
POLITECNICO DI TORINO
Master of Science in Computer Engineering

Master’s Degree Thesis

Startup performance analysis
and optimization of an Android

banking application

Supervisor
prof. Fulvio CORNO

Candidate
Dario Piazza

Company Tutor
Alessandro ROTA

December 2021

This work is subject to the Creative Commons Licence

Contents

List of Tables 7

List of Figures 8

1 Introduction 11
1.1 Context of the thesis . 11

1.1.1 State of the art . 12
1.2 Goal of the thesis . 13
1.3 Structure of the work . 14
1.4 Importance of application startup 14

2 Application startup 17
2.1 Creation of the application process 17

2.1.1 The main thread . 19
2.1.2 Activity lifecyle . 19
2.1.3 Different states of application start 20

Cold start . 20
Warm start . 21
Hot start . 21

2.2 Layout in Android . 21
2.2.1 Inflating a layout . 22
2.2.2 Common UI components in Android 23

LinearLayout . 23
FrameLayout . 23
RelativeLayout . 23
ConstraintLayout . 24
ListView . 24
RecyclerView . 24
WebView . 25

3

Custom View . 25
2.2.3 How Android draws the UI 25

2.3 Common problems in application startup 26
2.3.1 Blocking the Main thread 26
2.3.2 Heavy initialization of the Application 27
2.3.3 Complex Activity initialization 28

Large layouts inflation 28
Double taxation . 28

2.3.4 Heavy deserialization 29
The JSON format . 30
Serialization . 30
Deserialization . 31

3 Tools 33
3.1 Android Profiler . 33

3.1.1 CPU profiler . 34
Call chart . 35
Flame chart . 35
Top down and Bottom up 36

3.1.2 Memory profiler . 37
Heap and heap dump 37
Garbage collector . 37

3.1.3 Energy Profiler . 37
3.1.4 Network profiler . 38

3.2 System Tracing . 38
3.2.1 Systrace . 38
3.2.2 Perfetto . 38
3.2.3 System tracing app . 39
3.2.4 Perfetto UI . 39

3.3 Logcat . 41
3.3.1 Script for multiple runs 43

3.4 Firebase Performance Monitoring 43
3.5 Android Vitals . 45
3.6 Android Studio Layout Inspector 46

4 Mobile Banking application 49

4

5 Layout Analysis 51
5.1 Application structure . 51
5.2 First analysis of a system trace 53
5.3 Identify problems . 55

5.3.1 Analysis of welcome_layout.xml 55
Savings layout . 55

5.3.2 Analysis of fragment_home_page.xml 56
AdvertisementWebView 57
Home page progress . 58
Sliding panel . 60

5.3.3 Analysis of common_fragment_container.xml 63
User banner . 63
Promotional message 64

5.4 Proposed solutions . 65
5.4.1 Savings layout . 65
5.4.2 AdvertisementWebView 66
5.4.3 Home page progress . 66
5.4.4 User banner . 67
5.4.5 Sliding panel . 67
5.4.6 Promotional message 69

6 App internal operations 71
6.1 Identify problems . 71

6.1.1 Decryption . 71
6.1.2 Deserialization . 72

Activity creation - Savings 72
Cache Handler . 73
Get user information 75

6.2 Proposed solutions . 77
6.2.1 Decryption . 77
6.2.2 Deserialization . 77

Activity creation - savings 77
Cache Handler . 79
Get user information 80
Changing deserialization approach 81

7 Comparison of initial and final launch time of the application 85
7.1 Data collection . 85

7.1.1 Version of the application 85

5

7.1.2 Devices . 87
7.1.3 Method . 87

7.2 Results . 88

8 Conclusions and future directions 91
8.1 Conclusions . 91
8.2 Future directions . 92

6

List of Tables

1.1 Table listing the distribution of OS API level for Android de-
vices using the Mobile Banking app and the corresponding
average launch time. Versions with a diffusion <1% have not
been reported, . 12

1.2 Mobile Banking app startup time percentile distribution. . . 13
7.1 Table listing the devices used for launch performance collection. 87
7.2 Table reporting the initial and final launch times statistics for

different devices. The values are expressed in milliseconds. . . 88

7

List of Figures

2.1 Stages of app launch from user click to activity launch. Source:
Android Application Launch explained: from Zygote to your
Activity.onCreate() . 18

2.2 Operations performed in case of COLD, WARM and HOT start. 19
2.3 Example of layout hierarchy in Android.

Source: Android Developers - Layouts 22
2.4 Example of usage of LinearLayout ViewGroup.

Source: Android Kotlin Fundamentals: LinearLayout using
the Layout Editor . 23

2.5 Example of a JSON object. Comments, which are not allowed
in JSON format, are added in C-style for clarity. 30

3.1 Diagram of a call chart in Android Profiler.
Source: Inspect traces using the Call chart 35

3.2 Diagram of a call chart with identical call stacks in Android
Profiler.
Source: Inspect traces using the Flame Chart tab 36

3.3 Diagram of a flame chart in Android Profiler.
Source: Inspect traces using the Flame Chart tab 36

3.4 System trace showing the Mobile Banking app startup in Per-
fetto UI. 39

3.5 The interface of Android Studio Layout Inspector. 46
4.1 Home page of the application in the most common use case,

when the user agrees on remembering the login information
for future accesses. 50

5.1 Graph reporting the structure of the layout after the first
frame of the application is rendered. 52

5.2 perfetto trace captured at application launch, and displayed
in the Perfetto UI. 53

5.3 Slice details for the application startup in Perfetto UI. 53
5.4 Slice details capturing the execution before onCreate(). . . . 55

8

https://medium.com/android-news/android-application-launch-explained-from-zygote-to-your-activity-oncreate-8a8f036864b
https://medium.com/android-news/android-application-launch-explained-from-zygote-to-your-activity-oncreate-8a8f036864b
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/codelabs/kotlin-android-training-linear-layout?hl=tr#3
https://developer.android.com/codelabs/kotlin-android-training-linear-layout?hl=tr#3
https://developer.android.com/studio/profile/cpu-profiler#call_chart
https://developer.android.com/studio/profile/cpu-profiler#flame_chart
https://developer.android.com/studio/profile/cpu-profiler#flame_chart

5.5 Welcome view layout in the landing page as seen in Layout
Inspector. 55

5.6 Detail of trace showing the impact of loading the moneybox
layout component. 56

5.7 perfetto Startup section showing the impact of the WebView. 57
5.8 AdvertisementWebView hierarchy as reported in the Layout

Inspector tool. 57
5.9 Progress indicator view hierarchy as displayed in Layout In-

spector. 58
5.10 Inflation details for the progress_indicator component. . . . 59
5.11 Expanded panel with multiple elements inside a RecyclerView. 60
5.12 Section showing the time to inflate the RecyclerView. 61
5.13 Structure of the elements of the RecyclerView as shown in

Layout Inspector. 61
5.14 View hierarchy of the Sliding panel. 62
5.15 Detail of trace showing the section corresponding to setDragView. 62
5.16 View hierarchy of the banner for user banner. 63
5.17 Trace detail for the user_banner component. 63
5.18 Elements of the PromotionalLayout view hierarchy. 64
5.19 Trace detail for the PromotionalLayout component. 65
5.20 perfetto trace after removing the WebView 66
5.21 Detail of delayed inflation of the landing page progress. 66
5.22 RecyclerView inflation time after modifications. 68
5.23 Detail of system trace showing the section corresponding to

onFinishInflate after setting the drag view in XML. 68
6.1 Trace showing the high number of invocations of the decryp-

tion function. 72
6.2 Trace showing the impact of deserialization inside the onViewCreated()

lifecycle callback. 73
6.3 Call chart of the CacheHandler class initialization. 73
6.4 Flow chart showing the execution flow of the invalidate()

method. 74
6.5 perfetto trace showing the execution of the Application onCreate

method. 75
6.6 getUser details in the Android Studio profiler. 76
6.7 isPremiumUser details in the Android Studio profiler. 76
6.8 Trace showing the time spent for decryption operation when

caching the output for identical data. 77

9

6.9 Diagram reporting the execution flow for the moneybox dese-
rializaion. 78

6.10 Trace showing the impact of avoiding deserialization of the
Savings object when not needed 78

6.11 perfetto trace showing the execution of the invalidate method
after reading only the expiry date field. 80

6.12 perfetto trace capturing the aggregated duration of deserial-
ization operations after applying the modifications suggested
in section 6.2.2. 81

6.13 Call chart showing the jackson module used for deserialization. 82
6.14 perfetto trace capturing the deserialization impact after adopt-

ing the mixed Streaming API - ObjectMapper approach. . . . 82

10

Chapter 1

Introduction

Mobile banking apps are applications that are developed expressly for a cer-
tain bank, to allow the customers to access most of the services provided by
the bank using a mobile device, like a smartphone or a tablet. Also con-
sidering the increasing usage of such devices, these kinds of applications are
becoming more and more diffused. In fact, a study conducted by DataProt
in 20201 has shown that "86.5% of Americans used a mobile device to check
their bank balance in 2020".

However, to guarantee a high level of security to the users, the implemen-
tation logic of these applications can become very complex, and the large
number of instructions that need to be executed can compromise the perfor-
mance of the application itself.

For this reason, it is necessary to identify the critical sections in terms of
time required to be completed, discuss possible improvements, and propose
a solution to adopt them, while keeping the functionalities of the application
intact

1.1 Context of the thesis
This work focuses on the analysis of the performance at launch time of a
famous mobile banking Android application (it will be referred to as Mobile
Banking), with more than 5.000.000 downloads on the Play Store. The app
allows the customers to execute several operations related to banking account
management like accessing their bank account, executing wire transfers and

1Mobile Banking Statistics That Show Wallets Are a Thing of the Past

11

https://dataprot.net/statistics/mobile-banking-statistics/

1 – Introduction

managing users’ credit cards, directly from their smartphone.

1.1.1 State of the art
The choice of focusing on the application launch phase derives from a study
of the company of the Mobile Banking application, that highlights long
startup times from users’ activity. Since the app is so popular, there is a great
variety in the devices on which the application is installed, both in terms of
recentness and also hardware features. In table 1.1 it is possible to observe
the distribution of the Android OS API level for the devices using theMobile
Banking application, as well as the average launch time registered in the
corresponding devices (data are taken from the Firebase Performance
monitoring console, whose details will be presented in section 3.4):

OS API level Release date[12] % of devices Avg. launch time
29 03/09/2019 34.84% 2.99s
30 03/09/2020 33.64% 2.26s
28 06/08/2018 16.39% 4.49s
26 21/08/2017 6.7% 5.26s
24 22/08/2016 2.68% 7.34s
27 05/12/2017 2.51% 5.91s
23 02/10/2015 1.55% 14.98s

Table 1.1. Table listing the distribution of OS API level for Android devices
using the Mobile Banking app and the corresponding average launch time.
Versions with a diffusion <1% have not been reported,

Even though the release date of the OS version does not necessarily im-
plies that the device is older (in this case its system may have been updated
subsequently) or newer (the device was released after the OS release date)
the table gives an idea of the different devices that are used. However, the
performance of devices running more recent OS API levels are not always
better than older ones, as the hardware support of the smartphone is deter-
minant. Unfortunately, the details about the hardware characteristics of the
devices are not available.

In table 1.2, instead, are reported the percentile information about the app
startup time, as retrieved from the Firebase Performance Monitoring
platform:

12

1.2 – Goal of the thesis

Percentile Startup time
50 % (median) 3.11s

75% 4.67s
85% 5.76s
90% 6.86s
95% 9.45s

Table 1.2. Mobile Banking app startup time percentile distribution.

It is possible to notice that the high number and variety of devices running
the application is also reflected on the time needed to launch the application
in a COLD state (meaning that no information about the app are already
present in memory, so this is the worst-case scenario, for details see section
2.1.3). Even though the way in which the Firebase Performance Mon-
itoring tool registers the startup time of the app is slightly different from
the one that will be used throughout this work2, these metrics allows us to
understand that a reasonable startup time (below 5s, according to Android
Vitals, see section 3.5 documentation for details) is registered for approxi-
mately 80% of devices, while the remaining 20% of users is likely experiencing
what is defined a slow COLD start.

TheMobile Banking company recognized that a slow startup can reduce
customers’ satisfaction and negatively impact their business. From here, the
idea of carrying out a deeper analysis of the performance of the application
at launch time.

1.2 Goal of the thesis
The goal of the thesis is to employ the tools available for the performance
analysis of Android applications to identify possible issues in the Mobile
Banking app, that negatively affect its launch time. For most of the prob-
lems discovered through this analysis, a potential solution will be presented
and implemented. The final objective of this work is to show that, by fol-
lowing the correct guidelines and solving the performance problems found by
utilizing the tools, the time required to launch the application from scratch

2for details on Firebase Performance Monitoring start time refer to this link, while the
one we will be considering is presented in section 2.1.

13

https://firebase.google.com/docs/perf-mon/app-start-foreground-background-traces?platform=android#app-start

1 – Introduction

can be significantly reduced, considering not only high-end devices, but also
less performing ones.

1.3 Structure of the work
In the first sections of this document, it will be presented an overview of
the operations that are performed by the Android operating system when
launching an Android application. After this introduction, the thesis will
illustrate which are the most common factors that can influence the startup
of an Android application and the tools that are available to analyze the
performance of the app.

Subsequently, this work will consider the problems presented in the afore-
mentioned sections in the context of theMobile Banking application, high-
lighting how they are identified and the impact they have on the performance
at launch time. For the critical points discovered through the analysis a so-
lution will be proposed and, whenever possible, implemented. In this case it
will also be shown how the suggested approach influence the startup time of
the application.

The final sections will be dedicated to the comparison of the application
launch time between the initial state of the software and the version including
the proposed modifications, considering different kinds of devices. The results
obtained will be analyzed and discussed in the final chapter.

1.4 Importance of application startup
One of the most important aspects of a mobile application is its responsive-
ness and, in particular, how fast it is in allowing users to perform the desired
operations. For this reason, starting from the first usage, users expect the
application to be launched quickly, otherwise, the experience can be frus-
trating and it can bring them to uninstall the app right away or publish a
negative review on the Play Store. In fact, a survey conducted by Statista
Research Department from 2010 to 2019, showed that the mobile application
abandonment rate after the first usage is nearly 25%[2]. This is also due to
the fact that, nowadays, the number of applications that are released every
month on the App stores is in the order of hundreds of thousand 3, and the

3Statista Research Department study - 2021

14

https://www.statista.com/statistics/1020956/android\protect \discretionary {\char \hyphenchar \font }{}{}app\protect \discretionary {\char \hyphenchar \font }{}{}releases\protect \discretionary {\char \hyphenchar \font }{}{}worldwide/

1.4 – Importance of application startup

competition among companies that offer similar products is fierce.
Therefore, it is likely that users that give up on using a certain application

will try to switch to a similar one that offers comparable functionalities, but
better performance.

On the other hand, applications whose performance satisfies users’ ex-
pectations play a major role in brand promotion and recognition. In fact,
Google’s analysis on Play Store reviews has shown that "when leaving a 5-
stars review, 73% of users mention speed, design, and usability" [10]. In
addition to that, a 2019 survey from Apptentive4 focuses on the importance
of positive reviews on the app store, showing that "77% of percent of respon-
dents reported that they read at least one review before downloading a free
app".

Moreover, if reviews and stars on the app stores are related to users’
judgment, and they are subjective, there are metrics automatically collected
when using an application showing how the software performs in an unbiased
way. As a matter of fact, Google included Startup Time among the metrics
available on the Android Vitals platform, which is a tool whose goal is to
monitor the most important characteristics for a released Android applica-
tion, in order to identify possible issues and improve the current version. In
particular, concerning the launch time of an app, the platform alerts the de-
velopers when detecting slow startup performance. The technical details of
such tool will be discussed in section 3.5, but the key point is that achieving
good results in the different aspects considered by the platform will result in
raising the ranking of the application when performing a research on the Play
Store, giving more visibility to the product and increasing the possibility of
attracting new users.

4How to Improve App Ratings and Reviews

15

https://www.apptentive.com/blog/2019/08/22/improve-mobile-app-ratings-and-reviews/

16

Chapter 2

Application startup

To understand the factors that influence the most the launch time of an appli-
cation, it is necessary to first explain which kind of operations are performed
when an Android application is started.

2.1 Creation of the application process
In the diagram reported in figure 2.1 we can observe the different steps that
are performed by the Android system after the user taps on the application
icon (launcher):

1. The system creates an Intent, which contains the information about
the desired application;

2. The Activity Manager Service starts a new process that will deliver
the Intent to the Zygote process. The Zygote process is a special
process that "starts when the system boots and loads common framework
code and resources"[4] (like framework classes and shared libraries);

3. The Zygote forks a new process whose main thread is the Activity
Thread. The aforementioned Zygote initialization allows to reduce the
total startup time without the need to instantiate objects that are com-
mon to the Android framework. The main thread has also an associ-
ated Looper which is in charge of processing messages posted on its
MessageQueue and perform the corresponding actions;
After forking the Zygote process, the system waits until the Application
process is created, this event will be signaled via IPC (Inter Process
Communication).

17

2 – Application startup

Figure 2.1. Stages of app launch from user click to activity launch.
Source: Android Application Launch explained: from Zygote to your
Activity.onCreate()

4. When the system is notified that the Application process is created,
it makes an IPC call to ActivityThread.bindApplication() on the
ActivityThread. This will cause themain thread to load the APK and
instantiate the Application object through the onCreate() method;

5. After the application is created, the Activity corresponding to the
Intent is created and, subsequently, started;

It is easy to notice that the events occurring until bindApplication() is
called are automatically executed by the system and, and there is not much
the developers can do to optimize this process. However, starting from the
above mentioned method, app-specific information are processed and that’s
the point in which app startup monitoring should start.

We will observe this process more in details when analyzing the system
trace of theMobile Banking application startup (see section 5.2 for details).

18

https://medium.com/android-news/android-application-launch-explained-from-zygote-to-your-activity-oncreate-8a8f036864b
https://medium.com/android-news/android-application-launch-explained-from-zygote-to-your-activity-oncreate-8a8f036864b

2.1 – Creation of the application process

2.1.1 The main thread
After having created the Application object, the system will launch the so-
called main thread of the application, that will be responsible for handling
most of the events happening when interacting with the app, like input
events, or drawing the user interface. For example, when the user presses a
button (corresponding to an input event), this action will be inserted into an
event queue, whose events will be processed by the Main thread according
to the order of insertion, meaning that a block of code cannot be executed
until the previous one in the queue is completed.

2.1.2 Activity lifecyle
In the previous section have been explained the steps up to the creation of
the Activity. In this paragraph, instead, will be presented the details of the
Activity class lifecycle, that are useful to understand the different ways in
which an Android application can be launched.

The Activity class offers a set of callbacks that allow the developer to
observe changes in the status of the Activity itself, we will focus on three
of them: onCreate() , onStart() and onResume().

Figure 2.2. Operations performed in case of COLD, WARM and HOT start.

In the figure above, we can observe that after the creation of the Application
object, the system sequentially executes the methods related to the Activity
instance:

1. onCreate(): it is the first callback that gets executed when the system
creates the Activity object. In this method, the developer typically
embeds the initialization logic related to the specific activity, like loading
information from previous activities, or inflating the layout associated

19

2 – Application startup

to it. More details about layouts in Android will be discussed in section
2.2;

2. onStart(): the activity enters the STARTED state, and the app pre-
pares it to be brought to the foreground. At the end of this callback,
the Activity enters in the RESUMED state;

3. onResume(): the Activity here becomes available to the user to interact
with it.

2.1.3 Different states of application start
Although the diagram in figure 2.2 represents all the main operations that
can be performed upon application launch, some of them may be skipped.
In fact, an application can be started in three different ways:

• Cold start

• Warm start

• Hot start

Cold start

As we can observe in Figure 2.2, in the case of a Cold start the application
must perform more operations compared to the Hot and Warm start. In
such scenario the application object has not been created by the system, yet.
This usually happens when the user launches the application for the first
time after installation, or they start the app after rebooting the device, or
simply after the application process has been killed by the system or the user
(for example by clearing recent activities). In this case there are no traces of
the application in memory, so everything must be performed from scratch.

Moreover, when the application is launched this way, the user is displayed
the default blank screen until the corresponding activity is completely drawn,
that can happen after several seconds. To mitigate the problem and offer
the users a more "pleasant" waiting, many application introduce a custom
themed launch screen showing, for example, the logo of the application
itself.

It is easy to notice that this is the worst-case scenario, because it is the
one that requires more time to be completed. For this reason, the thesis will
focus on the analysis of the application start in the case of a Cold start, since

20

2.2 – Layout in Android

it ensures that the application process will undergo the same operations upon
startup, and it also embeds the section of application startup that are likely
to slow down the launch of the application process.

Warm start

In the Warm start case, the application can skip some operations that are,
instead, performed on a Cold start. This happens when the application
has been recently used, sosome information about it still reside in mem-
ory. From 2.2 we can see that the process needs to start again from the
Activity.onCreate() method, avoiding, for example, the overhead caused
by the creation of the Application object.

Hot start

Finally, Hot start is the fastest one, because the process can avoid creating
bot the Application and the Activity object. This results in little overhead
and a feeling of immediate launch of the application.

2.2 Layout in Android
In section 2.1.2 it was mentioned that, when the Activity enters in the
CREATED state, the onCreate() callback gets executed, and usually it is
the place where the corresponding layout is processed. In this section, we
discuss the details of layouts in Android, as it will be necessary for under-
standing how a wrong implementation can lead to performance problems.

A layout defines the structure of the user interface in an Android appli-
cation. It follows a hierarchy that has the main components as branches,
and smaller ones as leaves. There are two types of elements in an Android
layout:

• View: a view represents a single element in the layout the user can
interact with, for example a text box or a button.
Also notice that a View can still be present in the layout, but it is not
visible to the user. In fact, the corresponding visibility attribute can
assume three values1:

1Android Documentation - View

21

https://developer.android.com/reference/android/view/View

2 – Application startup

– VISIBLE: the usual condition, the view is visible to the user;
– INVISIBLE: the view is not visible to the user, but it occupy some
space and it will be considered when positioning the other UI ele-
ments;

– GONE: the view is invisible and it is not considered when calculating
the position of other Views.

• ViewGroup: they are containers for multiple Views or other ViewGroups.
For example, grids and lists are kinds of ViewGroups.

A sample layout tree is represented in the figure below:

Figure 2.3. Example of layout hierarchy in Android.
Source: Android Developers - Layouts

Layouts can be defined either in a separate XML resource file or directly
specified in the Java/Kotlin code when creating, for example, the activity
that will host the layout. The first approach allows the developer to separate
in a clearer way the application logic from the presentation, and it also makes
it possible to reuse components across different screens/activities. However,
it is also possible to declare layouts in separate files and then customize them
at runtime.

2.2.1 Inflating a layout
It has already been presented that, usually, when the onCreate() callback
of an Activity gets executed, it generally includes the task of processing
the corresponding layout. This process is known as layout inflation and

22

https://developer.android.com/guide/topics/ui/declaring-layout

2.2 – Layout in Android

it means to: consider the desired XML resource file, parsing it to create
the Views and ViewGroups specified in the layout file and then adding the
processed sub-tree to the layout hierarchy.

2.2.2 Common UI components in Android
LinearLayout

The LinearLayout is a ViewGroup that is used to distribute children com-
ponents vertically or horizontally, by specifying the android:orientation
attribute. In the figure below it is reported an a simple example of a vertical
and horizontal LinearLayout:

Figure 2.4. Example of usage of LinearLayout ViewGroup.
Source: Android Kotlin Fundamentals: LinearLayout using the Layout Editor

FrameLayout

This kind of ViewGroup is usually adopted to either display child Views in a
stacked-way (for example a background image with a text area on top of it),
or to contain a single child and positioning it in the UI.

RelativeLayout

The RelativeLayout is a ViewGroup that allows to specify the position of
children View nodes with respect to each other (so, among siblings) or to the
parent view (the RelativeLayout itself). However, the Google Developers
team suggests to use ConstraintLayout for optimized performance instead
of RelativeLayout.

23

https://developer.android.com/codelabs/kotlin-android-training-linear-layout?hl=tr#3

2 – Application startup

ConstraintLayout

This ViewGroup can be employed to generate complex layouts, by lever-
aging the "constraints" of View objects relatively to siblings or the parent
ConstraintLayout, similarly to the RelativeLayout. However, it is simple
to use, as it is well integrated in the Android Studio ID and it also "pro-
vides similar functionality to RelativeLayout, but at a significantly lower
cost".[6].

ListView

It is similar to the LinearLayout, but this ViewGroup is used when there are
more elements the user may scroll (e.g. a home page in a social network) and
only allows to arrange child elements vertically. Since the number of descen-
dant components is determined ad runtime, this layout needs an Adapter
that is used to specify the characteristics that children have, instructing the
ListView on the number of the elements and how to correctly display them.

However, the current state of the art for dynamically-generated content is
the RecyclerView2.

RecyclerView

Similarly to the ListView, this layout is used to display scrollable list of
elements whose appearance and number is determined at runtime. Unlike
the ListView, though, it allows to distribute children components also hori-
zontally, or in a grid-style layout.

Additionally, the RecyclerView offers performance improvement over the
ListView as elements that are no more visible (for example due to the
scrolling of the UI) are not destroyed, but rather re-used in order to mini-
mize the overhead required to update the interface and populating it with
new components.

Also in this case, the Adapter is in charge of specifying the number of
elements and the content of the RecyclerView. Another important element
in this kind of ViewGroup is the ViewHolder, which acts like an interface
between the Adapter and the View that will be associated to an item in the
list. There are three methods that need to be implemented when using a
RecyclerView:

2ListView - Android Developer Reference

24

https://developer.android.com/reference/android/widget/ListView

2.2 – Layout in Android

• onCrateViewHolder: here it is specified which layout is going to be
associated to the children components (the ViewHolder);

• onBindViewHolder: after the desired layout for the children has been
determined, it needs to be populated with data that are specific for each
item in the list (e.g. the name of the contact in case it is an address
book, or the corresponding avatar image).

• getItemCount(): this method is needed to instruct the RecyclerView
on the number of elements, since it can also be modified at runtime (for
example, adding a contact in the address book).

WebView

This particular type of View allows to display a web page inside the interface
of an Android application. After having inflated this component, the desired
web page can be loaded using the loadUrl() method, that receives as a
parameter a String corresponding to the address of the web resource.

Custom View

Although the Android framework offers several predefined components to
build the user interface, like the ones previously presented in this section,
there are cases in which the developer might need to define its own View to
meet their needs (for example a custom animation, or a layout that would be
difficult to achieve otherwise) these kind of components are called Custom
Views.

To obtain the desired effects, it is up to the developer to define the way
in which the Custom View is drawn, by specifying its behaviour through the
callback methods made available by the View class, like onMeasure() and
onDraw(), which will be discussed in the next section.

2.2.3 How Android draws the UI
Even though the layout shown in 2.3 is a simple one, it is easy to understand
that the view hierarchy of the application can become quite deep, as compo-
nents can embed other ones and additional elements can also be injected at
runtime. This allows the programmer to create very complex and detailed
interfaces ,however, the deeper a hierarchy is, the more likely it is to cause
a performance overhead, due to the way the Android framework draws the
interface.

25

2 – Application startup

In fact, for each sub-tree of the layout, the framework needs to perform
three operations, starting from the top of the hierarchy:

1. Measure: the application traverses the tree in a top-down way. During
this phase each View (or ViewGroup) determines the dimensions for itself
(and for its children, in case of a ViewGroup) in a recursive way. Notice
that a parent View may call measure() more than once on its children.
This happens when there are many sub-components, or child Views do
not specify the exact desired dimension, so a compromise between chil-
dren’s request and available space must be found;

2. Layout: also in this case the process performs a top-down traversal
of the tree to position each child on the screen, using the information
obtained during the previous stage;

3. Draw: after both the position and the dimension are established, the
view is drawn on the screen.

2.3 Common problems in application startup
In this section will be presented the most common issues that can be observed
when analyzing the startup performance of an Android application. It is
convenient to classify them into two categories:

• layout (related to graphical aspect of the application)

• internal operations not related to visual components.

2.3.1 Blocking the Main thread
We have previously presented the role of the main thread in section 2.1.1, and
it is simple to notice that, since the main thread is unique in the application
context, it is important to avoid keeping it busy in performing long-lasting
operations, because otherwise it won’t be able to process other events and
interactions coming from user activity. Moreover, as the access to UI compo-
nents is not thread-safe (meaning that trying to modify an element of the user
interface from other threads can lead to concurrency problems), performing
modifications on the UI should only occur from the main thread. It follows
that, if the main thread must process too much information, drawing events
(and so visual updates on the screen) cannot be processed by the system,

26

2.3 – Common problems in application startup

causing the user interface to appear blocked and not responsive. If the UI
remains "frozen" for more than 5 seconds, the system displays the well-known
ANR (Application Not Responding) dialog, asking the user if they want to
wait for the application to (try to) complete the operations causing this stall
or immediately close it.

In the next sections, we will analyze which are the most common op-
erations that can keep the main thread busy and that are critical for the
application startup phase.

2.3.2 Heavy initialization of the Application
As we have discussed in section 2.1, after the application process is created,
it becomes responsible for instantiating the Application object, and this
is achieved by executing the Application.onCreate() method. Note that
this step is needed only when the application is launched in a COLD start
scenario, as this overhead is avoided in WARM and HOT start cases.

While in simple applications the system performs the application initial-
ization automatically, and the process is transparent to the developer, in the
case of more complex apps, the Application object may need to be cus-
tomized to perform some operations that will influence the entire application
flow. In fact, since the code embedded in the onCreate() method is going
to be executed at the beginning of the application lifecycle, it is a suitable
place to include initialization logic, not only for our application, but also for
third-party libraries and SDKs (Software Development Kit is a collection
of software tools that can be embedded into an application to provide a set
of functionalities: for example Firebase Performance Monitoring, that
will be presented in section 3.4, offers its SDK to allow collecting real time
information from application usage).

However, if on the one hand it is convenient to move all the setup opera-
tions inside this block of code, on the other hand, every instruction executed
at this point is going to cause a delay in the launch of subsequent Activity,
increasing the time the user has to wait before being able to interact with
the application.

The Android guidelines suggest that: complex Application.onCreate()
method, disk or network I/O, deserialization (see section 2.3.4 for details)
are among the most diffused causes of slow down at application launch time
[3]. For this reason, the intuition is that, although some components need to
be initialized right away when launching the application process, there may
be others for which this kind of operation could be delayed to a second stage,

27

2 – Application startup

for example after the interface has been completely drawn. For these second
category of objects, the solution resides in the so-called lazy initializa-
tion, meaning that one "should initialize only objects that are immediately
needed".

2.3.3 Complex Activity initialization
Large layouts inflation

In section 2.1.2 it was presented the Activity lifecycle, highlighting that,
when the application is launched in a COLD state, the first method that gets
executed is Activity.onCreate(). Here, similarly to what happens in the
case of Application.onCreate() the code executed includes initialization
tasks for the activity itself.

However, differently from the Application object, the Activity is also
related to the user interface, and the above-mentioned method is usually the
place in which the corresponding Layout is inflated (presented in section
2.2.1).

Layout inflation is not, per se, a heavy task, however larger view hier-
archies take more time to be processed, and this can lead to delays in the
app launch time. A possible solution, coming from the Android Developers
guidelines consists in: flattening the view hierarchy simplifying its structure
and avoiding to immediately inflate parts of the layout that won’t be visible,
thus wasting resources.

However, since some of the delayed components may be needed at a
later time (that could also happen shortly after the interface is drawn), the
Andorid framework offers a particular component called ViewStub, that is
specifically thought to act as a placeholder for UI elements that are not
needed right away, but could become visible afterward. As reported in the
Android documentation "ViewStub is an invisible, zero-sized View that can
be used to lazily inflate layout resources at runtime"[8] via the inflate()
method. After that, the ViewStub is removed from the view hierarchy and
the corresponding sub-tree takes its place. The XML resource file where the
stubbed view is described can be specified via the android:layout property.

Double taxation

When discussing the steps needed to draw the UI of an Android application
in section 2.2.3, it was presented that the framework performs the measure()
step to compute the dimension of the UI components, then the layout() pass

28

2.3 – Common problems in application startup

to establish the position of such elements, and finally the draw() method to
actually draw the pixels that will populate the UI.

However, when the view hierarchy becomes deeper and more complex,
it is possible that executing the measure() and layout() one time is not
sufficient to acquire the information needed to also perform the draw() pass:
in this case the multiple traversals of parts of the hierarchy are performed to
establish the size and the position of the UI elements. This phenomenon is
known as double taxation and is defined as "having to perform more than
one layout-and-measure iteration"[7].

The overhead caused by the double taxation is not, per se, a serious
problem, because it is normal for applications to have lots of components
that contribute to deepen the hierarchy. However, when large parts of the
visual hierarchy require more than one measure() and layout() pass, the
performance penalty may be significant. For this reason, itdouble taxation
represents a problem when the components causing it are placed near the root
of the hierarchy, or there are many instances of the interested component,
each one requiring more than one pass.

Double taxation can occur for several reasons, but the following are the
most common cases:

• using a RelativeLayout will cause the framework to incur in double
taxation, due to the intrinsic way this component is handled by the
framework;

• using a LinearLayout with an horizontal orientation or that specifies
weights (to establish the dimension of children in LinearLayout with
respect to each other).

2.3.4 Heavy deserialization

It has been presented in section 2.3.2 that one of the common problems that
arise when analyzing the startup phase of an application is the intensive usage
of deserialization, which is the process of taking as input data structured
in a specific format and converting it into an Object. In this section we
will focus on the explanation of this operation, taking into consideration the
JSON format, which is currently the most popular format for deserializing
data.

29

2 – Application startup

The JSON format

JSON (JavaScript Object Notation) is a file and data interchange format
that uses key-value pairs to store information in a human-readable way. Its
grammar is very simple as the keys are always strings, while the values can
have one of the following types:

• object;

• array;

• string;

• number;

• boolean (true/false);

• null.

An example of a JSON object could be:

Figure 2.5. Example of a JSON object. Comments, which are not allowed
in JSON format, are added in C-style for clarity.

Having briefly illustrated the structure of a JSON file, we can introduce
the concepts of serialization and deserialization.

Serialization

It is the process of converting an object which resides in memory into a JSON
string. In the context of the considered application, the object belongs to a
Class.

30

2.3 – Common problems in application startup

For example, if the input for the serialization is the following object, be-
longing to the class Person:

public class Person {
private String name; // "John"
private String surname; // "Smith"
private int age; // 45

}
the output will be:
{"name":"John","surname":"Smith","age":45}

Deserialization

It is the inverse operation with respect to Serialization, consisting in con-
verting a JSON string into an Object. The deserialization in very much used
when offering a customized experience to the user. In fact, data coming from
network requests or locally saved into the memory of the device, are usually
stored in a JSON/XML format, and since it is more convenient to deal with
Objects rather than raw text, these information need to be deserialized into
class instances.

If, on the one hand, this process is quite intuitive and there are several
third-party libraries to support it, from the standpoint of performance it can
end up being a time consuming task, influencing negatively the startup of an
application.

31

32

Chapter 3

Tools

There are several tools that can help developers to analyze the performance
of an Android application. The goal of this chapter is to provide an overview
of the most common options and how they can be employed to collect rele-
vant information about application performance and help to identify possible
issues.

3.1 Android Profiler
It is a tool1 that provides real-time data coming from the execution of an
Android process. For apps that allow debugging, it offers the possibility to
inspect four different aspects of the execution:

• CPU activity;

• Memory allocation and de-allocation;

• Battery consumption;

• Network activity (requests/responses).

Throughout the work, the CPU activity inspector has been the most used
feature, because it allows the developer to have a quick overlook of the func-
tions that are internally called by the application, also providing statistics
about them. 2

1link to Android Developers documentation
2More details about the Android Profiler here

33

https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/studio/profile/android-profiler

3 – Tools

3.1.1 CPU profiler
As the name suggests, the CPU profiler offers an overview of the CPU and
threads’ activity while interacting with the application. There are four set-
tings that can be chosen to trace the operations performed:

• Sample Java Methods: it captures the call stack of the application
at regular intervals (defaults to 1ms) to identify the methods that are
called. The problem with this approach is that methods whose duration
is very small could be skipped (i.e. if one method starts right after
the captures and ends before the next one). However, it has been the
preferred method for the analysis of the application, as it causes little
overhead compared to other approaches.

• Trace Java Methods: in this mode, the profiler captures the beginning
and the end of each method, this way, also short functions are recorded,
so it is more accurate than the previous approach. However, tracing
each entry and exit point of the various methods is very expensive, and
the overhead seriously affects the performance of the application. An
interesting comparison of how different profiling methods affect the run-
time performance can be found at the following Can you trust time
measurements in Profiler?.

• Sample C/C++ functions: keeps track of native functions called
inside the application.

• Trace system calls: allows to visualize the state of execution of the
different threads, showing also the activity per CPU core. Its most
important feature is that it permits visualize custom sections that has
been defined in code using the Trace class, and specifying the start
of a section via the beginSection() method and the end of it via the
endSection() method . Throughout this work, custom traces have been
extensively used, as they allow the developer to highlight block of code
that would not be shown using the previous methods.
However, system tracing can also be used via command line, using the
systrace or perfetto commands. In the following sections we will
present their features.

To gain insights about the sequence of methods that are invoked during
the application lifecycle, the Profiler offers the developer different graphs that
are more or less suitable, depending on the focus of the analysis.

34

https://proandroiddev.com/can-you-trust-time-measurements-in-profiler-5b3566a55e0c
https://proandroiddev.com/can-you-trust-time-measurements-in-profiler-5b3566a55e0c

3.1 – Android Profiler

Call chart

Call chart: the default one, shows the methods invoked in chronological
order on the horizontal axis. If one method invokes another one, the callee
(the method that is invoked) is represented below the caller (the method that
internally invokes the callee), as depicted in the following diagram:

Figure 3.1. Diagram of a call chart in Android Profiler.
Source: Inspect traces using the Call chart

Throughout the application analysis, this has been the preferred method
among the ones available in the Android Profiler, as it provides an easy way
of tracing the order of the functions invoked and it also shows their duration.

Flame chart

A flame chart shows a graph that is inverted if compared with the Call
chart in Fig. 3.1, in which identical method invocations are aggregated. For
example, in Fig. 3.2 we can observe a call chart in which there are more
methods that share the same call stack (B1, B2, B3 and C1, C3).

In the corresponding flame chart, these methods will be aggregated to pro-
duce the following diagram: This kind of graph is useful to understand which
methods are executed more times, and how they affect the total duration.

35

https://developer.android.com/studio/profile/cpu-profiler#call_chart

3 – Tools

Figure 3.2. Diagram of a call chart with identical call stacks in Android
Profiler.
Source: Inspect traces using the Flame Chart tab

Figure 3.3. Diagram of a flame chart in Android Profiler.
Source: Inspect traces using the Flame Chart tab

Top down and Bottom up

They provide a list representation of the methods invoked during the selected
interval. The top down representation displays and expanding list in which
the root nodes are the callers and the leaves are the callees. The bottom
up representation, instead, starts from the callers as root to end up with the
callees as final nodes of the list. These graphs are useful because they offer the
developer the possibility to directly access the snippet of code corresponding
to the invoked method (if this is inside the project’s source files).

36

https://developer.android.com/studio/profile/cpu-profiler#flame_chart
https://developer.android.com/studio/profile/cpu-profiler#flame_chart

3.1 – Android Profiler

3.1.2 Memory profiler
It is a component of the Android Profiler that permits to trace memory
allocations and de-allocations, as well as heap status and garbage collection
events.

Heap and heap dump

The heap is a memory area from which the resources needed for object
instantations are allocated. Capturing a heap dump means to record a
snapshot of all the objects that reside in memory at a certain point in time.

Heap dumps are particularly useful when looking for possible memory
leaks, as they allow the developer to identify objects that are still in memory,
but that are likely unused. Since the dimension of the heap is limited and
decided by the system, if there is no free space to allocate new objects (or
arrays) in memory, the memory management environment will free resources
via garbage collection.

Garbage collector

Recall that the garbage collector is a process managed by the memory man-
agement environment (so it is generally transparent to the programmer)
whose goal is to identify resources (objects) that can no longer be used in the
future by an application and release those resources to make room for other
object instantiations.

Although garbage collection is a reasonably fast operation, if the applica-
tion makes an improper use of memory by instantiating too many objects,
this can lead to performance issues. In fact, the developer does not di-
rectly control when garbage collection occurs, so it is the system that decides
when to perform it, and to do so, user process must be temporarily paused.
Depending on the amount of memory required by the application, garbage
collection can take more time to be executed, and it can lead to noticeable
delays in the execution.

3.1.3 Energy Profiler
The Energy Profiler is another component of the Android Profiler that mon-
itors the usage of different resources (like CPU, location sensors, network
radio), indicating how each of these activities affects battery consumption.

37

3 – Tools

3.1.4 Network profiler

Concerning network activity, this tool permits to inspect the network re-
quests performed when executing an application. This is not only important
for debugging reasons, like detecting errors or the thread where these op-
erations are performed, but it also allows the developer to identify possible
problems to the frequency of such activities. In fact, as briefly introduced
in the previous section, frequent networks requests may lead to a greater
battery consumption, as turning on the network radio hardware or keeping
it constantly active consumes extra battery power.

3.2 System Tracing
System tracing means to "record device activity over a period of time" [5].
Differently from CPU profiler, explored in section 3.1.1 it traces the activity
of all the processes running on the device, not only the selected application,
including information about CPU cores’ status (frequency, running processes,
scheduling).

As stated in the previous section, the Android Profiler allows to record
a system trace from the GUI, however, throughout the work, this kind of
analysis has been performed using the perfetto and systrace command
line tools.

3.2.1 Systrace

Systrace is a python script provided by the Android SDK tools that allows
the developer to capture a system trace, and, when the recording is complete,
it generates a report in HTML format, that can be inspected via the Systrace
viewer or Perfetto UI.

3.2.2 Perfetto

Similarly to systrace, it records the device activity, but it offers the pos-
sibility to collect longer traces, while keeping a reduced dimension of the
generated reports. It is the preferred way of collecting application activity
information employed in this work, since it also opens directly the recorded
trace file inside the Perfetto UI.

38

3.2 – System Tracing

3.2.3 System tracing app
Another alternative to capture a system trace is to use the System Tracing
App directly from devices running Android 9 (OS API level 29) or higher.
The advantage of this approach is that there is no need to connect the mobile
device to the PC and it also allows to share the trace file after the recording
is completed. However, traces must be opened in a Systrace Viewer to be
inspected, so the perfetto approach has been preferred as it performs this
step automatically.

3.2.4 Perfetto UI
It is a tool that allows the developer to record, open and analyze system
traces directly in the browser. It supports both the formats recorded using
perfetto and systrace.

Figure 3.4. System trace showing the Mobile Banking app startup in Perfetto UI.

In figure 3.4 it is possible to observe how a sample trace recorded with
perfetto or systrace looks like when opened in the Perfetto UI. On the
left there is the main menu of the tool, that offers several features, like:

• Open a trace file: even though the command-line tool automatically
opens the trace in this interface, this is convenient to open several traces
in multiple tabs of the browser to compare the behaviour of the appli-
cation in different cases;

39

https://ui.perfetto.dev/#!/

3 – Tools

• Download the currently opened trace: this feature is handy because the
script invoked via the command line could overwrite previously recorder
traces, so saving a copy of it may be useful to avoid losing it.

On the right part of the interface, the timeline of the trace is displayed, and
the user can navigate the trace by zooming into a particular section, or select
a different portion of the trace. Each section of the trace is highlighted in a
different color, making it easier to locate it.

On the top part of the interface are displayed the information about CPU
state, in particular it is possible to observe which process is executed on
each CPU core and the corresponding frequency. Moreover, considering the
startup of an application, it is possible to notice that there is a separate row
(named Android App Startups) where it is reported the section corresponding
to the the startup of an Android application (if any) and the corresponding
name of the package it belongs to (in this case com.mobilebanking) . The
section follows the definition of Application Startup, starting from the
creation of the Intent and ending when the first frame of the application is
drawn.

Below the above-mentioned rows, that are related to system-wide infor-
mation, there is a list of expandable tiles, each of them corresponding to a
particular process/application. In the example reported in figure 3.4, we can
see that the application selected is part of the package com.mobilebanking
and the corresponding process has been assigned the pid (process id) 18217.

After having expanded the tile of a particular process, on the left are
displayed the name of the thread and the corresponding tid (thread id): in
case of the Main thread the thread id is the same of the process id and the
name is the same as the package the application belongs to (in this case
com.mobilebanking.

As we can observe from the figure, for the selected thread there are two
rows:

• the top one captures the status of the thread, that can assume four
different values:

– RUNNING: the thread is performing some work and actively running
on CPU;

– RUNNABLE: the thread is ready to run but it hasn’t been scheduled
yet;

– SLEEPING: the thread needs some resources that are not currently
available. When they will be released, the scheduler will put the

40

3.3 – Logcat

thread in a RUNNABLE or RUNNING state;
– UNINTERRUPTIBLE SLEEP: it is generally associated to I/O opera-
tions, the application hasn’t received the result back, yet.

This row is useful to identify possible scheduling issues.

• the bottom one, instead, captures the call stack of the corresponding
thread. Each section corresponds to the invocation of the beginSection()
method, where nested calls will produce deeper stacks.

Another handy feature is the search bar at the topmost part of the inter-
face, that is useful when the developer needs to search for a specific Trace
(e.g. a custom one). If one or more matches are found, the tool highlights
the corresponding sections.

Furthermore, the interface allows to select a larger portion of the recorded
trace, which possibly includes more sections (or call stacks), and displaying
aggregated metrics for the corresponding slices. This is particularly useful in
case there is a method (traced via the beginSection() call that is repeated
multiple times during the execution of the application, or multiple slices that
have been given the same name. This way, the developer can gain interesting
insights like: the number of occurrences, the total aggregated duration, and
the average duration of each call.

Finally, when a section is selected by clicking on it, the tool shows the
details of the current slice, where we can find the name of the slice, the start
time and its duration (along with other less relevant information).

3.3 Logcat
The traces recorded with perfetto, systrace and the Android profiler have
been utilized when there was the need to inspect more in detail a precise
section of execution, because their analysis permits to understand how long
a particular section requires to be completed and the call stack corresponding
to it. However, as we mentioned in previous sections, these tools lead to an
unavoidable performance penalty, that depends on the method chosen for the
analysis, which is heavier in the case of the Android Studio profiler. For this
reason, to observe how the startup time was affected after having introduced
some modifications, the Logcat tool was used.

In this window, directly available on Android Studio, the software displays
messages coming from the application, managed by the Log class. The Log
class offers several methods to send messages to the Logcat windows, like:

41

3 – Tools

• Log.d to display a message for debugging purposes. This method is
generally used to signal the beginning or completion of a method, to
signal that a certain point in code has been reached;

• Log.e to display an error message;

and this helps the developer to trace the execution of the application and
identify possible errors without the need to start it using the debugger.

Concerning the application startup analysis, when executing the applica-
tion on devices running Android 4.4 or higher, the Logcat window automat-
ically outputs the Displayed metric. This value represents the time elapsed
between the launch of the process and the completion of drawing the first
frame of the corresponding activity. In the case of the Mobile Banking
application, the interested activity is the HomePageActivity, and this is the
output displayed in the logcat window when launching the application:

Displayed com.mobilebanking/.HomePageActivity:+1s371ms

This information can also be obtained by starting the application using the
adb shell Activity Manager command:

adb shell am start -W -n

com.mobilebanking/.HomePageActivity The output produced after execut-
ing such command is the following:

Status: ok

LaunchState: COLD

Activity: com.mobilebanking/.HomePageActivity

TotalTime: 1371

WaitTime: 1376

Complete

As it is possible to notice, the output contains the state in which the
application was launched (in this case COLD), the activity that was launched
and the total time it took to complete the operation.

The possibility to start an application from the command line has been
essential for the analysis of the startup performance, as it allowed to pro-
duce a script to repeatedly launch the application and collect the metrics of
interest, as presented in the next section.

42

3.4 – Firebase Performance Monitoring

3.3.1 Script for multiple runs
Since the Logcat Displayed metrics report the launch time for one execu-
tion, to tackle the variability in the results obtained, a script for performing
repeated measurements was produced, using Windows Batch Scripting. It is
reported below:

for /l %%x in (1, 1, %1) do (
adb shell am force-stop com.mobilebanking
sleep %2
adb shell am start -W -n
com.mobilebanking/.HomePageActivity
| grep "TotalTime"
| cut -d ’ ’ -f 2

)
The script works as follows:

1. the process of the corresponding application is killed (if it is running).
This is done to ensure that the application is launched in a COLD state;

2. the system awaits for a number of second that is user-specified;

3. the application process is launched;

4. the metric corresponding to the Displayed time is reported, filtering out
redundant information using a regex3 to extract the value of the field.

A greater number of iterations allows to reduce the variability in the results
obtained, while the waiting time between one run and the other has been
introduced to avoid that some elements could be reused and influence the
total launch time.

3.4 Firebase Performance Monitoring
It is a tool that collects statistics about application performance in real-time
directly on end-users’s devices, then those metrics can be visualized and
analyzed in the Firebase Console. Among the aspects that are monitored by
default when the SDK is integrated into the application, there are:

3a regex (Regular Expression) is a sequence of characters that specify a pattern. More
information can be found here

43

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

3 – Tools

• App startup time;

• Frame rendering time:

• HTTP requests.
Additionally, the software allows to define custom traces (similarly to what

has been presented in section 3.1.1) to capture specific sections of the exe-
cution. Also in this case, we can establish the beginning and the end of a
trace leveraging the Trace class and the corresponding start() and end()
methods. Moreover, the SDK offers the possibility to monitor the execution
of an entire method using the @AddTrace annotation, that can be more con-
venient that manually defining the beginning and the completion of a trace.
Furthermore, for each trace, it is possible to define several metrics to be col-
lected (besides the duration, that is the one enabled by default) within the
trace scope.

Differently from the methods presented in the previous sections, Firebase
Performance Monitoring is essential when there is the need to collect
large-scale data that reflect user experience when interacting with the ap-
plication. For example, the details of a trace can be analyzed considering
different aggregation level, automatically managed by the SDK, like:

• App version: to compare the behavior of the current version with
respect to previous ones;

• Country: useful to verify that the location does not affects perfor-
mance;

• OS API level: whether older versions of the Android OS may lead to
performance issues;

• Device: visualize the difference when running the application on high-
end low-end devices, as well as smartphones coming from different man-
ufacturer;

• Radio: how the metrics are affected when using WiFi rather than mo-
bile data.

Regarding this work, the Firebase Performance Monitoring tool has
been used on a sample application to understand how the platform works and
how it can be used on a real case. However, the access to the platform for
the considered application was reserved to developers with higher privileges.
Nonetheless, the data presented in tables 1.1 and 1.2 have been extracted
from this tool.

44

3.5 – Android Vitals

3.5 Android Vitals
Similarly to Firebase Performance Monitoring (presented in section 3.4), An-
droid Vitals is a tool developed by Google to collect metrics related to app
performance from the activity of end-users "who have opted in to automati-
cally share usage and diagnostics data"[9] when using the application. Then
the data collected are aggregated to allow the develop team to later analyze
them via the Google Play Console.

The kinds of data that can be collected via the Android Vitals tool are
the following:

• Battery usage;

• Stability;

• App startup time;

• Rendering time;

• Permissions.

Regarding the app startup timemetrics,Android Vitals collects startup
times for the application when it is launched in a cold, warm or hot state
(see section 2.1.3 for further details).

Among the details that can be analyzed in the Google Play Console there
is the impacted session metric, that indicates the "percentage of sessions
during which users experienced a slow start-up time for each respective sys-
tem state"[9]. A slow start-up time is detected when the application launches
in more than:

• 5 seconds in the case of a cold start;

• 2 seconds in the case of a warm start;

• 1 second in the case of a hot start.

These values can be considered as the upper limit for a reasonable app
startup time.

45

3 – Tools

3.6 Android Studio Layout Inspector
As discussed in section 2.2, the layout hierarchy of an application can easily
become more and more complex, especially when the application offers many
functionalities to the customer, each one requiring a component the user can
interact with.

When the structure of the visual tree is defined in a single resource file it is
easy to understand how the different components interact between themselves
and their relation inside the hierarchy. However, as more and more Views or
ViewGroups are added to the tree (and/or are instantiated at runtime rather
that only using XML files), keeping track of the overall structure of the user
interface can become complicated.

To simplify the work, the Layout Inspector tool, integrated in Android
Studio, offers the possibility to visualize in real time the layout tree of a
running (and debuggable) Android application.

In figure 3.5 it is reported the interface of the tool when attaching layout
inspection to the Mobile Banking process.

Figure 3.5. The interface of Android Studio Layout Inspector.

As it is possible to notice from the screenshot, on the left pane of the
interface the developer can find the Component Tree, that reports the
hierarchy of the components in the current screen, which is represented in
the middle section of the tool. A convenient feature is that, by clicking on a
component in the tree, the corresponding view in the interface is highlighted,
making it easy to locate a certain View or ViewGroup (in the example, the
element named frame5 has been selected). Moreover, on the right side of

46

3.6 – Android Studio Layout Inspector

the UI are reported the attributes of a selected component, like its dimen-
sions, the identifier for the element, the corresponding resource file and its
accessibility characteristics (e.g. visibility).

This last feature is very useful because it can help the analyst in identifying
layout elements that are not displayed in the interface, but that still require
computational power to be processed, possibly wasting precious time upon
startup. Additionally, the tool permits to display the layout tree in 3D, and
it can be handy to better understand the components’ stack, as well as their
position in the screen.

The Layout Inspector has been intensively used when performing the anal-
ysis of the application at a visual level (reported in chapter 5).

47

48

Chapter 4

Mobile Banking
application

As already introduced in section 1.1, the application considered for this case
study is the Mobile Banking Android app. Like other mobile banking ap-
plications, it offers the customer the possibility to perform several operations
that are accessible through the different screens of the application. The goal
of this chapter is to briefly present what is the execution flow of the app
at launch time, to let the reader better grasp the context of the application
launch.

When the user taps on the launch icon, they will trigger the set of op-
erations illustrated in section 2.1. In this case, the Activity that is going
to be started is named HomePageActivity, and after the first frame of the
application is draw, the user is displayed the interface reported in figure 4.1:

From the screenshot, we can notice that the user experience is already
customized, in fact the interface includes a "welcome view" with the full
name of the user that has performed the access. This is due to the fact
that, throughout this work,we will be considering the case in which the user
has already logged into the application, and has decided to preserve the
information (by enabling the famous "REMEMBER ME" option) so that
future accesses will be faster, because this is the most common scenario.

The interface can be divided into three sections:

• at the top there are two buttons that allow the user to receive support
when using the app;

• in the central part there is the "welcome view" with the "ENTRA" but-
ton to perform again the login (for security reasons) and access all the

49

4 – Mobile Banking application

Figure 4.1. Home page of the application in the most common use case, when
the user agrees on remembering the login information for future accesses.

functionalities of the application;

• at the bottom there is a sliding panel from which the customer can
quickly access the features that are most commonly used.

50

Chapter 5

Layout Analysis

The first part of the analysis conducted on the Mobile Banking applica-
tion is focused on performance problems that are related to visual aspects,
like layout resource files and the corresponding views. Sections 5.1 and 5.2
will introduce, respectively, the structure of the user interface with the cor-
responding resource files and an overview of the most important sections
captured through a system trace.

After having introduced these background concepts, a deeper analysis of
the major layout resources will be conducted in section 5.3, with the goal
of identifying possible issues that may slow down the application startup.
Finally, a plausible solution to optimize these critical parts will be discussed
in section 5.4.

5.1 Application structure

Before being able to analyze the launch performance of the app, it is necessary
to understand the structure of the application and present the resources that
are involved.

Considering the HomePageActivity screen, reported in 4.1 and using the
Layout Inspector presented in section 2.2, it has been possible to identify the
layout structure at launch time, which is reported in figure 5.1:

Starting from the Android Hierarchy Root, the layout resources files that
are involved upon application startup are the ones highlighted in blue, whose
(partial) sub-tree is reported in the boxes below them. Here the role of these
components is summed up:

51

5 – Layout Analysis

Figure 5.1. Graph reporting the structure of the layout after the first frame
of the application is rendered.

• activity_home_page.xml: the main container for the HomePageAc-
tivity. This is the top-level sub-tree when considering application launch;

• common_fragment_container.xml: as the name suggests, this compo-
nent is reused among different screens of the application (not only the
initial one) and has the role of coordinating children components of the
interface;

• fragment_home_page.xml: it includes UI elements related to the land-
ing page, like the expandable panel and the welcome view;

• user_banner.xml: this element of the launch UI is used to show infor-
mation and notifications to the user.

• welcome_layout.xm:l it embeds the "welcome view" the user is dis-
played when launching the application. It may also contain financial
details if the customer has enabled the corresponding option.

Although not all the components are listed in the figure, the main modi-
fications to the layout have been performed on these files.

52

5.2 – First analysis of a system trace

5.2 First analysis of a system trace
The next step to gain useful insights on high-level actions happening at
launch time is to use the perfetto script to collect a System Trace. Here it
is reported the recorded trace:

Figure 5.2. perfetto trace captured at application launch, and dis-
played in the Perfetto UI.

We can notice that the the tool reports the Android App Startup section,
and by selecting it, we can observe that its total duration is 4.4s.

Using the Slice Analyzer panel of the Perfetto UI it is possible to visu-
alize a in detail the timing information of the most relevant sections:

Figure 5.3. Slice details for the application startup in Perfetto UI.

Since the sections are sorted in descending order of Wall duration (the
aggregate duration of slices with the same name) we can notice the following:

• bindApplication: this is surely the most consistent part of the appli-
cation startup (about 2 seconds), requiring almost half of the total time
needed for launching the app. As discussed in section 2, the operations
occurring here are related to the creation of the Application process,
and they are executed before the Activity is crated. Being this sec-
tion not related to visual components, but rather to the initialization of

53

5 – Layout Analysis

the Application object, the analysis of this part of the startup will be
conducted in the next chapter;

• inflate: as presented in section 2.2.1, this method (which is repeated
16 times for the selected slice) is in charge of binding the Activity
to its layout, either loaded from a XML file or dynamically created in
Java/Kotlin code. It is evident that spending 860 ms for this kind of
task can be a symptom of a large overhead during startup, and that the
main thread could spend time in inflating many components, that may
not be immediately required by the interface altogether;

• traversal: presented in section 2.2.3, the traversal operation represents
the top-down analysis of the view hierarchy that the Android framework
performs when it needs to draw the user interface. This operation en-
compasses the three stages of measure(), layout() and draw().

• measure: as explained in the previous point, the measure() opera-
tion is the first step that the framework executes to draw the interface.
Its consistent duration (607 ms) may suggest that the view hierarchy
is too deep, and the high number of components causes a significant
overhead when performing this first pass, due to the double taxation
phenomenon (see section 2.3.3 for details).

• RV onBindView: the RV stands for RecyclerView, the ViewGroup pre-
sented in section 2.2.2. Recall that the onBindViewHolder is executed
after the onCreateViewHolder to populate the layout of each element
inside the view with the specific data;

• AdvertisementWebView: this particular View takes a huge amount of
time to be inflated, it will be important to analyze whether it is imme-
diately needed or it could be inflated at a later stage;

Moreover, by adding a custom trace at the start and at the end of the
onCreate() method of the Application class, we can take a closer look
to what happens before it is executed. The corresponding trace section is
reported in figure 5.4.

In section 2.1 have been illustrated the steps that need to be performed
when launching an application from scratch. In figure 5.4 we can observe
that, after the beginning of the App Startup Time section, the system cre-
ates the main ActivityThread and other operations are executed before
entering the Application.onCreate() method. In the reported trace it is

54

5.3 – Identify problems

Figure 5.4. Slice details capturing the execution before onCreate().

also possible to notice that approximately 358 ms elapse before beginning the
customization of the Application object, meaning that a considerable part
of the startup time is spent for operations that are not under the control of
the developer, but they are rather executed by the Android framework, so it
is important to observe that this overhead cannot be avoided when launching
an application in a COLD state.

5.3 Identify problems

5.3.1 Analysis of welcome_layout.xml

Savings layout

Using the Layout Inspector tool, it has been possible to identify some ele-
ments in the launch screen layout that are not (always) visible at runtime:

Figure 5.5. Welcome view layout in the landing page as seen in Layout Inspector.

55

5 – Layout Analysis

In figure 5.5 we can observe the view hierarchy corresponding to the "Wel-
come view" that is displayed when the user reaches the Home page of the
app. Among the components listed in the Layout Inspector, only three of
them (the logo, the text with the customer of the user and the login button)
are visible to the user, suggesting that the other ones may be unnecessary.

That’s the case of the savings_layout, which is displayed only if the user
has a particular option enabled. To understand the impact of inflating these
components we can use the perfetto trace viewer.

Figure 5.6. Detail of trace showing the impact of loading the money-
box layout component.

In figure 5.6 it is possible to select the time interval corresponding to the
inflation of such elements, that are listed in the bottom part of the interface.
We can notice that to load these components in the UI (although they are
not visible) it takes about 25 ms. A possible strategy to limit the impact of
these component at application launch will be discussed in section 5.4.1.

5.3.2 Analysis of fragment_home_page.xml

In this section we are going to analyze the layout issues related to the
fragment_home_page.xml resource file, which is one of the major layouts
involved in the application startup.

By looking at the trace reported in figure 5.2, the first thing to consider is
clearly the inflate section. To better understand the timing of the inflation
process, we can make use of custom traces (presented in section 3.1.1) to

56

5.3 – Identify problems

identify the components that are involved in this operation and how long it
takes to insert them into the general view hierarchy.

AdvertisementWebView

The first component to take into consideration is the AdvertisementWebView,
which, as highlighted in section 5.2, takes a considerable amount of time to
be inflated.

Figure 5.7. perfetto Startup section showing the impact of the WebView.

Using the Android Layout Inspector tool, we can recognize that this view
is declared inside the hierarchy of the fragment_home_page.xml resource
file, and that it is an example of Custom Views. The corresponding sub-tree
is reported in the screenshot below:

Figure 5.8. AdvertisementWebView hierarchy as reported in the
Layout Inspector tool.

From figure 5.8 we can notice that the component extends the RelativeLayout
ViewGroup and it includes two children:

• a CustomWebView, that, in turn, extends the WebView layout (presented
in section 2.2.2) and will be used to display the web page;

57

5 – Layout Analysis

• a progress indicator, whose details will be discussed in the next section.

Moreover, on the right side of the interface we can observe that the
AdvertisementWebView should be placed inside the sliding panel with the
different features: however, there is no trace of such component even when
expanding the panel, in fact, its visibility is set to GONE, as we can see from
the "Attributes" panel, reported below the component tree for clarity.

Although the effort to inflate this view is considerable, by analyzing the
source code it has been possible to understand that the WebView is displayed
only under certain circumstances (in particular if there is a commercial mes-
sage for the user), otherwise it is not visible. A possible solution to mitigate
this problem will be presented in section 5.4.2.

Home page progress

In the same layout sub-tree (of the fragment_home_page resource file)
a component named progress_indicator is inflated at launch time. This
element is defined in its own XML resource file, as it is shared across different
sections of the application, and, as the name suggests, it is used to let the
customer know that the application is performing some operation, so they
have to wait for its completion.

However, using the Layout Inspector tool to analyze its view hierarchy
(reported in figure 5.9) it is possible to notice two details:

Figure 5.9. Progress indicator view hierarchy as displayed in Layout Inspector.

• even though the progress indicator seems a simple component, it has
been customized, as it embeds several elements to achieve the desired
effect, and the corresponding view hierarchy is quite nested.

58

5.3 – Identify problems

In fact, the types of View and ViewGroup are highlighted on the right
part of each element, and we can observe that there are 6 levels of nest-
ing (because the LinearLayout further includes 5 images) having the
RelativeLayout as root element. Moreover, The LinearLayout em-
bedding the images needed for the animation of the loading indicator
has a horizontal orientation. In chapter 2.3.3 we have seen that both
these characteristics are among the causes of the double taxation phe-
nomenon, which adds overhead when the interface must be rendered.

• the progress indicator view is not immediately displayed, and its vis-
ibility is set to GONE. Moreover, analyzing the code, it has been found
out that when the HomePageActivity executes the onResume() lifecycle
callback (see section 2.1.2 for details), the visibility of these component
is set again to GONE.

To understand the effort needed to load this component, we can analyze
a system trace detail, that captures the total inflation time for all the com-
ponents belonging to the progress_indicator.xml resource file, which is
reported below:

Figure 5.10. Inflation details for the progress_indicator component.

It is possible to notice that this layout sub-tree is first inflated when loading
the AdvertisementWebView, presented in section 5.3.2 (as previously said,
it is a common component that is re-used several times across the different
screens of the app), and it is requested again shortly after.

Moreover, the impact it has on the startup time is non-negligible (about
39 ms), so a corrective action must be taken. The chosen approach to reduce
this overhead will be discussed in section 5.4.3.

59

5 – Layout Analysis

Sliding panel

In section 2.2.2 it was introduced the RecyclerView layout, which is used
to display a list of elements that can be arranged in different ways on the
screen. In the screenshot below, we can see how this component is used to
build part of the interface of the Mobile Banking application at launch
time:

Figure 5.11. Expanded panel with multiple elements inside a RecyclerView.

When the user slides up the panel (that initially displays just three ele-
ments), this UI component is expanded, showing also other items that are
initially hidden. The trace section below shows the time needed to display
the RecyclerView embedded in the sliding panel:

Inside the blue rectangle are reported the statistics for the inflation phase
of all the elements in the grid. It is also possible to notice that inflate()
is invoked by the onCreateView() callback: recall that onCreateView() is
used to specify the layout that each item in the RecyclerView is associated
to. Since there are just nine items in the grid and they are all similar among
themselves (an icon and a description), the 72 ms required to process the
multiple layouts may suggest that additional work is performed.

Using the Layout Inspector tool, we can observe the structure of each
element inside the grid, which is reported below:

In the screenshot reported in figure 5.13, we can observe that each element

60

5.3 – Identify problems

Figure 5.12. Section showing the time to inflate the RecyclerView.

Figure 5.13. Structure of the elements of the RecyclerView as shown
in Layout Inspector.

of the grid has a layout named CustomRelativeLayout as root element. This
is an example of Custom View, presented in section 2.2.2, and it is used to
obtain a RelativeLayout whose height and width are equal. The immediate
descendant is another RelativeLayout that contains the visual elements of
each grid item, in particular: an ImageView that corresponds to the icon
of the functionality, a TextView containing the name of the service and a
LinearLayout whose purpose is to contain a "timer" TextView. By further
inspecting the source code, it has been possible to understand that the timer
is needed for the FEATURE 3 functionality, with the goal of alerting the
user in case the time left for the booked service is running out. However, the
timer element is needed only in one case out of nine, and this adds useless
overhead to the inflation. A possible optimization of this layout component

61

5 – Layout Analysis

will be introduced in section 5.4.5.
Previously in this section, it has been presented the role of the sliding

panel that is initially collapsed. This component is not part of the standard
Android library, but its documentation can be found at this link. The in-
structions presented in the Usage section suggest that this ViewGroup should
only have two direct children: the first one will act as the main view, visible
when the panel is collapsed, while the second one will contain the layout
sub-tree corresponding to the sliding panel.

We can leverage the Layout Inspector tool to identify which components
are involved for this purpose:

Figure 5.14. View hierarchy of the Sliding panel.

Inspecting the CoordinatorLayout class (that is a CustomView belonging
to the common_fragment_container resource file), a reference to the
SlidingUnPanelLayout was found: when the callback onFinishInflate is
executed, the above-mentioned component is invoked to set the draggable
portion of the layout via the setDragView method. By adding a custom
trace embedding the invocation of this method, we can see the impact it has
on the startup time:

Figure 5.15. Detail of trace showing the section corresponding to setDragView.

The total time to dynamically modify the component is considerable (about
64 ms): a possible countermeasure will be discussed in section 5.4.5.

62

https://github.com/umano/AndroidSlidingUpPanel

5.3 – Identify problems

5.3.3 Analysis of common_fragment_container.xml

User banner

Taking into consideration the common_fragment_container.xml resource
file and using the Layout Inspector, we can identify another component that
appears to be hidden at launch time but it is still inflated. The element is
named user_banner and its purpose is to show a banner where users can
give a feedback about the application. In the screenshot below it is reported
its layout tree:

Figure 5.16. View hierarchy of the banner for user banner.

There is no trace of such element in the UI displayed at application launch,
so we can try to identify the inflation of these components in the perfetto
UI to understand the impact upon startup.

The corresponding trace section is reported below:

Figure 5.17. Trace detail for the user_banner component.

We can notice that the time required to load this component is approx-
imately 11 ms, and, even if it is small compared to the total application

63

5 – Layout Analysis

startup time (4.4s), it is important to keep in mind that every part of the
view hierarchy adds complexity to the final layout, and this can increase the
overhead caused by the double taxation. In fact, from image 5.16 and
observing the source code of its XML file we can recognize that this com-
ponent embeds a RelativeLayout and a LinearLayout with an horizontal
orientation, that are both factors that contribute to the double taxation
phenomenon.

To mitigate this problem, a plausible solution will be proposed in section
5.4.4.

Promotional message

Further analyzing the common_fragment_container.xml resource file, we
can find that another custom component named PromotionalLayout is de-
fined. Accessing the source file of this class, it has been possible to understand
that this custom view extends the RelativeLayout. Using the Layout In-
spector tool, we can also identify its view hiearchy, which is reported below:

Figure 5.18. Elements of the PromotionalLayout view hierarchy.

The first thing that one can notice is that the rootRelativeLayout is its
only direct child, so it is duplicated. Moreover, the hierarchy beneath this
root element is sufficently nested, embedding other RelativeLayout (which
we know not to be the best choice in terms of performance) and several
LinearLayout presenting also an horizontal orientation. To better inspect
the effort needed to inflate this component at launch time, we can define

64

5.4 – Proposed solutions

the "Inflate promotional message" custom trace, captured in the following
screenshot:

Figure 5.19. Trace detail for the PromotionalLayout component.

Is is possible to observe that it takes approximately 42 ms to load this ele-
ment inside the view hierarchy at launch time, furthermore, it contributes to
make the view tree deeper, increasing the overhead of the double taxation.
Since it is not immediately visible when the user starts the application, a
countermeasure must be taken to reduce its impact on the startup time: it
will be discussed in section 5.4.6.

5.4 Proposed solutions

This section will be dedicated to the discussion of possible solutions for the
problems that are related to the application layout hierarchy, identified in
section 5.3.

5.4.1 Savings layout

The Savings layout is only needed if the user has enabled a certain option,
otherwise it is inflated for no reason. The most intuitive solution consists in
substituting the sub-tree corresponding to this component with a ViewStub
(presented in section 2.3.3), whose inflation adds practically no overhead.
At runtime, we can check whether the layout must be loaded or not, and if
yes, call the inflate() method to replace the ViewStub with the original
SavingsLayout. This approach allows to delay the inflation of this compo-
nent only if needed, possibly saving about 25 ms (see section 5.3.1 for further
details about the SavingsLayout).

65

5 – Layout Analysis

5.4.2 AdvertisementWebView
It has been underlined in section 5.3.2 the huge impact this component has
on the total launch time of the application (approximately 215 ms). Since it
is not always immediately needed, but its visibility depends on the advertise-
ments that the user may (or may not) receive, the natural solution here is to
adopt the same approach presented in the SavingsLayout case (see previous
section for details) and replace this heavy component with a ViewStub.

The new corresponding trace is reported in figure 5.20:

Figure 5.20. perfetto trace after removing the WebView

We can notice that the inflation of the ViewStub inflation adds practically
no overhead to the total time needed for processing the layout (only 307 us).

5.4.3 Home page progress
We have seen in section 5.4.3 that not only this components is injected multi-
ple times upon startup (one for the AdvertisementWebView and later for the
HomePage), but the time needed to inflate its sub-tree is considerable (about
39 ms). Moreover, the fact that it has several levels of nesting contributes to
add complexity to the general view hierarchy.

The proposed solution to this problem is to use, also in this case, a
ViewStub to delay the inflation of this sub-tree only when needed. In the
following snapshot it is reported a slice containing a simulated inflation on
demand of the progress_indicator layout.

Figure 5.21. Detail of delayed inflation of the landing page progress.

66

5.4 – Proposed solutions

It is possible to notice that the inflating the corresponding layout on de-
mand requires approximately the same amount of time as immediately in-
flating the sub-tree.

5.4.4 User banner
Having identified another component that may not be immediately needed
upon startup, we can consider, also in this case, to replace the correspond-
ing sub-tree with a ViewStub to avoid useless inflation and complexity in
the general view hierarchy, the estimated gain (when the component is not
needed) would be of approximately 15 ms.

5.4.5 Sliding panel
In section 5.3.2 have been presented two issues that are related to the
SlidingUpPanel component:

• The inflation of the same layout for all the nine elements of the slid-
ing panel adds useless overhead, since it includes children that may be
needed only in one case out of nine, increasing not only to load them into
the layout sub-tree but also the complexity of the general view hierarchy;

• dynamically setting the dragView attribute seems to cause a substantial
overhead (approximately 65ms).

Regarding the rendering of each feature layout, there are two things that
can be:

• the root CustomRelativeLayout has only one child component, another
RelativeLayout. It is possible to remove this second layer;

• the LinearLayout and the TextView needed to render the timer are used
only in one case out of nine, meaning that their inflation is useless in the
other eight cases. Recalling what presented in section 2.2.2, we can mod-
ify the onBindViewHolder() method by exploiting the getItemViewType()
to check whether the element that is currently processed needs a certain
kind of layout rather than another one. The idea is to define a "basic lay-
out" resource file, common to all the elements inside the RecyclerView
and another one that is specifically thought for the FEATURE 3 el-
ement, that also includes the timer view. This allows to remove the
(repeated) inflation of useless elements in the UI.

67

5 – Layout Analysis

This is the simplest solution, an alternative could be to replace the sub-
tree with a ViewStub and load it only if needed. This second approach
permits to avoid loading the "timer layout" if not needed (while in the
previously discussed solution it is inflated in any case).

In the trace below it is possible to see the inflation time for the modified
version of the RecyclerView, adopting the first approach to mitigate the
"timer layout" problem:

Figure 5.22. RecyclerView inflation time after modifications.

Comparing it with figure 5.12 it is possible to notice that the total inflation
time is noticeably reduced (from 73 to 40 ms).

Considering now the overhead introduced by setting the dragView of the
SlidingUpPanel at runtime, by looking at the documentation of the compo-
nent, we can see that we can either indicate the draggable section at runtime
or directly in the XML resource file using the umanoDragView attribute and
directly specifying the id of the element we want to make draggable. Since
the setDragView is invoked only in this case and there are no other references
in the code, we can follow this approach.

Figure 5.23. Detail of system trace showing the section corresponding to
onFinishInflate after setting the drag view in XML.

In the figure above it is reported a second trace, showing the time needed
to inflate the component using a static XML attribute. We can see that

68

5.4 – Proposed solutions

the time needed to execute the onFinishInflate() callback is substantially
reduced (from more than 63 ms to 724 us).

5.4.6 Promotional message
Having presented in section 5.3.3 the fact that this CustomView may not be
needed upon startup and the corresponding tome to inflate it is consistent
(about 40 ms) the most intuitive solution is to use a ViewStub to delay its
inflation to a later moment in time (if ever needed).

69

70

Chapter 6

App internal operations

In this chapter will be presented the operations that slow down the applica-
tion startup but that are not directly related to the UI.

6.1 Identify problems

6.1.1 Decryption
It is normal that mobile banking applications (like many others) must guar-
antee a high level of security to the customer to protect its sensitive informa-
tion. Besides a secure communication channel with the application server for
data that must be sent across the internet, one common approach to protect
personal data that are stored on the user devices is to use encryption and
decryption algorithms.

In the context of the Mobile Banking application, there is a special
class which is in charge of handling security-related operations, we will call
it Security.

By using the Android Studio CPU profiler to track the application startup,
it has been possible to discover that the decrypt method is invoked 26 times
upon application startup. Then a custom trace was added to estimate the
time needed for the total invocations of such method via the perfetto tool.
The corresponding trace is reported in figure 6.1.

We can see that a considerable part of the application launch time is spent
in performing decryption. This operation cannot be avoided for security
reasons, but by debugging the execution, it was discovered that some of
the decryption algorithms were applied for data that were already decrypted
shortly before, thus obtaining the same output.

71

6 – App internal operations

Figure 6.1. Trace showing the high number of invocations of the
decryption function.

A possible solution to reduce the overhead coming from the repetition of
the heavy decryption operation will be discussed in section 6.2.1.

6.1.2 Deserialization
In section 2.3.4 have been illustrated the key concepts of the JSON data
format, as well as its usage to convert from a human-readable source into
Java instances. Moreover, in section 2.3.2 it has been introduced that intense
deserialization operations at application startup may increase launch time.
In this section will be presented the major operations that are related to
JSON deserialization, highlighting how they affect the application launch
and what kind of solutions may be adopted to mitigate the problem.

Activity creation - Savings

When conducting the Layout Analysis of the application, it was illustrated
in section 5.3.1 that there was a component named savings_layout which
was not displayed at launch time, but it still took some time to be inflated
into the view hierarchy. This element is used if the customer has enabled
the option to visualize the balance of its "piggybank" even before having
performed the access (it still requires to have logged into the application and
having enabled the "remember me" option).

Using the Android Studio CPU profiler it was highlighted that the lifecycle
callback onViewCreated() of the HomePageFragment class was requiring a
considerable amount of time to be completed, due to a heavy deserialization
operation. To obtain more accurate information about the above-mentioned
method, a custom Trace was defined to capture its execturion and analyze
it in the perfetto UI:

72

6.1 – Identify problems

Figure 6.2. Trace showing the impact of deserialization inside the
onViewCreated() lifecycle callback.

From figure 6.2 it is possible to notice the whole onViewCreated() method
takes about 420 ms and most of the time is spent in JSON deserialization.
Moreover, as previously said, it may also be that the user did not enable the
option to show their "piggybank" balance right after launching the applica-
tion. For this reason, it is important to understand whether this operation
is necessary and if it could be delayed at a second stage or improved. A
presentation of a possible approach will be discussed in section 6.2.2.

Cache Handler

It is common for applications to store data coming from a response to a
request to a remote server and cache them to avoid issuing new identical
requests in the future. Considering the case of the Mobile Banking appli-
cation there is a special module that is delegated to handling this kind of data,
that are needed upon application startup, and it is named CacheHandler.

By using the Android Studio CPU profiler it has been possible to track the
execution flow of the operations carried out by this class, that are (partially)
reported in figure 6.3.

Figure 6.3. Call chart of the CacheHandler class initialization.

73

6 – App internal operations

We can notice that the highlighted section is invoked inside the init
method of the CacheHandler class. From the bottom section of the call
stack it is clear that there is a deserialization ongoing. Moreover, on the
right part of the interface it is possible to observe that the selected event is
executed three times upon application startup, and the total duration of each
call is surely not negligible (1.15 s as maximum and 59.3 ms as minimum).

As the name invalidateExpiredCache (which will be referenced to as
invalidate for simplicity) suggests, when the CacheHandler object is in-
stantiated (three times during the application startup) this method is exe-
cuted to remove from the cache the responses that have "expired" according
to a certain rule (whose details are not discussed).

By inspecting the source code, we can understand the execution flow for
the above-mentioned method, which is reported below:

Figure 6.4. Flow chart showing the execution flow of the invalidate() method.

The input file contains a JSON string that describes the list of the files

74

6.1 – Identify problems

containing the cached responses, and since the number of entries is variable
and the mapping between the JSON object and the output class is complex,
the first deserialization cannot be avoided.

However, in the right part of the diagram we can observe that a second
deserialization operation is performed for each file containing a cached re-
sponse. Similarly to what happened in the case of the 6.1.2, the crucial
information about each cached response is stored in one field of the JSON
object, and in this case it is the time it was received. If the response has
been cached for too long, it must be deleted and a new request will be issued
to update it.

To better track the execution of Application.onCreate() method, mul-
tiple traces have been added inside the code. A more detailed stack is repre-
sented in the figure below:

Figure 6.5. perfetto trace showing the execution of the Application
onCreate method.

The apiMap-objectMapper sections correspond to the first deserialization
reported in the flow chart, to obtain the list of the cached responses. The
cachedRawResponses sections, instead, refer to the second deserialization,
performed to check the expiry date. Since the impact the invalidate() func-
tion is significant (especially considering the repeated invocations) a plausible
approach to reduce its overhead will be presented in section 6.2.2.

Get user information

In figure 6.5 it is possible to observe a consistent section named Login, using
the Android Studio CPU profiler we can gain more insights on the operations
performed in this part of the trace.

75

6 – App internal operations

Figure 6.6. getUser details in the Android Studio profiler.

Observing the call chart reported in the figure above, we can detect that
the Login section embeds a method called getUser which internally per-
forms a deserialization to convert the JSON file into a User class object.
Moreover, on the right part of the interface are reported the details for the
getUser method, and one can notice that not only it is invoked 6 times upon
application startup, but the average duration of this operation is significant
(238 ms).

Analyzing in more details detail the trace in the CPU profiler, we can
better understand the timing of the invocations of the getUser method. An
interesting detail can be observed in the screenshot below:

Figure 6.7. isPremiumUser details in the Android Studio profiler.

The call stack represented in this section of the trace highlights that the
getUser method (and the internal deserialization operation) is internally
invoked by a function named isPremiumUser. As the name suggest, this
method’s purpose is to check whether the customer account is associated
to a "premium" user or not, returning a boolean value (premium users can
leverage more functionalities with respect to "normal" users).

76

6.2 – Proposed solutions

The odd thing here is that, similarly to what previously observed in the
case of the Savings and CacheHandler section 6.1.2 and 6.1.2, the heavy
deserialization which is internally executed is only aimed at checking the
value of a single field. Moreover, the Summary section of the CPU profiler
reports that this check is performed twice upon application startup, wasting
precious time.

A possible improvement for this operation will be presented in section
6.2.2.

6.2 Proposed solutions

6.2.1 Decryption
As highlighted in section 6.1.1, the decryption operation is performed several
times upon startup, but for some of the invocations, the input (and the out-
put) are the same. For this reason, the proposed solution consists in adopting
a caching behaviour by storing decryption results for identical data, with the
goal of avoiding to perform the same expensive decryption operation shortly
after. In the next trace we can observe the result obtained by following this
approach:

Figure 6.8. Trace showing the time spent for decryption operation when
caching the output for identical data.

We can notice that the number of occurrences is the same, as expected,
but the total time is noticeably reduced (from 443ms to 92ms).

6.2.2 Deserialization
Activity creation - savings

In section 6.1.2 it was presented that, besides the overhead caused by the
inflation of a suitable layout (discussed in section 5.3.1), in order to show the

77

6 – App internal operations

savings of the customer upon application startup, there was the need of de-
serializing the information about the user account. By tracing the execution
with the debugger, it was possible to identify the order of the instructions
performed, which is reported in figure 6.9:

Figure 6.9. Diagram reporting the execution flow for the money-
box deserializaion.

It is easy to notice that the expensive deserialization operation is executed
before checking the two conditions, whose result depends on the JSON object
itself. It is possible to verify that: the resulting JSON object (condition 1)
and that the property we’re interested in (condition 2) are not null without
converting the JSON data into a Savings object, but directly manipulating
the JSON string. This way, the overhead coming from the deserialization
could be avoided when not needed, and executed only if the conditions are
met.

By observing figure 6.10 and comparing it with figure 6.2 it is clear that
the duration of the onViewCreated method is considerably reduced when the
deserialization is not performed, requiring less than 25% of its original time.

Figure 6.10. Trace showing the impact of avoiding deserialization of the
Savings object when not needed

78

6.2 – Proposed solutions

Cache Handler

When presenting the CacheHandler class in section 6.1.2, it was explained
that one of its duties is to check whether cached responses that are stored on
the device are out of date, and to do so, multiple deserialization operations are
needed. Since the impact on the startup time is remarkable, we can follow a
similar approach to what presented in the case of the Savings deserialization:
the proposed strategy consists in reading the expiryDate field from the JSON
object and check whether the response file is expired. After that, only valid
files will be deserialized and processed. Since the expiry date of the response
file is a unique field inside the JSON object, a possible implementation relies
on using a regex.

The auxiliary function which is in charge of verifying whether the file is
too old be preserved in the cache performs the following operations:

1. define regex for the expiry date field:

2. read the response file into a String via the readText method;

3. find regex pattern inside the string;

4. extract the value corresponding to the field to obtain the expiry date of
the file;

5. compare the expiry date with the policy limit and return true if the file
is expired, false otherwise.

A custom trace, named readFile has been defined to encapsulate points
2-4, in order to keep track of the amount of time required to perform these
operation and compare it with the previous approach. The result obtained
is reported in figure 6.11:

Comparing it with the trace reported in figure 6.5, we can notice that the
time required to verify whether the response files must be deleted or not is
approximately 4 ms, and it can be considered negligible if compared to the
initial duration of such operation (767 ms).

However, the heavy deserialization highlighted in the apiMap traces (see
figure 6.5) still represents a problem in terms of startup performance. Since
the whole invalidate operation goal is to find potentially expired cached
responses and eventually deleting them from the device memory, a possible
improvement would be to adopt a fire and forget approach, executing this
task on another thread without blocking the main one.

79

6 – App internal operations

Figure 6.11. perfetto trace showing the execution of the invalidate
method after reading only the expiry date field.

Furthermore, tracing the execution by using the Android Studio debugger,
it emerged that the init method of the CacheHandler class is invoked thrice,
each time by a different module of the application. Nonetheless, for each
invocation, the only parameter received is the path of the application cache,
and it does not change for different invocations. This suggests that executing
this expensive method only once (for the first module that is initialized)
would result in sparing the time needed for the two subsequent invocations.

Even though the possible aforementioned strategies could result in a more
efficient initialization of the CacheHandler class, their implementation is not
easy, since it needs to be shared among different modules of the application.
For this reason, a different possible strategy directly affecting the deserial-
ization will be discussed in section 6.2.2.

Get user information

The overhead caused by the repeated calls to the getUserInformation()
method has been illustrated in section 6.1.2. Recall that this function is
invoked several times upon startup, either because the whole User object
is needed or because the application must only check whether the user is a
"premium" one or not.

There are different approaches that can be adopted to mitigate the prob-
lem:

• deserialize the JSON string into a User object the first time it is needed
and cache the obtained value and the starting JSON string. For future
requests to retrieve the information about the user, we compare the new
JSON string with the cached one and proceed to deserialize it only if

80

6.2 – Proposed solutions

they are different (meaning that some values may have been updated in
the meanwhile).

• define an auxiliary function to extract from the JSON string only the
field we are interested in (in this case userType). This should reduce
the time needed to perform this kind of check.

The result of these modifications is not shown in this paragraph, because
a common solution to the overhead of the deserialization operation is going
to be presented in the next one.

Changing deserialization approach

In the previous sections it has been presented the problem of heavy deserial-
ization upon startup, highlighting the impact that it has on the application
at launch time. In the following perfetto screenshot, it is possible to observe
the total time needed to perform deserialization-related operations when the
application is launched in a COLD state (N.B. the trace has been recorded
after having applied the modifications proposed in section 6.2.2):

Figure 6.12. perfetto trace capturing the aggregated duration of
deserialization operations after applying the modifications suggested
in section 6.2.2.

Since from the perfetto UI we don’t have much information on the in-
ternal operations performed for this purpose, we can use the Android Studio
CPU profiler to dive deeper into the call stack of a deserialization:

Image 6.13 captures the call stack when the invalidateExpiredCache
method (presented in section 6.1.2) is invoked. We can notice that the library
on which the deserialization relies is the jackson.databind1. Additionally,

1More details on the library can be found at the page of its Git repository.

81

https://github.com/FasterXML/jackson-databind

6 – App internal operations

Figure 6.13. Call chart showing the jackson module used for deserialization.

the mapping between the input file (in JSON or XML format, generally) and
the output object class is obtained by calling the readValue() method of
the ObjectMapper class.

By reading the online documentation for the jackson library, it was pos-
sible to discover that there are multiple approaches to deserialize a resource
(JSON/XML) into an object: a highly efficient one is the Streaming API
one[1]. This API offers very good performance in terms of memory and pro-
cessing overhead, due to the low-level customizable implementation of the
deserialization strategy. In fact ,the developer can process the input resource
to be parsed one field at a time (using the Parser class), making it also
suitable to extract JSON fields without needing to deserialize the whole
object: this last feature is the perfect alternative to the "field extraction"
strategy used for the deserialization of the Savings object (see section 6.2.2)
and the cached responses (see section 6.2.2). However, this approach in-
creases the verbosity of the code, because every detail must be specifically
handled in code.

A possible compromise to produce a clearer code, without having to an-
alyze each field separately, combines the efficiency of the Streaming API
and the handy data-binding capabilities of the ObjectMapper. Following
this idea, illustrated in this article the "hybrid" deserialization strategy has
been adopted for the most significant sections of the Mobile Banking ap-
plication. The total time needed to process the same information highlighted
in figure 6.12 is reported in the perfetto UI screenshot below:

Figure 6.14. perfetto trace capturing the deserialization impact after
adopting the mixed Streaming API - ObjectMapper approach.

82

https://cassiomolin.com/2019/08/19/combining-jackson-streaming-api-with-objectmapper-for-parsing-json/

6.2 – Proposed solutions

By comparing the total deserialization time required by the initial strategy,
reported in figure 6.12, and the one based on the Streaming API illustrated
in figure 6.14, we can notice that the overall duration of such operation
is significantly reduced (from 825 ms to 100 ms). Even though only the
main deserialization operations have been modified to adopt the Streaming
API approach, it can also be extended to less-relevant sections that rely on
deserialization.

83

84

Chapter 7

Comparison of initial and
final launch time of the
application

After having presented the critical points for the application startup time
in chapters 5 and 6, and implemented most of the proposed solutions in the
relative Proposed solution section, the goal of this chapter is to compare the
startup time observed when considering the application in its initial state and
the version in which the suggested modifications have been implemented.

7.1 Data collection
Before presenting the results obtained, it is useful to understand the context
of this comparison in terms of devices and versions of the application.

7.1.1 Version of the application
For the analysis of the launch performance and the implementation of the
proposed solutions, the DEBUG version of the app was utilized. This is
due to the fact that, when considering a debuggable app, the developer can
rely on several instruments that simplify the performance analysis, like:

• the debugger: a debuggable version of the application allows to use
a debugger (like the one integrated in Android Studio) to track the
execution flow of the Android process, gaining information on the current

85

7 – Comparison of initial and final launch time of the application

instruction that is being executed, the value of variables, and the thread’s
stack. Details on the Android Studio debugger can be found at the
following link;

• the Android Studio CPU profiler: in section 3.1 have been illus-
trated the details of such tool, and we have seen that it has been crucial
for the analysis of the application;

• the Layout Inspector, extremely useful for the layout analysis, carried
out in chapter 5;

• the possibility of displaying custom section when collecting system traces.
It is worth mentioning that, although one can always specify the begin-
ning and the end of a section via the Trace class methods, the infor-
mation about the fragment of execution will be displayed only if the
application is debuggable.

On the other hand, it is important to notice that the DEBUG version
of an application does not reflect the performance of the ones that end-users
install on their devices, that is known as RELEASE version. The reason
is that the DEBUG one does not undergo the optimization process that is
usually applied to the marketplace versions of the app, which includes1:

• code shrinking: removes unused classes, fields and methods;

• resource shrinking: removes unused resources from the app;

• obfuscation: shortens the name of the classes and their members to
reduce the size of the application;

• optimization: inspects the code and removes unused statements.

The results that will be presented later in this chapter have been collected
using the UAT (User Acceptance Test) version of the application, that is
as similar as possible to the official RELEASE one: the main difference is
that the first one is executed in an environment specifically though for testing
purposes (requests/responses are directed to test servers to avoid overloading
production ones).

1Android Developers guide on code optimization here

86

https://developer.android.com/studio/debug
https://developer.android.com/studio/build/shrink-code

7.1 – Data collection

7.1.2 Devices
To better understand the impact of the modifications made on the original
application code, different devices have been considered. The following table
gives an overview of the most important characteristics:

ID Device name API Released # cores CPU freq. RAM
1 Redmi Note 9 Pro 30 2020/1 8 1.9 GHz 6 GB
2 Honor 9 Lite 28 2018/1 8 2.0 Ghz 3 GB
3 Huawei P10 Lite 26 2017/2 8 1.9 GHz 4 GB
4 Huawei P8 23 2015/2 8 1.8 GHz 3 GB
5 Samsung Galaxy S4 21 2013/2 4 1.9 GHz 2 GB

Table 7.1. Table listing the devices used for launch performance collection.

The devices listed in table 7.1 have been sorted in from the most recent to
the oldest one, and we can notice that they also present different hardware
specifications. These information will be interesting to take into considera-
tion when presenting the results obtained.

7.1.3 Method
To collect the information about the application startup time, the script pre-
sented in section 3.3.1 has been used. For each device and for each version of
the application (Initial and Final) the loop presented in the script has been
executed for 100 iterations. After that, the obtained results were averaged
to obtain a more reliable metric. The waiting time between an iteration and
the following one has been set to 3 seconds. The application has been always
killed before being launched, to ensure that a cold state is observed.

It is also worth mentioning that the metrics have been collected trying to
isolate the Mobile Banking process as much as possible, meaning that no
other application were actively running when measuring the launch times.

87

7 – Comparison of initial and final launch time of the application

7.2 Results
In table 7.2 are reported the results obtained when collecting the application
startup time on the devices presented in table 7.1:

Initial Final
Device ID Time Std. dev. Time Std. dev. Gain % Gain

1 1587.38 24.83 881.76 22.87 749.32 47.20
2 2444.11 24.82 1487.36 16.47 956.74 39.14
3 5129.36 276.72 2106.47 22.14 3022.89 58.93
4 9793.62 1108.47 4649.48 47.21 5144.14 52.53
5 8971.01 213.59 4870.91 212.01 4100.1 45.70

Table 7.2. Table reporting the initial and final launch times statistics for
different devices. The values are expressed in milliseconds.

From table 7.2 we can notice a clear performance degradation from newer
devices to older ones, as one would expect. In fact, the time required by
the least recent device (Samsung Galaxy S4, released in 2013) to complete
the application startup is roughly six times larger than the one needed to
launch the application in the case of the most modern one (Redmi Note 9
Pro, released in 2020). The only exception is observed when considering
devices 4 and 5 in the context of the initial version, whose launch times are
comparable.

Furthermore, the standard deviation reported for "fresher" devices when
executing the initial code is substantially smaller than the one observed in
older smartphones, suggesting that the performance of such devices can vary
more between one execution and another one. Nonetheless, this variability in
the launch times seems to decrease when considering the final version of the
application, leading to more "stable" results: the reduced number of long-
lasting operations, that can have different duration from one execution to
another contributes to reduce the standard deviation for the observed launch
times.

Moreover, comparing the initial and final launch times we can notice
that the improvement is consistent across the different devices, showing
a greater absolute gain for older devices, perfectly in line with what ex-
pected. Nevertheless, if we take into consideration the percentage gain
(tinitial−tfinal)/tinitial, we can observe a considerable percentage improvement
also in the case of more recent smartphones, meaning that the modifications

88

7.2 – Results

brought to the initial code base are beneficial both for more performing and
for less powerful devices.

It is also worth noting that time initial startup time registered for de-
vices 3,4 and 5 was above the 5s time limit for a slow startup suggested
by Android Vitals (see section 3.5), with older devices (4 and 5) greatly
exceeding it. On the other hand, considering the final version of the appli-
cation, it is possible to observe that the average startup time for the same
devices is below this threshold Still, in the case of device number 5 (Samsung
Galaxy s4) the results oscillate around this limit.

89

90

Chapter 8

Conclusions and future
directions

8.1 Conclusions

This work aimed to carry out an analysis of the operations that influence the
most the startup time of theMobile Banking application. Employing some
of the tools designed for performance analysis, it has been possible to break
down the execution of the application at launch time and identify the critical
sections that require more time required to be completed and go against the
guidelines suggested by the Android team.

Subsequently, a viable solution to reduce the impact of the identified bot-
tlenecks has been proposed, highlighting the benefits that would derive from
applying the modifications.

After presenting the most significant issues at the application launch time
and the relative suggested modifications, a comparison of the initial and final
application startup time was conducted, considering devices with different
computational power. The results obtained through this analysis showed
that it is possible to improve the startup performance of the application
by adopting the strategies presented to reduce the overhead of the critical
sections, thus decreasing the time required to launch the application. The
proposed approach is beneficial not only for less-performing devices but also
for more recent and powerful ones.

However, although the results obtained are promising (see table 7.2 for
details), from the user’s perspective, improving the startup time from 1.6s
to 900ms is less relevant than observing a reduction of the launch time from

91

8 – Conclusions and future directions

9s to 5s. Moreover, even though the percentage gain observed in low-end
devices is roughly 50%, a launch time that oscillates around the 5s threshold
(above which it is considered a slow start, according to Android Vitals) is
likely to be still perceived as "slow", as "61% of users expect mobile apps to
load in 4s or less" [11].

A possible solution could be adopting a lightweight version of the appli-
cation for less recent devices, which provides a reduced number of features
compared to the original application, but results in a less complex implemen-
tation and therefore decreases the startup time.

Another factor to consider is that the OS API levels of devices for which
the absolute gain is greater (26, 23 and 21), are also the least diffused ones,
with a total share of approximately 10% (see table 1.1 for details). Even if,
as introduced in section 1.1.1, the API level is not necessarily related to the
computational power, it can give an estimate devices’ recentness. From table
1.1 we can notice the latest 3 OS versions account for approximately 88%
of total devices on which the application is installed, and we have seen from
table 7.2 that, generally, fresher devices perform better than older ones.

Finally, the effort needed to carry out this kind of analysis must be taken
into account. The solutions proposed in this work have been deemed appro-
priate because optimizing the corresponding critical sections did not require
excessive modifications to the original code while still leading to a reasonably
positive impact over the startup time. However, the process of identifying the
different critical sections and proposing a plausible optimization approach
is undoubtedly time-consuming; therefore, it would require a considerable
amount of time to perform this work on the complete application.

Nevertheless, the performance analysis of the application should be per-
formed hand in hand with the development of new features, which would
also allow to reduce the scope of the study and ease the identification of
performance problems.

8.2 Future directions

The analysis conducted in this work is intended to represent a starting point
for a more in-depth inspection of the application performance. In fact, even
though the application startup surely plays a major role for the customers’
satisfaction, the same approach followed in this thesis can be extended to
other parts of the application, possibly considering different aspects of the

92

8.2 – Future directions

performance (like network requests, battery consumption, memory manage-
ment), that collectively contribute to the quality of the product.

Nonetheless, the data collected through this work and the results obtained
will be presented to the Mobile Banking company, which will evaluate
whether it is possible to apply the proposed modifications to the code base
or not. Furthermore, this work proposes a methodology for analyzing the
performance of an application at startup time (that can also be extended to
other parts of the application) and detecting the most critical points, allowing
the company to avoid porting the same known issues on future projects.

93

94

Bibliography

[1] Baeldung. Jackson Streaming API. https : / / www . baeldung . com /
jackson-streaming-api. Sept. 2020. (Visited on 10/11/2021).

[2] Statista Research Department. Percentage of mobile apps that have been
used only once from 2010 to 2019. https : / / www . statista . com /
statistics/271628/percentage-of-apps-used-once-in-the-us/.
July 2021. (Visited on 10/13/2021).

[3] Android Developers.App Startup Time. https://developer.android.
com/topic/performance/vitals/launch-time. Mar. 2021. (Visited
on 10/06/2021).

[4] Android Developers. Overview of memory management - Share mem-
ory. https://developer.android.com/topic/performance/memory-
overview#SharingRAM. Feb. 2021. (Visited on 10/07/2021).

[5] Android Developers.Overview of System Tracing. https://developer.
android.com/topic/performance/tracing. Oct. 2021. (Visited on
10/06/2021).

[6] Android Developers. Performance and view hierarchies. https://developer.
android.com/topic/performance/rendering/optimizing-view-
hierarchies#cheaper. 2021. (Visited on 10/13/2021).

[7] Android Developers. Performance and view hierarchies - Double tax-
ation. https : / / developer . android . com / topic / performance /
rendering/optimizing-view-hierarchies#double. Feb. 2021. (Vis-
ited on 10/07/2021).

[8] Android Developers. ViewStub Documentation. https://developer.
android.com/reference/android/view/ViewStub. 2021. (Visited on
10/21/2021).

95

https://www.baeldung.com/jackson-streaming-api
https://www.baeldung.com/jackson-streaming-api
https://www.statista.com/statistics/271628/percentage-of-apps-used-once-in-the-us/
https://www.statista.com/statistics/271628/percentage-of-apps-used-once-in-the-us/
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/memory-overview#SharingRAM
https://developer.android.com/topic/performance/memory-overview#SharingRAM
https://developer.android.com/topic/performance/tracing
https://developer.android.com/topic/performance/tracing
https://developer.android.com/topic/performance/rendering/optimizing-view-hierarchies#cheaper
https://developer.android.com/topic/performance/rendering/optimizing-view-hierarchies#cheaper
https://developer.android.com/topic/performance/rendering/optimizing-view-hierarchies#cheaper
https://developer.android.com/topic/performance/rendering/optimizing-view-hierarchies#double
https://developer.android.com/topic/performance/rendering/optimizing-view-hierarchies#double
https://developer.android.com/reference/android/view/ViewStub
https://developer.android.com/reference/android/view/ViewStub

BIBLIOGRAPHY

[9] Google. Monitor your app’s technical performance with Android vitals.
https://support.google.com/googleplay/android-developer/
answer/9844486?visit_id=637692106150122338-3334721575&rd=
1#zippy=%2Capp-start-up-time. 2021. (Visited on 10/06/2021).

[10] Joel Newman. Google I/0 2018’. https://www.youtube.com/watch?
v=dx6LBaFqEHU&t=88s&ab_channel=AndroidDevelopers. May 2018.
(Visited on 10/03/2021).

[11] Dimensional Research. Failing to meet mobile app user expectations. A
mobile app user survey. 2015.

[12] Wikipedia. Android version history. https://en.wikipedia.org/
wiki/Android_version_history. Oct. 2021. (Visited on 10/12/2021).

96

https://support.google.com/googleplay/android-developer/answer/9844486?visit_id=637692106150122338-3334721575&rd=1#zippy=%2Capp-start-up-time
https://support.google.com/googleplay/android-developer/answer/9844486?visit_id=637692106150122338-3334721575&rd=1#zippy=%2Capp-start-up-time
https://support.google.com/googleplay/android-developer/answer/9844486?visit_id=637692106150122338-3334721575&rd=1#zippy=%2Capp-start-up-time
https://www.youtube.com/watch?v=dx6LBaFqEHU&t=88s&ab_channel=AndroidDevelopers
https://www.youtube.com/watch?v=dx6LBaFqEHU&t=88s&ab_channel=AndroidDevelopers
https://en.wikipedia.org/wiki/Android_version_history
https://en.wikipedia.org/wiki/Android_version_history

	List of Tables
	List of Figures
	Introduction
	Context of the thesis
	State of the art

	Goal of the thesis
	Structure of the work
	Importance of application startup

	Application startup
	Creation of the application process
	The main thread
	Activity lifecyle
	Different states of application start
	Cold start
	Warm start
	Hot start

	Layout in Android
	Inflating a layout
	Common UI components in Android
	LinearLayout
	FrameLayout
	RelativeLayout
	ConstraintLayout
	ListView
	RecyclerView
	WebView
	Custom View

	How Android draws the UI

	Common problems in application startup
	Blocking the Main thread
	Heavy initialization of the Application
	Complex Activity initialization
	Large layouts inflation
	Double taxation

	Heavy deserialization
	The JSON format
	Serialization
	Deserialization

	Tools
	Android Profiler
	CPU profiler
	Call chart
	Flame chart
	Top down and Bottom up

	Memory profiler
	Heap and heap dump
	Garbage collector

	Energy Profiler
	Network profiler

	System Tracing
	Systrace
	Perfetto
	System tracing app
	Perfetto UI

	Logcat
	Script for multiple runs

	Firebase Performance Monitoring
	Android Vitals
	Android Studio Layout Inspector

	Mobile Banking application
	Layout Analysis
	Application structure
	First analysis of a system trace
	Identify problems
	Analysis of welcome_layout.xml
	Savings layout

	Analysis of fragment_home_page.xml
	AdvertisementWebView
	Home page progress
	Sliding panel

	Analysis of common_fragment_container.xml
	User banner
	Promotional message

	Proposed solutions
	Savings layout
	AdvertisementWebView
	Home page progress
	User banner
	Sliding panel
	Promotional message

	App internal operations
	Identify problems
	Decryption
	Deserialization
	Activity creation - Savings
	Cache Handler
	Get user information

	Proposed solutions
	Decryption
	Deserialization
	Activity creation - savings
	Cache Handler
	Get user information
	Changing deserialization approach

	Comparison of initial and final launch time of the application
	Data collection
	Version of the application
	Devices
	Method

	Results

	Conclusions and future directions
	Conclusions
	Future directions

