
POLITECNICO DI TORINO
Master’s Degree Thesis in Computer Engineering

Master’s Degree Thesis

Hardware-based schedulers
approaches for Linux OS

Supervisors
Prof. Alessandro SAVINO
Prof. Maurizio REBAUDENGO

Candidate
Leonardo IZZI

October 2021

Abstract

Tasks scheduling is one of themost critical activities in any operating system. Choosing
which task should possess a CPU core (and for how long) heavily influences the system’s
performance. A common approach for solving these problems in today’s scheduling
algorithms is to consider the task’s priority and execution time of all processes. How-
ever, modern hardware optimization structures, such as hierarchical caches and branch
prediction units, influence the execution time, leading to suboptimal results if misused.
Even though such information is made available to software through PerformanceMon-
itoring Counters (PMCs), no known scheduler uses them to improve scheduling deci-
sions. This work integrates PMC-based evaluations in the Linux Completely Fair Sched-
uler (CFS) to study how thread scheduling may benefit from such knowledge. Results
confirm the broad fluctuations in task turnaround time depending on the monitored
structures, providing insights into possible CFS optimization.

Contents

List of Tables iv

List of Figures vi

Listings vii

1 Introduction 1

2 Performance Monitoring Counters 3
2.1 PMCs introduction . 3
2.2 Intel architecture . 3

2.2.1 Model-Specific Registers . 4
2.2.2 Architectural Performance Counters 4
2.2.3 Haswell Performance Events 7

3 Linux Thread Scheduling 8
3.1 Basic Concepts . 8

3.1.1 Programs, Processes and Threads 8
3.1.2 Task Structure . 9

3.2 The Scheduler . 14
3.2.1 Scheduling Theory . 14
3.2.2 Scheduling Classes . 17
3.2.3 Runqueues . 18
3.2.4 Timers . 19
3.2.5 The schedule function . 20

3.3 Completely Fair Scheduler Implementation 23
3.3.1 The Completely Fair Model . 24
3.3.2 Scheduler Entities . 24
3.3.3 CFS runqueue . 27
3.3.4 Entity Update . 29
3.3.5 CFS Timeslice . 32
3.3.6 Scheduler Tick . 35

ii

3.3.7 Entity Enqueue . 37
3.3.8 Entity Dequeue . 39
3.3.9 Pick the Next Entity . 41

4 Methodology 44
4.1 Resource Identification . 44

4.1.1 PMCs selection . 46
4.2 PMCs library . 46

4.2.1 Configuration . 47
4.2.2 Read Access . 49

4.3 Fixed Point Format . 49
4.3.1 Fixed Point Arithmetics . 50
4.3.2 Kernel Library . 51

4.4 Scheduler Integration . 52
4.4.1 Mathematical Model . 52
4.4.2 Model Implementation . 56

4.5 Data Collection . 64
4.5.1 Kernel Logging . 64
4.5.2 Userspace Logging . 67

5 Results 69
5.1 Test Architecture . 69

5.1.1 Test Script . 71
5.2 Data Analysis . 72

5.2.1 Log Parser . 72
5.3 Experimental Results . 74

5.3.1 Cache only . 74
5.3.2 Cache and Branches . 80

6 Conclusions 91

Bibliography 94

iii

List of Tables

2.1 Architectural performance events . 6
2.2 Haswell performance events . 7

4.1 PMC index - event mapping . 58
4.2 Logged kernel parameters . 67

5.1 Heavyweight processes . 69
5.2 Lightweight processes . 70
5.3 Workload details . 70
5.4 ffmpeg cache only data. CMR = cache miss rate, VCSW = voluntary

context switches, NVCSW = non-voluntary context switches 76
5.5 make cache only data. CMR = cache miss rate, VCSW = voluntary con-

text switches, NVCSW = non-voluntary context switches 76
5.6 octave cache only data. CMR = cache miss rate, VCSW = voluntary

context switches, NVCSW = non-voluntary context switches 79
5.7 ffmpeg wl1 cache branch data. CMR = cache miss rate, BRM = branch

miss rate, VCSW=voluntary context switches, NVCSW=non-voluntary
context switches . 81

5.8 make wl1 cache branch data. CMR = cache miss rate, BRM = branch
miss rate, VCSW=voluntary context switches, NVCSW=non-voluntary
context switches . 82

5.9 octave wl1 cache branch data. CMR = cache miss rate, BRM = branch
miss rate, VCSW=voluntary context switches, NVCSW=non-voluntary
context switches . 87

5.10 ffmpeg wl2 cache branch data. CMR = cache miss rate, BRM = branch
miss rate, VCSW=voluntary context switches, NVCSW=non-voluntary
context switches . 88

5.11 make wl2 cache branch data. CMR = cache miss rate, BRM = branch
miss rate, VCSW=voluntary context switches, NVCSW=non-voluntary
context switches . 89

iv

5.12 octave wl2 cache branch data. CMR = cache miss rate, BRM = branch
miss rate, VCSW=voluntary context switches, NVCSW=non-voluntary
context switches . 90

v

List of Figures

2.1 IA32_PERFVTSELx version 1 layout. Taken from [23]. 5

3.1 Process memory layout . 8
3.2 Tasks relationships . 10
3.3 Tasks states diagram . 13
3.4 Red-black tree example . 28
3.5 Timeslice example . 34

4.1 Intel Sandy Bridge Pipeline. Taken from [39]. 45
4.2 Fixed point power values . 50
4.3 Benchmark data collection flow . 65

5.1 Test script flow . 71
5.2 Parsing Tree . 73
5.3 Cache PMCs wl1 results . 77
5.4 Cache PMCs wl2 results . 78
5.5 Cache PMCs wl1 results . 83
5.5 Cache PMCs wl1 results (cont.) . 84
5.6 Cache PMCs wl2 results . 85
5.7 Cache PMCs wl2 results (cont.) . 86

vi

Listings

3.1 Scheduling class structure . 17
3.2 Runqueue structure . 19
3.3 hrtick . 20
3.4 schedule . 20
3.5 __schedule . 21
3.6 pick_next_task . 22
3.7 Scheduler entity structure . 25
3.8 load_weight structure . 26
3.9 sched_prio_to_weight . 27
3.10 sched_prio_to_wmult . 27
3.11 CFS runqueue structure . 28
3.12 update_curr . 30
3.13 calc_delta_fair . 30
3.14 __calc_delta . 31
3.15 sched_slice . 32
3.16 __sched_period . 33
3.17 task_tick_fair . 35
3.18 entity_tick . 35
3.19 check_preemt_tick . 36
3.20 enqueue_task_fair . 37
3.21 enqueue_entity . 38
3.22 dequeue_task_fair . 39
3.23 dequeue_entity . 40
3.24 pick_next_task_fair . 41
3.25 __pick_first_entity . 42
4.1 init_intel_core_pmc . 48
4.2 read_intel_core_pmc . 49
4.3 struct task_struct additions . 56
4.4 __sched_fork initialization . 56
4.5 update_pmcs . 57
4.6 compute_rate macro . 59
4.7 compute_penalty . 60

vii

4.8 update_curr modifications . 61
4.9 sched_slice modifications . 63

viii

Chapter 1

Introduction

Hardware systems have grown significantly in complexity to cope with the ever-in-
creasing demand of today’s applications. Modern microprocessors can run billions of
instructions per second on multiple cores, while software programs must coordinate
a multitude of parallel tasks. Operating Systems (OSes) are key to manage such com-
plexity: they abstract the hardware platform, manage the resources on behalf of user
programs and offer a set of APIs to ease application development and communicate
with the OS itself.

The thread scheduler is a critical component present in any operating system. Its
main purposes are to select which task should possess the CPU and for how long [40],
guaranteeing fairness among tasks while respecting priorities. In a multi-core environ-
ment additional complications arise for the scheduler, as load balancing algorithms [8]
are necessary to even the work across the execution units.

The Linux Completely Fair Scheduler (CFS), the default scheduler for standard tasks,
selects the task which has spent less time on the CPU as the next one to run, and it
assigns the execution quantum as a proportion of the scheduling period [30]. This in-
formation, however, is insufficient to characterize a thread’s behavior on modern hard-
ware. Today’s CPU offer manymechanisms to speed-up code execution, such as branch
predictors, hierarchical caches, speculation, out-of-order execution, and so on. Their
effectiveness strongly depends on how code interact with the underlying hardware.

Performance Monitoring Counters (PMCs) are tools embedded in virtually any CPU
that counts the occurrences of microarchitectural events. They are widely used by de-
velopers of user-space programs to identify and solve performance bottlenecks in their
code. In fact, there exist many applications and libraries to interact with them from
userland, such as perf [35], PAPI [41] and PMCTrack [38]. Although PMCs provide
useful insight for characterizing tasks’ behavior, no known scheduler make use of such
knowledge to improve its decision process. Moreover, there are fewer solutions to ac-
cess performance counters fromwithin the kernel, and they all have shortcomings: perf,

1

Introduction

the built-in Linux performance counters subsystem, introduces a non-negligible over-
head which hurts performance in a critical component like the scheduler [44]. PMC-
Track, on the other hand, due to its module structure does not allow a strong integration
with the scheduler.

Hence, this thesis focuses on the development of a lightweight PMC library and its
introduction in the Linux CFS to alter scheduling decisions with PMCs-based evalua-
tions. The remaining of this document is organized as follows: chapter 2 is an introduc-
tion to performance counters and their structure on Intel platforms. Chapter 3 presents
the process/thread structure in the Linux kernel and discusses the internals of the Linux
scheduler, focusing in particular on CFS operations. Chapter 4 is the bulk of this work
and explain the structure of the PMC library developed for the scheduler, as well as the
methodology used to build PMC-scheduling within the CFS. Chapter 5 describes the
test architecture developed for benchmarking and analyzes the experimental results
obtained from the tests. Finally, chapter 6 presents a summary of the work carried in
this thesis and discusses the possible future works.

2

Chapter 2

Performance Monitoring
Counters

2.1 PMCs introduction

Performance monitoring counters are tools used for software performance analysis and
tuning. They are a set of registers whose purpose is to store the count of hardware-
related events inside a microprocessor. Usually, the number of events that can be
monitored far exceeds the number of available registers. For this reason, PMCs are
paired with configuration registers to select the event to be monitored and fine-tune
the counter behavior.

In multi-core and multi-thread environments, every execution unit has its own pri-
vate copy of the register set. This means that each thread is responsible for the con-
figuration of its performance counters, but also that the monitor process is local to
hardware threads, allowing users to obtain precise information. However, for shared
resources, the situation is more complicated. The Last Level Cache (LLC), for example,
is often divided by all cores in the package. For these components there exist two main
counting approaches: in the first one, each core counts only the events generated by
itself, while in the second one there is a “global” register counting the events arising
from every thread.

These solutions have both their advantages and disadvantages. With dedicated coun-
ters it is possible to know exactly how a particular thread interacted with the resource,
on the other hand it can be hard to monitor the global behavior. The converse is true
for the global resource counter.

2.2 Intel architecture

3

Performance Monitoring Counters

2.2.1 Model-Specific Registers

On Intel architectures, performance monitoring counters are a subset of Model Specific
Registers (MSRs) [22]. MSRs have many possible uses, such as getting detailed sys-
tem information, CPU resources configuration and the management of the processor’s
features.

MSRs can be broadly divided in two main categories: architectural and non-architec-
tural. The former are guaranteed to not change in future processors, while the latter
may be changed, removed or replaced from one micro-architecture to the other. How-
ever, even architectural MSRs or bit fields may be introduced or deprecated between
processor families. Accessing a non-existent MSR generates an exception, whilst con-
figuring it in the wrong way leads to unexpected results.

To distinguish processors and obtain feature information, the x86 and x86-64 archi-
tectures support the cpuid instruction. Based on the values contained in the EAX and
(optionally) ECX registers, this instruction returns the aforementioned details in EAX,
EBX, ECX and EDX.

MSRs are accessed through special instructions, RDMSR and WRMSR. RDMSR reads the
register value, WRMSR overwrites it. Both instructions use ECX as source address. Each
MSR is 64 bits long, therefore on x86 EDX and EAX are needed to store the value to be
read or written. EDX holds the higher part, AEX the lower one. This is true also for
x86-64 for backward compatibility reasons.

Model-specific registers are often unaccessible from user space due to security rea-
sons. Hence, the kernel or a kernel module must provide a software APIs to interact
with them from user-space.

2.2.2 Architectural Performance Counters

Performance facilities were initially added as non-architectural MSRs in the first Pen-
tium. Starting with Intel Core Solo and Intel Core Duo processors, the monitoring
system became architectural with support for both architectural and non-architectural
events.

There exist multiple architectural performance monitoring versions, that can be
identified by the bits 7:0 of the EAX register when cpuid is calledwith EAX set to 0x0A. A
higher version ID corresponds to a newer version, where more features and capabilities
are available. The first version defines the MSRs used for configuration and counting,
their addresses, bit fields and bit widths. These registers are called IA32_PERFVTSELx
and IA32_PMCx respectively, with x being the ID (0, 1, 2, 3...) [23]. They occupy a
contiguous block of MSR addresses which starts at 0x186 for IA32_PERFVTSELx and at
0xC1 for IA32_PMCx. Every core has eight PMCs units available, but processors with
Simultaneous MultiThreading (SMT) enabled are allowed to use only four PMCs per
thread. The bit fields of IA32_PERFVTSELx is shown in figure 2.1, where:

4

Performance Monitoring Counters

Figure 2.1: IA32_PERFVTSELx version 1 layout. Taken from [23].

• Event Select (bits 7:0): Select the event logic unit used to detect microarchitec-
tural events.

• Unit mask (UMASK) (bits 15:8): Select the event to be monitored within the
event logic unit.

• USR (user mode) (bit 16): Determines if the events must be counted in privilege
levels other than 0.

• OS (operating systemmode) (bit 17): Determines if the events must be counted
in privilege level 0.

• E (edge detect) (bit 18): If enabled the counter increases its value when the event
signal executes a low-to-high transition.

• PC (pin control) (bit 19): When set, enables the toggling of the PMi pins when
an event occurs. It is reserved since the Sandy Bridge architecture.

• INT (APIC interrupt enable) (bit 20): When set, generates an interrupt when
the counter overflows.

• EN (Enable counters) (bit 22): When set, it enables the corresponding IA32_-
PMC.

• INV (invert) (bit 23): When set, inverts the CMASK comparison.

• Counter mask (CMASK) (bits 31:24): The counter compares this value against
the number of occurred events in a single clock cycle. If the number of events is
greater or equal to the mask, the counter value is increased.

The IA32_PERFVTSELx registers support both architectural and non-architectural
performance events. An architectural event is guaranteed to have always the same

5

Performance Monitoring Counters

Event Mask Name Event Number UMASK Value
Unhalted Core Cycles 0x3C 0x00

Unhalted Reference Cycles 0x3C 0x01
Instructions Retired 0xC0 0x00

LLC Reference 0x2E 0x4F
LLC Misses 0x2E 0x41

Branch Instruction Retired 0xC4 0x00
Branch Misses Retired 0xC5 0x00

Table 2.1: Architectural performance events

functionality and configuration values. A programmer which does not want to distin-
guish between processors families should only rely on such events to monitor perfor-
mance. However, the event list is rather short, as shown in table 2.1.

The architectural events are:

• Unhalted Core Cycles: Increases the counter with core frequency when it is in
power state C0. The number of counted events per unit time changes with state
transitions, although during such transitions the counting process is stopped. A
state transition corresponds to a frequency scaling.

• Unhalted Reference Cycles: Increases the counter at a fixed frequency when
the core is in state C0. Depending on the processor, different clock sources may be
used, each providing a different method to obtain the reference frequency value.

• Instructions Retired: Counts the number of instructions retired. In case of a
multi-µop instruction, the counter increases its value only when the last µop has
successfully concluded its execution.

• LLC Reference: Counts the number of memory operations reaching the LLC.
Depending on the processor, the LLC may correspond to the L2 or L3 cache. This
counter also includes events generated by different sources other than the core
itself, such as the hardware prefetcher.

• LLC Misses: Counts the number of memory operations generating a miss in the
LLC. As for the LLC Reference counter, the LLC may correspond to different cache
levels and any source generating LLCmisses is considered in the counting process.

• Branch Instruction Retired: Counts the number of branch instructions retired.
If a branch instruction translates to a multi-µop operation, the counter is increased
only when the last µop is retired.

• BranchMissesRetired: Counts the number ofmispredicted branches. If a branch
instruction translates to a multi-µop operation, the counter is increased only when
the last µop is retired.

6

Performance Monitoring Counters

2.2.3 Haswell Performance Events
Although architectural events are the perfect choice for cross-generation compatibility,
they are insufficient to fully characterize the behavior of a program executing on the
CPU. For this reason, the set of performance events presented in subsection 2.2.2 is
extended by platform-specific options. A comprehensive events list for every micro-
architecture is available on the Intel manual [23] and on Intel website [21], which is
also updated in case of hardware errata.

Table 2.2 presents the relevant model-specific events used in this work.

Event Mask Name Event Number UMASK Value
MEM_LOAD_UOPS_RETIRED.L1_HIT 0xD1 0x01
MEM_LOAD_UOPS_RETIRED.L2_HIT 0xD1 0x02
MEM_LOAD_UOPS_RETIRED.L3_HIT 0xD1 0x04
MEM_LOAD_UOPS_RETIRED.L1_MISS 0xD1 0x08
MEM_LOAD_UOPS_RETIRED.L2_MISS 0xD1 0x10
MEM_LOAD_UOPS_RETIRED.L3_MISS 0xD1 0x20
MEM_LOAD_UOPS_RETIRED.HIT_LFB 0xD1 0x40

Table 2.2: Haswell performance events

The MEM_LOAD_UOPS_RETIRED.Lx_HIT event, with x being the cache level, in-
creases the counter value whenever a load µop produces a hit in the corresponding
cache. MEM_LOAD_UOPS_RETIRED.Lx_MISS, instead, increases the counter value
whenever a load µop produces a miss in the related cache.

The L1 cache events have a slightly different behavior when compared to their coun-
terparts in the other cache levels. The cache hit counter increases its value by 1 irre-
spectively of the load size. On the other hand, the cache miss counter increases its value
by 1 only the first time a miss is produced on the cache line. Any other load producing
a cache miss on the same cache line will increment the value of the MEM_LOAD_-
UOPS_RETIRED.HIT_LFB event, which is the number of cache misses in L1 that have
produced a hit in the Line Fill Buffer.

It is important to remember that, a programmer wishing using these events, must
either use the cpuid instruction to recognize the processor family and model, or is sure
that the code will only run on the selected architecture.

7

Chapter 3

Linux Thread Scheduling

3.1 Basic Concepts

3.1.1 Programs, Processes and Threads

A process is defined as a running instance of a program [40]. Usually, a program is a
file stored in mass memory containing the code, data and other information used by
the program loader and linker. In the Unix world, the de-facto standard is the ELF file
format [5].

When a program starts, it is loaded in memory by the OS. In a first approximation,
the memory layout is the one depicted in figure 3.1.

.text
.init
.bss

Heap

Stack

M
em

ory address

Figure 3.1: Process memory layout

8

Linux Thread Scheduling

The .text section stores the program’s code, while the .init holds the initialized
global variables. The .bss is also a data section, but it stores the uninitialized global
variables. For this reason, a common optimization is to save only the section’s length on
disk to reduce the executable size. Depending on the operating system, the .bss section
may be 0-filled when loaded in memory [31], hence the global variables initialized to 0
may be stored in the .bss section as well, sparing even more space.

The stack, instead, is a dynamic memory portion where local variables are saved. In
Linux, the stack size has a hard-coded size limit set by default to two pages on x86-64
[26], but it can be changed while configuring the kernel compilation. Finally, the heap
is a dynamic memory region storing data that must escape a function’s lifetime.

While this description may be enough from a user’s perspective, it is not from the
kernel’s one. A process is a much more complicated entity, as the OS must keep track
of opened files and sockets, the process’ address space, state and more.

Threads represent an execution flow within a process [30]. The scheduler operates
on threads, not processes. In Linux, a process has at least one thread, but is allowed
to use more of them. In this case, the program is called multi-threaded. Each thread
consists of a unique copy of the CPU registers and has a dedicated stack, everything else
is shared with its process. For this reason, threads are often referred to as lightweight
processes.

3.1.2 Task Structure
The Linux kernel does not distinguish between threads and processes: it uses the same
structure to describe both of them, called task_struct. It is a large data structure,
composed by many fields. For compactness it is not reported here, but the definition is
available in <include/linux/sched.h>.

This structure is also called process descriptor, as it stores the process and threads
information needed for scheduling, memory management, the file descriptors opened
and so on.

Tasks Relationship

Linux organizes the processes in a hierarchical manner, as shown in figure 3.2. The
root process is called init and it is the first task created by the kernel after a boot. In
general, a process has exactly one parent and zero or more children. A process is also
aware of its sibling, that is, the tasks sharing the same parent. These relationship are
stored in the task_struct in the following fields:

1 struct task_struct __rcu *real_parent;
2 struct task_struct __rcu *parent;
3 struct list_head children;
4 struct list_head sibling;

real_parent is a pointer to the parent task’s task_struct. However, it may hap-
pen that the parent task ends its execution earlier than expected, for example due to

9

Linux Thread Scheduling

Task 1

Task 2

childrench
ildr

en

Task 3sibling

parentpa
re

nt

Figure 3.2: Tasks relationships

a crash or an unhandled signal. Therefore, the task_struct has an additional field
called parent, which either points to the actual parent task or to init in case of a
premature termination.

children is a double circular linked list, which can be iterated to obtain the chil-
dren’s task_struct. However, it is not correct to directly access this value: the kernel
list implementation works by embedding the list structure within the structures that
must be iterated. Hence, to obtain the task_struct pointers, it must be used the API
defined in include/linux/list.h.

Finally, sibling is a double circular linked list as well, pointing to the task_struct
sharing the same parent. This functionality is used, for example, to implement cgroup
[6].

Task Identifiers

In Unix, a user space task is uniquely identified by an ID called pid (Process ID). The pid
is defined with an opaque type called pid_t. In older Linux versions it would translate
to a short int, that is to a value 16 bits wide. This means that the maximum number
of concurrent processes has an hard limit of 65536.

Pids are usually assigned with increasing values, however it is legal to wrap up the
count when the number does no longer fits 16 bits. It is possible to increase the maxi-
mum limit, at the cost of breaking compatibility with older programs.

The kernel defines two different fields in task_struct to manage task identifiers:
pid and tgid (Thread Group ID), both of pid_t type. In a rather misleading way, the
user space pid does not map to the task’s pid, but to tgid [15]. Internally, the kernel
uses pid as a unique task identifier, while tgid is shared by every thread in a process.
The result is that for a single-thread process pid = tgid. On the other hand, in multi-
thread process the previous equality holds only for the first thread, as new threads will
obtain a different pid values.

10

Linux Thread Scheduling

Task Creation

The kernel creates a new task every time a new process or thread is spawned. As stated
earlier at the beginning of section 3.1.2, the kernel uses the same structure to handle
processes and threads. In fact, system calls like fork() or pthread_create() are just
wrapper around clone() [4].

The clone() system call allows to fine-tune what resources of the parent should
be cloned and what should be copied through the usage of a bit mask. The distinction
between a clone and a copy is subtle but important: the former means that the tasks
share the same object, the latter means that each task possess a distinct copy of the
object.

The kernel’s clone() declaration is:

1 long clone(unsigned long clone_flags , unsigned long newsp ,
2 int __user *parent_tidptr ,
3 int __user *child_tidptr ,
4 unsigned long tls);

In the first parameter, the user-space caller specifies the bit mask determining how
the task cloning should be performed. For fork(), clone_flags is set to

1 clone_flags = SIGCHLD

Instead, to create a thread, it is set to

1 int clone_flags = (CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SYSVSEM
2 | CLONE_SIGHAND | CLONE_THREAD
3 | CLONE_SETTLS | CLONE_PARENT_SETTID
4 | CLONE_CHILD_CLEARTID
5 | 0);

Copy-on-write After a fork(), the newly created process is an exact copy of the
parent. To actually execute a new program, the exec() system call familymust be used.
However, this means that most of the work done by fork() is wasted. The criticality of
the problem is particularly evident when considering how much expensive is the copy
of the whole address space.

To reduce the performance penalty to the minimum, the kernel exploits a copy-
on-write mechanism [8]: the memory pages are not immediately duplicated, but are
marked as read-only. Whenever the parent or the child writes one of them, the kernel
receives an exception and duplicates the page with the correct access rights. Hence, in
case of a fork() immediately followed by an exec() system call, no memory page is
duplicated at all.

Clone implementation Within the kernel’s code, clone() is awrapper for _do_fork().
This function, in turn, calls copy_process(), which performs the bulk of the task_struct
initialization. The job of this function can be summarized as follows:

11

Linux Thread Scheduling

• Checks the validity of the flags passed by clone.

• Duplicates the task structure and allocate a new task_struct, stack and the ar-
chitecture-specific thread_info.

• Clears or initialize various resources, for example the ones used for statistics pur-
poses.

• Assigns a new pid.

• Based on clone’s flags, resources such as file descriptors, memory space struc-
tures, etc. are either shared or copied.

Once copy_process() returns to _do_fork(), if the task creation succeeded the
new child is woken up and put in a runqueue (refer to section 3.2.3 for more informa-
tions about runqueues).

Task States

During its lifetime, a task may switch among different states, depicted in figure 3.3.
The kernel encodes this information in the task_struct’s state bit mask. The main
values assumed by this field are:

• TASK_RUNNING (0x0000): the task is either ready to run or is running on the
CPU.

• TASK_INTERRUPTIBLE (0x0001): The task is blocked, waiting for a condition to
happen. It is possible for a signal to awake the task, even if the condition has not
occurred yet.

• TASK_UNINTERRUPTIBLE (0x0002): It is the same as TASK_INTERRUPTIBLE,
but a signal cannot prematurely wake the task.

• __TASK_STOPPED (0x0004): The task is stopped, that is, it cannot resume its
execution. Such state is entered when the SIGSTOP, SIGSTP, SIGTTIN signals are
received by the task, or when any signal is received while it is being debugged.

• __TASK_TRACED (0x0008): The task is being traced by another application, such
as a debugger, through ptrace.

Task Termination

Every task, sooner or later, must end its execution. From user space, processes and
threads use different mechanisms to communicate their termination to the kernel. In
particular, a process uses exit(), while a POSIX thread calls pthread_exit(). How-
ever, it is also possible for a task to be forcibly ended as a result of a system exception,

12

Linux Thread Scheduling

copy_process()
TASK_RUNNING

Task ready to run

TASK_STOPPED

Task stopped

TASK_INTERRUPTIBLE

Task waiting

TASK_ININTERRUPTIBLE

Task waiting

TASK_RUNNING

Task running

EXIT_ZOMBIE

Task terminated

scheduling do_exit()

sig
na

lsig
na

l
signal

signal, event

event

wait
 ev

en
t

wa
it

ev
en

t

Figure 3.3: Tasks states diagram

an unhandled signal or an un-maskable signal, triggered for example as a response to
a null pointer access.

The kernel uses a different bit mask than state to indicate the exit state, called
exit_state. The valid values are:

• EXIT_DEAD (0x0010)

• EXIT_ZOMBIE (0x0020)

• EXIT_TRACE (EXIT_DEAD | EXIT_ZOMBIE)

EXIT_ZOMBIE is a special state assumed by the task in the time between the end of
its execution and the parent read of the exit value. If the parent dies before its children,
they remain in this state until the kernel is rebooted.

13

Linux Thread Scheduling

Under the hood, when a process or a thread terminates, the C standard library redi-
rects the execution flow to the kernel do_exit_group() and do_exit() functions re-
spectively. do_group_exit() sends a signal to each thread, if any, to terminate them
as well, then it calls do_exit(). do_exit() is the main exit function, where most of
final processing and resources are cleaned up. At a high level, this function executes
these steps:

• Sets a task flag to PF_EXITING.

• Cancels any timer created by the task.

• Releases the memory assigned to the task.

• Closes (and possibly frees) the file descriptors and filesystem data.

• Removes the task from any scheduling-related structure.

• Notifies the parent of the child death sending the signal SIGCHLD and sets exit_-
state to EXIT_ZOMBIE.

• Marks the task as dead and invokes the scheduler to execute a context switch.

Since the task exit value must be read by the parent, the task_struct itself is not
freed yet. Only when such read takes place the memory holding the process descriptor
is effectively returned to the memory subsystem.

3.2 The Scheduler

3.2.1 Scheduling Theory
The scheduler is a central component of any operating system. Its main job is to deter-
mine what is the next task to put on the CPU and for how long it should run. These
decisions can have dramatic influence on the overall OS performance, as shown in [46,
28, 48, 11].

Multitasking OSes

In a multitasking system like a modern desktop computer, a server cluster or even some
embedded systems like the Raspberry Pi, the scheduler must give the illusion that all the
tasks are executing concurrently. On a uni-core system this is achieved by periodically
switching task, while on multi-core systems multiple flow of execution are effectively
executed in parallel. However, even in such systems, the number of cores available is
much smaller than the usual thread set.

Depending on how task switches can be executed, it is possible to classify scheduling
algorithms as preemptive or non-preemptive. In the latter case, the scheduler enters in

14

Linux Thread Scheduling

action only in two cases: the task on the CPU terminates its work, or voluntarily asks
to be scheduled. The former case, on the other hand, allows the scheduler to replace
a thread running on a core at any time, usually when an interrupt occurs. Consumer-
grade operating system like Linux, Windows and macOS use preemptive schedulers.

Context Switch

The act of changing the active task on a CPU core is called context switch. The ker-
nel saves the CPU context of the task currently running on the core in memory, sus-
pending it, and restores the state of the task scheduled to run [40]. The state usually
comprehend the integer and floating point register files, as well as the registers con-
figuring the MMU, TLB and so on. In Linux, the code handling the process switch is
contained in context_switch(), which is called only when the main scheduler func-
tion, schedule() is invoked.

If the threads involved in the switch belong to different processes, the memory ad-
dress space must be changed. The consequence of this change is that the content of the
caches, as well as the content of the TLB, is no longer valid and needs to be flushed.

As a result, a context switch can be a very expensive operation that must be reduced
to the minimum [13]. At the same time, if context switches are not executed frequently,
the other tasks may starve, leading to performance degradation. In this regard, switch-
ing between threads of the same process incurs in a lower performance penalty, as they
share the memory address space.

Priorities

Many operating system, Linux included, support some form of priority-based schedul-
ing. The priority represents the importance of a task within the system, an information
the scheduler uses to determine how often the thread should run and, ideally, for how
much time.

Linux employs two different priority mechanism, one dedicated to normal processes
and another one dedicated to real-time tasks. The latter is a particular class of programs
where a computation must end before a deadline expires. If it is unable to complete its
job in time, there may be consequences with various degrees of severity. Examples of
real-time tasks range from the audio thread of a music player (a deadline miss results in
an audio glitch) to the software controlling the altitude of a plane (in this case, missing
the deadline may lead to catastrophic consequences).

Linux assigns to each standard task a nice value, which describes the niceness of this
task with respect to the others. nice is an integer number in the range −20 ≤ nice ≤
19. A value of -20 indicates that the task is unwilling to share CPU with the others,
hence it corresponds to a high priority value. Conversely, 19 is the lowest possible
priority. Users can modify the nice of a task only if is the owner, otherwise it must be
root.

15

Linux Thread Scheduling

Real-time tasks, on the other hand, use a completely different convention: for them,
0 ≤ priority ≤ 99, with 0 being the lowest priority and 99 the maximum.

Internally the kernel adopts yet another convention, using an integer in the range
0 ≤ priority ≤ 139. Here, 0 corresponds to the maximum priority value, while 139 is
the minimum. The first 100 levels are assigned to real time tasks, while the other 40,
corresponding to the size of nice’s range, are dedicated to normal tasks.

Tasks Classification

Tasks, from the scheduler’s point of view, are usually classified as CPU-bound or I/O-
bound. The former label is attributed to threads making relatively few I/O calls, spend-
ing most of the time executing code. An example may be a video encoder or a scien-
tific application. The latter, instead, is given to threads executing small CPU burst and
pausing often to wait for some I/O to complete. Examples of this category are GUI ap-
plication, or a thread accessing a large file on disk. Of course, most of the real programs
exhibit both characteristics, alternating I/O phases to compute phases.

From the discussion above, it is clear that an I/O-bound task almost never consumes
its timeslice entirely, yielding the CPU control after a short amount of time. Conversely,
a CPU-bound thread almost never releases the CPU voluntarily, hence it will be pre-
empted by the scheduler after a system clock tick.

A scheduling algorithm designed with fairness as the main goal, such as the Linux
CFS, guarantees equity by scheduling often I/O-bound threads, which will leave the
CPU quickly, and then giving the remaining CPU time to compute-intensive tasks.

Load Balancing

In a multi-core system, it is rather inefficient having a global list of runnable threads.
In fact, being a shared resource, the list needs to be protected by locks to maintain a
coherent state. Thus, only one core at the time would be allowed to operate on the list,
forcing its siblings to wait doing nothing useful for the end user. This contention prob-
lem becomes more evident as the number of parallel execution units grows. Moreover,
operating on shared resources triggers the cache coherency protocols, which invalidate
the cache lines of all the cores who recently accessed the data in question. These proto-
cols are expensive and lead to more cache misses, further penalizing the performance.

Therefore, Linux and many other kernels prefer to keep frequently accessed re-
sources, like the list of runnable tasks, local to each core. This approach removes almost
any locking overhead and improves cache accesses, as every core can independently
work on its private data. Remaining in the same list is beneficial also for the tasks
themselves, because it is likely that the data on which they are working is still in the
core’s private cache when they are rescheduled.

However, the outlined solution can result in work unfairness among the cores. With-
out any form of data sharing, a core may be overloaded while others are idle. Of course,
this situationmust be avoided at all costs, henceOSes periodically check the load of each

16

Linux Thread Scheduling

core and, if necessary, migrate tasks from a core to the other. This operation is called
load balancing.

Load balancing algorithms exist in two flavors: push migration and pull migration
[40]. In the former, a dedicated kernel task looks for imbalance in any core. If it exists,
some tasks are taken from the overloaded core list and pushed to other idle or less busy
cores. In the latter, it is the core itself, when it becomes idle, to pull a task from a busier
sibling.

The Linux kernel expolits both approaches: at each system clock tick a special, high
priority task is started to balance the workload across the system. At the same time,
whenever the idle task is executed, it tries to steal tasks from another core.

3.2.2 Scheduling Classes
The Linux scheduler is implemented with a modular approach. There is a core com-
ponent, defined in <kernel/sched/core.c>, which makes high-level decisions, and
there are various scheduling classes implementing the actual scheduling policies. Be-
cause of this structure, it is relatively trivial to add new policies with minimal modifi-
cations to the existing infrastructure.

A scheduling class is a C structure defined in <include/linux/sched/sched.h>.
Listing 3.1 reports a partial list of its fields.

1 struct sched_class {
2 const struct sched_class *next;
3

4 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int
flags);

5 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int
flags);

6 void (*yield_task) (struct rq *rq);
7 ...
8 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p,

int flags);
9 struct task_struct * (*pick_next_task)(struct rq *rq,
10 struct task_struct *prev,
11 struct rq_flags *rf);
12 ...
13 #ifdef CONFIG_SMP
14 int (*balance)(struct rq *rq, struct task_struct *prev, struct

rq_flags *rf);
15 ...
16 #endif
17

18 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued
);

19 ...
20 void (*update_curr)(struct rq *rq);
21 ...

17

Linux Thread Scheduling

22 };

Listing 3.1: Scheduling class structure

sched_class provides a generic interface for the core component to interface with
scheduling classes, which implement their policies by linking the class’ functions to the
structure’s fields. A short explanation of the fields is given below:

• next: it is a pointer to the next scheduling class. It allows the core component
to iterate over the various scheduling classes respecting the class’ priority, for
example when the next task to run must be selected.

• enqueue_task: adds a task to the list of runnable tasks held by the runqueue
(runqueues are detailed in section 3.2.3). It is usually called when a task changes
its state in TASK_RUNNING.

• dequeue_task: removes a task from the runqueue, for example because its state
has changed from TASK_RUNNING to TASK_INTERRUPTIBLE or it has ended its
execution.

• yield_task: the task voluntarily yields the CPU.

• check_preempt_curr: checks if the task currently running must be preempted.
If so, it triggers a scheduling event. This function is invoked during taskmigrations
or a task wake-up.

• pick_next_task: returns the next, most eligible task to be scheduled on the CPU.

• balance: this field exists only for simultaneous multi-processing system. It runs
a load balancing pass, if required, before pick_next_call is invoked, to reduce
the chances of scheduling the idle task.

• task_tick: accounts various statistics of the task currently running on the CPU
and checks if it must be preempted.

• update_curr: similar to task_tick, however it is invoked at a much higher
frequency.

3.2.3 Runqueues

A runqueue is a per-CPU data structure where the kernel stores the list of runnable
tasks and other information related to scheduling and accounting purposes. Listing 3.2
presents some of its relevant fields, with the full definition available in <include/-
linux/sched/sched.h>.

18

Linux Thread Scheduling

1 struct rq {
2 raw_spinlock_t lock;
3 unsigned int nr_running;
4 ...
5 struct cfs_rq cfs;
6 struct rt_rq rt;
7 struct dl_rq dl;
8 ...
9 struct task_struct *curr;
10 ...
11 int cpu;
12 };

Listing 3.2: Runqueue structure

lock is the main runqueue lock. Every time the runqueue data is accessed, the lock
must be obtained to maintain a valid state. One of the main purposes of this lock is to
protect the list of runnable tasks during load balancing passes and migrations. To avoid
deadlocks, the kernel defines the following locking rule: any code that wants to lock
multiple runqueues must obtain the locks in ascending runqueue order. The order of
the runqueue is specified by the CPU to which it belongs to, indicated by the cpu field.

The main runqueue holds other runqueues, each specific of a different scheduling
class. In the default kernel v5.4.35, these are cfs, rt and dl. In these runqueues
scheduling classes effectively store their list of runnable tasks. The kernel does not
impose any restriction on the internal runqueues structure, hence scheduling classes
are free to use any data structure suit their needs. Having runqueues nested in the
main runqueue is necessary to maintain the abstraction layer between the core compo-
nent and the scheduling classes. In fact, the former operates only on struct rq, and
delegates the latter to access their own structures.

Finally, curr is a pointer to the currently active task on the CPU. Having a fast way
to get this data is vital to the kernel, as this information is required for accounting and
scheduling purposes.

3.2.4 Timers
Classical scheduling algorithms revolve extensively around timers, and the Linux sched-
uler makes no exception. Their main goals are to periodically trigger the scheduler to
preempt a task when its timeslice expires and to allow accounting opportunities.

The Linux scheduler sets up the system timer to fire interrupts with frequency HZ, a
constant quantity defined at compilation time. The default value is set to 250, although
values in the range [100, 1024] are considered valid too [7]. Every time the timer trig-
gers an interrupt, the function scheduler_tick, defined in kernel/sched/core.c,
is invoked. The function is not worth to be reported here, but essentially it does some
bookkeeping and statistics accounting, triggers the load balancing algorithm if needed
and calls the task_tick function of the current task’s scheduler class.

19

Linux Thread Scheduling

The scheduler, however, supports an optional feature that adds a second, more pre-
cise source of interrupts: high resolution timers, or hrtimers [16]. Every main run-
queue possesses a hrtimer exploited by scheduling classes to receive accurate preemp-
tion ticks [49]. In this case, the core scheduler function responding to the interrupt is
hrtick, which runs in an hardware interrupt request context with interrupts disabled.
The body of the function is rather small, as shown in listing 3.3:

1 static enum hrtimer_restart hrtick(struct hrtimer *timer)
2 {
3 struct rq *rq = container_of(timer , struct rq, hrtick_timer);
4 struct rq_flags rf;
5

6 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
7

8 rq_lock(rq, &rf);
9 update_rq_clock(rq);
10 rq->curr->sched_class ->task_tick(rq, rq->curr, 1);
11 rq_unlock(rq, &rf);
12

13 return HRTIMER_NORESTART;
14 }

Listing 3.3: hrtick

The function locks the runqueue, updates the runqueue’s clock and invokes the
task_tick hook of the scheduling class handling the current task. Here lies an impor-
tant difference with the same call executed by scheduler_tick: the last parameter of
task_tick(), queued, is set to 1, while in the previous case is set to 0. queued al-
lows scheduling classes making use of hrtimers to distinguish the context from which
task_tick() has been invoked.

3.2.5 The schedule function
Themain and only entry point to schedule a thread is the function schedule(), located
in <kernel/sched/core.c>. Usually, this function is entered when a thread blocks
and release the CPU voluntarily, for example because of a mutex or is waiting for some
I/O, or when the timeslice of the currently running task expires.

Due to the large number of operations, the subsequent listings do not report the
whole functions, only the salient parts. The core of schedule() is reported in listing
3.4:

1 do {
2 preempt_disable();
3 __schedule(false);
4 sched_preempt_enable_no_resched();
5 } while (need_resched());

Listing 3.4: schedule

20

Linux Thread Scheduling

Before entering the actual scheduling code the kernel disables preemption, because
it has to interact withmany per-CPU variables not protected by any lock (after all, every
CPU works only on its copy). Preemption is enabled again once the scheduling process
concludes its operation.

Commonly, when preemption is enabled again, the kernel invokes the scheduler to
check if it should have been preempted in the meantime. However, since in this case
preemption was disabled specifically to schedule a new task, preemption is enabled
without the check.

The code executes in a loop to catch possible preemption opportunities missed while
__schedule execution.

__schedule

__schedule is themain scheduler routine actually executing the scheduling logic. List-
ing 3.5 shows the function skeleton . It is important to outline that, for compactness,
some function calls have been excluded from the listing.

1 static void __sched notrace __schedule(bool preempt)
2 {
3 struct task_struct *prev, *next;
4 unsigned long *switch_count;
5 struct rq_flags rf;
6 struct rq *rq;
7 int cpu;
8

9 cpu = smp_processor_id();
10 rq = cpu_rq(cpu);
11 prev = rq->curr;
12

13 local_irq_disable();
14 ...
15 rq_lock(rq, &rf);
16 ...
17 next = pick_next_task(rq, prev, &rf);
18 clear_tsk_need_resched(prev);
19 clear_preempt_need_resched();
20

21 if (likely(prev != next)) {
22 ...
23 /* Also unlocks the rq: */
24 rq = context_switch(rq, prev, next, &rf);
25 } else {
26 ...
27 rq_unlock_irq(rq, &rf);
28 }
29

30 balance_callback(rq);

21

Linux Thread Scheduling

31 }

Listing 3.5: __schedule

The function immediately identifies the CPU on which is running to retrieve the
related main runqueue. Then, to avoid interruptions in the critical path, it disables the
local core interrupts. Furthermore, it obtains the main runqueue lock to prevent race
conditions with the load balancing and task migrations algorithms. The scheduler then
selects the next task to run through pick_next_task(), described in more details later
on. It also clears scheduling flags to not loop in schedule(). Eventually, the kernel
checks if the task being scheduled out is the same being scheduled in: if the test results
false it executes a context switch, otherwise it unlocks the main runqueue and returns
to schedule(), as the same task is still eligible for running.

Choice of the Next Task

pick_next_task() is the function in charge of selecting the task with the highest
priority to run. Thanks to the modularity granted by scheduling classes, the resulting
code (reported in listing 3.6) is elegant and compact.

1 static inline struct task_struct *
2 pick_next_task(struct rq *rq, struct task_struct *prev, struct

rq_flags *rf)
3 {
4 const struct sched_class *class;
5 struct task_struct *p;
6

7 if (likely((prev->sched_class == &idle_sched_class ||
8 prev->sched_class == &fair_sched_class) &&
9 rq->nr_running == rq->cfs.h_nr_running)) {
10

11 p = fair_sched_class.pick_next_task(rq, prev, rf);
12 if (unlikely(p == RETRY_TASK))
13 goto restart;
14

15 /* Assumes fair_sched_class ->next == idle_sched_class */
16 if (unlikely(!p))
17 p = idle_sched_class.pick_next_task(rq, prev, rf);
18

19 return p;
20 }
21

22 restart:
23 #ifdef CONFIG_SMP
24 for_class_range(class , prev->sched_class , &idle_sched_class) {
25 if (class ->balance(rq, prev, rf))
26 break;
27 }
28 #endif

22

Linux Thread Scheduling

29

30 ...
31

32 for_each_class(class) {
33 p = class ->pick_next_task(rq, NULL, NULL);
34 if (p)
35 return p;
36 }
37

38 /* The idle class should always have a runnable task: */
39 BUG();
40 }

Listing 3.6: pick_next_task

The kernel first tries to reduce the execution time by exploiting a common case sce-
nario: if every task in the main runqueue belongs to either the CFS class (the standard
class for normal tasks) or the idle class, it ignores the other classes and it directly in-
vokes the CFS’s pick_next_task(). If it fails, it falls back to the idle class as it is
guaranteed to possess a task to schedule.

On the other hand, if the tasks belong to different classes, the code gives the oppor-
tunity to each scheduling class to run a balancing pass. Subsequently, it iterates over
every scheduling class following their priority and calling the related pick function. As
soon as a schedulable task is found, its pointer is returned to the caller.

The scheduler code makes wide usage of macros to improve loops’ readability. This
is the case, for example, of the for loops declared at line 24 and 32, which expand to:

1 #define sched_class_highest (&stop_sched_class)
2

3 #define for_class_range(class , _from , _to) \
4 for (class = (_from); class != (_to); class = class ->next)
5

6 #define for_each_class(class) \
7 for_class_range(class , sched_class_highest , NULL)

These definitions can be found in <include/linux/sched/sched.h>.

3.3 Completely Fair Scheduler Implementation

The Linux Completely Fair scheduler, also known as CFS, is the default scheduler for
normal processes, referred to as SCHED_NORMAL (Linux) or SCHED_OTHER (POSIX), since
version 2.6.23 [29]. This section details the scheduler model and its implementation.
Unless specified otherwise, the listings in this chapter show code taken from <kernel/-
sched/fair.c>.

23

Linux Thread Scheduling

3.3.1 The Completely Fair Model
The Completely Fair scheduler models an ideal, precise multitasking CPU [30, 29]. An
ideal multitasking CPU is capable of executing n tasks concurrently, giving to each task
1
n
of CPU power. For example, if n = 2, the CPU would run each task at 50% of power,

that is, they run concurrently. A real processor, however, is capable of executing only
one task at the time. Hence, CFS introduces the concept of virtual runtime, which repre-
sents how much time the task has run on the ideal multitasking processor. Practically,
it is the actual execution time normalized by the number of runnable tasks. The sched-
uler uses it to determine the next task to put on the core. The target is to maintain the
virtual runtime of every task close to each other (ideally, to the same value), therefore
the scheduler always picks the task with the smallest runtime.

A potential solution to faithfully emulate the ideal multitasking processor on real
hardware is to interleave tasks on the CPU for an infinitesimal amount of time. How-
ever, this is unfeasible because context switches have a non-negligible overhead. CFS
solves this problem by assigning to each process a timeslice and, when it expires, sched-
ules the task with the smallest virtual runtime. The timeslice computation differs from
the one used in the previous schedulers, as it does not merely assign a value based on
the priority, but calculates it as a function of the number of runnable threads in the
system [30, 40].

More in details, the kernel defines a variable called targeted latency, that is the period
in which every task should be scheduled once. nice determines the weight of the task,
that is then divided by the weight of every runnable task. The result of the division
represents the proportion of the targeted latency in which the thread is allowed to run.

From this definition it is clear that, with the number of runnable tasks tending to
infinity, the timeslice of the tasks tends to 0, going back to the original problem. To
ensure that this doesn’t happen, the scheduler imposes a lower bound on the minimum
time a task is allowed to run calledminimum granularity. When CFS reaches this point
it stops being completely fair, but is an intended behavior to mitigate the overhead of
context switch. The default values for the targeted latency and the minimum gran-
ularity are 6 ms ∗ (1 + log2(ncpus)) and 0.75 ms ∗ (1 + log2(ncpus)) respectively.
1 + log2(ncpus) is a factor extending these values in a multi-core environment. The
rationale, as documented in the kernel code, is that the effective latency as perceived
by the user decreases (in a non-linear way) with the number of cores available.

3.3.2 Scheduler Entities
CFS does not operate directly on tasks, but on scheduler entities. An entity may repre-
sent a task or a group of tasks, to which CFS operations are applied hierarchically [43].
The goal of this feature is to introduce group-awareness to the scheduler, ensuring that
time is shared equally not only among tasks, but also among groups. As an example,
assume a system with two users where are running 20 tasks, 1 belonging to the first
user and the others 19 to the second one. If CFS only targeted task fairness, each thread

24

Linux Thread Scheduling

would get 5% of CPU time. While equity exists from the scheduler point of view, it does
not from the user side. With the introduction of scheduler entities, CFS first splits the
CPU time between the two users, then goes down the hierarchy and further divides
the CPU time among the tasks. Hence, each user would receive 50% of CPU time. The
single task of the first user receives the entire 50%, while the tasks of the second one
have to divide the 50% between themselves, therefore every thread would get around
2.6% of CPU time. The kernel does not place any bound on the hierarchy size, so it is
possible to create complex structures as needed.

Within the kernel code, scheduler entities are implemented in sched_entity, a
C structure declared in <include/linux/sched.h>. Listing 3.7 resports some of its
fields.

1 struct sched_entity {
2 /* For load-balancing: */
3 struct load_weight load;
4 ...
5 struct rb_node run_node;
6 struct list_head group_node;
7 unsigned int on_rq;
8

9 u64 exec_start;
10 u64 sum_exec_runtime;
11 u64 vruntime;
12 ...
13 struct sched_statistics statistics;
14

15 #ifdef CONFIG_FAIR_GROUP_SCHED
16 int depth;
17 struct sched_entity *parent;
18 /* rq on which this entity is (to be) queued: */
19 struct cfs_rq *cfs_rq;
20 /* rq "owned" by this entity/group: */
21 struct cfs_rq *my_q;
22 #endif
23 ...
24 };

Listing 3.7: Scheduler entity structure

Some of the fields are explained below:

• run_node is a pointer to the red-black tree node containing the entity. For more
information about the tree and its usage in CFS, refer to section 3.3.3.

• on_rq is a flag specifying whether the entity is in a runqueue or not.

• exec_start stores the time instant in which the entity has been scheduled on the
CPU.

• sum_exec_runtime accumulates the entity’s execution time.

25

Linux Thread Scheduling

• vruntime represents the virtual runtime on the ideal multitasking CPU.

• statistics holds various accounting information.

parent, cfs_rq and my_rq struct members are employed when the group schedul-
ing feature is enabled at compile time. As already stated, group scheduling in CFS is
achieved by applying CFS operations recursively. Because of this, a scheduling entities
may possesses its own runqueue, my_q, while contemporarily being contained in an-
other runqueue, cfs_rq, owned by another entity, parent. With this organization it
is trivial to recognize top-level and leaf entities (tasks): for the former parent is set to
NULL, whilst for the latter my_q is set to NULL. cfs_rq, on the other hand, cannot be
NULL in any case: a scheduling entity always belongs to a runqueue, be it the main one
or the one owned by another entity.

Load calculation

load corresponds to the weight of the entity. The weight is derived from the nice
value and serves as the actual priority in CFS. Its structure is rather simple, as shown in
listing 3.8. It contains two fields, weight and inv_weight. The latter is the inverse of
the former and is cached for performance reasons, as divisions typically require more
clock cycles to compute than multiplications.

1 struct load_weight {
2 unsigned long weight;
3 u32 inv_weight;
4 };

Listing 3.8: load_weight structure

The conversion nice-weight, executed in set_load_weight() in the core com-
ponent, is rather simple: the kernel calculates the priority as:

int prio = p->static_prio - MAX_RT_PRIO;

where p is a pointer to a task_struct, static_prio is the priority statically as-
signed by the user and MAX_RT_PRIO is a constant representing the maximum prior-
ity value for a real time task, hence its value is 100. Essentially, it scales nice from
the range [−20, 19] to [0, 39]. prio is an index for accessing two look-up tables,
sched_prio_to_weight and sched_prio_to_wmult, as:

load->weight = scale_load(sched_prio_to_weight[prio]);
load->inv_weight = sched_prio_to_wmult[prio];

The look-up tables provide a direct mapping between the scaled value and the
weights. Their content is listed in 3.9 and 3.10. The values are stored in a fixed-point
format where the 10 least significant bits represent the fractional part, therefore the unit
value corresponds to 1024. An increase or decrease of nice level increases or reduces
the CPU usage by 10%. The 10% change is relative, meaning that if there are two tasks

26

Linux Thread Scheduling

with nice level 0 and 1 or nice level 14 and 15 the difference in CPU usage is always
10%.

scale_load is a macro which, only on 64 bits machines, shifts weight by additional
10 bits to increase the resolution of the fractional part from 10 to 20 bits.

const int sched_prio_to_weight[40] = {
/* -20 */ 88761, 71755, 56483, 46273, 36291,
/* -15 */ 29154, 23254, 18705, 14949, 11916,
/* -10 */ 9548, 7620, 6100, 4904, 3906,
/* -5 */ 3121, 2501, 1991, 1586, 1277,
/* 0 */ 1024, 820, 655, 526, 423,
/* 5 */ 335, 272, 215, 172, 137,
/* 10 */ 110, 87, 70, 56, 45,
/* 15 */ 36, 29, 23, 18, 15,

};

Listing 3.9: sched_prio_to_weight

const u32 sched_prio_to_wmult[40] = {
/* -20 */ 48388, 59856, 76040, 92818, 118348,
/* -15 */ 147320, 184698, 229616, 287308, 360437,
/* -10 */ 449829, 563644, 704093, 875809, 1099582,
/* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
/* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
/* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
/* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,

};

Listing 3.10: sched_prio_to_wmult

3.3.3 CFS runqueue
CFS selects as the next task to run the one with the smallest vruntime. The rationale
is that the task with the smallest vruntime had less opportunities to run, creating an
imbalance with respect to the ideal model. To achieve this, the scheduler does not use
the classical concept of runqueue as a list of processes, but stores the runnable tasks in
a red-black tree sorted by vruntime representing the execution timeline [34].

Red-Black Trees

A red-black tree is a balanced binary search tree supporting search, insertion and dele-
tion operations in O(logn) time. An example of the data structure is shown in figure
3.4.

A binary search tree is a red-black tree if the following properties are satisfied [2]:

1. each node has either a red or black color.

27

Linux Thread Scheduling

32

18

6

NULL NULL NULL NULLNULL NULL

NULL NULLNULL NULL NULL NULLNULL NULL14

30 38

57

NULL NULL NULL NULL

86

75

24 43

Figure 3.4: Red-black tree example

2. the root of the tree is black.

3. every leaf is black and its content is NULL.

4. the children of a red node are blacks.

5. every path from a node to its leaves contains the same number of black nodes.

From these definitions it is possible to demonstrate that a tree with n nodes has
height ≤ 2log2(n+ 1), hence the upper bound of O(logn) for the search operation.

The kernel’s tree declaration can be found in <include/linux/rbtree.h> and
its implementation in <lib/rbtree.c>. There are two versions of the red-black tree:
cached and non-cached. The difference consists in an additional pointer added to the
root structure that maintains a reference to the leftmost node, that as shown in figure 3.4
corresponds to the scheduling entity having the smallest vruntime. The pointer grants
aO(1) access time instead of the standardO(logn), a useful speed-up in a critical path
like the one present in schedule().

CFS runqueue structure

The CFS runqueue structure is defined in <include/linux/sched/sched.h>. A par-
tial list of the fields is given in listing 3.11.

1 struct cfs_rq {
2 struct load_weight load;
3 unsigned long runnable_weight;
4 unsigned int nr_running;
5 ...
6 u64 min_vruntime;

28

Linux Thread Scheduling

7 ...
8 struct rb_root_cached tasks_timeline;
9

10 struct sched_entity *curr;
11 ...
12 struct rq *rq;
13 ...
14 };

Listing 3.11: CFS runqueue structure

Here is given an explanation of the fields:

• nr_running stores the number of runnable scheduling entities in the runqueue.

• tasks_timeline is the cached version of the red-black tree defining the execu-
tion timeline of the scheduling entities.

• curr, a pointer to the entity currently running on the CPU. If no entity of the
runqueue is in execution, this field is set to NULL.

• rq is the pointer to the general, per-CPU runqueue.

As for scheduling entities, also CFS runqueues have a load. However, unlike en-
tities, the load stored in a runqueue is cumulative. Whenever an entity is added or
removed from the runqueue, its load is added or removed as well from the queue. This
parameter is of great importance for some CFS operations explained later on.

min_vruntime is a monotonically increasing variable storing the minimum vrun-
time of all scheduling entities present in the runqueue. It normalizes the virtual run-
time of entities joining or exiting the runqueue. This step is fundamental to guarantee
both correct operations and fairness in CFS. Every entity logs in vruntime its exe-
cution time. When it exits a runqueue, the virtual runtime is not updated anymore.
Once the entity re-enters a runqueue, its vruntime will be much lower than the one
of the other entities, therefore the entity would receive an unfair amount of CPU time
to match its siblings, leading to unfairness. The solution adopted by the kernel is to
remove min_vruntime from the scheduling entity’s vruntime whenever it exits the
runqueue, and to add it again when it joins it.

3.3.4 Entity Update
CFS tracks vruntime to emulate the execution time spent on the ideal multitasking
processor. It represents how much the task has run and, for the thread possessing the
CPU, how much time it can still run. It is mandatory, then, to maintain an accurate
value to faithfully reproduce the ideal system on real hardware. For this reason, CFS
updates the runtime statistics of the currently running entity as many times as possible
with update_curr(). The function is called, for example, by the handler of the system

29

Linux Thread Scheduling

timer when a tick occurs, or when a new entity is being enqueued or dequeued in the
runqueue, or again after serving an interrupt. Its definition is shown in listing 3.12.

1 static void update_curr(struct cfs_rq *cfs_rq)
2 {
3 struct sched_entity *curr = cfs_rq ->curr;
4 u64 now = rq_clock_task(rq_of(cfs_rq));
5 u64 delta_exec;
6

7 if (unlikely(!curr))
8 return;
9

10 delta_exec = now - curr->exec_start;
11 if (unlikely((s64)delta_exec <= 0))
12 return;
13

14 curr->exec_start = now;
15

16 schedstat_set(curr->statistics.exec_max ,
17 max(delta_exec , curr->statistics.exec_max));
18

19 curr->sum_exec_runtime += delta_exec;
20 schedstat_add(cfs_rq ->exec_clock , delta_exec);
21 curr->vruntime += calc_delta_fair(delta_exec , curr);
22 update_min_vruntime(cfs_rq);
23

24 if (entity_is_task(curr)) {
25 struct task_struct *curtask = task_of(curr);
26

27 trace_sched_stat_runtime(curtask , delta_exec , curr->vruntime);
28 cgroup_account_cputime(curtask , delta_exec);
29 account_group_exec_runtime(curtask , delta_exec);
30 }
31

32 account_cfs_rq_runtime(cfs_rq , delta_exec);
33 }

Listing 3.12: update_curr

The code stores in delta_exec the real execution time in nanoseconds. After some
accounting, it increments the current entity’s vruntimewith the return value of calc_-
delta_fair(), reported in listing 3.13.

1 static inline u64 calc_delta_fair(u64 delta , struct sched_entity *se)
2 {
3 if (unlikely(se->load.weight != NICE_0_LOAD))
4 delta = __calc_delta(delta , NICE_0_LOAD , &se->load);
5

6 return delta;
7 }

Listing 3.13: calc_delta_fair

30

Linux Thread Scheduling

Its job is rather easy: if the entity has a weight equal to the nice level 0 nothing
is done and delta_exec is directly added to vruntime. On the other hand, if the
entity has a nice value other than 0, the function invokes __calc_delta() to com-
pute the actual delta to be added to vruntime. Listing 3.14 reports the definition on
__calc_delta().

1 static u64 __calc_delta(u64 delta_exec , unsigned long weight , struct
load_weight *lw)

2 {
3 u64 fact = scale_load_down(weight);
4 int shift = WMULT_SHIFT;
5

6 __update_inv_weight(lw);
7

8 if (unlikely(fact >> 32)) {
9 while (fact >> 32) {
10 fact >>= 1;
11 shift --;
12 }
13 }
14

15 /* hint to use a 32x32 ->64 mul */
16 fact = (u64)(u32)fact * lw->inv_weight;
17

18 while (fact >> 32) {
19 fact >>= 1;
20 shift --;
21 }
22

23 return mul_u64_u32_shr(delta_exec , fact, shift);
24 }

Listing 3.14: __calc_delta

__calc_delta() updates the inv_weightfield of the load_weight structure pointed
by lw. Since CFS calculations are executed in fixed point, it adjusts fact to have a value
fitting 32 bits, and accounts the possible adjustments in shift. Then, it multiplies fact
with the inverse of the load, which is equivalent to:

fact =
fact

lw → weight
(3.1)

Since a multiplication between two 32 bits variable requires up to 64 bits to be stored,
fact may need to be scaled again and shift is updated accordingly. Finally, the code
calls mul_u64_u32_shr(), a function implementing a fixed-point version of the mul-
tiplication, that is (delta_exec * fact) >> shift.

By putting everything together, without considering the bit shifting, the calculation
executed by __calc_delta() essentially boils down to:

31

Linux Thread Scheduling

delta = ∆exec ·
weight

lw → weight
(3.2)

This means that the delta returned by calc_delta_fair() is the actual execu-
tion time weighted by the priority of the entity. In fact, by expanding everything in
update_curr(), the vruntime update looks like:

vruntime(t) = vruntime(t− 1) + ∆exec ·
NICE_0_LOAD

curr → load
(3.3)

Where NICE_0_LOAD is equal to the weight of nice level 0 and curr is the pointer
to the current scheduling entity.

vruntime progresses with a different rate for tasks having a different nice value.
The virtual runtime of a high priority thread increases more slowly than the one using
a standard priority, while the opposite is true for a low priority task. The consequence
is that the former has more chances to be rescheduled soon, while the latter ends up
more easily in the right side of the CFS entity tree.

Once vruntime is updated the function calls update_min_vruntime(), which up-
dates the runqueue’s min_vruntime field ensuring that it never goes backward in time.

3.3.5 CFS Timeslice
CFS computes the timeslice as a proportion of the CPU time between the weights of
the current thread and its runqueue. The kernel function in charge of this operation is
sched_slice(), reported in listing 3.15.

1 static u64 sched_slice(struct cfs_rq *cfs_rq , struct sched_entity *se)
2 {
3 u64 slice = __sched_period(cfs_rq ->nr_running + !se->on_rq);
4

5 for_each_sched_entity(se) {
6 struct load_weight *load;
7 struct load_weight lw;
8

9 cfs_rq = cfs_rq_of(se);
10 load = &cfs_rq ->load;
11

12 if (unlikely(!se->on_rq)) {
13 lw = cfs_rq ->load;
14

15 update_load_add(&lw, se->load.weight);
16 load = &lw;
17 }
18 slice = __calc_delta(slice , se->load.weight , load);
19 }

32

Linux Thread Scheduling

20 return slice;

Listing 3.15: sched_slice

sched_slice() takes as input a scheduling entity and the runqueue it belongs to. It
stores in slice the targeted latency, the output of __sched_period()whose definition
is shown in listing 3.16.

1 static u64 __sched_period(unsigned long nr_running)
2 {
3 if (unlikely(nr_running > sched_nr_latency))
4 return nr_running * sysctl_sched_min_granularity;
5 else
6 return sysctl_sched_latency;
7 }

Listing 3.16: __sched_period

The targeted latency depends on the condition nr_running > sched_nr_latency:
if the result of the test is negative, the latency assumes the default value, otherwise it is
computed as themultiplication between the number of runnable tasks and theminimum
granularity. In the latter case, the kernel is stretching the target latency to reduce the
overhead of context switches when many tasks are schedulable at the cost of fairness.
sched_nr_latency is kept at targeted latency

minimum granularity
, equal to 8 with the stock parameters.

Going back to sched_slice(), the function walks the entity hierarchy to compute
the timeslice proportion. In each iteration obtains the runqueue of the entity being con-
sidered. Then, in case the entity is not scheduled on the runqueue, it adds the entity’s
load to the runqueue’s one for the purpose of the calculation. Finally, it updates slice
with a call to __calc_delta(), already presented in listing 3.14. Once it reaches the
top scheduling entity, that is, se->parent == NULL, the loop ends and the function
returns the timeslice to the caller. Mathematically, the steps executed in the body of the
for loop can be written as:

slicei = slicei−1 ·
sei → weight

rqi+1 → weight
(3.4)

That is, a recursive equation where i is the entity index in the hierarchy, sei a pointer
to the i-th scheduling entity and rqi+1 the pointer to the runqueue owning sei. Equation
3.4 can be expanded by substituting slicei in slicei+1 for every scheduling entity. Let
slice−1 be the return value of __sched_period(), the equation can be rewritten as:

timeslice = slicen = slice−1

nY
i=0

sei → weight

rqi+1 → weight
(3.5)

Where n is the height of the entity hierarchy.

33

Linux Thread Scheduling

Timeslice computation example

To demonstrate how sched_slice() divides the scheduling period among the enti-
ties, figure 3.5 shows a simple system where the main runqueue owns two scheduling
entities, and one of them possess a runqueue where other two entities are scheduled.
The circles correspond to entities, the rectangles to runqueues.

RQ 0
2048

RQ 1
2048

E 0
1024

E 1
1024

E 2
1024

E 3
1024

(a) Entities with equal weights

RQ 0
4045

RQ 1
2048

E 0
3021

E 1
1024

E 2
1024

E 3
1024

(b) Entities with different priorities

Figure 3.5: Timeslice example

In figure 3.5a every entity has the same nice level, 0, which corresponds to a weight
of 1024. Assume that the input of the function are E2 and its runqueue R1 and let the
default timeslice be 10ms. By applying equation 3.4 in the first iteration, the result is:

slice0 = slice−1 ·
E2 → weight

RQ1 → weight
= 10 ms · 1024

2048
= 5 ms

In the second and last iteration, slice0 is further divided as:

slice1 = slice0 ·
E0 → weight

RQ0 → weight
= 5 ms · 1024

2048
= 2.5ms

As expected, the timeslice assigned to E2 is 1
4
of the scheduling period, because CFS

divides equally the time between E0 and E1 and E0’s timeslice is shared uniformly by
E2 and E3.

In figure 3.5b the situation is different: E0 has a nice level equal to -5, which raises
the entity’s weight to 3021. In this case E0, and consequently E2 and E3, are entitled
to a longer share of the CPU time. By executing the computation again, the timeslice
assigned to E2 is:

slice0 = slice−1 ·
E2 → weight

RQ1 → weight
= 10 ms · 1024

2048
= 5 ms

slice1 = slice0 ·
E0 → weight

RQ0 → weight
= 5 ms · 3021

4045
≈ 3.73ms

34

Linux Thread Scheduling

Which is indeed higher than in the previous case. Of course, a timeslice increase for
E2 (and consequently E3, since they have the same weight) must be compensated by
a reduction of E1’s timeslice to remain within the scheduling period’s boundaries. In
fact, if in the first example for E1:

slice0 = slice−1 ·
E1 → weight

RQ0 → weight
= 10 ms · 1024

2048
= 5 ms

In the second example, the slice is reduced to:

slice0 = slice−1 ·
E1 → weight

RQ0 → weight
= 10 ms · 1024

4045
≈ 2.5ms

3.3.6 Scheduler Tick
The core scheduler invokes the scheduling class’ task_tick whenever a timer inter-
rupt occurs. The hook is mapped to task_tick_fair() for CFS, shown in listing 3.17.

1 static void task_tick_fair(struct rq *rq, struct task_struct *curr,
int queued)

2 {
3 struct cfs_rq *cfs_rq;
4 struct sched_entity *se = &curr->se;
5

6 for_each_sched_entity(se) {
7 cfs_rq = cfs_rq_of(se);
8 entity_tick(cfs_rq , se, queued);
9 }
10

11 if (static_branch_unlikely(&sched_numa_balancing))
12 task_tick_numa(rq, curr);
13

14 update_misfit_status(curr, rq);
15 update_overutilized_status(task_rq(curr));
16 }

Listing 3.17: task_tick_fair

The functionwalks the scheduling entity, and for every entity calls entity_tick():
1 static void
2 entity_tick(struct cfs_rq *cfs_rq , struct sched_entity *curr, int

queued)
3 {
4 update_curr(cfs_rq);
5

6 update_load_avg(cfs_rq , curr, UPDATE_TG);
7 update_cfs_group(curr);
8

35

Linux Thread Scheduling

9 #ifdef CONFIG_SCHED_HRTICK
10 if (queued) {
11 resched_curr(rq_of(cfs_rq));
12 return;
13 }
14

15 if (!sched_feat(DOUBLE_TICK) &&
16 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
17 return;
18 #endif
19

20 if (cfs_rq ->nr_running > 1)
21 check_preempt_tick(cfs_rq , curr);
22 }

Listing 3.18: entity_tick

As usual in CFS, the function updates the current entity’s statistics with update_-
curr(), then updates the average load and the CFS group’s weight associated to the
entity. If the kernel has been compiled with support to hrtick timers, queued is
evaluated to determine the origin of the tick: the runqueue’s hrtimer or the system
timer. In the former case, entity_tick() raises immediately a rescheduling event,
because the hrtimer fires an interrupt only when the entity’s timeline as calculated
by sched_slice() (explained in section 3.3.5) expires. Otherwise, if the interrupt was
triggered by the system timer, the kernel distinguishes two cases:

1. CONFIG_SCHED_HRTICK is set and the DOUBLE_TICK feature is not supported: the
function ends its execution, since CFS is exploiting the hrtimer

2. CONFIG_SCHED_HRTICK is set and the DOUBLE_TICK feature is supported, or CON-
FIG_SCHED_HRTICK is not set: if the runqueue contains only the current task
nothing is done, otherwise the scheduler checks for preemption opportunities.

Without hrtimer support, the scheduler must manually check at each tick if is time
to preempt the current task using check_preempt_update(), defined in listing 3.19.

1 static void
2 check_preempt_tick(struct cfs_rq *cfs_rq , struct sched_entity *curr)
3 {
4 unsigned long ideal_runtime , delta_exec;
5 struct sched_entity *se;
6 s64 delta;
7

8 ideal_runtime = sched_slice(cfs_rq , curr);
9 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
10 if (delta_exec > ideal_runtime) {
11 resched_curr(rq_of(cfs_rq));
12 clear_buddies(cfs_rq , curr);
13 return;

36

Linux Thread Scheduling

14 }
15

16 if (delta_exec < sysctl_sched_min_granularity)
17 return;
18

19 se = __pick_first_entity(cfs_rq);
20 delta = curr->vruntime - se->vruntime;
21

22 if (delta < 0)
23 return;
24

25 if (delta > ideal_runtime)
26 resched_curr(rq_of(cfs_rq));
27 }

Listing 3.19: check_preemt_tick

The timeslice assigned to the entity is retrieved from sched_slice(), and the real
execution time is stored in delta. The function then checks if the timeslice has ex-
pired and raises a scheduling request in case the test results true. The function uses
the real execution time, instead of vruntime, because priority is already accounted in
the timeslice calculation. To mitigate context switches’ overhead, check_preempt_-
tick() terminates its execution if the amount of time spent on the CPU by the cur-
rent entity is less than the minimum granularity. When also this test results false, the
scheduler checks if the leftmost task deserves the CPU more than the current entity by
comparing their vruntimes: if delta < 0 or delta ≤ ideal runtime the entity cur-
rently running on the CPU is still entitled to own it, otherwise the function raises the
rescheduling flag.

3.3.7 Entity Enqueue
Whenever a task becomes active again, for example because a condition is verified, the
core scheduler enqueue_task() is invoked. As for most of the operations, the core
scheduler resorts to scheduling classes’ functions to do the actual work. For CFS, the
scheduling class hook enqueue_task() is mapped to enqueue_task_fair(). The
function does a lot of accounting not relevant for the work of this thesis, therefore
listing 3.20 reports only the interesting parts.

1 static void
2 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3 {
4 struct cfs_rq *cfs_rq;
5 struct sched_entity *se = &p->se;
6 int idle_h_nr_running = task_has_idle_policy(p);
7

8 ...
9

10 for_each_sched_entity(se) {

37

Linux Thread Scheduling

11 if (se->on_rq)
12 break;
13 cfs_rq = cfs_rq_of(se);
14 enqueue_entity(cfs_rq , se, flags);
15 if (cfs_rq_throttled(cfs_rq))
16 break;
17 cfs_rq ->h_nr_running++;
18 cfs_rq ->idle_h_nr_running += idle_h_nr_running;
19

20 flags = ENQUEUE_WAKEUP;
21 }
22

23 ...
24 }

Listing 3.20: enqueue_task_fair

The loop iterates over the entities hierarchy to enqueue entities in their associated
runqueue with enqueue_entity(). It stops its execution when the top-level entity
is added to the main per-core CFS runqueue, or if the scheduling entity is already to
runqueue, or when the runqueue on which the scheduling entity has to be scheduled
is throttled. For the purpose of this discussion, runqueue throttling is an optional CFS
grouping extension enabled by CONFIG_CFS_BANDWIDTH. Entities groups can run only
for a specified amount of time, after which are not scheduled for the rest of scheduling
period, even if the CPU is idle. For more information, refer to [42].

The interesting work is performed by enqueue_entity(), presented in listing 3.21:

1 static void
2 enqueue_entity(struct cfs_rq *cfs_rq , struct sched_entity *se, int

flags)
3 {
4 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags &

ENQUEUE_MIGRATED);
5 bool curr = cfs_rq ->curr == se;
6

7 if (renorm && curr)
8 se->vruntime += cfs_rq ->min_vruntime;
9

10 update_curr(cfs_rq);
11 if (renorm && !curr)
12 se->vruntime += cfs_rq ->min_vruntime;
13

14 update_load_avg(cfs_rq , se, UPDATE_TG | DO_ATTACH);
15 update_cfs_group(se);
16 enqueue_runnable_load_avg(cfs_rq , se);
17 account_entity_enqueue(cfs_rq , se);
18

19 if (flags & ENQUEUE_WAKEUP)
20 place_entity(cfs_rq , se, 0);
21

38

Linux Thread Scheduling

22 check_schedstat_required();
23 update_stats_enqueue(cfs_rq , se, flags);
24 check_spread(cfs_rq , se);
25 if (!curr)
26 __enqueue_entity(cfs_rq , se);
27 se->on_rq = 1;
28

29 ...
30 }

Listing 3.21: enqueue_entity

At the beginning of the function, two boolean variables are declared, renorm and
curr. The former indicates the need for a normalization of the entity’s vruntime,
the latter is set to true if the entity being enqueued is the one currently scheduled on
the CPU. curr determines if the normalization, when required, must be performed
before or after the call to update_curr(). If the task being enqueued is running
on the CPU, it is mandatory to normalize its value before update_curr() to main-
tain a correct value in the runqueue’s min_vruntime, as explained in section 3.3.4.
Then, the weight of the entity is reflected in its CFS group and runqueue with calls to
update_cfs_group() and account_entity_enqueue(), respectively. Eventually,
after some accounting, if the task is not the one currently running it is added to the
red-black tree by __enqueue_entity().

3.3.8 Entity Dequeue
During their lifetime tasks may need to temporarily stop their execution, for example
while waiting for I/O operations to occur or for a mutex to unlock. In these cases, the
core scheduler function dequeue_task() is invoked. Eventually, the core scheduler
resorts to the scheduling class’ dequeue_task() hook which, for CFS, corresponds to
dequeue_task_fair(). For the same reasons of the enqueue process exposed in sec-
tion 3.3.7, dequeue_task_fair() mostly comprises account operations not relevant
for this explanation, therefore listing 3.22 presents only the main part of the function.

1 static void dequeue_task_fair(struct rq *rq, struct task_struct *p,
int flags)

2 {
3 struct cfs_rq *cfs_rq;
4 struct sched_entity *se = &p->se;
5 int task_sleep = flags & DEQUEUE_SLEEP;
6 int idle_h_nr_running = task_has_idle_policy(p);
7

8 for_each_sched_entity(se) {
9 cfs_rq = cfs_rq_of(se);
10 dequeue_entity(cfs_rq , se, flags);
11

12 if (cfs_rq_throttled(cfs_rq))
13 break;

39

Linux Thread Scheduling

14 cfs_rq ->h_nr_running --;
15 cfs_rq ->idle_h_nr_running -= idle_h_nr_running;
16 if (cfs_rq ->load.weight) {
17 se = parent_entity(se);
18 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
19 set_next_buddy(se);
20 break;
21 }
22 flags |= DEQUEUE_SLEEP;
23 }
24

25 ...
26 }

Listing 3.22: dequeue_task_fair

The code is almost specular to 3.20, however it presents a subtle difference: if the
entity is scheduled in a runqueue with a weight greater than 0, the loop is stopped as
well. In this case, in fact, the owner of the runqueue still possesses runnable entities,
hence it cannot be dequeued.

dequeue_entity(), presented in listing 3.23, actually dequeues the entity from the
runqueue in which is contained.

1 static void
2 dequeue_entity(struct cfs_rq *cfs_rq , struct sched_entity *se, int

flags)
3 {
4 update_curr(cfs_rq);
5

6 update_load_avg(cfs_rq , se, UPDATE_TG);
7 dequeue_runnable_load_avg(cfs_rq , se);
8

9 update_stats_dequeue(cfs_rq , se, flags);
10

11 clear_buddies(cfs_rq , se);
12

13 if (se != cfs_rq ->curr)
14 __dequeue_entity(cfs_rq , se);
15 se->on_rq = 0;
16 account_entity_dequeue(cfs_rq , se);
17

18 if (!(flags & DEQUEUE_SLEEP))
19 se->vruntime -= cfs_rq ->min_vruntime;
20

21 return_cfs_rq_runtime(cfs_rq);
22

23 update_cfs_group(se);
24

25 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
26 update_min_vruntime(cfs_rq);

40

Linux Thread Scheduling

27 }

Listing 3.23: dequeue_entity

The function immediately calls update_curr() to update the current task’s statis-
tics and the runqueue’s min_runtime. Subsequently, it removes the entity’s weight
from the runqueue and its CFS group to exclude it from the average load computa-
tion. Then, if the entity is not the one currently running on the CPU, it is removed
from the red-black tree by __dequeue_entity(). Finally, dequeue_entity() re-
moves min_vruntime from the entity’s vruntime for the reasons explained in section
3.3.3 and calls again update_vruntime(). This second invokation is necessary due to
the possibility that the entity being removed is the one holding back min_vruntime.

3.3.9 Pick the Next Entity
The core scheduler, as already mentioned in section 3.2.5, calls the scheduler class’
pick_next_task() to select the next task to run. In CFS, pick_next_task() is
binded to pick_next_task_fair(). The function is quite complicatedwhen CONFIG_-
FAIR_GROUP_SCHED is enabled due to the amount of operations required to manage
groups. However, at its core, follows the steps presented in listing 3.24, the default
implementation when CFS groups are disabled.

1 static struct task_struct *
2 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct

rq_flags *rf)
3 {
4 struct cfs_rq *cfs_rq = &rq->cfs;
5 struct sched_entity *se;
6 struct task_struct *p;
7 int new_tasks;
8

9 ...
10

11 if (prev)
12 put_prev_task(rq, prev);
13

14 do {
15 se = pick_next_entity(cfs_rq , NULL);
16 set_next_entity(cfs_rq , se);
17 cfs_rq = group_cfs_rq(se);
18 } while (cfs_rq);
19

20 p = task_of(se);
21

22 done: __maybe_unused;
23 #ifdef CONFIG_SMP
24 list_move(&p->se.group_node , &rq->cfs_tasks);
25 #endif
26

41

Linux Thread Scheduling

27 if (hrtick_enabled(rq))
28 hrtick_start_fair(rq, p);
29

30 update_misfit_status(p, rq);
31

32 return p;
33

34 ...
35

36 }

Listing 3.24: pick_next_task_fair

prev is a pointer to the task being scheduled out. If it is not NULL, the code calls
put_prev_task() to insert the task in the runqueue it belongs to. The loop determines
the next task to run: in contrast to the usual for_each_sched_entity(), whichwalks
up the entity hierarchy, this do...while descends it. At every iteration, it picks the en-
tity deserving more to run with pick_next_entity(), and sets it as cfs_rq’s current
entity with set_next_entity(). This function also detaches the entity from the red-
black tree, because the entity is about to change state from “runnable” to “running”.
cfs_rq is then updated to point to the runqueue owned by the current scheduling en-
tity. The loop ends when cfs_rq points to NULL, that is, it has been found an entity
representing a task. If hrtimers are in use, the function additionally configures the
timer to fire an interrupt when the entity’s timeslice expires. Finally, the code returns
to the core scheduler the pointer of the task to run.

Entity Selection

pick_next_entity() selects the entity deserving more CPU time. Ideally, the sched-
uler aims to run the leftmost entity in the red-black tree, obtained from __pick_-
first_entity():

1 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
2 {
3 struct rb_node *left = rb_first_cached(&cfs_rq ->tasks_timeline);
4

5 if (!left)
6 return NULL;
7

8 return rb_entry(left, struct sched_entity , run_node);
9 }

Listing 3.25: __pick_first_entity

The implementation is strikingly simple: the tree caches the leftmost element to
speed-up the pick operation, hence it is enough to access the leftmost variable stored
in tasks_timeline, which is exactly what the macro rb_first_cached() does. The
function then returns the pointer to the sched_entity corresponding to the red-black
tree node through the rb_entry() macro.

42

Linux Thread Scheduling

pick_next_entity(), however, may not select the entitywith the smallest vruntime,
overriding the decision of __pick_next_entity(). If it is possible to schedule again
the task currently running on the CPU without being too unfair it does so, as the thread
may benefit from cache locality.

43

Chapter 4

Methodology

This chapter details themethodology adopted to study PMC-based scheduling. The first
step toward the objective, discussed in section 4.1, is to identify the CPU resources to
be monitored whose effectiveness depend on thread behavior and scheduling ordering.

The scheduler must become aware of performance counter existence, so that it can
instructs PMCs to monitor the selected resources and access the events count. For this
purpose, section 4.2 presents a lightweight PMCs library developed specifically for use
inside the kernel.

Finally, section 4.4 explains the mathematical models and the scheduler modifica-
tions required to implement PMC-based scheduling in the CFS.

4.1 Resource Identification
Modern superscalar microprocessors employ many mechanisms to deliver high perfor-
mance to the end user. As an example, figure 4.1 shows the internal architecture of an
Intel Sandy Bridge processor.

The processor has a classic CISC structure [24]: there is front end, that fetches in-
structions from memory and decodes them in microarchitectural instructions (µops),
and a backend to execute them. The front end is capable of fetching multiple instruc-
tions at each clock cycle, exploiting the branch prediction unit and the trace cache [37]
to continuously feed the pipeline even in presence of branches. Sandy Bridge CPUs are
capable of decoding 4 µops per cycle, which are forwarded to the allocation queue and
then to the reorder buffer to enable out-of-order execution [20]. µops are dispatched
through 6 different ports to various execution units (EUs), each designed to support a
different set of instructions. Figure 4.1 also shows the memory subsystem, where there
are two dedicated L1 caches, one for instructions and one for data, connected to a uni-
fied L2 cache. The L2 cache is also connected to the L3 cache, which is shared by every
core in the package and forwards requests to the main memory. This design is able
to provide a clock per instruction (CPI) lower than 1, but the CPI may increase due to

44

Methodology

Figure 4.1: Intel Sandy Bridge Pipeline. Taken from [39].

pipeline stalls or flushes.
Caches have been integrated to mitigate the increasing performance gap between

the CPU and main memory, and it is now not uncommon to have processors with a
three-level cache hierarchy. Every cache level increases in capacity, but requires more
clock cycles to fetch the data. Furthermore, is shared among more hardware threads,
creating a contention problem.

Branch mispredictions are especially costly in deeply pipelined designs, since a flush
results in many wasted clock cycles. Hardware designers have resorted to a wide range
of techniques to improve predictors accuracy, such as saturating counters, branch his-
tory tables [47] and, more recently, machine-learning [25].

Although caches and branch predictors are able to improve performance, they have a
common problem: the amount of information they can store is limited. The area budget
dedicated to these resources is constrained by both performance and cost requirements.
Cache and branch misses are inevitable for a single thread, and the situation becomes
even worse in a multitasking environment, where these resources are shared by dif-
ferent threads. The usefulness of these hardware mechanisms is heavily influenced by
how a task interacts with them. If a thread is particularly cache-intensive, the content
previously loaded by other tasks may be flushed, reducing the probability of finding the

45

Methodology

data again once they are rescheduled. Therefore, caches and branch predictors are valid
candidates to study whether scheduling algorithms may improve the system through-
put considering thread-hardware interactions.

4.1.1 PMCs selection

Cache

Caches are complex hardware structures. When a data miss occurs, the replacement
algorithm is triggered to evict a cache line and store the new data. They are often paired
with hardware prefetchers, whose job is to predict the next load address coming from
the CPU for requesting the data before it is actually used, improvingmemory latency. In
multi-core environments, caches also support coherency protocols to maintain a valid
state when the same data is present in multiple caches [45, 27].

The cache performance monitoring unit provides insights on this information, such
as the number of cache refills, write-backs, prefetcher requests, cache lines state, load
hit or miss and so on. Due to the limited number of available counters, it is possible
to monitor only a subset of events. The objective of this thesis is to enable PMC-based
scheduling analyzing the tasks’ execution profile, therefore only load events are con-
sidered. The list of events is available in table 2.2 of chapter 2.

Branch Predictor

Branches can be classified under many different categories: conditional or uncondi-
tional, near or far, calls or return, direct or indirect, just to make few examples. The
branch predictor monitoring unit tracks and differentiates these events, allowing users
to fine-tune performance analysis. In superscalar processor, another difference exists
in speculative and retired events. To characterize the task interaction with the branch
predictor, however, it is of interest to know the global number of retired predictions
and mispredictions. For this reason, this work considers the architectural events BR_-
INST_RETIRED.ALL_BRANCHES and BR_MISP_RETIRED.ALL_BRANCHES.

4.2 PMCs library

The scheduler needs to access performance counters to monitor the tasks’ execution
profile and make PMC-based scheduling decisions. There already exist many PMCs
libraries, but they are unsuitable for this work due to various reasons:

• perf [35]: the built-in Linux library for accessing performance counters from user-
space. perf, due to its use-cases and structure, introduces too much overhead in a
critical path like the scheduler code [44].

46

Methodology

• PAPI [41]: a library supporting a diverse set of hardware and software platforms,
providing a unified API for monitoring events. It is built for user-space operations
over perf on Linux, therefore it adds even more overhead without offering kernel-
space advantages.

• PMCTrack [38]: a loadable, architecture-agnostic kernel module, developed specif-
ically for kernel development. Initially, the work of this thesis was based on this
module, however it has two main drawbacks. The most important one is that,
being a module, it is dynamically loaded only when some processes have already
started, preventing the possibility to apply PMC-based scheduling at a global level.
Moreover, its overhead cannot be neglected due to the amount of features sup-
ported not needed by this work, which impact both execution time and caches
utilization.

This section describes a custom, lightweight PMCs library integrated in the core
kernel, providing low execution and memory overheads API for accessing performance
counters within the scheduler. It is designed to be easily extendible over different pro-
cessors architectures and microarchitectures in a transparent way for the end user. The
library works in two steps: first, every core must make a configuration call as soon as
it boots to set up and start the performance counters. Then, it is possible to use the
dedicated read function to obtain the number of events counted by a specific PMC.

4.2.1 Configuration

The number of performance counters and the events to monitor are defined at compila-
tion time. The former is specified in a macro, PMCS_USED, that defines the size of a static
array of struct pmc_conf. pmc_conf is a simple structure formed by two elements,
the PMC index and the event such counter must monitor. To configure the monitoring
units at runtime, it is enough to call the function pmcs_init() without specifying any
parameter.

In a multi-core environment, logical cores have private copies of the PMCs set, hence
pmcs_init()must be individually called by every execution unit. Moreover, this func-
tion must be invoked before the scheduler is initialized, otherwise the PMC values will
always be 0, defeating the purpose of PMC-based scheduling.

Multi-cores system, when powered on, execute boot operations on a single core,
known as the boot core. It is job of the software to eventually initialize and activate
the other cores. Because of this, pmcs_init() is called from two different paths.
For the boot core, the PMCs initialization happens inside start_kernel(), defined
in <init/main.c>, just after the CPU ended its early boot operations. For the sec-
ondary cores, instead, the initialization takes place in boot_secondary(), defined
in <kernel/arch/x86/kernel/smpboot.c> for the x86 architecture, that is the first
function executed by a newly awakened core.

47

Methodology

Internally, pmcs_init() calls an architecture-specific initialization function which,
for Intel processors, corresponds to init_intel_core_pmc(). Listing 4.1 shows the
function definition.

1 /* IA32_PERFEVTSEL register structure */
2 struct perfevtsel {
3 volatile u64 ev_sel : 8;
4 volatile u64 u_mask : 8;
5 volatile u64 usr : 1;
6 volatile u64 os : 1;
7 volatile u64 edge : 1;
8 volatile u64 pc : 1; /* reserved since Sandy Bridge arch */
9 volatile u64 en_int : 1;
10 volatile u64 reserved1 : 1;
11 volatile u64 en : 1;
12 volatile u64 inv : 1;
13 volatile u64 cmask : 8;
14 volatile u64 reserved2 : 32;
15 };
16

17 static __always_inline void init_intel_core_pmcs(void)
18 {
19 struct perfevtsel perfevtsel;
20 u64 *p;
21 u64 v;
22 int i;
23

24 for (i = 0; i < PMCS_USED; i++) {
25 switch (pmcs_conf[i].pmc_evt) {
26 case UNHALTED_CORE_CYCLES_EVT:
27 perfevtsel.ev_sel = EV_SEL_UNHALTED_CORE_CYCLES;
28 perfevtsel.u_mask = UMASK_UNHALTED_CORE_CYCLES;
29 break;
30

31 ...
32 }
33

34 perfevtsel.usr = COUNT_USR_MODE_EN;
35 perfevtsel.os = COUNT_OS_MODE_EN;
36 perfevtsel.edge = EDGE_DETECT_DIS;
37 perfevtsel.pc = PIN_CONTROL_DIS;
38 perfevtsel.en_int = INT_DIS;
39 perfevtsel.reserved1 = 0;
40 perfevtsel.en = EN_COUNT;
41 perfevtsel.inv = NO_INV_CMASK;
42 perfevtsel.cmask = 0;
43 perfevtsel.reserved2 = 0;
44

45 p = (u64 *)&perfevtsel;
46 v = *p;
47 wrmsrl(BASE_PERFEVTSEL_ADDR + (int)pmcs_conf[i].pmc, v);

48

Methodology

48 }
49 }

Listing 4.1: init_intel_core_pmc

struct perfevtsel is a C structurematching the layout of the IA32_PERFVTSELx
MSRs, detailed in section 2.2.2. The code iterates over the static array of struct pmc_-
conf to set the event select and unit mask of perfevtsel accordingly. The rest of the
structure initialization is common to every performance counter: events are counted
both in user and kernel mode, the counter is immediately started and overflow inter-
rupts are disabled. Eventually, the function converts the structure’s bit field to a 64 bits
unsigned number and updates the MSR specified by the configuration structure with
wrmsrl(), the built-in kernel function to write MSRs. The resulting assembly, not re-
ported here for compactness, is very efficient: perfevtsel is converted to a 64-bit
value, of which the lower 16 bits, corresponding to the event select and the unit mask,
are written by two mov instructions on 8-bit operands. The remaining structure ini-
tialization is compressed into a fixed hexadecimal value, 0x430000, which is put in OR
with the result of the switch and then written in the IA32_PERFVTSELx register.

4.2.2 Read Access
Once configured, performance counters can be accessed at any time with the read_-
pmc() function, which accepts the performance counter index as parameter. As for
pmcs_init(), read_pmc() resorts to an architecture-specific function to actually read
the register content, that is read_intel_core_pmc() for Intel architectures. Listing
4.2 shows the function definition.

1 static __always_inline u64 read_intel_core_pmc(pmc_t pmc)
2 {
3 u64 v;
4 rdmsrl(BASE_PMC_ADDR + (int)pmc, v);
5 return v;
6 }

Listing 4.2: read_intel_core_pmc

The function’s body is very simple: rdmsrl() is a kernel macro storing in v the
content of the MSR located at the specified address. Such a short function keeps the
overhead at a bare minimum, which is extremely valuable since it is called in perfor-
mance critical paths like context switches. It also has a minimal impact on caches,
avoiding interference with measurements.

4.3 Fixed Point Format
Fixed point is amethod for representing rational numbers. As the name suggests, a fixed
amount of bits is assigned to the integer and fractional parts. In contrast with floating

49

Methodology

point, which requires dedicated hardware like a FPU to provide acceptable performance,
fixed point numbers can be processed on a standard integer ALU, that is faster and less
power hungry. However, due to the limited number of bits dedicated to the fraction,
precision may become a concern.

The fractional part is represented in the same base b as the integer one, but uses
negative powers. Figure 4.2 shows the the bit layout of fixed point number on nb = 8
bits using p = 4 least significant bits to store the fraction.

23 22 21 20 2-1 2-2 2-3 2-4

Figure 4.2: Fixed point power values

The fixed point format represents a number n as an integer value v implicitly scaled
by a fixed factor b−p, that is:

n = v · b−p =
v

bp
(4.1)

The factormay assume any value, howeverwhen using this formatwith binary num-
ber is convenient to use a power of 2 for performance reasons, because multiplications
and divisions are optimized into shifts. For example, n = 1.5 can be stored in figure 4.2
as v = n · bp = 1.5 · 24 = 24, which in binary translates to 0001 1000.

4.3.1 Fixed Point Arithmetics
Let x = n1 · 2−p and y = n2 · 2−p be two different fixed point numbers using the same
base and numbers of bits to store the fraction. Additions and subtractions are then
naturally defined as:

x+ y = n1 · 2−p + n2 · 2−p = (n1 + n2) · 2−p (4.2)
x− y = n1 · 2−p − n2 · 2−p = (n1 − n2) · 2−p (4.3)

which, unless an overflow occurs, produces the exact mathematical result. For mul-
tiplications and divisions, however, there is need for additional care. Consider the mul-
tiplication between x and y:

x · y = (n1 · 2−p) · (n2 · 2−p) = (n1 · n2) · 2−2p (4.4)

The fractional part is no longer using p bits, but 2p. Consequently, the number is
not stored anymore in the expected format and needs to be corrected with adding an
additional multiplication by 2p:

50

Methodology

(n1 · n2) · 2−2p · 2p = (n1 · n2) · 2−p (4.5)

To show the correctness of the operation, let k = 0x0F80 and l = 0x02C0 two un-
signed fixed point numbers on 16 bits using p = 8. In decimal, k = 15.5 and l = 2.75.
The result of the multiplications between k and l is 0x2AA000, a value which fits only in
32 bits (assuming to be on a standard consumer CPU architecture). Dividing 0x2AA000
by 216 leads to 42.625, the expected result using the decimal notation. Hence, the mul-
tiplication output is effectively using 16 bits to store the fractional part. The correction
factor 2p can be implemented as a simple right shift by p: 0x2AA000 becomes 0x2AA0,
which fits perfectly in 16 bits and, when divided by 28, yields again 42.625. It must be
noted that this shift operation is not immune to precision loss if the fractional part of
the multiplication requires more than p bits to be represented.

Opposite to the multiplication, the division between x and y results in:

x

y
=

n1 · 2−p

n2 · 2−p
=

n1

n2

(4.6)

The operation requires a corrective factor as well, that is a multiplication by 2−p.
However, the division presents an additional issue with respect to the multiplication:
in equation 4.6, the fractional bits are completely lost. Even if the corrective factor 2−p

is applied at the end of the computation, the fractional part would be composed of all
0s. To avoid information loss, it is possible to apply 2−p before the division takes place
as:

n1 · 2−p · 2−p

n2 · 2−p
=

n1

n2

· 2−p (4.7)

Which produces the correct result in the expected format.

4.3.2 Kernel Library
Some of the mathematical transformations described in 4.4.1 operates in R. However,
the usage of floating point numbers is discouraged in kernel code [18] for performance
and compatibility reasons, therefore kernel developers resort to fixed point for manag-
ing these kinds of quantities. The kernel does provide some functions to abstract the
calculations described in section 4.3.1, but they are scattered through various compila-
tion units and, in general, lacks in functionalities. Part of the work in this thesis dealt
with the development of a small fixed point arithmetics library to provide a consistent
kernel interface and proper support to fixed point operations. As of now, the function
set is restricted to the need of this thesis, which uses 10 bits to represent the fraction,
that is:

51

Methodology

• uint_to_ufix(): converts a 64-bit unsigned integer to fixed point number. It
also takes care of possible overflow errors, throwing away the least significant
bits to maintain the most significant ones, reducing the effects of information loss.

• sint_to_sfix(): it is the same as uint_to_ufix(), but for signed numbers.

• sfix_to_sint(): converts a signed fixed point number to a signed 64-bit integer.
It implements a basic rounding scheme to reduce error accumulation.

• fix_udiv_64(): divides two unsigned fixed point numbers. The return value is
also a fixed point number on 64 bits.

• fix_smul_64(): multiplies two signed fixed point numbers. If the kernel is com-
piled with support for 128 bits integers, the multiplication output is temporarily
stored on 128 bits to reduce the probability of overflow, otherwise it resorts to
standard 64-bit variables. The return value is a signed fixed point number.

• fix_umul_64(): it is the same as fix_smul_64(), but operates on unsigned
values.

4.4 Scheduler Integration
This section details the main contributions of the thesis. The CFS scheduler is extended
to introduce a penalty/reward score system applied at the task level. The score represent
the global intensiveness of the thread on the monitored resources as a percentage. It is a
multiplicative factor increasing or decreasing key CFS quantities such as the virtual run-
time and the timeslice of a thread. Penalizing a thread means increasing the vruntime,
pushing it farther in the execution timeline to reduce its chances to be scheduled, and
decreasing the timeslice, reducing the amount of expendable time on the core.

To perform a comprehensive analysis, various kernel configurations have been gen-
erated: a first iteration considers only the PMCs related to cache events to compute the
score. A second iteration, instead, combines the caches and branch predictor PMCs with
different weights to study the best configuration. The score is also reversed in some of
the kernel versions to understand if threads must be penalized or rewarded when they
put under heavy stress the hardware resources.

4.4.1 Mathematical Model
Let cm(t) and ca(t) be the number of cache misses and cache accesses at time t. It is
possible to compute the cache miss rate cmr(t) as:

cmr(t) =
cm(t)− cm(t− 1)

ca(t)− ca(t− 1)
=

∆cm

∆ca

(4.8)

52

Methodology

From this definition, is always true that:

0 ≤ cmr(t) ≤ 1

The branch miss rate brm(t) can be derived from equation 4.8 by replacing cm with
the number of branch mispredictions bm and cawith the number of branch instruction
executed be.

The PMCs combination c(t), representing how much intensive is a thread on the
monitored resources, is computed differently when only caches are being monitored
(equation 4.9), or also branch misses are taken into account (equation 4.10):

c(t) = cmr(t) (4.9)
c(t) = w1 · cmr(t) + w2 · bmr(t) (4.10)

With w1 and w2 being the rate’s weights. In this study, three different weights set
have been considered:

• w1 = w2 = 0.5: the cache miss rate and the branch misprediction rate are
weighted equally.

• w1 = 0.75, w2 = 0.25: the cache miss rate is more important than the branch
misprediction rate.

• w1 = 0.25, w2 = 0.75: the branch misprediction rate is more important than the
cache miss rate.

By construction, also for c(t) is always true that:

0 ≤ c(t) ≤ 1

In its current form, c(t) is not still usable in CFS: as stated above, the score is multi-
plied to scheduling quantities to increase or reduce their values. A multiplication with
c(t), instead, always results in a bigger value. Hence, the score s(t) is derived as:

s(t) = c(t)− 0.5 (4.11)

Where s(t) ∈ [−0.5, 0.5]. The boundary values have been chosen to not over- penal-
ize or reward a thread, compromising excessively CFS’s fairness. The penalty is finally
computed as an exponential moving average:

penalty(t) = α · s(t) + (1− α) · penalty(t− 1) (4.12)

53

Methodology

The exponential average has the nice property to smooth out short-term fluctua-
tions, hence it represents the global thread behavior. In the general formulation α ∈
[0, 1], but in this thesis it is fixed to 0.5 to limit the already wide number of kernel
configurations to test. It is clear that:

∀ α ⇒ penalty(t) ∈ [−0.5, 0.5] (4.13)

In equation 4.12, a positive penalty(t) value means that a thread shall be penalized.
Conversely, a negative quantity means that it shall be rewarded. With the current for-
mulation, a thread is penalized when c(t) > 0.5 consistently, that is, the content of
the monitored resources is being trashed. As stated earlier, it has been studied also
the case where threads triggering many cache misses or branch mispredictions shall be
rewarded. It is easy to extend this model to comprehend such case by reversing c(t) as:

c?(t) = 1− c(t) (4.14)

c?(t) substitutes c(t) in equation 4.11 and the rest of the formulation holds. In this
situation, a thread with a high cmr(t) and brm(t) will have a low c?(t) value, conse-
quently penalty(t) < 0 and a reward will be given.

penalty(t) is the multiplicative factor applied to the virtual runtime and timeslice of
a task to modify the scheduler behavior.

Virtual runtime

Consider equation 3.3. penalty(t) cannot be directly applied to the final vruntime(t)
value, because in case of a reward the resulting value would be smaller than the original
and, by definition, vruntime(t) is a monotonically increasing quantity. However, the
equation is composed of two operands: the cumulative virtual runtime, computed in
previous steps, and the current CPU execution time weighted by the task’s priority.
The second operand is the vruntime spent in execution by the thread between two
scheduler invocations. Equation 3.3 can be reformulated as:

vruntime(t) = vruntime(t− 1) + ∆fair (4.15)

Where:

∆fair = ∆exec ·
NICE_0_LOAD

curr → load
(4.16)

penalty(t) can be multiplied to equation 4.16 to derive a quantity to increase or
decrease the value of ∆fair itself, thus changing the increase rate of vruntime(t), as:

54

Methodology

∆?
fair = ∆fair +∆fair · penalty(t) (4.17)

vruntime(t) = vruntime(t− 1) + ∆?
fair (4.18)

It is worth to analyzewhat happens to∆?
fair with respect to∆fair based on penalty(t)’s

sign:

• penalty(t) < 0: ∆?
fair < ∆fair. vruntime(t) progresses in a slower way when

compared to the stock kernel. It means that the thread will be placed toward the
left side of the red-black tree, increasing its chances to be rescheduled soon.

• penalty(t) = 0: ∆?
fair = ∆fair. The behavior is the same as the stock kernel.

• penalty(t) > 0: ∆?
fair > ∆fair. vruntime(t) increases at a faster pace with

respect to the stock kernel. The thread will be placed toward the right side of the
red-black tree, therefore its scheduling opportunities will diminish.

Timeslice

Let ∆slice be:

∆slice = timeslice · penalty(t) (4.19)

Where timeslice is the result of equation 3.5. ∆slice is the amount to be subtracted
from timeslice to augment or reduce the CPU time assigned to the thread in proportion
with penalty(t). Essentially, the timeslice calculation is modified as:

timeslice? = timeslice−∆slice. (4.20)

To understand why a subtraction is used, equation 4.20 can be analyzed in function
of penalty(t)’s sign:

• penalty(t) < 0: The thread must be rewarded and its timeslice must increase. In
this case ∆slice < 0, hence with the subtraction timeslice? > timeslice.

• penalty(t) = 0: The timeslice must be the same as in the stock version. In fact,
∆slice = 0 and timeslice? = timeslice.

• penalty > 0: The thread is penalized, hence the desired outcome is timeslice? <
timeslice. In this case ∆slice > 0, so the subtraction leads to a smaller timeslice.

55

Methodology

4.4.2 Model Implementation
This section presents the modifications required to integrate PMC-based scheduling
in the CFS. The scheduler resorts to the PMC library presented in section 4.2 to read
performance counter values, that feed the theoretical model discussed in section 4.4.1
relying on the fixed point library detailed in section 4.3 to manage rational quantities.
The code shown in this section is the one strictly necessary to integrate PMCs within
the scheduler. There is more dedicated to logging purposes, discussed in section 4.5.

Task Struct Members

The scheduler requires a minimal amount of additional memory in every task to save
its state. In particular, each task in the system holds its penalty and the PMCs state to
compute the difference in equation 4.8. Therefore, struct task_struct becomes:

1 struct task_struct {
2 #ifdef CONFIG_THREAD_INFO_IN_TASK
3 struct thread_info thread_info;
4 #endif
5

6 ...
7

8 #ifdef CONFIG_PMC_SCHED
9 u64 start_pmcs[PMCS_USED];
10 s64 penalty;
11 #endif
12

13 struct thread_struct thread;
14 };

Listing 4.3: struct task_struct additions

start_pmcs is an array storing the second operand of equation 4.8 for every per-
formance counter in use. penalty, instead, corresponds to penalty(t) in equation 4.12.
These struct members have been placed in task_struct, and not sched_entity, to
ease the extension to more scheduling classes in future works. The total memory re-
quired by these additions varies with the kernel configuration in use. In this thesis,
valid PMC_USED values are 2, 3 and 4, resulting in per-task memory overhead of 24, 32,
or 40 bytes.

Special consideration is needed when managing penalty: even if it is declared as a
signed 64 bits integer, the code uses it as a signed fixed point number with the 10 least
significant bits serving as the fractional part.

The variables are initialized in __sched_fork(), a function called by copy_process()
during the main clone() system call routine, to set up scheduling related parameters
to their default values:

1 static void __sched_fork(unsigned long clone_flags , struct task_struct
*p)

56

Methodology

2 {
3 p->on_rq = 0;
4

5 ...
6

7 #ifdef CONFIG_PMC_SCHED
8 memset(p->start_pmcs , 0, sizeof(u64) * PMCS_USED);
9 p->penalty = 0;
10 #endif
11

12 ...
13 }

Listing 4.4: __sched_fork initialization

PMCs update

The scheduler needs to periodically access performance counters to evaluate threads-
hardware interactions and update the relatives penalties. For this purpose, the main
scheduling routine __schedule() has been modified to call update_pmcs(), shown
in listing 4.5, to collect the statistics of the task being switched out and set up the pa-
rameters of the one being switched in. Evaluating performance counters exclusively in
__schedule() allows to monitor also the kernel’s system calls impact, resulting in a
complete task profile, improving the quality of the collected data. update_pmcs() is
invoked just before the kernel determines if next and prev are different tasks in listing
3.5.

1 static void update_pmcs(struct task_struct *prev, struct task_struct *
next)

2 {
3 u64 *start_pmcs = prev->start_pmcs;
4 u64 end_pmcs[PMCS_USED];
5 u64 end_tot_load_uops;
6 u64 start_tot_load_uops;
7 u64 cm_rate;
8 u64 bm_rate = 0;
9 int pmc;
10

11 for (pmc = 0; pmc < PMCS_USED; pmc++) {
12 end_pmcs[pmc] = read_pmc(pmc);
13 }
14

15 end_tot_load_uops = end_pmcs[PMC0] + end_pmcs[PMC1];
16 start_tot_load_uops = start_pmcs[PMC0] + start_pmcs[PMC1];
17

18 #if defined(CONFIG_PMC_L1) && defined(CONFIG_PMC_CACHE_ONLY)
19 end_tot_load_uops += end_pmcs[PMC2];
20 start_tot_load_uops += start_pmcs[PMC2];
21 compute_rate(cm_rate ,

57

Methodology

22 (end_pmcs[PMC1] + end_pmcs[PMC2]) - (start_pmcs[PMC1]
+ start_pmcs[PMC2]),

23 end_tot_load_uops - start_tot_load_uops ,
24 prev->normalized_cm_rate);
25 #else
26 compute_rate(cm_rate ,
27 end_pmcs[PMC1] - start_pmcs[PMC1],
28 end_tot_load_uops - start_tot_load_uops ,
29 prev->normalized_cm_rate);
30 #endif
31 #ifndef CONFIG_PMC_CACHE_ONLY
32 compute_rate(bm_rate ,
33 end_pmcs[PMC3] - start_pmcs[PMC3],
34 end_pmcs[PMC2] - start_pmcs[PMC2],
35 prev->normalized_bm_rate);
36 bm_rate = fix_umul_64(bm_rate , BRM_SCALE_FACTOR);
37 if (bm_rate > POS_FIX_1) {
38 bm_rate = POS_FIX_1;
39 prev->bm_rate_acc++;
40 }
41 #endif
42

43 #ifndef CONFIG_PMC_LOG_ONLY
44 compute_penalty(prev, cm_rate , bm_rate);
45 #endif
46

47 for (pmc = 0; pmc < PMCS_USED; pmc++) {
48 next->start_pmcs[pmc] = end_pmcs[pmc];
49 }
50 }

Listing 4.5: update_pmcs

Before starting the explanation, the PMC configuration used in this thesis is shown
in table 4.1.

Index PMC name Kernel configurations
0 MEM_LOAD_UOPS_RETIRED.Lx_HIT All
1 MEM_LOAD_UOPS_RETIRED.Lx_MISS All
2 MEM_LOAD_UOPS_RETIRED.HIT_LFB L1 cache monitored, BPU ignored
2 Branch Instruction Retired Cache and BPU monitored
3 Branch Misses Retired Cache and BPU monitored

Table 4.1: PMC index - event mapping

At the beginning of the function, the performance counters values are read and
stored in end_pmcs. Cache performance counters provide the count for hit and miss
events, however the cache miss rate is defined as cache miss

cache accesses
. Hence, the total num-

ber of load µops is obtained by summing cache hits and misses. end_tot_load_uops

58

Methodology

corresponds to ca(t) in equation 4.8, start_tot_load_uops to ca(t − 1). The code
carries the cache miss rate computation in two different ways depending on the kernel
configuration: if the cache L1 is the only hardware resource monitored, it accounts also
the line fill buffer events in the total amount of cache accesses. Then, with the macro
compute_rate(), defined in listing 4.6, it calculates the cache miss rate as in equation
4.8 with the cleverness of adding to the cache misses the number of line fill requests.

On the other hand, if a different cache from the L1 is being monitored, or the BPU
events are taken into consideration as well, the cache miss rate derivation requires no
additional correction and the function directly applies equation 4.8 to the collected val-
ues.

1 #define compute_rate(rate, num, den, norm) \
2 do { \
3 (rate) = fix_udiv_64((num), (den)); \
4 if (unlikely((rate) > POS_FIX_1)) { \
5 (rate) = POS_FIX_1; \
6 (norm)++; \
7 } \
8 }while (0)

Listing 4.6: compute_rate macro

The macro exploits fix_udiv_64() to compute the fixed point division between
num and den. Even if these parameters are not stored in fixed point, the calculation is
nevertheless correct. In fact, the division outcome would be the same as in equation 4.6,
but since the function applies the corrective factor before the division takes place, the
outcome is a well-formed fixed point value. This is a small micro-optimization since
no conversion is required. If den > num there is an error in the parameters, hence
the macro normalizes the rate to POS_FIX_1, a constant value representing the fixed
point number corresponding to 1, and raises an error flag used during debug. For more
details about debugging and logging refer to section 4.5.

If BPU events are beingmonitored, that is, CONFIG_PMC_CACHE_ONLY is not defined,
the function uses compute_rate() to compute the branch miss rate as well. Branch
predictors usually have an excellent hit rate: already in the first half of 1990 there exist
prediction schemes capable of correctly guessing the 90 % of branch outcomes [47].
Research has since improved the hit rate to values higher than 95 % [3, 25]. Therefore,
the branch miss rate is scaled by 10 to pull out usable quantities in equation 4.10. Due to
time constraints, a full characterization of the branch predictor has not been possible,
but from the above discussion a multiplication by 10 is a conservative solution.

The miss rates, along with the pointer to the task being scheduled out, are passed as
parameters to compute_penalty() for the penalty calculation. Then, the code updates
the start_pmcsmember of the task being scheduled inwith the values previously read.
This operationmust be necessarily performed at the end, because it may be possible that
prev and next points to the same task. If next’s update were executed earlier, in case
next == prev the difference of end_pmcs and start_mpcswould be 0. Consequently,

59

Methodology

the rates would be 0 as well, defeating the purpose of the penalty/reward mechanism.

Penalty Calculation

compute_penalty() is the function in charge of computing penalty(t), and it is shown
in listing 4.7. It supports many compile-time options to alter the calculation process and
allow various experiments.

1 static void compute_penalty(struct task_struct *t, u64 cm_rate , u64
bm_rate)

2 {
3 u64 c;
4 #if defined(CONFIG_PMC_EQUAL_WEIGHT)
5 c = fix_umul_64(cm_rate , M) + fix_umul_64(bm_rate , M);
6 #elif defined(CONFIG_PMC_CACHE_WEIGHT)
7 c = fix_umul_64(cm_rate , M) + fix_umul_64(bm_rate , S);
8 #elif defined(CONFIG_PMC_BRANCH_WEIGHT)
9 c = fix_umul_64(cm_rate , S) + fix_umul_64(bm_rate , M);
10 #else /* only cache miss are in use */
11 (void)bm_rate;
12 c = cm_rate;
13 #endif
14

15 #ifndef CONFIG_PMC_CACHE_ONLY
16 if (unlikely(c > POS_FIX_1)) {
17 t->normalized_combination++;
18 c = POS_FIX_1;
19 }
20 #endif
21

22 #ifndef CONFIG_PMC_HS_PENALTY
23 c = POS_FIX_1 - c;
24 #endif
25 c = c - POS_FIX_05;
26

27 t->penalty = fix_smul_64((s64)c, ALPHA) + fix_smul_64(t->penalty ,
BETA);

28 if (unlikely(t->penalty > POS_FIX_05)) {
29 t->normalized_penalty++;
30 t->penalty = POS_FIX_05;
31 } else if (unlikely(t->penalty < NEG_FIX_05)) {
32 t->normalized_penalty++;
33 t->penalty = NEG_FIX_05;
34 }
35 }

Listing 4.7: compute_penalty

The PMC combination c(t) is computed differently based on the kernel configura-
tion. If CONFIG_PMC_CACHE_ONLY is set c(t) simply correspond the cache miss rate, as
in equation 4.9. Otherwise, the code resorts to equation 4.10, setting the weights to:

60

Methodology

• CONFIG_PMC_EQUAL_WEIGHT is defined: w1 = w2 = M = 512, where 512 corre-
sponds to 0.5 in the fixed point format adopted.

• CONFIG_PMC_CACHE_WEIGHT is defined: w1 = M = 768 and w2 = S = 256,
where 768 and 256 are the fixed point values coinciding with 0.75 and 0.25.

• CONFIG_PMC_BRANCH_WEIGHT is defined: w1 = S = 256 and w2 = M = 768.

Once the function computes c(t), it applies the usual normalization step common
to most of the previous calculations only if both the cache and the BPU events are
considered. In fact, in the case where only the caches are monitored, the normalization
step is already executed by compute_rate() in update_pmcs().

CONFIG_PMC_HS_PENALTY is the macro acting as a toggle to select at compile-time
the penalty or reward algorithm. If it is not set, c(t) is inverted as in equation 4.14, hence
threads generating many cache or branch misses are rewarded. On the other hand, if
CONFIG_PMC_HS_PENALTY is defined, equation 4.14 is not compiled and heavy threads
are penalized.

Eventually, the code updates the penalty of the task being scheduled out by ap-
plying equation 4.12 and, in case it is out of the range defined in 4.13, it normalizes
the value and increases the related debug flag. Since penalty is updated only when
a task is leaving the CPU, tasks short enough to complete their execution in a single
scheduling period are exempted from the algorithm’s effect.

PMC-based Scheduling

With the core scheduler able to interact with performance counters and to compute the
penalty, it is now possible to discuss the CFS modifications required to enable PMC-
based scheduling. One of the key parameters is the virtual runtime, detailed in section
3.3.4, which is updated in update_curr(). The function requires minimal modifica-
tions to transform the calculation of equation 3.3 in equation 4.15, as shown in listing
4.8:

1 static void update_curr(struct cfs_rq *cfs_rq)
2 {
3 struct sched_entity *curr = cfs_rq ->curr;
4 u64 now = rq_clock_task(rq_of(cfs_rq));
5 u64 delta_exec;
6 #if defined(CONFIG_PMC_SCHED) && !defined(CONFIG_PMC_LOG_ONLY)
7 u64 delta_fair;
8 s64 delta_fair_star;
9 struct task_struct *task;
10 #endif
11

12 if (unlikely(!curr))
13 return;
14

61

Methodology

15 delta_exec = now - curr->exec_start;
16 if (unlikely((s64)delta_exec <= 0))
17 return;
18

19 curr->exec_start = now;
20

21 schedstat_set(curr->statistics.exec_max ,
22 max(delta_exec , curr->statistics.exec_max));
23

24 curr->sum_exec_runtime += delta_exec;
25 schedstat_add(cfs_rq ->exec_clock , delta_exec);
26 #if defined(CONFIG_PMC_SCHED) && !defined(CONFIG_PMC_LOG_ONLY)
27 delta_fair = calc_delta_fair(delta_exec , curr);
28 if (entity_is_task(curr)) {
29 task = task_of(curr);
30 delta_fair_star = fix_smul_64(uint_to_ufix(delta_fair), task->

penalty);
31 delta_fair_star = sfix_to_sint(delta_fair_star);
32 delta_fair += delta_fair_star;
33 }
34

35 curr->vruntime += delta_fair;
36 #else
37 curr->vruntime += calc_delta_fair(delta_exec , curr);
38 #endif
39 ...
40 }

Listing 4.8: update_curr modifications

calc_delta_fair()’s return value is not directly applied to vruntime anymore,
but it is stored in a variable called delta_fair. Then, the function checks if curr is
a scheduling entity associated to a task through entity_is_task(), an utility macro
detecting if a scheduling entity is also a task. The condition is very simple: an entity is a
task if it does not own a runqueue, hence the macro expands to !curr->my_rq. As per-
formance counters can be evaluated only on actual threads, and not on abstract entities
such as tasks groups, the code does not alter CFS behavior if curr is not a task. On the
other hand, if the scheduling entity is related to a task, it retrieves the pointer to the task
containing curr. This step is necessary because penalty is stored in the process de-
scriptor, that is task_struct. Subsequently, the function saves in delta_fair_star
the proportion based on penalty to increase/decrease delta_fair using a signed fixed
point multiplication on 64 bits. Since delta_fair is not stored in a fixed point, before
the multiplication takes place it is necessary to convert the number to a fixed point
representation with uint_to_ufix(). Performing the multiplication in fixed point al-
lows the scheduler to manage values smaller than 1, however CFS operates mainly on
integer quantities and vruntime is no exception. Therefore, sfix_to_sint() con-
verts delta_fair_star back to the original integer representation and it is added to
delta_fair, which is in turn added to the vruntime.

62

Methodology

The other CFS key parameter, timeslice, is updated in a similar manner as vruntime.
Listing 3.15 and 4.9 can be compared to appreciate again the small number of modifi-
cations required to introduce PMCs in the CFS.

1 static u64 sched_slice(struct cfs_rq *cfs_rq , struct sched_entity *se)
2 {
3 #if defined(CONFIG_PMC_SCHED) && !defined(CONFIG_PMC_LOG_ONLY)
4 struct task_struct *task;
5 s64 delta_slice;
6 struct sched_entity *orig_se = se;
7 #endif
8 u64 slice = __sched_period(cfs_rq ->nr_running + !se->on_rq);
9

10 for_each_sched_entity(se) {
11 struct load_weight *load;
12 struct load_weight lw;
13

14 cfs_rq = cfs_rq_of(se);
15 load = &cfs_rq ->load;
16

17 if (unlikely(!se->on_rq)) {
18 lw = cfs_rq ->load;
19

20 update_load_add(&lw, se->load.weight);
21 load = &lw;
22 }
23 slice = __calc_delta(slice , se->load.weight , load);
24 }
25

26 #if defined(CONFIG_PMC_SCHED) && !defined(CONFIG_PMC_LOG_ONLY)
27 if (entity_is_task(orig_se)) {
28 task = task_of(orig_se);
29 delta_slice = fix_smul_64(uint_to_ufix(slice), task->penalty);
30 delta_slice = sfix_to_sint(delta_slice);
31 slice -= delta_slice;
32 }
33 #endif
34 return slice;

Listing 4.9: sched_slice modifications

With respect to update_curr(), there is an additional local variable called orig_se.
It is a sched_entity pointer initialized to se. orig_se is fundamental to ensure
the correctness of operations because, in the original timeslice calculation, the loop
continously update the value of se, which eventually becomes NULL. Once the origi-
nal timeslice calculation ends, if the original scheduling entity is also a task, the code
computes delta_slice as in equation 4.19. Similarly to delta_fair, delta_slice
must be converted back to a standard integer representation before it can be applied to
the timeslice. At the end, the function derives the PMC-based timeslice by subtracting
delta_slice from slice and returns such quantity to the caller.

63

Methodology

4.5 Data Collection
To measure the scheduler impact on performance and to verify the correctess of opera-
tions, some data must be collected and analyzed. For security reasons, the kernel does
not provide a way to access its internal structures from userspace. However, Linux ex-
poses few logging interfaces, detailed in section 4.5.1, to obtain a selected amount of
information about the inner systems. This work exploits them to provide useful data
for debugging and benchmarking. However, kernel logging is an expensive operation,
thus it must be reduced to a bare minimum. In user-space, a custom C program called
logger runs during the benchmarks to collect log messages and save them on disk for
offline processing.

4.5.1 Kernel Logging
Kernel logging is a fundamental operation for benchmarking and debugging. It is pos-
sible to accurately measure the execution time of a task without the latency overhead
intrinsically present in system calls such as wait(), or to output a vast amount of in-
formation not accessible by userspace tools.

Logging Mechanism

The kernel providesmultiple frameworks for logging, themost famous one being printk()
[32]. However, printk() has a non-negligible overhead, which makes it unsuitable for
performance critical paths like the scheduler. For these particular situations, the kernel
offers an alternative framework called Ftrace [9]. Ftrace supports a wide range of tools,
known as tracers, to measure system latency, performance, call stacks and so on. It also
offers a macro, trace_printk(), which uses a printf-like interface to log messages in
a dedicated, per-CPU, ring buffer. A log line produced by Ftrace looks like:

systemd-1 [000] 0.124413: copy_process: Process pid 0 forked

Where:

• systemd is the name of the task in execution during a trace_printk() call.

• 1 is the pid of the task currently running on the core. As explained in section 3.1.2,
this pid refers to the task’s unique identifier, not to the userspace homonymous.

• [000] indicates the core number executing the trace_printk() call.

• are flags specifying a portion of the system context. In order, from left to
right, they are: irqs-off, need-resched, hardirq/softirq and preempt-
depth.

64

Methodology

• 0.124413 is the log timestamp. The format is “seconds.microseconds” and is mea-
sured since boot.

• copy_process is the kernel function containing the trace_printk() call.

• Process pid 0 forked is the log message.

Ftrace creates an entry in theDebugfs file system, usually located at /sys/kernel/-
debug/tracing, to interact with tracers. trace_printk() is accessible from two dif-
ferent files: trace and trace_pipe. The difference is that the former does not con-
sume the ring buffer content, hence if tracing is stopped through the API, executing
cat trace will always output the same data. The latter, on the other hand, is meant
for live tracing and consumes the content. If the ring buffer is empty, either because no
trace_printk() has been executed or because everything was read, read operations
will block until new data is available [14].

Logging Process

As stated earlier, the kernel logs messages for both benchmarking and debugging pur-
poses. From a purely benchmarking perspective, the measure of interest is the total
tasks’ execution time, that is, the amount of time elapsed between process creation and
death. Within the kernel, it is possible to collect precise timing information about these
two instant, not only for processes, but also for individual threads: as explained in sec-
tion 3.1.2, fork() and pthread_create() resort to the clone() syscall for creating
new processes and threads, which eventually lead to the execution of copy_process().
Once a task ends its work, whether it is a thread or a process, the kernel invokes
do_exit() to signal the task’s death. Additionally, for the first thread of the process,
do_group_exit() is called as well. The difference between the moments in which the
kernel calls copy_process() and do_[group_]exit() is an accurate representation
of the tasks’ execution time that consider also scheduling delays. The benchmark’s data
collection flow is shown in figure 4.3.

copy_process() task executing do_[group_]exit

clone()
task added to the

scheduler

task exiting the
scheduler

trace_printk() trace_printk()

Figure 4.3: Benchmark data collection flow

65

Methodology

The kernel patch adds two trace_printk() calls, one in copy_process() and one
do_exit(). The former is placed at the end of the function as:

1 #ifdef CONFIG_PMC_SCHED
2 trace_printk("[PMC_SCHED] Process pid %d tgid %d forked\n", p->pid,
3 p->tgid);
4 #endif

Where p is the pointer to the newly created task_struct. Every message added
by the patch contains a prefix, “PMC_SCHED”, which identifies in the log file the strings
belonging to this work. As it will be seen, the userspace logger expoits this feature to
reduce the amount of log lines saved on disk.

In do_exit(), instead, the trace_printk() call is placed at the beginning of the
function:

1 #ifdef CONFIG_PMC_SCHED
2 trace_printk("[PMC_SCHED] Task exiting\n");
3 #endif

Not shown in 4.3 for compactness and generality, trace_printk() is also added at
the beginning of do_group_exit() to discern whether the task exiting is a thread or
a process:

1 #ifdef CONFIG_PMC_SCHED
2 trace_printk("[PMC_SCHED] Process exiting\n");
3 #endif

The offline parser matches these prints using the task pid, and determines the ex-
ecution time by subtracting from the timestamp of the do_[group_]exit() log the
one of the copy_process() message. While for the exit messages the task pid is in-
directly provided by trace_printk(), the same is not true for copy_process(): the
task is currently being created at this moment in time, hence it is not the one running
on the CPU. The pid actually corresponds to the parent’s one, therefore the message
in copy_process() explicitly provide the task’s pid and the tgid.

Forwhat concerns debugging, instead, there is a trace_printk() call in free_task_struct().
This function is called once the task is already dead for releasing the memory associated
to task_struct. For this reason, also in this case is necessary to explicitly specify the
pid and the tgid stored in the structure to be freed. The message content depends on
the kernel’s compilation settings, summarized in table 4.2. Altough it is possible to dis-
able PMC-based scheduling, the messages shown in this section remains always active
to allow comparisons between the various kernel configurations.

During the task’s execution, the kernel accumulates these quantities in additional
task_struct members, introduced specifically for this print. To reduce the chances
of requiring additional cache lines to hold the structure, which in turn would result in
performance degradation, the members in table 4.2 are conditionally excluded from the
compilation.

66

Methodology

PMC-based scheduling Standard CFS
Parameter Cache & branches Cache Cache & branches Cache
Cache miss rate X X X X
Branch miss rate X X
Penalty X X
Voluntary context
switches

X X X X

Non-voluntary context
switches

X X X X

N. of __schedule calls X X X X
N. of normalized cache
miss rates

X X X X

N. of normalized branch
miss rates

X X

N. of normalized combi-
nations

X

N. of normalized penalty X X

Table 4.2: Logged kernel parameters

4.5.2 Userspace Logging

Kernel logs must be collected and stored on disk. Altough in theory logs may be col-
lected by running cat trace_pipe, this approach fails for multiple reasons: first,
sending a signal to kill and stop cat results in the entire data collection being lost.
Moreover, the kernel modifications introduced with this work may not be the only code
calling trace_printk(), therefore the log size may increase because of unrelated mes-
sages. This quickly becomes a major concern for two motives: log files require a lot of
space on disk and log parsing is a computationally expensive activity. However, cat
does not offer filtering capabilities and its combination with grep or awk would be in-
efficient, as the log system must have a minimal footprint on CPU time and memory to
be transparent during the benchmarking.

To fulfill these needs, a small C program has been developed. Whenever a new string
is available for processing, the logger tokenizes it to efficiently determine:

• the process name and kernel pid;

• the core logging the message;

• the kernel function containing the trace_printk() call;

• the actual log message.

67

Methodology

The tokenization process is performed in-place, hence there is no overhead due to
dynamic memory allocation. In fact, the logger never allocates memory during parsing,
but requests all the memory needed for operations before starting the parsing activity
and frees it only when the it ends its execution.

Besides discarding messages not containing the “[PMC_SCHED]” preamble, it is pos-
sible to add custom filters on the process name, pid, the core number or the kernel
function to further limit the file content, a feature especially useful for debugging pur-
poses.

68

Chapter 5

Results

This chapter presents the adopted testing methodology and an analysis of the exper-
imental results. Section 5.1 details the test infrastructure, consisting of two different
compute- and memory- intensive workload to put the scheduler under heavy stress.
Section 5.2 describes how the logs are processed to obtain relevant performance met-
rics to characterize the various scheduler versions. Finally, section 5.3 analyzes and
discusses the result obtained in this work.

The test machine is equipped with an Intel i7-4720HQ CPU paired with 8 GiB of
DDR3 RAM running Ubuntu 20.04 LTS.

5.1 Test Architecture
The scheduler performance is evaluated with a custom benchmark based on real-world
applications. These belongs to two different groups: heavyweight and lightweight pro-
cesses. The former contains multi-process and multi-thread programs performing com-
plex task for a considerable amount of time, capable of putting under heavy stress the
scheduler. The latter, instead, contains short-lived, single-thread and single-process
programs introducing a perturbative action in the scheduler. Table 5.1 shows the list of
heavyweight processes and table 5.2 the list of lightweight processes.

Name Description
Make [12] A utility for compiling C/C++ programs, paired with the LLVM

infrastructure
FFmpeg [1] A video transcoding software
GNU Octave [10] A software for numerical computations

Table 5.1: Heavyweight processes

Make, when paired with the option -jn (with n being the number of available cores),
becomes a multi-process program where each core processes a different compilation

69

Results

unit. This processing is a control-intensive task, because the compiler must verify the
correctness of the code against complex standards and often looks for optimization
opportunities.

FFmpeg is instead a multi-thread application. Video transcoding is a heavy compute
problem, so much that GPUs are often preferred to CPUs [19]. It also requires a high
amount of memory to temporarily store uncompressed frames, hence the proper usage
of caches is mandatory for acceptable performance.

GNU Octave uses a mix of processes and threads to complete its work. Numerical
computations are intrinsically CPU demanding, and depending on the data set size also
caches and memory usages may become a concern.

Name Description
AES-256 [36] An efficient AES-256 algorithm implementation designed for embed-

ded systems
FFT [17] A program implementing the FFT algorithm and its inverse
Susan [17] A lightweight image recognition package for embedded systems

Table 5.2: Lightweight processes

Lightweight processes’ performance is not collected, as their only purpose is to intro-
duce noise. They are computationally similar to (and hence emulate) tasks like mouse
or keyboard interrupts, presentation of notifications, TCP/IP packet processing and so
on.

Heavy processes execute two different workloads per kernel version, called wl1 and
wl2 in the rest of this thesis. Table 5.3 summarizes their details.

wl1 wl2
Make C program compilation C++ program compilation
FFmpeg Transcode from 720p to

480p
Transcode from 1080p to
720p

GNU Octave Matrices operations Neural network training
Average execution time [s] 25 90

Table 5.3: Workload details

The workloads have been designed to analyze the patch’s performance under differ-
ent scenarios:

• wl1 puts the system under stress and every monitored resource, i.e. caches and
branch predictors, are extensively used.

• wl2 is more intensive than wl1 under every aspect. The C++ language complexity
adds stress to the BPU, while transcoding a high resolution video and training a

70

Results

neural network increase CPU and memory usage. Therefore, the number of cache
misses becomes even more relevant to determine the tasks’ total execution time.

5.1.1 Test Script

Figure 5.1 shows the steps implemented in a Python script to automate the kernel bench-
mark.

Script starts

No

Yes30 runs
executed? Script ends

Launch logger

NoYes Heavy
processes

ended?

Sleep for random
time

Launch one random
lightweight process

Wait its termination

Increment runs counter

Stop logger

Launch heavy
processes

Figure 5.1: Test script flow

The script is run first for wl1 and then for wl2. It starts the logger discussed in
section 4.5.2 and the heavy processes in parallel. Then, until every heavy process has

71

Results

not terminated its execution, the script goes to sleep for a variable amount of time
comprised in the range [500ms, 3000ms]. Once it wakes up, the script spawns a ran-
dom lightweight process from table 5.2 and waits for its completion. As soon as the
heavyweight processes conclude their operations the logger is stopped. These steps
are referred to as a run. The script executes 30 runs for each workload before returning
control to the shell to provide statistical consistency.

Not shown in figure 5.1 for compactness, the test script creates a different folder for
every kernel version to store the related logs and ease subsequent analysis, and pro-
duces a file for every run containing the user-space pids of the heavyweight processes,
as it is needed by the log parser detailed in the next section.

5.2 Data Analysis
A set of Python scripts, that works in a hierarchical fashion, has been developed to parse
and analyze the kernel logs collected with the test script. The first script processes
the log file of a single run, taking as inputs the log file itself and the file containing
the heavyweight processes’ pids, called root pids. It builds a different tree for each
heavyweight process and then merges the data of every tree to compute the execution
time and the average miss rates. A second script launches the first script on every
log file related to a particular kernel version and uses their outputs to compute the
average, maximum, minimum and the standard deviation of the execution time, miss
rates, context switches and so on of the heavyweight processes. Finally, a third script
collects the output of the previous script to produce a variety of text files and plots
comparing the results of the kernel patch against the baseline kernel.

The second and the third scripts do not perform complicated operations and are not
interesting enough to be reproduced here, but it is worth to spend some time discussing
how the first one works.

5.2.1 Log Parser
The script works in two distinct phases: in the first one it builds back the tasks’ tree for
each heavyweight process, then, once it reaches the end of the log file, it descends the
tree to collect the data of every thread and produce global metrics.

Figure 5.2 shows the tree organization and the node’s format:

• pid: the kernel pid, used as thread identifier in the tree.

• tgid: the thread group id.

• name: the thread’s name, if any.

• children: the list of nodes, that is tasks, created by this thread.

• start_time: the instant in which the task was created, measured in microseconds.

72

Results

tgid
name
children
start_time
end_time
data

pid

tgid
name
children
start_time
end_time
data

pid

tgid
name
children
start_time
end_time
data

pid

tgid
name
children
start_time
end_time
data

pid

tgid
name
children
start_time
end_time
data

pid

tgid
name
children
start_time
end_time
data

pid

Figure 5.2: Parsing Tree

• end_time: the instant in which the task died, measured in microseconds.

• data: the task’s cache miss rate, branch miss rate, number of context switches, etc.

The log parser reads one log line at the time, and based on the kernel function from
which the message came, takes a different course of action. If the kernel function is
copy_process(), it collects the pid and tgid contained in the message. First, it tries
to match the pid with the root pids. If a correspondence is found, it creates the tree’s
root node setting start_time to the log timestamp. Otherwise, the script descends
every tree until the pid added by trace_printk(), that is the parent’s pid, matches
the pid of a node. If such node is found, it creates a new node as before and adds it to
the children list of the parent.

If a message comes either from do_exit() or do_exit(), the script walks the trees
until it finds the node corresponding to the dying thread to update the end_time to the
log line’s timestamp.

Ultimately, if the message comes from free_task(), the parser searches the node
matching the pid contained in the message and stores in data the kernel output ac-
cording to table 4.2.

When the parser reaches the end of the log file it descends every tree, accumulating
for each node the various statistics. Eventually, the accumulated cachemiss rate, branch

73

Results

miss rate and penalty are divided by the number of calls to __schedule() multiplied
by 1024, that corresponds to 1 in the fixed point format adopted in this work, to compute
the executable’s global average values. In mathematical form:

global average =
accumulated value

nr_schedule · 1024
(5.1)

The total execution time is calculated instead as:

execution time = end_timeroot task − start_timeroot task (5.2)

Because the root task is always the first to start and the last to exit, since it must
wait for any thread or process spawned to end. Once this information are obtained for
every heavyweight process, the script returns the results to the caller script for further
analysis.

5.3 Experimental Results
The results have been collected under two different configuration scenarios. In the
first, presented in section 5.3.1, only cache-related events have been considered. Be-
cause of the limited number of available performance counters, each cache level has
been evaluated in a different experiment. In the second, discussed in section 5.3.2, also
the BPU-related events are monitored. As for the previous case, every cache level is
analyzed independently. However, since the cache and branch PMCs can be combined
with different weights, three different experiments are required for every cache level.
It is important to make a disclaimer on the data quality: memory-related PMCs events
on Intel 4th generation processors are affected by hardware bugs with no workaround.
The errata in questions are HSM26 and HSM 30 [33].

5.3.1 Cache only
Figures 5.3 and 5.4 show for each cache level the speed-up of the kernels using the
penalty/reward algorithms with respect to the original one. Tables 5.4 to 5.6 present
the average cache miss rate, number of voluntary and number of non-voluntary context
switches for every cache level. The “Original” column contains the data belonging to the
original kernel, while “Penalty” and “Reward” show the percentage difference between
the data of the penalty/reward algorithms and the original value. A negative penalty
means that in average the task has been rewarded, a positive value means that it has
been penalized.

For wl1, the plots show a clear pattern: the reward algorithm, which penalizes tasks
with a low score and rewards task with a high score, consistently provide better perfor-
mance. On the contrary, the penalty algorithm either provides no benefits, or reduces

74

Results

the execution speed. The kernel version using the L1 cache PMCs is the one obtain-
ing the most improvements from the reward algorithm, with Octave achieving a 9.35%
speed-up and a general boost of 5.75% with respect to the original kernel.

Compared to Octave and FFmpeg, Make is the process feeling less the benefits of
PMC-based scheduling. The reason lies in the different ways these applications exploit
parallelism: FFmpeg and Octave use mainly long-lived threads to carry on their work,
instead Make (and LLVM) relies on short-lived processes to compile the source code.
These small processes may be even capable of compiling a single file in one scheduling
period, avoiding the influence of the PMCs evaluations.

The speed-up obtained using the L2 and L3 cache misses has a different source com-
pared to the one provided by the L1 PMCs. In the former case, the algorithm is ef-
fectively assigning a combination of penalties and rewards. Octave, the most cache-
intensive process, must be allowed to possess the CPU for more time so that it can
make better use of the cache. FFmpeg and Make, on the other hand, must be penalized
to reduce cache utilization in favor of the processes that need it the most. In the latter
case, instead, every process is heavily penalized. In fact, the L1 cache miss rate is al-
ways lower than 10%, therefore penalty is always higher than 40% and, consequently,
the timeslice is almost halved. This behavior is reflected in the amount of non-voluntary
context switches executed which, with the notable exception of Octave, increases sig-
nificantly. Despite the additional overhead, the applications are clearly benefiting from
a faster scheduling rate.

For wl2, the plots shows a much more complex situation. With the L1 PMCs, the
reward algorithm still provides a speed-up - although more modest - but it performs
worse than the original kernel with the L2 and L3 PMCs. In particular, with the L3
PMCs, it is the penalty algorithm to boost both local and global performances. Results
between wl1 and wl2 are consistent only for the kernel using L1 PMCs and the reward
algorithm, suggesting that tasks benefit from a higher scheduling turnaround, regard-
less of the cache activity.

75

Results

wl1 wl2
Original Penalty

(%)
Reward
(%)

Original Penalty
(%)

Reward
(%)

L1 CMR 9.661% -1.487 -1.559 5.405% -5.703 -0.518
Penalty -40.554 40.368 -44.944 44.482
VCSW 46074 -0.498 0.485 8270 -10.238 3.240
NVCSW 4587 -14.663 13.129 15440 -13.186 19.202

L2 CMR 48.226% -1.632 1.261 43.020% 0.076 -0.630
Penalty -2.660 1.072 -7.053 7.164
VCSW 46230 -1.115 0.614 8373 7.866 -7.265
NVCSW 4663 3.470 -5.059 15687 4.830 -7.586

L3 CMR 45.458% -0.849 4.347 25.936% 1.508 10.593
Penalty -5.007 2.455 -23.733 21.184
VCSW 46136 -0.765 1.101 8395 -5.113 -4.400
NVCSW 4711 -8.051 4.030 16651 -10.653 -6.509

Table 5.4: ffmpeg cache only data. CMR = cache miss rate, VCSW = voluntary context
switches, NVCSW = non-voluntary context switches

wl1 wl2
Original Penalty

(%)
Reward
(%)

Original Penalty
(%)

Reward
(%)

L1 CMR 7.152% 4.547 -5.781 8.311% 3.696 -6.339
Penalty -40.741 41.916 -37.937 39.801
VCSW 1263 -0.048 -2.338 10279 -0.551 0.389
NVCSW 9932 -18.570 29.262 35884 -18.201 42.747

L2 CMR 42.417% 2.768 -1.648 45.908% 0.737 -2.594
Penalty -6.580 8.284 -4.004 5.400
VCSW 1256 -1.681 -0.820 10268 0.048 0.260
NVCSW 9716 -4.958 7.476 36922 -7.342 8.148

L3 CMR 29.974% 3.623 2.732 32.258% 4.806 -0.095
Penalty -18.784 19.010 -15.755 17.432
VCSW 1242 1.152 0.226 10285 -0.503 0.374
NVCSW 10048 -16.952 10.643 37498 -12.302 16.519

Table 5.5: make cache only data. CMR = cache miss rate, VCSW = voluntary context
switches, NVCSW = non-voluntary context switches

76

Results

(a) L1 (b) L2

(c) L3

Figure 5.3: Cache PMCs wl1 results

77

Results

(a) L1 (b) L2

(c) L3

Figure 5.4: Cache PMCs wl2 results

78

Results

wl1 wl2
Original Penalty

(%)
Reward
(%)

Original Penalty
(%)

Reward
(%)

L1 CMR 2.513% -0.197 -2.407 1.774% 13.044 -6.448
Penalty -47.575 47.453 -48.088 48.229
VCSW 259 -28.711 27.255 338 -23.700 5.516
NVCSW 8414178 18.689 -29.114 59185755 10.775 -12.270

L2 CMR 66.558% -9.996 5.415 70.375% -7.448 -2.376
Penalty 9.816 -20.236 15.042 -18.782
VCSW 230 31.231 -4.947 332 -1.674 -11.891
NVCSW 8722713 2.640 -25.447 60671201 0.659 -5.900

L3 CMR 55.657% -3.261 10.956 39.155% -9.828 24.692
Penalty 3.783 -11.796 -14.734 1.128
VCSW 248 -6.913 8.151 343 -8.632 -16.701
NVCSW 8700104 9.451 -18.521 61658092 -0.132 0.943

Table 5.6: octave cache only data. CMR = cache miss rate, VCSW = voluntary context
switches, NVCSW = non-voluntary context switches

79

Results

5.3.2 Cache and Branches

Figures 5.5 and 5.6 show, for each cache level, the speed-up of the kernels using the
penalty/reward algorithms and differentweights parameterswith respect to the original
one. equal-* are the kernels using the same weights for the cache and branch miss
rates, cache-* are the kernels weighting more the cache miss rate and branch-* are the
kernels weighting more the branch miss rate. Tables 5.7 to 5.12 present the average
cache miss rate, average branch miss rate, number of voluntary and non-voluntary
context switches for every cache level and algorithm. The algorithm names are EQ
(equal), CA (cache) and BR (branch), which indicate the kind of weighting applied to
the miss rates. It is important to outline once again that the branch miss rate presented
in the tables and employed in the kernel is scaled by 10. Unlike the previous section,
wl1 and wl2 are presented in two different tables due to page size constraints.

The results confirm what has been already discussed. For wl1, any reward algorithm
is consistently better than the original kernel, while the opposite is true for the penalty
algorithms. By observing the values of the non-voluntary context switches in tables 5.7
to 5.9 it is possible to appreciate how, especially in the L1 runs, the overhead of context
switches is not directly correlated with performance. Due to the low value of the branch
miss rates, PMCs combination c(t) as computed in equation 4.10 almost never assumes a
value higher than 0.5. The consequence is that schedulers using the reward policy will
always penalize a process, whilst kernels using the penalty policy will reward processes.
This is reflected in figs. 5.5b and 5.5c, as the look of the bars mimic the one of figure
5.5a.

Also the data collected with wl2 confirm the experimental results discussed in sec-
tion 5.3.1. For the runs using the L2 and L3 caches’ PMCs it is clear how the penalty
algorithms provide benefits and the schedulers using the reward system slow down the
execution. The reward algorithm is able to provide a boost in performance only when
considering the L1 cache PMCs and weighting more the cache miss rate, although it is
limited when compared to the speed-up obtained by the penalty algorithms on the same
cache level. The scaled branch miss rate plays an important role in differentiating the
results between figs. 5.4a and 5.6a. For FFmpeg and Make it assumes the value of 52.5%
and 38% respectively, raising significantly the penalty. A penalty increase translate in
less context switches opportunities, the key to better performance in this analysis.

Although PMC-based scheduling does not always improve performance and is ex-
tremely workload-dependent, the data collected from the L1 runs in section 5.3.1 pro-
vide an interesting insight: it is possible that the CFS assigns the timeslice in a sub-
optimal manner when put under stress. In both workloads, penalty is always in the
range 40-45%, which halves the timeslice computed by sched_slice(). Even in front
of a considerable increase in context switches, for every workload the tasks are capable
to end their execution earlier. This suggests that in the original version of the kernel
the timeslice calculation assigns too large timeslices, which hurt multitasking perfor-
mance. On the other hand, vruntime does not need any alteration. When the penalty

80

Results

is applied to delta_fair, entities are pushed further in the red-black tree by the same
factor, resulting in the same execution timeline as in the original kernel.

The data in this section supports this theory as well, even if they do so in a more
limited way. Due to the interference of the branch miss rate, FFmpeg and Make penal-
ties are not similar and differ significantly from Octave’s ones, therefore the execution
timeline differs between the modified and original kernels. But, even with a different
execution order, both wl1 and wl2 receive a performance boost, confirming that an ag-
gressive reduction of the timeslice raises the scheduler throughput.

Origi-
nal

EQ
Penalty
(%)

EQ
Reward
(%)

CA
Penalty
(%)

CA
Reward
(%)

BR
Penalty
(%)

BR
Reward
(%)

L1 CMR 6.097% -2.396 -2.377 -0.926 -2.655 -1.654 -2.182
BMR 25.494% -1.220 -0.656 -1.463 0.376 0.312 -0.432
Penalty -34.540 34.274 -39.327 39.094 -29.471 29.426
VCSW 46078 -0.126 0.360 0.091 0.172 0.353 0.370
NVCSW 4652 -16.627 10.297 -16.772 10.805 -17.875 9.478

L2 CMR 48.156% -0.692 0.262 -0.877 -0.464 -1.358 -0.334
BMR 25.345% -1.322 1.887 -1.974 1.530 -0.823 0.139
Penalty -13.706 12.875 -8.147 7.581 -19.428 18.927
VCSW 46241 -0.531 0.030 -0.837 0.382 -0.267 -0.315
NVCSW 4775 -6.707 -4.693 -1.666 -5.218 -10.934 3.101

L3 CMR 45.371% -1.564 4.142 -2.047 1.696 -2.284 -0.350
BMR 25.416% 0.276 0.361 -0.467 0.949 -1.017 -0.701
Penalty -15.038 13.537 -10.486 8.928 -20.197 19.724
VCSW 46112 -0.616 0.426 -1.075 0.582 -0.503 0.220
NVCSW 4781 -14.020 2.149 -8.922 4.409 -11.101 4.993

Table 5.7: ffmpeg wl1 cache branch data. CMR = cache miss rate, BRM = branch miss
rate, VCSW = voluntary context switches, NVCSW = non-voluntary context switches

81

Results

Origi-
nal

EQ
Penalty
(%)

EQ
Reward
(%)

CA
Penalty
(%)

CA
Reward
(%)

BR
Penalty
(%)

BR
Reward
(%)

L1 CMR 4.397% 2.027 -4.174 2.345 -4.497 0.945 -3.214
BMR 35.388% 3.451 -4.070 2.996 -3.452 3.446 -4.414
Penalty -28.264 29.910 -35.960 37.122 -20.642 22.779
VCSW 1252 -1.550 -0.024 -1.071 -1.398 -1.177 -0.051
NVCSW 10139 -17.463 19.493 -21.214 24.428 -14.926 10.254

L2 CMR 42.753% 1.819 -2.788 2.423 -2.916 1.334 -2.900
BMR 35.384% 2.272 -3.717 2.088 -2.443 2.835 -4.568
Penalty -10.001 11.912 -8.204 10.150 -11.611 13.918
VCSW 1253 1.698 1.538 0.037 -1.203 -0.737 0.950
NVCSW 10317 -13.126 5.755 -13.605 4.628 -12.836 7.490

L3 CMR 30.428% -2.290 3.848 -0.637 1.806 0.816 -1.610
BMR 35.348% 2.148 -2.450 1.152 -1.112 2.701 -4.125
Penalty -16.761 16.618 -18.199 17.791 -14.778 16.652
VCSW 1268 -2.229 -2.713 -2.258 -3.415 -0.513 -1.241
NVCSW 10496 -18.338 8.984 -17.672 9.355 -12.414 6.653

Table 5.8: make wl1 cache branch data. CMR = cache miss rate, BRM = branch miss
rate, VCSW = voluntary context switches, NVCSW = non-voluntary context switches

82

Results

(a) L1

(b) L2

Figure 5.5: Cache PMCs wl1 results

83

Results

(c) L3

Figure 5.5: Cache PMCs wl1 results (cont.)

84

Results

(a) L1

(b) L2

Figure 5.6: Cache PMCs wl2 results

85

Results

(a) L3

Figure 5.7: Cache PMCs wl2 results (cont.)

86

Results

Origi-
nal

EQ
Penalty
(%)

EQ
Reward
(%)

CA
Penalty
(%)

CA
Reward
(%)

BR
Penalty
(%)

BR
Reward
(%)

L1 CMR 2.286% -14.733 -6.554 -8.477 -7.435 -11.581 5.205
BMR 15.989% -5.190 -7.107 -3.005 -6.694 -4.523 -4.009
Penalty -41.542 41.429 -44.706 44.653 -38.200 37.846
VCSW 267 -20.477 25.983 -23.911 20.864 -23.311 22.400
NVCSW 7764138 19.661 -25.414 24.995 -27.057 19.097 -18.082

L2 CMR 63.678% -4.193 -0.590 -4.445 0.965 -10.886 2.199
BMR 16.371% -6.777 -8.918 -5.440 -11.282 -7.451 -6.241
Penalty -11.988 10.812 -0.657 -1.897 -24.603 22.187
VCSW 222 13.006 5.056 26.403 8.956 -6.856 27.963
NVCSW 8194734 3.920 -18.385 -2.681 -20.723 2.488 -18.421

L3 CMR 56.518% -9.180 1.612 -7.260 5.564 -6.963 -2.150
BMR 16.320% -5.045 -7.647 -5.872 -6.653 -6.698 -8.649
Penalty -16.696 13.638 -6.983 1.362 -25.554 24.933
VCSW 246 -16.970 19.669 -22.301 22.450 -21.432 17.634
NVCSW 8183025 6.524 -18.105 2.255 -18.590 11.110 -21.592

Table 5.9: octave wl1 cache branch data. CMR = cache miss rate, BRM = branch miss
rate, VCSW = voluntary context switches, NVCSW = non-voluntary context switches

87

Results

Origi-
nal

EQ
Penalty
(%)

EQ
Reward
(%)

CA
Penalty
(%)

CA
Reward
(%)

BR
Penalty
(%)

BR
Reward
(%)

L1 CMR 3.745% -1.281 -1.239 -3.047 -0.961 0.823 -1.493
BMR 52.533% 0.293 -0.494 -0.574 -0.148 0.667 -1.128
Penalty -21.901 21.922 -34.330 34.033 -9.545 10.080
VCSW 8292 -13.050 9.462 -12.135 5.269 -13.760 12.548
NVCSW 15262 -23.162 20.648 -19.272 17.844 -22.613 21.968

L2 CMR 43.502% -0.249 -0.493 0.065 -0.423 -1.145 0.267
BMR 52.456% 0.710 -0.671 -0.288 0.267 0.871 -0.954
Penalty -2.021 2.240 -4.444 4.334 0.265 0.102
VCSW 8368 -5.735 3.565 1.025 -1.911 -10.848 7.894
NVCSW 15794 -8.726 8.236 -2.101 -1.176 -18.366 13.206

L3 CMR 28.682% -8.155 -0.799 -5.886 0.686 -4.086 0.869
BMR 52.551% -0.034 0.132 -0.888 0.747 0.634 -0.632
Penalty -10.669 9.378 -16.865 15.045 -3.616 3.566
VCSW 8352 -9.532 7.190 -6.297 0.828 -12.883 9.411
NVCSW 15309 -15.648 12.054 -11.166 6.357 -21.512 18.137

Table 5.10: ffmpeg wl2 cache branch data. CMR = cache miss rate, BRM = branch miss
rate, VCSW = voluntary context switches, NVCSW = non-voluntary context switches

88

Results

Origi-
nal

EQ
Penalty
(%)

EQ
Reward
(%)

CA
Penalty
(%)

CA
Reward
(%)

BR
Penalty
(%)

BR
Reward
(%)

L1 CMR 5.285% 1.749 -5.617 2.201 -6.208 1.163 -4.279
BMR 38.015% 4.382 -7.538 4.316 -6.985 3.722 -7.113
Penalty -25.152 28.165 -33.032 35.266 -17.519 20.937
VCSW 10285 -0.479 0.232 -0.461 0.337 -0.427 0.174
NVCSW 35749 -16.349 34.949 -17.227 37.683 -13.411 26.476

L2 CMR 45.988% 2.247 -1.360 2.144 -1.632 1.710 -1.642
BMR 37.929% 2.024 -4.419 2.098 -3.474 3.380 -5.750
Penalty -6.899 8.833 -5.159 6.858 -8.342 11.299
VCSW 10270 -0.124 0.328 -0.007 0.223 -0.141 0.240
NVCSW 36855 -2.358 13.298 -6.725 10.492 -10.167 16.358

L3 CMR 33.685% 0.985 -5.685 2.172 -3.888 4.414 -4.827
BMR 38.029% 3.192 -5.939 2.960 -4.747 3.228 -6.504
Penalty -12.702 15.625 -13.916 16.221 -11.045 14.611
VCSW 10287 -0.478 0.207 -0.429 0.215 -0.351 0.114
NVCSW 35933 -12.686 24.083 -12.810 20.680 -11.072 22.808

Table 5.11: make wl2 cache branch data. CMR = cache miss rate, BRM = branch miss
rate, VCSW = voluntary context switches, NVCSW = non-voluntary context switches

89

Results

Origi-
nal

EQ
Penalty
(%)

EQ
Reward
(%)

CA
Penalty
(%)

CA
Reward
(%)

BR
Penalty
(%)

BR
Reward
(%)

L1 CMR 1.788% -16.133 -8.724 -7.008 -13.401 -9.825 3.101
BMR 14.107% -4.766 -8.627 -4.190 -8.554 -5.095 -8.412
Penalty -42.629 42.658 -45.526 45.531 -39.678 39.779
VCSW 320 -1.238 -7.220 -15.668 2.341 -12.609 -4.869
NVCSW 56019507 5.396 -12.937 8.969 -12.792 3.858 -11.359

L2 CMR 69.267% -9.518 -4.638 -6.227 -6.029 -14.547 1.990
BMR 14.033% -4.705 -7.947 -6.322 -7.904 -5.033 -7.949
Penalty -12.095 10.440 1.857 -2.112 -25.356 22.583
VCSW 311 -14.290 5.232 -1.780 8.308 -8.330 18.064
NVCSW 54899482 3.854 -6.531 -0.108 -5.368 1.082 -7.724

L3 CMR 43.226% -14.626 -1.607 -17.374 6.247 -11.153 -1.214
BMR 14.168% -5.783 -8.373 -6.273 -7.337 -5.592 -7.597
Penalty -24.924 22.167 -20.003 12.161 -30.471 29.395
VCSW 336 -14.624 -16.617 -20.920 -9.340 -15.735 -2.042
NVCSW 56423324 -1.245 -8.290 -1.900 -3.955 -0.182 -6.619

Table 5.12: octave wl2 cache branch data. CMR = cache miss rate, BRM = branch miss
rate, VCSW = voluntary context switches, NVCSW = non-voluntary context switches

90

Chapter 6

Conclusions

This thesis introduced a penalty/reward system based on performance counters in the
Linux Completely Fair Scheduler to alter scheduling decisions. To access these hard-
ware facilities, part of this work dealt with the development of a custom PMC library
providing almost no overhead. The scheduler relies on such framework to collect per-
formance counter data during context switches to evaluate threads’ behavior. In par-
ticular, the kernel is instructed to monitor the caches and the branch prediction units.
Once the scheduler is in possess of the data, it processes it to compute a percentage
value called penalty. It is a quantity comprised between -50% and 50%, representing
the thread’s global intensiveness on the monitored resources. A negative value means
that the task shall be rewarded, a positive value that shall be penalized. To operate on
number inRwithout exploiting the FPU, as per kernel rules, a kernel fixed point library
has been developed as well.

Within CFS, penalty is applied to two different parameters: the virtual runtime and
the timeslice. The former determines the tasks execution timeline, while the latter is
the maximum amount of time a task can expend on the CPU before being preempted.
Depending on penalty’s sign and value, these quantities aremodified to change schedul-
ing behavior. By increasing (decreasing) the virtual runtime of a task, its chances to be
scheduled soon are reduced (augmented). At the same time, by increasing (decreasing)
the timeslice assigned to a task, the amount of work executable in a scheduling pe-
riod varies as well. By tuning these variables the resource utilization can be improved,
leading to better performance.

To systematically explore the design space, some kernel configurations invert penalty
before its use, to penalize threads using fewer resources and rewarding tasks putting
them under stress. Furthermore, this work analyzes the case exploiting only caches’
PMCs and the case gathering data from both cache and branch predictors’ PMCs. For
the latter, the raw PMCs metrics are combined with different weights to study the best
configuration.

The kernel has been benchmarked using real-world applications, which are FFmpeg
[1], Make [12] and GNU Octave [10]. These executables are capable of putting under

91

Conclusions

heavy stress the scheduler, the CPU and the memory subsystem thanks to their paral-
lelism, and in this context are referred to as heavyweight processes. Additionally, another
set of programs perform a perturbative action to increase the scheduler’s stress. These
are an embedded implementation of the AES-256 algorithm [36], an FFT algorithm [17]
and a lightweight image recognition library [17]. They are called lightweight processes.
The heavyweight processes execute two different kind of workload, labeledwl1 andwl2,
to analyze the scheduler’s behavior under different working conditions. With respect
to wl1, wl2 is generally more resource-intensive and requires more time to complete.

A Python script launches in parallel a user-space logger, to collect the kernel’s out-
put, and all the heavyweight processes. Until they have not ended their execution,
the script starts after a random amount of time one of the lightweight processes and
wait for the end of its execution. The script repeats these steps 30 times for statistical
consistency, then changes the workload and restarts.

For the cache PMCs-only scenario, results for wl1 show how the kernels using the
reward algorithm, that is the kernels rewarding tasks putting under heavy stress the
caches, provide a consistent speed-up regardless of the cache level the PMCs are tied
to. However, while for the L2 and L3 caches PMCs the reward algorithm is effectively
rewarding cache-intensive tasks, with the L1 is penalizing every thread. wl2 almost
flip the outcome of wl1: in the L1 cache the reward algorithm is still providing better
results, although more modest when compared to the previous workload. However, for
the L2 and the L3 caches, the penalty algorithm proved to be more effective.

For wl1, adding the branch miss rate does not significantly change the results. The
reward algorithm enhances CFS performance using the PMCs of any cache and regard-
less of the miss rates weights. The results confirm also wl2’s previous analysis, which
favors the penalty algorithm for the L2 and L3 caches. With the L1 PMCs, though, both
algorithms speed-up the execution of the processes when compared to the original ker-
nel.

Results are consistent across all measurements only when the L1 PMCs are in use
and the kernel is exploiting the reward algorithm. Although PMC-based scheduling is
heavily workload-dependent, it indirectly suggests that CFS may assign the timeslice
in a suboptimal manner when put under stress. With the reward system using the L1
PMCs, the timeslice assigned by the kernel is almost half the original one, and even in
front of a significant increase of context switches and their overhead, the tasks’ execu-
tion times improve significantly. On the other hand, due to the similar penalty value,
especially in the cache PMCs only scenario, the execution timeline is the same as the
original kernel and hence the virtual runtime does not affect the result.

Future works may study if the timeslice calculation may effectively be improved
for the CFS. Moreover, the PMCs knowledge could be exploited in the load balancing
algorithm to improve caches utilization. Furthermore, it would be interesting to study
if the power efficiency could be improved by monitoring the tasks’ power consumption.

Another line of work could explore if this work performs better in other scheduling
algorithms or in other systems like server or embedded platforms, using an alternative

92

Conclusions

architecture to x86-64.

93

Bibliography

[1] Fabrice Bellard, Bobby Bingham, and FFmpeg Team. FFmpeg. 2000-2021. url:
https://ffmpeg.org/ (visited on 10/29/2021).

[2] Irene Finocchi Camil Demetrescu and Giuseppe F. Italiano. Algoritmi e strutture
dati. Italian. Ed. by Paolo Roncoroni. 2nd. McGraw-Hill, 2008.

[3] Po-Yung Chang et al. “Branch Classification: A New Mechanism for Improving
Branch Predictor Performance.” In: Proceedings of the 27th Annual International
Symposium on Microarchitecture. MICRO 27. San Jose, California, USA: Associa-
tion for ComputingMachinery, 1994, pp. 22–31. isbn: 0897917073. doi: 10.1145/
192724.192727. url: https://doi.org/10.1145/192724.192727.

[4] clone(2) Linux User’s Manual. Mar. 2021.

[5] TIS Committee. Tool Interface Standard (TIS). Executable and Linking Format (ELF).
Version 1.2. May 1995.

[6] Control Groups. The Linux kernel community. url: https://www.kernel.org/
doc/html/latest/admin-guide/cgroup-v1/cgroups.html (visited on
09/18/2021).

[7] corbet. How fast should HZ be? url: https://lwn.net/Articles/145973/
(visited on 10/14/2021).

[8] Marco Cesati Daniel P. Bovet. Understanding the Linux Kernel. 3rd ed. O’Really,
Nov. 2005.

[9] Debugging the kernel using Ftrace - part 1. url: https://lwn.net/Articles/
365835/ (visited on 10/26/2021).

[10] John W. Eaton, James B. Rawlings, John G. Ekerdt, et al. GNU Octave. 1998-2021.
url: https://www.gnu.org/software/octave/ (visited on 10/29/2021).

[11] Wei-Cong Fan et al. “Comparison of Interactivity Performance of Linux CFS and
Windows 10 CPU Schedulers.” In: 2020 International Conference on Green and Hu-
man Information Technology (ICGHIT). 2020, pp. 31–34. doi: 10.1109/ICGHIT49656.
2020.00014.

[12] Stuard Feldman et al.Make. 1976-2021. url: https://www.gnu.org/software/
make/ (visited on 10/29/2021).

94

https://ffmpeg.org/
https://doi.org/10.1145/192724.192727
https://doi.org/10.1145/192724.192727
https://doi.org/10.1145/192724.192727
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v1/cgroups.html
https://lwn.net/Articles/145973/
https://lwn.net/Articles/365835/
https://lwn.net/Articles/365835/
https://www.gnu.org/software/octave/
https://doi.org/10.1109/ICGHIT49656.2020.00014
https://doi.org/10.1109/ICGHIT49656.2020.00014
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/

BIBLIOGRAPHY

[13] Bryan Ford and Sai Susarla. “CPU Inheritance Scheduling.” In: SIGOPS Oper. Syst.
Rev. 30.SI (Oct. 1996), pp. 91–105. issn: 0163-5980. doi: 10.1145/248155.238765.
url: https://doi.org/10.1145/248155.238765.

[14] ftrace - Function tracer. url: https://www.kernel.org/doc/html/latest/
trace/ftrace.html (visited on 10/26/2021).

[15] getpid(2) Linux User’s Manual. Mar. 2021.

[16] Thomas Gleixner and Douglas Niehaus. “Hrtimers and Beyond: Transforming the
Linux Time Subsystems.” In: Proceedings of the Ottawa Linux Symposium. 2006.

[17] M.R. Guthaus et al. “MiBench: A free, commercially representative embedded
benchmark suite.” In: Proceedings of the Fourth Annual IEEE International Work-
shop onWorkload Characterization.WWC-4 (Cat. No.01EX538). 2001, pp. 3–14. doi:
10.1109/WWC.2001.990739.

[18] HOWTO do Linux kernel development. (Visited on 10/28/2021).

[19] Wei-Lien Hsu. “Video transcoding using GPU accelerated decoder.” In: Parallel
Processing for Imaging Applications. Ed. by John D. Owens et al. Vol. 7872. Inter-
national Society for Optics and Photonics. SPIE, 2011, pp. 147–155. doi: 10.1117/
12.876569. url: https://doi.org/10.1117/12.876569.

[20] D. Hunt. “Advanced performance features of the 64-bit PA-8000.” In: Digest of Pa-
pers. COMPCON’95. Technologies for the Information Superhighway. 1995, pp. 123–
128. doi: 10.1109/CMPCON.1995.512374.

[21] Intel Performance Monitorin Units Reference. Intel Corporation. url: https://
perfmon-events.intel.com/ (visited on 09/09/2021).

[22] Intel® 64 and IA-32 Architectures Software Developer Manual. Volume 4. Intel Cor-
poration. 2020.

[23] Intel® 64 and IA-32 Architectures Software Developer Manual. Volume 3 (3A, 3B, 3C
& 3D). Intel Corporation. 2020.

[24] Ciji Isen, Lizy K. John, and Eugene John. “A Tale of Two Processors: Revisiting
the RISC-CISC Debate.” In: Computer Performance Evaluation and Benchmarking.
Ed. by David Kaeli and Kai Sachs. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 57–76. isbn: 978-3-540-93799-9.

[25] D. A. Jimenez and C. Lin. “Dynamic branch prediction with perceptrons.” In: Pro-
ceedings HPCA Seventh International Symposium on High-Performance Computer
Architecture. 2001, pp. 197–206. doi: 10.1109/HPCA.2001.903263.

[26] Kernel Stacks. The Linux kernel community. url: https://www.kernel.org/
doc/html/latest/x86/kernel-stacks.html (visited on 09/17/2021).

95

https://doi.org/10.1145/248155.238765
https://doi.org/10.1145/248155.238765
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://www.kernel.org/doc/html/latest/trace/ftrace.html
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1117/12.876569
https://doi.org/10.1117/12.876569
https://doi.org/10.1117/12.876569
https://doi.org/10.1109/CMPCON.1995.512374
https://perfmon-events.intel.com/
https://perfmon-events.intel.com/
https://doi.org/10.1109/HPCA.2001.903263
https://www.kernel.org/doc/html/latest/x86/kernel-stacks.html
https://www.kernel.org/doc/html/latest/x86/kernel-stacks.html

BIBLIOGRAPHY

[27] Joonwon Lee and Umakishore Ramachandran. “Synchronization with Multipro-
cessor Caches.” In: SIGARCH Comput. Archit. News 18.2SI (May 1990), pp. 27–37.
issn: 0163-5964. doi: 10.1145/325096.325107. url: https://doi.org/10.
1145/325096.325107.

[28] Juri Lelli et al. “An experimental comparison of different real-time schedulers on
multicore systems.” In: Journal of Systems and Software 85.10 (2012). Automated
Software Evolution, pp. 2405–2416. issn: 0164-1212. doi: https://doi.org/
10.1016/j.jss.2012.05.048. url: https://www.sciencedirect.com/
science/article/pii/S016412121200146X.

[29] Linux CFS. The Linux kernel community. url: https://www.kernel.org/doc/
html/latest/scheduler/sched-design-CFS.html (visited on 10/03/2021).

[30] Robert Love. Linux Kernel Development. 3rd ed. Pearson Education, 2010.

[31] Marshall Kirk Mckusick and Michael J. Karels. “A New Virtual Memory Imple-
mentation for Berkeley UNIX.” In: EUUG Conference Proceedings (Autumn. 1986,
pp. 451–458.

[32] Message logging with printk. url: https://www.kernel.org/doc/html/
latest/core-api/printk-basics.html (visited on 10/26/2021).

[33] Mobile 4th Generation Intel® Core™ Processor Family, Mobile Intel® Pentium® Pro-
cessor Family, and Mobile Intel® Celeron® Processor Family. Specification Update.
Version 038US. Intel Corporation. Apr. 2020.

[34] Ingo Molnar. [patch] Modular Scheduler Core and Completely Fair Scheduler [CFS].
url: https://lwn.net/Articles/230501/ (visited on 10/04/2021).

[35] perf: Linux profiling with performance counters. url: https : / / perf . wiki .
kernel.org/index.php/Main_Page (visited on 11/08/2021).

[36] Blu5 View Pte et al. SEcube SDK. 2016-2021. url: https : / / github . com /
SEcube-Project/SEcube-SDK (visited on 10/29/2021).

[37] E. Rotenberg, S. Bennett, and J.E. Smith. “Trace cache: a low latency approach to
high bandwidth instruction fetching.” In: Proceedings of the 29th Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO 29. 1996, pp. 24–34. doi:
10.1109/MICRO.1996.566447.

[38] J. C. Saez et al. “PMCTrack: Delivering Performance Monitoring Counter Support
to the OS Scheduler.” In: The Computer Journal 60.1 (Jan. 2017), pp. 60–85. issn:
0010-4620. doi: 10.1093/comjnl/bxw065. eprint: https://academic.oup.
com/comjnl/article-pdf/60/1/60/10329287/bxw065.pdf. url: https:
//doi.org/10.1093/comjnl/bxw065.

[39] Sandy Bridge (client). Wikichip. url: https : / / en . wikichip . org / wiki /
intel/microarchitectures/sandy_bridge_(client) (visited on 11/05/2021).

96

https://doi.org/10.1145/325096.325107
https://doi.org/10.1145/325096.325107
https://doi.org/10.1145/325096.325107
https://doi.org/https://doi.org/10.1016/j.jss.2012.05.048
https://doi.org/https://doi.org/10.1016/j.jss.2012.05.048
https://www.sciencedirect.com/science/article/pii/S016412121200146X
https://www.sciencedirect.com/science/article/pii/S016412121200146X
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/core-api/printk-basics.html
https://www.kernel.org/doc/html/latest/core-api/printk-basics.html
https://lwn.net/Articles/230501/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/SEcube-Project/SEcube-SDK
https://github.com/SEcube-Project/SEcube-SDK
https://doi.org/10.1109/MICRO.1996.566447
https://doi.org/10.1093/comjnl/bxw065
https://academic.oup.com/comjnl/article-pdf/60/1/60/10329287/bxw065.pdf
https://academic.oup.com/comjnl/article-pdf/60/1/60/10329287/bxw065.pdf
https://doi.org/10.1093/comjnl/bxw065
https://doi.org/10.1093/comjnl/bxw065
https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client)

BIBLIOGRAPHY

[40] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne.Operating System Con-
cepts. 10th ed. John Wiley & Sons, Inc., 2018.

[41] Dan Terpstra et al. “Collecting Performance Data with PAPI-C.” In: Tools for High
Performance Computing 2009. Ed. by Matthias S. Müller et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 157–173. isbn: 978-3-642-11261-4.

[42] Paul Turner, Bharata B Rao, and Nikhil Rao. “CPU bandwidth control for CFS.”
In: Proceedings of the Linux Symposium. 2010, pp. 245–254. url: http://www.
linuxsymposium.org/LS_2010_Proceedings_Draft.pdf.

[43] Srivatsa Vaddagiri. Add group awareness to CFS. url: https : / / lwn . net /
Articles/239619/ (visited on 10/05/2021).

[44] Vincent M. Weaver. “Self-monitoring overhead of the Linux perf_event perfor-
mance counter interface.” In: 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 2015, pp. 102–111. doi: 10 . 1109 /
ISPASS.2015.7095789.

[45] A. W. Wilson. “Hierarchical Cache/Bus Architecture for Shared Memory Multi-
processors.” In: Proceedings of the 14th Annual International Symposium on Com-
puter Architecture. ISCA ’87. Pittsburgh, Pennsylvania, USA: Association for Com-
puting Machinery, 1987, pp. 244–252. isbn: 0818607769. doi: 10.1145/30350.
30378. url: https://doi.org/10.1145/30350.30378.

[46] C.S. Wong et al. “Fairness and interactive performance of O(1) and CFS Linux
kernel schedulers.” In: 2008 International Symposium on Information Technology.
Vol. 4. 2008, pp. 1–8. doi: 10.1109/ITSIM.2008.4631872.

[47] Tse-Yu Yeh and Yale N. Patt. “Two-Level Adaptive Training Branch Prediction.”
In: Proceedings of the 24th Annual International Symposium on Microarchitecture.
MICRO 24. Albuquerque, New Mexico, Puerto Rico: Association for Computing
Machinery, 1991, pp. 51–61. isbn: 0897914600. doi: 10.1145/123465.123475.
url: https://doi.org/10.1145/123465.123475.

[48] Yong Zhao et al. “Preemptive Multi-Queue Fair Queuing.” In: Proceedings of the
28th International Symposium on High-Performance Parallel and Distributed Com-
puting. HPDC ’19. Phoenix, AZ, USA: Association for Computing Machinery,
2019, pp. 147–158. isbn: 9781450366700. doi: 10.1145/3307681.3326605. url:
https://doi.org/10.1145/3307681.3326605.

[49] Peter Zijlstra. sched: high-res preemption tick. url: https://lwn.net/Articles/
230501/ (visited on 10/14/2021).

97

http://www.linuxsymposium.org/LS_2010_Proceedings_Draft.pdf
http://www.linuxsymposium.org/LS_2010_Proceedings_Draft.pdf
https://lwn.net/Articles/239619/
https://lwn.net/Articles/239619/
https://doi.org/10.1109/ISPASS.2015.7095789
https://doi.org/10.1109/ISPASS.2015.7095789
https://doi.org/10.1145/30350.30378
https://doi.org/10.1145/30350.30378
https://doi.org/10.1145/30350.30378
https://doi.org/10.1109/ITSIM.2008.4631872
https://doi.org/10.1145/123465.123475
https://doi.org/10.1145/123465.123475
https://doi.org/10.1145/3307681.3326605
https://doi.org/10.1145/3307681.3326605
https://lwn.net/Articles/230501/
https://lwn.net/Articles/230501/

	List of Tables
	List of Figures
	Listings
	Introduction
	Performance Monitoring Counters
	PMCs introduction
	Intel architecture
	Model-Specific Registers
	Architectural Performance Counters
	Haswell Performance Events

	Linux Thread Scheduling
	Basic Concepts
	Programs, Processes and Threads
	Task Structure

	The Scheduler
	Scheduling Theory
	Scheduling Classes
	Runqueues
	Timers
	The schedule function

	Completely Fair Scheduler Implementation
	The Completely Fair Model
	Scheduler Entities
	CFS runqueue
	Entity Update
	CFS Timeslice
	Scheduler Tick
	Entity Enqueue
	Entity Dequeue
	Pick the Next Entity

	Methodology
	Resource Identification
	PMCs selection

	PMCs library
	Configuration
	Read Access

	Fixed Point Format
	Fixed Point Arithmetics
	Kernel Library

	Scheduler Integration
	Mathematical Model
	Model Implementation

	Data Collection
	Kernel Logging
	Userspace Logging

	Results
	Test Architecture
	Test Script

	Data Analysis
	Log Parser

	Experimental Results
	Cache only
	Cache and Branches

	Conclusions
	Bibliography

