function. Indeed, developing eq. 2.21
we can prove that Γ = −2Im{ΣR}. This confirms its role as direct substitute of
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coupling factor γ in NEGF theory, but formally considering the energy dependence
of broadening without postulating a Lorentzian shape of the DOS. But why a
Lorentzian? We considered a Lorentzian because the DOS assumes that shape
when considering a single energy level and neglecting the energy dependence of ΣR.
In this case Γ = γ and, extending this assumption for more levels, we obtain the
independent channels model described in this section.

In the coherent case, the current computed with NEGF theory assumes an
expression identical to Landauer formula of eq. 2.17, without considering the shift
due to USCF since here all the effects mentioned above are embedded in the
theory. What significantly changes is how the transmission probability is computed.
Exploiting the above equations, the transmission coefficient is computed in this
way:

T (E) = Tr[Γ1G
RΓ2G

A] (2.23)

The operator ‘Tr’ is the trace operator acting on the matrix inside square brackets.
The trace does not change if a different basis set is used and it is also invariant
under cyclic permutation of the terms inside the brackets. Equation 2.23 is valid
only for coherent transport which is reasonable for molecular junctions considering
the nanoscale dimension of molecules.

Generally other two Green’s functions are introduced which are not independent
from the ones introduced before. They are called lesser and greater Green’s function
and are defined in this way:

G≶ = GRΣ≶GA (2.24)
Σ<

1,2 = if1,2Γ1,2 , Σ< = Σ<
1 + Σ<

2 (2.25)
Σ>

1,2 = i(f1,2 − 1)Γ1,2 , Σ> = Σ>
1 + Σ>

2 (2.26)

Equation 2.24 is called Keldysh’s equation and allows to compute the lesser (G<)
and greater (G>) Green’s functions starting from the retarded and advanced ones.
Moreover the lesser and greater component of contact self-energy are introduced
since they enters inside Keldysh’s equation. These components can be computed
through the fluctuations-dissipation theorem expressed by equations 2.25 and 2.26.

On the contrary to retarded and advanced Green’s functions, which are related
to the impulse response of the system, lesser and greater Green’s functions assume
different meaning. It is possible to prove that −iG< represents the density per unit
energy of occupied states, i.e. the electron density per unit energy. This is the
reason why G< is also called electron correlation function. On the other hand, G>

is called hole correlation function and iG> represents the density of empty states
per unit energy. Knowing the meaning of these functions is straightforward to
compute the spectral function, i.e. the corresponding matrix version of the DOS:

A = i(G> −G<) = i(GR −GA) (2.27)
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The spectral function is obtained just by adding the empty states (iG>) with the
occupied states (−iG<). Moreover, in steady-state condition only two Green’s
function are independent and eq. 2.27 expresses also the equivalence between them
(G> −G< = GR −GA).

Regarding self-energies, the lesser component Σ< can be interpreted as the
in-scattering of electrons from the contacts to the device. This explains why G<

is proportional to Σ< since it has an important role in determining the electron
density in the device. Instead, Σ> is related to the out-scattering of electrons from
the device to the contacts and therefore it plays a crucial role in determining the
number of empty states represented by G>.

Another expression for the current can be obtained using the quantities just
introduced. It is a much more general equation that can be used also when
scattering mechanisms, for instance phonon or photon scattering, are introduced in
the picture.

I = 2e
h

Ú +∞

−∞
Tr[Σ<

1 (E)G>(E)− Σ>
1 (E)G<(E)]dE (2.28)

This equation can be interpreted in a simply way. Σ<
1 G

> represents the actual
in-scattering from contact 1 to the device: the process is proportional to the number
of empty states G> and occurs with a rate Σ<

1 . Similarly Σ>
1 G

< is related to the
actual out-scattering from the device to contact 1: the process is proportional to
the number of occupied states G< and occurs with a rate Σ>

1 . The same reasoning
can be applied to contact 2 obtaining, in steady-state condition, a current equal in
magnitude but with opposite sign.

This concludes the section on conduction of 0D-systems. It is important to
have in mind the results commented above because they constitute the base to
understand the following models describing PAT, but also because they are the
first step towards implementation of photo-assisted transport.

2.2 Tien-Gordon model
In 1963 P. K. Tien and J. P. Gordon at the Bell Telephone Laboratories developed a
model to explain the experimental results obtained by A. H. Dayem and R. J. Martin
studying a superconductor-insulator-superconductor (SIS) junction irradiated by a
microwave field. In particular they measured a photocurrent when the junction
was irradiated, i.e. there was an additional DC component contributing to the
total current. To explain this result, the Tien-Gordon (TG) model is a simple
tool, maybe too simple, that already catches the main features of photo-assisted
transport. In the last twenty years, it gained a lot of attention from the community
of researchers studying illuminated single-molecule junctions since it can give good
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qualitative results when it is used in its range of validity. Now the model will be
described giving all the information about its assumptions and what they imply.
Moreover it will be discussed how it is in general used in the framework of molecular
junctions and how it can be compared to other models.

Assumptions

In TG model the incident electromagnetic field is considered from a classical point
of view and the effects of the magnetic field are neglected. The incident radiation
is monochromatic and it is simply expressed as E⃗(x⃗, t) = E⃗AC(x⃗) · cos(ωt) where
E⃗AC(x⃗) is the amplitude of the incident field having direction determined by the
polarization of the field. Considering a laser spot with diameter in the micrometer
range, it is much more likely that the electric field interacts with the metallic
electrodes than with the molecule. If the incident frequency is below the plasma
frequency (ωp) of the metal and is also lower than the interband transition threshold,
the collective screening response of the electrons is effective and most of the light
is reflected from the contacts [42], [43]. Nevertheless, if the light polarization is
mostly parallel to transport direction, an oscillating potential VAC(t) will drop
between the contacts and the molecule thus inducing a time-dependent current,
but also an additional DC component, i.e. the photocurrent, that is modeled by
TG. The induced potential is considered spatially uniform, i.e. constant, in the
electrodes due to the effective screening action below ωp, that is generally in the
UV range. On the other hand, the potential inside the junction should be retrieved
self-consistently solving Poisson’s equation. However this is computationally very
intensive and, as it is done in the original article, a vanishing electric field is
considered in the gap. Therefore there must be a potential drop at the interface
that can follow two conceptual equivalent configurations represented in fig. 2.4: a
symmetric one where the total drop VAC is portioned among the two interfaces and
an asymmetric case where the complete drop is just at one interface. Of course
this is a dramatic simplification since it is known that in molecular junctions the
potential varies depending on how atoms are located in space. On the other hand,
if we consider a conjugated molecule, it seems reasonable that the potential drops
at the two interfaces due to partial screening of the electric field by the electronic
cloud. However the potential along the molecule is likely non-constant, thus this
approximation is of course very rough. In addition to this, the symmetric case can be
connected to an experimental situation where both contacts are illuminated (that is
more likely) whereas in the asymmetric configuration one contact is predominantly
illuminated with respect to the other. This point is crucial since is at the core of a
non negligible problem of the TG model that will be described in the following.

The exact value of the amplitude VAC is unknown and depends on various factors
such as polarization, radiation frequency, junction geometry, but more importantly
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(a) Symmetric drop (b) Asymmetric drop

Figure 2.4: Representation of the two equivalent configurations of AC voltage drop. In (a) the
total drop is partitioned among the two interfaces, therefore is symmetric, while in (b) the drop
is just at one interface, thus is asymmetric.

it can be increased by LSP excitation due to related electric field enhancement.
For larger values of VAC , the model loses validity since the precise shape of the
induced potential becomes more and more important [44].

The radiation is generally in the microwave range, at most up to frequencies in
the visible range below ωp, hence this type of transport is adiabatic (see section
1.3.3) and neglects any intramolecular transitions, even if typically are possible in
the optical range. Moreover it also neglects any induced thermal effect, but also
any modification in the geometry of the molecule due to the applied field (these
last assumptions are valid also for the models in section 2.3 and 2.4).

Here a summary of all the assumptions:

– The electric field is classical: E⃗(x⃗, t) = E⃗AC(x⃗) · cos(ωt).

– When λ > dgap, a spatially uniform oscillating potential VAC(t) is induced
at the contacts and can drop along the junction following a symmetric or
asymmetric configuration.

– The radiation frequency must be smaller than the plasma frequency of the
metal: ω < ωp to ensure effective screening. Moreover in this range excitation
in the contacts such as phonons or e-h pair generation are neglected.

– The amplitude VAC is unknown and depend on the specific system under study.
It is worth notice that can be generally amplified by LSPs when they are
excited, accompanied with a change in the potential shape, which should be
computed self-consistently.
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– The photo-assisted transport is adiabatic and neglects any intramolecular
transitions.

– Light-induced effects are neglected such as thermal effects or modification in
the geometry of the molecule.

Photocurrent

The central idea in TG model is that the induced oscillating potential modulates
over time the energy levels of electrons in the contacts while maintaining the same
carrier distribution across the levels. This induces a type of transport that is
adiabatic since it does not involve resonant transition between molecular energy
levels.

It is possible to express the influence on the contacts starting from the Hamil-
tonian of the system written in second quantization, i.e. the occupation number
representation (for a simple but effective introduction see Appendix A in [28]).
Without radiation the Hamiltonian can be written as:

Ĥ0 = Ĥmol + ĤC1 + ĤC2 + Ĥcoupl (2.29)

The first term is the Hamiltonian of the isolated molecule while ĤC1 and ĤC2
correspond to the Hamiltonian of the isolated contact C1 (1 = source) and C2 (2
= drain). Instead the last term represents the charge transfer from the molecule to
the electrodes and vice versa, thus it describes the coupling between the molecule
and the contacts. Equation 2.29 can be developed using second quantization in
this way:

Ĥ0 =
Ø

i∈mol

Eiĉ
†
i ĉi +

Ø
k∈C1

Ekĉ
†
k,1ĉk,1 +

Ø
k∈C2

Ekĉ
†
k,2ĉk,2 +

Ø
i∈mol

Ø
k∈{C1,C2}

(Vkiĉ
†
kĉi +H.c.)

(2.30)
where ĉi(ĉ†

i) is the fermionic annihilation(creation) operator inside the molecule
whereas ĉk,1−2(ĉ†

k,1−2) is the fermionic annihilation(creation) operator inside contacts
C1 and C2. Ei and Ek are the energy levels inside the molecule and the contacts
while Vki represents the charge transfer constant coupling a level k in the electrodes
with a level i inside the molecule. In particular, the expression Vkiĉ

†
kĉi means that

an electron is created in state k belonging to one of the two contacts while an
electron is annihilated in state i inside the molecule. Of course also the reverse
process could be possible and is represented in the expression by H.c., i.e. the
Hermitian conjugate of the previous expression.

In the TG model the light irradiating a junction affects only the terms ĤC1
and ĤC2, therefore the molecular Hamiltonian do not couple with the field and
intermolecular transitions cannot be described. An additional oscillating potential
appears in the contacts and can be modeled in two ways depending on how the
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potential drops at the two interfaces. Dividing the amplitude VAC in two terms,
VAC,1 and VAC,2, the contact Hamiltonians, that are now time-dependent, can be
expressed as:

ĤC1(t) = ĤC1 + eVAC,1 · cos(ωt) , ĤC2(t) = ĤC2 + eVAC,2 · cos(ωt) (2.31)

For simplicity, for the moment, we restrict the attention only to one (C1) of the two
contacts. The additional term in eq. 2.31 does not change the spatial distribution
of a wavefunction in contact C1, corresponding to a generic k state, that can be
expressed in the form:

Ψk,1(x⃗, t) = f(x⃗)e−i Ek
ℏ t (2.32)

where f(x⃗) corresponds to the spatial dependence of the wavefunction. Since the
basic assumption in TG is that the external radiation modulates the (quasi-)energy
levels of the electrons, one can imagine to substitute Ek in the above equation with
Ek + eVAC,1 · cos(ωt). A general expression of the wavefunction is therefore:

Ψk,1(x⃗, t) = f(x⃗)e− i
ℏ

è
Ekt+

s t

0 eVAC,1 cos(ωt′)dt′
é

(2.33)

Expanding the result of the time integral, i.e. a cosine, using Bessel’s functions of
first kind, we obtain the expression reported in the paper of 1963 by P. K. Tien
and J. P. Gordon:

Ψk,1(x⃗, t) = f(x⃗)
5 n=+∞Ø

n=−∞
Jn

3
eVAC,1

ℏω

4
e−i Ek+nℏω

ℏ t
6

(2.34)

Generally the argument of the Bessel’s functions is defined as α1 = eVAC,1/ℏω
that is a dimensionless parameter representing the local ‘radiation strength’ at
contact C1. A similar reasoning can be done for contact C2 defining α2. In
the end what will really count is the difference between the arguments expressed
by α = α1 − α2, that is directly related to the total potential drop VAC . For
this reason, considering symmetric drop, we would have α1 = α/2 = eVAC/2ℏω
and α2 = −α/2 = −eVAC/2ℏω, while for the asymmetric case we would have
α1 = α = eVAC/ℏω and α2 = 0 or vice versa. This parameter is influenced by
the same factors that determine VAC and in a lot of works is the only parameter
defined in the model which can be varied as you like for fitting experimental data.

A question arises looking at eq. 2.34: how do we interpret this wavefunction? J. R.
Tucker and M. J. Feldman in 1985 [45] represented graphically (fig. 2.5) the meaning
of eq. 2.34. From a point of view of the junction before irradiation, the electrons
influenced by an adiabatic driving behave as if having a probability amplitude
Jn(α) to be displaced in energy by nℏω i.e. they have a certain probability to
exchange n energy quanta with the oscillating field. Another perspective is to think
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Figure 2.5: Graphical interpretation of eq. 2.34 reported in [45] by J. R. Tucker and M. J.
Feldman.

that the action of the AC signal is equivalent to the application of voltages nℏω
with probability J2

n(α).
When index n is increased, the probability amplitude decreases since related

to the order of first kind Bessel’s function. Moreover, increasing the argument α,
Bessel’s functions have an oscillatory decreasing behavior, thus the probability is
smaller and smaller as evident from fig. 2.6.

It is also worth underlining that the exchanged energy quanta are not ‘real’
photons from a rigorous point of view since the field is not considered as quantized.
Nevertheless in the following I will not make this distinction for simplicity.

Figure 2.6: Bessel’s functions of first kind.

Now we are ready to present the expression of the DC current exploiting the
above results. An heuristic derivation will be given, even if a more formal derivation
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can be found in [42] where the NEGF formalism is used to obtain a more general
expression of DC current when a harmonic perturbation is affecting the system.
Assuming that the potential does not spatially vary along the central part of the
junction and that the DOS in the contacts is energy independent, the general
formula presented in [42] reduces to the result of TG model which will be described
here below.

As already said in subsection 1.3.3, when a driving field is acting on a system,
transmission probability from left to right and the one from right to left are in
general different and should be computed separately. In general the current can be
described by a Landauer-like equation:

I(VDC ;α) = 2e
ℏ

∞Ø
n=−∞

Ú
[T (n)

21 (E)f1(E)− T (n)
12 (E)f2(E)]dE (2.35)

To compute the transmission coefficients let us consider the transmission of an
electron from left to right electrode. At the left interface an electron can absorb
(n > 0) or emit (n < 0) energy quanta with probability Jn(α)2, then they are
elastically transmitted through the molecular channel. Similarly, at the other side
of the junction they can absorb or emit energy quanta with probability Jl−n(α)2

before crossing the interface and reaching the electrode. At the end the difference
between the initial and the final states is of l quanta. Following this reasoning, the
expression for transmission from contact 1 to 2 is:

T
(l)
21 (E) =

∞Ø
n=−∞

J2
l−n(α2)T (E + nℏω)J2

n(α1) (2.36)

Exploiting the sum rule q∞
l=−∞ J2

l (x) = 1, we can rewrite the Landauer-like
expression as:

I(VDC ;α) = 2e
ℏ

∞Ø
n=−∞

Ú
T (E + nℏω)

è
J2

n(α1)f1(E)− J2
n(α2)f2(E)

é
dE (2.37)

This expression is general since considers two different potential drops at the two
interfaces. For the symmetric case α1,2 = ±α/2 and eq. 2.37 can be rewritten by
factorizing J2

n(α/2) since Bessel’s functions of first kind are invariant for inversion
of sign in the argument:

I(VDC ;α) = 2e
ℏ

∞Ø
n=−∞

Ú
J2

n

3
α

2

4
T (E + nℏω)

è
f1(E)− f2(E)

é
dE (2.38)

The above equation can be obtained also for the asymmetric configuration by using
α instead of α/2 inside the squared Bessel’s functions (more details below). This
equation has a simple interpretation: The molecule supplies the potential landscape
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to compute the transmission function and then it is probed at energy E + nℏω
related to processes involving |n| photons occurring with probability J2

n(α/2). The
current can increase because the absorption or emission of energy quanta can lead
electrons to have an energy corresponding to a highly transmissive channel. If their
starting energy corresponded to a low transmission coefficient (for example to an
off-resonant transport through broadened states), after interacting with photons
their transport can change from off-resonant to on-resonant, therefore increasing
the overall current. Moreover, is evident that in eq. 2.38 is possible to define a
unique transmission spectrum:

Topt(E) =
∞Ø

n=−∞
J2

n

3
α

2

4
T (E + nℏω) (2.39)

This spectrum would show additional peaks at energies distant nℏω from the main
peaks corresponding to the energy levels of the molecule. These new transmission
channels are called sidebands precisely because they appear at the sides of original
transmission peaks.

The main advantage to use this formula for molecular junctions under illumi-
nation is that the DC current is fully determined by quantities computed in dark
condition, while Bessel’s functions weigh different photo-assisted processes, strongly
suppressing higher orders of inelastic scattering.

This formula is the main result of TG theory, however it is not generally used in
this form since VAC is unknown. As already said, this voltage can be obtained from
experimental data, but only in some specific case. For the sake of clarity I report
here the expansion of current around the DC bias truncated at second order:

I(V ) = I(VDC)+ 1
4
∂2I

∂V 2

-----
VDC

·V 2
AC + ∂I

∂V

-----
VDC

·VAC cos(ωt)+ 1
4
∂2I

∂V 2

-----
VDC

·V 2
AC cos2(2ωt)

(2.40)
This truncation is valid only if VAC is small and if non-linearities around VDC are
not too large [44]. This last condition is not very typical of molecular junctions
due to resonances , i.e. when current increases due to an energy level entering
inside the BW. Only for weak bias (small BW) and large HLG this approximation
is reasonably good. A type of molecule respecting the constraint on HLG are fully
saturated compounds (for example octane).

Within these limits, measuring the characteristic under illumination allows to
compute the second derivative of I(V ) at the bias point. From eq. 2.40 is evident
that the variation of DC current is expressed by:

∆IDC = 1
4
∂2I

∂V 2

-----
VDC

· V 2
AC (2.41)

Therefore measuring the variation of current and computing the second derivative
allows to obtain VAC . The obtained value can be used to evaluate a possible
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amplification of the field inside the junction by surface plasmons excitation. This
procedure is what is done in a number of experimental papers, but not always
researchers verify if this approximation is valid or not. Moreover seems almost a
contradiction to measure field amplification with a formula obtained by considering a
small value of VAC . Of course you have to be careful before using this approximation.

It is worth notice that developing the TG current in the lowest order of VAC

and, if the conductance varies slowly on a voltage scale of ℏω/e, we obtain the
same variation of DC current expressed in eq. 2.41 (for more details see [20]). This
is the reason why eq. 2.41 is frequently reported under the name of ‘TG model’,
but, as commented above, is not properly correct in every situation.

Practical example and critical point of TG model

To understand better what this model implies is crucial to make an example. I
will analyze a simple 0D-system depicted in fig. 2.7 that has only two energy levels,
E1 = −1 eV and E2 = 1.5 eV equivalently coupled to the contacts with γ = 0.05 eV.
The dark current flowing through the system is computed using the model described
in this chapter and corresponds to a value of α = 0. For simplicity charging effects
are not considered, hence is not necessary to compute USCF .

Figure 2.7: Example of 0D-system used to show the results of TG model.

If a symmetric drop of VAC is considered at the two sides of the junction, eq. 2.38
can be directly applied to compute the effects of PAT. It is a ready-to-use expression
since it is only required to compute the value of Bessel’s functions and shift the
transmission spectrum. The IV curve under illumination is shown in fig. 2.8(a)
where the bias ranges from 0 to 4 V, the considered photon energy is ℏω = 0.5 eV
and α was arbitrary chosen from 0 to 4 since it is just an example.

For value of α = 0, i.e. no incident radiation, we can observe the dark current.
It presents resonances at 2 V and 3 V corresponding to values of bias which allow
the entrance of a new level inside the BW. Increasing α, for low bias the current is
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enhanced w.r.t. dark current, while at larger voltages the current is reduced. This
behavior is understandable by looking at the transmission spectrum in fig. 2.8(b).
The sidebands are visible and the additional peaks correspond to different processes
labeled by a certain value of n. If n > 0 absorption of photons leads electrons inside
a main transmission peaks, therefore an additional peak appear at an energy equal
to E − nℏω. On the other hand, if n < 0 the sidebands correspond to emission of
photons that leads electrons inside the main transmission peak. In this figure the
integer n ranges from −2 to +2 because the summations over different orders has
been truncated at the second order (positive and negative). It is crucial notice that
increasing α, in the range chosen in this example, the sidebands are enhanced while
the ‘dark’ peaks are reduced since the corresponding Bessel’s function, J0, decreases
with the argument in the range chosen for the example (see fig. 2.6). The overall
result is that for low bias additional peaks are inside the BW hence increasing the
current with additional resonances, whereas for large bias the current decreases
since the height of the main peaks is reduced by the Bessel’s weighting factors.

(a) (b)

Figure 2.8: PAT results using TG model. The left panel (a) shows the IV curve under
illumination of the 0D-system chosen as example, while panel (b) represents how the transmission
spectrum is modified by the additional sidebands.

When the power used to illuminate the junction is not so high, it is more likely
that occur events involving only the emission or absorption of one photon. In this
case eVAC << ℏω and the summation over the Bessel’s orders can be truncated
between −1 and +1. The approximated transmission spectrum is expressed by [21]:

Topt(E) ≈ T (E) + 1
4
α

2
2
[T (E + ℏω) + T (E − ℏω)− 2T (E)] (2.42)

The quality of this approximation can be verified comparing eq. 2.42 with 2.39,
whose summation considers orders from -5 to +5. Using the example above for
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α = 1, i.e. a value not so large, the two transmission spectra are computed and
shown in fig. 2.9.

Figure 2.9: Comparison between the approximated expression of transmission spectrum under
illumination with the one formally obtained in the framework of TG model.

As it can be seen, the spectra are well superimposed and show the same amplitude
for the sidebands. Further increasing the value of α would lead to a completely
different result, confirming the validity of the approximated expression only for
small oscillating amplitude VAC .

Another important observation can be done using this simple example. As
already mentioned at the end of Chap. 1, in [30] P. Hänggi and coworkers predicted
coherent destruction of tunneling (CDT) using a simple tight binding approximation
to model a molecular wire in the framework of Floquet theory (see next chapter).
Following a similar reasoning is possible to show the same phenomenon with TG
model, even if it has not been verified experimentally yet. Thinking about Bessel’s
weighting factors, a significant reduction of current can occur when the argument
α/2 corresponds to a zero of the function J0, that is related to transmission peaks
in dark conditions. In this case, their contribution to the overall current will vanish,
thus reducing its value with respect to the one in dark condition. In fig. 2.10 I
compared the IV curve commented above (represented in panel (a)) with the
current computed with α = 4.809 and α = 11.040, values that if split in half
correspond to the first two zeros of J0.For the first zero the current is not so
different to the one for α = 4. It is enhanced in the low bias range due to additional
sidebands entering inside the BW, while for large bias the current is reduced due
to lower contribution coming from main peaks. Nevertheless, for the second zero of
J0 the current is remarkably reduced all over the bias voltages. This is justified
by looking at fig. 2.6: Close to the second zero of J0, the magnitude of J2 is also
smaller, hence only sidebands of first order contribute to conduction, which is of
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course reduced.

(a) (b)

Figure 2.10: Theoretical prediction of CDT is shown in panel (b) that depicts the IV curve for
α/2 equal to a zero of Bessel’s function J0. In (a) are reported reference IV characteristics for
which α/2 does not correspond to a zero.

Now we are ready to address a critical point of TG model, that will be described
exploiting again this example. The plots commented above were computed consider-
ing at the two sides of the junction a symmetric drop of the oscillating potential VAC ,
as represented in fig. 2.4(a). Nevertheless, shifting by VAC/2 the potential all along
the junction, we obtain the asymmetric case depicted in fig. 2.4(b), hence the result
should not vary since what changes is just the reference potential. Nevertheless, in
this case α1 = eVAC/ℏω whereas α2 = 0, hence the argument of Bessel’s functions
would be α and no more α/2. For clarity I reported the expression of current for
the asymmetric condition, considering the drop at the left side of the junction:

I(VDC ;α) = 2e
ℏ

∞Ø
n=−∞

Ú
T (E + nℏω)

è
J2

n(α)f1(E)− f2(E)
é
dE (2.43)

Computing the IV characteristics with this equation, for a bias voltage ranging
from −4 V and 4 V, we obtain the results shown in fig. 2.11(b). Comparing this case
to the symmetric one (reported in fig. 2.11(a)) is obvious that the two configurations
predict a different outcome. In particular, the asymmetric configuration shows
a photocurrent different from zero even in short-circuit condition when the two
Fermi levels of the contacts are identical. This is strange since it means that the
electrons, whose energy is adiabatically modulated at one side of the junction, are
transmitted through the junction even if no bias is applied. On the other hand,
in the symmetric configuration this behavior is not predicted since ideally both
sides of the junction are illuminated and opposite fluxes occur leading to a net zero
current. This difference between the configurations has been pointed out in 1998
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(a) Symmetric drop (b) Asymmetric drop

Figure 2.11: IV characteristic computed with TG considering a symmetric (a) or asymmetric
(b) AC potential drop at the two interfaces. As it is clear, the two results are not equal that
means they could correspond to two different physical situations. Nevertheless the system under
study is symmetrical and should not develop a net current under short-circuit condition as in (b).
For this reason only case (a) will be considered in the following.

by M. H. Pedersen and M. Büttiker [46]. The theory is not gauge invariant under
an equal shifts of all the potentials, that means the result changes if we change
how the AC potential drops along the junction. From a point of view of circuit
theory this is of course strange since the result should be the same, while from a
‘mesoscopic’ perspective a different distribution of the potential along the junction
could induce a different DC current. However, in the following I will consider as
reference the symmetric configuration for this reason: A symmetric system, as the
one considered above and the molecular junctions I will consider in Chap. 3, cannot
show a net photocurrent in short-circuit condition due to symmetry rules reported
in subsection 1.3.3.

M. H. Pedersen and M. Büttiker highlighted also another problem, but related to
the symmetric configuration. Because of parity of Bessel’s functions of first kind, if
the potential drop is equal at the two sides, both in magnitude and sign, the result
does not change. This means that, if α1 = α/2 and α2 = α/2, we obtain again
the results shown above. The problem is that if the Fermi levels of the contacts
oscillate with the same phase, the difference between them will be always the one
imposed by the external DC bias, therefore it should be impossible to develop an
additional photocurrent. This issue intrinsically derives from the mathematical
formulation of the model and cannot be avoided. In the next sections I will always
consider a symmetric drop with opposite phase at the two interfaces.
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Gauge transformation

To conclude this section on TG model and to link it with the next topic, it is worth
showing how is possible to modify the problem addressed by TG. As demonstrated
in [30] by P. Hänggi and coworkers, the problem of treating oscillating potential
applied at the contacts can be gauge transformed in an equivalent problem where
the levels of the molecule are oscillating in time. The effect is equivalent to an
AC gate voltage uniformly distributed on the channel that varies in time the
molecular energy levels. Looking at the Hamiltonian expressed in eq. 2.29, the time
dependence was related to additional oscillating potential at the contacts, therefore
affecting ĤC1 and ĤC2. With the gauge transformation the time dependence is
transferred to the Hamiltonian of the molecule, but also to the coupling terms that
would also depend on time:

ĤC1(t), ĤC2(t)→ Ĥmol(t), Ĥcoupl(t)

This transformation is also graphically represented in fig. 2.12 where double-head
red arrows are related to the energy oscillation induced by the incident field. Since
in the new problem only the molecular Hamiltonian is coupled with the incident
radiation, this case can be connected to a different experimental set-up where the
field is directed to the molecule by a scanning near-field optical microscope.

(a) TG problem (b) Floquet problem

Figure 2.12: Graphical representation of gauge transformation from TG case study to typical
problem analyzed with Floquet model.

This new point of view is convenient to study direct interaction of light with the
molecular system and is at the base of Floquet model. The gauge transformation
justifies a possible comparison between TG and Floquet since basically one problem
can be transformed to the other. However, this is only true from a mathematical
point of view and some doubts are still present concerning what actually happen
when light arrives at the junction. It seems more reasonable to think, as said
above, that the field interacts predominantly with the contacts when the radiation
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frequency is low. Instead, when photon energy is increased up to visible range,
the coupling with the molecule could be higher since the energy is comparable to
intermolecular transition and LSP can be excited, leading to a strong injection of
photons (a.k.a. field amplification) inside the junction.

2.3 Floquet model
One of the most studied formalism to analyze PAT in molecular wires is the Floquet
model. It is the natural language to deal with periodically driven systems and
exploits the Floquet theorem dated back to the original work by Floquet himself in
1883. This theorem was applied later in the context of quantum mechanism when
J. Shirley tried to solve the Schrödinger equation for a time-periodic Hamiltonian.
Starting from this point, Floquet formalism became an effective tool in physics,
used also to understand the behavior of periodic driven many-particle systems
like, for example, single-molecule junctions. A first attempt to include Floquet
formalism in the study of interaction between light and molecular wires was done by
A. Tikhonov [47] in 2002. It was an early work, but already had all the ingredients
described later by P. Hänggi and coworkers. Indeed, in 2005 they published an
extensive review [30] that describes driven quantum transport, with a particular
focus on the analysis of molecular wires exploiting Floquet formalism and NEGF.
This section, but especially next chapter, is inspired by this enormous work and
also by the high-level work of M. Genske, that in his PhD dissertation analyzed
periodically driven many-body quantum systems [48] with a rigorous mathematical
approach. It is worth to highlight that Floquet model is the most studied from a
theoretical point of view, but it is not applied as much as Tien-Gordon to explain
experimental results. The goal of this thesis is also to prove that it can be used in
those contexts and can provide information more accurate than Tien-Gordon.

The fundamental assumption needed to apply Floquet formalism is that the
Hamiltonian of the system under study is time-periodic. In the context of this thesis,
the periodicity is enforced by the incident electromagnetic field that “drives” over
time the Hamiltonian of the molecule. Therefore the interaction is just between
the electronic structure of the molecule and the radiation field, as depicted in
fig. 2.12(b). Recovering the expression of Ĥmol from eq. 2.29, in the driven case it
will be time dependent with an additional potential term varying with the same
frequency ω of the incident field.

Ĥmol(t) = Ĥmol,0 + UAC(t) =
Ø

i∈mol

Eiĉ
†
i ĉi + UAC · cos(ωt) (2.44)

The second term can be interpreted also in another way. If we introduce the
molecular dipole µ⃗mol, i.e. the dipole moment associated to the molecule, it is
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possible to interpret UAC(t) as the interaction between the dipole and the field. In
this dipole approximation we would have:

UAC(t) = −µ⃗mol(x⃗) · E⃗(x⃗, t) (2.45)

where the maximum values are reached when the polarization of the field is parallel
to the molecular dipole. In order to be more general, in this section I will consider
UAC(t) = UAC · cos(ωt) instead of this more physical interpretation, that would be
commented more in detail in Chap. 3.

Looking at eq. 2.44 and defining the period of the field as T = 2π/ω, we
can state that Ĥmol(t + T ) = Ĥmol(t). It is possible to demonstrate that this
dependence is inhereted also by the Green’s function of the system. An intuitive
way to understand this statement is to think about eq. 2.19. The equation could be
solved at each time instant where only the Hamiltonian of the molecule is varying
(for simplicity the time dependence of the coupling term is neglected). Fixing a
time t0, the solution for GR would be the same at the instants proportional to
a multiple of the period, that are t0 + nT where n is an integer. This is true
because the Hamiltonian would be the same for these time values, hence the matrix
inversion would give the same result. This is crucial when exploiting Floquet in
the framework of NEGF since allows to decompose the Green’s functions in many
modes corresponding to different transport mechanisms. Before showing how it
can be done, it is crucial to underline that, when a general time dependence is
considered, the Green’s functions can no more be Fourier transformed directly
from the time domain to the energy domain. However, it is still possible when the
Green’s functions are time-periodic, but an additional step is needed. This is the
main advantage of Floquet theorem, otherwise we would be forced to deal with
a time variable that requires more complex computational schemes. Even with a
general time dependence, a Fourier transform can be done with respect to one of
the time variables that define the Green’s function. Considering GR, the one-sided
Fourier transform is [49]:

GR(t, E) =
Ú +∞

−∞
e

i
ℏE(t−t′)GR(t, t′)dt′ (2.46)

It is evident that the time dependence is still inside the Green’s function. However,
as said above, GR(t, E) has the same periodicity of Ĥmol(t), hence it can be
expanded using a Fourier series in order to rule out the time dependence from
GR. The Fourier components of the retarded Green’s function, also called Floquet
modes, will be formally expressed as [30]:

GR (n)(E) = 1
T

Ú T

0
e−inωtGR(t, E)dt (2.47)

The energy is the only variable that defines GR (n), hence the time dependent
problem could be solved adopting a time-independent procedure confirming again
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the advantage of using Floquet. In many papers these two steps are generally
implicit and the two-times Green’s functions are defined directly using the Fourier
components expressed in eq. 2.47. For example GR(t, t′) can be written in this way
[50]:

GR(t, t′) =
∞Ø

n=−∞

Ú dE

2π G
R (n)(E)e− i

ℏE(t−t′)+inωt (2.48)

The total current can be evaluated starting from the Floquet modes, but the
problem is how to compute them. There are two approaches that will be described
here below. The first one is based on the practical application of the Floquet
theorem. Instead the second is based on the solution of a Floquet-Dyson equation
obtained exploiting the time periodicity of the Hamiltonian.

Floquet theorem

When considering open systems, the effects of the contacts can be folded inside an
effective Hamiltonian by means of a contact self-energy Σ. In order to make things
simple, to present the Floquet theorem I will consider the Wide Band Limit (WBL)
that implies contact self-energies that are independent from energy. Moreover,
also the renormalization due to the real part of Σ is neglected, therefore it can be
expressed by ΣR,A

α = ∓iΓα/2 where Γα is referred to C1 or C2 and does not depend
on time and energy. Under this approximation, the term Ĥmol(t) − iΓ/2 would
be time-periodic because folding the effects of the reservoirs inside an effective
Hamiltonian means just adding a constant term. As a consequence we can exploit
time periodicity to solve the single-particle Schrödinger-like equation that governs
the dynamics of the driven system.

iℏ ∂
∂t
|ψ(t)⟩ =

A
Ĥmol(t)− i Γ

2

B
|ψ(t)⟩ = Ĥeff (t) |ψ(t)⟩ (2.49)

Note that in this section I will use Dirac’s formalism to indicate a particle state.
For this reason, the formalism is briefly reviewed in Appendix A. As just mentioned,
in the Schrödinger-like equation I have defined an effective Hamiltonian Ĥeff(t)
that includes the contribution of the contacts. It is known that the formal solution
of the Schrödinger equation is:

|ψ(t)⟩ = e
− i

ℏ

s t

t0
Ĥ(t′)dt′

|ψ(t0)⟩ = S(t, t0) |ψ(t0)⟩ (2.50)

The evolution operator S(t, t0) expresses the evolution from state |ψ(t0)⟩ to state
|ψ(t)⟩. When the Hamiltonian is Hermitian, the evolution operator is unitary
that means inner products are preserved in Hilbert space. However, the effective
Hamiltonian in eq. 2.49 is not Hermitian due to the inclusion of contacts self-
energy. As a consequence, the evolution operator S(t, t0) would be no more unitary.
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Moreover, the time dependence rules out the standard variables separation ansatz
for which the evolution is expressed by S(t, t0) = exp[iE(t− t0)/ℏ] (valid in steady-
state condition). Nevertheless, eq. 2.49 can be solved by invoking Floquet theorem
which states that for a time-periodic Hamiltonian Ĥ(t) = Ĥ(t+ T ) there exists a
complete set {|ψα(t)⟩} of solutions which is of the form [30]:

|ψα(t)⟩ = e−( i
ℏEα+γα)t |uα(t)⟩ (2.51)

|uα(t)⟩ = |uα(t+ T )⟩ (2.52)

The solution to the Schrödinger-like equation with a time-periodic Hamiltonian can
be written as a product of a plane wave, characterized by a complex quasienergy
Eα − iℏγα, and a time-periodic function that is called “Floquet state”. Curiously,
this solution is very much similar to the one for spatially periodic systems when
Bloch’s theorem is used. Substituting this functional form of the solution inside
eq. 2.49 we obtain an eigenvalue equation of this type:A

Ĥmol(t)− i Γ
2 − iℏ ∂

∂t

B
ü ûú ý

ĤF (t)

|uα(t)⟩ = (Eα − iℏγα) |uα(t)⟩ (2.53)

This equation is called “Floquet equation” whereas ĤF is the Floquet Hamiltonian.
The advantage to have an equation like this is that, despite of having a time
dependent Hamiltonian, it is enough to solve an eigenvalue problem, typical of
a time-independent Hamiltonian, in order to acquire all the information about
the system [48]. The problem is that Floquet states depend on time, hence the
eigenvalue problem should be solved for times in the first period (t ∈ [0, T )).
Looking better at the problem, we can realize that there is a certain redundancy
inside Floquet states. Indeed, given a state |uα(t)⟩ with corresponding eigenvalue
Eα − iℏγα, it is possible to find another Floquet state which produces the same
physical eigenstate |ψα(t)⟩:

|uα′(t)⟩ = einωt |uα(t)⟩ (2.54)

The corresponding eigenvalue of this equivalent state would have a real part equal
to Eα′ = Eα +nℏω = Eα,n with n ∈ Z. Thus, to each eigenstate labeled by α, there
is a class of solutions that are just replicas of the same Floquet state. A consequence
of this is that the quasienergy spectrum is periodic with a periodicity ℏω. Thanks
to this redundancy, we can reformulate the eigenvalue problem considering that
the quasienergies Eα are restricted in an interval called first Floquet zone (1FZ)
defined as:

−ℏω
2 ≤ Eα <

ℏω
2 (2.55)
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Knowing the quasienergies inside the 1FZ allows to know all the others quasienergies
outside this interval thanks to the replicas shifted by nℏω. This of course simplifies
the problem since it reduces the dimensions of the set of solutions. It remains the
problem of time dependence inside the Floquet equation which can be addressed by
exploiting again time periodicity of Floquet states. Indeed they can be expanded
through a Fourier series:

|uα(t)⟩ =
Ø

n

e−inωt |un
α⟩ (2.56)

The Fourier modes of a Floquet state are indicated by |un
α⟩ whereas e−inωt are the

Fourier basis functions identified by the set {|n⟩}. It is worth making a digression
about the mathematical structure which Floquet states belong to. Fourier functions
form a complete orthonormal set in the vector space T of T -periodic functions.
Knowing this, we can observe that Floquet states |uα(t)⟩ are defined on a composite
vector space F = H⊗ T where H is the Hilbert space spanned by some basis {|β⟩},
while T is the space defined above. The composite vector space is referred in
literature as extended Hilbert space, Sambe space or Floquet space. Having this in
mind, it is possible to express a Floquet state as:

|uα⟩⟩ = (. . . , |u−1
α ⟩ , |u0

α⟩ , |u1
α⟩ , . . .)T (2.57)

The ‘double ket’ notation is used instead of specifying the time dependence, that
has been directly absorbed in the structure of Floquet space. It is clear how the
Floquet mode can be represented as a vector of Fourier modes, each of them defined
on H. Instead, if explicit time dependence is required, is sufficient to evaluate
eq. 2.56 in order to obtain |uα(t)⟩.

The double ket notation is also convenient to express the scalar product between
two vectors in F:

⟨⟨ψ|ϕ⟩⟩ = 1
T

Ú T

0
⟨ψ(t)|ϕ(t)⟩ dt (2.58)

The inner couple of bra-ket represents the scalar product in H whereas the external
couple corresponds to a time averaging over a single driving period, i.e. the scalar
product in T.

Another important observation is that |uα(t)⟩ cannot be taken as basis vectors
of space T since they are not mutually orthogonal due to the non-Hermeticity of
the Floquet Hamiltonian. Therefore in this case is much more convenient working
with the Fourier basis set.

Finally, Fourier decomposition can be exploited to convert Floquet equation in
a matrix version that is more manageable from a computational point of view. The
first step is to rewrite Floquet states using eq. 2.56:

ĤF (t)
Ø

n

e−inωt |un
α⟩ = (Eα − iℏγα)

Ø
n

e−inωt |un
α⟩ (2.59)
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Then, we can left-multiply by ⟨m| = eimωt and time averaging over the first period:
Ø

n

1
T

Ú T

0
eimωtĤF (t)e−inωtdtü ûú ý

HF
mn

|un
α⟩ = (Eα − iℏγα)

Ø
n

1
T

Ú T

0
eimωte−inωtdtü ûú ý

δm,n

|un
α⟩

(2.60)Ø
n

HF
mn |un

α⟩ = (Eα − iℏγα) |um
α ⟩ (2.61)

The first underbrace in eq. 2.60 defines the matrix elements of Floquet Hamiltonian
computed with Fourier basis functions, while the second underbrace simply shows
that the inner product between two different Fourier exponential is equal to a
Kronecker delta function. The action of the delta is to remove the summation over
n and change the index of the Fourier mode from n to m. Equation 2.61 simply
shows the previous equation rewritten with the matrix formalism. This expression
can be generalized considering a vector of Fourier modes, i.e. a vector |uα⟩⟩ ∈ F
that is multiplied by the matrix H̃F that contains all the elements HF

mn.

H̃F |uα⟩⟩ = (Eα − iℏγα) |uα⟩⟩ (2.62)

It is clear that this eigenvalue equation can be treated as a time-independent
problem since the time dependence is intrinsically present on the definition of state
vectors |uα⟩⟩. The main problem is therefore the diagonalization of matrix H̃F .
The goal of all this derivation is to obtain the eigenstates in order to compute the
Floquet modes of the Green’s function, in turn used to compute the total current.
This is done exploiting the spectral decomposition of Green’s functions. However,
it is feasible only if the eigenstates form a complete and orthonormal basis. As
mentioned above, this is not the case for |uα(t)⟩ because the Floquet Hamiltonian
is not Hermitian. Nevertheless, solving also the adjoint equation

[H̃F ]† |u†
α⟩⟩ = (Eα + iℏγα) |u†

α⟩⟩ (2.63)

is possible to define at equal times a bi-orthogonal basis that respects the orthonor-
mal and completeness condition:

⟨u†
α(t)|uβ(t)⟩ = δα,β (2.64)Ø

α

|uα(t)⟩ ⟨u†
α(t)| = 1 (2.65)

Eventually, the Floquet modes of the retarded Green’s function is obtained from a
spectral decomposition that is done exploiting this basis [30]:

GR (n)(E) =
Ø
α,n′

|un′+n
α ⟩ ⟨un′ †

α |
E − (Eα + n′ℏω − iℏγα) (2.66)
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Summarizing, the first step of the procedure is to solve the (adjoint) Floquet
equation in order to find the (adjoint) Floquet modes that are later used to
compute the Floquet modes of the retarded Green’s function.

Even if this procedure is well established, since there are several papers where it is
described into detail and implemented ([51], [52], [53]), less information is available
on the computational schemes needed to diagonalized the Floquet Hamiltonian.
Moreover I have found much more practical the other approach to compute GR (n),
that is not simpler to understand or implement, but it is well described in literature
[54], [55].

Floquet-Dyson equation

The second method that can be adopted to compute the Floquet modes of the
Green’s functions is based on the direct inclusion of time periodicity inside the
NEGF framework. The following discussion is taken from a paper [55] signed by
G. Stefanucci who is an italian professor working at the University of Rome Tor
Vergata.

First of all, the time-periodic perturbation UAC(t) can be decomposed into a
Fourier series where only two terms corresponding to orders m = ±1 are different
from zero when considering a monochromatic incident radiation (that is the case
analyzed in this thesis).

UAC(t) =
Ø
m

Ume
imωt = U+e

iωt + U−e
−iωt (2.67)

When considering a cosinusoidal perturbation the Fourier amplitudes are U+ =
UAC/2 and U− = UAC/2, whereas for the sinusoidal case U+ = UAC/2i and
U− = −UAC/2i. For these cases the time-averaged current computed with the
Green’s function is the same because the difference between sine and cosine is just
a phase shift. From now on I will generally consider the amplitudes U±.

The Green’s function of the molecular channel in the absence of radiation is
defined by g(t, t′). In this condition the retarded Green’s function depends only
on time difference τ = t− t′. Nevertheless, is always possible to apply eq. 2.48 to
expand gR(t, t′):

gR(t, t′) =
∞Ø

n=−∞

Ú dE

2π g
R (n)(E)e− i

ℏE(t−t′)+inωt (2.68)

In the absence of external perturbation, the Floquet modes gR (n) are equal to
zero except for gR (0) that is computed with the Dyson’s equation for steady-state
condition:

gR (0)(E) = [EI −Hmol,0 − ΣR]−1 = I

EI −Hmol,0 − ΣR
(2.69)
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In eq. 2.69 a fractional notation is used to express the matrix inversion, reminding
that I corresponds to the identity matrix and ΣR is referred to the total contact
self-energy.

When the perturbation is switched on, it is possible to write a Dyson’s equation
in order to include inside the Green’s functions the effects of the interaction with
the field (for more information about NEGF see section 2.4). Therefore to obtain
the interacting Green’s function we need to solve the following “Floquet-Dyson
equation” where the perturbation induced by an incident monochromatic field is
time-periodic.

GR(t, t′) = gR(t, t′) +
Ú
gR(t, t̄)UAC(t̄)GR(t̄, t′)dt̄ (2.70)

It is more convenient to rewrite this equation in terms of Floquet modes. Substi-
tuting eq. 2.67 and 2.68 inside the Floquet-Dyson equation we obtain the following
expression, that is easier to address with a computational scheme:

Gn(E) = δn,0gn(E) + gn(E)
Ø
m

UmGn−m(E) (2.71)

I must underline that gn is not a Floquet mode of g since the latter refers to the
non-interacting system. Indeed, gn is just a short-hand notation corresponding to
gn(E) = gR (0)(E − nℏω). Also Gn is a notation used to indicate the n-th Floquet
mode sampled at energy E − nℏω, i.e. Gn(E) = GR (n)(E − nℏω). Instead δn,0 is
the Kronecker delta that adds the term gn(E) to the equation only when n = 0.
Equation 2.71 is valid for any time-periodic perturbation. Restricting the focus on
the monochromatic case, the summation runs only on two terms corresponding to
m = ±1, i.e. the Fourier amplitudes U±. Therefore, the Floquet-Dyson equation
becomes:

Gn(E) = gn(E)
è
δn,0 + U+Gn−1(E) + U−Gn+1(E)

é
(2.72)

It is clear that this equation relates different Floquet modes whose index difference
is equal to one. It is useful to rewrite the expression above in a slightly different
way:

−gnU+Gn−1 +Gn − gnU−Gn+1 = gnδn,0 (2.73)

From this expression it is clear that the Floquet-Dyson equation corresponds to
a tridiagonal matrix whose entries are the terms in the left hand side, whereas
the known vector is the right hand side term. The unknown of the system is the
vector of Floquet modes Gn. To clarify this concept, I have reported here below
the expression of the matrix storing the coefficients coming from the left hand side.
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. . . . . .

. . . I −g−3U−
−g−2U+ I −g−2U−

−g−1U+ I −g−1U−
−g0U+ I −g0U−

−g1U+ I −g1U−
−g2U+ I −g2U−

−g3U+ I
. . .

. . . . . .


(2.74)

All the entries of this matrix are zero, except for the three main diagonals. It
is worth to underline that each entry of the matrix is itself a matrix since can
be represented starting from the basis functions chosen to study the system. For
example, in the main diagonal, all the entries are identity matrix having dimensions
related to the total number of basis functions. Analogous considerations can be
done for the other diagonals.

If we are able to solve the system corresponding to this matrix, we would be able
to compute all the Floquet components and thus the time-averaged current flowing
inside the molecular junction. In general, the solution for arbitrary periodic drivings
is computational very hard. However, for the monochromatic case, D. F. Martinez
developed a recursive scheme [54] that exploits continued matrix fractions in order
to solve this matrix system. Below I will describe this algorithm in detail since is
the one that I have implemented in Matlab® to simulate PAT in single-molecule
junctions.

The first step of the scheme is to define some quantities starting from the matrix
system.

...
M− 0 [0]

0
−g−1U−

· · · 0 0 −g0U+ I −g0U− 0 0 · · ·
−g1U+

0
[0] 0 M+

...





...
G−3
G−2
G−1
G0
G1
G2
G3
...



=



...
0
0
0
g0
0
0
0
...


(2.75)

This matrix system is the one corresponding to eq. 2.73 where some matrix blocks
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are defined. First of all the matrix block [0] corresponds to a matrix where all the
entries are zeros. Instead M+ and M− correspond to the bottom-right and top-left
block respectively. These block matrices stores all the terms that multiplies the
Floquet modes. In particular, terms belonging to M+ multiply the Floquet modes
with index n > 0, whereas terms in M− multiply only Floquet modes with index
n < 0. Considering for the moment only the Floquet modes with n > 0, we can
write down a matrix sub-system where M+ multiplies the vector G+ that contains
the considered Floquet modes.

I −g1U− 0 0 · · ·
−g2U+ I −g2U− 0 · · ·

0 −g3U+ I −g3U−
. . .

0 0 . . . . . .



G1
G2
G3
...

 =


g1U+G0

0
0
...

 (2.76)

The known vector in the above matrix sub-system is obtained by considering that
the only term outside M+ used to determine G+ is −g1U+, that is inside the central
column highlighted in eq. 2.75. This term multiplies G0 and is added to the others
in order to obtain a zero, in the known vector, corresponding to index n = 1. In
eq. 2.76 we consider only the terms inside M+, therefore the entries of the known
vector, indicated by b, would be all zeros expect for the first term corresponding
to n = 1. This entry would be equal to g1U+G0, i.e. the opposite of the missing
term that is taken into account by the total matrix system. Inverting the matrix
above, we can express the vector of positive Floquet modes by a simple matrix
multiplication between the inverted matrix, indicated by C+, and the known vector.

M+G+ = b ⇒ G+ = [M+]−1b = C+b (2.77)

Writing down explicitly the component of C+ is possible to obtain a formal expres-
sion for G+.


C+,11 C+,12 C+,13 C+,14 · · ·
C+,21 C+,22 C+,23 C+,24 · · ·
C+,31 C+,32 C+,33 C+,34 · · ·

... ... ... ...



g1U+G0

0
0
...

 =


C+,11g1U+G0
C+,21g1U+G0
C+,31g1U+G0

...

 (2.78)

The main problem of the expression above is that computing an inversion of a
matrix is never a good idea in terms of computational effort. However, the recursive
scheme developed by Martinez allows to obtain all the Floquet modes starting from
one of the coefficient inside C+. Similarly to what is done in [55], I will indicate
the top-left entry of C+ as M−1

+ = C+,11. The reasoning followed up to now can
be generalized for negative Floquet modes, therefore I will indicate with M−1

− the
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bottom-right entry of [M−]−1. With this notation and looking at eq. 2.78 we can
express the Floquet modes corresponding to n = ±1 as:

G±1 = M−1
± g±1U±G0 (2.79)

Since positive and negative modes can be computed in a similar way, starting
from this point I will indicate with the index n the absolute value of the mode, i.e.
n ← |n|. The above result can be inserted inside eq. 2.72, considering n = 0, in
order to obtain an expression for G0:

G0 = g0 + g0
Ø
±
U∓M

−1
± g±1U±G0 (2.80)

This equation is a key result for the recursive procedure since from the zero-th
order it can be possible to obtain all the other Floquet modes. Before describing
how we can do this, it can be demonstrated that, starting from M±, the terms
M−1

± can be expressed as a matrix continued fraction:

M−1
± =

I

I − g±1U∓
I

I − g±2U∓
I
...
g±3U±

g±2U±

(2.81)

=
I

g−1
±1 − U∓

I

g−1
±2 − U∓

I
...
U±

U±

g−1
±1 (2.82)

Looking at the above equation, we can say that M−1
± is obtained by the multipli-

cation between a continued matrix fraction and g−1
±1. The continued fraction in

eq. 2.82 can be rewritten with a recursive relation, therefore M−1
± can be rewritten

as:
M−1

± (E) = H−1
±1 (E)g−1

±1(E) (2.83)
where H−1

±1 corresponds to the ‘external’ fraction written in 2.82. This term is
obtained with a recursive scheme, starting from the maximum order n = nmax and
backwards computing all the others until n = 1. Consecutive H−1

±n are linked by
the following recursive relation:

H−1
±n(E) = I

g±n(E)− U∓H
−1
±(n+1)(E)U±

(2.84)

= I

(E ∓ nℏω)I −Hmol,0 − ΣR(E ∓ nℏω)− U∓H
−1
±(n+1)(E)U±

(2.85)
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It is evident that matrix inversions are involved to compute H−1
±n, but the dimensions

of the involved matrices are of course smaller than the ones of C±.
Now is possible to substitute eq. 2.83 inside 2.80 and define an AC self-energy

that takes into account the effects of the perturbation:

ΣR
AC(E) =

Ø
±
U∓H

−1
±1U± (2.86)

The definition of a self-energy allows to elegantly rewrite the Floquet-Dyson equation
for the zero-th mode:

G0(E) = g0(E) + g0(E)ΣR
AC(E)G0(E) (2.87)

Even if not immediately obvious, we can reformulate the expression above in such
a way to make it resembles eq. 2.19. This can be done by left-multiplying the
equation by g−1

0 and right-multiplying by G−1
0 . The resulting expression will have

terms proportional to g−1
0 g0 and G0G

−1
0 that are equal to the identity matrix. In

the end we would have an equation like 2.89.

g−1
0 (E)G0(E)G−1

0 (E) = g−1
0 (E)g0(E)G−1

0 (E) + g−1
0 (E)g0(E)ΣR

AC(E)G0(E)G−1
0 (E)
(2.88)

G−1
0 (E) = g−1

0 (E)− ΣR
AC(E) (2.89)

Writing explicitly the expression for g−1
0 using eq. 2.69, we obtain an equation for

G0 that is identical to the Dyson’s equation in steady-state condition, but in this
case we have an additional self-energy coming from the perturbation .

G0(E) = [EI −Hmol,0 − ΣR(E)− ΣR
AC(E)]−1 (2.90)

The final step is to compute all the other Floquet modes starting from G0 and
exploiting the following equation which is a generalization of eq. 2.79:

G±n(E) = H−1
±n(E)U±G±(n−1)(E), n > 0 (2.91)

This step allows then to compute the DC current using the Floquet modes. For
the sake of clarity, the main steps of the overall recursive scheme are summarized
here below.

• Choice of a maximum order nmax > 0 such that the cutoff energy Emax =
nmaxℏω is much larger than any other energy scale in the problem.

• Computation of H−1
±nmax

, arbitrary taken as :

H−1
±nmax

(E) = g±nmax(E) = gR
0 (E ∓ nmaxℏω) (2.92)
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• Recursive evaluation of eq. 2.84, starting from H−1
±nmax

, until H−1
±1 is obtained.

• Computation of ΣR
AC using H−1

±1 .

• Evaluation of G0 using Floquet-Dyson equation for the zeroth-order.

• Recursive computation of all Gn.

The next step is to evaluate current using the Gn, procedure that is described in
the following paragraph.

Current evaluation

The current equation used to compute the DC current is the same adopted for
TG model where the only difference is in the way transmission coefficients are
computed. For clarity I report here below eq. 2.35.

IDC = 2e
ℏ

∞Ø
n=−∞

Ú
[T (n)

21 (E)f1(E)− T (n)
12 (E)f2(E)]dE

The transmission coefficients from one contact to another, corresponding to interac-
tion events with n photons, are obtained with these following equations that have
been demonstrated by Stefanucci in [55] and by Hänggi and coworkers in [30]:

T
(n)
21 (E) = Tr

è
Γ1(E)G†

n(E)Γ2(E − nℏω)Gn(E)
é

(2.93)

T
(n)
12 (E) = Tr

è
Γ2(E)G†

n(E)Γ1(E − nℏω)Gn(E)
é

(2.94)

Some considerations done with the TG model based on junction symmetry can
be repeated also in this context. In particular, if the junction is symmetric, i.e.
Γ1(E) = Γ2(E), the two transmission coefficients are equal, hence in short-circuit
condition is impossible to develop a net current different from zero. The advantage
in this case is the possibility to define, as in TG, a total transmission spectrum:

Topt =
Ø

n

T
(n)
21 =

Ø
n

T
(n)
12 (2.95)

With respect to TG model, Floquet should take into account the intermolecular
transitions between the energy levels. On the other hand, Floquet algorithm is
computationally heavier due to matrix inversion involved in the recursive compu-
tation of H−1

±n and for the computation of G0. In addition, the matrix inversions
should be repeated for each value of the chosen energy grid, but also for each
bias point considered in the evaluation of the characteristics. The total number of
inversions that should be computed depends also on the maximum order nmax > 0,
that represents the cutoff of Floquet modes. In the end we would have:

Ninv = (2nmax + 1) ·Nenergy ·Nbias (2.96)
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2.4 – SCBA for electron-photon interaction

The dimension of the energy grid is indicated by Nenergy whereas Nbias corresponds
to the number of bias voltages used to evaluate the IV curve. Of course this
algorithm is computationally demanding when considering a large number of basis
functions since it increases the dimensions of the matrices that must be inverted.
Nevertheless, when a simple model is considered, like the 0D-transport model
described in this chapter, the dimensions of the matrices involved in the algorithm
depends on the number of energy levels considered for the molecule, i.e. the
0D-system, placed between the contacts. For example if Nlevels energy levels are
considered, the quantities involved would have Nlevels×Nlevels dimensions that can
be limited considering, for instance, Nlevels = 4. This would be the case considered
for Floquet model implementation in Matlab® and will be described more in
detail in the next chapter.

Last considerations can be done on the limits of Floquet model. In this section I
have considered only the monochromatic case, however it can be generalized for more
harmonics, but the algorithm would be too computationally demanding. Another
drawback is that the model cannot be applied to non time-periodic perturbation
since a full-time dependent approach is required. Examples of such schemes are
presented by M. Galperin in [49], [56]. An additional study on these schemes could
be a good starting point for future thesis works based on this topic.

2.4 SCBA for electron-photon interaction
The third and last model described in this chapter is based on NEGF, in particular
on how is possible to include electron-photon scattering processes. This model is
the one implemented in the software QuantumATK developed by Synopsys®. The
references indicated by the manual [57], that were consulted for model implementa-
tion, are [58], [59], [60], [61], [62]. In this section I will present the model especially
following reference [58], which describes electron-photon interaction for a resonant
tunneling diode, but also the notes taken from the doctoral course “Analisi di
dispositivi optoelettronici mediante la teoria delle funzioni di Green fuori equilibrio”
taught by professor F. Bertazzi in 2021 at Politecnico di Torino. Another useful
reference containing a formal description of NEGF is the PhD dissertation of U.
Aeberhard [63] that is focused more on photovoltaic applications.

For the sake of simplicity, the description that will be given of the model does
not contain all the theoretical details needed to have a thorough knowledge of
NEGF since the complexity is very high and lies outside the goal of this thesis.
The main idea is to describe the general reasoning behind the model, without
demonstrating everything, and give to the reader a simple guide to compute the
photocurrent using QuantumATK.

A good starting point to include the interaction between electrons and photons
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is to rewrite the Dyson’s equation in a different way. As already said in section
2.1, the non-equilibrium Green’s function can be seen as the impulse response of a
system. However, there is another interpretation that is deeply connected to its
formal definition. Indeed the non-equilibrium Green’s function can be interpreted
as the propagator of a particle state over space and time. In particular, the function
G(r⃗2, t2, r⃗1, t1) expresses a correlation between two times t1 and t2 and two positions
r⃗1 and r⃗2. For t2 later than t1 the Green’s function encodes the reaction of a system
to the creation of a particle in state (r⃗1, t1), with consequent propagation of the
perturbation to state (r⃗2, t2) where is annihilated.

From a mathematical point of view, G is computed as a non-equilibrium statisti-
cal average over an ensemble of particles (for example electrons) and the variable G0
(not to be confused with the zero-th Floquet mode of the previous section) indicates
the free propagator, i.e. the propagator of a particle which is non-interacting,
therefore corresponding to a system that is at equilibrium. To include an external
influence that moves the systems out of equilibrium, a perturbation expansion is
needed to compute the propagator G, which is the interacting Green’s function or,
in other words, the propagator that considers the influence of an interaction acting
on a particle. The interaction can be of different type such as the influence of state
reservoirs on a system or the interaction between electrons and phonons or photons.
As already introduced, the general way to include an interaction is to define a
corresponding self-energy which is used to compute the non-equilibrium Green’s
function of the system. Each self-energy is constituted by more terms coming from a
perturbation expansions of the Green’s function. The most known are Hartree and
Fock terms, at first order, and direct and exchange term at second order. Generally
the expansion is truncated at first order and the resulting self-energy is used inside
the Dyson’s equation. This approximation is called first-order Born approximation.
However this procedure is not fully consistent because self-energies and Green’s
functions generally depend on each other. To understand better this concept I will
make an example. An electromagnetic field incident on an electronic system will
influence the behavior of electrons, but in turn the response will modify in some
way the incident field, hence a self-consistent solution is needed. In NEGF the
procedure used to find self-energies and Green’s functions is called self-consistent
Born approximation (SCBA) and consists of an inner loop linking the Dyson’s
equation with the equations used to compute the self-energies. For what concerns
the perturbative expansion, achieving self-consistency means that higher order
terms are included in dressed first order terms used in the computation. The
advantage is that a sum over infinite orders is now represented by two effective
terms. Only in this way conservation laws for carrier densities and currents are
satisfied.

Curiously, for only one case self-consistent loop is not needed and is when
considering contacts self-energies with no scattering mechanisms involved during
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2.4 – SCBA for electron-photon interaction

transport. In this case Σ can be computed exactly without needing any loop with
Dyson’s equation.

In light of just said, Dyson’s equation resulting from perturbative expansion has
the following equivalent matrix forms:

G = G0 +G0ΣG (2.97)
G = G0 +GΣG0 (2.98)

These equation are not so similar to Dyson’s equation expressed in eq. 2.19, however
is possible to prove that, dividing G in different terms over a time contour integral,
under steady-state condition the two expressions are equivalent (see [63]).

Now the problem is to understand how to obtain an expression for the self-energy
Σph corresponding to the interaction between electrons and photons. The first thing
to do is to write down the Hamiltonian and identify the term corresponding to the
perturbation of the system. The single electron Hamiltonian including the effects
of a monochromatic electromagnetic field has the following general expression:

Ĥ =

è
p̂+ eÂ(r⃗, t)

é2
2m + Ueff (2.99)

The first terms in this equation takes in consideration the variation of momentum
operator p̂ (that is a vector) by the vector potential Â(r⃗, t) of the incident radiation,
that has a direction parallel to field polarization. At the denominator, m is the
(effective) mass of the electron, whereas Ueff includes the terms corresponding to
the electron-electron interaction, that are the Hartree and the exchange potential,
but also a possible external applied potential (a bias). Developing the terms in
brackets, the Hamiltonian becomes:

Ĥ = p̂2

2m + e

m
p̂ · Â(r⃗, t) + e2

2mÂ2(r⃗, t) (2.100)

The term proportional to the squared vector potential is negligible when considering
the electromagnetic potential as a weak interaction, hence it is relevant only at
higher intensities for taking into account non-linear effects. This is the so called
dipole approximation where the perturbation is identified by the second term:

Ĥe−ph = e

m
p̂ · Â(r⃗, t) (2.101)

This is the coupling term expressing the interaction between an electron and an
electromagnetic field, that will be the input for computing the electron-photon (e-
ph) self-energy. In order to do this is necessary to express the coupling Hamiltonian
in second quantization, starting from the vector potential. A monochromatic
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single-mode plane wave corresponds to a vector potential expressed in the following
quantized form, using bosonic annihilation (b̂) and creation (b̂†) operators:

Â(r⃗, t) = Â0(r⃗)
1
b̂e−iωt + b̂†eiωt

2
(2.102)

Â0(r⃗) is the amplitude of the potential having direction parallel to the polarization
of the incident field, whereas ω is the frequency of the field. Bosonic operator b̂
represents the annihilation of a photon with energy ℏω while b̂† corresponds to the
creation of a new photon with energy ℏω. In order to find the amplitude of the
potential, it is possible to choose a vector potential satisfying the Lorenz gauge:

∇ · Â(r⃗, t) + ϵµ
∂ϕ(r⃗, t)
∂t

= 0 (2.103)

where ϕ(r⃗, t) is the electrostatic scalar potential, µ is the magnetic permeability and
ϵ is the dielectric permittivity, both referred to the material under study. Under
this condition, the amplitude Â0 is found by the Helmholtz equation:

∇2Â0(r⃗) + ω2

c2 Â0(r⃗) = 0 (2.104)

A general solution of the above equation is expressed as Â0(r⃗) = eik·r, where k is
the wave vector related to frequency and material properties by:

k = ω

c

√
ϵrµr (2.105)

In this expression ϵr is the relative dielectric constant and µr the relative magnetic
permeability. When the system under study is isotropic with homogeneous per-
meability and dielectric constant, averaging over time to eliminate the oscillating
components allows to express the final expression of the vector potential as:

Â(r⃗, t) =
3ℏ√ϵrµr

2Nωϵc Fph

41/21
a⃗b̂e−iωt + (⃗a)∗b̂†eiωt

2
(2.106)

Relevant quantities in the above equations are:

• a⃗ is the polarization unit vector of the incident field. It is generally complex
in order to consider each possible polarization such as circular ones.

• N is the total number of photons populating the single monochromatic mode.

• Fph is the photon flux incident on the system and is expressed as Fph =
Nv/V = Nc/

√
ϵrµr where v = c/

√
ϵrµr is the electron velocity inside the

system and V is the overall volume of the considered system. The photon flux
will be the photon-field strength parameter.
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Now is possible to express the coupling Hamiltonian using fermionic operators. In
particular, it is important to know that in second quantization the expression for a
one electron operator O is:

O =
Ø
ij

oijc
†
icj (2.107)

where oij = ⟨i|o|j⟩ are the matrix elements of the operator computed using basis
functions with index i and j. QuantumATK is based on Linear Combination of
Atomic Orbitals (LCAO), therefore in this case the indices refer to atomic orbitals.
Using Ĥe−ph in place of O, we are finally able to express the perturbation term:

Ĥe−ph =
Ø
ij

⟨i|Ĥcoupl|j⟩ c†
icj (2.108)

Ĥe−ph =
Ø
ij

Mij

1
b̂e−iωt + b̂†eiωt

2
c†

icj (2.109)

The matrix elements Mij of the coupling matrix M are defined substituting eq. 2.101
and 2.106 inside eq. 2.108:

Mij = e

m

3ℏ√ϵrµr

2Nωϵc Fph

41/2
⟨i|p̂ · a⃗|j⟩ (2.110)

It is worth notice that the coupling elements are proportional to the product
between the momentum operator and the polarization unit vector. Depending
on the symmetry of atomic orbitals used to compute the matrix elements, some
transitions would be forbidden while others would be possible.

Finally, under steady-state condition and assuming that the photon population
remains at equilibrium, the first order self-consistent Born approximation leads to
the following expression for the lesser and greater component of e-ph self-energy:

Σ<
ph(E) =

è
NMG<(E − ℏω)M † + (N + 1)M †G<(E + ℏω)M

é
(2.111)

Σ>
ph(E) =

è
NM †G>(E + ℏω)M + (N + 1)MG>(E − ℏω)M †

é
(2.112)

These self-energies are written in the self-consistent picture because the input
arguments are the lesser and greater interacting Green’s function. Moreover they
couple different points in space through the coupling matrix M , but also different
energy states are coupled because the input Green’s functions are evaluated at
E ± ℏω and not at E. Since these self-energies correspond to in- or out-scattering
rates via optical excitations, the first term of Σ<

ph can be interpreted as the excitation
of an electron in state E − ℏω to state E after absorbing a photon energy ℏω. This
process is proportional to the total number of electrons N which is coherent to
what known in semiconductor physics. Similarly, the second term corresponds to
the emission of a photon energy ℏω by an electron moving from state E + ℏω to
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state E. This emission can be “spontaneous” or “stimulated” by the external field
and indeed is proportional to (N+1) where the 1 is referred to the spontaneous
contribution. A similar interpretation can be associated to Σ>

ph but considering
holes instead of electrons. In this case the in-scattering rate for holes corresponds
to an out-scattering rate for electrons from state E to state E ± ℏω.

Starting from the lesser and greater component is also possible to find the
corresponding retarded self-energy:

ΣR
ph(E) = 1

2
è
Σ>

ph(E)− Σ<
ph(E)

é
− iP

IÚ dE ′

2π
Σ<

ph(E)− Σ>
ph(E)

E − E ′

J
(2.113)

The retarded self-energy is anti-Hermitian and hence responsible for dephasing of
charge transport. Instead the principal value integral term is Hermitian and it
is usually neglected since it has a very small imaginary part that do not affects
carriers lifetime. Moreover, its real part leads to an energy renormalization of
around 1% of the total real part of the energy, hence the total principal value
integral can be safely ignored.

Exploiting the above self-energy, it is now possible to compute all retarded
Green’s functions, but also its lesser and greater component that would be the new
input of the self-consistent procedure.

GR = [EI −H0 − ΣR]−1 , ΣR = ΣR
C1 + ΣR

C2 + ΣR
ph (2.114)

G≶ = GRΣ≶GA , Σ≶ = Σ≶
C1 + Σ≶

C2 + Σ≶
ph (2.115)

In eq. 2.114 H0 is the Hamiltonian in the absence of radiation, while ΣR is the
retarded self-energy obtained summing the contact self-energy to the e-ph self-
energy. It is worthwhile to underline that in eq. 2.115 the input Green’s function are
referred to the interacting picture, hence the equation refers to a generic iteration
during the self-consistent loop. For the first iteration, Σ≶

ph and ΣR
ph will be computed

using the non-interacting Green’s function GR/A
0 and G≶

0 that, in this case, include
only the influence of the contacts and are computed using equations 2.19, 2.20 and
2.24. The resulting self-energies are then used inside equations 2.114 and 2.115
along with G

R/A
0 and G≶

0 to obtain the interacting Green’s functions of the first
iteration. The procedure is repeated until self-energies and Green’s function do not
change anymore within a certain tolerance. With the converged results is possible
to compute all the relevant quantities such as the total current density and carriers
density. Normally, in a semiconductor device, in order to guarantee the inclusion
of space-charge effects, an additional self-consistent loop is considered between the
SCBA procedure and the Poisson’s equation. In particular, the converged carriers
density of SCBA will be the input of the Poisson’s equation whose solution updates
the Hartree potential included in H0. This procedure is called “outer loop” in
order to distinguish it from the SCBA loop. The direct iteration between NEGF
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equations and Poisson’s equation is not stable and different strategies are used to
stabilize and speed up the algorithm. The figure below summarizes the complete
algorithm that must be followed to guarantee self-consistency. In light-blue is shown
the inner loop related to SCBA while in green is represented the outer loop related
to NEGF-Poisson iteration. After convergence is achieved, is possible to compute

𝐻0

Σ1,2
𝑅,𝐴,≶

𝐺𝑅,𝐴

𝐺≶

Σ≶, Σ𝑅,𝐴

Figure 2.13: Diagram that summarizes the SCBA procedure (inner loop) considering also direct
iteration between NEGF and Poisson’s equation (outer loop). Near the name of the equations
there are the corresponding numeric labels referred to those reported in the text.

the output current that includes the effects of photo-assisted transport. This
self-consistent algorithm represents the state of the art of quantum transport, but
at the same time is really computationally expensive. Moreover, in QuantumATK
things are a bit simplified and I will described them here below.

Computation of photocurrent with QuantumATK

As reported in the manual [57], QuantumATK adopts the first order perturbative
expansion of the self-energy in order to include the interaction between electrons and
photons, but do not achieve self-consistency with an inner loop. As mentioned above,
this case is called first-order Born approximation and of course is a simplification
since carrier densities and current conservation is not guaranteed. More in detail,
the equations commented above are now evaluated using the non-interacting Green’s
function G≶

0 (obtained with eq. 2.24) in order to compute Σph and then evaluate
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the interacting Green’s function G≶. This is equivalent to the first iteration of the
inner loop that is coherent with what commented previously. For completeness I
report here below the equations used by QuantumATK.

Σ<
ph(E) =

è
NMG<

0 (E − ℏω)M † + (N + 1)M †G<
0 (E + ℏω)M

é
(2.116)

Σ>
ph(E) =

è
NM †G>

0 (E + ℏω)M + (N + 1)MG>
0 (E − ℏω)M †

é
(2.117)

G≶ = GR
0 (Σ≶

C1 + Σ≶
C2 + Σ≶

ph)GA
0 (2.118)

With the lesser and greater Green’s functions and self-energies is possible to define
an effective transmission coefficient needed to compute the total current flowing in
steady state condition in one of the two contacts. Taking inspiration from eq. 2.28
is easy to see that the current flowing through contact α ∈ {C1, C2}, leaving the
device volume, can be computed defining an effective transmission spectrum as:

T (e−ph)
α (E) = Tr

è
Σ<

α (E)G>(E)− Σ>
α (E)G<(E)

é
(2.119)

where G≶ are the interacting Green’s functions, whereas the self-energies are only
the one of the contacts. Developing the contact self-energies is possible to rewrite
the effective transmission in a slightly different way, that is the one reported in the
manual:

T (e−ph)
α (E) = Tr

î
iΓα(E)

è
(1− fα(E))G<(E) + fα(E)G>(E)

éï
(2.120)

The Fermi-Dirac distribution in contact α is expressed by fα and it comes out from
the fluctuation-dissipation theorem. I would like to underline that this expression
is wrongly reported in the manual since square brackets are missing, while in the
reference article [60] they are clearly present.

Then the total current can be computed with a Landauer-like equation where
spin degeneracy is considered:

Iα = 2e
ℏ

Ú +∞

−∞
T (e−ph)

α (E)dE (2.121)

The total current corresponds to the sum between dark current and photocurrent,
hence if you want to compute the latter is enough to do Iα,ph = Iα − Iα,dark. In
QuantumATK, Iα,ph can be computed with the device analysis object “Photocurrent”
that allows to evaluate Iα,ph at a specific bias for different photon energies. The
result of the simulation is the photocurrent expressed as a function of the incident
photon flux, the temperature of the environment and the properties of the medium
(the relative dielectric constant and relative magnetic permeability). These variables
can be chosen by the user and are just scalar numbers. This is of course another
approximation since the considered system can be anisotropic and inhomogeneous.
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Moreover, dielectric constant and magnetic permeability refer to the device region
that can correspond to a molecule in case of single-molecule junctions. Of course
the dielectric properties of the central region would highly inhomogeneous and is
even problematic to define a dielectric constant. Instead, less problematic is the
photon flux incident on the device region. It is expressed in Å−2s−1 and represents
just a scalar factor that directly multiply the photocurrent. For example if the flux
is increased by a factor of 2, also the photocurrent will follow the same increase.

The “Photocurrent” object works only with an electronic structure computed
with DFT, that is strange since the Born approximation could be computed, in
theory, also with a semi-empirical model. However, it is not so clear if using another
model would decrease the computational time needed for photocurrent evaluation.
The procedure is not self-consistent therefore it should not involved a direct loop
with the model used to compute the electronic structure. The manual again is not
clear enough to understand these details. What is sure is that the photocurrent
simulations are slow and require a lot of times ranging from days to weeks depending
on the number of photon energies considered in the simulation. For example, the
computation of photocurrent for a single-molecule junction, considering a 3TT
between two gold contacts, required ≈ 5 days of simulation for a single bias point,
49 k-points and 45 values of the photon energy using a Double Zeta Polarized
(DZP) basis set.

Another ambiguous behavior of “Photocurrent” object is the convention used
for source and drain with respect to the one used to compute the dark current.
To compute the latter, QuantumATK uses NEGF considering as drain the left
electrode and as source the right electrode (the convention is switched compared
to the one used in section 2.1). On the other hand, the photocurrent is evaluated
considering as source the left contact and as drain the right contact (same convention
of section 2.1). Therefore, if a positive bias is applied to the left electrode, the
dark current will be positive flowing from left to right while the photocurrent will
be negative, hence the photocurrent will flow in opposite direction to the applied
external field. Of course this should not be excluded a priori, but in this case it
is just the effect of the opposite convention adopted by the two tools inside the
software. Therefore, to obtain a positive photocurrent, the bias applied to the right
electrode must be positive. The resulting dark current will be negative, but the
computed photocurrent will be positive. Table 2.1 summarizes the conventions just
commented that are adopted by QuantumATK.

Arrived at this point, it is crucial to understand what are the limits of this model
since self-consistency is not achieved in the simulation. An assumption made above
is that the interaction between the electromagnetic field and the system is weak,
that means the field is considered as a perturbation that is plausible only when
considering a small intensity regime. The incident photon flux cannot be increased
as you want because at some point you will exit from the validation region of the
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Convention Dark current Photocurrent
Source Right contact Left contact
Drain Left contact Right contact

Current direction Idark > 0 from left to right Iph > 0 from right to left

Table 2.1: Convention adopted by QuantumATK for dark current and photocurrent computation.

model. Within the low intensity limit, it is possible to evaluate quantities that
are linear with the photon flux Fph like the linear component of the photocurrent.
Therefore the truncated sequence of the SCBA can allow to describe the linear
response for weakly interacting field. On the other hand, all other nonlinear optical
effects can be described only when self-consistency is achieved between Green’s
functions and self-energies.

There is a simple reasoning to understand the reason why the photocurrent
is linear with the photon flux. If absorption terms dominate over emission, the
terms in the e-ph self-energies proportional to N + 1 can be neglected. In this
case the photon number N , multiplying absorption terms, cancels out with the
N at the denominator coming from matrices M and M †. Therefore the self-
energies are proportional to Fph which comes out from the matrix multiplication.
This proportionality does not immediately imply that the current is linear with
photon flux since self-consistency should be achieved. However, if the procedure
is truncated, the interacting Green’s functions will also be proportional to Fph

because they are directly proportional to the e-ph self-energy. As a consequence,
also the total current will be proportional to Fph that means is linear with photon
flux.

The assumption of weak interaction between the electromagnetic field and the
system under analysis implies two important physical consequences [58]:

i. The underlying single-electron state structure is not appreciably disturb by
the electromagnetic radiation. In other words, the non-interacting GR

0 , which
represents the single-electron dynamics of the system, may be used to describe
the single-electron dynamics of the interacting electron-photon system.

ii. Electrons that are excited by a photon cannot subsequently be excited by
another photon, that is unlikely if the photon field is weak. Then, only
single-photon interaction events are considered in the low intensity limit.

These considerations are crucial to understand which physics can be described by
the model implemented in QuantumATK.

Lastly, it is interesting to rewrite eq. 2.121 for the evaluation of current in order
to have an other phenomenological interpretation of the transmission coefficient.
This alternative expression for current, found in [61] and [62], considers only
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absorption of photons, hence only the terms in self-energies proportional to N . In
this case a Fermi’s golden rule like expression is obtained and the current induced
by absorption of photons is:

Iα,ph = 2e
ℏ

Ú +∞

−∞

Ø
β∈{C1,C2}

è
1− fα(E)

é
fβ(E − ℏω)T−

α,β(E)−

fα(E)
è
1− fβ(E + ℏω)

é
T+

α,β(E)dE
(2.122)

T−
α,β(E) = N Tr

è
MAβ(E − ℏω)M †Ãα(E)

é
(2.123)

T+
α,β(E) = N Tr

è
M †Aβ(E + ℏω)MÃα(E)

é
(2.124)

Aα(E) = GR
0 (E)Γα(E)GA(E) (2.125)

Ãα(E) = GA
0 (E)Γα(E)GR(E) (2.126)

Aα is the spectral function of lead α computed with the non-interacting Green’s
functions, whereas Ãα is the time reversed spectral function. Instead, T−

α,β(E)
represents the transmission coefficient for an electron, with initial state in contact
β at energy E − ℏω, that undergoes a single-photon absorption event while moving
across the device to reach contact α at energy E. Similarly, T+

α,β(E) corresponds
to the transmission coefficient for a hole, with initial state in contact β at energy
E + ℏω, that undergoes a single-photon absorption event while crossing the device
to reach contact α at energy E. Equation 2.122 takes in consideration these fluxes
of electrons and holes to compute the total current into contact α. In particular
there are the so called “Pauli blocking factors” that are coefficients derived from
Fermi-Dirac distribution. More in detail, for electrons they weigh the number of
occupied states in contact β (proportional to fβ) and the number of available states
in contact α (proportional to 1 − fα). A similar reasoning can be done for the
transmission of holes.

This expression of current is directly related to absorption events, i.e. represent
just the photocurrent, and has an easy interpretation. In Appendix B I have shown
how to derive eq. 2.122 starting from 2.120 and 2.122. The alternative formulation
of current, in terms of transmission coefficient from one contact to another, it is
also important because it seems that QuantumATK uses this formalism even if
not explicitly reported in the manual. Indeed the default option to compute the
photocurrent is to neglect emission events that is analogous to what done in the
above formulation. The output of photocurrent simulation is stored in a HDF5 data
structure where are also saved all the transmission coefficients T±

αβ. Nevertheless, it
is difficult to interpret these spectra and it is not clear how to obtain the photocur-
rent starting from them. Moreover, they are probably expressed in atomic units and
the conversion is not so straightforward. There is also another command that can
be used to compute the photon-mediated transmission. After the simulation has
finished, is possible to use the method photonMediatedTransmission that gives

85



Photo-assisted tunneling models

as output the photon-mediated transmission for electrons or for holes depending
on which carrier has been specified. In this case the spectra are not expressed in
atomic units and are just probability amplitudes.

What just written should be enough to understand the model implemented
in QuantumATK, whose simulations are reported in the next chapter, in order
to compare them with the results obtained from the implementation of TG and
Floquet model.
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Chapter 3

Photo-assisted tunneling
simulator

In this chapter I will show how I have implemented Tien-Gordon and Floquet
model in Matlab® starting from EE-BESD, that is an efficient implementation of
0D-transport for molecular junctions. Then, I will describe a comparison between
the models for a single-molecule junction, based on terthiophene (3TT), going in
detail on the dependence of photocurrent from the simulation parameters such as
the photon flux, the photon energy and the amplitude of the oscillating energy
potential term. Lastly, the models will be compared with the more sophisticated
QuantumATK simulations and with the experimental measurement of photocurrent
for a molecular junction based on octane (C8) done by R. Arielly and coworkers
[20].

3.1 EE-BESD
The Tien-Gordon and Floquet model described in Chap. 2 have been implemented
starting from an efficient modeling of 0D-transport for single-molecule junction that
takes into account the effects of polarization on molecular orbitals. The model was
developed by the PhD candidate A. Zahir at Politecnico di Torino in 2015 [41] and
its name, EE-BESD, stands for: Efficient and Effective model based on Broadening
level, Evaluation of peaks, SCF and Discrete levels. The implementation follows
the scheme represented in fig. 2.3 where the current is computed for each value of
the applied bias VDS. The main difference is that in EE-BESD the transmission
spectrum can change shape depending on the applied voltage. Indeed, thanks to
ab-initio simulations, it is known that transmission peaks can vary their width and
height depending on VDS. It is difficult to know a priori if a transmission channel
will be enhanced or suppressed, therefore EE-BESD takes into account these effects
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thanks to a fitting procedure on simulations done with ab-initio methods such
as DFT-NEGF or EHT-NEGF. The main idea is to compute the transmission
spectrum of the single-molecule junction for some points of the IV characteristics.
The next step is to isolate a certain number of transmission peaks contributing to
conduction, generally two peaks below EF and two above it, and analyze how their
height and width change when the bias is varied. In particular, from the average
of the widths of a certain peak we obtain the total coupling γi of the discrete level
i, centered in the middle of the corresponding peak at equilibrium. Since only
symmetric junctions are considered in EE-BESD, the total coupling can be equally
divided in two terms corresponding to γi,1 = γi/2 and γi,2 = γi/2, that determine
the contribution to broadening coming from the two contacts. Instead, for what
regards the variation of the peak height, a polynomial interpolation is done in order
to obtain a function hi(VDS) that allows to approximately compute the value of
the height, corresponding to level i, as a function of VDS:

hi(VDS) = ci,1|VDS|2 + ci,2|VDS|+ ci,3 (3.1)

The coefficients ci,1, ci,2, ci,3 come from interpolation that is generally done with
a second-order polynomial. The applied voltage is considered in modulus since
only symmetric junctions are analyzed in EE-BESD, hence the IV characteristic is
symmetric with respect to the origin and the variation of the transmission spectrum
is the same when the sign of the bias is reversed.

The total transmission spectrum of the 0D model is obtained from the sum of
transmission coefficients related to different levels (see eq. 2.16):

T (E) =
Ø

i

Ti(E − USCF ) (3.2)

where Ti(E − USCF ) refers to level i after the computation of the self-consistent
potential. Instead in EE-BESD the total transmission, influenced by the applied
bias, is computed by multiplying each transmission Ti by the corresponding height
fitting function hi:

T (E, VDS) =
Ø

i

hi(VDS)Ti(E − USCF ) (3.3)

What it is important to highlight is that there is one fitting function for each
transmission peak. In the Matlab® implementation used in this thesis, the
multiplication between hi and Ti is done by the function applyVds which has
as inputs the voltage VDS and the transmission spectra Ti, and as output the
transmission spectra modified by orbital polarization. A schematic summary of
the EE-BESD algorithm is shown in fig. 3.1.

The crucial point in EE-BESD is the fitting procedure because it is the step that
allows to reproduce the ab-initio results with a simpler 0D-model. Once the fitting
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Figure 3.1: Schematic summary of the algorithm implemented in EE-BESD.

is done, you can compute the characteristics any time you want for any value of bias
inside the range adopted in the ab-initio simulation of the molecular junction. Most
of the effort is therefore directed to the fitting of the transmission spectrum. The
procedure adopted by A. Zahir is not described in detail, hence I have developed
the methodology represented in fig. 3.2. After having chosen the bias range, the IV
curve is computed in QuantumATK for 11 values of VDS. Only positive voltages are
considered due to the symmetry of the analyzed junctions, hence the characteristics
should be the same from positive and negative bias points, except for a minus sign.
Then, the peaks involved in conduction are identified, which are the two below EF

and the two above EF . These peaks are fitted with Lorentzian functions whose
parameters (location, width, height) are used to obtain EE-BESD parameters (Ei,
γi, hi). It is not obvious that there are four well distinguished peaks and, some
times, it is necessary to define an effective peak that approximately encloses the
same area of the QuantumATK transmission spectrum, in the energy range where
the peak is defined. The Lorentzian fit of the transmission spectrum must be done
for each value of bias. The locations of the peaks, corresponding to Ei in EE-BESD,
are obtained from the transmission spectrum at equilibrium. Then the peaks are
shifted in energy thanks to USCF when a bias is applied.. On the other hand,
the coupling with the contacts γi is obtained by the average over the bias points
of the fitted width of the i-th peak. Instead, hi is computed as described above
where the variation of the height of a peak is analyzed through the Lorentzian fit.
Next step is to insert the fitted parameters in EE-BESD, stored in an array of
energy levels E0 = [E1, E2, E3, E4] and of coupling constants γ = [γ1, γ2, γ3, γ4], and
verify that the calculated current is similar to the one obtained with QuantumATK.
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Figure 3.2: Flow chart of the fitting procedure adopted in this thesis.

The comparison can be done with a residual analysis, for example verifying that
the maximum relative difference between the characteristics is less than a certain
percentage for each bias point. If the result is not satisfying, the Lorentzian fit
should be repeated until the area integrated under the transmission spectra is the
most similar between EE-BESD and QuantumATK, hence optimizing the current
computed with EE-BESD.

Figure 3.3: Comparison between the transmission spectra computed with EE-BESD and
QuantumATK at equilibrium.

To make things clearer, an example taken from A. Zahir’s work is described here
below. The molecular junction under study is based on 3TT, a molecule composed
by three rings of thiophene, that is anchored to two gold contacts with a thiol group
at both sides. Figure 3.3 shows the comparison between the transmission spectrum
obtained with EE-BESD at equilibrium and the one computed by QuantumATK.
The two spectra are well superposed, especially for the peaks above E−EF > −1 V.
Instead, the first peak at E − EF = −1.2 eV seems to be completely uncorrelated
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with the ab-initio spectrum. However, this is an effective peak that can reproduce
a ‘correct’ fitting when a bias is applied, inducing a change in QuantumATK
spectrum.

The effects of VDS on the EE-BESD transmission spectrum are shown in fig. 3.4.
It is evident that the peak associated to the HOMO level generally decreases in
intensity when VDS increases, even if there is a small increase when passing from
VDS = 2 V to VDS = 3 V. Instead, the other peaks are not affected by the bias and
would mostly contribute for larger VDS. As already mentioned above, the same
variation with bias would occur when VDS < 0 because the junction under study is
symmetric.

Figure 3.4: Variation of EE-BESD transmission spectrum by an applied VDS .

The EE-BESD IV curve computed with the transmission spectra shown above
is represented in fig. 3.5, where is compared to the QuantumATK result. It is
astonishing how EE-BESD is able to reproduce very well the ab-initio result
with a computational time that is infinitesimal with respect to QuantumATK.
Comparing the areas under the IV curves, the percentage difference is only about
2.9%. Moreover, EE-BESD computes the current in less than a second considering
hundreds of bias points. On the other hand, QuantumATK implements NEGF,
coupled with an ad-initio electronic structure model (such as DFT of EHT), that
is time consuming. For example, considering the case of 11 values of bias needed
for the fitting procedure, a DFT-NEGF simulation needs about 2 days to finish
considering a DZP basis set, a PBE-GGA exchange correlation functional and a 7x7
grid of k-points. Furthermore, for the number of bias points used to plot fig. 3.5,
thus 151, the simulation would take much more time to finish. This underlines the
importance of EE-BESD as an efficient and effective tool for MolFET modeling.

One can think to implement PAT with EE-BESD in order to have an efficient
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Figure 3.5: Comparison between the IV curves obtained with EE-BESD and QuantumATK.

tool to compute photocurrent. Indeed, Tien-Gordon is easy to implement since
are involved only shifts of the transmission spectrum by nℏω and evaluations of
Bessel’s functions of first kind. This is straightforward to do in Matlab® where
the summation over n must be truncated up to a maximum order. For nmax = 5−6
the summation already converges, but in any case the simulation is fast and taking
at maximum dozens of seconds.

Things are more complex for Floquet model implementation since it involves the
formalism of non-equilibrium Green’s functions. In order to exploit the simplicity
of 0D transport model, one should rewrite EE-BESD in the framework of NEGF
theory. This means that the EE-BESD results should be obtained evaluating
Green’s functions and using them to compute the transmission spectrum. In the
following section I will describe how this step can be done before implementing the
Floquet algorithm presented by Stefanucci [55].

3.2 EE-BESD-NEGF
The first step to rewrite EE-BESD with the NEGF formalism, named EE-BESD-
NEGF, is to convert vectors in matrices, as usually used in quantum mechanics.
The array E0 storing the position of the peaks can be thought as the eigenvalues
of an effective Hamiltonian that in the diagonalized form is expressed by

E0 ⇒ Hmol,0 =


E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E4

 (3.4)
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Similarly, the array of coupling constants γ can be expressed with a diagonalized
matrix where each entry of the diagonal corresponds to the coupling of a certain
energy level:

γ ⇒ Γ =


γ1 0 0 0
0 γ2 0 0
0 0 γ3 0
0 0 0 γ4

 (3.5)

The matrix Γ is the broadening matrix that is independent from energy. This
means that each level Ei is coupled to any level of the contacts with constant γi.
Considering energy independence and neglecting the renormalization of eigenvalues
predicted by NEGF, the retarded contact self-energy can be expressed in the WBL
as (see section 2.3)

ΣR = −i Γ
2 (3.6)

The knowledge of the retarded contact self-energy allows to calculate the retarded
Green’s function evaluating the Dyson’s equation:

GR(E) = [EI −Hmol,0 − ΣR]−1 (3.7)

It is important to understand that the energy dependence of GR is obtained by
solving the Dyson’s equation for each value of E defined over an energy grid around
EF = 0. In EE-BESD the array of energy, called Energy_span, is defined with the
Matlab® built-in function linspace that defines a vector of points equally distant.
The range that I have considered is between Emin = −2.5 eV and Emax = 2.5 eV
with a total number of points equal to 5001. In EE-BESD we can consider a larger
number of points in order to have a better energy resolution, that means a more
precise evaluation of the energy integral of the transmission spectrum. On the
other hand, if the algorithm is converted in the NEGF formalism, an inversion
of a matrix with dimensions Nlevels × Nlevels is involved for each value of energy
and bias point, therefore is better to reduce the number of energy values to 5001,
that is anyway sufficient to have a good resolution. Moreover, the energy value
inside the Dyson’s equation is multiplied by the identity matrix in order to obtain
a diagonal matrix, having the same dimensions of Hmol,0 and ΣR, whose entries are
all equal to the value E considered inside the energy loop.

After having computed GR(E), we can calculate the transmission spectrum
using eq. 2.23:

T (E) = Tr[Γ1G
R(E)Γ2G

A(E)]
where Γ1,2 = Γ/2 and GA(E) = [GR(E)]†. Knowing the transmission coefficient it
is straightforward to compute steady-state current using Landauer formula.

In fig. 3.6 the EE-BESD-NEGF algorithm is graphically summarized. The outer
light gray block represents the loop over bias voltages VDS where the index iv goes
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from 1 to nV, that is the total number of considered voltages. The applied VDS varies
at each iteration corresponding to the iv-th value of an array of voltages, in this
figure called Vds_array. The bias determines the BW, but also the self-consistent
potential USCF that is used to compute the shift of the energy levels due to charging
effects. Then the updated levels are used to calculate Hmol,0 and Γ which define the
matrix that must be inverted to obtain GR(E). This is represented by the inner
dark gray block where the transmission coefficient T (E) is computed by repeating
the matrix inversion for each value of the grid Energy_span having dimension
nE. Eventually, the current corresponding to the applied VDS is evaluated using
Landauer formula. The whole process is then repeated for each value of bias.

Figure 3.6: EE-BESD-NEGF flow chart. The outer light gray block corresponds to the VDS

loop necessary to evaluate the current for each value of bias. Instead, the inner dark gray block
represents the energy loop used to evaluate the transmission probability for each value of the
defined energy grid.

The results obtained with this procedure are shown in fig. 3.7 and 3.8. We
can immediately observe that the transmission spectrum at VDS = 1 V obtained
with EE-BESD-NEGF is different with respect to the one computed by EE-BESD.
The peak corresponding to HOMO is much greater in EE-BESD-NEGF meaning
that there is a problem with the fitting procedure. Indeed, the EE-BESD-NEGF
spectrum is identical to the one obtained with the 0D transport model described in
section 2.1. The reason is that the algorithm described above does not consider the
fitting procedure needed to ‘map’ the ab-initio results into the ones of a simpler
model. Therefore it is like considering an independent channels model, i.e. EE-
BESD without the fitting procedure, where the coupling of each level correspond
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to a Lorentzian in the transmission spectrum having amplitude equal to one. In
fig. 3.7 the height of the peaks are greater than one because the Lorentzian are
superposed and the tails of one channel add up to the peaks of the other channels.

Figure 3.7: Comparison between transmission spectra computed with EE-BESD and with
EE-BESD-NEGF which do not consider the fitting procedure.

As a consequence of the difference in the transmission probabilities, also the
resulting IV curve would be different. In particular, the presence of a HOMO level
that is highly transmissive increases remarkably the current for basically any value
of VDS as shown in fig. 3.8.

Figure 3.8: IV characteristics comparison between QuantumATK, EE-BESD and EE-BESD-
NEGF.
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We would like to retrieve the EE-BESD results, therefore now the question is:
“How is it possible to include the fitting procedure in EE-BESD-NEGF?”. The
problem is that we need Green’s functions that, when inserted in the formula for
the evaluation of transmission, allow to obtain the same transmission of EE-BESD.
Therefore we need a GR(E) that includes the effects of the fitting. Nevertheless,
in EE-BESD the function applyVds acts on the single Lorentzian peaks Ti of the
transmission spectrum before they are added up. Instead, in EE-BESD-NEGF we
compute the total transmission spectrum and applyVds cannot be directly applied.
It is necessary a sort of transformation to obtain the EE-BESD spectrum starting
from the one of EE-BESD-NEGF. This can be done with an energy dependent
coefficient that is found with the following reasoning. First we define with T0D

the spectrum that does not consider the effects of polarization, thus the one
implemented by the 0D model or by EE-BESD-NEGF algorithm described above.
Considering four energy levels, T0D is constituted by four terms

T0D(E) = T1(E) + T2(E) + T3(E) + T4(E) (3.8)

Starting from this equation, we can compute the EE-BESD spectrum applying the
applyVds function obtaining

Tpol(E, VDS) = h1(VDS)T1(E) + h2(VDS)T2(E) + h3(VDS)T3(E) + h4(VDS)T4(E)
(3.9)

where the subscript ‘pol’ stands for polarization and indicates that the effect
is included in the transmission. Focusing on T0D, we can transform it in Tpol

imagining to multiplied the former by an energy and bias dependent coefficient
hNEGF (E, VDS). Therefore we can compare the two expressions of Tpol to find
hNEGF (E, VDS):

hNEGF (E, VDS)T0D(E) = Tpol(E, VDS) (3.10)

⇒ hNEGF (E, VDS) = Tpol(E, VDS)
T0D(E) (3.11)

This coefficient can be efficiently computed using the EE-BESD algorithm since T0D

is the spectrum before using applyVds, whereas Tpol is its output. The computation
is instant, hence can be included inside EE-BESD-NEGF. Knowing hNEGF (E, VDS),
we can rewrite the transmission in the NEGF formalism as:

T (E) = hNEGF (E, VDS) · Tr[Γ1G
R(E)Γ2G

A(E)] (3.12)

The coefficient hNEGF can be moved inside the trace without changing the result.
Moreover it can be divided in two terms, identically equal to its square root, that
respectively multiply GR and GA. This can be safely done because the coefficient
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is real. The operation is reported in the equation below.

⇒ T (E) = Tr
5
Γ1

3ñ
hNEGF (E, VDS)GR(E)

4
Γ2

3ñ
hNEGF (E, VDS)GA(E)

46
(3.13)

It is clear that we can identify two new Green’s functions that include the fitting
procedure through hNEGF and allow to obtain the EE-BESD transmission spectrum.

GR(E, VDS) =
ñ
hNEGF (E, VDS)GR(E) (3.14)

GA(E, VDS) =
ñ
hNEGF (E, VDS)GA(E) (3.15)

The transmission probability at VDS = 1 V computed with eq. 3.13 is shown in
fig. 3.9. Now the peaks are identical to those predicted by EE-BESD, which means
the mapping from one model to the other has been successful.

Figure 3.9: Comparison between EE-BESD and EE-BESD-NEGF transmission spectra when
fitting procedure is included in both models.

Because of the perfect superposition between the transmission spectra, also the
IV curves would be identical as shown in fig. 3.10. What significantly changes
is the computational time that now is about 10 minutes for 601 bias points
compared to EE-BESD simulations which take less than a second. Nevertheless,
this computational time is not so bad compared to ab-initio simulations. I focused
on EE-BESD-NEGF to implement Floquet model also because it is needed the
knowledge of non-equilibrium Green’s functions for the molecular system. The
modified version of EE-BESD that implements TG and Floquet model is called
EE-BESD-PAT and is described in the following section.
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Figure 3.10: IV characteristics comparison between QuantumATK, EE-BESD and EE-BESD-
NEGF when the fitting procedure is exploited to compute the Green’s functions.

3.3 EE-BESD-PAT
Starting from EE-BESD and EE-BESD-NEGF I have implemented Tien-Gordon
and Floquet model respectively. As already commented above, TG is easier
to implement since it is just necessary to shift the transmission spectrum and
truncate the summation up to a maximum order. For what concerns Floquet, the
implemented algorithm is the one described by Stefanucci [55], presented in section
2.3, considering WBL for contact self-energy evaluation. The main difference in
the algorithm is about the definition of zero-th Floquet mode

G0(E, VDS) =
è
g0(E, VDS)−1 − ΣR

AC(E)
é−1

(3.16)

where the non-interacting Green’s function g0(E) = gR (0)(E) defined by Stefanucci
is here evaluated as in EE-BESD-NEGF

gR (0)(E, VDS) = (EI −Hmol,0 − ΣR) ·
ñ
hNEGF (E, VDS) (3.17)

The ‘mapping’ coefficient hNEGF is only used in this equation since the other
Floquet modes are obtained through the recursive relation expressed in eq. 2.91.
Also the continued matrix fraction is computed evaluating the matrices H−1

±n(E)
without employing hNEGF . In this way all the information coming from the fitting
procedure is encoded in gR (0)(E, VDS) and then transmitted to the Floquet modes.

What remains is to understand how to define the amplitude VAC of the oscil-
lating potential used in TG and the amplitude UAC of the time-dependent energy
potential. The problem is that it is difficult to know a priori their values, as

98



3.3 – EE-BESD-PAT

extensively commented in section 2.2. However, it is possible to make some coarse
approximation in order to have an idea of the photocurrent developed by the
incident field. This will be discussed in the next paragraph together with the
description of simulation parameters.

3.3.1 Simulation parameters
The parameters defined in EE-BESD-PAT can be divided in two classes. To the
first class belong the electrical parameters, in particular those already used in
EE-BESD such as an array of bias voltages VDS and an array defining the energy
grid. Instead, to the second class belong the optical parameters used to define
the characteristics of the incident electromagnetic radiation. Similarly to what
is done by QuantumATK, in EE-BESD-PAT is possible to choose the energy ℏω
and the flux Fph of the incident photons. Starting from these variables we can
compute the power per unit area simply multiplying the flux for the photon energy:
P/A = Fph · ℏω, where the notation P/A is used to indicate the surface power
density. From classic electromagnetism it is known that the active power density
considering plane waves is:

P/A = 1
2Re

; 1
Z

<
E2

AC = 1
2Re

î
Y
ï
E2

AC (3.18)

The quantity Y = 1/Z is the characteristic admittance of the medium through
which the radiation propagates. In EE-BESD-PAT I have considered only the case
of vacuum or air, therefore Y =

ñ
ϵ0/µ0 = ϵ0c, where c is the speed of light in

vacuum. Knowing P/A we can compute the electric field amplitude of the incident
field inverting eq. 3.18:

EAC =
ó

2P/A
ϵ0c

(3.19)

With the electric field amplitude we can roughly estimate the potential drop along
the gap. If the field is considered as uniform and the gap has a dimension equal to
dmol, that is the length of the molecule, for TG model the potential is estimated as:

VAC = EAC · dmol (3.20)

This is of course a drastic approximation since the electric field is likely influenced
by the electrostatic potential of the molecule and vice versa. Moreover, for the
estimation we have considered a uniform electric field that does not agree with
the potential profile of a symmetric single-molecule junction depicted in fig. 2.4.
Nevertheless, J. K. Viljas and coworkers verified in [64] that, if we consider a linear
ramp in the gap instead of a flat zero potential, the result of TG does not change
significantly. Furthermore, in 2021 D. Kos et al. published an article [22] where
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they estimated in the same way the ’optical’ potential drop considering a NPoM
geometry. This confirms the approach adopted for TG in the following. On the
other hand, for Floquet the potential energy UAC can be estimated with eq. 2.45
considering only the spatial dependence:

UAC = −µ⃗mol(x⃗) · E⃗AC(x⃗) (3.21)

Considering maximum coupling, i.e. the electric field having linear polarization
aligned with the molecular electric dipole, the potential becomes:

UAC = (−)µmol · EAC

e
(3.22)

where the minus sign does not change the result of Floquet simulation and the
elementary charge e is added to obtain UAC in eV, that is the unit used to expressed
Hmol,0. The ab-initio software ORCA can be used to optimize the geometry of the
molecule but also to compute the molecular electric dipole of the isolated molecule.
The dipole depends on the applied electric field, i.e. by the applied bias VDS, and
is influenced by the contacts. However, the latter dependence is neglected here in
order to take things simpler. The components of the dipole computed by ORCA
for a certain applied electric field is expressed in atomic units, while the magnitude
is expressed in Debye. In the table below I reported the conversion between atomic
units, Debye and SI.

atomic units (a.u.) Debye (D) SI (C· m)
1 2.541,765 8.478,36×10−30

0.393,427 1 3.335,62×10−30

1.179,47×1029 2.997,94×1029 1

Table 3.1: Units used to express the molecular electric dipole.

In the table above the values belonging to the same row are equivalent and
can be used to pass from one unit to another. It is relevant to observe that
isolated molecules have an electric dipole that is generally lower than 10 D. For
example, considering an input electric field for ORCA simulation of 1×10−3 a.u.
= 5.142,206×108 Vm−1, that is basically equivalent to applying a VDS = 1 V
on a 2 nm gap, a conjugated molecule like 3TT develops an electric dipole with
magnitude equal to 1.995,043,745,7 D whereas a saturated molecule like C8 develops
a dipole with magnitude equal to 0.005,705,724,4 D. Of course the magnitude of the
dipole is greater for conjugated molecule thanks to the electronic cloud delocalized
along the molecule. Nevertheless, considering this order of magnitude (≈ 1 D), to
obtain a reasonable value of UAC ≈ 0.1 − 10 eV we would need an electric field
EAC ≈ 109 − 1011 V/m that is much larger than the critical field Ec = 106 V/m
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that produces the electrical breakdown of the medium. To understand better the
problem, I will show an example taking as reference the 3TT molecule. Starting
from the value of UAC and eVAC (VAC is multiplied by e in order to express it in eV,
but the value remains the same) we can compute the value of the corresponding
incident field, power and photon flux. I have chosen as photon energy ℏω = 1 and
I have initially neglected the possible field enhancement due to LSP resonance
(enhancement factor equal to one). Under these assumptions, the incident field
required to obtain UAC and eVAC in the range [0,10] eV is computed inverting
eq. 3.20 and 3.22. The results are shown in fig. 3.11 where a semi-logarithmic scale
is adopted. It is immediately clear that the field required to obtain UAC is much
greater than the one necessary to obtain the same value of eVAC . EAC(UAC) is
about one order and a half greater than EAC(eVAC). However, both curves are
above the critical field (Ec) therefore, imagining a laser irradiating the system, the
field would ionize air before reaching the junction, which is a problem for practical
applications. Moreover, the corresponding power density and photon flux, shown
in fig. 3.12, are too high for typical lasers which have often power densities in the
range 106 − 109 W/m2.

Figure 3.11: Incident electric fields required to have a fixed value of UAC and eVAC .

The situation changes when the plasmonic response is considered in the compu-
tation of the field. In this case the parameters of the models are computed in the
following way:

VAC = EAC · kenh · dmol (3.23)

UAC = (−)µmol · EAC

e
· kenh (3.24)
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Figure 3.12: Power density and photon flux required to have a fixed value of UAC and eVAC .

The coefficient kenh corresponds to the electric field enhancement and depends
on the frequency of the incident radiation. In this thesis I have considered the
enhancement simply as a scalar value, although it has a vectorial character and
should be computed in each point of space. The product EAC · kenh corresponds to
a rough approximation of the ‘local’ electric field, that is the one that determines
UAC and eVAC . Considering an enhancement equal to kenh = 500 at the chosen
photon energy, the required ‘local’ electric field to have a certain value of UAC

and eVAC would be the same of fig. 3.11, but the incident one would be lower
thanks to enhancement. The results are shown in fig. 3.13. The difference between

Figure 3.13: Incident electric fields required to have a fixed value of UAC and eVAC when field
enhancement is considered.
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the two curves remains the same, but in this case there are some values of eVAC

that allow to have EAC < Ec and avoid electrical breakdown. On the other
hand, considering the more physical model of coupling between molecule and field,
i.e. the expression for UAC , it does not allow to have values of the field smaller
than the critical one. For this reason in EE-BESD-PAT simulations I have posed
UAC = eVAC = EAC · kenh · dmol, that means I have considered the same parameter
for TG and Floquet simulation.

In light of this, the enhancement factor would be another optical input parameter
of the simulation chosen by the user. Future works could be focused on the
computation of kenh starting from the junction geometry in order to have a more
realistic guess of field enhancement. Figure 3.14 graphically summarizes the optical
parameters and how they are related to each other to obtain UAC and eVAC .

Figure 3.14: Summary of the optical parameters and of their relations needed to compute UAC

and eVAC .

Before presenting an example of EE-BESD-PAT simulation, it is important to
make an observation concerning possible ionization of the molecule inside the gap.
Indeed the photon energy can be large enough to extract an electron from the
highest occupied molecular orbital, i.e. from the HOMO, producing the ionization of
the molecule. The energy difference between the vacuum level and the HOMO level
is equal to the binding energy Eb of an electron in the HOMO. Considering the 3TT
junction as an example, the binding energy can be read from the molecular energy
spectrum computed with QuantumATK, that is the projection of the Hamiltonian
over the device region. The levels of the molecule can be computed with respect
to vacuum level. In this case the energy corresponding to HOMO is equal to the
binding energy. For 3TT we have Eb = −3.303,403 eV , that means an absorption
of a photon with energy ℏω ≈ 3.31 eV from an electron in HOMO would produce
the ionization of the molecule. Therefore photons with energy larger than this value
would significantly change the conduction properties of the molecule. In addition
to this process, if the power density is sufficiently high, the energy transferred to
the molecule could also modify the junction geometry. In the case of 3TT, the
thiophene rings could be broken, hence destroying the junction. A rough estimation
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of the energy necessary to divide 3TT in two parts, a 1TT (single thiophene ring)
and a 2TT (two thiophene rings), can be done computing the total energy of the
molecules. In particular, the total energy of 3TT is lower than the sum of the total
energy of 1TT and 2TT (otherwise the molecule would not exist). The binding
energy is then estimated as:

Eb = Etot(1TT) + Etot(2TT)− Etot(3TT) (3.25)

Using ORCA it is possible to compute the total energy of the optimize geometry.
Considering the DFT functional CAM-B3LYP, I have obtained the following total
energies:

Molecule Total energy
1TT −552.936 H −15,046.144 eV
2TT −1,104.826 H −30,063.838 eV
3TT −1,656.646 H −45,079.638 eV

Table 3.2: Total energy of 1TT, 2TT and 3TT expressed in Hartree (H) and in eV

Inserting these values in eq. 3.25 we obtain Eb = −30.343 eV. As done above,
we can approximately consider the potential energy transferred to the junction as
UAC = EAC · kenh · dmol. If UAC = |Eb| we can imagine that the incident radiation
can likely generate the breaking of the molecule. The corresponding ‘local’ field
is ≈ 1.8×1010 V/m. This can be considered as an ‘ionization’ threshold on the
enhanced electric field that should not be overcome. Generally, if the enhancement
factor is not too high, incident fields smaller than Ec are not so much amplified to
become greater then the ionization threshold. Nevertheless, it becomes possible for
high field amplification and this effect should be taken into account.

In the next section I will present an example of EE-BESD-PAT simulations
for a 3TT junction. The parameters described above can be combined in order
to do different simulations. In particular three simulations can be chosen in the
Matlab® ‘main’ file and are indicated with the following strings:

• Vds_cycle. This simulation allows to compute the IV curve under illumina-
tion, therefore it is defined an array of VDS and some values for the photon
energy ℏω and the photon flux Fph.

• hw_cycle. The total current is computed considering an array of photon
energies and some values of the photon flux and of the applied bias. The
corresponding figure of merit is the current plotted with respect to ℏω.

• Uac_cycle. In this simulation an array of photon fluxes is defined to compute
the corresponding current considering some values of photon energy and of
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bias. The figure of merit corresponds to the current plotted with respect to
flux variation.

3.3.2 Example: illuminated 3TT junction
In this section I will show and comment the results of the simulations taking as
example a symmetric single-molecule junction based on 3TT bonded to two gold
contacts through thiol groups. The length of the molecule used to estimate UAC and
eVAC is dmol = 1.683,9 nm, that is measured from the builder tool of QuantumATK.
This molecule has been chosen because is familiar and was already implemented in
EE-BESD. The transmission peaks at equilibrium are located at energies values
identified by the array E0 = [−0.7,−1.2, 1.2, 2.15] eV that is extracted by the fitting
procedure. In TG and Floquet there is the summation over index n that has
been truncated at nmax = 16, for both models, to obtain the results shown below.
Hence the summation goes from −nmax to nmax, thus it considers 33 terms. This
considerably large number of terms is especially necessary for Floquet model to
reach convergence when UAC increases, that is the case of Uac_cycle simulation.
In order to make a fair comparison between the execution times, I have considered
the same maximum number of terms included in the summation for all types of
simulation.

First of all I have computed the IV curve under illumination. The parameters
used in the simulation are the following:

• E: energy grid equal to an array of 5001 values between −2.5 eV and 2.5 eV
(equal for all the simulations).

• VDS: array of 76 values in the range from 0 to 1.5 V. Only positive voltages
are considered since the junction is symmetric under inversion of bias.

• ℏω: array of two values corresponding to 0.5 eV and 1 eV.

• Fph: array of three values equal to 0, 1×108 Å−2s−1 and 1×109 Å−2s−1.

• kenh: fixed to 500.

Note that the enhancement factor has been chosen arbitrary and fixed equal to both
values of photon energy. This is not properly correct since the localized plasmon
response should vary with the wavelength of the incident radiation. Nevertheless,
this is just an example that has the goal to show how the results of the simulator
should be analyzed, hence I will not take in consideration this difference. I
considered kenh = 500 to have reasonable values of the incident field that do not
produce electrical breakdown. However the results would be the same with kenh = 1
and considering higher fluxes. On the other hand, when comparing the results
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of the simulator with real experimental measurements, we must pay attention to
choose correctly the parameters, as it will be done below for the validation of the
simulator.

The execution time of TG is 7 s, that means the model is low computational
demanding. The TG simulation could be faster because the summation over n
basically converges with nmax = 5. However, the execution time is so short that
is possible to increase the number of terms without paying too much attention.
The execution time for a single combination (VDS, ℏω, Fph) of the parameters is
≈ 0.015 s. This allows to choose more values of the parameters for a single TG
simulation, for example increasing the resolution of the IV characteristics. On the
other hand, Floquet simulation is much more time consuming. Nevertheless, the
execution time are far shorter than the one of ab-initio simulations. For this case
the execution time is equal to 1,873.45 s corresponding to 31.22 minutes. If the
value of UAC is not too high, it is possible to reduce the total computational time
reducing the number of considered Floquet modes. However, the result with 33
modes (2nmax +1) is still reasonably fast since the execution time for a combination
(VDS, ℏω, Fph) is ≈ 4.11 s.

Figure 3.15: IV curves of 3TT junction illuminated by different fluxes of photons having energy
ℏω = 0.5 eV.

In fig. 3.15 are shown the IV curves for different fluxes considering ℏω = 0.5 eV.
Curves with the same color corresponds to the same flux, whose corresponding value
of UAC and α = eVAC/ℏω is shown in the legend (in Matlab® I used the letter
a ≡ α for practical reason). The solid and dashed black curves, corresponding to a
null flux, are coincident. This is coherent because no photons are incident on the
junction and therefore the result of the two models should be the same and equal
to the IV characteristic predicted by EE-BESD. On the other hand, the red curves
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corresponding to a flux equal to 1×108 Å−2s−1 include the photocurrent induced
by the incident radiation. In particular, for this photon energy and flux, the total
current predicted by Floquet is greater than the one computed with TG for any
value of bias. Things are a bit different when the flux is changed to 1×109 Å−2s−1.
Indeed the difference between TG and Floquet currents is smaller. Moreover, for
low bias up to VDS = 0.4 V, the TG current is slightly greater than the one of
Floquet. This suggests that the difference between the currents computed with
the two models is not obvious, but depends on the simulation parameters that
determine the value of UAC and α, with a greater weight associated to the photon
flux. For example, if we change the photon energy to ℏω = 1 eV, the current changes
as shown in fig. 3.16. In this case, the TG current in dashed green, corresponding
to a flux equal to 1×109 Å−2s−1, is greater than the solid green curve predicted
by Floquet. It is relevant to observe that also the shape of the current changes
considerably with respect to the previous case, getting away from the shape of the
curve predicted by EE-BESD. This seems to be true especially for large fluxes as
in the case of the dashed green curve in this range of VDS. In order to understand

Figure 3.16: IV curves of 3TT junction illuminated by different fluxes of photons having energy
ℏω = 1 eV.

better the behavior of the illuminated IV characteristic, it is important to look at
the ‘optical’ transmission spectrum that can be computed for symmetric junction
following eq. 2.95. The spectra for ℏω = 0.5 eV and ℏω = 1 eV with VDS = 0.4 V
are shown in fig. 3.17 and 3.18. Again the dashed and solid black spectra are
superposed since they refer to dark condition and the transmission spectrum is
equal to the one computed by EE-BESD. Increasing the photon flux produces
additional peaks, the so called sidebands, at a distance nℏω from the main peaks
due to absorption or emission of n photons. The light-blue rectangle represents the
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BW defined by the source and drain Fermi levels. The integration of the spectrum
inside this area is proportional to the total current. It is clear that the ‘optical’
transmission spectrum takes larger value in this energy range, therefore the current
increases as commented above. Focusing on the flux Fph = 1×109 Å−2s−1, it is not
immediate to understand that the integration inside the BW of the dashed and
solid green curves for ℏω = 0.5 eV corresponds to basically the same current as
shown in fig. 3.15. On the other hand, if we consider the case for ℏω = 1 eV, it is

Figure 3.17: Transmission spectra of illuminated 3TT junction when the flux is varied considering
ℏω = 0.5 eV and VDS = 0.4 V. The light-blue rectangle represents the BW defined by the applied
bias.

clear that the area under the green dashed curve is grater than the solid green
one. Indeed, in fig. 3.16 is easy to see that the TG current in greater than the one
predicted by Floquet for the applied bias VDS = 0.4 V. Although it is not difficult
to identify the main peaks and the corresponding sidebands, it is important to
know in detail the dependence of the location and intensity of the peaks on the
optical parameters. Something has been already said, but we can add information
by analyzing the following two simulations: hw_cycle and Uac_cycle.

As already said, the simulation hw_cycle concerns the computation of the
current flowing through the illuminated junction depending on the incident photon
energy. I have considered the following parameters:

• VDS: array of 5 values in the range from 0 to 1 V equally distant 0.2 V to each
other.

• ℏω: array of 84 values in the range from 0 to 2.5 eV.

• Fph: one value of photon flux equal to 1×108 Å−2s−1.

108



3.3 – EE-BESD-PAT

Figure 3.18: Transmission spectra of illuminated 3TT junction when the flux is varied considering
ℏω = 1 eV and VDS = 0.4 V. The light-blue rectangle represents the BW defined by the applied
bias.

• kenh: fixed to 500 for each photon energy.

The TG simulation took 2.54 s to finish while Floquet execution time was 1,214.19 s.
The former corresponds to an execution time per combination (VDS, ℏω, Fph) that
is ≈ 0.006 s, while for the latter the time per combination is ≈ 2.89 s. These times
per combination are slightly shorter than the ones of the previous simulation but
still well comparable. In fig. 3.19 is shown the current at different VDS depending on
the photon energy. One should expect that the current for ℏω = 0 eV is equivalent
to the EE-BESD result. Indeed it is the case for Floquet current that converges to
the dark case. Instead the current predicted by TG for ℏω = 0 eV is equal to zero
for all values of bias (this limiting case is highlighted with an orange rectangle in
fig. 3.19). This is of course wrong and represents a limitation of TG that originates
from the way the model is defined. The argument of the Bessel’s functions α
is inversely proportional to the photon energy, hence if ℏω → 0 we would have
α→∞. Since Bessel’s functions decrease with α, all the peaks of the transmission
spectrum would be weighed with very small values, thus the transmission assumes
very low values (see fig. 3.21(a)) corresponding to a negligible current with respect
to the dark one. Even if we must be aware of this problem concerning TG, it is
not so problematic since is unusual to consider very small values of photon energy
close to 0 eV.

Regarding the rest of fig. 3.19, we can see that for this photon flux the current
predicted by Floquet is greater than the one computed with TG for all values of
photon energy. Moreover, for smaller values of bias, there are three visible peaks at
photon energies equal to 0.66 eV, 1.14 eV and 2.16 eV whereas, increasing VDS, the
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Figure 3.19: Current computed with TG and Floquet varying the photon energy for different
values of bias. The rectangle in orange highlights the region close to ℏω = 0 eV where the TG
model shows a limitation.

spectrum of the current becomes more broadened. To understand if these peaks are
related to the electronic structure of the molecule it is necessary to analyze how the
transmission spectrum changes with ℏω. Fig. 3.20 shows four transmission spectra
computed at VDS = 0.4 V for different consecutive values of photon energy. Panel
(a) is basically the transmission spectrum plotted in red in fig. 3.17. We can observe
that for this photon flux only side peaks referred to n = ±1 are visible and are
located at the same positions both for TG and Floquet. It is interesting to observe
that the sideband at ≈ 1.7 eV is greater than the others because corresponding to
the superposition of two additional peaks coming from the absorption of a photon
by electrons at E = 1.2 eV and from the emission of a photon by electrons at
E = 2.15 eV. Increasing ℏω, that means moving from panel (a) to (d), the position
of the additional peaks moves along the energy axis. A clear example is the peak
at the left hand side of HOMO-1 peak that shifts towards lower photon energies
until is no more visible (see panel (d)). For certain values of ℏω, side peaks can
be inside the BW (superposed or not), as in panel (b), producing an increment in
the current that can correspond to a peak in the I(ℏω) plot. In fig. 3.21 I reported
the transmission spectra for VDS = 0.4 V corresponding to the photon energies for
which there is a peak in the current (except for panel (a) that corresponds to a
value of ℏω close to zero). In these cases the area under the spectrum inside the
BW reaches a local maximum, which corresponds to the inclusion of a side peak.
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(a) (b)

(c) (d)

Figure 3.20: Transmission spectra for VDS = 0.4 V considering different photon energies. In
light-blue is highlighted BW corresponding to VDS .

It is important to observe that the intensity of the sidebands is greater for not
too high value of ℏω, whereas the ‘dark’ peaks are normalized to a smaller value.
In TG this can be understood thinking that the dark peaks are proportional to
J2

0 (eVAC/2ℏω), while the sidebands to J2
n(eVAC/2ℏω) with n /= 0. The former are

reduced since J2
0 (eVAC/2ℏω) = 1 only for α = 0, while the latter have a smaller

intensity when increasing ℏω because α decreases and the Jn(α/2) tend to values
close to zero. Coherently, Floquet predicts the same behavior but with a different
value of the peaks. The decrease with ℏω in Floquet can be justified thinking
about the time-dependent Hamiltonian. Indeed the energy levels can be thought
as oscillating in time due to the addition of a sinusoidal potential UAC(t). If the
frequency ω >> γ/ℏ = 1/τ , it means that the levels are oscillating too fast to
allow electrons to escape towards the contacts. The average over one period is
equivalent to consider the levels still in their position, hence we would have a
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(a) (b)

(c) (d)

Figure 3.21: Transmission spectra for VDS = 0.4 V. Panel (a) is related to the special case
ℏω = 0 eV for which TG shows some limitations. Instead panels (b), (c) and (d) are referred to
transmission spectra corresponding to current peaks clearly evident in fig. 3.19. In light-blue is
highlighted BW corresponding to VDS .

flow corresponding to the dark current, but other contributions coming from the
oscillation are vanished. Of course this is a simplified justification, but it is useful
for having a concrete knowledge of what happens.

What just said explains why there are peaks in I(ℏω), but do not justify explicitly
the reason why the photocurrent increases with VDS, as shown in fig. 3.22, and why
the spectrum seems to change shape. First of all, we must say that the three peaks
are always present in the curves, but at large voltages are less evident. Moreover
they shift towards lower photon energies. This behavior can be justified by the fact
that the BW increases, therefore side peaks can enter into it considering smaller
photon energies with respect to low bias condition. Furthermore, as said above,
the intensity of the sidebands are larger for not too high values of ℏω, looking at
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Figure 3.22: Photocurrent of the irradiated 3TT junction computed with TG and Floquet for
different values of bias.

fig. 3.20 we could say up to 1 eV. Therefore, since for large voltages these peaks
are included in the BW, it means that the resulting photocurrent would be larger
having a maximum corresponding to the photon energy for which the sidebands
have the largest value.

The position of the peaks depend also on charging effects embedded in the
potential USCF . The transmission spectrum in dark condition is shifted by USCF ,
therefore determining the position of the dark peaks. As a consequence, also the
sidebands would be in different position, hence varying their entrance inside the
BW. The importance of this effect basically depends on the value of USCF . In this
example, for the considered voltages, this effect does not play an important role.

What remains to understand is how the current is influenced by the incident
photon flux. This analysis is done through the third type of simulation correspond-
ing in Matlab® to string Uac_cycle. The parameters chosen for the simulation
are the following:

• VDS: array of 5 values in the range from 0 to 1 V equally distant 0.2 V to each
other.

• ℏω: one value of photon energy equal to 0.5 eV.

• Fph: array of 251 photon fluxes in the range from 1×106 Å−2s−1 to 1×1011 Å−2s−1.

• kenh: fixed to 500 for each photon flux.
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The total execution time in this case is 20.92 s for TG and 4,353.84 s (72.56 minutes)
for Floquet, that are much longer than the previous simulations because of the
greater number of points for Fph. Nevertheless, the time required for each combi-
nation (VDS, ℏω, Fph) is of ≈ 0.017 s for TG and of ≈ 3.47 s for Floquet, which are
in the same order of magnitude of those reported above.

Figure 3.23: Simulated current of illuminated 3TT junction using TG and Floquet when the
incident photon flux is varied. The region highlighted by the orange rectangle corresponds to
incident electric fields that induce the electrical breakdown of air.

The computed current is plotted with respect to the parameter UAC = eVAC

that varies with the incident photon flux. The results for different VDS are shown
in fig. 3.23. It is evident that the general behavior for the two model is similar
since the current reaches a maximum at a certain value of UAC(eVAC) and then
decreases with an oscillatory behavior. The value of the maximum is greater when
VDS increases, coherently to what said above, with the one predicted by TG greater
than the one computed with Floquet. It is interesting to notice that the position
of the maximum is different for TG with respect to Floquet, with the former at
greater value of UAC(eVAC) with respect to the latter, but in both cases it does
not shift too much when the bias is changed. Moreover, all the TG maxima are
inside the orange area that corresponds to UAC(eVAC) values related to incident
fields greater than Ec. We should pay attention when considering the values of the
current in this region since it is very likely that sparks injected in air can drastically
change the conduction properties of the junction. For this reason, the values of the
current computed in this region are not reliable.

Focusing on values of UAC < 2.3 eV (thus the threshold for electrical breakdown),
the current predicted by Floquet is greater than the one of TG almost for every
values of the potential amplitude, whereas in the orange area it is true the opposite.
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Furthermore, close to zero, i.e. for values of the photon flux ≈ 106 − 107Å−2s−1,
the current seems to respect a power law with respect to UAC until it reaches
values close to the global maximum. To understand the reason why the current
decreases at a certain point with UAC , we can first think at the TG case. Having
in mind the behavior of Bessel’s functions depicted in fig. 2.6, an increase of eVAC

would initially decrease J0(eVAC/2ℏω) and increase Jn(eVAC/2ℏω). However, for a
certain value of eVAC/ℏω, also the Jn would start to decrease, therefore reducing
the intensity of the additional side peaks. As a consequence the current reduces
after having reached a maximum. The oscillatory behavior that accompanies the
decrease results from the oscillatory behavior of Bessel’s functions. It is important
to notice that the current can assume values lower than the corresponding dark
current, but this information is not reliable, as said above, because this effect
happens in the range of critical values of the electric field (orange area).

The general behavior predicted by Floquet is pretty similar, but with the main
difference associated to the position of global and local maxima in I(UAC). The
decrease of the current predicted with Floquet can be justified again thinking about
the time modulation of the energy levels. If UAC is large enough, all the levels
considered in the 0D model can be shifted far from the BW for a certain time
interval during a single oscillation. This means that the time-averaged current
can decrease, even to lower values of dark current if the levels spend most of the
time outside the BW. Also in this case an oscillatory behavior is associated to the
decrease of current, but the oscillation happens with a frequency that seems to
be twice the one of TG current. The origin of this oscillation is not clear yet, but
its double frequency seems to be related to the fact that in TG the argument of
Bessel’s functions is proportional to eVAC/2 while in Floquet the parameter used
in the computation is UAC = eVAC .

Another observation concerning fig. 3.23 is that the convergence of Floquet is
not guaranteed at large UAC . In particular we can say that, for the chosen value of
nmax = 16, the Floquet simulation converges for UAC ⪅ 9 eV. This means that the
peak at 10 eV would change if the number of Floquet modes is increased. From the
point of view of transmission probability, the non-convergent result corresponds to
a spectrum whose side peaks are not located at the positions determined by nℏω,
therefore the associated information is not reliable.

Talking about transmission spectrum, it is crucial to understand how it changes
when the photon energy is fixed and the flux is varied. In fig. 3.24 I reported
six transmission spectra corresponding to increasing values of UAC , moving from
panel (a) to panel (f), all computed with VDS = 0.4 V as applied bias. For a low
value of UAC as in (a), around 0.1 eV, the transmission spectrum is basically the
same of EE-BESD since no sidebands are visible. At UAC ≈ 0.3 eV (panel (b)),
the additional peaks start to appear at distances ℏω from the dark peaks, but
without varying the transmission inside the BW. Further increasing UAC to 0.5 eV
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(a) (b) (c)

(d) (e) (f)

Figure 3.24: Transmission spectra of illuminated 3TT junction referred to a photon flux that
increases from panel (a) to panel (f). The light-blue box corresponds to the BW determined by
the applied bias VDS = 0.4 V.

induces an increase of the intensity of the sidebands, but also a clear increase of
the transmission inside BW, that is related to a current amplification with respect
to dark condition. Up to this point, multi-photon interactions are negligible. They
start to be visible in panel (d) where UAC ≈ 0.7 eV. This is clear by looking at the
left hand side of the dark peak corresponding to level HOMO-1. Indeed, we can
see a small peak distant 2ℏω from the dark peak. Further increasing UAC would
enhance multi-photon processes and additional peaks start to appear also in the
rest of the spectrum, as shown in (e), whereas those referred to dark condition
decreases. In particular panel (f) represents a situation for which the additional
peaks and the dark ones have almost the same intensity.

To summarize, the important information that we can extrapolate from the
transmission spectra is that the location of the sidebands are determined by the
energy of the incident photons, whereas the intensity is related to the incident
photon flux. Multi-photon processes acquire importance only for large enough
fluxes and correspond to peaks distant nℏω (n > 2) from those computed in dark
conditions.

The discussion of the third simulation concludes the presentation of the example
based on 3TT junction. This section can be considered as a guide to understand
the results of EE-BESD-PAT, but also a starting point for future works on this
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topic. What remains to do is to compare the simulations with others computed
with more sophisticated approaches such as the one implemented in QuantumATK.
Moreover, also a comparison with respect to experimental results is important to
understand if EE-BESD-PAT can be used for fast prototyping of single-molecule
optoelectronic devices.

3.3.3 Validation
The validation of EE-BESD-PAT is discussed in this section, starting from the
comparison with QuantumATK and then moving to the experimental validation,
done taking into account the measurements of Arielly et al. [20] on a SWMJ.

Comparison with QuantumATK

QuantumATK implements PAT through the first order Born approximation com-
mented in section 2.4. This model allows to estimate the photocurrent component
that is ‘linear’ with the incident photon flux. Since in QuantumATK it is only
possible to simulate one bias at time for different photon energies, I have com-
pared its result with the one of the EE-BESD-PAT simulation hw_cycle. Again a
single-molecule junction based on 3TT placed between two gold atomic contacts,
with orientation [1,1,1], is considered for the comparison. However, even if 3TT
junction was already inside the EE-BESD library, I had to perform again ab-initio
simulations of the electronic structure and of the IV curve of the junction for one
main reason: I did not have the ab-initio simulations of the original work, therefore I
could not compute the photocurrent. QuantumATK needs the electronic structure
of the junction, computed with DFT, at the chosen bias in order to start the
photocurrent simulation. As a consequence, I had to include a ‘new’ 3TT junction
in EE-BESD, repeating the fitting procedure described in this chapter. For lack of
time I have considered a non-optimized geometry of 3TT, but this should not be a
problem because the same molecule is considered to compare EE-BESD-PAT with
QuantumATK. For the DFT simulation of the electronic structure at equilibrium, I
have used the LCAO calculator with the settings shown in table 3.3. Then, with
the resulting electronic structure, I have computed the IV curve using the object
“IVCharacteristics”. The setting for this simulation are shown in table 3.4. The
transmission spectra for the chosen bias points are computed in addition to the
IV curve and are used for the fitting procedure. In fig. 3.25(a) is shown in blue
the current computed by QuantumATK, in red the one coming directly from the
Lorentzian fitting of the peaks, while the yellow curve corresponds to the EE-BESD
result. From the plots it is clear that the EE-BESD current departs from the
ab-initio result in the range between 1 V and 2 V. This difference can be reduced
improving the fitting, however this is not necessary because is enough to have
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Exchange-correlation: GGA
LCAO Functional: PBE
Basis Van der Waals correction: disabled
Set Pseudopotential: FHI

Basis set: DZP
Density mesh cut-off: 80 Hartree

Numerical Occupation method: Fermi-Dirac
Accuracy Broadening: 1,000 K

k-points: Preset-Density [4.0,4.0,150.0] Å
Iteration Default settingsControl
Device Default settingsAlgorithm

Contour
Integral Default settings

Parameter
Solver type: Conjugate gradient
Boundary conditions:

Poisson (A) direction: Periodic Boundary condition
Solver (B) direction: Periodic Boundary condition

(C) direction (transport): Dirichlet Boundary condition
Electrode Default settingsParameters

Table 3.3: Settings used for the LCAO calculator to compute the electronic structure of 3TT
junction at equilibrium.

VDS V0 = 0 V, V1 = 3 V
range Points: 11

Energy E0 = −2.5 eV, E1 = 2.5 eV
range Points: 151

k-point grid Density over (A) and (B) direction: [7.0,7.0] Å
Infinitesimal 1e-6 eV
Energy zero Average Fermi levelparameter
Self-energy Recursioncalculator

Table 3.4: Setting of “IVCharacteristics” object used to compute the IV curve of 3TT junction.
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a bias point for which the current computed with EE-BESD is equal to the one
of QuantumATK. Indeed for VDS = 0.3 V the two curves are very close and the
corresponding transmission spectra are shown in fig. 3.25(b). I have considered this
bias for the computation of the photocurrent since the spectra are very similar and
should allow to obtain the best comparison between EE-BESD-PAT and Quan-
tumATK. To be more precise, the object “IVCharacteristics” does not store the

(a) (b)

Figure 3.25: In panel (a) it is shown the comparison between the IV characteristics computed
with QuantumATK, EE-BESD and the one obtained from the Lorentzian fitting. An example of
the fitting procedure is depicted in panel (b) where it is shown the fitted transmission spectrum
for VDS = 0.3 V.

electronic configurations, at each bias point, that are needed as input to compute
the photocurrent. Therefore I had to simulate the single bias point, corresponding
to VDS = 0.3 V, considering the same setting shown above. Then I computed the
photocurrent considering the settings of “Photocurrent” object shown in table 3.5.
For simplicity I have considered only the linear polarization parallel to transport

Energy E0 = −2.7 eV, E1 = 2.7 eV
range Points: 99

Photon E0 = 0 eV, E1 = 2.5 eV
energy Points: 20
k-points Grid type: MonkhorstPackGrid

grid na = 15, nb = 15
Polarization Linear-z [0,0,1]

Table 3.5: Settings of “Photocurrent” object considered to compute the current of the illuminated
3TT junction for different photon energies.

direction, that should correspond to maximum coupling between the incident field
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and the junction. Setting the same photon energy range in EE-BESD-PAT, between
0 eV and 2.5 eV, we can compare the different models. The photon flux is set to
1 Å−2s−1, corresponding to the incidence of one photon per second over an area
of 1 Å−2. This is the default setting of QuantumATK and a change in the flux
corresponds only to a direct multiplication of the photocurrent by Fph (remember
that only the component linear with the flux is computed by QuantumATK ). Since
the shape remains the same, I left the default setting and compared the resulting
photocurrent with the one of EE-BESD-PAT.

The computation of the photocurrent by QuantumATK took approximately
six days to finish, that is far longer than the execution times commented in the
previous section. Figure 3.26 shows the results computed with the three models.
First of all is important to observe the order of magnitude of the photocurrent. It

Figure 3.26: Comparison between the photocurrents computed with QuantumATK, Tien-Gordon
and Floquet. The photon energy is varied between 0 eV and 2.5 eV while the photon flux is fixed
to 1 Å−2s−1.

is the same for each model and equal to 10−19 A. This value is not strange if we
focus on the chosen photon flux. Indeed only one photon per second reaches an
area of 1 Å−2, located along the junction, where can interact with one electron in
an energy state outside the BW. The interaction can lead the electron to move
in a molecular orbital involved in conduction, hence increasing the total current.
Considering typical dimensions of a single-molecule junction, only few photons
per second can interact with a corresponding number of electrons, therefore the
additional charge involved in conduction is a small multiple of the elementary
charge, that is proportional to 10−19 C. This explains the small order of magnitude
of the photocurrent. For what concerns the general behavior, the photocurrent of
QuantumATK shows a peak at ℏω = 1.5 eV and another close to small values of
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photon energy. It is likely that the former peak corresponds to absorption events
involving electrons, with energy inside the BW, that can ‘jump’ to available states
at ≈ 1.5 eV. Indeed, for this energy there is a peak in the Projected Device Density
Of States (PDDOS), which is the projection of the total DOS of system over the
device region, shown in fig. 3.27. The presence of a peak means that there is a
local maximum of available states that can accept electrons after having absorbed
a photon. The result is a peak in the photocurrent. On the other hand, the peak
close to 0 eV should be considered with attention due to the low number (20) of
photon energies used in the ab-initio simulation and due to possible problem of
convergence depending on the considered number of k-points. A similar shape of
the photocurrent is computed by TG and Floquet with the advantage of much
faster simulations. The main difference is about the precise position of the peaks
and their intensity. In these terms, Floquet performs better than TG, with the
hope that, increasing the resolution in photon energy and the number of k-points of
the ab-initio simulation, the difference of the peaks close to ℏω = 0 eV can become
smaller than the one shown in this figure.

In general we can consider Floquet model as a good approximation of Quantu-
mATK in the limit of small coupling between incident field and molecular junction.
In future works a further analysis should be done to have more accurate ab-initio
results for the comparison, but also to understand better the information associated
to photon-mediated transmission spectra computed by QuantumATK, in order to
compare them with the ones commented in the example of the previous section.

Figure 3.27: Projected Device Density Of States of the 3TT junction computed with Quantu-
mATK.
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Comparison with experimental results

The second way to validate EE-BESD-PAT is to compare its simulations with some
experimental measurement of photocurrent. In Chap. 1 it has been underlined
that the number of experimental papers is much lower than the one referred to
theoretical studies of PAT in single-molecule junctions. Nevertheless, there is a
very well known experimental work that is always cited in the references of most
recent papers. It is the work published in 2011 by Arielly and coworkers [20]: They
measured the IV curve of a SWMJ, based on a SAM of octane (C8), when it is
illuminated by a laser. This is one of the few article where the entire characteristic
is measured under irradiation and not only a single bias point. This allows a full
comparison between the results presented by Arielly and the Vds_cycle simulation
of EE-BESD-PAT. Before showing the comparison, it is worth to describe more in

Figure 3.28: SWMJ based on C8-SAM that has been studied by Arielly et al. [20].

detail the experimental setup. The SWMJ considered by Arielly consists of two
microscopic gold contacts connected by a gold nanorod. On the latter is deposited
a C8-SAM, before the rod is manipulated through electrophoresis to bridge the
two electrodes. Arielly et al. verified that a SAM-junction is established between
only one end of the rod and one of the electrodes. A representation of the SWMJ
can be seen in fig. 3.28. It is important to underline that the measured IV curve is
referred to the SAM-junction. Therefore the current derives from the contributions
of different single-molecule junctions, that could interact in some way and deviate
the characteristic form the one of a single junction. What is sure is that the order
of magnitude would be different with respect to the case of a single C8 placed
between two atomic contacts.

Regarding the parameters of the incident radiation, they used a laser with the
following specifications:

• ℏω = 1.89 eV→ λ = 658 nm

• P/A ≈ 6.5 mW/µm2 = 6.5×109 W/m2

Since the chosen wavelength can excite surface plasmons, Arielly and coworkers
measured the amplification of the field through eq. 2.41, that is generally valid for
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junctions based on saturated molecules (for more details see section 2.2). Applying
this formula they measured in ambient condition a local amplification of the field
equal to kenh ≈ 550. In fig. 3.29 we can see that the field enhancement allows to
have a large value of eVAC ≈ 1.87 eV corresponding to an incident power density
that is lower than the threshold imposed by the electrical breakdown. Starting

Figure 3.29: Incident power density as a function of the parameters UAC and eVAC . The
field amplification is fixed to kenh = 550. The shown data tip is referred to approximately the
experimental incident power density.

from these quantities we can also compute the incident input flux used for the
EE-BESD-PAT simulation, which is equal to Fph = 2.147×108 Å−2s−1.

In fig. 3.30 I have reported the IV characteristics measured in dark and illumi-
nation conditions. It is clear that the current is amplified by the incident radiation.
However the photocurrent contribution varies with the applied bias, in agreement
with what said for the example of the previous section. To make a comparison
with EE-BESD-PAT simulations, I had to include in the EE-BESD library the
octane molecule. In this case I have first optimized the geometry of the molecule
with ORCA considering the hybrid DFT functional CAM-B3LYP. The optimized
length of the molecule is dmol = 1.541 nm. Then I used the optimized geometry
in QuantumATK to simulate the IV curve of a single C8 junction between 0 V
and 1.5 V, considering again 11 points. The settings to compute the electronic
configuration at equilibrium with the LCAO calculator are the same of table 3.3.
In this case I used the object “IVCurve” to compute the current since it allows to
store the device configuration for each bias point. The settings of the object are
shown in table 3.6. The next step was to fit the transmission spectra at each bias
point. For the considered range of VDS, I have found that three levels are enough
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Figure 3.30: IV characteristics of the C8-SAM junction measured in dark and illumination
conditions by Arielly and coworkers [20].

VDS V0 = 0 V, V1 = 1.5 V
range Points: 11

Energy E0 = −4 eV, E1 = 4 eV
range Points: 201
k-point Grid type: MonkhorstPackGrid

grid na = 7, nb = 7
Infinitesimal 1e-6 eV
Energy zero Average Fermi levelparameter
Self-energy Recursioncalculator

Table 3.6: Setting of “IVCurve” object used to compute the IV curve of C8 junction.

to have the best fitted spectra. Moreover, the fitting procedure was problematic
due to the nature of C8. Since it is not a conjugated molecule, the HLG is very
high (≈ 5.9 eV) and the transmission values inside the BW (large at most 1.5 eV
around EF ) are very small, in the order of 10−3. After several attempts, I obtained
the EE-BESD current shown in yellow in fig. 3.31(a). The result is satisfying since
there is an almost coincidence between the EE-BESD and the ab-initio simulation.
For completeness I have reported in fig. 3.31(b) the comparison between the trans-
mission spectra at equilibrium, that confirms again the good quality of the fitting
procedure.

The next step was to perform the Vds_cycle simulation with EE-BESD-PAT
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(a) (b)

Figure 3.31: Comparison between the ab-initio and EE-BESD results for the single-molecule
junction based on C8. In panel (a) it is evident that the EE-BESD characteristics well reproduce
the one computed with QuantumATK. Instead in panel (b) it is reported a comparison between
the transmission spectra computed at equilibrium. Also in this case EE-BESD gives a result in
agreement with QuantumATK.

using the same optical parameters of the experiment. The results of the simulation
are represented in fig. 3.32 where they are compared with the experimental mea-
surements. Looking at the scales of the plot, we can immediately realize that the
simulated current is one order of magnitude lower than that measured by Arielly.
This can be justified by the fact that the SWMJ is not properly the system that
is simulated by EE-BESD-PAT. As mentioned above, more molecular junctions
contribute to the total current, therefore should not surprise that the measured
IV curve is greater than the one simulated by EE-BESD-PAT. On the other hand,
what surprises is the good agreement of the simulated dark current with the one
measured by Arielly. The dependence on the applied bias is approximately the
same, even if the experimental curve has a more exponential-like behavior, whereas
the simulated dark current is more linear.

Concerning the characteristics in illumination condition, the current predicted
by TG is not satisfying since the increase due to photocurrent is very small with a
relative variation between 12% and 20% shown in fig. 3.32(b). Floquet performs
better than TG, but the computed current amplification is still too small with
respect to the experimental one. Moreover, its relative variation of current decreases
with the applied bias, which is in net contrast with what seen in the experiment.

With the intention to reproduce the experimental result, I tried to change
the amplification parameter kenh that is used to determine the value of UAC . In
particular I considered it twice the original value, that means kenh = 1100. This
choice is not so arbitrary since the considered single-molecule junction is different
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(a)

(b)

Figure 3.32: In panel (a) are depicted the experimental and simulated IV characteristics in
dark and illumination condition for a molecular junction based on C8. The field amplification is
fixed and equal to kenh = 550. Panel (b) shows the relative variation of current, with respect to
dark condition, depending on the applied bias.

from the experimental SWMJ, therefore it has a different plasmonic response.
Moreover, the field amplification inside a dimer of gold NP can reach also 103

as order of magnitude, for an excitation wavelength corresponding to the surface
plasmon resonance. Therefore a value of kenh = 1100 can be feasible under certain
conditions. I repeated the simulation for this enhancement factor obtaining the
results in fig. 3.33. There is an evident increase of the simulated photocurrent,
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(a)

(b)

Figure 3.33: In panel (a) are depicted the experimental and simulated IV characteristics in
dark and illumination condition for a molecular junction based on C8. The field amplification is
fixed and equal to kenh = 1100. Panel (b) shows the relative variation of current, with respect to
dark condition, depending on the applied bias.

with a better agreement of Floquet current with the experimental one for larger
voltages. In this case the relative variation for Floquet increases with VDS, reaching
a maximum amplification of approximately 460% at VDS = 1.5 V, that is very close
to the experimental result.

This experimental validation confirms that EE-BESD-PAT (especially the Flo-
quet model) can be used to obtain reasonable results when a ‘good’ enhancement
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factor is included in the simulation. It can be interesting to develop a FDTD
simulator that is able to compute the plasmonic response, taking in consideration
the effects that the molecule can have on the plasmonic excitation, as it is done by
Galperin et al. in [56].
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Chapter 4

Conclusions

The idea behind this thesis work was to explore the interaction between light and
single-molecule junctions. In Chap. 1 I have discussed the importance of studying
this interaction. One reason is that light can be exploited as a tool to characterize
process variability, which is especially problematic in molecular electronics. A brief
introduction of Raman Spectroscopy is given since it is the most used technique
to optically characterize a single-molecule junction. Another reason to study this
field is that light can be used to control charge transport, giving birth to what is
often called “molecular optoelectronics”. An incident electromagnetic radiation on
a junction can influence transport properties in different ways. For example it can
modify the geometry of the molecule supplying energy to activate an isomerization.
This would change the coupling with the contacts and therefore also the current
flowing through the molecule. The photoisomerization is at the base of the so called
“photoswitches”. On the other hand, neglecting thermal effects, light can directly
modulate the current through photo-assisted transport mechanisms which can be
exploited for photovoltaic or detecting applications depending on the symmetry of
the junction. Moreover, depending on the incident radiation wavelength, PAT can
be divide in two types: adiabatic and resonant. In the former, only the energy of
the electrons in the contacts is modulated by the incident field, without changing
the occupation among the states, while the latter allows transitions between the
molecular orbitals during tunneling. Also the excitation of LSP depends on the
incident wavelength and must be taken in consideration due to the nanoscale
dimensions of single-molecule junctions. Furthermore they can be exploited to
locally enhance the electric field, therefore increasing the coupling between junction
and electromagnetic field.

In Chap. 2 I commented in depth the three most used models in literature to
analyze photo-assisted transport. The simplest and most used model in experi-
mental papers is the one developed by P. K. Tien and J. P. Gordon in the context
of superconductors and then adapted to single-molecule junctions. Due to its
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simplicity, the model has some crucial problem, already underlined by Büttiker
in 1998 [46]. A more complex approach based on NEGF is represented by the
Floquet model. It is likely the most studied model to describe PAT in molecular
junctions thanks to the review published in 2005 by P. Hänggi and coworkers [30].
The general idea is to exploit the time-periodicity of the Green’s functions to solve
the time-dependent problem through ‘standard’ techniques used for steady-state
problems. This model has a complexity placed between the one of Tien-Gordon
and the one of the Self-Consistent Born Approximation, which is the state-of-
the-art technique to include the interaction between electrons and photons in the
framework of NEGF theory. An introduction of the SCBA is given because the
ab-initio software QuantumATK used in this work is based on first order Born
approximation, that is the non-self-consistent version of SCBA.

Eventually, in Chap. 3 I presented the implementation of Tien-Gordon and
Floquet starting from EE-BESD, which is an efficient and effective simulator of the
IV curve of molecular junctions developed at Politecnico di Torino by the PhD
candidate A. Zahir [41]. Using EE-BESD-PAT (the modified version of the original
simulator) I have commented the simulation results for a 3TT junction in order to
describe PAT and to gives details on the limitations of the simulator. Then I tried
to validate the approximated models, TG and Floquet, comparing their results
with the ones of QuantumATK and with experimental measurements. In the end I
can say that Floquet performs better than TG with reasonable execution times,
much lower than those of ab-initio simulations. Moreover, choosing the proper
simulation parameters, it can reproduce experimental results with a certain degree
of reliability. This allows to think big and imagine to embed EE-BESD-PAT in a
circuit level simulator for fast prototyping of ‘molecular’ photonic circuits. This
can be the goal of a future work on this topic.

Another advantage of having implemented EE-BESD-PAT is that I rewritten
EE-BESD in terms of non-equilibrium Green’s functions, therefore others models
based on NEGF could be implemented without too much effort. On the other hand,
some works should be done to understand how the simulation parameter UAC can
be modeled in a more physical way. In particular, future works should focus on the
analysis of the plasmonic response of the junction, including the effects that the
molecule has on the field amplification. Furthermore, the polarization of the field
should be taken into account when computing UAC , hence it must be included in
EE-BESD-PAT. Lastly, an additional study must be done to understand better the
time-dependent approach adopted by M. Galperin in [49] and [56] used to study
non time-periodic perturbation. This approach can be useful if we want to consider
general optical input signals, but it is not clear yet if the execution time is short
enough for fast design applications.
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Appendix A

Dirac formalism

This appendix has the goal to briefly review Dirac formalism in order to understand
better the reasoning of section 2.3. The following discussion is mainly based on the
lectures notes of course “Quantum physics” taught by professor V. Penna in 2018
at Politecnico di Torino, but also on chapter 4 of Datta’s book [40].

In the Schrödinger picture of quantum mechanics the solutions of the Schrödinger
equation, hence the wave functions, belong to the space of square integrable
functions L2(V ) where V is the ambient space. Any normalized state of L2(V )
represents a wave function describing the initial state of a system or a possible
physical state at some time t. Since the wave functions respect the properties
of a linear space, L2(V ) has the structure of a vector space. Therefore, a linear
combination of wave functions still belongs to L2(V ), that means superposition
principle is valid. Similarly to what is done in linear algebra, we can introduce a
basis set of functions whose linear combinations allow to span the whole L2(V ). To
express a wave function in terms of basis functions is necessary to define a scalar
product of the functions in L2(V ). It assumes the following form:

(ψ, ϕ) =
Ú

V
ψ(x⃗)∗ϕ(x⃗) dx⃗ (A.1)

Then a system of orthonormal functions {ψk, k = 1,2, . . . ,∞} is defined by:

(ϕn, ϕi) =
Ú

V
ϕn(x⃗)∗ϕi(x⃗) dx⃗ = δn,i (A.2)

Note that a discrete index is considered for simplicity, even if it is also common
to have physical systems described in terms of basis with a continuous index. A
basis set is said complete if any function in L2(V ) can be represented in terms of
its Fourier series obtained with the basis functions:

ψ(x⃗) =
Ø

k

ckϕk(x⃗) , ck = (ϕk, ψ) (A.3)
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Dirac formalism

Therefore each wave function can be identified with an infinite sequence of numbers
c1, c2, . . . , cn, . . . that can be viewed as the vectorial components of ψ with respect
to the chosen basis set. This suggests that there exists a one to one correspondence
between L2(V ) and an infinite-dimensional vector space, that is called Hilbert
space (H), whose vectors have finite form and are defined over a complex field.
This suggestion has been proved with the fundamental theorem of Fisher-Riesz. It
states that given an arbitrarily chosen sequence c1, c2, . . . , cn, . . ., such that

∞Ø
k=0
|ck|2 <∞ (A.4)

it is a necessary and sufficient condition to ensure the existence of a function
ψ ∈ L2(V ) or an equivalent ‘abstract’ vector |ψ⟩ ∈ H, having projections over the
elements of a complete orthonormal basis set equal to ck.

ψ =
Ø

k

ckϕk ⇔ |ψ⟩ =
Ø

k

ck |k⟩ (A.5)

The vectors |k⟩ are basis vectors of the Hilbert space and are labeled by the
corresponding index k. In the Dirac formalism physical states are represented
by vectors in the Hilbert space since there is a direct correspondence with wave
functions thanks to Fisher-Riesz theorem. The notation used to indicate vectors is
a little different from the usual one. Infinite dimensional row vectors are called ‘bra’
and are indicated by ⟨a|, while infinite dimensional column vectors are called ‘ket’
and are indicated by |b⟩. Since they are defined over a complex field, the scalar
product in H is defined in this way exploiting the convention introduced by Dirac:

⟨a|b⟩ =
Ø

k

a∗
kbk = (ψa, ψb) (A.6)

where the last equality represents the equivalence between the scalar product
defined in H with the one defined in L2(V ). It is worth underline that a ket vector
can be transformed in its dual bra form by doing

|a⟩ =
Ø

k

ak |k⟩ ⇒ ⟨a| =
Ø

k

a∗
k ⟨k| (A.7)

For what concerns physical operators, in the Dirac picture they are represented
by matrices. The matrix elements of a given operator O are computed in the
Schrödinger picture as:

O ⇒ Oij = (ϕi,Oϕj) =
Ú

V
ϕi(x⃗)∗Oϕj(x⃗) dx⃗ (A.8)
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Dirac formalism

With Dirac formalism the elements are indicated by Oij = ⟨i|Õ|j⟩ whereas the
associated matrix is formally indicated by

Õ =
Ø

i

Ø
j

|i⟩Oij ⟨j| ⇒ (A.9)

⟨i|Õ|j⟩ = ⟨i|
3Ø

m

Ø
n

|m⟩Omn ⟨n|
4
|j⟩ =

Ø
m

Ø
n

⟨i|m⟩ü ûú ý
δi,m

Omn ⟨n|j⟩ü ûú ý
δn,j

= Oij (A.10)

There are two important properties that relates physical operators with matrices:

• If the physical operator O is Hermitian, the corresponding matrix Õ is Hermi-
tian, therefore corresponding eigenvalues are real.

• If the chosen basis functions are the eigenstates of O, the corresponding matrix
in this basis would be diagonal with entries equal to the eigenvalues of O.

Another important consequence of using abstract vectors is that two vectors
expressed in two independent bases, B and B′, correspond to the same physical
state if their squared norm is equal:

⟨ψ|ψ⟩ =
Ø

k

|ck|2 =
Ø
k′
|ck′|2 = ⟨ψ′|ψ′⟩ (A.11)

Therefore the vectors |ψ⟩ and |ψ′⟩ correspond to the same state even if expressed
with different basis vectors. There exists a class of transformations, called unitary
transformations, that allows to move from one basis to another, i.e. allows to change
representation of vectors, preserving the norm. This ensures that the probabilistic
interpretation is maintained even if the basis is changed. The mathematical object
that connects the projections over a basis B with the ones of a new basis B′ is
a matrix that satisfies the unitary condition S̃S̃† = S̃†S̃ = I, where S̃† is the
adjoint (conjugate transpose) of S̃ and I is the identity matrix. The elements of S
represents the projection of the new basis vectors, |n′⟩, over the old ones, |m⟩ , and
are computed as

Smn′ = ⟨m|n′⟩ (A.12)

Then, the new basis vectors can be expressed exploiting the unitary matrix

|n′⟩ =
Ø
m

Smn′ |m⟩ (A.13)

Exploiting this relation, is possible to transform the vector components of |ψ⟩ in
the old basis B into the ones of the new basis B′.

cn′ =
Ø
m

S†
nmcm , cm =

Ø
n′
Smn′cn′ (A.14)
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Knowing how basis vectors and components change from one basis to another is
possible the express the transformation of vector |ψ⟩:

|ψ⟩ =
Ø
m

cm |m⟩ =
Ø
m

3Ø
n′
Smn′cn′

4
|m⟩ =

Ø
n′
cn′

3Ø
m

Smn′ |m⟩
4

ü ûú ý
|n′⟩

=
Ø
n′
cn′ |n′⟩

(A.15)
The transformation of vectors is said to have a covariant character since the
transformation is the same of the basis vectors where the matrix S̃ is directly
involved.

Also physical operators change from one basis to another since the basis vectors
used to compute the matrix elements are different. The elements in the new basis
are obtained exploiting again eq. A.13:

Om′n′ = ⟨m′|Õ′|n′⟩ =
Ø
i,j

⟨m′|i⟩ ⟨i|Õ|j⟩ ⟨j|n′⟩ ⇒ (A.16)

Õ′ = S†ÕS (A.17)

The discussion above supplies the main tools to deal with Dirac formalism and
understand Floquet model described in section 2.3.
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Proof of equation 2.122

The starting point to prove eq. 2.122 is the general expression of current when
scattering mechanisms are considered. Indeed in these cases current exiting from
the central region through contact α is expressed by eq. 2.28, that is reported here
below.

Iα = 2e
h

Ú +∞

−∞
Tr[Σ<

α (E)G>(E)− Σ>
α (E)G<(E)]dE

Since eq. 2.122 represents only the photocurrent due to absorption events, the
first step is to rewrite the lesser and greater Green’s function using equations
2.116, 2.117 and 2.118, that are the one implemented in QuantumATK. Since only
absorption is considered, there would not be in the derivation terms proportional
to N + 1.

Writing explicitly the interacting Green’s functions, we can distinguish a term
referred to the dark current and a term corresponding to photocurrent. Considering
just the trace argument, it will change as follows (the energy dependence is not
expressed for simplicity):

Σ<
αG

> − Σ>
αG

< = (B.1)
Σ<

α

è
GR

0 (Σ>
α + Σ>

ph)GA
0

é
− Σ>

α

è
GR

0 (Σ<
α + Σ<

ph)GA
0

é
= (B.2)

Σ<
αG

R
0 Σ>

αG
A
0 + Σ<

αG
R
0 Σ>

phG
A
0 − Σ>

αG
R
0 Σ<

αG
A
0 − Σ>

αG
R
0 Σ<

phG
A
0 = (B.3)

Σ<
αG

>
0 − Σ>

αG
<
0ü ûú ý

Iα,dark

+ Σ<
αG

R
0 Σ>

phG
A
0 − Σ>

αG
R
0 Σ<

phG
A
0ü ûú ý

Iα,ph

(B.4)

It is clear that in the last equation the first two terms would be the trace argument
to compute the dark current whereas the last two are the terms used to compute
the photocurrent. The latter can be developed by expressing the self-energies Σ≶

ph

and Σ≶
α considering only absorption and exploiting fluctuation-dissipation theorem.

For brevity, in the following I will indicate with E± = E ± ℏω the energy shifted
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Proof of equation 2.122

by one energy quanta. Therefore the trace argument to compute the photocurrent
becomes:

Σ<
α (E)GR

0 (E)Σ>
ph(E)GA

0 (E)− Σ>
α (E)GR

0 (E)Σ<
ph(E)GA

0 (E) (B.5)
ifα(E)Γα(E)GR

0 (E)
è
NM †G>

0 (E+)M
é
GA

0 (E)−

i(fα(E)− 1)Γα(E)GR
0 (E)

è
NMG<

0 (E−)M †
é
GA

0 (E) =
(B.6)

ifα(E)Γα(E)GR
0 (E)

è
NM †G>

0 (E+)M
é
GA

0 (E)−

i(fα(E)− 1)Γα(E)GR
0 (E)

è
NMG<

0 (E−)M †
é
GA

0 (E)
(B.7)

Now, expressing the non-interacting G≶
0 we would be able to identify the spectral

function and its time reversed version. Moreover, G≶
0 will depend to both contacts

since it is related to Σ≶
C = Σ≶

C1 + Σ≶
C2. Instead of writing everything, a summation

over contact β ∈ {C1, C2} is inserted.

ifα(E)Γα(E)GR
0 (E)NM †

C Ø
β∈{C1,C2}

GR
0 (E+)Σ>

β (E+)GA
0 (E+)

D
MGA

0 (E)−

i(fα(E)− 1)Γα(E)GR
0 (E)NM

C Ø
β∈{C1,C2}

GR
0 (E−)Σ<

β (E−)GA
0 (E−)

D
M †GA

0 (E) =

(B.8)

ifα(E)Γα(E)GR
0 (E)NM †

C Ø
β∈{C1,C2}

GR
0 (E+)i(fβ(E+)− 1)Γβ(E+)GA

0 (E+)
D
MGA

0 (E)−

i(fα(E)− 1)Γα(E)GR
0 (E)NM

C Ø
β∈{C1,C2}

GR
0 (E−)ifβ(E−)Γβ(E−)GA

0 (E−)
D
M †GA

0 (E) =

(B.9)
Moving the summation over β at the beginning and using the minus sign coming
from i2, we can rewrite the trace argument. Moreover, exploiting the invariance of
trace for cyclic permutations, we can move Γα(E) and GR

0 (E) at the end on the
argument. The final result is the following:
Ø

β∈{C1,C2}

C
fα(E)(1− fβ(E+))NM † GR

0 (E+)Γβ(E+)GA
0 (E+)ü ûú ý

Aβ(E+)

M GA
0 (E)Γα(E)GR

0 (E)ü ûú ý
Ãα(E)

−

(1− fα(E))fβ(E−)NM GR
0 (E−)Γβ(E−)GA

0 (E−)ü ûú ý
Aβ(E−)

M † GA
0 (E)Γα(E)GR

0 (E)ü ûú ý
Ãα(E)

D

(B.10)
In the equation above we have identified the spectral functions that are expressed
in eq. 2.122. The last step is to define the transmission coefficients T±

α,β. This is now
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Proof of equation 2.122

easy since is enough to put inside the trace operator what we have just derived.

T+
α,β(E) = N Tr

è
M †Aβ(E+)MÃα(E)

é
(B.11)

T−
α,β(E) = N Tr

è
MAβ(E−)M †Ãα(E)

é
(B.12)

Lastly, we can use these transmission coefficients to evaluate the photocurrent:

Iα,ph = 2e
ℏ

Ú +∞

−∞

Ø
β∈{C1,C2}

fα(E)
è
1− fβ(E+)

é
T+

α,β(E)−
è
1− fα(E)

é
fβ(E−)T−

α,β(E)dE
(B.13)

The sign of the two terms are opposite with respect to eq. 2.122 because I have
assumed an opposite convention. Here the current is going from the device region
towards the contact whereas in eq. 2.122 the current is going from the contact to
the central region. However, the magnitude of the induced photocurrent is the
same and this concludes the proof of eq. 2.122.
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