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Abstract

Slides-based presentations are increasingly important in scientific dissemination as
they incorporate several useful information for publication understanding. They
usually contains short summaries of the main paper contributions and cover all the
sections of the original publication. Manually generating slides content, however,
is an expensive task. Recent advancements in machine learning and artificial
intelligence allowed the creation of automatic systems that aims at generating
summaries from scientific articles. Those summaries can be used to reduce the
amount of content that requires manual analysis. Limited research efforts have
been devoted to the scope of generating presentation slides from document. Indeed,
this task faces the scarcity of publicly available material for benchmarking. This
master thesis proposes a new dataset, APPreD, consisting of pairs of papers
and their corresponding presentation slides crawled from ACL online anthology.
It also proposes a deep-learning based approach that addresses document-to-
slide task. The proposed methodology entails (i) the classification of academic
content in IMRaD classes, (ii) the fine-tuning of a pre-trained model for abstractive
summarization of section content. The proposed methodology has been trained
and tested using benchmark data collections. The implemented system relies only
on textual domain and can be further developed in order to be able to address
multimodal domain including multimedia objects. It outperforms state-of-the-art
summarization baselines according to several standard evaluation metrics.



Sommario

Le presentazioni sono sempre più importanti nel campo scientifico, in quanto
permettono di incorporare le numerose informazioni disponibili in brevi riassunti,
ma la loro creazione rappresenta solitamente un lavoro dispendioso e laborioso.
Lo sviluppo della tecnologia nell’ambito del machine learning ha permesso la
nascita di sistemi automatici che producono riassunti a partite da articoli scientifici
in modo da aumentare la produttività umana. Sono presenti limitate ricerche
nell’ambito della generazione automatica di slide in quanto affrontano tutte il
problema dello scarso materiale pubblico disponibile. Questa tesi contribuisce con
un nuovo dataset, APPreD, formato da coppie di articoli e corrispondenti slide
raccolti dall’antologia online di ACL. In seguito, viene presentato un nuovo sistema
che affronta l’obiettivo di conversione da documento a presentazione in due passi
principali: i) classificazione del dataset nel formato IMRaD, composto da quattro
classi di argomenti; ii) riassumere il contenuto di ogni classe attraverso il fine-tuning
di un modello di machine learning pre addestrato che sfrutta un approccio astrattivo.
La valutazione automatica del sistema implementato evidenzia che quest’ultimo
migliora le performance dell’attuale stato dell’arte nella generazione di slide.
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Chapter 1

Introduction

The creation of presentation slides from academic scientific papers is usually a work
that takes plenty of time, but, nowadays, it is increasingly used by researchers
to present and discuss their projects by incorporating several useful information
for publication understanding. In order to be efficient, slides need to be concise
but, at the same time, they need to be able to gather all the relevant information
involved in the original article. The authors must first identify the main sections
of which the article is composed, they need to decide how to structure the slides
according to the sections and then summarize the content of the identified parts to
populate the assumed presentation structure. As the text data available continues
to grow on the web, manually performing these steps has become an expensive and
generally laborious task that has led to the study and emergence of automated
methods in order to increase human productivity.

Slide generation task can be considered a specific field of Automatic Text Summa-
rization in Natural Language Process (NLP) area, which is gaining more and more
popularity and therefore constitutes an important field of development for academic
researches. Automatic Text Summarization means producing a shorter version
than the original input document by preserving the most important information.
It is a very challenging task, because computers do not have the knowledge and
language skills of a human, which allow him to read and understand a text and then
summarize it pointing out its main points. So, numerous machine learning models
have been introduced for this task. Many of these models address the problem as a
classification problem by deciding whether to include a sentence in the summary or
not, while other models use a topic information approach. In general, the two main
approaches of summarization are the extractive and abstractive methods. The
Extractive summarization is in charge of identifying the most relevant sentences of
input text that are linked together in order to produce a summary. The Abstractive
methods are used to generate summaries that contain different words than the
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original document, while preserving the key concepts and the meaning of the input
content. Generating presentation slides should be part of an abstractive approach
given by the usual creative nature of human slides that present an innovative
summary. Despite this, most of the existing literature proposes extractive methods
because of their greater simplicity and their ability to achieve more performing
results. The main steps of these works are a sentence scoring stage, where an
importance score is assigned to each sentence, and a sentence selection phase,
which is in charge of choosing the most salient sentences while excluding redundant
information. However, Abstractive Summarization methods aim at generating
summaries by interpreting the text using machine learning techniques to produce a
new shorter text. This requires reformulating sentences and embedding information
from the full text to generate summaries as a human usually would do. Abstractive
Summarization needs the ability to generate new sentences that are syntactically
correct, which represents a significant difficulty for an automatic system. Natural
Language Processing also faces many language challenges that only machine learn-
ing development has been able to cope with.
In Automatic Text Summarization task, machine learning techniques can be di-
vided into two main classes: Supervised and Unsupervised. Supervised learning
is characterized by the use of a labeled dataset. Labeled data allows you to train
and supervise algorithms in data classification or prediction of results. In this way,
the model can gradually measure its accuracy and learn over time. On the other
hand, Unsupervised Learning is used to analyze and cluster unlabeled datasets.
The algorithms in unsupervised environment are in charge of discovering hidden
patterns in data without the need of human intervention.

This master thesis work consists of an abstractive approach method with su-
pervised learning with the aim of generating presentation slides more similar to
human ones, based on the common IMRaD (Introduction, Method, Results and
Discussions) classification of input scientific articles.

1.1 Contribution
This master thesis proposes a novel task of generating slides from academic scientific
papers. To tackle this task, existing abstractive summarization models are explored
and analyzed in order to identify the best available solutions.
The main elements of an automatic text summarization system with supervised
learning are:

• The model in charge of performing the text summarization task.

• A text extraction strategy with the aim of "reading" the source document and
transforming it into a machine-readable format.
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• A model learning strategy to perform slide generation.

The thesis work presents a new dataset APPreD (ACL Papers’ Presentations
Dataset) of 466 paired academic papers-presentation slides. It also proposes a
sequence of automatic processing steps to extract sentences from PDF documents
and slides in order to prepare the input source model.
The implemented approach involves a model learning strategy based on the classi-
fication of the document into four main topics to fine-tune a specific pre-trained
model for each topic-class in parallel. The classification exploits the IMRaD subdi-
vision that characterizes all scientific documents by assigning each article section
to the class that belongs to. So, the idea consists of generating section-aware
presentation slides which follow the same IMRaD structure in order to preserve
the key concepts of each topic.

The abstractive nature of generated slides is given by the choice of the model
that represents a novelty in this field. Existing research works rely on extractive-
based approaches which produce slides by aggregating important sentences from
the document, while this thesis work aims to explore abstractive summarization
models world by analyzing pros and cons and choosing the most suitable model for
the input document structure. The design involves the use of Longformer, a model
able to manage long-documents, which consists of an enconder-only architecture in
order to encode a sentence and to produce a value with no text generation. So,
Longformer Encoder-Decoder (LED) version, which has never been used in the
existing literature in slide generation task, is applied to produce the summaries.

In addition, the work includes the evaluation of the implemented system quantita-
tively, using automated metrics and the comparison of obtained performance with
the current state of the art.

The main thesis contributions include:

1. Introducing a novel dataset and techniques for text extraction for both papers
and slides presentation;

2. Proposing an abstractive summarization approach to summarize a document
by classifying it in IMRaD topics and to produce structured slides;

3. Evaluating the proposed approach using common metrics and compare it to
baselines.
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1.2 Report Structure
The remaining part of this master thesis is composed of four chapters, which are
described below:

• Chapter 2 shows an overview of technology used to the automatic text sum-
marization is explained and related works for slide-generation are introduced.

• Chapter 3 presents the implemented method by describing it step by step and
motivating the choices made.

• Chapter 4 is dedicated to the experiments and tests to validate the implemented
method by comparing it with existing projects.

• Chapter 5 contains the final considerations and possible future developments
of the thesis work.

4



Chapter 2

Related Works

The continuous growth of scientific documents in digital format has led to the
need for automatic synthesis methods. According to [1], Text Summarization is in
charge of reducing documents’ content by preserving the most relevant information
in order to help researchers or normal users to handle the large amount of data
available. Technological progress has allowed the birth of numerous approaches
in automatic text summarization across various domains in NLP tasks which
allowed text summarization to quickly become an important research field. In
general, existing approaches can be divided into two main categories: extractive
summarization and abstractive summarization [2]. In the following sections the
studies and the models used to this task are briefly explained and existing projects
are introduced.

2.1 Automatic Text Summarization
As explicated in [3], automatic summaries can be generated by recognizing the most
important portions of an input text and reusing them or by rephrasing relevant
information possibly using words that were not in the original text (Figure 2.1).

Extractive Summarization

The first approach represents extractive methods which consist in assigning a
computed score to sentences of input source and generating the output summary by
choosing the most important ones; thus, they only extract sentences from original
text. In [2] extractive techiniques are resumed in three main steps:

• Intermediate Representation of relevant topics in the input text, where the
automatic system has the purpose of rearranging text in order to make easier
finding the most important portions. In [4] a topic-based representation is
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Figure 2.1: Extractive systems selects information from input source. Abstractive
systems "thinks" new words.

presented where the most explicative words are identified by log-likelihood
test.

• Sentences score, where summarizier has to assign an importance score to
sentence based on its capacity to explain significant concepts. The score is
computed based on two main methods: word probability and TFIDF (Term
Frequency Inverse Document Frequency).

p(w) = f(w)
N

(2.1)

q(w) = fd(w) ∗ log |D|
fD(w)

(2.2)

Equation 2.1 shows the first method where f(w) is the number of occurences
of a word and N the number of all words in the input. This technique must
also be able to ignore stop word list, while in [5], TFIDF is used to assign low
scores to common words promoting the importance of the word rather than
the frequency. It is explained in equation 2.2 where fd(w) is term frequency
of a word in a document, fD(w) is the number of documents that contain the
word and |D| is the number of documents in the collection.

• Sentences selection, where the system selects the top − k most important
sentences in order to generate a summary. An important method is representd
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by Latent Semantic Analysis (LSA) which builds a matrix where each row
corresponds to a word and each columns to a sentence, entries represent the
weight of the word in the sentence. Then a singular value decomposition is
applied in order to decompose the matrix into three matrices: a term-topic
matrix having weights of words, a diagonal matrix where each row corresponds
to the weight of a topic and a topic-sentence matrix [6].

Abstractive Summarization

On the other hand, abstractive methods produce new sentences, thus they have to
"understand" the input source and generate a summary containing main concepts
of document. This feature makes the abstractive summaries more similar to human
ones. According to [7], approaches on abstractive summarization can be resumed
in two main categories (Figure 2.2):

Figure 2.2: Abstractive Summarization approaches

• Structured-based approach, where sentences from input source are organized in
a predefined structured based on specific relationships. Barzilay et al. in [8]
proposes a tree based structure where text is represented by a dependency tree
and first a theme intersection algorithm identifies a central theme and then a
clustering algorithm sorts the sentences which are fused in order to generate
summary. However, in [9] text is represented in a rule-based structure used to
extract information rules that determine candidate sentences to be included
in a generation pattern to produce a summary.

• Semantic-based approach, where documents are analyzed from a linguistic
point of view by identifying semantic elements which are passed to a Natural
Language Generation (NLG) system as input in order to obtain output. Gatt
et al. in [10] proposes a multimodal semantic based structure where it exploits
a Java library (SimpleNLG) to build a semantic model exploiting a set of lexical
and phrasal types corresponding to the major grammatical categories. This
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structure is passed to a lineariser which generates strings based on semantic
features.

Extractive Summarization is the most explored approach at the moment, however
applying abstractive summarization methods allows to generate summaries more
similar to human ones which are usually not extractive.

2.2 Deep Learning for NLP
Natural Language Processing (NLP) can be seen as the union of two main fields:
Natual Language Understanding (NLU) and Natural Language Generation (NLG).
Before generating text, a system has to be able to capture the meaning of an input
source, so the first important step in NLP task consists in making the words in a
representation intelligible by a computer. In this sense, the first solution is presented
in [11] where words are represented as vectors in a multi-dimensional semantic
space. In order to find a way to set many words in the same semantic space, an im-
portant revolution is developed by Mikolov et al. in [12] (Word2Vec) in 2013 where
the word embedding concept is introduced. Embedding means that word repre-
sentations are learned from a neural network and it ensures low-dimensional vectors.

Word2Vec It is based on a shallow neural network which consists of only 1
or 2 hidden layers. Word2Vec embedding is obtained using two methods:

• Continuous bag-of-words (CBOW), where the current word is predicted by
using its surrounding context. During the process of predicting the target
word, the model learns the vector representation of it.

• Skip-gram, where the words in surrounding context are predicted given the
target word.

In both case, the model uses back-propagation to learn vector representations.
Back-propagation is an efficient algorithm to find the optimal weights of a neural
network in order to minimize the loss function. In CBOW model, for instance, the
loss function to minimize is represented by Equation :

E = − log(p( þwt| þWt)) (2.3)

where wt is the target word and Wt is the sequence of context words. Back-
propagation means applying the gradient descent algorithm, which implies finding
out the derivatives of the loss function with respect to the weights. The architecture
of Word2Vec consists of input, hidden and output layers.

GloVe However, Pennington et al. in [13] proposes another important embedding
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architecture, called Global Vectors (GloVe), which does not exploit neural networks.
It is based on the hypothesis that the ratio of co-occurrence probabilities of two
words with a third probe word is more significant than a direct co-occurrence
probability. The idea consists of an optimization problem performing an objective
function in order to minimize the dot product of two words vectors:

wT
i wk + bi + bk = log(Xik) (2.4)

In equation 2.4 bi and bk are bias term of first word (i) and probe word (k), Xik is
the number of times i co-occurs with k.

In the first years of 90’s, statistical Machine Learning approaches were the most
used for many NLP tasks, in particular classification-based tasks were addressed by
using feature-based techniques, for example classifier as Support Vector Machine.
Deep learning represented an important revolution. It showed that a simple neural
network outperforms previous models for almost all tasks.

RNN Recurrent Neural Network (RNN) have been proposed by Rumelhart et
al. in [14] and quickly became predominant in NLP tasks because of its feedback
loops allows the creation of a kind of network with "memory". Figure 2.3 shows
an example of RNN cell where the feedback loop is extended during timesteps.
It can be seen that the output at timestep t is computed by the combination of
the current input and the output from the previous timestep t− 1. An important

Figure 2.3: Simple Recurrent Neural Network

extension of RNN is the Bidirectional version where the text sequence is sent to the
network not only from beginning to end but also from end to beginning in order to
allow each step to have access to future inputs. Backpropagation is the most used
algorithm for training RNNs. It computes gradients of loss function from last layer
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iterating backward and so the gradient value can fastly vanish. This issue, called
vanishing gradient problem, make it difficult to train deep neural networks limiting
the memory of RNNs.

LSTM The introduction of Long Short Term Memory (LSTM), which is a variation
of RNN, took deep learning approaches a step further. The architecture is similar to
RNNs but it introduces the carry track which transfers cell states across timesteps.
The internal structure of an LSTM cell is more complex than RNNs because it has
inside three gates which decide how regulate the flow of information and which
information is to be stored and which is not:

• Forget gate, which decides what needs to be removed from the memory. It
applies an activation sigmoidal function to the current input and the previous
output which returns a value between 0 and 1. This value is then multiplied
with the carry track which represent the previous state. If the activation
function return a value close to 0 the previous state will be "forgotten".

• Input gate controls how a new value should be added on memory.

• Output gate decides how a state should be changed in order to compute the
output.

The forget gate does not involve any gradient function to the carry track, so there
is at least one path where the gradient does not vanish [15].

2.3 Sequence-to-Sequence models
In the past few years, Sequence-to-Sequence models (seq2seq) have been among the
most used for automatic text summarization. These models, as the name says, are
built in order to convert a sequence of one type into another one. They are neural
networks composed of two blocks: encoder and decoder. Encoder and Decoder
are both RNNs, the first one takes as input a source article and transforms it in
a vector of hidden states which is passed to the decoder and it is then used to
produce a summary. Figure 2.4 shows a basic seq2seq model where encoder and
decoder are bidirectional LSTM. But, as explained in [16], there are many problems
with this model. Back-propagation through time does not allow a good encoder
training, since the paths from encoder to the output are relatively far apart, which
limits the propagation of gradient signals, as already illustraded in section 2.2. This
issue causes that a seq2seq model is not able to capture long-distance dependencies
between words and generates innacurate summaries and not clearly readable by
humans. Furthermore, the sequential nature of this model architecture precludes
parallelization, which could be critical with long sequences. In order to solve these
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Figure 2.4: The basic seq2seq model

issues about sequence-to-sequence tasks, attention mechanism and Transformers
are introduced [17].

2.4 Transformers
The Transformers, introduced by Vaswani et al. in [17], is a model architecture
abandoning recurrence and instead relying entirely on an attention mechanism to
draw global dependencies between input and output. In traditional Seq2Seq models,
the decoder is initialized based solely on the final states of encoder, discarding
all intermediate states, however, as the length of sequence increases it gets very
difficult to produce a single vector from long sequences.
The attention-mechanism is a technique introduced to overcome this issue. For
each input of encoder, the idea is to use all states to build a context vector used
by the decoder to generate the output sequence. In other words, attention reads
an input sequence and decides which other parts of the sequence are important
by attributing different weights which are passed to the decoder with the encoded
sentence. Transformers models adopt this mechanism and like the models explained
above in the previous section are designed as encoder-decoder architecture, shown
in Figure 2.5.

Encoder-Decoder Encoder and Decoder building blocks consist of N stacked
layers that process their input iteratively. Encoder, which is on the left in Figure
2.5, is composed of two main components: a self-attention mechanism and a feed-
forward neural network. The first one is for the purpose of taking inputs from the
previous encoder and computing its weight, i.e. the significance in the sequence, to
generate output encodings. While, the feed-forward neural network processes the
outputs one by one and then they are passed to the next encoder or to the decoders
as inputs. The first Encoder in the stack takes positional encoding and embedding
of the input sequence in order to take the order of the sequence into account for
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a good result. Decoder, on the right in the figure, has a structure similar to the
encoder but has an additional attention mechanism which aims to capture relevant
information from the encodings.

Scaled dot-product attention As described in [17] the attention mechanism
can be explained as mapping a query and a set of key-value pairs to an output
where queries, keys and values are all vectors.

Figure 2.5: Transformer architecture

Attention(Q, K, V ) = softmax(QKt

√
dK

)V (2.5)

a = softmax(QKt

√
dK

) (2.6)

In other words, attention weights are computed by the dot product of queries and
keys and normalized by a softmax function (2.5).
Q represents the query and is the vector representation of one word, K consists in
the vector representation of all the words in the sequence, while V represents again
the vector representation of all words but summed and multiplied with a specific
attention weight (2.6) which defines how each word is influenced by all the other
words in the sequence [18].
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2.5 Existing Transformer-based Models
Unlike RNNs, Transformers attention-mechanism computes the context for each
word of the sentence, thus transformers don’t need to process data in order. This
feature allows for more parallelization in training phases and this led to the
emergence of many models pretrained with very large language datasets. Some of
them use an encoder-only architecture, so they aim to encode a sentence and to
yield a specific value with no generation of an another sequence. However, some
others also add the decoder block to this architecture in order to produce a new
sequence from the input source. The next two sections resumes the most used
models in the state-of-the-art for both tasks.

2.5.1 Encoder-only Transformers
BERT Bidirectional Encoder Representations from Transformers (BERT) is a
standard Transformer model with a number of encoder layers and self-attention
heads. It is designed to understand the meaning of corrupted language in text
by using surrounding text to establish context, thus it just needs to encode the
language representations so that it could be used for other tasks. For this reason
it consists only of encoder parts. It is pre-trained on two different NLP tasks:
Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). MLM
training is intended to mask some percentage of the input tokens at random, and
then predict those masked tokens. However, NSP training aims to capture the rela-
tionship between two sentences [19]. BERT revolutionized the NLP world because
of its solution for making Transformers bidirectional. Thanks to MLM, instead of
predicting the next token as in the common next-word prediction objective, the
model is expected to predict a masked token and this means the model is affected
by both sides of the token in order to guess it.

BigBird Self-attention mechanism overcomes limits of RNNs and its sequen-
tial nature to encourage more parallelization allowing the growth of dataset but
sequence length remains still a problem. In thise sense, BigBird, presented in [20],
proposes a new attention mechanism where the complexity is linear in the number
of tokens and not anymore quadratic as in BERT. Encoder layers of BigBird use
a generalised attention mechanism which is easily represented by a graph whose
vertex set is tokens of input sequence and edges form the set of dot products done
by attention mechanism. In the case of the graph is fully connected performances
are the same of BERT with its full self attention. To avoid this they introduce
three windows of nodes that each token has to attend:

• Local window, which is based on the concept of locality of reference according
to which most of the information about a token can be extracted from its
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neighbouring tokens.

• Random window, a random number of keys which query has to attend.

• Global window, they define a set of global tokens that attend to all tokens in
the sequence and to whom all tokens attend to.

In this way, BigBird achieves the benefits of full self-attention with a smaller
number of operations.

Longformer Similarly to BigBird, Beltagy et al. in [21] propose an attention
mechanism to avoid memory and computational requirements limits due to self-
attention quadratically growth. Longformer use a similar local+global attention of
BigBird with some differences. To capture information of local context they use
the same concept of local window but, in order to improve the receptive field, it
is dilated by a fixed value. This dilated window attention is not flexible enough
to learn context of each token. Accordingly, they also add global attention on few
pre-selected input locations. In contrast of BigBird, Longformer global attention
window can change according to the downstream task the model is needed.

2.5.2 Seq2Seq Transformers
BART In [22] BART is presented as the extension of BERT for generation tasks.
It is a denoising autoencoder that maps a corrupted document to the original
document it was derived from. So it is implemented as a standard Transformer ar-
chitecture with a bidirectional encoder, as BERT, and a left-to-right autoregressive
decoder, which is the component in charge of generating the output sequence. It is
considered an innovation because unlike existing denoising autoencoders, which
are suited to specific noising schemes, BART allows to apply any type of document
corruption. BART is trained by corrupting documents and then optimizing a
reconstruction loss, the cross-entropy between the decoder’s output and the original
document. For summarization tasks, it evaluates using ROUGE metrics and uses
two summarization datasets, CNN/DailyMail [23] and XSum [24]. For fine-tuning,
an uncorrupted document is input to both the decoder and encoder, and it uses
representations from the final hidden state of the decoder.

PEGASUS It proposes a new self-supervised pre-training objective for abstractive
summarization, gap-sentence generation, and studies strategies for selecting those
sentences. In PEGASUS pre-training task, important sentences are removedmasked
from an input document and are generated together as one output sequence from
the remaining sentences, this process is more similar to an extractive summary
rather than in BART. It is interesting because it shows how good abstractive
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summarization performance can be achieved across broad domains with very little
supervision by fine-tuning the PEGASUS model. The base architecture is based
on standard Transformer encoder-decoder but, in contrast to BART, which masks
small continuous text spans, PEGASUS does it with multiple whole sentences [25].
For pre-training it considered two large text corpora: C4 - consists of text from
350M Web-pages, and HugeNews - a dataset of 1.5B articles.

T5 Text-to-Text-Transfer-Transformer (T5) proposes to treat every text processing
problem as a text-to-text problem, taking text as input and producing new text as
output. It is interesting because this approach allows to use the same model, loss
function, hyperparameters, across diverse set of tasks. The model is equivalent to
the original encoder-decoder Transformer (BERT’s architecture) with the exception
of removing the Layer Norm bias [26], placing the layer normalization outside the
residual path, and using a different position embedding scheme (T5 uses relative
scalar embeddings). It is trained using teacher forcing. This means that for training
it always need an input sequence and a target sequence. The T5 model, pre-trained
on C4, achieves state-of-the-art results on many NLP benchmarks while being
flexible enough to be fine-tuned to a variety of important downstream tasks [27].

2.5.3 LED

In order to facilitate modeling long sequences for seq2seq learning, in [21] is
proposed a Longformer variant consisting of both encoder and decoder as in
original Transformer architecture. LED encoder uses local attention with window
size 1,024 tokens and global attention in the first token, which means that it attends
to all the tokens in the sequence and all tokens attend to it. Due to small number
of global tokens the complexity of local+global attention remains O(n), where n
is the number of tokens. However, LED Decoder uses full attention to the entire
encoder and to the previously decoded locations. LED is initialized with BART
parameters and follows its architecture in terms of number of layers and hidden size.
It is trained using arxiv summarization dataset [28] and two version are released
LED-large-16384 and LED-base-16384.

Training

In particular, a word-level training is applied to LED which, as explained in [29],
consists of trying to optimize the prediction of next token. In other words, from an
input article x a seq2seq model generates a summary y with the probability Pθ(y|x),
where θ represents model parameters, like weights and bias, that are initialized
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from BART’s checkpoint.

Pθ(y|x) =
TÙ
t=1

Pθ(yt|y<t, x) (2.7)

Equation 2.7 expands the probability and each multiplication factor represents the
likelihood which is a conditional probability of the next token yt given all previous
ones denoted by y<t = (y1, y2, ..., yt−1).
The algorithm used to train LED model, known as teacher forcing or Cross-
Entropy Training (XENT), aims to learn θ maximizing the log-likelihood of observed
sequences (ground-truth) ŷt:

log Pθ =
TØ
t=1

Pθ(ŷt|ŷ<t, x) (2.8)

As shown in Figure 2.6, during training the algorithm uses observed tokens (ground-
truth) as input and aims to improve the probability of the next observed token at
each decoding step. Starting with a special token SOS, which stands for start-of-
sequence, the model generates a token at time t with a certain probability. Then,
the generated token is fed into the next decoding steps and the generation ends
when the output is EOS token (end-of-sequence). The generation of a token has

Figure 2.6: Training with teacher-forcing algorithm

16



Related Works

the purpose of maximizing likelihood by finding the optimal sequence between
all possible sequences. In LED training, beam search algorithm is applied to
approximate the exact inference. Beam search algorithm is a graph search for
a given sequence of probabilities and beam width user-selected parameter B. At
each step, each candidate sequence is expanded with all possible next steps. Each
candidate step is scored by multiplying the probabilities together. The B sequences
with the most likely probabilities are selected and all other candidates are pruned.
The process then repeats until the end of the sequence [30].

2.6 State-of-the-art in Slide Generation
Over the past few years automatic generation of presentation slides for academic
papers has increasingly become a very useful task for researchers. This section
briefly describes in chronological order the principal existing works which repre-
sented the state-of-the-art about slide generation from scientific paper in the last
years. They take advantage of existing models, described in section 2.5, to generate
summaries in slides form. Most of them use an extractive approach to generate
summary, while the more recently works use a full abstractive model and for this
reason could be used as competitor in this master thesis work.

PPsGen The first proposed system for slide generation is presented by Hu et al. in
[31], whose work introduces a new method of automatically generating presentation
slides for academic papers. PPsGen is not an abstractive method because its output
is based on the selection of the most important sentences in an academic paper.
The architecture leverages on two principal models. The first one is in charge of
assigning an importance score for each sentence in the given paper and then a
second model has the purpose of selecting and aligning key sentences to create
output slides. For the first step, the importance of each sentence is learned by
using the Support Vector Regression (SVR) model, which is a supervised learning
algorithm used to predict discrete values and so very useful for classification tasks.
In order to construct training data they apply a similarity scoring method based
on a set of features which represent each sentence (similarity with titles, word
overlap with titles, sentence position, number of noun phrases and verb phrases,
stop word percentage). However, for the selection of most important sentences
PPsGen relies on the Integer Linear Programming (ILP) which aims to optimize
a defined objective function to maximize the overall importance score and the
coverage of selected sentences. It uses 1200 paper-slide pairs obtained by crawling
Arnetminer (http://arnetminer.org).

Afterwards, a similar PPsGen work is published in [32] where a phrase-based
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approach to generate presentation slides for academic papers is introduced. It uses
175 pairs of paper and slides in the computer science field. The main difference
with previous work is that they consider phrases as the basic element for content
selection rather than sentences as usually. This allows to generate more concise
and easy to read slides with no long sequences. Otherwise the approach is similar
to [31] based on the following steps:

• Extraction of candidate phrases from each section of the given paper.

• Learns both saliency score of each phrase and the hierarchical relationship
between a pair of phrases.

• Selection and alignment of salient phrases.
For the step of saliency estimation they apply a Random Forest classifier which
is in charge of choosing candidate phrases for extraction relying on a specific set
of features, like in PPsGen. Finally, two greedy algorithms are used to determine
which candidate phrases are selected and used in output slides. The algorithms
aim to satisfy two objective:

• Select as many phrases with high salience as possible.

• Align as many pairs of phrases with strong hierarchical relationships as possible.
In 2019 Sefid et al. proposed another work in [33] which describes always an
extractive approach for generating presentation slides for scientific papers. The
dataset contains conference proceedings in computer science. As the first two
projects, the architecture consists of 2 steps. The first is to calculate scores used to
identify important sentences. In contrast to previous works, it is interesting because
use Deep Neural models (CNN, RNN) to encode sentences and its context as new
features in sentence ranking to produce slides. For sentence selection, they compare
a greedy method and the ILP. The second is to extract salient sentences under
constraints. This task is done by using the Bullet Point Generation Algorithm
which arranges slides in levels of bullet points.

DOC2PPT The first interesting work which proposes an abstractive approach
of generating a slide deck from a document is presented in [34] and introduces a
novel task of creating presentation slides from a multimodal document with text
and figures. It uses a dataset about 6K paired documents and slide decks. It is
interesting because it solves several challenges in the vision and language domain,
e.g., visual-semantic embedding and multimodal summarization.The architecture
leverages on a hierarchical recurrent sequence-to-sequence architecture. DOC2PPT
network is made up of four main modules that read a document by dividing it into
sections containing sentences and figures containing images and then produce a set
of slides in a hierarchically way:
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• Document Reader (DR): It encodes sentences and figures in a document, using
a version of BERT, section 2.5.1, and projects them to a shared embedding
space using a deep learning model, called MLP, which is a specific class of
feedforward artificial neural network.

• Progress Tracker (PT): It is formed by some pointers that indicate which
section is currently being processed and consequently which slide is currently
being generated.

• Object Placer (OP): It is in charge of deciding which object, between sentence
and figure, to put on the generating slide.

• Paraphraser (PAR): It is the component that summarizes the selected sentences
in a concise form. It is implemented as an attention based Seq2Seq model
with the add of copy mechanism, which consists in generating target tokens by
directly copying them from inpute sequences based on their attention weights
[35].

The DOC2PPT main goal is to propose a new way to do Multimodal Summa-
rization, encoding different types of input in the same visual-semantic embedding
space. All of which makes it out of the scope of this thesis work and so it can not
be used as a real competitor.

D2S However, the project that will be used as competitor in the following sections
is presented in [36] by Sun et al. because this paper proposes a new variant
on document-to-slide generation process in an abstractive text summarization
approach. It is interesting because in addition to the contribution of the novel
model architecture, it also constributes a high-quality dataset (SciDuet), which
contains 1,088 papers and 10,034 slides. It considers the task as a Query-Based
Single-Document Text Summarization. D2S is built as an interactive model where
in the first step users have to input a short text as the slide title and it is used
by a Dense Vector IR module to select the most appropriate sentences from the
corresponding paper. In a second time, a QA model is used to generate the original
summary of the extracted text. The architecture is illustrated in Figure 2.7 and
consist of the following three modules:

• Keyword Module: This block is in charge of building relationship trees between
section titles and subsection headings in order to facilitate next steps.

• Dense IR Module: The idea here is to rank paper sentences in terms of
relevance to a given slide title. They design a weighted ranking function with
vector representations of titles, passage texts, and the leaf node keywords of a
dense vector IR system based on a distilled BERT miniature. The top ten
candidates are choosed as input’s context to the next module.
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• QA Module: This module uses slide titles and keywords as query and the
concatenation of the output of IR module as the context. The QA module is a
fine tuned BART, section 2.5.2, where the query and the context are encoded
in the format of "title[SEP1]keywords[SEP2]context."

It evaluates using IDF-recall, which computes the proportion of words in the
original slide text in the retrieved context weighted by their inverse document
frequency. For slide text content generation, it uses ROUGE metrics and human
evaluation. A distilled uncased Bert miniature with 8-layers, 768 hidden units, and
12 attention heads was trained and used to perform IR. QA model was fine-tuned
over BART-Large-CNN.

The D2S system is used in the following sections to compare the obtained re-
sults in this thesis work.

Figure 2.7: D2S Architecture [36]

At last, there are also works that propose approaches about slide generation
from academic papers in unsupervised environment, thus with the absence of
training data.

The first one introduces a topic-aware paper to slide generation approach based on
sentence selection. It uses ACL Anthology Reference Corpus as unlabeled corpus of
papers for unsupervised learning. It has gained popularity because it adapt mutual
learning in the unsupervised setting, where it provides a flexible framework for
integrating prior knowledge to initiate the training. It evaluates using three metrics:
1) accuracy; 2) sentence-level classification precision/recall; 3) BLEU metrics. The
architecture consists of 2 models: Neural Sentence Selection Model which captures
sentence semantics and Log-Linear Classifier where the prior knowledge is encoded
as features. The approach is based on mutual learning with two models updating
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collaboratively [37].

Recently work is published in [38] where previous tasks encountered, like sen-
tence importance evaluation, sentence selection and generation, are addressed by
applying unsupervised methods.
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Chapter 3

Implemented methods

The final goal of this thesis work is to generate a set of slides from academic
papers following the standard format of academic journals, called IMRAD, with an
abstractive approach in supervised environment. Figure 3.1 shows an overview of
the workflow, the task involves reading a document by extracting sentences of each
sections and its titles, then classifying sections in Imrad topics and summarizing
each topic in order to create new concise sentences that cover most important
information of input document. After a first phase of study and evaluation of
existing models, illustrated in 2.5, LED was chosen to summarize input source
due to its capacity to manage long sequences and to outperforms state-of-the-art
summarization baselines. The workflow of implemented method can be summarized
in three main steps:

• The Crawling and Parsing dataset phase, where the dataset is collected and
then sections with sentences are extracted from PDFs and rearranged into
json files.

• The Classification phase, where sections are assigned to macro-topics (in-
troduction, method, result and conclusion) in order to obtain a common
organizational structure to future generated slides.

• The Generation phase, where sequence-to-sequence model is in charge of
producing a summary for each topic.

The following sections will introduce in details each of these steps and the approach
used to implement it.

3.1 Crawling and Dataset Construction
This master thesis work proposes a new dataset composed of scientific papers and
their corresponding slide presentations. The Dataset is crawled from ACL online
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Figure 3.1: General overview of implemented method workflow

anthology (https://aclanthology.org/) and contains pairs of papers and slides
from recent years’ computer linguistic and machine learning venues.
The dataset consists of 466 paper-slides pairs splitted in the Train-Dev-Test for-
mat. Table 3.1 and Table 3.2 show some dataset statistics. In particular, SC-len
parameter shows the average token length in the dataset that helps the model to
define output summary length.

#papers #slides SC-len
train 401 6,952 138.61
dev 20 78 71.86
test 45 717 76.25

Table 3.1: Dataset statistics: ’SC-len’ represents the average token length for
slide contents

3.1.1 Dataset Parsing

The first task of the proposed model aims to read a PDF document in order to
convert it into a sequence of sentences which can be sent to a model as input.
According to supervised nature of work and consequentially to the necessity to
have a ground-truth to apply in the fine-tuning phase, the parsing stage is applied
to both papers and its corresponding slides.
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SC-len
Introduction 69.0
Method 368.32
Result 77.59
Conclusion 76.87

Table 3.2: The average token length for slide contents for each IMRaD topic

Papers

For parsing papers, PDF documents were converted in a txt format through
GROBID [39], which is a machine learning library in charge of re-structuring raw
documents by transforming them into machine-friendly, structured, and predictable
representations. GROBID exploits a cascade of sequence labeling models for parsing
a document. Figure 3.2 shows how it works, where increasingly specific models are
used to identify the areas of the paper. The first one, for instance, Segmentation
model is in charge of detecting main sections of document,e.g. the title page, the
header, the body, the head and foot notes, the bibliographical sections. The models
at the lower level, in turn, identify the sections of detected areas. This approach
allows to produce a very detailed result preserving original document layout and
not compromising its sectional division. Afterwards, the GROBID output is again

Figure 3.2: GROBID cascade of sequence labeling models [39]

analyzed to build a more comprehensive format, so a json file is created where each
paper of dataset is represented by a dictionary consisting of the keys illustrated in
Figure 3.3.
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This dataset design facilitates the following paper sections classification and

Figure 3.3: Dataset in json format after parsing stage

makes the document accessible to the summarization model.

Slides

In order to build a ground-truth to use during model fine-tuning, original slides
have to be parsed and rearranged. Due their less structured nature than papers,
GROBID can not be applied because it is not able to recognize a common design
and extract correct text. Human slides are full of images and tables surrounded by
text without a specific order and for these reasons extracting meaningful text is
very difficult. In this work, the used approach consists of applying python library
pdfplumber1, a fork of the original PDFMiner2, which scans a PDF to retrieve
detailed information about each text character. In particular, for each slide of
deck, extract_words method from pdfplumber class is applied, which retrieves each
individually recognized word as a dictionary along with some extra attributes that
help to rebuilt sensible text:

• Fontname

• Size

1https://pypi.org/project/pdfplumber/
2https://pypi.org/project/pdfminer/
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• Doctop, that is the distance of top of character from top of document.

These three features allow to analyze for each word its position and style in order
to compose sentences with words on the same line, thus if the difference between
doctop feature of two words is not greater than a chosen y_tolerance they are
considered to belong to the same sentence and therefore linked together. However,
fontname and size along with position are used to extract slide titles in order to
rebuild slide in the same json style like for papers, as already illustrated above.

Data Cleaning

Once text is extracted and rearranged from papers and corresponding slides,
another important step is a pre-processing phase in order to have available data as
comprehensible as possible. Usually, a scientific paper is full of references or notes

Figure 3.4: The two plots shows the trend of the percentage of symbols within
sections of a paper (on the left) and its corresponding slides (on the right).

which are not considered sensible parts of text that will be summarized. Moreover,
the presence of particular mathematical formula could affect text comprehension
because of its symbols which can contain non-ascii characters that later lead to
generate unicode error. Even more in slides, extracted text could include sentences
hard to understand because they can belong to caption images or could be parts of
a table. In order to try to overcome these issues, the average of the percentage of
symbols in sentences is computed for each section of papers and slides, Figure 3.4
shows the symbols percentage of each paper and corresponding slides in IMRaD
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sections. In papers, Method class contains more symbols because it describes
techniques and procedure of the purpose of the study, while, in presentation slides,
Result and Conclusion reach high values because statistical results (tables and
figures) are reported. The trend has been analyzed for each section and sentences
that has a percentage of symbols greater than a selected threshold have been pruned
from dataset text.

3.2 IMRaD Classification
The second step of thesis work consists of assigning extracted sections of papers and
slides to four main topics in order to create a concise and professional format for
generated slides which covers all relevant information of documents. The four topics,

Figure 3.5: Imrad Structure

illustrated in Figure 3.5, establish the most common format used in publication,
called "IMRaD".

IMRaD stands for Introduction, Materials and Methods, Results, and Discus-
sion/Conclusion and according to Wu in [40] it began to be adopted by scientific
journals around the 1940s, and quickly became the dominant format for research
papers in a majority of leading scientific journals. IMRaD includes:

• Introduction, where relevant background information and descriptions of
the purpose of the study are provided.
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• Materials and Methods, which describes the work procedure and techniques.
It is the most detailed section.

• Result, where study results and their statistical importance are described.

• Discussion or Conclusion, which explains the meaning of study and if
objectives are achieved.

An important element of scientific papers is the Abstract, which does not belong
to IMRaD format but contains a condensed version of it. Organizing document
sections following IMRaD structure has a wide range of advantages because it
facilitates reading and knowledge acquisition not only for humans but also for a
learning model that can obtain better performances. Moreover, generating slides
individually for each topic ensures a full coverage of input source information.
So, the idea here is to rearrange the extracted dataset in a new dictionary made up
of the four IMRaD topics. A classification script is applied to each section in order
to assign its sentences to the topic it belongs to. So for each topic the classification
is implemented by using helpers containing keywords that refer to that topic and
then the section is assigned according to its title.

TITLE_HELPER = ["title"]
ABSTRACT_HELPER = ["abstract"]
INTRODUCTION_HELPER = ["intro", "motivation"]
LITERATURE_HELPER = ["related", "literature", "review", "background"]
METHOD_HELPER = []
EXPERIMENTS_HELPER = ["exp", "eval", "result", "statistic"]
CONCLUSION_HELPER = ["concl", "discuss", "future"]

If section title is composed of one of the helper words then its sentences are assigned
to the topic to which the helper refers. If section is found to belong to Literature or
Experiments its sentences are pruned from dataset because they are not included
in IMRaD structure, while if section does not match any of the helpers then the
sentences are assigned to Method topic.

3.3 Slide Generation
The idea in this thesis work is to use classified dataset in order to fine-tune
four sequence-to-sequence models one for each IMRaD topic. Due to the long
sequences nature of scientific papers, as explained in 2.4, Transformers is currently
the best choice to manage them and produce sensible summaries. In particular,
Longformer allows to overcome memory and computational limits because of its
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modified architecture which employs a linearly scalable self-attention mechanism.
These considerations led to the choice of Longformer-Encoder-Decoder (LED) as
sequence-to-sequence model to generate slides.

3.3.1 IMRaD LED Fine-tuning
The Longformer model, explained in section 2.5.1, has been extended in a gener-
ative model with an Encoder-Decoder architecture in order to support sequence-
to-sequence tasks. LED Encoder uses the attention pattern of Longformer, lo-
cal+global attention, while the decoder applies full self attention mechanism to
encoded tokens. It is initialized following BART’s architecture and parameters
but position embedding is extended from 1K tokens to 16K in order to be able
to proccess longer inputs. Training steps, described in section 2.5.3, produced
two pre-trained LED version, base and large, that can be fine-tuned in order to
make small adjustments to achieve desired output. Because of limits of available
computational resources, in this thesis work the LED-base version is used to be
fine-tuned as checkpoint.
The proposed idea for fine-tuning is to setup four LED models one for each IMRaD
class in order to create more specialized models that capture relevant information
from all topics of an input document and generates presentation slides that follows
IMRaD structure. Using pre-trained models with similar dataset for fine-tuning
is a time-efficient process because a huge amount of data is imported from pre-
vious models and the new dataset makes the new model much more reliable. As
shown in [41], large-scale model first pre-trained with massive text-corpora with
self-supervised objectives and then fine-tuned on downstream tasks achieved state-
of-the-art performance on a variety of summarization benchmark dataset. As in
training phase, fine-tuning goal is to minimize the cross-entropy loss, equation
3.1, where each example (x, y) represents a pair of document_imrad_section and
presentation_imrad_section, T is the target sequence length and p is the model’s
predicted probability for the next word [42].

LData = −
TØ
t=1

log p(yt+1|y1:t, x) (3.1)

Figure 3.6 shows an overview of the proposed fine-tune where dataset built as
illustrated in section 3.2 is applied in order to learn the four different LED models.

Tokenization

Before the model feeds on the extracted text, a pre-processing phase is required
in order to encode sentences in vector representations. According to [43], the first
step in all NLP tasks is to recognize the basic units of input text which must not
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Figure 3.6: Fine-tuning illustration

be decomposed during following stages. Tokenization represents the process to
identify words or subwords which are to be considered as basic units, thus it is in
charge of splitting input text and converting units to vectors of input ids through
a look-up table. Tokenization can be splitted in three different approaches:

• Character-based, where tokenizer splits text into single characters in order to
avoid out-of-vocabulary words issue because it can create the representation of
unknown words from individual character representation. On the other hand,
this approach causes a significant increase in the size of the vocabulary.

• Word-based, which is the most common used approach. It consists of splitting
text into words based on a specific delimiter, usually space. This tokenization
represents similar words with different IDs which is an important limit.

• Subword-based, where rare words are splitted in subwords but frequently used
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words are no decomposed by tokenizer. This allows to reduce vocabulary size
and avoid different meaning to similar words issues.

LED Tokenizer uses a subword-based approach, in particular, adapts Byte-Pair
Encoding (BPE) algorithm, introduced in [44], where frequent words are merged
into a single symbol in order to represent the entire dataset with the least amount
of tokens. In pseudo-code Algorithm 1 an example of BPE algorithm is explained.

Algorithm 1 BPE Tokenization pseudo-code
Input: string C, number of merges k Output: Vocabulary V

1: Initialize V with all unique characters in C
2: for i = 1, k do
3: Choose most frequent pair of adjacent tokens in C (tleft, tright);
4: Create new tokens by concatenating it tNEW = (tleft, tright);
5: Update vocabulary V ;
6: Replace each occurence of (tleft, tright) with tNEW in C;
7: end for

Encoding

Tokenizer has then to represent basic units in numerical indices that will be used
as input by the model. In this sense, LED Tokenizer provides encoding methods
that return input ids of a sequence or pair of sequences. The idea, as illustrated
in 3.6, is to append to each IMRaD topic the Abstract by exploiting encode_plus
method provided by PreTrainedTokenizer class which allows to encode a pair of
sequences together. The Abstract represents a condensed version of all IMRaD
topics, so the hypothesis is that integrating it with each single topic can help
model to pay attention towards important information across all topics when
generating summary. IMRaD topic and Abstract are encoded in the format of
"<s>Topic<\s><\s>Abstract<s>" where \s is the separator token used to build
a sequence from multiple sequences. Encoding method provides, also, local at-
tention mask for each input id to which global attention have to be added that
defines which token are attended globally and which not. According to [21], for sum-
marization tasks, global attention mask is set only for the first token in the sequence.

During fine-tuning, an automatic scores computes the metrics from predictions
compared to ground-truth. Back-propagation is used in order to exploit the metrics
to updates model parameters improving following predictions.

The proposed model is fine-tuned on crawled dataset with a batch size of 2 and
with half-precision floating-point format.
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The maximum input token length was set to 8192 and according to Table 3.2,min
and max output token lengths are set to 100 and 512 for Method topic and to 50
and 128 for the other topics.

3.4 Implementation tools
The main programming language used in methods implementation is python. This
language allows the development of deep learning models by providing several
useful libraries. In particular, during the project implementation, the following
libraries and tools have been used:

• GROBID [39], machine learning library used to extract text from PDF papers.

• PdfPlumber [45], python library used to extract text from PDF slides.

• Transformers and datasets by Huggingface [46], open-source community which
provides Transformers library. It allows to use all available models with a
set of pre-trained weights. Huggingface provides Datasets library in order to
access and share datasets for NLP tasks.

• Pytorch [47], is the principal library used to implement the model. It is an
optimized tensor library for deep learning using GPUs and CPUs.

• Numpy [48], is an open-source project for scientific computing in Python. It
is used to manage inputs as vectors.

• spaCy [49], is a free, open-source library for NLP in Python. It is used to
recognize and split sentences from extracted text.

• MatPlotlib [50], is a python library used to support the visualization of charts.
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Experimental Results

Only some of the existing projects concerning slides generation, introduced in
chapter 2, have publicly released their own dataset and code to be used as a com-
parison during the evaluation phase. In particular, DOC2PPT [34] and D2S [36]
represent the works most similar to the implemented model. DOC2PPT proposes
a multi-modal summarization for the purpose of resolving several tasks in vision
and language domain. For this reason, it is considered out-of-the-scope of this
thesis work which relies only on textual domain. In order to compare the results
obtained by the implemented method with state-of-the-art, D2S results have been
considered as competitors.
D2S has released its own dataset (SciDuet) and code. However, due to computa-
tional resource limits and errors in the released code, D2S model was unable to be
fine-tuned and tested on proposed dataset.

So, the implemented model has been tested with both datasets, proposed one
and SciDuet, and the results for SciDuet dataset have been compared with D2S
published results. In addition, two baseline models, BART [22] and PEGASUS
[25], have been also fine-tuned and tested with both datasets.

4.1 Computational resources
The implemented procedure have been developed by using Colaboratory by Google1

which allows to execute Python code in the browser. The virtual machines made
available in Google Colab host a configured environment where numerous Python
libraries are present. The model fine-tuning and the tests presented in the next
sections have been conducted using provided resources by Google:

1https://colab.research.google.com/
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• Dual Intel® Xeon ® CPU @ 2.20GHz.

• A single 12GB NVIDIA® Tesla® K80 GPU

The free version has limited the development of the proposed model because GPU
can be used up to 12 hours continuosly.

4.2 Datasets Description
The model evaluation is made on the two different available datasets in order to test
the implemented model with different inputs. The section describes characteristics
and differences of the two datasets.

SciDuet

According to [36], the SciDuet (Scientific Document Slide Match) dataset consists
of paper-slide pairs scraped from some online anthologies:

• International Conference on Machine Learning (ICML’19),

• Neural Information Processing Systems (NeurIPS’18& ’19),

• Association for Computational Linguistics (since ACL’79).

Text from dataset was extracted through the combination of Grobid, IBM Wat-
son Discovery package2 and OCR by pytesseract3. Further dataset cleaning was
performed by pruning equation and floating caption and by removing duplicate
lines. SciDuet consists of 1,088 paper-slide pairs decomposed on 952-55-81 in the
Train-Dev-Test split. However, released SciDuet dataset contains the full Dev and
Test sets and a portion of the Train dataset (136 paper-slide pairs).

#papers #slides SC-len
train 952 8,123 55.1
dev 55 733 63.4
test 81 1,178 52.3

Table 4.1: SciDuet Dataset statistics: ’SC-len’ represents the average token length
for slide contents

2https://www.ibm.com/cloud/watson-discovery
3https://pypi.org/project/pytesseract
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APPreD

The APPreD (ACL Papers’ PREsentations Dataset) dataset, proposed in thesis
work, was crawled from ACL online anthology and consists of 466 paper-slide
pairs from recent years’ computer linguistic conferences. The dataset has 401-20-
45 paper-slide pairs in the Train-Dev-Test split. Text on papers was extracted
through GROBID [39], while text on slides was extracted through pdfplumber from
PDFMiner. As explained in section 3.1.1, Dataset was then pre-processed by analyz-
ing the trend of the symbols percentage present in each paper and slide sections and
pruning the sentences that contained a percentage greater than a selected threshold
based on the output trend. Dataset symbols cleaning is intended to make the
automatically extracted text more comprehensible to the machine learning model.

#pair avg avg avg
Dataset paper-slides sections sentences token length

(released) per paper per section per section
SciDuet 1,088(272) 12.82 14.56 195.53
APPreD 466 14.70 11.57 171.16

Table 4.2: Datasets statistics: comparison of the two datasets about paper
features: number of sections for paper, number of sentences per section and the
average token length per sections content.

#pair avg avg avg
Dataset paper-slides slides sentences token length

(released) per paper per slide per slide
SciDuet 1,088(272) 15.48 4.28 43.79
APPreD 466 16.63 7.82 69.68

Table 4.3: Datasets statistics: comparison of the two datasets about slides features:
number of slides per paper, number of sentences per slide and the average token
length per slides content.

Table 4.2 shows the statistics of the two different datasets about papers con-
tent. Table 4.3 compares slides content and shows that APPreD dataset has a
number of slides and corresponding sentences length greater than Sciduet.
In addition, Table 4.4 shows the average token length of paper sections after IMRaD
classification. The number of tokens grows because sentences of same topic are
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avg avg
IMRaD topic token length token length

Sciduet papers APPreD papers
Abstract 162.82 163.66
Introduction 755.02 697.58
Method 3,203.09 3,403.51
Result 731.88 678.20
Conclusion 311.78 271.34

Table 4.4: Datasets statistics: the average token length per IMRaD topic and
Abstract for both datasets.

linked together creating larger sections than original one. This value is useful to
understand how much tokens the model has to receive as input.

4.3 Evaluation Metrics
In order to measure the quality of text in the generated slides, automatic metrics
specifically designed to evaluate slide generation models have been used. In
particular, ROUGE, introduced in [51] by Lin et al., which stand for Recall-
Oriented Understudy for Gisting Evaluation represents the most common measures
used in state-of-the-art to determine a quality of generated summary by comparing
it to ground-truth summaries created by humans.
ROUGE is composed of a set of metrics and the most used in summarization tasks
are:

• ROUGE-N, which measures how many n-grams match between proposed
model generated text and human reference.
An n-gram represents n words or tokens grouped together. A unigram (1-
gram) consists of a single word groups, while a bigram (2-gram) is composed
of two consecutive words. In this work, ROUGE-1 and ROUGE-2 have been
evaluated in order to measure the match rate of unigrams and bigrams between
model output and ground-truth.

• ROUGE-L, which is a measure based on longest common subsequences (LCS)
between the two compared summaries. It means that ROUGE-L metric
counts the longest sequence of tokens/words which is shared. A longer shared
sequence indicates more similarity between two summaries.
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For all used metrics (ROUGE-1, ROUGE-2, ROUGE-L), recall, precision and
F-score have been calculated.

Recall measures the number of matched n-grams between model output and refer-
ence divided by the total number of n-grams in reference summary (Equation 4.1).

ROUGE −Nrecall =
q
S∈Reference

q
gramn∈S countmatch(gramn)q

S∈Reference
q
gramn∈S count(gramn) (4.1)

It is in charge of evaluating how much the proposed model captures of all the
information contained in ground-truth.

Precision metric is calculated by dividing shared n-grams by the total number of
n-grams in model summary, as shown in Equation 4.2.

ROUGE −Nprecision =
q
S∈Reference

q
gramn∈S countmatch(gramn)q

S∈ModelSummaries

q
gramn∈S count(gramn) (4.2)

Precision is fundamental in summaries because it measures how much of the model
output summary is relevant and needed. In fact, a generated summary could be
extremely long capturing all words contained in the reference summary obtaining an
high recall score but it could contain words that are not necessary for summary task.

F-score is computed in order to balance the scores of precision and recall and to
give a measure of model performances.

F = 2 ∗ precision ∗ recall

precision + recall
(4.3)

In this work, ROUGE metrics are applied in three different ways to evaluate
generated slides:

• ROUGE Overall, where the output of each IMRaD topic is merged and the
metrics are computed in order to measure the accuracy of entire produced
text regardless of classification. It is calculated for both datasets.

• ROUGE InterClass, where the idea is to evaluate how much information of
each single topic the model has been able to capture. So, the entire output
text has been compared to reference topic text one by one. It is calculated on
SciDuet dataset in order to compare the implemented method with D2S of
which classification of prediction is not available.

• ROUGE IntraClass, is applied on APPreD dataset and it evaluates the quality
of generated text for each IMRaD class.

In addition, ROUGE Overall is computed, also, to evaluate the impact of data
pre-processing on fine-tuning, explained in section 3.1.
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4.4 Experimental Setup
All fine-tuning has been done on a single 12GB K80 GPU in parallel on PyTorch.
The code adapts the transformers models from Huggingface [46]. Hyperparameters
model are fine-tuned on the dev set. The proposed model has been fine-tuned over
LED-base-16384, a small LED version pre-trained on the arxiv dataset. ROUGE
evaluation is applied to obtained prediction with test set.

BART A BART summarization model pre-trained with xsum dataset [24] has
been fine-tune on the train set of both dataset (SciDuet and Thesis Propose). Due
to computational resources limits a distilled BART version has been used. Batch
size is set to 2 and maximum input token length to 1024. Min and max output
token length are set to 100 and 512 for Method topic and to 50 and 128 for the
rest of IMRaD topics.

PEGASUS Similarly to BART, a pre-trained PEGASUS summarization model
has been fine-tuned and tested with both datasets. Fine-tuning parameters follows
BART setup.

D2S Unfortunately, due to computational GPU limits and to errors contained in
the released code it has not been possible to fine-tune D2S model with the proposed
dataset. Therefore, the published results obtained with SciDuet dataset have been
considered for evaluation. According to [36], D2S model was fine-tuned with a
batch size of 4 and a maximum input token length of 1024. Min and max output
token lengths were set to 64 and 128.

Implemented method (LED-IMRaD) As described in section 3.3, the pro-
posed slide generation model has been fine-tuned and tested with both datasets
with a batch size of 2. The maximum input token length has been set to 8192,
while min and max token lengths depend on IMRaD topic. For Method class they
have been set to 100 and 512, for the other topic to 50 and 128. In addition, a
LED-IMRaD version with no abstract as context in fine-tuning has been tested.

4.5 Results and Discussion
ROUGE Overall

As explained in section 4.3, in order to evaluate the quality of the entire text
of generated slides, ROUGE metrics are computed for all text with no IMRaD
division. T-TEST is used for each metric to compare models’ performances and it
evidences whether improvements are statistically relevant.
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Model ROUGE-1 ROUGE-2 ROUGE-L

P R F P R F P R F

BART 16.62∗ 26.10∗ 18.15 3.35 5.16∗ 3.63 13.97∗ 23.29∗ 15.48∗

Pegasus 27.74∗ 19.07∗ 22.15∗ 6.91 4.96∗ 5.34∗ 23.55 16.46∗ 19.11∗

D2S 18.30 30.31 20.47∗ 4.73∗ 7.79 5.26∗ 16.86 27.21 19.08∗

LED
BASE
imrad 27.81∗ 23.82∗ 23.93 7.16∗ 7.26∗ 6.67 24.54∗ 21.22∗ 21.24
(no
Context)

LED
BASE
imrad 28.30 23.90∗ 24.29 7.27 7.29∗ 6.72 25.42 21.56∗ 21.86
(thesis
model)

Table 4.5: ROUGE Overall SciDuet, statistical significance improvements are
starred

Table 4.5 shows the results for ROUGE overall on SciDuet dataset. D2S model
reaches higher recall values because, according to min and max output token lengths
setup, illustrated in section 4.4, it produces longer summaries than LED-IMRaD
model output, but in terms of F-score, which gives a balanced score between
precision and recall, the results show that the proposed method outperforms D2S
and baseline models across all metrics. Moreover, the scores highlight the fact that
Abstract as context during fine-tuning helps the model to reach high performances.

Results in Table 4.6 confirm the best performances obtained by proposed model
which outperforms,also, baselines and no context version across all metrics with
thesis proposed dataset APPreD.
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Model ROUGE-1 ROUGE-2 ROUGE-L

P R F P R F P R F

BART 25.82 23.73∗ 22.40 6.65 7.01 5.99∗ 22.93 21.05∗ 19.83

Pegasus 24.56∗ 18.40∗ 21.03∗ 6.46 4.80∗ 5.51∗ 22.44∗ 15.90∗ 18.61∗

LED
BASE
imrad 25.98 26.23 23.75 6.75 8.23 6.58 23.05 23.30 21.06
(no
Context)

LED
BASE
imrad 26.43 26.31 24.09 6.85 8.24 6.62 23.87 23.67 21.67
(thesis
model)

Table 4.6: ROUGE Overall APPreD, statistical significance improvements are
starred

ROUGE InterClass

The results of ROUGE InterClass help to evaluate the relevance of generated sum-
maries for each IMRaD topic. In order to have D2S scores, its SciDuet dataset has
been classified by the same method explained in section 3.2 and entire predictions
from all examined models have been compared to it.

Table 4.7 shows the obtained results and the highest F-score values are high-
lighted for each ROUGE metric. LED-BASE-Imrad proposed version outperforms
across almost all topics. D2S has a greater recall value which enables it to has a
better performance in Method topic for ROUGE-L, because of the greater length
of its summaries in the rest of sections where LED-BASE-Imrad min output tokens
is set to 50 while in D2S is set to 64.

ROUGE IntraClass

Due to the impossibility of classifying the D2S predictions the obtained scores
for each IMRaD section could not be compared with implemented method results.
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So, ROUGE IntraClass has been computed with APPreD in order to compare the
thesis model with baselines and with the no context version. Table 4.8 shows the
achieved results where the implemented method reaches the best performances
in all topics in terms of F-score. In Conclusion topic the no context version has
similar values because abstract does not add relevant information that may help
the model understanding in this section.

Dataset Cleaning Impact

In addition, a version equal to the proposed model has been fine-tuned and tested
with proposed Dataset with any cleaning operations. Table 4.9 shows the obtained
results where it proved that symbols pruning from dataset helps the model to
understand data and to obtain better performances across all metrics.

Finally, the results computed by ROUGE show that implemented method outper-
forms state-of-the-art for slide generation task with both available datasets. This
is due to the capacity of LED to receive in input a greater number of tokens (up to
16384), which represents an important advantage in long document summarization.
Moreover, the results confirm the hypothesis that integrating abstract into encoding
phase during fine-tuning can improve the model to capture all relevant information
through paper sections.
The results show, also, that dataset cleaning represent a fundamental stage for
model learning, in particular for slide generation due to highly creative nature of
human reference slides that make ground-truth slides difficult to understand by an
automatic system during training.
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Model ROUGE-1 ROUGE-2 ROUGE-L

P R F P R F P R F

LED
BASE
imrad 25.30 25.80 23.51 6.79 7.97 6.56 22.69 23.02 20.98
(no
Cleaning)

LED
BASE
imrad 26.43 26.31 24.09 6.85 8.24 6.62 23.87 23.67 21.67
(thesis
model)

Table 4.9: Effect of APPreD cleaning on ROUGE overall
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Chapter 5

Conclusion

This thesis project aims to generate automatic presentation slides from scientific
paper documents. The task is addressed using an abstractive summarization ap-
proach in order to reproduce slides more similar to human presentations. For this
reason, the objective is to generate slides that follow the common structure of
corresponding scientific papers by summarizing paper content section by section.
The work exploits the similar structure of each paper made by Introduction,
Method, Results and Conclusion (IMRaD) main topics assigning paper sections
to the belonging common topic and then generate different abstractive summaries
for each argument in parallel. Inspired by Transformers by Huggingface work
[17], a pre-trained summarization model is fine-tuned in four different versions
belonging to IMRaD topics to tackle this challenge.The project proposes, also, a
new dataset (APPreD) collected from ACL online anthology. The dataset will be
publicly released to foster future research on this domain.

Unfortunately, due to computational available resources limits, state-of-the-art
represented by D2S work is unable to be fine-tuned on released dataset in order
to compare its results on APPreD. This issue and the lack of material released
from other existing work have limited the experimentation of implemented method
which can be considered one of the few works to use a full abstractive approach
for slide generation task. Some baseline summarization models are fine-tuned and
tested with the proposed dataset. However, in order to compare the obtained
results with state-of-the-art results the implemented method is, also, fine-tuned
with D2S dataset (SciDuet). Automated evaluations suggest that the implemented
system outperforms some examined baselines and D2S for the document-to-slide
task.
The evaluation also confirms the assumptions made during the method implemen-
tation that a pre-processing step is necessary to facilitate the understanding of the
dataset by the automatic system and that adding the Abstract section as context
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Conclusion

during fine-tuning helps the model to reach better performance because it allows
to capture more relevant information. This is possible because of the choice of
Longformer Encoder-Decoder (LED) as summarization model which is able to
receive as input a high number of tokens compared to the other studied existing
models.
However, the possibility of having more computational available resources can
improve the proposed system with the aim of being able to impose itself as state of
the art in slide-generation task.

Considering the rapid growth of deep learning techniques in this task, this project
can be further developed in order to be able to address more domains. Moreover, the
results obtained in textual domain can be improved making the system adaptable
to multimodal summarization that deals with summarizing documents including
text and figures together. Recent studies in cross-modal retrieval can help to find
a multimodal joint embedding space with images and text [52].
Furthermore, due to the lack of labeling data, a possible investigation can be
done for unsupervised learning which allow the model to perform without needing
any human intervention. This would allow the creation of paper presentations
before they are created by humans. In this sense, a possible development of this
thesis project is exploring the self-supervised learning technique, e.g. Contrastive
Learning, in section-aware slide generation domain. It consists of learning general
features of a dataset without labels for the purpose of recognizing to which class
each section of an article belongs.
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