
POLITECNICO DI TORINO

Master of Science in Computer Engineering

Master Degree Thesis

3D Indoor Environment Reconstruction for AR/VR

Applications using a Smartphone Device

Supervisors

Prof. Andrea SANNA

Prof. Federico MANURI

Candidate

Alessandro Sergio MANNI

December 2021

Summary

Recent advancements in AR/VR technologies have created new ways of
remote communication and collaboration. Computer-mediated shared
virtual spaces are already used in many AR/VR applications: games,
virtual meetings, navigation, interior design, training. Indoor environ-
ments, in particular, are well-suited for virtual representation: these
are the places where people spend most of their time and where the
majority of activities take place. Manually creating a computerized
three-dimensional representation of these spaces is time-consuming and
requires modeling skills that the average user doesn’t have. Therefore,
automatically reconstructing a digital version of real-world indoor envi-
ronments could improve Extended Reality (XR) experiences. Following
the success of Deep Learning, new approaches have been introduced:
single view scene reconstruction relies on a single RGB photo of a scene
to reconstruct the environment. The result depends on the complexity
of the scene, as capturing all objects from a single RGB image would
almost certainly result in heavily occluded objects with unpredictable
shapes and pose. Moreover, this method does not solve the global scale
depth ambiguity that arises when depth is inferred from a 2D image.

When evaluating the most efficient way to reconstruct a scene using a
common smartphone, a full scan of the environment should be avoided,
as this takes time and requires depth sensors that are only present on
a few recent high-end devices. Furthermore, the virtual representation
should be based on 3D CAD models as directly predicting meshes
from images results in shapes that suffer from over-smoothing and
tessellation issues. The requirements for a system performing such

ii

automatic 3D reconstruction should include a straightforward process
of data collection, as it should be performed by an average user, and
the use of the most widely available device: a smartphone equipped
with a single RGB camera.

This thesis presents a novel semi-automatic system that allows users
to reconstruct the synthetic version of a real indoor scene using a
smartphone. An Android ARCore-based app was developed in order to
take photos of objects for which a 3D representation is to be included
in the 3D scene reconstruction. The images, along with the depth
information, are sent to a server for processing. This set of files is
called snapshot. The output is the reconstructed scene, where for each
physical object, the most similar 3D model is retrieved from a 3D model
database, and its 7-DoF pose is estimated by the system: position,
scale, and vertical rotation. When the user launches the Android app,
the system starts to track the device’s position and orientation; it
predicts depth maps in real-time and detects horizontal planes in the
scene. During the first stage of the reconstruction, when the user sees
an object they want to include in the 3D environment reconstruction,
they should target the object using the red pointer at the center of the
screen and then tap the “Snap” button. When all the desired objects
have been acquired, the user clicks the "Finish" button, instructing
the app to send all the generated files to the server. All of the other
stages are carried out automatically by the system. In the second stage,
a Convolutional Neural Network (CNN) is used for classification and
segmentation. Then the system: 1) generates a photo with only the
object targeted by the user, 2) extracts the point cloud of the object
from the raw point cloud of the scene. Then it proceeds by using a
category-based approach: for small objects (e.g., mice, remote controls,
bowls), computing a 3D oriented bounding box of such segmented
point cloud is sufficient to estimate position and scale. On the other
hand, large-size objects need further processing since they present some

iii

difficulties: occlusion by smaller objects and outliers. In stage 3, a
CNN is used to extract the features from the photo of the segmented
object, these are compared with pre-computed features of 3D models to
find the most similar 3D CAD model. In the last stage another CNN
is used to estimate the vertical rotation of the object.

A Unity desktop application was developed to populate the virtual
scene with instances of 3D models based on their estimated poses. This
application can be used in online multiplayer mode together with the
ARCore-based app and with another app developed for the VR headset
Oculus Quest 2 to visualize the reconstructed scene.

A new dataset is introduced to test the system’s accuracy. The
dataset contains 500 snapshots taken from different viewing angles and
distances of various objects organized into 13 semantic categories. The
proposed solution achieves a maximum error of 18 percent for scale
factor, less than 9 centimeters for the position, and less than 18 degrees
for rotation.

This thesis presents a system capable of reconstructing an indoor
environment using a smartphone with a single RGB camera. The results
show that the proposed system can be used for XR applications, thus
bridging the gap between real and virtual worlds. Future work could
include a larger model dataset, which, when combined with non-trivial
mesh deformation, may allow a more precise shape retrieval.

iv

Acknowledgements

First and foremost, I would like to express my gratitude to Professor
Andrea Sanna for his continuous support and guidance. His method of

conducting research and his invaluable supervision has constantly
pushed me to do better. Thank you to my second supervisor, Professor
Federico Manuri, who was so supportive that he personally delivered
to my home the device I needed when the university was closed. I am

also indebted to Dr. Damiano Oriti and Dr. Francesco De Pace for
their precious expertise that greatly helped the publication of the

article that derives from this dissertation. I would like to thank Luigi
for his friendship and the precious time we spent together working on
projects for university courses. I would like to express my gratitude to
my high-school and university colleagues Jacopo, Luca R. and Luca T.,
for all the years we spent together. My heartfelt gratitude goes to my

family. Words cannot express how grateful I am to my mother and
father, for all of your sacrifices made on my behalf, you made sure I

had everything I needed even if that meant depriving you of something.
To my brother for always believing in me and in my potential. To my
aunt Carla who, despite the distance, always has a thought for me. To

Giannina who is always present for me.
To Antonio, Cinzia, Maria Rita, Edoardo for their strength and for

v

having always had a word of encouragement for me. A special thanks
to my friend Gianluca, who is always supported me and shown me how

to face the difficulties of life. I would like to thank also my friends
Francesco, Luca, Matteo, Marco, Mirko, Riccardo, Stefano for being

present and helpful during these years.

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Background and Motivation 1
1.2 Problem definition . 2
1.3 Contribution . 5
1.4 Thesis outline . 7

2 Extended Reality Technologies 9
2.1 Virtual Reality . 9
2.2 Augmented Reality . 10
2.3 Mixed Reality . 11

3 Literature Review 12
3.1 Scanning solutions . 13
3.2 3D Deep Learning . 15

3.2.1 3D Data . 15
3.2.2 3D Reconstruction 16

3.3 Single-View Scene Reconstruction 17
3.3.1 Object-wise Mesh Prediction 17
3.3.2 3D CAD Model Retrieval 18

3.4 Multi-View Scene Reconstruction 19
3.4.1 Object-wise Mesh Prediction 20
3.4.2 3D CAD Model Retrieval 20

viii

3.5 Reconstruction from RGB-D scan 21
3.6 Datasets . 22
3.7 Image-Based 3D Shape Retrieval 23

4 The Proposed Solution 26
4.1 Specifications . 26
4.2 System Overview . 27

4.2.1 Google ARCore 28
4.2.2 HR-Net-W48 and Mseg 29
4.2.3 Open3D . 30
4.2.4 VGG-19 . 31
4.2.5 PoseFromShape 32

4.3 Snapshots Acquisition 32
4.4 Object Classification and Estimation of Object Position

and Scale . 36
4.5 3D Model Retrieval . 41
4.6 Object Pose Estimation 45
4.7 Scene Reconstruction and AR Visualization 46

5 Experimental Evaluation
52

5.1 Markers . 52
5.1.1 Camera Calibration 53

5.2 Scaling Error . 53
5.3 Position Error . 54
5.4 Vertical Rotation Error 54

6 Discussion 57
6.1 Conclusion . 58
6.2 Future works . 59

Bibliography 60

ix

List of Tables

3.1 Summary of advantages and disadvantages of 3D recon-
struction methods. 25

5.1 The main outcomes. The average of the root mean
squared errors of position, scaling, vertical rotation and
the average size error in 3D. Objects marked with * may
have 180° rotation error. PS and R stand for the number
of position-scaling and rotation snapshots, respectively. 56

x

List of Figures

1.1 Microsoft Mesh . 2
1.2 Inferring 3D objects from a photo. Prof. Lawrence

Roberts’s Ph.D. thesis, 1963. 3
1.3 The proposed system. A single RGB image of each object

is captured using an Android smartphone and augmented
with depth information provided by Google ARCore.
Then, a server uses these data to classify the object in
the image and retrieve the most similar synthetic 3D
object from a database; the model’s position, vertical
orientation, and scale factor are estimated and applied.
Finally, an AR and a desktop/VR application can be
used to visualize the reconstructed scene. 6

2.1 Reality–virtuality continuum. 9

3.1 A living room scanned using Polycam and an iPhone
with a LiDAR sensor [10]. 13

3.2 An example of prediction using Mesh R-CNN. 17
3.3 Mask2CAD prediction on two ScanNet images [25]. . . 19
3.4 FroDO prediction on a sequence of images from ScanNet

and ground truth scan [29]. 20
3.5 From left to right: ScanNet scan, SceneCAD [32] predic-

tion, ground truth. 21
3.6 Some 3D models from ShapeNetCore dataset. The mod-

els are in a canonical pose. 22

xi

4.1 The proposed system takes as input a database of 3D
models and a single RGB image for each object that
the user wishes to reconstruct. The output is the recon-
structed scene where each 3D model has a 7-DoF pose
estimated by the system: position, scale and vertical
rotation. The scene can also be visualized in AR using
the smartphone, so that the user can verify that each
object matches its physical counterpart 27

4.2 Overview of the proposed system. 28

4.3 An indoor scene segmented using HRNet-W48 pre-trained
with the Mseg-3m-1080p model. 30

4.4 Architecture of the neural network VGG-19. Credit:
Eitan Kosman . 31

4.5 The smartphone app developed for data acquisition. . . 33

4.6 Object classification and segmentation. (a) Raw Point
Cloud. (b) Photo. (c) HR-Net-W48 Segmentation Neu-
ral Network. (d) Segmentation Mask. (e) Binary Mask.
(f) Segmented Point Cloud. 37

4.7 The depth maps and point clouds. (a-b) The depth
map acquired using a generic ToF sensor and the corre-
sponding point cloud. (c-d) The same ToF depth map
processed with ARCore and the resulting point cloud,
respectively. The ARCore smoothing process creates
flying points on the object contour. 39

4.8 Depth maps (normalized in gray scale) and relative edge
masks generated using a Canny edge detection operator. 41

xii

4.9 Flying points removal using Canny edge detection algo-
rithm and object position and scale estimation. The (a)
input depth map estimated by ARCore is transformed
to a point cloud (b). Outliers highlighted in red (c) are
detected and removed by the Statistical Outlier Removal
(SOR) algorithm; in (d) it is shown how the bounding
box is not correct because some outliers were ignored by
the SOR algorithm. By using the Canny edge detection
algorithm on the (e) normalized depth map, whose result
is shown in (f), the outliers generated by the ARCore
smoothing process are removed in the corresponding
point cloud (g). (h) shows the remaining outliers elimi-
nated with the SOR and the bounding box is correctly
estimated (i). 42

4.10 Example of cabinet position and scale estimation. (a)
Photo of the cabinet; (b) Point cloud (no horizontal
planes can be detected); (c) 3D oriented bounding box
of the highest vertices 43

4.11 3D Model Retrieval. (a) Photo. (b) Binary Mask. (c)
Segmented Photo. (d) VGG-19 Feature Extraction Net-
work. (e) Similarity Finder between (d) and (f) pre-
computed features, the output is the id of a 3D model
in the (g) 3D Model DB. (h) Model Retrieved. 43

4.12 The query segmented images and the top-3 models re-
trieved. The first column contains segmented photos of
real objects that were used as queries, while the second
to fourth columns contain the most similar retrieved
models (best from left to right). 44

xiii

4.13 Object Pose Estimation. (a) Segmented Photo. (b)
3D model renderings of the retrieved model. (c) Pose-
FromShape Pose Estimation Network. (d) Estimated
Rotation. (e) 3D model rendered in the predicted vertical
rotation. 45

4.14 The AR view. Two chairs visualized by the AR app: the
occlusions are taken into account. 47

4.15 Multi-user (AR/desktop) visualization of a reconstructed
scene. Desktop player is depicted as a red capsule in (b). 49

4.16 Multi-user (AR/VR/desktop) visualization of a recon-
structed scene. VR user is the yellow avatar in (b),
desktop player is the red capsule in (c), AR player is the
gray smartphone in (c). 50

4.17 VR user is touching the reconstructed chair in VR while
the AR user see the VR avatar touching the real one in
AR. 51

5.1 (a) Captured photo showing an object with the marker
used to determine the ground truth pose; (b) the esti-
mated pose of the same object obtained with the pro-
posed system. 55

xiv

Chapter 1

Introduction

1.1 Background and Motivation

In 1992, American author Neal Stephenson published Snow Crash, a sci-
ence fiction novel in which he introduced the concept of the metaverse,
where the prefix "meta" means "beyond" and "verse" means "universe".
In Stephenson’s concept of the metaverse, people use avatars to in-
teract with each other in an immersive three-dimensional graphical
environment, essentially living an alternative life. This virtual world
is the result of the collaborative creation of its users, who can design
and build complex social structures, including businesses, clubs, and
cities. Although this concept of the metaverse appears dystopian and
far from reality, recent advances in hardware, computer graphics, and
artificial intelligence have opened up new possibilities for remote com-
munication and collaboration with a sense of presence via customized
avatars and immersive spaces. For example, Microsoft Mesh enables
shared mixed reality experiences with the HoloLens headset, Facebook
Horizon Workrooms is used for remote VR collaboration, Rec Room is
a social VR application used by millions of users to play multiplayer
games using VR headsets. The use of shared virtual spaces is rapidly
increasing, and indoor environments, in particular, are well-suited for
virtual representation: these are the places where people spend the
majority of their time and where the majority of activities take place.
Indoor scenes can be found in games as well as in Virtual Reality

1

Introduction

(VR) and Augmented Reality (AR) applications such as interior design,
navigation, and virtual meetings. Manually creating a computerized
three-dimensional representation of these spaces requires modeling skills
that the average user lacks, and the process is usually time-consuming.
Therefore, automatically reconstructing a digital version of real-world
indoor environments could improve Extended Reality (XR) experiences.
The requirements for a system performing such automatic 3D recon-
struction should include a straightforward process of data collection,
as it should be performed by an average user, and the use of the most
widely available device: a smartphone equipped with a single RGB
camera.

Figure 1.1: Microsoft Mesh

1.2 Problem definition

3D indoor environment reconstruction is a fundamental problem in
computer graphics and computer vision. Traditional methods, such as
photogrammetry, could be used to create the digital equivalent of a
scene. There are several software applications that accomplish this task,
but they require the user to take numerous photographs of the object

2

Introduction

from various angles, basically forcing them to circle it. It is a slow
process that is not suitable for large objects or for objects that cannot
be circled. Additionally, this technique alone does not provide a method
for determining the position of each object in space in order to recreate
the entire scene. Scanning solutions that employ light detection and
ranging (LIDAR) scanners or time-of-flight (ToF) camera tend to suffer
from missing geometry, noise and mismatches. When evaluating how
to quickly reconstruct a scene using a common smartphone, a full scan
of the environment should be avoided, as this takes time and requires
depth sensors that are only present on a few recent high-end devices.

One of the first researchers to address the problem of 3D perception
from 2D images was Prof. Lawrence Roberts in his Ph.D. thesis in
1963. In his thesis, Prof. Lawrence presented a method that was able to
construct the 3D representation of known objects from a photograph by
recognising which object was in the scene and by inferring its position.
The problem that affects Prof. Lawrence’s work and today’s solutions
is that it is not possible to know a priori the exact objects that might
be present in a given photograph of a scene. The variety of objects
with different shapes in an indoor environment is extremely large, and
occlusions and lighting are also a major problem. In recent years deep

(a) Original Picture. (b) Differentiated
Picture.

(c) Rotate view.

Figure 1.2: Inferring 3D objects from a photo. Prof. Lawrence
Roberts’s Ph.D. thesis, 1963.

3

Introduction

learning (DL) methods have had great results in computer vision tasks
such as image classification [1], object detection [2] and segmentation,
[3] so researchers have been applied these techniques to 3D tasks [4, 5].
They can reconstruct a scene from a single RGB image by estimating
room layout, object location, pose, and shape, they can add missing
parts of a partial scan or retrieve and align 3D CAD models of objects
to the scan to solve low resolution problem. DL add semantics. This
means that it is possible for a machine to interpret and understand the
physical world in a way that is closer to that of humans: for example,
a reconstructed 3D environment with semantics allows a VR user to
interact with the reconstructed objects as the user would in the real
world. On the other hand, an AR user may wish to share the physical
environment with a remote VR user in order to move and interact
in the same space. In this case, scene understanding is necessary to
provide both users with spatial and semantic information about the
objects, resulting in a better experience.

When considering a fast scene reconstruction for AR/VR applications
using a widely available smartphone, a full scan of the environment
should be avoided because it takes time and requires depth sensors
that are present on just few recent high-end devices. The position and
scale of the objects are critical, so DL methods using a single RGB
image for scene reconstruction are insufficient because they do not
address the global scale ambiguity that occurs when inferring depth
from a 2D image. It is, in fact, an ill-posed problem and an open
challenge. Furthermore, reconstructing the whole scene from a single
RGB image would almost certainly result in heavily occluded objects
with unpredictable shapes and poses. Based on these considerations,
this thesis presents a novel semi-automatic system that allows users to
reconstruct the digital version of a real indoor scene using a smartphone.

4

Introduction

1.3 Contribution

This paper presents a novel semi-automatic system that allows users
to reconstruct the synthetic version of a real indoor scene using a
smartphone. An Android ARCore-based has been developed, and
it is used to take pictures of objects for which a 3D representation
will be retrieved from a database. The images are then sent to a
server for processing, along with depth information. The system is
semi-automatic, as the user still must perform some manual tasks: 1)
capturing a single image for each object and 2) specifying a point that
belongs to the framed object. All of the other steps in the process
are carried out automatically by the server. The first step is object
classification and segmentation, which assigns a semantic label to each
pixel and enables the system to differentiate between objects in the
frame. After generating the photo with only the segmented object,
the system finds the most similar 3D CAD model available in a model
database. Lastly, the object pose and scale factor are estimated, and
the object rotation and position in the smartphone’s world reference
system are computed. The object is scaled based on the computed scale
factor, with no other mesh deformation. A desktop Unity3D application
has been developed in order to populate the virtual scene with instances
of 3D models based on their estimated poses. This application can be
used in online multiplayer mode along with the ARCore-based app and
with another version developed for the VR headset Oculus Quest 2 to
visualize the reconstructed scene.

The diagram below depicts a high-level overview of the system
Figure 1.3. Several techniques for overcoming the limitations imposed
by single-view snapshots and low-resolution depth maps have been
described. To assess the system’s accuracy, a dataset of over 500
snapshots was introduced. To the best of this author’s knowledge, this
is the first system using a smartphone equipped with a single RGB

5

Introduction

camera capable of estimating the 7-DoF pose (3-DoF position, 3-DoF
scale and 1-DoF rotation around the longitudinal axis) of objects from
single views, to reconstruct an indoor environment. The contributions

depth data

RGB

processing

3D models

7-DoF pose
estimation

AR visualization

Figure 1.3: The proposed system. A single RGB
image of each object is captured using an Android
smartphone and augmented with depth informa-
tion provided by Google ARCore. Then, a server
uses these data to classify the object in the image
and retrieve the most similar synthetic 3D object
from a database; the model’s position, vertical
orientation, and scale factor are estimated and
applied. Finally, an AR and a desktop/VR appli-
cation can be used to visualize the reconstructed
scene.

6

Introduction

made with this work led to the following publication:

Alessandro Manni, Damiano Oriti, Andrea Sanna, Francesco De
Pace, Federico Manuri, Snap2cad: 3D indoor environment recon-
struction for AR/VR applications using a smartphone device, Com-
puters Graphics, Volume 100, 2021, Pages 116-124, ISSN 0097-8493,
https://doi.org/10.1016/j.cag.2021.07.014.

1.4 Thesis outline

The thesis is organized as follows:

• Chapter 1 is an introduction to the thesis, setting out the motiva-
tions that led to the development of the system presented. It also
gives an overview of the problem addressed and the limitations of
the currently available solutions. At the end of the chapter, the
contributions made by this work are presented.

• Chapter 2 discusses the three main types of Extended Reality:
Virtual Reality, Augmented Reality, and Mixed Reality, as well as
the differences between them.

• Chapter 3 examines standard solutions for 3D indoor environ-
ment reconstruction, followed by a review of state-of-the-art Deep
Learning-based solutions that includes 3D data and datasets. At
the end of the chapter, a brief description of methods for image-
based 3D shape retrieval is provided, as this is a critical component
of the broader field of 3D reconstruction from RGB image.

• Chapter 4 elaborates the proposed solution starting from the sys-
tem’s specifications and overview and then moving on to a descrip-
tion of core modules. Following that, the main stages of the system
pipeline are described.

7

Introduction

• Chapter 5 details the procedures used to determine the system’s
accuracy. The main outcome of the experiments are showed.

• Chapter 6 presents a discussion of the results and the conclusions.

8

Chapter 2

Extended Reality Technologies
Extended reality (XR) encompasses all physical and virtual environ-
ments in which humans and machines interact through computer soft-
ware and hardware. It includes Augmented Reality (AR), Virtual
Reality (VR), Mixed Reality (MR) and all in between. In the Real-
ity–virtuality continuum proposed in 1994 by Milgram and Kishino [6]
all the type of environments starting from real and ending with virtual
are depicted on a continuous scale in order to represent all the pos-
sible variations and compositions in the range. Figure 3.5 shows the
Reality–virtuality continuum.

Figure 2.1: Reality–virtuality continuum.

2.1 Virtual Reality

Virtual reality is a computer-generated environment that can be classi-
fied into two types: non-immersive virtual reality, in which the user’s

9

Extended Reality Technologies

sense of presence is limited by the devices used to display the synthetic
environment (laptop, desktop screens), and immersive virtual reality,
wherein head mount displays (HMD) isolate the user from the real world
and provide an experience that gives the user the sense of being in the
virtual world. In most cases, the users control their virtual environment
and are able to interact with digital objects. While virtual reality has
existed for a long period of time, it has gained popularity recently as
a result of the development of VR headsets such as the Oculus Rift,
Quest, Valve Index, and HTC Vive. These headsets enhance the user’s
virtual reality experience by blocking out the outside world, presenting
a more realistic virtual environment with a wide field of view. Virtual
reality can be used for a variety of purposes, including training [7],
gaming, and entertainment.

2.2 Augmented Reality

Augmented reality is a technology that allows people to interact with
virtual content that is overlaid on the real world. The user see their
real-world surroundings as well as computer-generated synthetic objects.
AR enhance real-world experience by adding a new layer of perception
through virtual elements. Azuma [8] defined some characteristics of an
AR system: 1) it combines the real and the virtual, 2) it is interactive
in real time, and 3) it is 3D registered. AR has grown in popularity in
recent years as a result of the widespread availability of AR-capable
smartphones and AR games. Additionally, retail companies use AR for
smartphones to enable their clients to select products from a catalog
and place them in their home to see how they fit.

10

Extended Reality Technologies

2.3 Mixed Reality

Various definitions of Mixed Reality have been proposed by researchers
over the years. It can be conceived as a more advanced form of AR
(because the user is aware of their surroundings) or as a hybrid of AR
and VR. Because of environmental understanding, interactions between
virtual and real-world objects are possible in MR. Moreover, hands and
head are tracked and instinctive interaction is accomplished through
gestures recognition. Holographic devices such as Microsoft HoloLens
and Magic Leap 1 have been used in manufacturing, remote support,
inspection, and surgery [9].

11

Chapter 3

Literature Review

In this chapter, state-of-the-art solutions for 3D indoor environment
reconstruction are described. Following a description of standard scan-
ning methods, an overview of deep learning methods and the most
commonly used datasets is provided. Deep learning methods take
various approaches, and these methods can be classified based on the
input data they require and the output they produce. Single view scene
reconstruction refers to reconstruction solutions that take a single RGB
photo of the scene as input and output either a scene reconstructed by
predicting the mesh of each object detected in the scene or 3D CAD
models retrieved from a database whose poses are predicted based on
the physical counterpart of the photo. Multiple photos are used as
input in multiple view scene reconstruction, and the two types of output
are the same as in the previous method. An RGB-D scan of the scene
is used as input in reconstruction from RGB-D methods, i.e., a camera
paired with a depth sensor scans the environment. The output can
be the same scan with the missing geometry predicted, or it can be a
scene with 3D objects retrieved from a database and aligned to those
scanned. A brief review of the literature about Image-Based 3D Shape
Retrieval is given at the end of this chapter since it is an important
sub-module of 3D indoor environment reconstruction and is part of the
system proposed in this thesis.

12

Literature Review

3.1 Scanning solutions

Figure 3.1: A living room scanned using Polycam and an
iPhone with a LiDAR sensor [10].

When an object is photographed, a digital camera maps the 3 di-
mensions of the real world into a 2-dimensional image. In this process,
depth information is lost, so it is not possible to map 2D images to the
3D geometry of the object. A well-known method of creating a digital
representation of a real object is photogrammetry. Based on triangula-
tion it is able to reverse the process of photography by taking a series
of photos of the object from different angles. To get a good result, the
object should be positioned so that all parts are visible. The support
of the object should be stable and as little visible as possible during
the process. Otherwise, post-processing steps are required to remove
everything that does not belong to the target object from the images.
The number of photos needed can vary from a few for simple objects
to hundreds for complex objects. There are a lot of software that can
process those images and by mathematically intersecting converging

13

Literature Review

lines in 3D, they are able to determine the exact position of a point.
The output is the point cloud of the object. A popular smartphone
application was Autodesk 123D Catch, which required 26 photos from
different angles to reconstruct an object. The higher the resolution and
number of images, the longer it takes to reconstruct the object. With
the rise of more affordable consumer-grade LiDAR and ToF sensors
new RGB-D scanners solutions were introduced. ToF cameras measure
the round trip time of an artificial light reflected in a scene creating a
depth map. While LiDAR sensors use the time of flight to determine
distance, instead of a flash of light, they use a pulse in a certain area of
the scene and then move on to the rest of the environment in terms of
nano-seconds. In the field of 3D indoor reconstruction also the advance
of SLAM (Simultaneous Localization and Mapping) algorithms was
fundamental: tracking and estimating the camera pose in an unknown
environment is essential in an RGB-D 3D reconstruction pipeline. The
typical pipeline for this scanning solution is composed by 4 stages [11]:
first the input depth data generated by generated by the depth sensor
is pre-processed in order to remove noise and outliers. Then the 6-DoF
camera pose is estimated: the corresponding points between frames
or between a frame and the model generated by previous iterations
are found. The input depth map transformed using the estimated
pose is fused into the 3D model of the reconstruction. A widely used
smartphone app for iPhones equipped with LiDAR sensor is Polycam.
With Polycam and similar scanning apps the user in order to obtain a
textured scan of objects or environments needs just to frame and walk
around with the device.

14

Literature Review

3.2 3D Deep Learning

3.2.1 3D Data

In contrast to two-dimensional data, which can be efficiently represented
as a matrix, three-dimensional data are more difficult to manage for
machine learning purposes. In computer science and geometry, an
object can be represented in a variety of ways, each with advantages
and disadvantages. A polygon mesh is the most common representation
for graphics and solid modeling; a mesh is a collection of vertices, edges,
and faces that define the shape of a polyhedral object. Edges connect
vertices, and multiple edges can be connected to form faces; an edge
connects exactly two vertices, whereas a face can connect three or more
edges. Meshes are ideal for modeling and rendering because they provide
artists with a great deal of control over the final result. Furthermore,
they are very efficient in terms of storage and processing, making them
ideal for interactive applications. In fact, the memory required for a
mesh is proportional to the complexity of its shape rather than its spatial
size. Voxel grids are regular structures in three-dimensional space that
are similar to two-dimensional images [12]. The main advantage of
voxels is their simplicity; the first attempts to use machine learning
in 3D space involved the use of voxels because most nns conceived
for image tasks such as classification can be easily translated to 3D
when using voxels. Their main disadvantage is that they require a
large amount of memory; this is a serious concern for machine learning
because it is necessary to load several samples of data during the
learning phase, which leads to memory saturation. Point clouds, like
meshes, are collections of points with three coordinates that correspond
to the dimensions of Euclidean space. Point clouds are sets [13] meaning
that they are not ordered; any of the N! permutations of N points in a
set represents the same object. The lack of topological order is the main

15

Literature Review

disadvantage of point clouds. Implicit representations [12], such as
distance fields or occupancy functions, are a convenient way to represent
objects in memory because they encode shapes using mathematical
equations rather than just data. Because they are functions, they can
provide infinite reconstruction resolution, whereas meshes, voxels, and
point clouds suffer from limited resolution to varying degrees due to
their discretization nature.

3.2.2 3D Reconstruction

To reconstruct objects with complex structure and shape, the object
representation must meet the following requirements: a) it must be
as compact as possible, b) it must provide topological information, c)
its memory requirement must scale well with shape complexity, and
d) it must be well suited for machine learning. Regrettably, none
of the currently used representations meet all of these requirements.
Voxels do not scale well with complexity, point clouds lack topological
relations, implicit representations are unsuitable for complex shapes,
and meshes are difficult for NNs to handle. All reconstruction methods
attempt to extract features from the object observations that best
describe it. Then, those features, which are typically divided into
global features describing the object’s structure and local features
describing the shape of its parts, become inputs for a reconstruction
module, which outputs the 3D object in the desired representation.
When using implicit representations, the reconstruction module may
accept point coordinates as input; for example, occupancy networks
output the probability of that point being within the volume of the
object [14]. Another type of method does not create new objects;
instead, it retrieves models from a database based on their similarity
to the observed object. The criterion for determining whether two
objects are similar is usually a function of their features, which define a

16

Literature Review

space in which all objects reside. The most common criterion is nearest
neighbor, which selects an instance from the database based on its
proximity to the queried object.

3.3 Single-View Scene Reconstruction

Obtaining a 3D reconstruction of a scene from a monocular RGB or
single view image is an ill-posed problem and no single view scene
reconstruction method exists that solves the global scale ambiguity that
occurs when inferring depth from a 2D image. While the following works
can create a synthetic scene that looks very similar to one depicted in a
photograph, they are not suitable for AR/VR applications that require
the actual position and scale of the objects.

3.3.1 Object-wise Mesh Prediction

(a) Input Photo from SUN
RGB-D dataset.

(b) 2D Recognition (c) 3D Reconstruction

Figure 3.2: An example of prediction using Mesh R-CNN.

As emerged by Tatarchenko et al. [15] many works that perform
3D reconstruction based on an encoder-decoder network architecture
actually perform image classification. The reconstruction task instead
is a complex problem and the solution needs to combine low-level

17

Literature Review

image cues, structural knowledge, and high-level object understanding.
Some research has attempted to develop networks that directly output
polygonal meshes. Mesh R-CNN [16] detects objects in a 2D image
and returns a category label, a segmentation mask, and a mesh thus
providing the full 3D shape of the objects in the scene. By using an
approach consisting in voxel prediction and mesh deformation they
are able to represent arbitrary topologies. In [16, 17, 18] the object
is considered as a whole, while in [19, 20] the object is managed as a
union of simple parts; each part is modeled separately, leading to better
quality results. These approaches suffer from bad topology, and they
do not really take advantage of the ability of meshes to efficiently scale
with the shape complexity. Other works avoid the discretization of 3D
space by using implicit representations such as occupancy functions
[14, 21, 22] or signed distance functions [23]. However, these do not
apply well to unknown objects (i.e., when objects are not present in
the training dataset) and poses. Beside, they tend to output overly
smooth shapes. Holistic approaches such as [24] try to consider the
multi-later relation between objects in the whole scene (e.g., support,
symmetry, etc.) to predict room layout (center, orientation and size),
camera pose, object bounding boxes, and meshes from a single image.

3.3.2 3D CAD Model Retrieval

Izadinia et al. [26] reconstruct an indoor scene from a photo using 3D
models in the following steps: estimating the geometry of the room,
detecting the objects, retrieving the most similar synthetic objects from
a large database of 3D furniture models, estimating the 3D pose of
the objects, placing the objects in the scene, and finally using an opti-
mization algorithm based on Convolutional Neural Networks (CNNs)
trained on image comparison metrics to obtain the final configuration
of the 3D models.

18

Literature Review

Figure 3.3: Mask2CAD prediction on two ScanNet im-
ages [25].

In Kuo et al. [27] work, given a single RGB image, each object in
the image is detected, its 2D bounding box and segmentation mask are
predicted, and from this the most similar 3D CAD model is retrieved
from a database. The retrieval is possible because a neural network
learns to map images of physical objects to 3D CAD models during
training. At test time, the joint embedding space images-3D models
is used to find the most similar synthetic object with respect to the
detected object in the photo. The 5-DoF pose of the objects is also
predicted to match the input image.

3.4 Multi-View Scene Reconstruction

Using a sequence of localized RGB frames, Multiple View Scene Recon-
struction methods can reconstruct 3D indoor environments. Most of
them assume that the camera pose has already been computed using
SLAM [28] or Structure from Motion algorithms, and that it is known
for each frame.

19

Literature Review

3.4.1 Object-wise Mesh Prediction

Figure 3.4: FroDO prediction on a sequence of images from ScanNet
and ground truth scan [29].

FroDO [29] takes as input a sequence of RGB frames and camera
poses and output 2D and 3D bounding boxes of object instances in the
frames, their 7-DoF poses a sparse point cloud and a polygonal mesh.
The core part of FroDO is novel deep joint shape embedding that makes
possible for shape codes to be decoded to sparse point cloud and Signed
Distance Functions (SDF), this allows faster shape optimization. The
multi-view optimization is obtained though geometric, photometric and
silhouette losses. MOLTR [30] uses a similar approach but [29] assumes
that the environment is static while [30] can work also with dynamic
objects. This work uses a multiple model Bayesian filter to track the
motion state (both kinematics and motion status). The finale shape is
reconstructed by decoding the shape code obtained by fusing the shape
codes of each frame.

3.4.2 3D CAD Model Retrieval

Vid2CAD [31] is built on [27] and aligns 3D CAD models to a sequence
of RGB frames containing different objects, it predicts the 9-DoF pose
for each object present in the frames. While [27] suffers from the

20

Literature Review

scale-depth ambiguity, Vid2CAD integrates single-frame predictions by
NNs across views in order to obtain globally-consistent reconstructed
scene where each retrieved object has absolute scale and depth. This
temporal integration improves 3D object rotation and position. Multi-
view constraints also help dealing with occlusions. Vid2CAD assumes
that camera pose with respect to the world is known for each frame.

3.5 Reconstruction from RGB-D scan

Figure 3.5: From left to right: ScanNet scan, SceneCAD [32] predic-
tion, ground truth.

Reconstruction from RGB-D scan can be performed by predicting
missing geometry or by aligning 3D CAD models. SG-NN [33] is a self-
supervised method that takes as input partial RGB-D scans and predicts
missing and unseen geometry. They introduced a 3D sparse generative
neural network architecture that is able to output high-resolution scene
geometry. RevealNet [34] is a 3D neural network architecture that
jointly learn color and geometry features. It detects objects in the scene
and predicts their complete geometry given an incomplete RGB-D scan.
Scan2CAD [35] predicts correspondence heatmaps between regions of
an RGB-D scan and 3D CAD models using a 3D CNN, then it finds
the 9-DoF poses for 3D CAD model alignment to the scan. The main
disadvantage of this approach is that it requires to compare each model

21

Literature Review

in the database to each scanned region to reconstruct the whole scene.
SceneCAD [32] adopts an holistic approach by taking into account
objects and layout component detected in an RGB-D scan and the
relationship among them. A graph neural network is used to estimates
object-object and object-layout relationships. The output is a scene
reconstructed with 3D CAD models.

3.6 Datasets

Figure 3.6: Some 3D models from ShapeNetCore dataset. The
models are in a canonical pose.

22

Literature Review

Numerous large-scale datasets of shapes have been made available
to the academic community in order to facilitate the development of
novel learning-based methods for 3D reconstruction and related tasks.

ShapeNet [36] is a collection of annotated 3D models organized under
semantic categories in the WordNet taxonomy (a lexical database).
ShapeNet contains more than 3 million 3D models, of which 220
thousand are divided into more than 3 thousand WordNet categories.
ShapeNetCore (Figure 3.6) is a subset of ShapeNet that contains 12
thousand models distributed across a set of 270 categories. It is used
in data-driven approaches that require 3D model data. ModelNet [37]
is another database of 3D model, it contains 151,128 3D CAD models
divided into 660 categories, it serves as benchmark for classification
and retrieval tasks. ModelNet40 is a subset of ModelNet with only 40
categories and 100 object per category. NYU Depth Dataset [38] is used
for scene understanding and consists of 1449 RGB-D images, acquired
in 464 indoor scenes, annotated with support relationships. SUN RGB-
D [39] containd annotated RGB-D images with: 3D bounding boxes,
object orientations, room layout and scene category. ScanNet [40],
which contains annotated RGB-D video of indoor scenes, is another
commonly used dataset: 2.5 million views, over 1500 scene, camera
poses, surface reconstructions, and semantic segmentations.

3.7 Image-Based 3D Shape Retrieval

Image-based 3D shape retrieval involves finding a relevant 3D shape
from a 3D shapes database given a 2D natural image. Latest approaches
use CNNs in order to overcome the domain gap between 3D synthetic
shapes and real-world images. In Y. Li et al. [41] a CNN is trained
to map images rendered from a database of 3D shapes to the base 3D
shape. The 3D models are rendered using different viewpoints and
lighting and then they are superimposed on real-world backgrounds.

23

Literature Review

Since similarities between images and 3D synthetic objects can be
expressed as distances in embedding space, [42] uses Cross-Domain
Triplet Neural Network (CDTNN) that incorporates an adaptation layer
to match the features across synthetic and natural domains. In [43] it
has been found that the texture of objects in natural images is one of
the main factors that increases the gap between the 2 domains. They
try to bridge this gap by synthesizing textures for the 3D shapes in
order to make the neural network to focus more on geometry features.

24

Literature Review

Table 3.1: Summary of advantages and disadvantages of 3D recon-
struction methods.

Method Advantages Disadvantages
Photogrammetry

• Cheap
• High-resolution tex-

ture

• For indoor environ-
ments it could require
hundreds of photos

• Noisy result

3D Scanning
• Faster than pho-

togrammetry
• Chance to correct

artifacts during the
scanning

• Requires dedicated
depth sensor

• Oversmoothed shapes

Single-View
Reconstruction • Fast

• It needs just a single
RGB camera

• Global scale depth
ambiguity

Multi-View
Reconstruction • Solves scale-depth

ambiguity
• Faster than a full

scan
• It needs just a single

RGB camera

• Requires multiple
RGB images for each
object in the scene

Reconstruction
from RGB-D
scan • Fixes most of the arti-

facts of conventional
3D Scanning

• Requires dedicated
depth sensor

• Full scan of the envi-
ronment

25

Chapter 4

The Proposed Solution

4.1 Specifications

The proposed system recognizes the framed objects and retrieves the
most similar 3D CAD models (represented as polygonal meshes) from
a database. Let M = {mn} be the model set, with 1 ≤ n ≤ N and
N be the number of 3D CAD models. Each model mn belongs to a
specific category or class ck ∈ C = {ck}. For each object, the goal is
to predict its class ck, find the most similar 3D CAD model mn and
estimate its 7-DoF pose: 3-DoF for translation, 3-DoF for scale, and
1-DoF for rotation around the longitudinal axis 4.1.

The system operates in indoor scenes using a handheld Android
device running a Google ARCore-based app [44]. ARCore is a software
development kit that can be used to create augmented reality applica-
tions. A snapshot containing: 1) the RGB image, 2) the depth data, 3)
the device pose, and 4) the lowest horizontal plane is acquired for each
physical object.

The system does not require a depth sensor since it leverages the
Visual-SLAM and the depth map estimation algorithms included in the
ARCore Depth API. Specifically, a Samsung Galaxy S8 fitted with a
single RGB camera was used in this work.

26

The Proposed Solution

Input:

3D reconstructed scene

Snapshots

AR visualization

Shapes DB

Output:

Figure 4.1: The proposed system takes as input a database of 3D
models and a single RGB image for each object that the user wishes
to reconstruct. The output is the reconstructed scene where each 3D
model has a 7-DoF pose estimated by the system: position, scale and
vertical rotation. The scene can also be visualized in AR using the
smartphone, so that the user can verify that each object matches its
physical counterpart

4.2 System Overview

It is possible to divide the reconstruction process into 4 stages. In
the first stage, snapshot acquisition is performed using an Android
smartphone supported by ARCore and equipped with a single RGB
camera. In this work, a Samsung Galaxy S8 is used. After the first
stage, all data is sent to a server running Ubuntu. All further stages

27

The Proposed Solution

are executed on this server by an application developed in Python.
Then in the second stage called object classification, position and
scale estimation, the HR-Net-W48 CNN is used for classification and
segmentation, then Open3D is used to process the 3D data. In stage
3, a VGG-19 CNN is used for model retrieval and finally in stage 4,
the pose estimation of the object is performed by PoseFromShape with
another CNN. In the tests conducted, reconstructing a scene with 5
models takes 21 seconds. Figure 4.2 illustrates the four stages of the
proposed system with the main components.

Figure 4.2: Overview of the proposed system.

4.2.1 Google ARCore

Google’s ARCore is a software development kit for creating AR ex-
periences for Android smartphones. ARCore uses motion tracking
techniques to determine the location of the smartphone in the world.
Motion tracking makes use of the phone’s camera to identify meaningful
points, which are referred to as feature points. As the phone moves,
these points are tracked in real time. ARCore determines position and
orientation by combining the phone’s Inertial Measurement Unit (IMU)

28

The Proposed Solution

with the tracked feature points. ARCore is also capable of detecting and
tracking flat surfaces such as horizontal and vertical planes via feature
points. These characteristics enable the placement of virtual objects
in a physical environment, as well as their movement and interaction.
With the Depth API [44], a new level of immersion and realism is
achieved. By estimating depth maps in real time with a single moving
camera, the Depth API allows a more immersive augmented reality
experience: it is possible to take into account occlusions and enable
collisions between virtual and physical objects. Using a new pipeline
for depth from motion, [44] generates dense depth map: in the first step
it finds a suitable keyframe from previous image frames, the relative
6-DoF pose between the keyframe and the latest frame is then used
for polar rectification. A conditional random field (CRF) is used to
compute correspondences that generates disparity maps. Triangulation
can estimate a sparse depth map from disparities and from the sparse
depth map, a novel fast bilateral solver produces a bilateral depth grid.
This last one can be transformed into a dense map on demand.

4.2.2 HR-Net-W48 and Mseg

The presented solution uses for segmentation the neural network HR-
Net-W48 [45], which was pre-trained with Mseg-3m-1080p model shared
by [46]. Mseg is a composite dataset that brings together segmentation
datasets from various domains. Due to the fact that different datasets
use different names for the same semantic category and use different
annotation systems, it is not possible to merge them. In [46] they
relabeled over 220 thousand object masks in over 80 thousand images.
They combined COCO [47], ADE20K [48], SUN RGB-D [39], Mapil-
lary [49], IDD [50], BDD [51] and Cityscapes [52] into a single composite
dataset with 194 categories. This dataset enables the development of a
single semantic segmentation model that performs well in previously

29

The Proposed Solution

unknown environments. High-Resolution Net (HRNet)-W48 [45] is a
convolutional neural network designed to maintain high-resolution rep-
resentations in position sensitive tasks, such as semantic segmentation.
An example of the output with each object highlighted is shown in
Figure 4.3.

Figure 4.3: An indoor scene
segmented using HRNet-W48 pre-
trained with the Mseg-3m-1080p
model.

4.2.3 Open3D

Open3D [53] is an open-source library available both in C++ an Python
used to handle 3D data. In this thesis, it was combined with another
Python library, Numpy (which deals with matrices), to process point
clouds. The main functions used are: statistical outlier removal, which

30

The Proposed Solution

removes points that are further away from their neighbors in relation
to the average for the point cloud, 3D oriented bounding box, and I/O
functions for 3D geometry. Section 4.4 contains more information on
these functions.

4.2.4 VGG-19

Figure 4.4: Architecture of the neural network VGG-19.
Credit: Eitan Kosman

VGG-19 [54] created by the Visual Geometry Group of Oxford is
a convolutional neural network with 19 layers: 16 convolution layers,
3 fully connected layer, 5 maxPool layers, 1 softmax layer. In this
work it used for 3D model retrieval: it extracts features from images
to establish similarity. In order to extract features from images, the
output of the first fully connected layer is used, which yields a 4096-
dimensional vector that is later used to compute the norm of the
difference between the query image and the pre-compute features of the
renderings of the 3D model DB. The system uses VGG-19 pre-trained

31

The Proposed Solution

with the ImageNet [image] model. ImageNet [55] is a database of
over 14 million images categorized according to the WordNet hierarchy.
Figure 4.4 shows the network architecture, notice the 4096 dimensions
vector at the output of the first fully connected layer.

4.2.5 PoseFromShape

PoseFromShape [56] can estimate the pose of a 3D object from a 2D
image. This method enables the prediction of the viewpoint of a 3D
from an RGB image even if the object was not seen at training time.
In the first step they extract deep features from the input images: one
is the image with the object in the wild the other is the set of rendered
views of that object or a similar one. A ResNet-18 is used for this
task. These features are then concatenate in a global feature vector.
A multi-layer perceptron is used as estimator and since they use a
classification-and-regression approach the network output is made by
probabilities and offsets (2 outputs for each Euler angles of the camera:
azimuth, elevation, in-plane rotation) those are combined into a single
loss function. In this thesis PoseFromShape was pre-trained with a
ShapeNetCore model and each 3D object was rendered in 216 views.

4.3 Snapshots Acquisition

The first stage of the proposed solution involves taking snapshots of
the objects with an Android smartphone. Using Unity1 and also the
ARCore Depth API SDK, an Android app was created based on the
utilities introduced in Google’s DepthLab app [57]. The created app
tracks the smartphone position in world coordinates, predicts depth
maps in real-time, and detects horizontal planes. When the app is

1https://unity.com/

32

https://unity.com/

The Proposed Solution

Figure 4.5: The
smartphone app
developed for
data acquisition.

launched, ARCore creates a coordinate frame W = {O, xyz} by tying
its origin and orientation to the device’s starting position Pdevice(0) ∈ R3

and orientation Rdevice(0) ∈ R3:

O = Pdevice(time = 0) (4.1)

xyz = Rdevice(time = 0) (4.2)

By moving the smartphone, the device pose is computed by the ARCore
Visual-SLAM algorithm. When the user wants to retrieve a digital
version of an object, they should target the object on the smartphone
screen by using the fixed virtual red cursor shown in Figure 4.5. The
user can then take a snapshot by tapping the "Snap!" button, which

33

The Proposed Solution

activates four events.

1. The app stores the i-th single-view RGB image F rgb
i of the scene

in camera resolution Resrgb
cam. This is done by using an API that

provides CPU access to GPU texture and then through another
function that convert the texture that is in YUV-420-888 format
to RGB24.

2. The app checks the list of detected horizontal planes Ph
i = {pi,j}, ∀j ∈

{1,2, . . . , J}, where J is the number of detected planes in the ac-
quired snapshot. The lowest plane hlp,i is considered as a potential
ground plane, and thus its height in relation to the smartphone’s
initial position is saved in a CSV file. SnapInfo:

hlp,i = min
j∈{1,2,...,J}

height(pi,j) (4.3)

The rotation of the smartphone around its vertical axis Rv
device,i is

also saved and later used to predict the rotation of the object.

3. The app saves the mapping between screen space coordinates of the
captured image F rgb

i and the coordinates of the estimated depth
map F depth

i of that image in a CSV file called ScreenToDepth. This
is needed because the depth map computed by ARCore has a
resolution of 160x90px, which is significantly less than the color
frame resolution Resrgb

cam, equal to 2220x1080px.

4. In order to generate the point cloud in camera space Qcam
i corre-

sponding to a determined depth map, the app uses the camera
intrinsic parameters, i.e. principal point (cu, cv) and focal length f .
If Q(u, v) denotes the vertex of the point cloud corresponding to
the pixel (u, v) of the depth map, and z(u, v) is the depth value,
then its x, y and z coordinates are computed using the following

34

The Proposed Solution

equation:

Q(u, v) =


u−cu

f z(u, v)
v−cv

f z(u, v)
z(u, v)

 (4.4)

5. The app stores in another CSV file called PointCloud the map-
ping between the screen space coordinates of the estimated depth
map F depth

i and the world space 3D points. Using the [57] util-
ities, the world space 3D points were calculated starting from
the camera space 3D points. The constructed point cloud has
approximately 14000 points.

It is more efficient to have separate files. The depth map is 160x90 pixels
so in the PointCloud there are 14000 lines for the mapping between x, y

of the depth map and the related world space coordinate of the points.
The ScreenToDepth file is obtained through an API function that can
only map the RGB image coordinates to the depth map coordinates
and not vice-versa. This file would require more than 2 million lines
since the RGB image resolution is 2220x1080 pixels but it is less than
30000 lines since a downsample is applied. The matching between the
point cloud and the RGB image is done on the server, starting from
the PointCloud file. On the other hand, if this process were performed
on the smartphone, the app would freeze for a noticeable amount of
time. Google ARCore’s APIs and the smartphone processing power
pointed the author towards this multiple file solution. These steps
are carried out for each object that the user wishes include in the 3D
reconstructed environment. This stage concludes when the user clicks
the "Finish" button, instructing the smartphone to send all generated
files to the server. The server script was written in Python, whereas
the client is embedded in the ARCore-based app and is written in C#.
The connection is established as soon as both applications start; when
the client sends the image and snapshot files, it uses a coroutine so that

35

The Proposed Solution

all ARCore operations can continue during transmission; the server
receives and places them in enumerated folders. When the finish button
is pressed, a message is sent to the server indicating that the acquisition
phase has ended and that no more objects will be framed.

4.4 Object Classification and Estimation of Ob-
ject Position and Scale

The Python program running on the server automatically processes the
files generated by the smartphone application. The goal at this stage is
to classify the selected object for each snapshot as well as estimate its
position Pi ∈ R3 and size Si ∈ R3

>0 in the world space. To extract only
the object targeted by the user from an RGB image, the software uses
semantic segmentation, which assigns a semantic label (i.e., an object
class label) to every pixel in the image. The segmentation network
produces a gray scale image F gray

i with pixels labeled with a gray color
code corresponding to a particular semantic class. Due to the fact that
the segmentation network yields an image with a lower resolution than
the source image, the image is resized to the resolution of the frame
F rgb

i acquired by the smartphone using nearest-neighbor interpolation
to prevent unwanted artifacts such as gray tones that were not present
previously. The pixel in the image’s center contains the color code for
the selected object. If the color code denotes a class of system-managed
objects, the system continues processing the image; otherwise, it is
discarded. Since the red pointer used to target the object was located in
the center of the image, a flood fill applied at these coordinates, creates
a binary mask that isolates the framed object. The system can now
retrieve the point cloud of the object QÍ

i highlighted in the mask from
the raw point cloud Qi of the image using the pixel-by-pixel mapping
between the mask, the corresponding estimated depth map, and the

36

The Proposed Solution

(a)

(b) (d)

(c)

(e)

(f)

Figure 4.6: Object classification and segmentation. (a) Raw Point
Cloud. (b) Photo. (c) HR-Net-W48 Segmentation Neural Network. (d)
Segmentation Mask. (e) Binary Mask. (f) Segmented Point Cloud.

world space point cloud. A transformation matrix Tcam→world is used
to transform the point cloud from camera space to world space, as seen
in the following equation:

Qworld
i = Tcam→world · Qcam

i (4.5)

Then, the set of points belonging to the object is extracted from the
original point cloud by using a binary mask that can be obtained by
performing a flood fill operation on the segmentation image starting
from its central pixel. The operation is depicted in Figure 4.6.

Different object types present different challenges, so once the system
detects the category of the framed object it proceeds in using the
right category-based approach to estimate position and scale. For

37

The Proposed Solution

small objects (e.g., mice, remote controls, bowls), computing a 3D
oriented bounding box of such segmented point cloud Qworld

i is sufficient
to determine the centroid and 3D size of the object. The system
employs an Open3D-implemented [58] algorithm that approximates the
minimum volume box containing a set of points. The objective is to
compute the smallest-volume box that contains a finite set of 3D points.
The convex hull of the points provides support for the minimum-volume
box. Because the hull is a convex polyhedron, any points inside it
have no effect on the bounding box. Thus, the algorithm’s first step
is to compute the points’ convex hull. At least two adjacent faces
of the minimum-volume oriented box must be flush with the convex
polyhedron’s edges. The box faces must be perpendicular. The function
processes all edge pairs in order to determine the appropriate box-face
normals that are candidates for the pair’s minimum-volume box. Due
to the iterative nature of the computations, the output is not the
exact minimum-volume box, but a close approximation based on the
minimizer’s sample size [59]. When objects are small, and especially
when the point cloud is incomplete, information such as an RGB image
is required to detect them. Many neural networks that detect objects
solely from point clouds are unable to recognize them because the
vertices do not form a discernible shape.

Large-size objects, on the other hand, present a number of difficul-
ties: 1) they may be made up of different parts, 2) they may have
outliers throughout the point cloud due to the object’s single view, 3)
and they may have flying points due to the smoothing that ARCore
utilizes on the depth maps. Figure 4.7 depicts the ARCore smoothing
effect, which cannot be disabled. For such objects, the segmented
point cloud is subjected to a RANdom SAmple Consensus (RANSAC)
algorithm that detects only horizontal planes. Given a set of 3D points,
the RANSAC algorithm determines the equation of an infinite plane
and returns inlier points from the point cloud. It iteratively selects

38

The Proposed Solution

(a) ToF sensor depth (b) ToF point cloud

(c) ARCore depth(d) ARCore point cloud

Figure 4.7: The depth maps and point clouds.
(a-b) The depth map acquired using a generic ToF
sensor and the corresponding point cloud. (c-d)
The same ToF depth map processed with ARCore
and the resulting point cloud, respectively. The
ARCore smoothing process creates flying points
on the object contour.

three random points from the point cloud, finds the plane equation
defined by those three points, calculates the distance between the points
and the discovered plane, and selects those with a distance less than
the threshold. To obtain only the horizontal plane, all plane equations

39

The Proposed Solution

with more than 10° of inclination with respect to the ground plane
are discarded. Then, a 3D oriented bounding box is computed using
the points on the detected plane. This operation returns the object’s
extent and the position of its centroid, with the value of its vertical axis
representing the object’s height. When objects are made up of holes,
the ARCore smoothing process yields flying points, which can affect
the size of the 3D oriented bounding box. Chairs present particular
challenges due to the possibility of cavities in the backrest and the fact
that the 3D-oriented bounding box does not provide information on
the seat’s height. To address these issues, the system takes three steps.
The first step is to create a mask of depth variances in the depth map
in order to remove the majority of the point cloud outliers: a gray scale
version of the depth map is normalized to enhance the depth variations,
and an automatic Canny edge detection algorithm similar to the one
presented in [60] is applied. Then, two morphological transformations
are used: dilation and closing. As illustrated in Figure 4.8, the kernel of
the Canny edge ranges with the distance between the object center and
the smartphone. Outliers in the point cloud that are concentrated in
depth discontinuities are removed using the generated binary mask. In
the second step, the RANSAC algorithm detects the horizontal plane
of the seat, and in the third step, a statistical outlier removal algorithm
is applied to the point cloud segmented by the plane, removing any
remaining outliers from the previous step. Figure 4.9 describes the
entire procedure. At this point, the system computes the 3D oriented
bounding box of the segmented plane identified by RANSAC, which
yields the extent of the seat as well as the centroid falling on the seat,
which gives the seat’s height. Additionally, the chair’s overall height is
determined by locating the highest point in the segmented point cloud
data. Cabinets, dressers, and nightstands, on the other hand, are han-
dled differently by the system due to three factors: 1) the segmentation
network does not always predict the right label; 2) objects lying on the

40

The Proposed Solution

Figure 4.8: Depth maps (normalized in gray scale) and relative edge
masks generated using a Canny edge detection operator.

small surface of a nightstand may cause artifacts in the point cloud
data; and 3) the RANSAC algorithm may fail to detect the horizontal
plane (the camera may not be able to frame the upper surface of a
cabinet due to its vertical position). For these types of objects, the
system locates the highest vertex of the segmented point cloud, that is
presumed to be the height of the upper surface, and then moves the
vertices on the vertical axis to create an artificial horizontal plane. The
Open3D algorithm for estimating the 3D oriented bounding box is used
to obtain the object’s extent and the 2D position of the centroid, which
is unaffected by the previous operations. An example of this operation
is shown in Figure 4.10. Figure 4.9 describes the entire procedure.

4.5 3D Model Retrieval

In Stage 3, the system performs image-based 3D model retrieval. This
task consist in retrieving a relevant 3D synthetic object in a database

41

The Proposed Solution

(a)

(b)
(c) (d)

(e) (f) (g)
(h)

(i)

w/o canny
edge outlier

removal

with canny
edge outlier

removal

Figure 4.9: Flying points removal using Canny edge detection algo-
rithm and object position and scale estimation. The (a) input depth
map estimated by ARCore is transformed to a point cloud (b). Outliers
highlighted in red (c) are detected and removed by the Statistical Out-
lier Removal (SOR) algorithm; in (d) it is shown how the bounding box
is not correct because some outliers were ignored by the SOR algorithm.
By using the Canny edge detection algorithm on the (e) normalized
depth map, whose result is shown in (f), the outliers generated by the
ARCore smoothing process are removed in the corresponding point
cloud (g). (h) shows the remaining outliers eliminated with the SOR
and the bounding box is correctly estimated (i).

which is similar to a query photo taken in the real world. A VGG-19 [54]
CNN was used in this work because it provides better fine-grained 3D
model retrieval than other approaches. A subset of 3D models from the
ShapeNetCore dataset [36] is rendered from 12 viewpoints, and their
features are extracted using the VGG-19 CNN pre-trained on ImageNet.
These features are computed and saved only once. The most similar
object is obtained by calculating the Euclidean distance between the
segmented target object’s extracted features and the features associated
with 3D models in the same category. The goal is to extract the object’s

42

The Proposed Solution

(a) (b) (c)

Figure 4.10: Example of cabinet position and scale estimation. (a)
Photo of the cabinet; (b) Point cloud (no horizontal planes can be
detected); (c) 3D oriented bounding box of the highest vertices

(a)

(b)

(c)

(d)
(e)

(h)

(f) (g)

Figure 4.11: 3D Model Retrieval. (a) Photo. (b) Binary Mask.
(c) Segmented Photo. (d) VGG-19 Feature Extraction Network. (e)
Similarity Finder between (d) and (f) pre-computed features, the output
is the id of a 3D model in the (g) 3D Model DB. (h) Model Retrieved.

43

The Proposed Solution

features rather than those of the surroundings, and in order to reduce
the noise in natural images, the system extracts the query object from
the snapshot using the binary mask created in stage 2, followed by a blur
operation to soften the edges and a final cropping operation to center
the object. The VGG-19 CNN extracts the features of the segmented
objects. The Euclidean distance between the input images and all
the renderings belonging to the objects in the segmentation network’s
specified category is then calculated. The 3D object associated with the
rendering that is closest to the natural RGB image is chosen. Figure 4.11
shows the process while an example of 3D model retrieval is shown in
Figure 4.12.

Figure 4.12: The query segmented images and the top-3 models
retrieved. The first column contains segmented photos of real
objects that were used as queries, while the second to fourth
columns contain the most similar retrieved models (best from
left to right).

44

The Proposed Solution

(a)

(b)

(c) (d)

(e)

Figure 4.13: Object Pose Estimation. (a) Segmented Photo. (b)
3D model renderings of the retrieved model. (c) PoseFromShape Pose
Estimation Network. (d) Estimated Rotation. (e) 3D model rendered
in the predicted vertical rotation.

4.6 Object Pose Estimation

In the fourth stage, the system estimates the rotation of the object
around the vertical axis. Several deep learning solutions attempt to
solve the problem of estimating object pose from a single RGB image,
but many require the neural network to be trained on the specific
object whose pose is to be estimated. This approach is unsuitable with
the system’s intended operating conditions: an indoor environment
where previously unseen objects must be considered. As a result, the
proposed system employs PoseFromShape [56]. With respect to known
viewpoints, this DL solution can estimate the viewpoint of an object in
an RGB image. PoseFromShape employs the model provided by [56],
which was trained on ShapeNetCore, a subset of ShapeNet (Figure 3.6

45

The Proposed Solution

illustrates some models of the ShapeNet dataset). The 3D models of
the recognized category were taken from this dataset and rendered from
various viewpoints using Blender.

Since the background of the RGB snapshot could affect prediction
accuracy, the system utilizes the image of the segmented object obtained
in the previous stage. As the system has already retrieved the 3D object
from the previous step, it passes the neural network the set of renderings
associated with that object as well as the object’s segmented photo.
The PoseFromShape network’s output is the camera’s viewpoint, which
is made up of the Euler angles for azimuth, elevation, and in-plane
rotation. The system only takes into account the azimuth that will
be applied to the 3D model used to represent the physical object.
Figure 4.13 illustrates the process.

4.7 Scene Reconstruction and AR Visualization

The system creates three CSV files for each snapshot: 1) values of the
object’s position and size, 2) vertical rotation of the object, and 3)
longitudinal rotation of the smartphone. Moreover, the height of the
floor hfloor that is valid for the entire reconstructed scene is saved in a
separate CSV file called Floor. The floor’s height is calculated as the
average of all values that differ by no more than 4 cm from the lowest
value on the list {hlp,i}:

hlp = min
i

hlp,i (4.6)

hfloor = avg(hlp,i) if abs(hlp,i − hlp < 4cm) (4.7)

It has been noted that when a plane’s tracking is lost and then redis-
covered, there is a discrepancy of less than 4 cm from the previous
detection. To visualize the reconstructed scene, a desktop was created

46

The Proposed Solution

Figure 4.14: The AR view. Two chairs visualized by the AR app:
the occlusions are taken into account.

using Unity. The 3D models used for reconstruction has been taken
from the ShapeNetCore. The 3D models were pre-processed to present
real-world dimensions and centroid positions that are consistent with
those estimated by the system. The Unity desktop program parses all
CSV files, selecting 3D models and calculating rotation, scale, and posi-
tion values. Then it instances them in a scene where also the floor has
been instantiated at the pre-calculated height. All 3D models are also
visualized by the mobile AR app to qualitatively assess the accuracy of
the reconstruction. This is possible because both applications include

47

The Proposed Solution

an online multiplayer engine, Photon Engine2. When the desktop appli-
cation instantiates the 3D objects in the scene, it also sends a remote
procedure call (RPC) to the Photon server that forwards it to the
smartphone. The RPC contains the ids of the instantiated 3D models,
allowing them to be instantiated in AR mode using the smartphone.
These virtual 3D models overlap with the physical object because the
position, scale, and rotation are also sent via RPC. The desktop user
(represented by a red capsule) and the AR user (represented by a 3D
smartphone model) are tracked and transmitted via internet in real
time, making it possible for both users to see each other’s movement in
the environment. The AR user can freely move around the real-world
scene to ensure that the 3D models overlap with the physical objects.
ARCore’s geometry-aware occlusion feature aids in the evaluation. As
such, since a dense depth map is predicted almost each frame, it is
possible to determine whether a 3D model is correctly overlaid on a
physical object (Figure 4.14). Figure 4.15 shows example of a shared
reconstructed space between AR user and desktop user, Figure 4.16
between AR user, desktop user and VR user. Additionally, another
application has been developed for the Oculus Quest 2 HMD in order
to extend the sharing of the environment to a VR user. The Oculus
Quest 2 is equipped with 4 integrated cameras and sensors that enable
inside-out 6 DoF tracking, it also has 2 controllers tracked in 6 DoF. A
low poly avatar has been created so the desktop user and the AR user
can visualize how the VR user is moving in the scene, the movements of
the real-hands are tracked through the Quest controllers, their position
and rotation are also transmitted via internet using Photon engine.
Figure 4.16 shows an example of this multi-user XR experience. At
the following link a video showing the proposed system3.

2https://www.photonengine.com/
3https://www.youtube.com/watch?v=uRkGR54dyt4

48

https://www.photonengine.com/
https://www.youtube.com/watch?v=uRkGR54dyt4

The Proposed Solution

(a) Camera view (b) AR view

(c) Desktop view

Figure 4.15: Multi-user (AR/desktop) visualization of a reconstructed
scene. Desktop player is depicted as a red capsule in (b).

49

The Proposed Solution

(a) Camera view (b) AR view

(c) VR view

Figure 4.16: Multi-user (AR/VR/desktop) visualization of a recon-
structed scene. VR user is the yellow avatar in (b), desktop player is
the red capsule in (c), AR player is the gray smartphone in (c).

50

The Proposed Solution

(a) AR view (b) VR view

Figure 4.17: VR user is touching the reconstructed chair in VR while
the AR user see the VR avatar touching the real one in AR.

51

Chapter 5

Experimental Evaluation

In this chapter the evaluation process is described including the steps
to get the ground truth (GT) values. To assess the system’s accuracy, a
new dataset is presented. The dataset is composed of 500 snapshots of
various objects of various shapes acquired with a Samsung Galaxy S8
in indoor environments. The objects are divided into categories, and
the snapshots were taken from various angles and distances. A table
showing the main outcome of the experiments is presented.

5.1 Markers

While it is possible to obtain the GT values (width, length, height) for
the size of an object by using a measuring tape it is not possible to
use any tool to get GT values for position or rotation with accuracy.
As to an object’s GT position, it should be noted that this is based
on a reference system created by ARCore when the app is launched
and the smartphone begins to move, so it changes every time, limiting
the use of a fixed coordinate reference system. The GT rotation of
an object could be obtained by progressively moving the object, for
example, on a platform and measuring the rotation with a protractor;
however, because large and heavy objects, such as cabinets, beds, and
tables, must be evaluated, this is not feasible. The presented solution

52

Experimental Evaluation

employs markers for position and pose estimation. In the case of GT
position the markers is positioned at the center of the object and the
portion of the point cloud that is delimited by the marker is used to
obtain the coordinates of the center in the ARcore reference system.
Instead for the GT rotation the marker is used to find the camera pose.
The pattern of marker chosen is the ChArUco diamond because it can
tolerate partial occlusions when framed, unlike the classic square black
and white chessboard.

5.1.1 Camera Calibration

In order to perform detection and camera pose estimation with the
diamond marker a camera calibration is needed. Camera calibration
consists in finding the camera matrix (made by intrinsic and extrin-
sic parameters) and the distortion coefficients. A chessboard marker
has been printed and photographated from multiple view using the
smartphone’s camera. Those images are used as input for a Python
script using OpenCV, a Computer Vision library, that through the
findChessboardCorners function detects the chessboard and with cal-
ibrateCamera function return the camera matrix and the distortion
coefficients. CalibrateCamera calculates the starting parameters and
use the Levenberg-Marquardt optimization algorithm to minimize the
reprojection error.

5.2 Scaling Error

The physical object’s size is used as the ground truth (GT). To calculate
the scaling error for each category, multiple snapshots from various
perspectives (distances and angles) were taken. Following that, for
each snapshot, the root mean squared error (RMSE) between the GT
and the estimated size is calculated. Finally, the category scaling error

53

Experimental Evaluation

is computed by taking the average of all RMSE values. Because the
number of snapshots is large, a Python script has been written to read
the GT value for each object from a CSV file and then use the RMSE
to calculate the average for the category to which the object belongs.
For each dimension (x, y, and z) the error is calculated and expressed
as a percentage of the absolute difference from the ground truth value.

5.3 Position Error

The GT position of an object is determined by a marker placed in
the physical object’s center. In the case of a chair, it would be on the
seat during the first snapshot and then removed. After that, multiple
snapshots from various viewpoints are taken. Because the coordinate
reference system remains constant while the app is running, the object
center coordinates remain fixed for each snapshot. For small objects
like mice, the marker is placed on a table, a snapshot is taken, and
the mouse is then centered on it. A Python script is used to detect
the marker with OpenCV, then it creates a mask that separates the
object’s center vertices from the point cloud of the snapshot. Object’s
centroid coordinates are obtained from the 3D bounding box of those
vertices. Then, using the same procedure as described in Section 5.2,
the category position error, expressed in meters, is determined.

5.4 Vertical Rotation Error

The GT value of the object vertical rotation is determined using the
diamond marker, in this case it used to obtain the camera pose. The
marker is positioned and aligned with the object (as shown in Figure 5.1),
a first snapshot is taken, then the marker is removed and a second
snapshot is taken, this last one will be used for the rotation estimation
performed by the proposed system. This is repeated for multiple

54

Experimental Evaluation

(a) Object with marker (b) The estimated pose

Figure 5.1: (a) Captured photo showing an object with the marker
used to determine the ground truth pose; (b) the estimated pose of the
same object obtained with the proposed system.

rotations for every object. The smartphone is held to a fixed support
during the evaluation process to ensure consistency. The GT rotation
is obtained by calculating the camera pose rotation this is done using a
Python script and OpenCV. The estimatePoseSingleMarkers() function
takes as input the corners of the detected marker, the camera matrix and
the distortion coefficients obtained during the calibration. A rotation
and translation vector is returned. So, it is now possible to transform
points from the marker coordinate system to the camera coordinate
system. The origin of the marker coordinate system is at the center of
it, with the vertical axis perpendicular to the marker plane. In order to
get the Euler angles of the pose, the rotation vector is converted to a
rotation matrix using Rodrigues’ rotation formula, then its transpose is
flipped and a formula similar to [61] is applied. Finally, the rotational
error is calculated by averaging the RMSE values in degrees.

55

Experimental Evaluation

Avg. RMSE
Position (m)

Avg. RMSE
Scaling (%)

Avg. RMSE
Scaling Factor
Error (%)

Avg. RMSE
Rotation (°)

Object (PS/R) x y z x y z (x, y, z) y
Chair (61/11) 0.03 0.02 0.02 10 2 13 10 9
Swivel chair (24/6) 0.02 0.02 0.03 6 6 12 8 15
Armchair (33/8) 0.05 0.02 0.07 13 4 12 10 9
Table (62/9) 0.05 0.02 0.04 7 3 10 7 12
Nightstand (31/6) 0.04 0.06 0.05 13 7 23 14 18*
Chest of drawers (12/7) 0.03 0.07 0.08 6 5 8 6 8
Cabinet (57/5) 0.06 0.03 0.05 15 6 14 12 14
Bed (24/7) 0.09 0.04 0.1 7 8 17 10 14
Laptop (22/12) 0.02 0.02 0.02 7 8 21 12 10
Bowl (17/-) 0.05 0.03 0.04 14 22 7 14 -
Mouse (25/6) 0.02 0.01 0.02 11 26 11 16 2*
Remote (22/5) 0.03 0.02 0.01 6 20 25 17 6*
Book (33/8) 0.02 0.01 0.02 17 23 15 18 6*

Table 5.1: The main outcomes. The average of the root mean squared
errors of position, scaling, vertical rotation and the average size error
in 3D. Objects marked with * may have 180° rotation error. PS and
R stand for the number of position-scaling and rotation snapshots,
respectively.

56

Chapter 6

Discussion
The position, rotational and scaling errors are shown in Table 5.1.
The position and scaling errors appear to increase along the Y axis
when the object’s surface is not flat or when obstacles partially hide
the object’s surface, disturbing the depth map estimation algorithm.
While minor occlusions, such as a laptop covering a portion of a table,
are tolerated, a heavily occluded table may result in a segmentation
failure. Regarding the rotation error, some inconsistencies in objects
with symmetrical shapes have been detected, resulting in incorrect
of 180° rotations around the vertical axis. These incorrect predictions
appear to occur independently of the dataset used to train the network.
Generally, errors increase when the object is not completely captured in
the snapshot and thus the 3D oriented bounding box does not perfectly
align to the object’s segmented point cloud. Matte black surfaces
present a challenge because the stereo matching algorithm [44] is unable
to establish consistent correspondences between frames composed of
a large number of dark pixels, resulting in reconstruction errors and
depth map artifacts. Since the proposed system reconstructs a scene
using a single snapshot for each object, it is critical to capture the
object from perspectives that encompass all of the object’s essential
components (e.g., to estimate the position and size of a chair, the seat
should be visible). It has been observed that the segmentation network
may incorrectly classify chests of drawers and nightstands as cabinets.
This is most likely due to the fact that the HRNet-evaluated image

57

Discussion

regions lack sufficient information to distinguish between certain classes
of objects with similar characteristics [45].

Lastly, the performance of the system was tested using a laptop
equipped with an Intel Core i7-8750h CPU and an NVIDIA RTX 2060
GPU. The proposed solution reconstructs a scene with five objects in
21 seconds, including 15 seconds for segmentation, nearly 2 seconds for
3D model retrieval, less than 2 seconds for object processing, and 2.25
seconds for pose inference.

6.1 Conclusion

This thesis describes a system for reconstructing a scene captured
using an Android smartphone equipped with ARCore. In comparison
to the state of the art, the proposed solution makes use of only the
RGB camera, eschewing the use of traditional depth sensors. The
system is comprised of an ARCore-based application that captures
snapshots of objects in an indoor environment from a single view. The
snapshots are then processed on a server: the target object in the
frame is classified, and the most similar 3D model from a database is
retrieved; the object’s scale, position, and vertical rotation are then
estimated. All DL modules are replaceable as newer, more effective
solutions become available.

Additionally, three Unity applications have been shown: 1) a desktop
application that populates the virtual scene with instances of 3D models
based on the estimated pose without deforming the object meshes, and
2) an augmented reality application that overlays the virtual objects over
their real-world counterparts 3) a virtual reality application for Oculus
Quest 2 that allows a VR user to move in the digital scene using an
avatar. These apps can be used in online multiplayer mode, visualizing
the desktop/VR user’s AR instance from the smartphone and vice versa
the tracked AR user’s desktop/VR instance in the reconstructed scene,

58

Discussion

thereby providing a shared sense of space, presence, and time [62].
Multiple techniques have been described to circumvent the limitations

imposed by single view snapshots and low resolution depth maps. To
evaluate the system’s accuracy, a dataset of over 500 snapshots was
introduced.

6.2 Future works

Future work will incorporate a larger model dataset, which, when
combined with non-trivial mesh deformation, may enable more precise
shape retrieval. Additionally, the scene layout will be determined,
allowing for the detection and reconstruction of walls, floors, and
ceilings. Finally, other methods for detecting rotations around any axis
that overcome the vertical rotation limit could be investigated.

59

Bibliography
[1] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong

Tao, Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S.
Iyengar. «A Survey on Deep Learning: Algorithms, Techniques,
and Applications». In: ACM Comput. Surv. 51.5 (Sept. 2018).
issn: 0360-0300. doi: 10.1145/3234150. url: https://doi.
org/10.1145/3234150 (cit. on p. 4).

[2] Syed Sahil Abbas Zaidi, Mohammad Samar Ansari, Asra Aslam,
Nadia Kanwal, Mamoona Naveed Asghar, and Brian A. Lee. «A
Survey of Modern Deep Learning based Object Detection Models».
In: CoRR abs/2104.11892 (2021). arXiv: 2104.11892. url: https:
//arxiv.org/abs/2104.11892 (cit. on p. 4).

[3] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser
Kehtarnavaz, and Demetri Terzopoulos. «Image Segmentation
Using Deep Learning: A Survey». In: CoRR abs/2001.05566 (2020).
arXiv: 2001.05566. url: https://arxiv.org/abs/2001.05566
(cit. on p. 4).

[4] George Fahim, Khalid Amin, and Sameh Zarif. «Single-View 3D
reconstruction: A Survey of deep learning methods». In: Computers
Graphics 94 (2021), pp. 164–190. issn: 0097-8493. doi: https:
//doi.org/10.1016/j.cag.2020.12.004 (cit. on p. 4).

[5] Xian-Feng Han, Hamid Laga, and Mohammed Bennamoun. «Image-
based 3D Object Reconstruction: State-of-the-Art and Trends in
the Deep Learning Era». In: CoRR abs/1906.06543 (2019). arXiv:

60

https://doi.org/10.1145/3234150
https://doi.org/10.1145/3234150
https://doi.org/10.1145/3234150
https://arxiv.org/abs/2104.11892
https://arxiv.org/abs/2104.11892
https://arxiv.org/abs/2104.11892
https://arxiv.org/abs/2001.05566
https://arxiv.org/abs/2001.05566
https://doi.org/https://doi.org/10.1016/j.cag.2020.12.004
https://doi.org/https://doi.org/10.1016/j.cag.2020.12.004

BIBLIOGRAPHY

1906.06543. url: http://arxiv.org/abs/1906.06543 (cit. on
p. 4).

[6] Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino.
«Augmented reality: a class of displays on the reality-virtuality
continuum». In: Telemanipulator and Telepresence Technologies.
Ed. by Hari Das. Vol. 2351. International Society for Optics and
Photonics. SPIE, 1995, pp. 282–292. doi: 10.1117/12.197321.
url: https://doi.org/10.1117/12.197321 (cit. on p. 9).

[7] Florence Aïm, Guillaume Lonjon, Didier Hannouche, and Rémy
Nizard. «Effectiveness of Virtual Reality Training in Orthopaedic
Surgery». In: Arthroscopy: The Journal of Arthroscopic Related
Surgery 32.1 (2016), pp. 224–232. issn: 0749-8063. doi: https:
//doi.org/10.1016/j.arthro.2015.07.023. url: https:
//www.sciencedirect.com/science/article/pii/S07498063
15006489 (cit. on p. 10).

[8] R.T. Azuma. «‘A Survey of Augmented Reality‘, (6, 4).» In:
Presence: Teleoperators and Virtual Environments 6.4 (1997) (cit.
on p. 10).

[9] Philip Pratt, Matthew Ives, Graham Lawton, Jonathan Simmons,
Nasko Radev, Liana Spyropoulou, and Dimitri Amiras. «Through
the HoloLens™ looking glass: augmented reality for extremity
reconstruction surgery using 3D vascular models with perforating
vessels». In: European radiology experimental 2.1 (2018), pp. 1–7
(cit. on p. 11).

[10] LiDAR scan using Polycam. https : / / sketchfab . com / 3d -
models / living - room - d9c6ea856ef64db79d426d88101ad5ed.
Accessed: 2021-12-1 (cit. on p. 13).

61

https://arxiv.org/abs/1906.06543
http://arxiv.org/abs/1906.06543
https://doi.org/10.1117/12.197321
https://doi.org/10.1117/12.197321
https://doi.org/https://doi.org/10.1016/j.arthro.2015.07.023
https://doi.org/https://doi.org/10.1016/j.arthro.2015.07.023
https://www.sciencedirect.com/science/article/pii/S0749806315006489
https://www.sciencedirect.com/science/article/pii/S0749806315006489
https://www.sciencedirect.com/science/article/pii/S0749806315006489
https://sketchfab.com/3d-models/living-room-d9c6ea856ef64db79d426d88101ad5ed
https://sketchfab.com/3d-models/living-room-d9c6ea856ef64db79d426d88101ad5ed

BIBLIOGRAPHY

[11] M. Zollhöfer, P. Stotko, A. Görlitz, C. Theobalt, M. Nießner, R.
Klein, and A. Kolb. «State of the Art on 3D Reconstruction with
RGB-D Cameras». In: Computer Graphics Forum (Eurographics
State of the Art Reports 2018) 37.2 (2018) (cit. on p. 14).

[12] Yunpeng Xiao, Yu-Kun Lai, Fang-Lue Zhang, Chunpeng Li, and
Lin Gao. «A survey on deep geometry learning: From a repre-
sentation perspective». In: Computational Visual Media 6 (2020),
pp. 113–133 (cit. on pp. 15, 16).

[13] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas.
«PointNet++: Deep Hierarchical Feature Learning on Point Sets
in a Metric Space». In: CoRR abs/1706.02413 (2017). arXiv:
1706.02413. url: http://arxiv.org/abs/1706.02413 (cit. on
p. 15).

[14] Lars M. Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian
Nowozin, and Andreas Geiger. «Occupancy Networks: Learning
3D Reconstruction in Function Space». In: CoRR abs/1812.03828
(2018). arXiv: 1812.03828. url: http://arxiv.org/abs/1812.
03828 (cit. on pp. 16, 18).

[15] Maxim Tatarchenko, Stephan R. Richter, René Ranftl, Zhuwen
Li, Vladlen Koltun, and Thomas Brox. What Do Single-view
3D Reconstruction Networks Learn? 2019. arXiv: 1905.03678
[cs.CV] (cit. on p. 17).

[16] Justin Johnson Georgia Gkioxari Jitendra Malik. «Mesh R-CNN».
In: ICCV 2019 (2019) (cit. on p. 18).

[17] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C.
Russell, and Mathieu Aubry. «AtlasNet: A Papier-Mâché Ap-
proach to Learning 3D Surface Generation». In: CoRR abs/1802.05384
(2018). arXiv: 1802.05384. url: http://arxiv.org/abs/1802.
05384 (cit. on p. 18).

62

https://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1706.02413
https://arxiv.org/abs/1812.03828
http://arxiv.org/abs/1812.03828
http://arxiv.org/abs/1812.03828
https://arxiv.org/abs/1905.03678
https://arxiv.org/abs/1905.03678
https://arxiv.org/abs/1802.05384
http://arxiv.org/abs/1802.05384
http://arxiv.org/abs/1802.05384

BIBLIOGRAPHY

[18] Ayan Sinha, Asim Unmesh, Qixing Huang, and Karthik Ramani.
«SurfNet: Generating 3D shape surfaces using deep residual net-
works». In: CoRR abs/1703.04079 (2017). arXiv: 1703.04079.
url: http://arxiv.org/abs/1703.04079 (cit. on p. 18).

[19] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. «BSP-Net:
Generating Compact Meshes via Binary Space Partitioning». In:
CoRR abs/1911.06971 (2019). arXiv: 1911.06971. url: http:
//arxiv.org/abs/1911.06971 (cit. on p. 18).

[20] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-Kun
Lai, and Hao Zhang. «SDM-NET: Deep Generative Network for
Structured Deformable Mesh». In: CoRR abs/1908.04520 (2019).
arXiv: 1908.04520. url: http://arxiv.org/abs/1908.04520
(cit. on p. 18).

[21] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul Joo.
«PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-
Resolution 3D Human Digitization». In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. June
2020 (cit. on p. 18).

[22] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomır Mech, and
Ulrich Neumann. «DISN: Deep Implicit Surface Network for High-
quality Single-view 3D Reconstruction». In: CoRR abs/1905.10711
(2019). arXiv: 1905.10711. url: http://arxiv.org/abs/1905.
10711 (cit. on p. 18).

[23] Chen-Hsuan Lin, Chaoyang Wang, and Simon Lucey. «SDF-SRN:
Learning Signed Distance 3D Object Reconstruction from Static
Images». In: Advances in Neural Information Processing Systems
(NeurIPS). 2020 (cit. on p. 18).

63

https://arxiv.org/abs/1703.04079
http://arxiv.org/abs/1703.04079
https://arxiv.org/abs/1911.06971
http://arxiv.org/abs/1911.06971
http://arxiv.org/abs/1911.06971
https://arxiv.org/abs/1908.04520
http://arxiv.org/abs/1908.04520
https://arxiv.org/abs/1905.10711
http://arxiv.org/abs/1905.10711
http://arxiv.org/abs/1905.10711

BIBLIOGRAPHY

[24] Yinyu Nie, Xiaoguang Han, Shihui Guo, Yujian Zheng, Jian Chang,
and Jian Jun Zhang. «Total3DUnderstanding: Joint Layout, Ob-
ject Pose and Mesh Reconstruction for Indoor Scenes From a
Single Image». In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). June 2020 (cit. on p. 18).

[25] Mask2CAD ECCV 2020 Full Video. https://www.youtube.com/
watch?v=S7fvrQiBAcg. Accessed: 2021-12-1 (cit. on p. 19).

[26] Hamid Izadinia, Qi Shan, and Steven M. Seitz. «IM2CAD». In:
CoRR abs/1608.05137 (2016). arXiv: 1608.05137. url: http:
//arxiv.org/abs/1608.05137 (cit. on p. 18).

[27] Wei-Cheng Kuo, A. Angelova, Tsung-Yi Lin, and Angela Dai.
«Mask2CAD: 3D Shape Prediction by Learning to Segment and
Retrieve». In: ECCV. 2020 (cit. on pp. 19, 20).

[28] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. «ORB-
SLAM: A Versatile and Accurate Monocular SLAM System». In:
IEEE Transactions on Robotics 31.5 (2015), pp. 1147–1163. doi:
10.1109/TRO.2015.2463671 (cit. on p. 19).

[29] Kejie Li et al. «FroDO: From Detections to 3D Objects». In:
2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2020), pp. 14708–14717 (cit. on p. 20).

[30] Kejie Li, Hamid Rezatofighi, and Ian Reid. MOLTR: Multiple
Object Localisation, Tracking, and Reconstruction from Monocular
RGB Videos. 2021. arXiv: 2012.05360 [cs.CV] (cit. on p. 20).

[31] K. Maninis, S. Popov, M. Nießner, and V. Ferrari. «Vid2CAD:
CADModel Alignment using Multi-View Constraints from Videos».
In: ArXiv abs/2012.04641 (2020) (cit. on p. 20).

64

https://www.youtube.com/watch?v=S7fvrQiBAcg
https://www.youtube.com/watch?v=S7fvrQiBAcg
https://arxiv.org/abs/1608.05137
http://arxiv.org/abs/1608.05137
http://arxiv.org/abs/1608.05137
https://doi.org/10.1109/TRO.2015.2463671
https://arxiv.org/abs/2012.05360

BIBLIOGRAPHY

[32] A. Avetisyan, Tatiana Khanova, C. Choy, D. Dash, Angela Dai,
and M. Nießner. «SceneCAD: Predicting Object Alignments and
Layouts in RGB-D Scans». In: ArXiv abs/2003.12622 (2020) (cit.
on pp. 21, 22).

[33] Angela Dai, Christian Diller, and Matthias Niessner. «SG-NN:
Sparse Generative Neural Networks for Self-Supervised Scene
Completion of RGB-D Scans». In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).
June 2020 (cit. on p. 21).

[34] Ji Hou, Angela Dai, and Matthias Nießner. RevealNet: Seeing Be-
hind Objects in RGB-D Scans. 2020. arXiv: 1904.12012 [cs.CV]
(cit. on p. 21).

[35] Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis Savva,
Angel X. Chang, and Matthias Nießner. «Scan2CAD: Learning
CADModel Alignment in RGB-D Scans». In: CoRR abs/1811.11187
(2018). arXiv: 1811.11187. url: http://arxiv.org/abs/1811.
11187 (cit. on p. 21).

[36] Angel X. Chang et al. «ShapeNet: An Information-Rich 3D Model
Repository». In: CoRR abs/1512.03012 (2015). arXiv: 1512.03012.
url: http://arxiv.org/abs/1512.03012 (cit. on pp. 23, 42).

[37] Zhirong Wu, Shuran Song, Aditya Khosla, Xiaoou Tang, and
Jianxiong Xiao. «3D ShapeNets for 2.5D Object Recognition
and Next-Best-View Prediction». In: CoRR abs/1406.5670 (2014).
arXiv: 1406.5670. url: http://arxiv.org/abs/1406.5670
(cit. on p. 23).

[38] Pushmeet Kohli Nathan Silberman Derek Hoiem and Rob Fergus.
«Indoor Segmentation and Support Inference from RGBD Images».
In: ECCV. 2012 (cit. on p. 23).

65

https://arxiv.org/abs/1904.12012
https://arxiv.org/abs/1811.11187
http://arxiv.org/abs/1811.11187
http://arxiv.org/abs/1811.11187
https://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1406.5670
http://arxiv.org/abs/1406.5670

BIBLIOGRAPHY

[39] S. Song, S. P. Lichtenberg, and J. Xiao. «SUN RGB-D: A RGB-D
scene understanding benchmark suite». In: 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 2015,
pp. 567–576. doi: 10.1109/CVPR.2015.7298655 (cit. on pp. 23,
29).

[40] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber,
Thomas A. Funkhouser, and Matthias Nießner. «ScanNet: Richly-
annotated 3D Reconstructions of Indoor Scenes». In: CoRR abs/1702.04405
(2017). arXiv: 1702.04405. url: http://arxiv.org/abs/1702.
04405 (cit. on p. 23).

[41] Yangyan Li, Hao Su, Charles Ruizhongtai Qi, Noa Fish, Daniel
Cohen-Or, and Leonidas J. Guibas. «Joint Embeddings of Shapes
and Images via CNN Image Purification». In: ACM Trans. Graph.
34.6 (Oct. 2015). issn: 0730-0301. doi: 10.1145/2816795.28180
71. url: https://doi.org/10.1145/2816795.2818071 (cit. on
p. 23).

[42] Tang Lee, Yen-Liang Lin, Hungyueh Chiang, Ming-Wei Chiu,
Winston Hsu, and Polly Huang. «Cross-Domain Image-Based 3D
Shape Retrieval by View Sequence Learning». In: 2018 Interna-
tional Conference on 3D Vision (3DV). 2018, pp. 258–266. doi:
10.1109/3DV.2018.00038 (cit. on p. 24).

[43] Huan Fu, Shunming Li, Rongfei Jia, Mingming Gong, Binqiang
Zhao, and Dacheng Tao. «Hard Example Generation by Tex-
ture Synthesis for Cross-domain Shape Similarity Learning». In:
Advances in Neural Information Processing Systems. Ed. by H.
Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin.
Vol. 33. Curran Associates, Inc., 2020, pp. 14675–14687. url:
https://proceedings.neurips.cc/paper/2020/file/a87d27
f712df362cd22c7a8ef823e987-Paper.pdf (cit. on p. 24).

66

https://doi.org/10.1109/CVPR.2015.7298655
https://arxiv.org/abs/1702.04405
http://arxiv.org/abs/1702.04405
http://arxiv.org/abs/1702.04405
https://doi.org/10.1145/2816795.2818071
https://doi.org/10.1145/2816795.2818071
https://doi.org/10.1145/2816795.2818071
https://doi.org/10.1109/3DV.2018.00038
https://proceedings.neurips.cc/paper/2020/file/a87d27f712df362cd22c7a8ef823e987-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/a87d27f712df362cd22c7a8ef823e987-Paper.pdf

BIBLIOGRAPHY

[44] Julien Valentin et al. «Depth from motion for smartphone AR».
In: ACM Transactions on Graphics (2018). url: https://dl.
acm.org/citation.cfm?id=3275041 (cit. on pp. 26, 29, 57).

[45] Ke Sun et al. «High-Resolution Representations for Labeling
Pixels and Regions». In: CoRR abs/1904.04514 (2019). arXiv:
1904.04514. url: http://arxiv.org/abs/1904.04514 (cit. on
pp. 29, 30, 58).

[46] John Lambert, Zhuang Liu, Ozan Sener, James Hays, and Vladlen
Koltun. «MSeg: A Composite Dataset for Multi-domain Semantic
Segmentation». In: Computer Vision and Pattern Recognition
(CVPR). 2020 (cit. on p. 29).

[47] Tsung-Yi Lin et al. «Microsoft COCO: Common Objects in Con-
text». In: CoRR abs/1405.0312 (2014). arXiv: 1405.0312. url:
http://arxiv.org/abs/1405.0312 (cit. on p. 29).

[48] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso,
and Antonio Torralba. «Semantic Understanding of Scenes through
the ADE20K Dataset». In: CoRR abs/1608.05442 (2016). arXiv:
1608.05442. url: http://arxiv.org/abs/1608.05442 (cit. on
p. 29).

[49] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulò, and Pe-
ter Kontschieder. «The Mapillary Vistas Dataset for Semantic
Understanding of Street Scenes». In: International Conference on
Computer Vision (ICCV). 2017. url: https://www.mapillary.
com/dataset/vistas (cit. on p. 29).

[50] Girish Varma, Anbumani Subramanian, Anoop M. Namboodiri,
Manmohan Chandraker, and C. V. Jawahar. «IDD: A Dataset for
Exploring Problems of Autonomous Navigation in Unconstrained
Environments». In: CoRR abs/1811.10200 (2018). arXiv: 1811.
10200. url: http://arxiv.org/abs/1811.10200 (cit. on p. 29).

67

https://dl.acm.org/citation.cfm?id=3275041
https://dl.acm.org/citation.cfm?id=3275041
https://arxiv.org/abs/1904.04514
http://arxiv.org/abs/1904.04514
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1608.05442
http://arxiv.org/abs/1608.05442
https://www.mapillary.com/dataset/vistas
https://www.mapillary.com/dataset/vistas
https://arxiv.org/abs/1811.10200
https://arxiv.org/abs/1811.10200
http://arxiv.org/abs/1811.10200

BIBLIOGRAPHY

[51] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao,
Vashisht Madhavan, and Trevor Darrell. «BDD100K: A Diverse
Driving Video Database with Scalable Annotation Tooling». In:
CoRR abs/1805.04687 (2018). arXiv: 1805.04687. url: http:
//arxiv.org/abs/1805.04687 (cit. on p. 29).

[52] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth,
and Bernt Schiele. «The Cityscapes Dataset for Semantic Urban
Scene Understanding». In: CoRR abs/1604.01685 (2016). arXiv:
1604.01685. url: http://arxiv.org/abs/1604.01685 (cit. on
p. 29).

[53] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. «Open3D: A
Modern Library for 3D Data Processing». In: arXiv:1801.09847
(2018) (cit. on p. 30).

[54] Karen Simonyan and Andrew Zisserman. «Very Deep Convolu-
tional Networks for Large-Scale Image Recognition». In: Inter-
national Conference on Learning Representations. 2015 (cit. on
pp. 31, 42).

[55] Olga Russakovsky et al. «ImageNet Large Scale Visual Recognition
Challenge». In: CoRR abs/1409.0575 (2014). arXiv: 1409.0575.
url: http://arxiv.org/abs/1409.0575 (cit. on p. 32).

[56] Yang Xiao, Xuchong Qiu, Pierre-Alain Langlois, Mathieu Aubry,
and Renaud Marlet. «Pose from Shape: Deep Pose Estimation for
Arbitrary 3D Objects». In: British Machine Vision Conference
(BMVC). 2019 (cit. on pp. 32, 45).

[57] Ruofei Du et al. «DepthLab: Real-Time 3D Interaction With
Depth Maps for Mobile Augmented Reality». In: Proceedings of
the 33rd Annual ACM Symposium on User Interface Software and

68

https://arxiv.org/abs/1805.04687
http://arxiv.org/abs/1805.04687
http://arxiv.org/abs/1805.04687
https://arxiv.org/abs/1604.01685
http://arxiv.org/abs/1604.01685
https://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575

BIBLIOGRAPHY

Technology. UIST. ACM, 2020. doi: 10.1145/3379337.3415881
(cit. on pp. 32, 35).

[58] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. «Open3D: A Mod-
ern Library for 3D Data Processing». In: CoRR abs/1801.09847
(2018). arXiv: 1801.09847. url: http://arxiv.org/abs/1801.
09847 (cit. on p. 38).

[59] OBB: Minimum-Volume Box Containing a Set of Points. https:
//www.geometrictools.com/Documentation/MinimumVolumeB
ox.pdf. Accessed: 2020-11-30 (cit. on p. 38).

[60] J. Canny. «A Computational Approach to Edge Detection». In:
IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-8.6 (Nov. 1986), pp. 679–698. issn: 1939-3539. doi: 10.
1109/TPAMI.1986.4767851 (cit. on p. 40).

[61] Matlab Rotm2eul: converts a rotation matrix to the corresponding
Euler angles. https://it.mathworks.com/help/robotics/ref/
rotm2eul.html. Accessed: 2021-09-30 (cit. on p. 55).

[62] Sandeep K. Singhal and Michael Zyda. Networked virtual envi-
ronments - desgin and implementation. Addison-Wesley-Longman;
ACM Press, 1999. isbn: 978-0-201-32557-7 (cit. on p. 59).

69

https://doi.org/10.1145/3379337.3415881
https://arxiv.org/abs/1801.09847
http://arxiv.org/abs/1801.09847
http://arxiv.org/abs/1801.09847
https://www.geometrictools.com/Documentation/MinimumVolumeBox.pdf
https://www.geometrictools.com/Documentation/MinimumVolumeBox.pdf
https://www.geometrictools.com/Documentation/MinimumVolumeBox.pdf
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://it.mathworks.com/help/robotics/ref/rotm2eul.html
https://it.mathworks.com/help/robotics/ref/rotm2eul.html

	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Problem definition
	Contribution
	Thesis outline

	Extended Reality Technologies
	Virtual Reality
	Augmented Reality
	Mixed Reality

	Literature Review
	Scanning solutions
	3D Deep Learning
	3D Data
	3D Reconstruction

	Single-View Scene Reconstruction
	Object-wise Mesh Prediction
	3D CAD Model Retrieval

	Multi-View Scene Reconstruction
	Object-wise Mesh Prediction
	3D CAD Model Retrieval

	Reconstruction from RGB-D scan
	Datasets
	Image-Based 3D Shape Retrieval

	The Proposed Solution
	Specifications
	System Overview
	Google ARCore
	HR-Net-W48 and Mseg
	Open3D
	VGG-19
	PoseFromShape

	Snapshots Acquisition
	Object Classification and Estimation of Object Position and Scale
	3D Model Retrieval
	Object Pose Estimation
	Scene Reconstruction and AR Visualization

	Experimental Evaluation
	Markers
	Camera Calibration

	Scaling Error
	Position Error
	Vertical Rotation Error

	Discussion
	Conclusion
	Future works

	Bibliography

