
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

An Extraction-Abstraction Hybrid
Approach for Financial Document

Summarization

Supervisors

Prof. Luca CAGLIERO

Dott. Moreno LA QUATRA

Dott. Jacopo FIOR

Candidate

Sofia PEROSIN

December 2021

Abstract

Nowadays, the quantity of data that a company manages is huge, and it is expected
that it will increase in the future. For this reason, it is particularly appealing to
design data-driven tools and methodologies capable of managing these pieces of
information. This thesis project aims at addressing this challenge, by implementing
a summarization pipeline, which is capable of offering an overview of the main
topics contained in the analyzed text, by creating the corresponding summary and
headline. To pursue this objective a procedure articulated in two main steps is
implemented: extractive summarization and abstractive summarization. Namely,
different approaches are analyzed to set up the first phase, instead the last step is
always implemented with a Transformer architecture. The general framework is
firstly tested on a general-purpose news dataset, to compare it with state-of-the-art
models, then it is finetuned on a financial news dataset, to generate a model
tailored to the financial news summarization problem. Future works should focus
on enhancing the reliability of the procedure, by creating more specific financial
datasets, that would be exploited to finetune the model. In fact, to the best of
our knowledge, there is a lack of public available financial datasets, and this sets a
limit to the achievable performances.

ii

Summary

In 2017, "The Economist" posted an article titled "The world’s most valuable
resource is no longer oil, but data", in which data are described as the new, lucra-
tive emerging commodity of the digital era: not by chance, most of the powerful
companies in the world rely on data advantage. The main critic to this analysis
was based on the fact that the competitive advantage is not uniquely related to
the quantity of data, but it relies mostly on the quality, the reliability and the
usability of data: companies must be able to exploit this information, because
data, generally speaking, on their own, do not guarantee success. A key point
that allows companies to get a sustainable competitive advantage from data, is the
capacity to get valuable insights from these sources, and this is strictly related to
the speed with which data relevance depreciates over time. In light of this, the
thesis’ work tries to address this issue, by analyzing some possible pipelines, to
deploy an instrument that may be used to get an at-a-glance overview of textual
data. Namely, the final scope is to obtain a model capable of working with financial
information, especially since they depreciate fast and so their potential value should
be exploited as soon as possible.

The branch of AI, Artificial Intelligence, that handles language information, is
NLP, Natural Language Processing. Which is in turn subdivided into NLU, Natural
Language Understanding, and NLG, Natural Language Generation. The former
looks at understanding the meaning of human language, the latter addresses the
challenge of text generation. In fact, NLP carries out a lot of different tasks on
human language as: Document Summarization, summarization of a document in a
shorter version preserving the general meaning, Machine Translation, translation
of a document from one language to another, Sentiment Analysis, understanding
the general opinion/mood characterizing a document.

A core component of NLP, is the LM, Language Model. This architecture is in
charge of ensuring the validity of the generated text. Namely, the concept of validity
is not simply related to the grammatical correctness, but it refers to the consistency
between the machine-generated text and human-writing style. Different Language

iii

Models have been proposed in the literature: firstly they were implemented through
Statistical Machine Learning, then Deep Learning techniques started to dominate
benchmarks. Currently, most of the SOTA State Of The Art models are based
on Transformer architecture, and also the procedure adopted in the final pipeline
proposed in this thesis’ work relies on it.

The focus of this project is to deploy a summarization pipeline to be applied to
financial documents. In fact, almost all of the benchmarks refer to general news
summarization or scientific papers summarization; and the same applies to the
available checkpoints to initialize the models. Therefore this thesis’ project aims at
starting to fill this gap, especially with regards to abstractive summarization, since
extractive summarization has already been further developed. In fact, to the best
of our knowledge, in the literature are not yet public available tested abstractive
models aimed at generating headlines for financial documents.

With regards to summarization (the task of interest of this work), there are
two approaches that can be followed to summarize a text: extractive or abstractive.
The main difference between these processes relies in the typologies of the obtained
final results: extraction produces a summary by selecting the most salient sentences
from the source text, abstraction composes a summary by analyzing the text and
creating new sentences (using also words that were not present in the original
document), in a more human-like style.

Going into procedural details of the proposed pipeline, starting from the original
text, firstly it is applied an extractive summarization to obtain a summary, then it
is exploited an abstractive summarization to get a headline. The overall process is
articulated in two steps because of a limitation of Transformer architecture: the
input must have a maximum length, and if its length exceeds the threshold, then
the model will automatically truncate the text, with the risk of losing important
information. For this reason, a first screening is done by selecting the most signifi-
cant sentences and only over those will be applied the abstractive step.

Transformer is a Language Model based on contextualized embeddings: it can
represent a word according to the context in which it is. Transformer presents an
encoder-decoder architecture, where both the encoder and decoder are a stack of
six identical layers. In the encoder each layer is made of a multi-head attention and
a feed forward network. In the decoder instead, each layer is composed by a masked
multi-head self-attention, a multi-head self-attention and a feed forward network.
The main mechanisms in this model are: positional encodings and the multi-head
attention. The former is used to fed into the model, not only the single word, but
also its position inside the sentence (to preserve the order); and to achieve this, it

iv

incorporates this information through a sinusoidal function. The latter helps the
model to focus on specific parts of the text, namely it allows for attending to parts
of the sequence differently.

Specifically, the suggested pipeline is implemented with PreSumm model for the
extractive summarization, and PEGASUS model for the abstractive summarization.

PreSumm is based on BERT, Bidirectional Encoder Representations from Trans-
formers, and it is characterized by some specific properties to make the model
suitable for summarization. Namely, it works at sentence-level representation, and
this is ensured by the usage of special tokens ([CLS], [SEP]) that allows to distin-
guish each sentence. Moreover, despite it is based on Transformer architecture, it
is not affected by length limitations with regards to the input text, thanks to some
modifications done to the structure of position embedding mechanism.

PEGASUS is, in turn, based on Transformer architecture. The peculiarity of
this model relies in the training modality. In fact, training is performed through a
self-supervised objective, which consists in masking whole sentences and generating
only these missing sentences starting from the remaining ones in the document, this
is the core component of PEGASUS : GSG, Gap Sentences Generation. Namely,
the masked sentences are right the ones which are considered more important,
according to a specific scoring.

The aim of the experiments is to test the implemented pipeline (and some
variations of it), to understand their capability of performing summarization task,
and to identify the best configuration to achieve the underlined purpose.

The final step consists in the evaluation of the obtained results. The perfor-
mances are measured by ROUGE score, in particular the metrics taken into account
are R1-Fscore, R2-Fscore and RL-Fscore. These refers to the accuracy registered
considering the overlapping between the reference summaries (or headlines) and
the generated ones. This overlay is computed taking into account uni-grams for
R1-Fscore, bi-grams for R2-Fscore and longest co-occurences for RL-Fscore.

Once defined, the pipeline has to be tested. Because of, as stated before, the
benchmarks are defined on general news dataset, to compare the proposed pipeline
with the SOTA techniques, a first assessment is done on NEWSROOM dataset.
This dataset consists of around 1.3 million articles collected from some major
publications, and it is very useful since it allows to test end-to-end the model,
because for each article it provides the corresponding summary and headline. The
performaces registered on NEWSROOM, compared with other proposed models in

v

the literature as SHEG for example, are quite satisfactory. In fact, the pipeline, in
summary generation, registers about 58% improvement on R2 compared to SHEG,
and about 42% improvement on R2 in headline generation.

Finally, after have ensured the reliability of the pipeline, it is applied to
REUTERS dataset. This is a financial news dataset, containing about 800000
articles. This collection allows to test the model on financial documents, although
it provides only the reference headline. To overcome the absence of the reference
summary, different techniques are tested to find the best choice to implement the
extraction step: lead k sentences selection, TextRank algorithm, PreSumm trained
in self-supervised way, PreSumm trained on NEWSROOM dataset. The most
valuable configuration turns out to be lead 3 sentences selection for the extraction,
along with PEGASUS for the abstraction.

However, since no benchmarks for summarization of financial documents are
public available, understanding the reliability of this pipeline on REUTERS dataset
is not possible. This is why, future work should move in this direction: commit
to creating a financial dataset for an end-to-end testing in such a way to obtain
an official benchmark to measure the goodness of a model on financial documents
summarization.

vi

Acknowledgements

Dedico questa tesi a mia mamma e a mio papà, che hanno sempre creduto in me,
sostenendomi nei momenti più difficili, e festeggiando con me i momenti più belli.

Un ringraziamento speciale va al mio relatore Luca Cagliero, e ai correlatori
Moreno La Quatra e Jacopo Fior che mi hanno affiancata durante lo svolgimento
di questo lavoro.

Alla mia famiglia, grazie.

Ad Aghi, Dile e Nai, le mie amiche di una vita. La prova che i legami veri
sopravvivono al tempo, alla distanza e a qualsiasi ostacolo si possa incontrare.

Ad Ange, il mio mare. A quelle amicizie che fanno giri immensi e poi ritornano,
più forti di prima. A tutte le risate, le uscite e le avventure di questi ultimi anni,
“per fortuna ci sei tu”.

A Lucia e Vale che mi hanno fatto sentire sempre la benvenuta, che mi hanno
accolto a braccia aperte.

Alle pallavoliste, i miei cuori.

A Dani e Manuel, a quelle amicizie nate da poco ma che capisci subito esser
importanti.

Ad Ari, alle insalate di pollo e crackers al mais, ai giri al Bennet, ai nodini agli
zaini perché non mi derubassero, e alle bottiglie in aeroporto. Sei stata una delle
prime amiche che ho trovato a Torino, mi hai fatto sentire a casa, e non potrò mai
ringraziarti abbastanza.

A Giulia, ai balli isterici prima dell’esame di Analisi I, agli Hit, al Twinings,
e ovviamente alla Romana e Cammafà. Ai telefoni che si scaricano di notte con

vii

la neve mentre stiamo spiegando al taxi dove siamo e ai ritorni magici dal Cacao.
Alla miglior coinquilina che potessi trovare, plagiata dal mio accento e dalle mie
manie.

A Sveva, a tutte le avventure, soprattutto a quelle che qui non è il caso di
elencare. Alle feste, allo Chalet che ha sancito la nostra amicizia, ai telefoni rubati,
ai notturni rincorsi. Alle domeniche passate all’Opera sgomitando per entrare. Ad
un’amicizia che né il tempo e né la distanza ha mai fatto affievolire.

A Fabri e Gabri, alle serate pizza e alla cena che ancora vi devo cucinare. Siete
stati le mie luci al primo anno, al mio “Perché i è uguale a due?” avete trovato la
forza e la bontà d’animo per farmi capire i cicli for; non sarei sopravvissuta al Poli
senza di voi.

Ad Adri, Bianca, Marta e Marti, le mie super colleghe che mi sono state accanto
durante questo percorso.

A Christian, il mio guru, che ad ogni dubbio e problema mi ha sempre aiutata.

A Irene, una persona dal cuore d’oro, che non ha esitato un momento ad aiutarmi
quando ero in difficoltà.

A tutti i miei amici, a chi c’era e a chi c’è, grazie, vi voglio bene.

Sofia

viii

Table of Contents

Acronyms xiii

1 Introduction 1

2 Natural Language Processing fundamentals 3
2.1 NLP framework . 3

2.1.1 Language Models . 4
2.2 Embeddings techniques . 5

3 Datasets 11
3.1 CNN/DailyMail . 12
3.2 GigaWord . 13
3.3 NEWSROOM . 14
3.4 Reuters rcv1 . 16

4 Related works 19
4.1 Overview . 19
4.2 Fundamental models . 21

4.2.1 TRANSFORMERS . 21
4.2.2 BERT . 26

4.3 Extractive Techniques . 27
4.3.1 MATCHSUM . 27

4.4 Abstractive Techniques . 30
4.4.1 BART . 30
4.4.2 PROPHETNET . 31
4.4.3 T5 . 33

4.5 Hybrid Techniques . 34
4.5.1 PGN . 34
4.5.2 SHEG . 36

x

5 Proposed model 39
5.1 Overview . 39
5.2 Extractive Summarization - PreSumm 40

5.2.1 Overview . 40
5.2.2 Main variations to BERT model 40
5.2.3 Architecture . 41

5.3 Abstractive Summarization - PEGASUS 43
5.3.1 Overview . 43
5.3.2 Architecture . 43

5.4 Performance Evaluation . 45
5.4.1 Rouge Score . 45
5.4.2 BERTScore . 47

6 Experimental Design 48
6.1 Introduction . 48
6.2 Candidate model evaluation . 49

6.2.1 Screening for the Extraction step 49
6.2.2 Screening for the Abstraction step 50

6.3 Extractive step . 52
6.3.1 Random k sentences . 52
6.3.2 Lead k sentences . 52
6.3.3 Text Rank algorithm . 52

6.4 Experiments on Newsroom . 54
6.4.1 Tested pipelines . 54
6.4.2 Results . 55
6.4.3 Best performing models . 61

6.5 Experiments on Reuters . 61
6.5.1 Tested pipelines . 65
6.5.2 Results . 67
6.5.3 Best performing models . 68

7 Conclusions and final remarks 73
7.1 Conclusions . 73
7.2 Future works . 74
7.3 Final remarks . 74

Bibliography 75

xi

Acronyms

AI
Artificial Intelligence

BART
Bidirectional and Auto-Regressive Transformers

BERT
Bidirectional Encoder Representations from Transformers

CAC
Controlled Actor-Critic

CNN
Convolutional Neural Network

CRF
Conditional Random Fields

ELMo
Embeddings from Language Models

GPT
Generative Pre-trained Transformer

GSG
Gap Sentences Generation

LDA
Latent Dirichlet Allocation

xiii

LM
Language Model

LST
Long Short-Term Memory

MLM
Masked Language Model

NLG
Natural Language Generation

NLP
Natural Language Processing

NLU
Natural Language Understanding

NSP
Next Sentence Prediction

PGN
Pointer-Generator Networks

PPMI
Positive Pointwise Mutual Information

RNN
Recurrent Neural Network

ROUGE
Recall-Oriented Understudy for Gisting Evaluation

SOTA
state of the art

SVD
Singular Value Decomposition

xiv

SVM
Support Vector Machines

T5
Text-to-Text Transfer Transformer

xv

Chapter 1

Introduction

Now more than ever, the amount of information is very huge, but the time available
to spend on managing these data is declining. So it is very important to be able to
exploit this information in an efficient way, since data on their own, do not guaran-
tee success. A key point that allows companies to get a sustainable competitive
advantage from data, is the capacity to get valuable insights from these sources,
and this is strictly related to the speed with which data relevance depreciates over
time. That is why it is very useful to get an instrument which allows to get a
preview of all this information, may producing a concise summary with the most
salient details. This is even more true for companies operating in financial sectors:
they have to make decisions quickly, and despite they have gathered a lot of data to
support their strategies, it could happen that it is not feasible for them to process
all of the information on time, especially if it is encoded by textual corpora.

Focusing on the task of interest, summarization, two approaches can be adopted:
extractive and abstractive. The former produces a summary by selecting the most
salient sentences from the source text, the latter composes a summary by analyzing
the text and creating new sentences in human-fashion way. The aim of this work is
to analyze some strategies in support to this process, by offering an instrument
capable of summarizing text, and producing also a concise headline to get an at-a-
glance view of the topic. Namely, the final objective it is to construct a pipeline
suitable for working with financial news. In fact, to the best of our knowledge,
in the literature are not yet public available tested abstractive models aimed at
generating headlines for financial documents.

The first part of this dissertation is devoted to analyzing the branch of AI which
deals with summarization task, NLP (Natural Language Processing) and its core
component, LM (Language Model), that is the architecture which is in charge of
ensuring the validity (in the sense of consistency between the machine-generated

1

Introduction

text and human-writing style) of the created sentences. Different LMs have been
proposed in the literature, and currently, the state-of-the-art is represented by
the Transformer architecture. This work has also explored the literature to look
for datasets suitable for doing a comparison between the proposed pipelines and
previous works, and making the model suitable for working with financial data.
Moreover, state-of-the-art techniques are analyzed, to understand the best models
to implement in the final pipeline; mainly focusing on Transformer, a Language
Model based on contextualized embeddings. This architecture is articulated in an
encoder-decoder structure, where both encoder and decoder are made up by a stack
of 6 identical layers. In the encoder each layer is made of a multi-head attention
and a feed forward network. In the decoder instead, each layer is composed by a
masked multi-head self-attention, a multi-head self-attention and a feed forward
network.

The analysis of state-of-the-art techniques is followed by the presentation of the
proposed pipeline. In this framework, the first step is implemented through an
extractive summarization to get the summary, and then, an abstraction summariza-
tion is exploited to obtain the corresponding headline. It has been decided to adopt
this hybrid approach because Transformer architecture suffers from dealing with
long text. In fact, the input must have a maximum length, and if its length exceeds
the threshold, then the model will automatically truncate the document, with the
risk of losing important information. Because of that, firstly the most important
sentences are selected, in order to feed to the Transformer a shorter input.

Specifically, the extraction is performed by PreSumm, while the abstraction is
implemented through PEGASUS ; these two models will be further described in
the dissertation.

Finally, the obtained results are tested with ROUGE score, a metric that takes
into account the overlapping between the reference summaries (and the reference
headlines) and the corresponding generated ones.

As previously mentioned, to the best of our knowledge, no public benchmarks for
abstractive financial summarization are available. For this reason, the reliability of
the pipeline is firstly ensured by testing it on NEWSROOM, a general news dataset,
because in this way it is possible to compare the pipeline with state-of-the-art
techniques. After that, the framework is used to generate summaries and headlines
for REUTERS, a financial news dataset. However, understanding the reliability of
the pipeline on REUTERS dataset is not possible. This is why future work should
move in this direction: commit to creating a financial dataset for an end-to-end
testing in such a way to obtain an official benchmark to measure the goodness of a
model devoted to financial documents summarization.

2

Chapter 2

Natural Language
Processing fundamentals

2.1 NLP framework
Natural Language Processing (NLP) is that branch of AI, Artificial Intelligence,
that looks at understanding and replicating human languages.

Many challenges can be addressed with NLP, for example:

• Document Summarization, summarization of a document in a shorter
version, preserving the general meaning

• Machine Translation, translation of a document from one language to
another

• Sentiment Analysis, understanding the general opinion/mood stored in a
document

Altogether, NLP is divided into two main categories: NLU and NLG.
Natural Language Understanding (NLU), looks at understanding the meaning

of human language; instead Natural Language Generation (NLG), addresses the
challenge of text generation.

These are very tough challenges, which must deal with many different problems,
as has been shown in [1]:

• Ambiguity regarding the syntax, the concepts interpretation, the lexis.
For example, the sentence “I am very happy to be here, and so is Giulia” can
be interpretated as “Giulia and I are both happy that I am here” or also “I
am happy to be here, and Giulia is happy to be here” (syntactic ambiguity).

3

Natural Language Processing fundamentals

Another example could be: the word “Will” inserted at the begging of a
sentence, indicates the name of a person or the future tense helping verb?

• Figurative language, namely those slangs of which the meaning behind is
not directly understandable from the written expression.
An example could be the expression “ghosting” (the cutting of communication).

• Common sense knowledge, there are ambiguities that can be solved only
by reasoning.
In fact, it is very simple for a human to understand that the sentence “I saw
a mouse in the barn” refers to a view of an animal, but this is not for an NLU
model, which struggles to understand if “mouse” refers to the animal or the
pointing device.

2.1.1 Language Models
LM, Language Models are the core components of NLP, they are in charge of
constructing (understanding) a sentence which is reasonable according to the
grammar rules of the language.

Originally, LM models were implemented through Machine Learning: Statistical
Machine Learning techniques started to dominate benchmarks. These approaches
relied on kth order Markov assumptions, and the probability of the analyzed sentence
was calculated according to the statistics of k−gram frequencies in a large text
corpus. For example SVM (Support Vector Machines) was widely used in sentiment
analysis [1].

The next revolution occurred with deep learning, where network architectures
like LSTM (Long Short-Term Memory) and CNN (Convolutional Neural Network)
were exploited. The neural models belonging to this category, like RNN and
Transformer, in fact allow to face with the curse of dimensionality (when data
become very sparse because they are represented in a high-dimensional space), and
represent a step forward compared to machine learning techniques [1].

Currently, the benchmarks are mostly dominated by models based on Trans-
formers architecture, which will be deepened in later sections.

4

2.2 Embeddings techniques
One of the most important steps in NLP is the encoding of the language information
in a low-dimensional vector space. Different techniques can be adopted to implement
this process:

• Word Embeddings

• Graph Embeddings

• Sense Embeddings

• Contextualized Embeddings

• Sentence and Document Embeddings

An overall introduction will be done for all the listed techniques, to get a
general overview. Then, the approaches adopted in this dissertation will be detailed
properly.

Word Embeddings
Traditional approach

The traditional approach is the so called Count Based model, which looks at
constructing a matrix where word frequencies are stored. Different matrices can be
used to store this information. For example in the Word-context matrix the columns
and the rows correspond to the words, each cell will contain the co-occurrences of
the two words in the document.

Since raw values do not provide much information, the PPMI (Positive Point-
wise Mutual Information) takes into account the co-occurrences of the words by
normalizing these measures by the frequency of each word. In this way it is possible
to get how likely to happen are the co-occurrences [1].

It is easy to foresee how a dimensionality reduction is needed in these cases.
In fact since each column, and row, corresponds to a word in the vocabulary, the
dimension of the matrix could increase exponentially.

One of the most used techniques is SVD, Singular Value Decomposition. This
consists in factorizing the initial matrix, M, into three smaller matrices:

M = UΣV ∗

Σ contains the singular values (the values in its diagonal), and also with only a set
of this values it is possible to reconstruct the initial matrix M [1].

Natural Language Processing fundamentals

Word2vec

The novel approach introduced with Deep Learning constructs the Embedding
exploiting neural networks.

One of the more famous techniques with regards to Word Embeddings is
Word2vec.This is characterized by a feedforward neural architecture, trained
with language modelling objective.

An example of Word2vec model is the Continuous Bag-Of-Words. This, exploit-
ing the surrounding context, looks at predicting the current word by minimizing
the loss

L = −log(p(w⃗t|W⃗t))

where w⃗t is the target word and W⃗t indicates the sequence of words the context [1].
Moreover, another variant of Word2vec is Skip-gram, which is very similar

to the former, but the main difference is that in this case the algorithm tries to
predict the words in the context given the target word [1].

Graph Embeddings
Nowadays, a lot of information is represented through graph structures. This is the
reason why, a specific technique to encode this kind of knowledge is very useful.

There are two main approaches [1]:

• Node embedding, where the graph’s nodes are embedded in a semantic space
by preserving the distances

• Relation embedding, where the graphs’s edges are the subjects of attention

Focusing on Node embedding, one of the most famous techniques is Autoencoder-
based model. The main idea is to train the autoencoder to encode the repre-
sentation from which it can be reconstructed the original input. This process is
articulated in two main steps:

• a context vector is extracted for each node

• the context vector is encoded by the autoencoder into a lower dimensional
space

The general idea, depicted in figure 2.1, consists in starting from a node (node
number 3 in orange in the image) and to extract the context vector, which in this
example is based on adjacency statistics. Then, the autoencoder will compress this
extracted vector in a smaller embedding [1].

6

Natural Language Processing fundamentals

Figure 2.1: Graph embedding [1]

Sense Embeddings
The main objective of this approach is to deal with ambiguous lexical meaning.
Two main strategies can be followed:

• Unsupervised

• Supervised

The former exploits only the information contained in the input text: by
analysing the context, the model predicts different sense for each word. There are
two sub-categories inside unsupervised sense embeddings :

• clustering-based, which is articulated in two steps (firstly sense induction, then
representation learning). As depicted in figure 2.2, firstly the algorithm gets
the occurrences of the analyzed word, then studies the contexts and infers the
senses for the word, finally computes the sense representation [1]

• joint training, which performs both step together

Figure 2.2: Sense embedding [1]

In supervised sense embedding, instead the model relies on external sources
to enhance its overall sense knowledge. The main sources exploited are textual
definitions (sense embedding model is initialized with pre-trained word embedding)
and semantic networks (where nodes are concepts and edges are the relations
between concepts) [1].

7

Natural Language Processing fundamentals

Sentence and Document Embeddings
This approach is very interesting since it allows to embed longer units of meaning.

With regards to Sentence Embeddings, there are two approaches: unsuper-
vised and supervised. An example of the former is the Sentence-level training
of word. This model aims at predicting surrounding sentences given an inputted
one. Skip-Thought, through an RNN architecture, encodes the input sequence into
an intermediate representation, and by decoding this intermediate representation,
the generated sentence is obtained. An example is reported in figure 2.3, where
it is possible to see how firstly, the algorithm encodes the given phrase in an
intermediate representation, then the decoder starting from this result, produces
the output sequence [1]. Instead for Supervised sentence embeddings, the main
architecture is similar to the previous one, but in this case it is taken into account
also additional text corpora.

Specifically, Sent2Vec and Doc2Vec are two models for this typology of embed-
ding, and they derives from Word2Vec. In fact, the result is very similar to the one
obtained with Word2Vec: word vectors (as in Word2Vec) plus sentence vectors (for
Sent2Vec) or document vectors (for Doc2Vec).

Figure 2.3: Unsupervised sentence embedding [1]

8

Contextualized Embeddings
This typology deserves a particular attention, since Transformers architecture
(widely used in state-of-the-art techniques) is the core component of this approach.

The power of this embedding lies on its capability of representing a word
according to the context in which it is: the same word in different contexts can be
represented in different ways, this is a dynamic embedding.

In fact, the weakness of word embedding techniques, as Word2vec, is the fixed
representation for each word. Regardless of the context, the same word will be
represented always in the same way: the context is ignored and higher order
semantic phenomena can’t be caught [1].

Moreover, Contextualized Embedding does not need of external resources: the
learning process is totally unsupervised.

Contextualized Embedding is integrated in NLP model. It results to be an
internal state of the neural network, and according to the typology of encoder
implemented, it can be identified two main categories of embeddings: RNN and
Transformer.

RNN-Based models In this case, the main architecture is a LSTM-based
encoder. RNNs present some advantages as:

• capability of dealing with words order

• capability of giving more attention to those words semantically closer to the
context

An example of this strategy is ELMo (Embeddings from Language Models).
ELMo, as it is depicted in figure 2.4, is composed of 2-layer bidirectional LSTM
with some residual connections in between the LSTMs.

This model is trained according to a language modelling objective, and it is
then employed to get the contextualized embedding used as input in different NLP
models [1].

Transformer-Based models Transformer architecture presents many advan-
tages with respect to RNN, for example the possibility of parallelization and the
capability of processing the input in a bi-directional way. Different models, based
on Transformers architecture, were adopted to perform Contextual Embedding:

• GPT, Generative Pre-trained Transformer. Its architecture takes only the
decoder of the Transformer, and its objective is to predict a word given a
sequence of words [1]

• BERT, Bidirectional Encoder Representation form Transformer. Its architec-
ture consists in the Transformer’s encoder, and it will be deepened lately.

Natural Language Processing fundamentals

Figure 2.4: ELMo architecture [1]

10

Chapter 3

Datasets

This dissertation at building a summarization pipeline able to deal with financial
documents.

The starting point consists in testing the analyzed methods through well-known
datasets, employed to bechmark state-of-the-art algorithms, in order to identify
the best performing models. In pursuit of this cause, the following datasets are
exploited:

• CNN/DailyMail [2]

• GigaWord

• NEWSROOM [3]

The available checkpoints on these datasets will be then used as starting point for
final models finetuning.

Furthermore, in the last step, a specific financial dataset is used, to obtain a
final model suitable for financial document summarization:

• Reuters rcv1 [4]

11

3.1 CNN/DailyMail
This dataset consists of around 300k articles written by CNN and Daily Mail
journalists. The used version is the one offered by HuggingFace Datasets library,
which contains:

• 287113 training samples

• 13368 validating samples

• 11490 testing samples

Each record is made of two features:

• article, the body of the article

• highlights, the corresponding highlights of the article

For the sake of completeness, an example is reported in table 3.1.

article highlights
"(CNN) – The 2013 America’s Cup
will be faster than ever after or-
ganizers announced that wingsail
catamarans will be the vessels of
choice. The race has historically
been between yachts with a single
hull, however the 34th edition of
the contest will be between multi-
hull vessels with wings rather than
traditional sails. This means the
boats will travel faster through the
water, with top speeds in excess of
30 knots, almost three times as fast
as in the past. The Golden Gate
Yacht Club, hosts of the 2013 race
and holders of the cup, have also
announced a new, shorter race for-
mat for the competition.
"

"The 34th America’s Cup will take
place on faster wingsail catama-
rans . An annual America’s Cup
World Series will begin in 2011, ac-
cording to organizers . A youth
competition will also be introduced
in 2012 to boost interest among
youngsters."

Table 3.1: CNN/DailyMail example

3.2 GigaWord
This dataset consists of around 4 million articles collected from Gigaword. The
used version is the one offered by HuggingFace Datasets library, which contains:

• 3803957 training samples

• 189651 validating samples

• 1951 testing samples

Each record is made of two features:

• document, the body of the article

• summary, the corresponding headline

For the sake of completeness, examples are reported in table 3.2.

document summary
"us roman catholic bishops on
wednesday charged that immigra-
tion raids on us workplaces break
up families and disrupt communi-
ties , without addressing the coun-
try ’s flawed immigration system."

"us catholic bishops condemn us
immigration raids"

"facebook ’s new look became
mandatory wednesday in a shift to
what the popular social networking
website says is a faster , stream-
lined and more UNK format that
has some devotees in a state of re-
bellion ."

"facebook makeover nettles some
devotees"

Table 3.2: GigaWord examples

3.3 NEWSROOM
This dataset consists of around 1.3 million articles collected from 38 major publica-
tions.

It is very useful since, thanks to the availability of article, summary and title, it
allows to train and test the model end-to-end.

The used version is the one downloaded from Cornell site (https://lil.nlp.
cornell.edu/newsroom/index.html), manual download is required. It contains:

• 995041 training samples

• 108837 validating samples

• 108862 testing samples

Each record is made of twelve features:

• url, URL of the article

• archive, URL of the archive

• title, headline of the article

• date, date of the article

• text, body of the article

• summary, summary of the article

• compression, compression ratio

• coverage, extractive coverage

• density, extractive density

• compression bin, it can be: low, medium, high

• coverage bin, it can be: extractive, abstractive

• density bin, it can be: low, medium, high

However, for the scope of the work, only text, summary and title fields will be
used, and the remaining ones are discarded.

For the sake of completeness, an example is reported in table 3.3.

https://lil.nlp.cornell.edu/newsroom/index.html
https://lil.nlp.cornell.edu/newsroom/index.html

Datasets

text summary title
"By HOLLY RAMER,
Associated Press CON-
CORD, N.H. – A sick
American engineer who
was successfully evac-
uated from the South
Pole to New Zealand
is awaiting the results
of medical tests after
having what doctors be-
lieved was a stroke in
August. Renee-Nicole
Douceur told The Asso-
ciated Press in an email
Tuesday that she had
MRI and echocardio-
gram exams. She said
results will be shared
with doctors in the
United States, "so ev-
eryone will be on the
same page."

"By HOLLY RAMER,
Associated Press CON-
CORD, N.H. – A sick
American engineer who
was successfully evac-
uated from the South
Pole to New Zealand
is awaiting the results
of medical tests after
having what doctors be-
lieved was a stroke in
August."

"Renee-Nicole Douceur
Rescued: Sick South
Pole Engineer Gets
Tests For Possible
Stroke"

Table 3.3: NEWSROOM example

15

3.4 Reuters rcv1
This dataset consists of more than 800000 Reuters News.

Its strength is that it contains a lot of financial news, and in this way it is
possible to build a model suitable for financial-topics summarization.

Preprocessing
This dataset has to be requested at NIST (National Institute of Standards and
Technology) and it requires some preprocessing, especially to ensure its compatibility
with the purpose of this work.

Each .xml file presents some or all of the following fields:

• title, it is composed by a country code and the headline

• headline, headline of the news

• byline, author of the news

• dateline, date of the news

• text, body of the news

• copyright, copyright of the news

• metadata, additional information about the news, as the topics category, the
industry category, the country

The first step of data cleaning consists in converting all the news in a new format
where only headline, text and metadata fields are considered, and those elements
which do not present one or more of these fields are discharged.

Then, in the second step, all that elements that have a None headline or do not
belong to any of the financial topics categories identified (listed in table 3.4) are
eliminated.

Finally, the resulting dataset is split in train (70%, 562110 records), valid (15%,
120452 records) and test (15%, 120453 records) sub-datasets.

For the sake of completeness, an example is reported in table 3.5.

Datasets

Financial Code list
"CURRENT NEWS - ECO-
NOMICS

CURRENT NEWS - INSURANCE

CURRENT NEWS - BUSINESS
NEWS

STRATEGY/PLANS

LEGAL/JUDICIAL REGULATION/POLICY
SHARE LISTINGS PERFORMANCE
ACCOUNTS/EARNINGS ANNUAL RESULTS
COMMENT/FORECASTS INSOLVENCY/LIQUIDITY
FUNDING/CAPITAL SHARE CAPITAL
BONDS/DEBT ISSUES LOANS/CREDITS
CREDIT RATINGS OWNERSHIP CHANGES
MERGERS/ACQUISITIONS ASSET TRANSFERS
PRIVATISATIONS PRODUCTION/SERVICES
NEW PRODUCTS/SERVICES RESEARCH/DEVELOPMENT
CAPACITY/FACILITIES MARKETS/MARKETING
DOMESTIC MARKETS EXTERNAL MARKETS
MARKET SHARE CONTRACTS/ORDERS
DEFENCE CONTRACTS MONOPOLIES/COMPETITION
MANAGEMENT MANAGEMENT MOVES
LABOUR CORPORATE/INDUSTRIAL
ECONOMIC PERFORMANCE MONETARY/ECONOMIC
MONEY SUPPLY INFLATION/PRICES
CONSUMER PRICES WHOLESALE PRICES
CONSUMER FINANCE PERSONAL INCOME
CONSUMER CREDIT RETAIL SALES
GOVERNMENT FINANCE EXPENDITURE/REVENUE
GOVERNMENT BORROWING OUTPUT/CAPACITY
INDUSTRIAL PRODUCTION CAPACITY UTILIZATION
INVENTORIES EMPLOYMENT/LABOUR
UNEMPLOYMENT TRADE/RESERVES
BALANCE OF PAYMENTS MERCHANDISE TRADE
RESERVES HOUSING STARTS
LEADING INDICATORS ECONOMICS
SOCIAL AFFAIRS EUROPEAN COMMUNITY
EC INTERNAL MARKET EC CORPORATE POLICY
EC MONETARY/ECONOMIC EC INSTITUTIONS
EC COMPETITION/SUBSIDY GOVERNMENT/SOCIAL
LABOUR ISSUES WELFARE, SOCIAL SERVICES
EQUITY MARKETS BOND MARKETS
MONEY MARKETS INTERBANK MARKETS
FOREX MARKETS COMMODITY MARKETS
SOFT COMMODITIES METALS TRADING
ENERGY MARKETS MARKETS
EURO CURRENCY "

Table 3.4: Table with financial topics list

17

Datasets

text headline
"The higher minimum wage signed
into law Tuesday will be welcome
relief for millions of workers, but
it may also translate into higher
prices for hamburgers, pizzas and
other fast-food items, some restau-
rant chains said. The 90-cent-an-
hour increase will have little short-
term impact on many fast-food
chains that already pay workers
rates above the federally mandated
minimum. But in the long run, in-
dustry officials fear that workers
already earning above the new min-
imum wage, which will rise to"

"Chains may raise prices after min-
imum wage hike."

Table 3.5: Reuters example

18

Chapter 4

Related works

4.1 Overview
Many works have tried to face with text summarization task, adopting different
methodologies:

• extractive approach

• abstractive approach

• hybrid approach

Extractive approach
Extractive text summarization directly identifies the most important sentences in
the input text, and the final summary consists exactly in these selected phrases.

Figure 4.1: Extraction process [5]

19

Related works

Abstractive approach
Abstractive text summarization is a quite new proposed method which aims
at generating summaries by an intermediate representation: it paraphrases the
sentences with new words which may not be present in the original input.

The result is a summary more similar to the ones produced by humans.

Figure 4.2: Abstraction process [5]

Hybrid approach
This method is a combination of extractive and abstractive techniques, and it is
useful to make up for some weakness of the abstractive approach.

In fact, most of the well-known (and state of the art) abstractive techniques
are not capable to work with documents having a size bigger than a specific upper
bound.

This is the reason why, when a long document has to be addressed, it could be
very useful to firstly apply an extractive phase to reduce its length, and feed this
result to the abstractive algorithm, that it is now able to deal with the new smaller
version.

Figure 4.3: Hybrid process, defined in [5]

20

4.2 Fundamental models
4.2.1 TRANSFORMER
The basic structure on which most of the state of the art techniques rely, is the so
called Transformer [6], so it is worth to mention this architecture.

It represents an alternative to RNN encoder-decoder architecture, and its
strength relies on the possibility of parallelization (that allows to speed up the
process), and on the adoption of a attention mechanism (to attend relevant textual
units for context representation).

Architecture

Figure 4.4: Transformers architecture, defined in [6]

Figure 4.4 presents the analyzed architecture. The encoder is made of a stack
of 6 (N=6) identical layers, each of them composed by:

• a multi-head self-attention mechanism [6]

Related works

• a position-wise fully connected feed-forward network [6]

Meanwhile, the decoder is also made of a stack of 6 (N=6) identical layers, each
of them composed by:

• a masked multi-head self-attention [6] (useful to guarantee that predictions
for a certain position k are created using only the known outputs at positions
less than k)

• a multi-head self-attention mechanism working on the encoder’s output [6]

• a position-wise fully connected feed-forward network [6]

Each of the sub-layers, of the encoder and decoder, is supported by a residual
connection plus a layer normalization.

Positional Encodings

Figure 4.5: Positional Encodings [6]

The first problem that Transformer has to address is the capability of preserving
the order of words in the sentences.

To face with this issue the initial step consists in adding Positional Encodings
(figure 4.5) to the standard input. Specifically, these Positional Encodings are
constructed through two sinusoidal functions which make aware the model with
the information about the position of the token:

PE(pos,2i) = sin(pos/100002i/dmodel) [6]

PE(pos,2i+1) = cos(pos/100002i/dmodel) [6]

where pos is the position, and i the dimension.

22

Related works

Multi-Head Attention

The attention mechanism is a key component of Transformer architecture because
it allows the model to focus on different part of the text. Specifically, when the
encoder, or the decoder, is processing a token, the attention mechanism enables to
consider also other words in the input sentence, in such a way to get an overall
perspective of the entire text.

Namely, the attention improves the understanding capacity of the model: this
mechanism allows to relate the analyzed word to the other words in the text.

The main component is the Scaled Dot-Product Attention (depicted in
figure 4.6), which is articulated in some calculations:

• MatMul, a matrix dot-product between Query and Key. Namely,

MatMul(Q, K) = QKT

• Scale, MatMul results are scaled by a factorñ
dk

to avoid that large values obtained in the previous step mess up with softmax
computation

• Mask, optional padding mask (Transformers assume that all the input vectors
have the same fixed length, in case in which the sequence is longer, it is
truncated, instead if it is shorter, it could be padded with zeros)

• Softmax, the results are finally passed to fit the interval [0,1], as a probability
distribution

The entire process performed in the Scaled Dot-Product Attention can be
summarized as follows:

Attention(Q, K, V) = softmax(QKT

√
dk

)V

Going back to the overall multi-head attention mechanism 4.7, the input is split
into h parts, each composed of Queries (Q), Keys (K) and Values (V) having a
depth calculated according to:

d = dmodel//h

In [6] the authors adopted h=8.
The three vectors are passed to the Scale dot product and then concatenated,

resulting in 1 vector.

23

Related works

Figure 4.6: Scaled Dot-Product Attention [6]

Feed Forward

The last step consists in passing the resulting vector to a Feed-Forward neural
network layer (depicted in figure 4.8), which is a two-layers linear transformation
with a ReLU activation. This phase is important because it allows to convert the
output from an attention layer, into a suitable form for the input of the following
attention layer.

24

Related works

Figure 4.7: Multi-Head Attention [6]

Figure 4.8: Feed Forward layer [6]

25

4.2.2 BERT
BERT, presented in the paper [7], is the most famous transformer-based sentence
encoder.

BERT stands for Bidirectional Encoder Representations from Transformers, so
as the name anticipates it is a multi-layer bidirectional encoder of Transformers
architecture.

The training process is composed of two main steps: pre-training and fine-tuning.
The former is a task-agnostic step, the latter instead is performed using specific
data according to the downstream task.

Pre-training

Specifically, the pre-training is performed with two unsupervised tasks:

• MLM, Masked LM, is implemented according to the following procedure: 15%
of the tokens are selected, 80% of them are replaced with [MASK] tokens, 10%
remain unchanged, 10% are substituted with random tokens. The training
consists in predicting only the masked words

• NSP, Next Sentence Prediction, is important to train the model at under-
standing the relations between sentences. This is performed thanks to a binary
classifier, which is in charge of define if, given two selected sentences A and B
(where B follows A in the 50% of the selected pairs), B is the actual sentence
that follows A

Finetuning

Finally, there is finetuning. This step, starting from the parameters obtained in
the pre-training, makes the model suitable for the specific task. This part is much
less expensive with respect to the former step.

4.3 Extractive Techniques
4.3.1 MATCHSUM
This framework, presented in [8], proposes a new approach: instead of working
at sentence-level, it looks at summary-level, in this way the task is treated as a
semantic text matching problem.

General framework

Figure 4.9: MatchSum framework [8]

Given D, the starting document, and C*, its golden summary, C is a candidate
summary.

The main idea is to get the semantic embedding of the document and each
summary, using a BERT encoder.

Then, intuitively, the summaries that are more semantically similar to the
document should be closer to its representation in the semantic space (figure 4.9).

The ROUGE of a candidate summary is calculated with respect to the golden
summary through 2 levels:

• sentence-level score (average overlaps between each sentence of the candidate
and the golden summary)

• summary-level score (similar to sentence-level, but here the sentences are
considered as a whole)

After ROUGE calculation, some particular candidates are identified:

• Pearl-Summary, it is the summary with a higher summary-level score and
a lower sentence-level score

Related works

• Best-Summary, it is the summary with the highest summary-level score

Researches found out that the probability that the best summary is a pearl-summary
is directly related to the specific dataset, this suggests that the extractor should be
decided according to the dataset under analysis.

Architecture

The adopted architecture is a Siamese-BERT based on pre-trained BERT: it is made
of 2 BERTs with a cosine-similarity layer during the inference phase. Since it works
at summary-level, BERT is used to create semantically meaningful embeddings of
the document and the candidate summaries, to match the document D and the
candidate summary C.

The finetuning is performed by two loss functions:

• margin-based triplet loss, it is based on the semantic similarity between the
gold summary and the source document.

L1 = max(0, f(D, C)− f(D, C∗) + λ1)

where

– f(D, C) = cosine(rD, rC) is the function used to measure the similarity
score between D and C

– rD is the embedding of D
– λ1 is a margin value

• pairwise margin loss, it takes into account all the candidate summaries.

L2 = max(0, F (D, Cj)− f(D, Ci) + (j − i)λ2)

where

– i < j

– f(D, Ci) = cosine(rD, rCi
) is the function used to measure the similarity

score between D and Ci

– rD is the embedding of D
– λ2 is a parameter to highlight good and bad candidate summaries

And finally, the final loss results in:

L = L1 + L2

28

Related works

The inference step consists in looking for the best summary across the ones
created from the starting document.

To face with the curse of combinations, a strategy is adopted to prune some
candidates. Specifically, PreSumm algorithm is used to prune meaningless sentences.

Then, with the remaining sentences, all the possible combinations are analyzed.

29

4.4 Abstractive Techniques
4.4.1 BART
BART, proposed in [9], Bidirectional Auto-Regressive Transformers, is an architec-
ture based on BERT and GPT.

With respect to BERT, the pretraining step consists of two phases: corruption
of the text and reconstruction of it.

Architecture

Specifically, the architecture is made of a bidirectional encoder and a left-to-right
autoregressive decoder, as shown in figure 4.10. The corrupted document is encoded
by a bidirectional encoder, and then an autoregressive decoder is used to compute
the likelihood of the original text.

Figure 4.10: BART architecture [9]

This model is very close to BERT, but BART does not present the feed-forward
network before word prediction, instead every single layer of the decoder computes
cross-attention over the final hidden layer of the encoder.

As anticipated before, BART is pre-trained by a corruption function and then
the entire document is reconstructed. Many typologies of noising functions are
admitted, but it turns out that the best performances are reached when text infilling
and sentence permutation are exploited.

Text infilling consists of sampling text spans (with a length according to a
Poisson distribution, with parameter λ = 3), and replacing each of them with
[MASK].

Sentence permutation instead involves the random shuffling of the sentences.
Fine-tuning phase depends on the downstream task analyzed; in case of summa-

rization objective, the model is treated as a sequence-to-sequence model from the
input to the output text.

4.4.2 PROPHETNET
This model, proposed in [10], presents an architecture based on Transformers,
despite some modifications are implemented:

• different self-supervised objective: future n-gram prediction

• n-stream self-attention mechanism

• mask based auto-encoder denoising task for pre-training

Architecture

Figure 4.11: ProphetNet Architecture [10]

With reference to figure 4.11, on the left is possible to see the encoder and on
the right the decoder. The encoder is unmodified with respect to the one proposed
in the original Transformers architecture, instead the decoder is enriched with the
n-stream self-attention.

The overall pre-training process consists in predicting the masked tokens, indi-
cated by "_" in the figure, given the remaining tokens xi.

Future N-gram Prediction ProphetNet looks at predicting at each time step t,
the next continuous n future tokens.

So, given the input sequence, x = x1,, xN :

• the encoder encodes it: Henc = Encoder(x1,, xN)

Related works

• the decoder predicts the future n-grams: p(yt|y<t, x),, p(yt+n−1|y<t, x) =
Decoder(yt, Henc)

N-Stream Self-Attention This mechanism is implemented, in addition to
the standard multi-head self-attention, to allow the prediction of future tokens,
previously described.

Namely, the kth stream is in charge of predicting the probability p(yt+k−1|y<t, x).

32

4.4.3 T5
T5 (Text-to-Text Transfer Transformer), described in [11], is a model based on
Transformer architecture, and few changes have been made:

• the layer Norm bias is removed

• the layer normalization is outside the residual path

• it is used a relative positional embedding, instead of the fixed sinusoidal
embedding

The main goal of this model is to set up a unified framework to allow that the
same model and the same training procedure (maximum likelihood objective) can
be applied to every task.

To do so, every text problem must be converted into a text-to-text format, as
depicted in figure 4.12

Figure 4.12: T5 [11]

This approach is justified by the effort to pre-train the model on a, as large as
possible, dataset, to obtain general knowledge that can be transferred to specific-
downstream tasks.

Furthermore, the pre-training is implemented throught a span corruption objec-
tive with a mean span length of 3 and corruption ratio of 15%.

Then, the model is finetuned according to the downstream task.

4.5 Hybrid Techniques

4.5.1 PGN
PGN, Pointer-Generator Network, was proposed in 2017 in the paper [12].

Architecture

Figure 4.13: Model architecture [12]

The encoder is a single-layer bidirectional LSTM; the decoder is a single-layer
unidirectional LSTM.

The process is depicted in figure 4.13. Once the input tokens are fed into the
encoder, the attention distribution is computed:

at = softmax(et)

where:

• et
i = vT tanh(Whhi + Wsst + wcc

t
i + battn)

• v, Wh, Ws, xc, battn are parameters to learn

• ct indicates the coverage vector, which is in charge of overcoming the repetition
problem. Namely, the coverage vector is the sum of the attention distributions
over all previous decoder timesteps (ct = qt−1

t′=0 at′)

Related works

which is used to calculate the context vector :

h∗
t =

Ø
i

at
ihi

that is a representation of what has been seen from the input in the current step.
Furthermore, it is computed the generation probability pgen:

pgen = σ(wT
h∗h∗

t + wT
s st + wT

x xt + bptr)

where:

• wh∗ , ws, wx, bptr are learnable parameters

This probability is important because it allows to decide if the word will be:

• generated from the vocabulary (sampling from Pvocab)

• copied from the input document (sampling from at)

Namely:
P (w) = pgenPvocab(w) + (1− pgen)

Ø
i:wi=w

at
i

The attention distribution, calculated using the encoder and decoder hidden
states, it is very useful since it indicates to the decoder where it has to look to
produce the next word. Furthermore, it is used to calculate the Context Vector
(representation of what has been read from the beginning until the current step).

35

4.5.2 SHEG
This framework, described in the paper [13], is articulated in three main steps:
extractive phase, abstractive phase and headline generation phase.

Extractive step

It looks at the most salient sentences, by classifying them as belonging or not
belonging to the final summary.

Specifically, an embedding matrix is constructed through Word2vec algorithm,
and through a CNN the dependencies of close words are analyzed (sentence repre-
sentation).

Then, there are two-layers bidirectional GRU. The former works at word level,
the latter at sentence level.

Finally, it is performed the sentence-level classification: according to the quality
of the sentence, it is included or not in the summary.

Abstractive step

The second step consists in generating a concise summary. It is introduced a
novelty: the CAC (controlled actor-critic) which is needed to train the pointer
generator network.

This architecture is implemented with a bidirectional LSTM encoder and a
unidirectional LSTM decoder and a pointer network (to face OOV words).

Moreover, the CAC acts like an RL-agent, where the action is to choose the
next token to insert in the summary, and the reward is based on ROUGE score

Headline generation

This phase is based on a CRF (Conditional Random Fields) model. This step is
in charge of generating the headline according to a sequence prediction task.

It works by creating a feature function to map the outcome in a Euclidean space,
and this feature vector takes into account many parameters like named entities and
dependency features.

On Extractive and Abstractive Neural Document Summa-
rization with Transformer Language Models
This work, presented in [14], faces with the challenge of long documents summariza-
tion and the overall process is articulated in two steps: extractive and abstractive
one.

The former is implemented with two hierarchical models: on based on a sentence
classifier and the other one on pointer network.

The latter is made of a transformer language model, conditioned by the results
of the previous step.

Extractive phase

Sentence Classifier An encoder hierarchical LSTM is used to produce the
document representation.

Then the classification is performed by computing the probability that each
sequence belongs or not to the summary.

Pointer Nerwork Hierarchical Seq2Seq Sentence Pointer has an encoder-decoder
architecture.

The sentence-encoder, consisting in a bi-directional LSTM and working at
token-level, aims at encoding every sentence.

The document-encoder, consisting in a bi-directional LSTM and working at
sentence-level, looks at encoding the generated embedded sentences.

The decoder, made of an autoregressive LSTM, predicts the next extracted
sentence relying on the hidden state of the document-encoder related to the last
extracted sentence, through an attention mechanism.

This produces the so-called attention aware hidden state which is added to the
input of the following time step.

Abstractive phase

To solve the challenge of dealing with long documents, that a Transformer cannot
support, the summary is generating starting from the introduction of the document,
and the extracted sentences are used as conditioning text.

Combination of abstractive and extractive approaches for
summarization of long scientific texts
Also [15] deals with the summarization of long documents, and solves this problem
adopting an hybrid technique.

First of all, the most important sentences are selected by extractive summa-
rization (implemented as a classification problem), then the obtained result is
concatenated to other article parts, and it is all used as starting point for the final
summary generation.

Specifically, the best performances are obtained when the abstraction is per-
formed over the extracted sentences concatenated with the introduction and the
conclusion of the scientific paper.

Looking further into the overall structure of the model, there are two architec-
tures: the classifier for the first step and the abstractive model for the second one,
both implemented with pre-trained transformer-based LMs.

Extractive phase

The authors tested different architecture for the extractive step: BERT, ELECTRA
and RoBERTa. The best results were achieved using BERT.

An interesting intuition made by the authors was to use the back-translation
technique to paraphrase the sentences: exploiting a pre-trained transformer, the
extracted sentences are translated from English to German, and then the procedure
is repeated by translating from German to English.

Abstractive phase

The abstractive phase was implemented with GPT-2 and BART transformers, the
best performance was obtained using BART.

In GPT-2 the abstractive summary is generated starting from the extracted
sentences and the paraphrased sentences. Specifically, the input to the model is the
result of the concatenation of the conditioning text tc, and the target summary ts:

inputabs = concat(tc, ts) ∗masksegment

Where the mask is needed to allow to distinguish which part is the conditioning
text and which the target summary.

In BART instead the conditioning sentences are used to feed the encoder, and
the target sentences to fed the decoder.

Chapter 5

Proposed model

5.1 Overview
The approach proposed in this thesis work is an hybrid technique. Namely, it is
articulated in two steps:

• Extractive summarization implemented with PreSumm [16]

• Abstractive Summarization implemented with PEGASUS [17]

Figure 5.1: Overview of the pipeline implemented in this work

39

5.2 Extractive Summarization - PreSumm
The former step consists in selecting the most salient sentences of the input
document to obtain an intermediate summary.

Namely, this process can be interpreted as a binary classifier, where the assigned
label indicates if a sentence should be incorporated in the summary or not.

The main reason to perform this intermediate step is to filter the "useless"
information contained in the document, in such a way to feed the abstractive phase
with a shorter input, to overcome the limitations related to the length of the input,
which affects Transformers performances.

This task is performed through PreSumm model, and the exploited version is
the one offered by [18].

5.2.1 Overview
PreSumm, proposed in [16], is based on BERT, Bidirectional Encoder Represen-
tations from Transformers, presented in section 4. However, some modifications
are done in order to make the model suitable for the summarization task. In fact,
PreSumm is a document-level encoder, deployed for document summarization.

5.2.2 Main variations to BERT model
Sentence-level representation

To get a model which is capable of manipulating sentence-level representations
(instead of token-level ones as in BERT), each sentence is delimited by [CLS] and
[SEP] tokens.

Interval segment embeddings

Moreover, it is keeping track of multiple sentences through interval segment em-
beddings: given a document D containing sentences

[sent1, sent2, sent3, sent4, sent5, sent6, sent7]
each sentences will be embedded as EA or EB depending on whether it is a odd or
even sentence. So the document D will be embedded as

[EA, EB, EA, EB, EA, EB, EA]
. This will allow a hierarchical learning of the document representation:

• lower layers in the architecture will focus on closer sentences

• higher layers in the architecture will focus on multi-sentences (supported by
self-attention)

Proposed model

Position embeddings

In BERT, the model is bounded by a maximum length of 512 for positional embed-
ding; PreSumm overcomes this restriction by adding some position embeddings
randomly initialized and finetuned subsequently.

5.2.3 Architecture
The architecture is composed by a BERT layer on top of which are stacked several
Transformer layers.

The BERT layer outputs a sentence vector T, as can be seen in figure 5.2,
which is then fed to the inter-sentence Transformer layers, which are in charge of
capturing document-level features.

Figure 5.2: PreSumm Architecture, defined in [16]

Specifically, the computations performed are:

h̃l = LN(hl−1 + MHAtt(hl−1))

hl = LN(h̃l + FFN(h̃l))

where:

• h0 = PosEmb(T)

• T is the output of the BERT layer, previously mentioned

• PosEmb is used to adjust T with a sinusoidal positional embedding (useful to
highlight the position of each sentence)

• LN is the layer normalization operation

41

Proposed model

• MHAtt is the multi-head attention operation

• FFN is the feed forward layer operation

Finally, the last layer is a sigmoid classifier:

ŷi = σ(Woh
L
i + bo)

where:

• hL
i is the output of the top Transformer layer for sentence i. (The best

performances were reached for L = 2)

The loss exploited to train the model is a binary classification entropy.

Binary Classification Entropy Loss

This loss typology allows to measure the entropy between the prediction (ŷi) and
the gold label (y∗

i). Namely, it is calculated:

l(ŷi, y∗
i) = −wi[y∗

i logŷi + (1− y∗
i)log(1− ŷi)]

where wi is the rescaling weight assigned to each element.

42

5.3 Abstractive Summarization - PEGASUS
The abstractive summarization phase consists in elaborating the summary obtained
in the former step, creating a concise sentence to enclose its main topic: the
headline.

The peculiarity of abstractive methods is the capability of paraphrasing: the
obtained result is not an extracted sentence from the input document, but a
complete new text which contains the main idea of the input document (with also
novel words).

5.3.1 Overview
PEGASUS, proposed in [17], differs from the original Transformer model because it is
trained with a self-supervised objective tailored for abstractive text summarization,
which consists in masking whole sentences and generate these phrases starting from
the reaming sentences in the document. This approach is called GSG, that stands
for Gap Sentences Generation.

So, in contrast to other main methods based on Transformer architecture,
PEGASUS :

• masks entire sentences rather than single tokens

• reconstructs only the masked sentences rather than the entire document

5.3.2 Architecture
As anticipated, it is a Transformer-based encoder-decoder model, as depicted in
figure 5.3.

Figure 5.3: PEGASUS Architecture, defined in [17]

Proposed model

GSG

It is supposed that GSG, Gap Sentences Generation, works well as pre-training
objective because it recalls the abstractive summarization task.

An important parameter of GSG is GSR, Gap Sentences Ratio, that indicates
the percentage of selected sentences (the masked ones) with respect to the total
number of sentences in the input text.

This mechanism consists in replacing each masked sentence with [MASK1] token,
taking into account that those selected sentences are the ones which seem to be
the more important to the document.

To identify the principal sentences, PEGASUS was tested on selecting them
according to two modalities:

• Independently, score is calculated between the sentence and the rest of the
document:

scoresentencei
= rouge(sentencei, D \ {sentencei})

where "D \ {sentencei}" indicates the whole document with except of the
analyzed sentence. The k sentences with the highest scores are selected.

• Sequentially, where k sentences are iteratively selected according to the
following approach:

S = ∅
for i ← 1 to k do

si = rouge(S ∪ {xi}, D \ (S ∪ {xi})) ∀i, i /∈ S
j = argmaxi{si}n

S = S ∪ {xk}
end for

Moreover, for the rouge calculation, the n-grams could be considered as a set (Uniq
variant) or not (Orig variant).

The best performances are reached with Indipendetly-Orig configuration, that
is the one implemented in the final model.

44

5.4 Performance Evaluation
5.4.1 Rouge Score
To validate the goodness of the implemented pipeline, the obtained results are
evaluated through rouge score calculation, exploiting the version made available
by [19]. Thanks to this implementation, it is possible to easily compute precision,
recall and accuracy related to the rouge metrics.

In fact, it is unfeasible to manually evaluate all the generated summaries and
headlines, and so an automatic approach must be adopted.

ROUGE, Recall-Oriented Understudy for Gisting Evaluation, was proposed by
[20] and it is an instrument that allows to understand the goodness of a generated
summary, by comparing it with a reference summary, generally created by humans.

ROUGE offers different metrics, and the ones considered in this evaluation are:

• ROUGE-1

• ROUGE-2

• ROUGE-L

ROUGE-1 and ROUGE-2

These two measures belong to ROUGE-N category, which takes into account the
overlapping of N-grams (1-gram for ROUGE-1, 2-grams for ROUGE-2) between
the generated summary and the reference one.

Formally:

ROUGE −Nrecall =
q

S∈ReferenceSummaries

q
gramn∈S Countmatch(gramn)q

S∈ReferenceSummaries

q
gramn∈S Count(gramn)

where:

• n is the length of the n-gram

• Countmatch(gramn) is the maximum number of n-grams which occur both in
the generated summary and in the reference one

The precision instead can be computed considering at the denominator the
total number of n-grams in the generated summary (instead of the total number of
n-grams in the reference summary).

Finally, the f-score is calculated as:

F = 2×Recall × Precision

Recall + Precision

Proposed model

ROUGE-L

This measure instead relies on the LCS, longest common sub-sequence. The benefit
of this metric is that no grams length has to be defined in advance, and it relies on
in-sequence matches instead of consecutive matches.

Given a generated summary Y and a reference summary X, both made of one
sentence:

Rlcs = LCS(X, Y)
m

Plcs = LCS(X, Y)
n

Flcs = 2×Rlcs × Plcs

RlcsPlcs

where:

• m is the length of the sentence in the reference summary

• n is the length of the sentence in the generated summary

When the summaries present more than one sentence, the formulas previously
described must be adapted to:

Rlcs =
qu

i=1 LCS∪(ri, C)
m

Plcs =
qu

i=1 LCS∪(ri, C)
n

where:

• u is the number of sentences in the reference summary

• ri is a sentence in the reference summary

• C is the whole set of sentences in the generated summary

46

5.4.2 BERTScore
For the sake of completeness, the results obtained from the implemented pipelines
are evaluated also using BERTScore, proposed by [21].

BERTScore is based on BERT, it computes the cosine similarity between the
embeddings of the reference summary and the embedding of the candidate one.
The metrics which can be obtained are: precision, recall and F1 measure.

Score computation

In [21] the authors propose a specific approach to calculate BERTScore:

• BERT model is used to compute the contextual embeddings for the tokens
in candidate and reference summaries (or headlines). In this way a vector
representation is obtained: x̂ represents the vector referred to the candidate
summary embedding, x to the reference summary embedding

• metrics are computed, based on cosine similarity:

– RBERT = 1
|x|

q
xi∈x maxx̂j∈x̂xT

i x̂j

Namely, it corresponds to the cardinality of the set of the tokens in x that
match with tokens in x̂

– PBERT = 1
|x̂|

q
x̂j∈x̂ maxxi∈xxT

i x̂j

Namely, it corresponds to the cardinality of the set of the tokens in x̂ that
match with tokens in x

– F1BERT = 2×PBERT ×RBERT

PBERT ×RBERT

Because vectors are pre-normalized, the cosine similarity between a token xi

and a candidate token x̂j can be directly computed through the inner product:
xT

i x̂j

• precision and recall are further improved by considering also the IDF scores:
to adjust the metrics according to the importance of each word

• each score is scaled in order to belong to the interval [0,1]

Chapter 6

Experimental Design

6.1 Introduction
Let now us deepen the analysis of the conducted experiments.

Firstly, the state-of-the-art models are tested, exploiting the public available
checkpoints. This is done to get the reliability of each model, and how much it is
suitable to be incorporated in the final pipeline. This research phase has involved:

• for the extraction step:

– PreSumm
– MatchSum

• for the abstraction step:

– BART
– PEGASUS
– PGN
– PROPHETNET
– T5

Then, once the best models are identified, the framework is set up, trained and
test, before on Newsroom dataset, then on Reuters.

48

6.2 Candidate models evaluation
In this phase no training is performed, simply the previously listed models are
tested with regards to the summary generation task exploiting the public available
checkpoints.

6.2.1 Screening for the Extraction step
MatchSum It is exploited the code released in [22], with the provided checkpoints
for the pre-trained model on CNN/DM dataset for summary generation task.

PreSumm It is used the publication in [18], specifically the pre-trained model
on CNN/DM dataset for summary generation task.

Results

The summaries produced are evaluated with ROUGE score, especially focusing on
F-score metric, and the registered performances are depicted in figure 6.1.

Figure 6.1: Results on PreSumm and MatchSum, ROUGE Score

As shown in 6.1, the two models present very similar results. Despite MatchSum
has slightly better performances, in the final pipeline it has been chosen to use
PreSumm since the public code released by the author could be finetuned on specific
dataset, and this was not possible on MatchSum.

Experimental Design

6.2.2 Screening for the Abstraction step
BART, PEGASUS, PROPHETNET, T5 For all of them, it is adopted the
Huggingface version, and the corresponding available checkpoints on CNN/DM and
also NEWSROOM for BART and PEGASUS [23], [24], [25], [26].

PGN It is used the publication in [27], specifically the pre-trained model on
CNN/DM dataset for summary generation task.

Results

The summaries produced are evaluated with ROUGE score, especially focusing on
F-score metric, and the registered performances are depicted in figures 6.2 and 6.3.

Figure 6.2: Results on CNN/DM, ROUGE Score

As shown in figures 6.2 and 6.3, PEGASUS outperforms the other models,
and because of this, it will be incorporated in the final pipeline to implement the
abstraction phase.

50

Experimental Design

Figure 6.3: Results on NEWSROOM, ROUGE Score

51

6.3 Extractive step
Different configurations were tested, especially for the first phase, the extractive
one.

This because the Reuters dataset, does not provide reference summaries, and so
it was necessary to examine different alternatives to overcome this issue. Namely,
it was required to identify a procedure capable of generating reference summaries
to train (or finetune) PreSumm algorithm (self-supervised approach), or a protocol
that could be robust enough to replace PreSumm in this first step.

For this reason, the extraction was performed in different ways:

• selection of random k sentences

• selection of lead k sentences

• selection done by Text Rank algorithm

• PreSumm

6.3.1 Random k sentences
This approach is implemented to have a baseline, and to understand how much the
performances are improved if a more accurate procedure is adopted.

6.3.2 Lead k sentences
This method comes up from what suggested in the paper [15], where it was
demonstrated that relevant information was already incorporated in the initial part
of the document. So the attempt is made also in this project, to understand if it
could be a good compromise for the creation of the starting text from which the
headlines will be generated.

6.3.3 Text Rank algorithm
The last approach analyzed consists in the TextRank algorithm, and the exploited
version is the one offered by [28].

This model, based on Google’s PageRank algorithm and presented in the paper
[29], is a weighted graph-based model.

Namely, each sentence is represented as a vertex in a graph, and the oriented
edges are the connections between the sentences. The importance of a vertex
is directly related to the number of vertexes that vote for it, weighted by the
importance of the vertex that has voted. Specifically, a vertex A is voting for vertex
B if in the graph there is an edge that starts from A and end up into B.

Experimental Design

So, the score for a vertex Vi can be computed according to the following formula:

WS(Vi) = (1− d) + d
Ø

Vj∈In(Vi)

wj,iq
Vk∈Out(V j)wj,k

WS(Vj)

where:

• d is a damping factor, d ⊂ [0,1], which is used to incorporate the probability
of random jumps in the vertexes graph

• In(Vi) is the subset of vertexes that are voting for vertex i

• Out(Vj) is the subset of vertexes that vertex j is voting for

• wj,k is the weight of the edge between j and k, it indicates the power of the
connection between the two vertexes

The ranking process is articulated as follows:

• all the vertex weights are randomly initialized (and this won’t influence the
reliability of the final result, it may only change the number of iterations
needed to reach the convergence)

• the calculations are iteratively performed until a given threshold related to
the error rate of the vertexes is satisfied

To apply this algorithm to extract sentences, the first things to do it is to build
a graph where vertexes represent sentences, and edges connect sentences with a
common concept. Namely, an edge is present only between two similar sentences,
where the similarity is calculated according to:

Similarity(Si, Sj) = |{wk|wk ∈ Si&wk ∈ Sj}|
log(|Si|) + log/(|Sj|)

where:

• Si indicates the sentence i

• Si = wi
1, wi

2, ..., wi
N

Therefore, once the graph is designed, it will be sufficient to run the algorithm
until the convergence is reached, and then selecting the top k detected salient
sentences.

53

6.4 Experiments on Newsroom
In this section, it will be deepened the approach adopted to conduct the experiments,
in such a way to guarantee the reproducibility.

Computational resources provided by hpc@polito, which is a project of Academic
Computing within the Department of Control and Computer Engineering at the
Politecnico di Torino (http://hpc.polito.it)

6.4.1 Tested pipelines
Random k sentences and Pegasus The extractive summary is obtained by
selecting k sentences randomly, the seed used to fix the randomness and guarantee
the replicability is 42. The abstractive headline is computed by Pegasus. Different
configurations were tested:

• Random 3 sentences, Pegasus parameters: lr = 2 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10.
Configuration name: Random-3A

• Random 3 sentences, Pegasus parameters: lr = 2 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 80, max target length = 25, average
target length = 10
Configuration name: Random-3B

• Random 3 sentences, Pegasus parameters: lr = 5 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10
Configuration name: Random-3C

• Random 5 sentences, Pegasus parameters: lr = 2 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10
Configuration name: Random-5A

Lead k sentences and Pegasus The extractive summary is obtained by se-
lecting the first k sentences. The abstractive headline is computed by Pegasus.
Different configurations were tested:

• Lead 3 sentences, Pegasus parameters: lr = 2 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10

http://hpc.polito.it

Experimental Design

Configuration name: Lead-3A

• Lead 3 sentences, Pegasus parameters: lr = 2 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 80, max target length = 25, average
target length = 10
Configuration name: Lead-3B

• Lead 3 sentences, Pegasus parameters: lr = 5 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10
Configuration name: Lead-3C

• Lead 5 sentences, Pegasus parameters: lr = 2 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10
Configuration name: Lead-5A

• Lead 5 sentences, Pegasus parameters: lr = 5 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10
Configuration name: Lead-5B

TextRank and Pegasus The extractive summary is obtained thanks to Tex-
tRank algorithm, which looks at selecting the 3 most salient sentences in the
text. The abstractive headline is computed by Pegasus, trained with the following
parameters: lr = 2 ∗ 10−5, weight decay = 0.01, epochs = 4, max input length =
70, max target length = 15, average target length = 10.

PreSumm and Pegasus The extractive summary is obtained thanks to Pre-
Summ algorithm, which looks at selecting the 3 most salient sentences in the
text. The abstractive headline is computed by Pegasus, trained with the following
parameters: lr = 2 ∗ 10−5, weight decay = 0.01, epochs = 4, max input length =
70, max target length = 15, average target length = 10.

6.4.2 Results
Delving into the performance of the different implemented pipelines, the major
considerations that can be made are:

• the extraction phase, used to generate the summaries, highlights that Lead k-
sentences selection and PreSumm achieve good results, especially if compared

55

Experimental Design

with the performance declared in [13] (SHEG framework, previously discussed),
where the authors registered the following scores on summaries generation
process:

– R1-Fscore = 0.282 (Lead-3C, R1-Fscore = 0.33639)
– R2-Fscore = 0.147 (Lead-3C, R2-Fscore = 0.24367)
– RL-Fscore = 0.259 (Lead-3C, RL-Fscore = 0.30972)

From this consideration, it can be derived that the salient information is already
present in the initial part of the text (otherwise firs-k selection wouldn’t work
so well), and this could be directly related to the nature of the dataset: news
articles aim at reporting as soon as possible the more interesting information, to
capture the reader attention. This let us consider that, despite also PreSumm
achieved very good results, in case of news dataset, the best approach is the
one of selecting the first k sentences. In fact, in this way, no training is needed,
the process is speeded up and good results are obtained without consuming a
lot of computational resources

• the abstraction phase, points out that PEGASUS algorithm works better with
specific typologies of summaries generation process. In fact, as anticipated,
Lead k-sentences selection and PreSumm present similar performances about
summaries generation, but the headlines generated by PEGASUS are different
in terms of computed scoring metrics. In fact, the headlines generated from the
summaries obtained by Lead k-sentences selection present higher rouge scores
with respect to the headlines generated from PreSumm results. Furthermore,
the rouge scores registered from the headlines generated by the configuration
Lead-3C are much more satisfactory than the ones reported in SHEG paper,
[13], which are:

– R1-Fscore = 0.1381 (Lead-3C, R1-Fscore = 0.32042)
– R2-Fscore = 0.0794 (Lead-3C, R2-Fscore = 0.13209)
– RL-Fscore = 0.1142 (Lead-3C, RL-Fscore = 0.29426)

To examine the specific performance metrics, please refer to the following sections
where are reported the values calculated through ROUGE Score and BERTScore.

ROUGE Score

The obtained results are summarized in the following tables: 6.1, 6.2.
A comparison can be done also through these charts: 6.4,6.5,6.6,6.7,6.8,6.9.

56

Experimental Design

Summaries generation
Configuration R1-Fscore R2-Fscore RL-Fscore
Random-3A 0.1902 0.09652 0.16618
Random-3B 0.1902 0.09652 0.16618
Random-3C 0.1902 0.09652 0.16618
Random-5A 0.22858 0.13363 0.20311

Lead-3A 0.33639 0.24367 0.30972
Lead-3B 0.33639 0.24367 0.30972
Lead-3C 0.33639 0.24367 0.30972
Lead-5A 0.33688 0.24409 0.30986
Lead-5B 0.33688 0.24409 0.30986

TextRank and Pegasus 0.21134 0.11524 0.18499
PreSumm and Pegasus 0.33423 0.23356 0.30103

Table 6.1: Results on Newsroom, summaries generation, ROUGE Score

Headlines generation
Configuration R1-Fscore R2-Fscore RL-Fscore
Random-3A 0.24461 0.08725 0.22572
Random-3B 0.22652 0.07603 0.20516
Random-3C 0.24635 0.08812 0.22713
Random-5A 0.26807 0.1011 0.24701

Lead-3A 0.31362 0.12882 0.28814
Lead-3B 0.29149 0.11294 0.26166
Lead-3C 0.32042 0.13209 0.29426
Lead-5A 0.31926 0.13164 0.29328
Lead-5B 0.32258 0.13351 0.29628

TextRank and Pegasus 0.26737 0.10015 0.24591
PreSumm and Pegasus 0.28868 0.11343 0.26444

Table 6.2: Results on Newsroom, headlines generation, ROUGE Score

BERTScore

The computed BERTScores on the obtained results are summarized in the following
tables: 6.3, 6.4.

In light of the obtained results, especially for Precision BERTScore, a considera-
tion has to be done. As anticipated, in the section where BERTScore was presented

57

Experimental Design

Figure 6.4: R1-Fscore for summary generation task performed on Newsroom,
ROUGE Score

Figure 6.5: R2-Fscore for summary generation task performed on Newsroom,
ROUGE Score

58

Experimental Design

Figure 6.6: RL-Fscore for summary generation task performed on Newsroom,
ROUGE Score

Figure 6.7: R1-Fscore for headline generation task performed on Newsroom,
ROUGE Score

59

Experimental Design

Figure 6.8: R2-Fscore for headline generation task performed on Newsroom,
ROUGE Score

Figure 6.9: RL-Fscore for headline generation task performed on Newsroom,
ROUGE Score

60

Experimental Design

(5.4.2), the scores are mapped in the interval [0,1]. The reason why the precision
scores computed for the generated summaries present negative values is that the
implementation used to compute BERTScore, [30], applies a re-scaling on the
calculations. From a practical perspective, negative values indicate that the pair
generated_summary-reference_summary is worse than a random pair. This is not
unexpected for the precision scores. In fact, precision is related to the cardinality
of tokens in the generated summary that match with the token in the reference
summary. Since the reference summary is much shorter than the generated one, it
follows accordingly that the performance measured in terms of precision are very
poor.

Summaries generation
Configuration Precision Recall F1
Random-3A -0.08094 0.22046 0.06483
Random-3B -0.08094 0.22046 0.06483
Random-3C -0.08094 0.22046 0.06483
Random-5A -0.08094 0.22046 0.06483

Lead-3A 0.00159 0.39901 0.19170
Lead-3B 0.00159 0.39901 0.19170
Lead-3C 0.00159 0.39901 0.19170
Lead-5A -0.10348 0.40466 0.13727
Lead-5B -0.10348 0.40466 0.13727

TextRank and Pegasus -0.06021 0.25966 0.09426
PreSumm and Pegasus -0.07186 0.29491 0.10419

Table 6.3: Results on Newsroom, summaries generation, BERTScore

A comparison can be done also through these charts: 6.10,6.11,6.12,6.13,6.14,6.15.

6.4.3 Best performing models
Lead-5B results to be the best performing configuration. Despite this, Lead-3C
has been preferred because the average length of the reference summaries is much
smaller than 5 sentences.

6.5 Experiments on Reuters
In this section, it will be deepened the approach adopted to conduct the experiments,
in such a way to guarantee the reproducibility. Please note that the performances

61

Experimental Design

Headlines generation
Configuration Precision Recall F1
Random-3A 0.14858 0.17244 0.16048
Random-3B 0.06458 0.20392 0.13326
Random-3C 0.14356 0.17285 0.15814
Random-5A 0.15480 0.18457 0.16960

Lead-3A 0.19849 0.22897 0.21357
Lead-3B 0.10833 0.27187 0.18862
Lead-3C 0.20174 0.23645 0.21892
Lead-5A 0.20171 0.23425 0.21780
Lead-5B 0.20446 0.23824 0.22116

TextRank and Pegasus 0.15317 0.18901 0.17099
PreSumm and Pegasus 0.17362 0.19751 0.18549

Table 6.4: Results on Newsroom, headlines generation, BERT Score

Figure 6.10: Precision score for summary generation task performed on Newsroom,
BERT Score

could be measured only with regards to headlines generation tasks, since Reuters
does not provide reference summaries, but only reference headlines.

Computational resources provided by hpc@polito, which is a project of Academic

62

Experimental Design

Figure 6.11: Recall score for summary generation task performed on Newsroom,
BERT Score

Figure 6.12: F1 score for summary generation task performed on Newsroom,
BERT Score

63

Experimental Design

Figure 6.13: Precision score for headline generation task performed on Newsroom,
BERT Score

Figure 6.14: Recall score for headline generation task performed on Newsroom,
BERT Score

64

Experimental Design

Figure 6.15: F1 score for headline generation task performed on Newsroom, BERT
Score

Computing within the Department of Control and Computer Engineering at the
Politecnico di Torino (http://hpc.polito.it)

6.5.1 Tested pipelines
Random k sentences and Pegasus The extractive summary is obtained by
selecting k sentences randomly, the seed used to fix the randomness and guarantee
the replicability is 42. The abstractive headline is computed by Pegasus. Different
configurations weere tested:

• Random 2 sentences, Pegasus parameters: lr = 2 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10.

Configuration name: Random-2A

• Random 3 sentences, Pegasus parameters: lr = 2 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10.

Configuration name: Random-3A

65

http://hpc.polito.it

Experimental Design

• Random 5 sentences, Pegasus parameters: lr = 2 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10.
Configuration name: Random-5A

Lead k sentences and Pegasus The extractive summary is obtained by se-
lecting the first k sentences. The abstractive headline is computed by Pegasus.
Different configurations were tested:

• Lead 2 sentences, Pegasus parameters: lr = 2 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10
Configuration name: Lead-2A

• Lead 3 sentences, Pegasus parameters: lr = 2 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10
Configuration name: Lead-3A

• Lead 3 sentences, Pegasus parameters: lr = 5 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10
Configuration name: Lead-3B

• Lead 5 sentences, Pegasus parameters: lr = 2 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10
Configuration name: Lead-5A

• Lead 5 sentences, Pegasus parameters: lr = 5 ∗ 10−5, weight decay = 0.01,
epochs = 4, max input length = 70, max target length = 15, average
target length = 10
Configuration name: Lead-5B

TextRank and Pegasus The extractive summary is obtained thanks to Tex-
tRank algorithm, which looks at selecting the 3 most salient sentences in the
text. The abstractive headline is computed by Pegasus, trained with the following
parameters: lr = 2 ∗ 10−5, weight decay = 0.01, epochs = 4, max input length =
70, max target length = 15, average target length = 10

66

Experimental Design

PreSumm and Pegasus The extractive summary is obtained thanks to Pre-
Summ algorithm, which looks at selecting the 3 most salient sentences in the
text. The abstractive headline is computed by Pegasus, trained with the following
parameters: lr = 2 ∗ 10−5, weight decay = 0.01, epochs = 4, max input length
= 70, max target length = 15, average target length = 10. For the training of
PreSumm, two approaches were tested:

• PreSumm trained on NewsRoom, since Reuters does not provide reference
summaries Configuration name: PreSumm-A

• PreSumm trained on Reuters, the ground truth used in the training phase was
artificially created: the first 3 sentences, for each article in the training set, were
selected to be used as reference summaries to train the model Configuration
name: PreSumm-B

6.5.2 Results
Regrettably, as previously mentioned, REUTERS does not allow an end-to-end
model testing. In fact, this dataset does not provide the reference summaries, but
only the reference headlines. For this reason, the main considerations can be made
only on the final results of the pipeline: the headlines. Furthermore, in contrast to
NEWSROOM, where the performance achieved by other algorithms (as SHEG),
are public available, at the best of our knowledge, it is not the case for REUTERS.
Indeed, although ROUGE score and BERTScore are computed, they won’t be
sufficient to understand the reliability of the implemented pipelines on REUTERS
dataset, since no comparisons are possible. The major considerations pointed out
are:

• PreSumm does not report good results. The primary cause could be attributed
to the fact that REUTERS does not provide reference summaries and for
this reason it is not possible to perform an adequate training. In fact, the
configuration PreSumm-B, where PreSumm is trained considering as reference
summaries the first 3 sentences in the article, performs very poorly, almost like
a Random k-sentences selection. Better results are achieved by PreSumm-A,
which exploits the PreSumm model trained on NEWSROOM dataset. So, it
can be inferred that PreSumm trained exploiting ad hoc reference summaries
may achieve interesting performance

• Lead k-sentences selection configurations, as in NEWSROOM dataset, report
the best performance. The reason could be the same analyzed for the other
dataset: selecting the first sentences works so well because we are dealing with
news articles, where the most important information are generally contained
in the first passages of the text. Furthermore, by adopting this approach, the

67

Experimental Design

generated summary is not an aggregation of unrelated sentences taken from
different parts of the document, but it is an extract where all the sentences
are syntactically and contextually related; and this should simplify PEGASUS
abstraction

To examine the specific performance metrics, please refer to the following sections
where are reported the values calculated through ROUGE Score and BERTScore.

ROUGE Score

The performances measured with ROUGE score on the obtained results are sum-
marized in the following table: 6.5

Headlines generation
Configuration R1-Fscore R2-Fscore RL-Fscore
Random-2A 0.34527 0.15023 0.33073
Random-3A 0.39158 0.18215 0.37484
Random-5A 0.44153 0.22167 0.42257

Lead-2A 0.50308 0.26758 0.48098
Lead-3A 0.50979 0.27409 0.48756
Lead-3B 0.52086 0.28882 0.49926
Lead-5A 0.51398 0.27936 0.49174
Lead-5B 0.52641 0.29566 0.50478

TextRank and Pegasus 0.45993 0.23877 0.44052
PreSumm-A 0.47778 0.24528 0.45651
PreSumm-B 0.41961 0.20685 0.40201

Table 6.5: Results on Reuters, headlines generation, ROUGE Score

A comparison can be done also through these charts: 6.16, 6.17, 6.18.

BERTScore

The performances measured with BERT score on the obtained results are summa-
rized in the following table: 6.6.

A comparison can be done also through these charts: 6.19, 6.20, 6.21.

6.5.3 Best performing models
Lead-5B results to be the best performing configuration, and because of no compar-
ison with reference summaries is possible, since they are not provided, this model

68

Experimental Design

Figure 6.16: R1-Fscore for headline generation task performed on Reuters,
ROUGE Score

Headlines generation
Configuration Precision Recall F1
Random-2A 0.20000 0.34670 0.27130
Random-3A 0.23619 0.39159 0.31161
Random-5A 0.27424 0.43918 0.35416

Lead-2A 0.31533 0.49497 0.40217
Lead-3A 0.31979 0.49863 0.40626
Lead-3B 0.32054 0.50810 0.41110
Lead-5A 0.32226 0.50217 0.40926
Lead-5B 0.32481 0.51209 0.41526

TextRank and Pegasus 0.28306 0.45456 0.36608
PreSumm-A 0.27005 0.43054 0.34788
PreSumm-B 0.22669 0.38207 0.30221

Table 6.6: Results on Reuters, headlines generation, BERT Score

will be used to implement the extraction step.

69

Experimental Design

Figure 6.17: R2-Fscore for headline generation task performed on Reuters,
ROUGE Score

Figure 6.18: RL-Fscore for headline generation task performed on Reuters,
ROUGE Score

70

Experimental Design

Figure 6.19: Precision score for headline generation task performed on Reuters,
BERT Score

Figure 6.20: Recall score for headline generation task performed on Reuters,
BERT Score

71

Experimental Design

Figure 6.21: F1 score for headline generation task performed on Reuters, BERT
Score

72

Chapter 7

Conclusions and final
remarks

7.1 Conclusion
This thesis project allows me to deepen the NLP domain, especially the document
summarization task. This is very popular today; in fact, now more than ever, com-
panies are struggling to incorporate Natural Language Processing in their internal
processes, in order to derive insights from textual data, which are not so easy to
deal with.

Starting from the analysis of the available datasets and state of the art models,
specific algorithms were chosen to be incorporated in the final pipeline.

The framework has been tested firstly on Newsroom and then on Reuters,
attempting different configurations. Surprisingly, the best configuration turns out
to be the extraction phase performed by selecting the first five sentences, and
the abstraction step implemented by PEGASUS model. It is supposed that the
reason why lead sentences selection works better than PreSumm is that we are
dealing with news articles not very long, and the salient information is already
contained in the first part of the text. Moreover, since Reuters does not provide
reference summaries, it is not possible to properly perform the training required by
PreSumm.

This limitation should be addressed by future works. A good strategy could
be the one to employ the original pipeline (PreSumm and PEGASUS) on a more
complete dataset, where documents are longer (to ensure that salient information
will be in different part of the text, and not mainly in the first passages) and
reference summaries are available to allow to finetune the model on the specific

73

Conclusions and final remarks

dataset.

7.2 Future works
Future works should focus on creating or identifying ad-hoc financial documents
datasets to allow an appropriate training and an end-to-end model testing. In fact,
a limitation of Reuters dataset is the lack of reference summaries which avoids a
complete measurement of the framework performances.

Although the consideration mentioned above, the main issue that future works
should address is the establishment of a public financial documents dataset that
can be used to benchmark different models. Indeed, without a common dataset, it
is impossible to understand in depth the goodness of a proposed new model, since
it can not be compared with other frameworks.

7.3 Final remarks
To summarize the analysis done at each step:

• Scouting dataset phase
NEWSROOM and REUTERS were identified as the most suitable dataset
to pursue the objective of the project. In fact, the former allows to test a
model end-to-end, deepening the reliability both on summaries generation
and headlines generation. The latter was employed because it is a financial
documents dataset, and so it matches the final objective of this work

• Scouting models phase
Different models were tested, and the most interesting ones were found to be
PreSumm for extraction and PEGASUS for abstraction

• Pipelines implementation
Many pipelines were analyzed and the better performance were achieved with
Lead k-sentences selection combined with PEGASUS

• Future works identification
Future works should focus on training and testing the original identified
pipeline (PreSumm and PEGASUS) on a dataset characterized by:

– longer documents
– presence of reference summaries

74

Bibliography

[1] Mohammed Taher Pilehvar and Jose Camacho-Collados. Embeddings in Nat-
ural Language Processing, Theory and Advances in Vector Representation of
Meaning. 2020 (cit. on pp. 3–10).

[2] Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos santos, Caglar Gulcehre,
and Bing Xiang. Abstractive Text Summarization Using Sequence-to-Sequence
RNNs and Beyond. 2016. url: https://arxiv.org/abs/1602.06023 (cit. on
p. 11).

[3] Max Grusky, Mor Naaman, and Yoav Artzi. Newsroom: A Dataset of 1.3
Million Summaries with Diverse Extractive Strategies. 2020. url: https:
//arxiv.org/abs/1804.11283 (cit. on p. 11).

[4] url: https://trec.nist.gov/data/reuters/reuters.html (cit. on p. 11).
[5] Wafaa S. El-Kassas, Cherif R. Salama, Ahmed A. Rafea, and Hoda K. Mo-

hamed. Automatic text summarization: A comprehensive survey. 2020 (cit. on
pp. 19, 20).

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2017. url: https://arxiv.org/abs/1706.03762 (cit. on pp. 21–25).

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
2019. url: https://arxiv.org/abs/1810.04805 (cit. on p. 26).

[8] Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang, Xipeng Qiu, and
Xuanjing Huang. Extractive Summarization as Text Matching. 2020. url:
https://arxiv.org/abs/2004.08795 (cit. on p. 27).

[9] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: De-
noising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. 2019. url: https://arxiv.org/abs/2004.
08795 (cit. on p. 30).

75

https://arxiv.org/abs/1602.06023
https://arxiv.org/abs/1804.11283
https://arxiv.org/abs/1804.11283
https://trec.nist.gov/data/reuters/reuters.html
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2004.08795
https://arxiv.org/abs/2004.08795
https://arxiv.org/abs/2004.08795

BIBLIOGRAPHY

[10] Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen,
Ruofei Zhang, and Ming Zhou. ProphetNet: Predicting Future N-gram for
Sequence-to-Sequence Pre-training. 2020. url: https://arxiv.org/abs/
2001.04063 (cit. on p. 31).

[11] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. 2020. url:
https://arxiv.org/abs/1910.10683 (cit. on p. 33).

[12] Abigail See, Peter J. Liu, and Christopher D. Manning. Get To The Point:
Summarization with Pointer-Generator Networks. 2017. url: https://arxiv.
org/abs/1704.04368 (cit. on p. 34).

[13] Rajeev Kumar Singh, Sonia Khetarpaul, Rohan Gorantla, and Sai Giridhar
Allada. SHEG: summarization and headline generation of news articles using
deep learning. 2019 (cit. on pp. 36, 56).

[14] Sandeep Subramanian, Raymond Li, Jonathan Pilault, and Christopher Pal.
On Extractive and Abstractive Neural Document Summarization with Trans-
former Language Models. 2020. url: https://arxiv.org/abs/1909.03186
(cit. on p. 37).

[15] Vladislav Tretyak and Denis Stepanov. Combination of abstractive and ex-
tractive approaches for summarization of long scientific texts. 2020. url:
https://arxiv.org/abs/2006.05354 (cit. on pp. 38, 52).

[16] Yang Liu and Mirella Lapata. Text Summarization with Pretrained Encoders.
2019. url: https://arxiv.org/abs/1908.08345 (cit. on pp. 39–41).

[17] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. PEGASUS:
Pre-training with Extracted Gap-sentences for Abstractive Summarization.
2020. url: https://arxiv.org/abs/1912.08777 (cit. on pp. 39, 43).

[18] Yang Liu. PreSumm. url: https://github.com/nlpyang/PreSumm (cit. on
pp. 40, 49).

[19] Tagucci. pythonrouge. url: https://github.com/tagucci/pythonrouge
(cit. on p. 45).

[20] Chin-Yew Lin. «ROUGE: A Package for Automatic Evaluation of Summaries».
In: Text Summarization Branches Out. Barcelona, Spain: Association for
Computational Linguistics, July 2004, pp. 74–81. url: https://aclantholo
gy.org/W04-1013 (cit. on p. 45).

[21] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav
Artzi. BERTScore: Evaluating Text Generation with BERT. 2020. url: https:
//arxiv.org/abs/1904.09675 (cit. on p. 47).

76

https://arxiv.org/abs/2001.04063
https://arxiv.org/abs/2001.04063
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1704.04368
https://arxiv.org/abs/1704.04368
https://arxiv.org/abs/1909.03186
https://arxiv.org/abs/2006.05354
https://arxiv.org/abs/1908.08345
https://arxiv.org/abs/1912.08777
https://github.com/nlpyang/PreSumm
https://github.com/tagucci/pythonrouge
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675

BIBLIOGRAPHY

[22] maszhongming. MatchSum. url: https://github.com/maszhongming/
MatchSum (cit. on p. 49).

[23] huggingface. Bart. url: https://huggingface.co/transformers/model_
doc/bart.html (cit. on p. 50).

[24] huggingface. Pegasus. url: https : / / huggingface . co / transformers /
model_doc/pegasus.html (cit. on p. 50).

[25] huggingface. ProphetNet. url: https://huggingface.co/transformers/
model_doc/prophetnet.html (cit. on p. 50).

[26] huggingface. T5. url: https://huggingface.co/transformers/model_
doc/t5.html (cit. on p. 50).

[27] abisee. PGN. url: https://github.com/abisee/pointer-generator (cit.
on p. 50).

[28] Paco Nathan. PyTextRank, a Python implementation of TextRank for phrase
extraction and summarization of text documents. 2016. doi: 10.5281/zenodo.
4637885. url: https://github.com/DerwenAI/pytextrank (cit. on p. 52).

[29] Rada Mihalcea and Paul Tarau. TextRank: Bringing Order into Texts. 2004.
url: https://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp
04.pdf (cit. on p. 52).

[30] Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and
Yoav Artzi. «BERTScore: Evaluating Text Generation with BERT». In:
International Conference on Learning Representations. 2020. url: https:
//openreview.net/forum?id=SkeHuCVFDr (cit. on p. 61).

77

https://github.com/maszhongming/MatchSum
https://github.com/maszhongming/MatchSum
https://huggingface.co/transformers/model_doc/bart.html
https://huggingface.co/transformers/model_doc/bart.html
https://huggingface.co/transformers/model_doc/pegasus.html
https://huggingface.co/transformers/model_doc/pegasus.html
https://huggingface.co/transformers/model_doc/prophetnet.html
https://huggingface.co/transformers/model_doc/prophetnet.html
https://huggingface.co/transformers/model_doc/t5.html
https://huggingface.co/transformers/model_doc/t5.html
https://github.com/abisee/pointer-generator
https://doi.org/10.5281/zenodo.4637885
https://doi.org/10.5281/zenodo.4637885
https://github.com/DerwenAI/pytextrank
https://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf
https://web.eecs.umich.edu/~mihalcea/papers/mihalcea.emnlp04.pdf
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

	Acronyms
	Introduction
	Natural Language Processing fundamentals
	NLP framework
	Language Models

	Embeddings techniques

	Datasets
	CNN/DailyMail
	GigaWord
	NEWSROOM
	Reuters rcv1

	Related works
	Overview
	Fundamental models
	TRANSFORMERS
	BERT

	Extractive Techniques
	MATCHSUM

	Abstractive Techniques
	BART
	PROPHETNET
	T5

	Hybrid Techniques
	PGN
	SHEG

	Proposed model
	Overview
	Extractive Summarization - PreSumm
	Overview
	Main variations to BERT model
	Architecture

	Abstractive Summarization - PEGASUS
	Overview
	Architecture

	Performance Evaluation
	Rouge Score
	BERTScore

	Experimental Design
	Introduction
	Candidate model evaluation
	Screening for the Extraction step
	Screening for the Abstraction step

	Extractive step
	Random k sentences
	Lead k sentences
	Text Rank algorithm

	Experiments on Newsroom
	Tested pipelines
	Results
	Best performing models

	Experiments on Reuters
	Tested pipelines
	Results
	Best performing models

	Conclusions and final remarks
	Conclusions
	Future works
	Final remarks

	Bibliography

