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Abstract

Memory-related vulnerabilities can be a serious threat to modern software. Main memory is
vulnerable in the way that it is not aware of its contents but instead it is designed following
the von Neumann architecture. In this architecture, the CPU hands over commands to the
memory, which executes them by retrieving or writing data from or to the specified location
(address). Lack of content-awareness implies that sensitive data cannot be appropriately
protected against tampering, unwanted eavesdroppers and the like.

Memory security has then to be implemented upstream: for instance, modern operating
systems isolate running processes and forbid access of others’ memory sectors. Unfor-
tunately, this is not enough: some programming languages (notably C and C++) do not
provide native memory protection features, and memory management and boundary checks
are demanded to programmers, who are error-prone. This results in critical consequences.

Register spilling is a data management mechanism supported by modern compilers,
whereby machine instructions are inserted in the compiled program to store temporary
results in main memory (i.e., spilled), without the programmer being able to intervene.
Register spilling occurs in two main occasions: when there are no more free registers to save
a result generated by some calculation, and the result is needed later during execution of
the compiled program, or when a just-called function uses one or more registers that, when
respecting environmental constraints (i.e., ABI rules), have to be loaded into memory.

Register spilling represents a potential source of vulnerability, as registers spilled in main
memory can be corrupted if the program contains a memory corruption vulnerability. A
possible baseline mindset to solve this problem would be to treat memory like an untrusted
peripheral where attackers have full control and proceed accordingly from there. This is
precisely what is done in this thesis.

The present thesis describes experiments following this approach. In particular, the
work focused on an implementation of a register spilling protector for the AArch64 backend
of llvm, a framework used to create compilers, notably clang. The document presents how
this feature works, alongside the analysis of its effectiveness and impact on performances
if compared to similar countermeasures. The two different events that originate register
spills are tackled separately, as in the latter some optimizations are possible.

Spillings can optionally be protected only against tampering (integrity protection) or
also against passive attackers (confidentiality protection). The implementation uses Pointer
Authentication instructions, introduced with ARMv8.3-A, that allows to calculate crypto-
graphic authentication codes, not only for pointers, but also for generic data.
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Chapter 1

Introduction

Memory corruption bugs represent a major legacy problem for computer software written
in machine-oriented languages (such as C and C++), that still are present in modern
applications running in a wide range of domains. These bugs originate mainly from the
necessity of manually performing memory-management, e.g., directly handling memory
pointers and memory allocation. Adopting memory-safe programming languages is not
always possible: for instance, the software could be legacy and cannot be modified, or the
performance loss would make this change unfeasible.

So far, history showed us that every time there seems to be a solution to the latest
attacks in memory corruption, a new form of attack was born.

Initially, there was code injection in the stack, whereas an attacker could introduce
directly executable code in the stack exploiting stack buffer overflows present in vulnerable
programs [32]. To solve this issue, stack canaries [14] where introduced, and they still are
in use today, almost 18 years after their introduction in compilers [40] due to their simple
strategy of operation. Stack canaries implementation introduce a random value between
at the bottom of the stack frame of a function that is checked against a reference value
upon exit to detect memory corruption. Unfortunately, the reference value can be revealed
if the program suffer from other memory vulnerabilities or if the reference value itself can
be overwritten [7].

Code injection was ultimately defeated with the introduction of W⊕X memory, that
mandates each portion of memory to never be writable and executable at the same time.
Unfortunately, code reuse attacks (CRAs), which do not insert any new code into memory
but exploit already present code, have been discovered.

Return-Oriented Programming [36] reuse short code snippets ending in return state-
ments to build macroinstructions called gadgets which can be used to create Turing-
complete attacks, having the same outcome of directly executing attacker-provided in-
structions, all of this just by corrupting a vulnerable return address. To defeat ROP,
Control-Flow Integrity [1] was and is still centered in research. CFI enforces checks dur-
ing all control flow changes, to allow only predetermined ones based on the Control-Flow
Graph.

Another CRA which is immune to CFI is Data-Oriented Programming [18]. In this
attack, exploiters corrupt vulnerable variables that indirectly influence the control flow of
the program (ex. condition variables) so that the program will decide by itself to take
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Introduction

certain execution paths. By tweaking vulnerable variables at the right places in the right
way it is possible to create Turing-complete attacks.

Research is thus now focused on protecting systems against ROP and DOP.
In short, memory corruption vulnerabilities are dangerous. One safe space to store

data, which cannot be corrupted by attackers, is the registers inside the processor.
Unfortunately, registers in a CPU are limited. The component that decides which data

is stored on the CPU registers and which on main memory is the compiler, that translates
source code into machine code.

Concerning the stack, the compiler decides to save and reload registers to it with a
process named register spilling.

Register spillings are often overlooked security-wise, but what is happening is that some
data is stored in memory without the programmer even knowing it.

Register spillings are necessary as the program could need to elaborate more data than
what can be stored on the CPU at once, or simply because the processor manufacturer
mandates that some registers have to be spilled into memory when different functions in the
program interact [27]. In other words, these registers contain intermediate results which
the compiler decides to store on the stack to make accommodation for other values that
are needed more in the short-term.

AArch64 is a RISC architecture developed by ARM. As many RISC architectures do,
AArch64 stores the return address of a function (i.e., the address of the instruction to
execute once the function finishes execution) in a specific register: the Link Register (LR).
This would exempt RISC architectures from stack-smashing attacks that target this value,
but with a limited impact. In fact, to prevent overwrites, LR has still to be spilled on
non-leaf functions (i.e., functions that will call other functions).

Being able to change spilled values prior to their reload in the corresponding register
allows an attacker not only to perform all attacks where the return address of a function
is modified (such as code injection [7] or Return-Oriented Programming [36]), but also to
potentially control the execution flow of the program, if one of the registers is later used
as part of a condition.

To aid programmers in developing more secure software, ARM introduced new instruc-
tions in its processors that permits the creation of integrity checks to verify if values are
unexpectedly modified.

To protect programs against the threats of register spillings it is necessary to work at
the compiler level in order to insert instructions as the executable binary is generated.
Implementing security directly in the compiler has also the advantage of creating a form
of protection that can be applied also to legacy software without having to modify the
program, or perhaps to delay the need of intervention of programmers to rush in releasing
a bugfix for a memory vulnerability that can potentially do more harm than good.

In this thesis, we present the creation of a register spill protector and its integration into
the LLVM compiler suite. The register spill protector is capable of dynamically inserting
instructions alongside the ones handling spills in order to prevent attackers to modify their
values and optionally also obfuscate them with encryption.

The spill protector adds a minimum overhead on the executable size, composing just
7% of the final binary.
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1.1 – Outline

1.1 Outline
The remainder of the paper is organized as follows: in Chapter 2 we explain the motivation
behind this thesis and all the notions needed to understand fully our solution to the problem
of register spilling. In Chapter 3 we show what is the current state of the art on similar
memory-related problems, with a focus on Pointer Authentication. In Chapter 4 we present
our solution to the problem of register spilling based on LLVM. In Chapter 5 we wrap up
what has been done in this thesis and present some possible future work.
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Chapter 2

Background

Microprocessors represent the brain of a computer and are the units tasked with executing
instructions. However, microprocessors only understand instructions in machine code,
which is difficult for humans to write directly. Thus, programming languages were born:
programmers write source code files in a programming language which are then compiled
into machine code by a compiler, which is a program itself.

The process of compilation is not monolithic, but passes through many steps: in each of
these, instructions get closer and closer to machine code and in the process get optimized
by the compiler.

Register spilling is a mechanism used by compilers to alleviate register pressure. This
is a technical term used in compiler design that indicates the availability of not-in-use
registers. At any point during the execution of a program there is a certain amount of
registers storing values that will be useful in the future during the execution of a program.
When a register is holding a value that will not be used in the future, it is considered
“available” by the compiler during the register allocation phase and hence the result of
a calculation can be stored into it without overwriting any important data.

Having high register pressure means that the compiler has the need of storing much
information in registers at the same time, while low register pressure means the opposite.

Every microprocessor has a limited amount of registers, and usually some of them have
a special purpose and cannot be used to store calculation result or be used as operands.
The AArch64 ARM architecture (Section 2.2), as an example, contains 32 64-bit general-
purpose registers that, when following the AAPCS (Section 2.2.1) (i.e., a set of rules that
standardizes how functions should interact between them), they become even less. Another
popular architecture, amd64, has even fewer registers: 16 [2].

The amount of registers in a microprocessor obviously imposes a limit on the maximum
amount of values that can be stored on-chip at the same time. It may happen, however,
that at a certain point during execution there are more values, needed for the execution of
the program, than the amount that can be stored in registers. The compiler then has to
find a place where to store these excess values. The choice often goes to the stack, which
resides in a dedicate portion of memory.

Spilled registers are not obliged to reside on the stack, but the stack is a good place
to store values local to a functions. The process of storing a register onto the stack is
referred to as spilling the register, while loading back the register from memory to the chip
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is reloading the register.

2.1 Motivation
Register spilling are seldom considered security-wise: the majority of work regarding spill
protection is concentrated on protecting the function return address integrity rather than
register spills as a whole. Moreover, programmers do not typically take into account (nor
are they informed) of which variables in their code ends up in memory and when.

Google Chrome is the default web browser in the Android mobile OS. Android is,
in turn, the most used mobile OS in the world [17]. Android phones often equip ARM
processors due to their characteristic low power consumption that translates to a higher
battery duration.

A web browser is a critical piece of software security-wise as it works with data originated
from the internet (which is publicly accessible) and at the same time elaborates private
information (like emails and passwords).

Due to these reasons in this thesis we investigated how often register spilling happens
in an application where this could compromise security, Chromium[4] (the open-source
program that serves as basis for Google Chrome).

To do this we slightly modified LLVM 12 in order to be able to count how many spills
are generated per file and of which type.

In Table 2.1 one can see the overall statistics collected by compiling the chromium web
browser.

statistic value
nr. of functions 1041705
saved CSRs 3548372
spills inserted 133963
spill slots allocated 112163
reloads inserted 240375
emergency spilled registers 1

Table 2.1: Overall statistics of compiled code of chromium

From this data one can clearly see that the number of potential vulnerabilities is so high
that among those it is almost certain that at least one is exploitable in some way (there is
a very large attack surface).

An attacker will find on average 1 spill every 10 functions analyzed.
With more changes to the compiler and having a Chromium build with debug symbols

(that retains more information about the original source code) a skilled attacker could
extract more precise information as to where these spills are in memory and also, for
example, in which function they reside.

12



2.2 – AArch64 architecture

2.2 AArch64 architecture
The AArch64 architecture is the 64-bit architecture developed by ARM. AArch64 is a
Reduced Instruction Set Computer architecture (the original acronym of ARM was in itself
“Advanced RISC Machine”).

RISC architectures, also known as load-store, usually share some common design choices
regarding registers and access to memory.

An AArch64 processor has to interact with the memory through the use of registers, i.e.,
it is not possible to operate directly on memory. The only instructions that can operate on
memory are, at least in theory, load and store that transfer registers from/to memory. This
drawback is counteracted with the presence of an high number of registers (32). Another
property of AArch64 processors is that the instructions have a constant size.

2.2.1 Procedure Call Standard
The Procedure Call Standard for AArch64 [27] (AAPCS) defines a common set of rules to
facilitate the interoperability between different binaries.

In particular, it illustrate the purpose for each register inside a function and during a
call to one.

Integer registers in AArch64 can be referred as to with the names X0 to X31, with some
registers having aliases. When executing AArch32 instructions registers can be called W0
to W31. The 32 bits registers overlap with the lower half of their 64 bits counterparts.

Let us see now broadly the classification of AArch64 when performing a function call:

• X0-X7: arguments registers and return value. These registers must contain the argu-
ments to the function and, at the end of its execution, the return value (if the value
is larger than 64 bits it will span over registers following X0.

• X8: indirect result location register. This register stores a pointer to the return value,
in case it cannot be stored inside the first 8 registers (for example, when a large
structure is returned).

• X9-X15: temporary registers or scratch registers. These register can be used inside
the function without having to perform any action. Note that this also means that if
a function needs values contained within these registers they have to be spilled prior
calling a function otherwise the called function might overwrite them.

• X16-X17: aliased IP0, IP1, they are not relevant for the purpose of this thesis.

• X18: the use of this register depend on the platform the processor is used on. In other
words, ARM did not mandate any particular use for this register.

• X19-X28: Callee-Saved Registers (CSRs). These registers can be used inside a func-
tion but to the caller function they have to appear as not changing. In order to do
this, the called function has to save spill them on the stack and reload them before
returning to the caller function.

• X29: aliased FP, the Frame Pointer register is used to refer to a portion of the stack of
a function when this allocated numerous bytes on the stack and the code cannot refer
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to all objects contained within it using SP + a constant contained in the instruction
itself (ranging from values -256 to 32760)

• X30: aliased LR, the Link Register contains the address of the instruction to exe-
cute once the function returns. This register is automatically set by function-calling
instructions BL and BLX (Branch and Link, Branch and Link X register).

• X31: aliased SP, the Stack Pointer is the address of the stack head. Most of the
instructions cannot refer to SP (i.e. cannot modify it) directly. These instructions
use instead X31 to refer to the Zero Register XZR which is a special register that once
read always returns 0 and that discards writes.
The Zero Register is commonly found on RISC architectures and permits the simpli-
fication of design to the architecture itself: for instance, the commonly found instruc-
tion MOV Xdest, Xsource, used to copy a register into another, is actually an alias for
the ORR Xdest, XZR, Xsource instruction which performs an OR between the source
register and the Zero Register, obviously always obtaining Xsource.

2.3 Memory corruption
Memory corruption is an legacy problem for software security that is yet to be completely
eradicated. The problem is particularly present in those programming languages where
memory management control is handled by the programmer (notably C and C++).

Memory corruption is also present in most modern software: it is sufficient to have a
quick search for “buffer overflow” in the Common Vulnerabilities and Exposures (CVE)1

records (which is a list of software exploits managed by MITRE Corporation2). MITRE
reports buffer overflows (specifically, out-of-bounds writes) to be the most dangerous vul-
nerability in 2021[31] by taking into account the frequency of which it was reported and
the security impact it had.

The presence of memory corruption is caused by modern processors (and computers in
general) designed to following the von Neumann scheme, where memory is not aware of
the contents it is being used to store. In the von Neumann architecture, memory operates
independently from the microprocessor, but follows simple orders from the microprocessor
(namely to read data at a specific address or to write specific data at a specific location).
If the memory somehow contained the knowledge of which subset of it is in use, or which
areas store “important” information, memory corruption would be a much lesser problem.

2.3.1 Buffer Overflow
Buffer overflow vulnerabilities are the most common memory corruption vulnerability in
modern software.

1https://cve.mitre.org/cve/search_cve_list.html
2https://www.mitre.org/
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2.3 – Memory corruption

Figure 2.1: Memory configuration of
a stack-smashing attack [14].

A buffer overflow happens when an array is ac-
cessed outside of its boundaries, something that can
easily happen when developing programs in C and
C++ which do not check for an array length before
operating on it (more precisely, the size of each array
is not computed and/or stored anywhere automati-
cally by these languages). The goal of this kind of
attack is to corrupt memory outside of the array,
e.g., to inject executable code or anyway corrupting
sensitive data.

Executing custom code by exploiting a stack-
smashing attack can be done for example by over-
writing the return address (i.e., the address of the
instruction to execute once the function has to re-
turn), which is stored at the bottom of the function frame in memory. This technique is
visually illustrated in Figure 2.1

The function frame is a portion of the stack containing all the memory local to the
execution instance of the function. It is stored on the stack, as the stack organization of
Last-In First-Out (LIFO) fits for allocating such a space: when a function is called its
frame is allocated on the stack, on top of the frame of the calling function, and is used
while the function is executing. Once execution ends, this space gets freed (i.e. the stack
pointer is moved down).

arguments passed on the stack
callee-saved GPR registers

prev_fp, prev_lr
callee-saved fp/simd/SVE regs

alignment space
local variables of fixed
size and spill slots

↑

Figure 2.2: Frame structure under
Linux on AArch64

As is possible to see from Figure 2.2, if a fixed-
size array is present on the function, assuming no
floating point or SVE registers are used, by writ-
ing to an index larger than the length of the ar-
ray, it is possible to overwrite whatever is present
on the memory above the array location (above
meaning with larger addresses, as addresses grow
in the arrow direction).

Another trick used by attackers to increase
the odds in their favor when injecting code is to
prepend it with a series of NOP instructions (that
leave the machine state unaltered). When this
NOP sled is used, once the return address is mod-
ified it is not anymore necessary to jump exactly in the injected code but any of the NOP
instructions will suffice: the processor will automatically retrieve and execute all NOPs
between the current landing side and the code.

Possible attacks against an unprotected stack are detailed at [32]. Most of these attacks
have been defeated by the introduction of W⊕X memory protection feature [30] in all major
operating systems: according to this policy, a memory page cannot be both executable and
writable at the same time. However, there are attack techniques that easily thwart such a
kind of defense mechanisms, such as Return-Oriented Programming (ROP, Section 2.3.2).
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2.3.2 Return-Oriented Programming
The impossibility of executing code in a writable memory page makes attacks based on
code injection significantly more difficult new new attack strategies allows the exploiter to
reuse code already present in the program memory image.

Return-Oriented Programming, or shortly referred to as ROP, is an attack technique in
which code snippets ending in a return instruction (called gadgets) are exploited and used
collectively to create a group of “macro-instructions” that, together, have Turing-complete
computing capability [36] (i.e., they can perform any kind of task the machine is capable
of). The attack is carried out by concatenating the execution of different gadgets to execute
a malicious task.

The gadget catalogue is constructed by analyzing exit points of functions in the program.
From the last instruction of the function (i.e., usually a POP restoring various registers),
immediately-preceding instructions are added one by one until a useful sequence is found
or the gadget is discarded. This attack leverages on the fact that by design with a jump
instruction it is possible to redirect execution to any instruction of the process (and in
particular, to a gadget entry point).

Attackers do not have to inject code because at the end of execution of a function the
return address is retrieved from the stack and the processor will resume execution at the
instruction pointer by that address. If the return address points to the beginning of a
gadget the instructions it contains are executed, followed by another return instruction,
which will again retrieve another return address from the stack (that the attacker possibly
again corrupted).

An attacker does not even have to find the gadgets inside a program, but can take
advantage of some library, rarely unused by programs, in which they have already been
located (for example, the standard C library libc).

A simple program developed following the ROP ideology can be seen in Figure 2.4.
Here a sequence of (ROP style) NOPs are executed. Recall that in the original stack
smashing attack (Section 2.3.1) a NOP sled can be used to increase the odds in favor to
the attacker by permitting a less precise jump prior to the injected code. With ROP, the
same technique can be leveraged using gadgets in place of traditional instructions.

Once the return address is popped from the stack the first NOP gadget will be executed.
The general structure of a ROP program can be seen in Figure 2.3.
Given that ARM has fixed-size instructions (and other differences) from the i686 archi-

tecture used in the initial paper by Roemer et al., the technique has to be slightly adapted
in order to work, but the strategy used in an attack remains the same [10, 19].

2.3.3 Control-Flow Integrity
In a program, control flow refers to its execution sequence, and particularly to how this
moves through the various interconnected basic blocks (see Section 2.5.2) making up the
Control-Flow Graph (CFG).

Control-Flow Integrity (CFI) refers to the enforcement of respecting the CFG in all
control-flow transfers (i.e. jumps, calls, and returns) [1].

CFI is often enforced in one of two ways:
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Figure 2.3: Execution of a ROP program. Note how some gadgets may contain other
gadgets

Figure 2.4: NOP sled structure in ROP.
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• Forward edge control: from a basic block (or function), execution can only transfer
to some specific other basic blocks or functions (i.e., the possible successors);

• Backward edge control: once a function returns, execution must resume from where
the caller invoked the function;

In the original paper, Abadi et al. propose a technique on how to do such enforcement
centered around modifying the binary executable. The idea is that instead of directly
tracking each basic block with their addresses, each one is assigned a label (an ID), and
jump instructions are modified so that at the calling site the target label is specified and
upon jump completion the label is checked with the one stored at the beginning of the
basic block. This is done in practice by virtually introducing new instructions to call and
return to/from a function and to to perform conditional jumps that not only specify a
target address, but also a target label.

Not all jumps in a function have to be converted to their “advanced” form, but only
those ones that are vulnerable to tampering: for most jumps the target address is present
already in the instruction itself and thus cannot be modified by attackers when W⊕X
memory protections are active.

It is possible to see how this can severely reduce the possibility of a ROP attack being
successfully performed: if the CFG is enforced, an attacker would need to search for gadgets
among the possible targets and cannot jump anymore at any instructions inside the function
(in fact, if the program is well structured, or in other words without GOTOs, the basic blocks
available to the attackers will only be located at the beginning of targeted functions).

A problem with this implementation is when a function is called from many sites and/or
an instruction can move the execution flow to a multitude of basic blocks. In these cases,
if the call instruction only supports specifying a single target label, all the different targets
need to have the same label. Similarly, all basic blocks that call a frequently used function
need to have the same label. One way to reduce this scenario from happening, suggested
by Abadi et al., is to duplicate code or insert support for multiple labels in the instructions.

The major difficulty in enforcing CFI is computing the CFG, which is computationally
difficult to generate prior to the execution of a binary. This is why initial implementations
of CFI have been using a coarse CFG, that is less precise and easier to compute and manage
as it groups similar basic blocks together by assigning them the same label.

Other techniques that were initially thought as valid mitigation include recognize ROP
attacks by noticing if gadget-like code snippets are executed in fast succession [13], or limit
“return” instruction to only land on an instruction following a “call” instruction [33, 9, 41].

Unfortunately it has been shown that CFI cannot be securely realized when using a
coarse grained CFG or other heuristic basic approaches. [11]. For this reason, fine-grained
CFI is what is being studied nowadays.

2.3.4 Data-Oriented Programming
Contrarily to ROP where the attacker needs to be able to jump anywhere in the code, Data-
Oriented Programming [18] (DOP) leverages use of the attacked code without breaking
Control-Flow Integrity (CFI).

The idea behind this kind of attack is to corrupt variables which are critical in deciding
the execution flow of the program. This idea is not new but the strategy in how these
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Figure 2.5: Layout of a program section and its corresponding CFG. [1]

vulnerable variable are exploited is: with DOP, just like in ROP, it is possible to trigger
the execution of gadgets that together render the attack Turing-complete.

The attacker generates different gadgets by corrupting vulnerable variables that control
the flow of execution within the program.

To pursue their target, Hu et al. defined a minimal language (MinDOP) composed of
only 6 instructions that has been shown to be Turing-complete. This language can be seen
in Figure 2.6.

Figure 2.6: MinDOP instructions. [18]

It is thus sufficient to find gadgets that implement these instructions and trigger their
execution.

To execute a sequence of gadgets it is sufficient to find a dispatcher inside the codebase.
A dispatcher is a piece of code that can be manipulated by the attacker to trigger the
execution of a multitude of gadgets. One such piece of code could be for example a loop
containing a selector statement in itself of which the loop control variable can be corrupted.

2.4 ARM Pointer Authentication
In 2016, ARM announced its version v8.3-A of the AArch64 Instruction Set Architecture
(ISA) [25]. Among other enhancements, the Pointer Authentication (PA) extension has
been added, which mandates its implementation in all processors [24].
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The PA extension introduces a variety of instructions in the AArch64 instruction set,
aiming to help compiler developers to solve or alleviate memory corruption vulnerabilities.

The idea behind pointer authentication is that the 64-bit physical address space is
not used completely in most (if not all) of the AArch64 deployments, simply because the
amount of bytes addressable with 64 bits is much larger than what the current applica-
tions require. This observation translates into the fact that all 64 bits are not needed to
represent and address and can therefore be repurposed. When PA is employed, these bits
are used to store a short cryptographic MAC (e.g. from 3 to 31 bits long on linux, but
usually 16, depending on configuration[35]), to be used for notifying if the address has been
manipulated.

Instructions to calculate MACs of generic data (i.e., not pointers) are also introduced,
and these are the ones that are of an interest in this thesis.

Different secret keys are used by PA instructions depending on the nature of data (e.g.,
generic data, instruction pointers or data pointers) and the programmer choice (e.g., some
instruction can use either of two keys , “A” or “B”). These keys are configured to be
unreadable when the processor is running in user mode (Exception Level 0, EL0) [35], so
only privileged processes (like the Linux kernel) can modify them while running in higher
EL.

On Linux, new keys are generated for processes when their corresponding exec() system
call is executed [37].

When the MAC is embedded into an address, there are no instructions to check it
directly, but there exists commands to authenticate a PAC (Pointer MAC) and make the
pointer unusable in case the verification process fails.

Being unbound from time of creation, generated MACs suffer from reuse attacks: at-
tackers can try to substitute an authenticated address with another one generated in the
past. In fact, once the MAC is checked, no issues can be found, as the signature is valid
(and it will continue to be as long as the secret key and the modifier do not change). This is
an issue that has to be addressed when designing processes that rely on these mechanisms.

2.5 The LLVM Compiler Infrastructure
LLVM3 is a compilation infrastructure designed to help avoiding code duplication in dif-
ferent implementations (i.e., compilers for different languages and different architectures).
This helps with producing target-independent and language-independent compiler opti-
mization techniques that can be used in all compilation scenarios in a library-fashion,
avoiding code duplication. In other words, LLVM is a collection of modules that can be
used to easily create compilers.

In order to have modularity during the compilation macro-phases, LLVM defines an
Internal Representation (IR): a low-level language with a high-level type system. This
particular combination was chosen for optimization effectiveness [20].

The source code is translated into IR before being optimized. A number of optimization
passes are then applied to the IR. Finally, the code is translated into Assembly which can be

3https://llvm.org
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Figure 2.7: The 3-step LLVM compilation process.

trivially compiled by the target-specific assembler. During the translation into Assembly,
the generated IR is not anymore “pure”, as it slowly starts to contain more and more
target-dependent instructions, until only those remain and the last phase of the backend
is executed (i.e., actual assembly printing). It has to be noted that LLVM comprises many
frontends and many backends. Thus, a better representation of Figure 2.7 would be with
many frontends, one per supported language, all communicating with the same optimizer.
Same thing would happen for the right side, where there is a backend for each supported
hardware architecture.

In other words, the job of the frontend is to convert source code into Static Single
Assignment-form (SSA-form) IR, that internally in LLVM will be represented with a series
of Instructions aggregated into BasicBlocks, grouped in various Functions. All of these
objects are organized into an Abstract Syntax Tree (AST).

After optimization, the backend will convert all the objects into their Machine- coun-
terpart before working on them.

Many different optimizing and compilation passes are implemented in LLVM, but, given
the modularity nature of LLVM, there is no specific order in which to apply them. Some
passes are even implemented more than once, using different strategies.

A compiler based on LLVM (such as clang 4) is called driver, because it is nothing
more than a program that defines which and in which order passes are executed.

Some drivers can also perform some language-specific, high level optimizations before
translating the code into IR and using LLVM optimization passes. For instance, there
exists a frontend for LLVM that transforms Common Language Infrastructure (CLI) into
IR: in this case, for example during C# source code “compilation”, there is some specific
optimization for that language and then LLVM optimizations are run.

2.5.1 Compilation Passes
Many compilation passes are executed in order to transform source code into machine code.
LLVM passes are mainly of type FunctionPass and MachineFunctionPass. A function
pass receives a function as input, operates on it, and produces some output. The pass does
not have to modify the function in order to be useful: many passes, like the live register
analysis pass (Section 2.5.5), do not modify the function, but just analyze it.

However, all passes have to report if the AST was changed due to the execution of the
pass itself.

4https://clang.llvm.org/
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2.5.2 Basic blocks
As the name suggests, these are the lowermost instruction aggregates to which the com-
piler has to deal with. A basic block (defined in the classes MachineBasicBlock and
BasicBlock) is a sequence of instructions that does not contain any branch instruction
(i.e., they terminate with a branch instruction). This means that, by looking at a higher
level, a program is just a sequence of interconnected basic blocks through which the exe-
cution flows.

Once execution starts at the beginning of a basic block, all the instructions inside the
basic block are executed. This concept is important in compiler design, because it easily
allows to apply some optimizations: for example, if an instruction is data-independent
from the others in the same basic block (i.e., it does not use or generate data that is being
generated or used by other instructions), it can be positioned by the compiler at any point
in the basic block, maybe to speed up program execution time. For example, memory-
reading instructions and other instructions that use the read data may be interleaved by
data-independent instructions so that no time is wasted waiting for the memory to output
data.

isdivby4: LDR XO, [SP, #8]
MOV X1, X0
TST X1, #0b11
B.EQ divisibleby4
MOV X0, #0
BX LR

divisibleby4: MOV X0, #1
BX LR

Figure 2.8: A simple function subdivided in
its basic blocks.

The notion of basic blocks is also used
in other fields, for example in the design of
superscalar processors.

Inside LLVM, a program is stored as a
basic block graph, each terminating with
a branch instruction (which may be condi-
tional or not). Basic blocks aggregate into
functions, which as we already stated (Sec-
tion 2.5.1) are the information unit man-
aged and elaborated by the different com-
pilation passes.

2.5.3 Machine instruction
MachineInstructions (MIs) are what
compose machine basic blocks in LLVM.

It has to be noted that LLVM tracks more information than what Assembly program-
mers typically think of (i.e., AArch64 assembly language is at a higher level than “normal”
machine Assembly). For example, a lot of Assembly instructions are aliases for less intu-
itive instructions, whereas in LLVM they have to be referred to with their real nature.

As a matter of example, the compare instruction (CMP) is always referred to as a sub-
traction that sets flags with the zero register as destination in LLVM.

Moreover, each instruction must specify for each register parameter if it is set or read,
but also if that is the last read (register is marked as killed). This is important to track the
liveness of registers, as live registers contain values used during execution of the program.

Now the focus moves to some compilation phases that are relevant to register spilling.
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2.5.4 Register Allocation
In pure IR form (i.e., the form in which IR is as generated by the frontend), the code
is memorized respecting the Static Single Assignment (SSA) form: when in this form,
each variable is assigned once and once only. This makes easier for optimization passes to
understand how information flows through the code being compiled: if a variable is not
read by any following instruction, then it is safe to say that the value stored within the
register is not useful for the execution of the program; in this case, on a RISC architecture
such as AArch64, the register allocator may choose to assign this virtual register to the
zero register XZR to effectively discard the result of the instruction. At the same time, a
simple integer increase will be seen in SSA form by the definition of a new virtual register
with assignment of the original plus one, the old virtual register will not appear in all the
following IR lines.

Register Allocation is the pass in which each IR variable (i.e., virtual register in LLVM
jargon) is assigned to a physical register.

To control register pressure, the register allocator may insert spilling and reloading
code, and respectively allocate spill slots on the function stack frame.

The register allocator is actually a good example to show the modularity of LLVM.
Indeed, the register allocator used by default in the AArch64 backend (the so-called Greedy
Register Allocator) is not developed specifically for this architecture, but instead it draws
information about it (in this case, how many registers are present, what are their purposes,
and how they are overlapping) from an abstract description. This implies that, once that
support for a novel architecture is added, it would only be necessary to describe this
architecture in the aforementioned abstract format and all the quirks and perks of the
Greedy Register Allocator (and for what matters, also other available register allocators)
will be readily available for the newly-added architecture.

LLVM even includes a basic register allocator which assigns physical registers sequen-
tially just to teach novel developers how a register allocator can be built.

The Greedy Register Allocator performs its task following the algorithm of graph col-
oring [12].

Graph coloring The problem of register allocation (finding out which variable to assign
to which register and when and which register(s) to spill) is NP-complete, this means in
practice that finding the optimal solution in a reasonable time is computationally challeng-
ing. The algorithm originally conceived by Chaitin is thus not developed to find an ideal
solution but one of its approximations.

The algorithm tries to find a way to color the nodes of a graph G = (V, E) using
at most X colors. In this abstraction, the nodes V of the graph represent the virtual
registers, while the available colors represent the available registers. The edges E of the
graph represent interference between virtual registers: when two virtual registers interfere
(i.e. their liveness range crosses) they will be connected in the graph through an edge. For
this reason, G is called the interference graph.

The first step in the algorithm is to compute G from the virtual registers V and their
computed live ranges. The following step is simplify the graph with the help of some
observations:

1. If two nodes v1, v2 do not interfere (i.e. (v1, v2) /∈ E) they can be considered as being
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the same node vÍ with edges equal to the union of interferences of v1 and v2. This
simplification is referred to as coalescence of nodes.

2. If a node interferes with a number of nodes less of equal to the number of colors, it
is possible to avoid considering it during the execution of the algorithm as it will be
surely colorable (this is because if nv < |X| whatever color we assign to the neighbors
of v it is possible to assign to v the remaining color.

Coalescing two nodes is not always a good choice as the union of their interferences
might be larger than the number of colors.

Spilling registers is needed when the graph is not |X|-colorable (i.e., there exist no
combination of |X| colors in such a way that the same color is never used on two connected
nodes.

To find out if a graph is n-colorable is sufficient to apply the rules (1) and (2) sequen-
tially. If at some point there is only one nodes in the graph consider (all have been either
eliminated or coalesced and eliminated from the graph) then the graph is n-colorable: it is
sufficient to assign a random color to the last node, then add back the last removed node
and assign to it one of the remaining colors. The process continues until all nodes have
been colored.

When is necessary to spill, it has to be chosen which register(s) to spill based on their
spilling cost (registers with lower spilling cost are analyzed first).

The algorithm will notice it is necessary to spill when at some point the graph is no
longer simplifiable and there still exists some nodes with degree greater than the amount
of available colors. A spilled register s is represented as spilled by simply removing it from
G.

The spilled register s has to be stored in a register when needed in computations. This
fact is represented in the graph by treating it as a node t with a tiny liveness interval,
only spanning that single assignment. Recall that it is straightforward to know when s is
needed in computations as the IR prior to register allocation is in SSA form.

2.5.5 Live Register Matrix
This analysis pass is executed prior to register allocation and is used by the register alloca-
tor in order to know how virtual and physical registers interfere between them. Specifically,
LLVM register allocators use the matrix produced by this pass to avoid allocating inter-
fering virtual registers to overlapping physical registers (that could be for example X1 and
W1 in AArch64 or BX and BL in 8086).

This matrix elongates in two dimensions: register units and frame indexes, having in
each cell a list of live ranges (i.e., a instruction interval in which the register is used in the
program). Register units are defined for each target supported by LLVM and are used to
find registers contained within other registers. When a virtual register is allocated in a
physical register, the live range of the virtual register is inserted into the matrix for each
register unit belonging to that physical register.

Once a register is removed, the graph-reducing algorithm is launched again on the
graph without spilled registers with the tiny interval(s) in place of the spilled register(s).
If reduction stops again, more registers are spilled.
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The cost of spilling a register can be estimated by counting how many times the corre-
sponding virtual register is used.

2.5.6 Prolog-Epilog Inserter
The Prolog-Epilog Inserter (PEI) is the pass tasked with generating the code to set up the
correct environment for the proper execution of each function in the program. This is done
by surrounding each function with additional code that performs several tasks.

Most importantly, a prolog of a function spills Callee-Saved Registers (CSR): these
are a group of registers, for AArch64 defined in the ARM-ABI, that the called function
has to spill in case they are used within the function itself. In other words, outside the
environment of the function, these registers have to retain their original value.

The ARM-ABI also mandates where to store function call arguments, which registers
serve which purpose, and where to store the return value of a function.

Another important task performed by the PEI is stack finalization (or frame lowering):
in the IR, each function has an associated list of objects to be allocated on the stack, and
the instructions that refer to an object on the stack temporarily use a frame index (FI, the
index of the object on the function frame if one thinks of it as an array). After this pass,
this list is no longer modifiable, and the references to the stack are converted to offsets
with respect to the Stack Pointer (SP, a register holding the value to the stack head).

With stack finalization done, instructions to decrease SP (in the prologue) and increase
SP (in the epilogue) are generated (in the case the stack grows down, as by default in
AArch64). Usually, these instructions are merged with the first CSR save instruction with
pre or post-indexing in order to speed up SP update if it is possible to so. Modifying SP
means in practice allocating space on the stack for the local storage of the current function.

The clarifications made in these subsections pointed out that, in order to effectively
protect register spillings, one has to intervene mainly in two spots inside the LLVM code:
the register allocator and the PEI. The strategy adopted in both spill cases is detailed in
Chapter 4.
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Chapter 3

State of the Art

In this Chapter, the current state of the art on memory-protection mechanisms is offered.
The summary is centered around ARM authentication.

3.1 Stack-Smashing Protection

function stack frame
return address
stack canary
local variables

↑

Figure 3.1: Stack canary positioned
in a stack frame of a function

The idea behind Stack-Smashing Protection (SSP)
has been conceived quite some time ago [14], and
is conceptually simple: in order to protect the stack
from possible buffer overflows, a known value is posi-
tioned between local variables and the function stack
frame (Figure 3.1), namely in the canary (derived
from the fact that canaries were used in mining to
check the presence of gas). If a buffer overflow hap-
pens, the faulty code will overwrite the canary value
and the change of data will be noticed upon function
return, where the canary value is compared against a known value.

This technique was originally named StackGuard by the creators, and was eventually
integrated into the gcc compiler in 2003 [40].

In order to be effective, the canary value obviously has to be unknown to attackers. The
suggestion made in the original paper to keep canary values unknown is randomization:
upon program launch, the random canary value is generated and the process will use that
during its lifetime. This basic implementation is susceptible to brute-force attacks in some
cases, for example in applications where the server forks to serve a client: in this case, the
whole process memory is duplicated, comprising the secret canary. The attacker can try to
guess the canary value and check if it was the correct one by detecting the server crashing
while handling its request. This problem can be solved (and it has been) by randomizing
the canary value at each execution of fork() [28].

Moreover, the stack canary, if not implemented correctly, can itself suffer from buffer
overflow, depending where the canary correct known value is stored [7].
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3.2 PACed Canaries
The strategy employed by Liljestrand et al. [21] removes the risk of the canary reference
value leakage by generating it on a per-function basis with ARM PA. To mitigate MAC
reuse attacks, the MAC is tied to the function signature and the stack pointer. In addi-
tion, to protect the return address, each function has additional canaries protecting one
vulnerable buffer each. Ideally, each canary generated by this algorithm is unique.

Generation and verification of the value is done in chained fashion so that each value
cannot be interchanged inside a function: apart from the one protecting the return address,
each canary is actually just the signed address of the previous canary.

To check this type of canaries, the last one is loaded from memory, its value is authenti-
cated and then dereferenced to load the previous one, up until the last one. If at any point
data tampering is detected, dereferencing will yield a memory exception. In the paper, the
first canary is just a plain MAC of the return address or the signed return address when
-msign-return-address is in use.

3.3 Shadow Call Stack
The Shadow Call Stack (SCS) is a memory protection mechanism which avoids modifi-
cations to the return address saved into the stack by relocating all return addresses in
another, separate stack. In current implementations in AArch64, this is done by reserving
a register as stack pointer for the parallel stack [15].

For the correct functionality of this mechanism, the reserved register value has to be
kept secret, otherwise it becomes possible for an attacker to try to get access to that
particular memory area.

Even when the shadow stack pointer does not get revealed, this implementation does
not protect the program against data-based attacks: by modifying data that is used in a
test inside the process, an attacker can anyway influence the process control-flow.

3.4 PACStack
PACStack [22] designs a new strategy of creating an authenticated call stack that has the
same overhead as previously designed hardware methods.

Figure 3.2: Return addresses chain generation. HK(data, mod) is a keyed hash function
[22].

In particular, this novel technique is a re-visitation of the classical SCS that chains
together authenticated return addresses in the normal stack. Basically, compared to the
usual PA-oriented protection for AArch64 (which uses SP as modifier to sign the return
address), this design uses the previous authenticated return address to sign the next one.
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The latest authenticated address is kept on a reserved register (in the implementation
provided by Liljestrand et al., this register is X28). Note how this cannot be avoided
even with the presence of the LR register, because inside a function - where the address is
supposed to be signed - LR will always be overwritten by the function calling instruction
BL or BLX.

3.5 FIPAC
FIPAC, by Schilling, Nasahl, and Mangard [38], uses the latest PA extensions introduced
to ARMv8: EnhanchedPAC2 and FPAC from ARMv8.6-A[26].

Contrarily to ARMv8.3-A, with these instructions it is possible to directly check if
the authenticated address is valid or not (recall that when verification fails on 8.3, the
address is modified in a way that when dereferenced an exception is triggered). What
happens instead on 8.6 is that a trap is immediately generated upon failed verification.
This method tries to protect CFI (Section 2.3.3).

The main idea used to enforce CFI in FIPAC is to update and check the state of the
program, which is precisely defined in each of its points. In particular, the state value is
managed by means of pointer authentication.

State changes are linked so checks do not have to be performed at every change (i.e.,
a single check at program termination would determine if the state got corrupted at some
point during execution). In practice, it is better to check the state with a high frequency
to notice a memory corruption reasonably soon after it happened.

3.6 RegGuard
Alongside to the work of this thesis, a similar work with a comparable goal was recently
independently developed on the same environment (i.e., AArch64 with LLVM).

RegGuard[16] aims to protect vulnerable data that is present on the stack by keeping it
preferably on registers, i.e., inside the CPU, thus removing the risk of an attacker modifying
them.

To pursue this goal, Geden and Rasmussen developed an alternative register allocator
(Section 2.5.4) for AArch64 on LLVM that assigns a security score to each variable in the
program depending on their type which is assigned based on this safety ranking:

1. Pointers.

2. User-defined variables.

3. Condition variables.

This list has been ordered like shown based on what data attackers target the most
while exploring for a possible vulnerability in programs. Indeed, pointers are the most
exploitable when they can be corrupted due to the possibility for an attacker to route
execution or read/write of data anywhere else in the address space.

As inevitably happens, when a function is called and CSRs have to be spilled on the
stack, an integrity check digest of the CSRs is generated with HMAC-SHA256 (a keyed
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hash function) and stored on the stack during the function prologue. In case the CPU does
not support hardware-accelerated computation of the hash, a software hash calculating
code is included that uses the SipHash2-4 algorithm[3] chosen for its fast and lightweight
characteristics.

The work by Geden and Rasmussen reserves two registers: in one the secret key em-
ployed by the keyed hash function is stored, while on the other the latest computed hash
is stored as to avoid storing it on memory
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Chapter 4

Protector Implementation in
LLVM

As already stated in Section 2.5, the implementation of the spill protector actually com-
prises two sub-projects: (i) protection of in-function spills and (ii) protection of CSRs.

In all cases, when a security check fails, there is no attempt nor possibility of recovery,
and the process will call __stack_chk_fail, a function which was “borrowed” from the
StackGuard plugin, normally invoked when the stack canary check fails (see Section 3.1
for more information on how StackGuard works). Given that the objective is protecting
the stack against attacks, this function was deemed appropriate for our purpose.

Throughout of this implementation, the AArch64 instruction PACGA has been used. This
instruction takes 3 register arguments:

1. the location where to store the integrity check (MAC);

2. the data to be protected;

3. a modifier to enhance randomness;

After its execution, the result register will contain 32 bits of pseudorandomness (a MAC).
The instruction also draws information from a register not explicitly listed among the
parameters (i.e., the secret key for the keyed hash) whose access is locked in an higher
privileged mode of execution (Exception Level 1).

4.1 Threat Model and Assumptions
Implementing protection with ARM PA would be much harder if the attacker could read
kernel memory, due to the kernel having to save the secret keys of all processes in their
respective Process Control Block (PCB).

In this thesis, an attacker with powerful privileges is assumed: he or she can modify
writable memory of the process during runtime, and can read all unprivileged process
memory: it is assumed that kernel memory used to manage processes and their threads
cannot be read by an attacker.
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An ideal implementation of a register spill protector would be able to recognize an attack
based on the value change of all kinds of register spills with overwhelming probability,
optionally hiding their values with encryption when spilled in memory. At the same time,
the solution has to bring a relatively low overhead, in order to not be a considerable burden
on the system executing the secured program. Moreover, it preferably should not require
additional hardware, as this adds to the cost of the solution.

4.2 Design Choices
4.2.1 Integrity Protection
Integrity protection refers to the ability of noticing modifications to some data and react
accordingly when this happens. This is usually achieved by using some sort of keyed MAC
(Message Authentication Code).

Keyed MACs are mathematical functions that create a digest from the data that is to
be protected, and a secret key. If the MAC is cryptographically secure, an attacker cannot
forge a new valid MAC for new, never-seen-before data. The attacker potentially has
nonetheless access to all previously generated MACs and their corresponding data (still,
MAC forging has to be computationally unfeasible when the algorithm is cryptographically
secure).

To protect the spilled registers, it is necessary to compute a MAC protecting them and
store the result somewhere. Since spilling a register is a hint that suggests the compiler is
experiencing high register pressure, it is best to store the generated MACs off-chip, i.e., it
is convenient to store them on the stack along with the data they protect.

To save stack space, it would be best to create a single MAC that protects all spills. This
cannot unfortunately be easily done, since in-function spills and CSR spilling/reloading
do not happen at the same time during the life of a function. To balance space and
computation time, it has been chosen to create a MAC for each spill slot allocated for
in-function spills and a single MAC encompassing all CSRs.

↑

function arguments
X19
X20
X21
X22
X23

spill slot #1
spill slot #2

function arguments
CSRs MAC

X19
X20
X21
X22
X23

spill slot #1
spill MAC #1
spill slot #2

spill MAC #2

Figure 4.1: Example of a function stack frame structure with and without MACs inserted.

The CSRs MAC is computed during the prolog and pushed to the stack alongside the
CSRs. Once the function terminates, the CSRs are reloaded to the CPU and their MAC
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is recomputed and checked against the version present on the stack.
Regarding MACs of in-function spills, those have to be computed once the corresponding

register is about to be spilled, because its value will be defined only at that point in the
execution.

In order to make it more difficult for an attacker to successfully forge a MAC, the design
takes advantage of a keyed tweakable MAC function with SP as modifier. In this way, the
MAC randomness will be enhanced.

The MAC of CSRs is calculated by computing the MAC of the first CSR and then using
this value to mask the following register. The masked register is then used as modifier to
compute the MAC for the third register, and so on: in this way the computation is sped
up as masking a register takes less time than calculating its integrity code.

The process is visually illustrated in Figure 4.2.

Figure 4.2: MAC generation process for 5 CSRs

4.2.2 Encryption
The strategy adopted for encryption is, for both spill kinds, to encrypt before computing the
MAC, in order to take advantage of all benefits of Encrypt-Then-Authenticate encryption
schemes [6].

For each function, LLVM maintains a list of objects that the function will allocate on its
stack frame. Instructions interacting with the stack refer to an index in this array (called
Frame Index, FI) rather than an actual SP+offset until the frame is finalized.

To encrypt registers, the same MAC-generating instruction is used as a pseudorandom
number generator (PRNG) and its results are XORed to the registers. The PRNG is seeded
with the stack pointer, and a small hash of the function signature and the frame index
where the MAC for that(those) register(s) is stored. Both FI and the function signature
are available at compile time, so the hash can be computed based on them. The process is
illustrated in Figure 4.3.

It has been chosen to use an hash instead of simply generating a pseudo-random number
within the compiler, because it is important that built programs have a machine code that
can be uniquely derived from the source code and the compiler. In other words, built
programs have to be reproducible, so that users can independently check that the binary
executable they have is not compromised [29] [34]. More numbers are generated by applying
the PRNG to its previously generated number.
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Figure 4.3: Generation of the Initialization Vector (IV) for the encryption.

Generating a value unique to the function is used to make less probable the fact that
multiple registers are encrypted using the same keystream. It is appropriate to talk about
a keystream, as the PRNG is used in a stream-cipher fashion. Using the same keystream
over different data would be bad for confidentiality, as XORing different cipher streams
would reveal the XOR of plain texts.

4.2.3 Security evaluation
In this design, when multiple spills occur within a function, equal spill values will imply
the same MAC. At the same time, different spill values could be swapped successfully if
also their MACs are switched. Both of these phenomena happen because the modifier used
during computation (SP) is the same.

A way to mitigate this could be for instance to randomize SP prior to using it as modifier
so that it is unique for each spill, similarly on how it is done in PACStack (see Section
3.4). Without changing the design, it is also possible to use encryption which completely
masks the value of registers in a way that the same unencrypted values will not probably
have the same encrypted value.

4.3 Implementation Details
The illustrated spilling protector was implemented in LLVM 12. To implement this design
in LLVM, it is necessary to modify the AArch64 backend in several places.

4.3.1 Integrity Protection
Integrity protection has been implemented in in-function spills by defining two new pseudo-
instructions in the AArch64 instruction information file (AArch64InstrInfo.td), namely
SecureSpill and SecureReload.

Pseudo-instructions are commonly used in LLVM as placeholders so that in later stages
of compilation they can be replaced with other instructions. The compilation process will
fail if, at the latest stages, there are still some pseudo-instruction left in the IR.

In this case, these pseudo-instructions are inserted by the compiler once it invokes
storeRegToStackSlot or loadRegFromStackSlot. These two functions are used by the
compiler to select the correct instruction for spilling or reloading a specific register from/to
a specific stack slot.

Normally, the compiler would choose a STR (store instruction) or LDR (load). When
–aarch64-enable-spill-protection option is passed to the backend, these functions
will select the defined pseudo-instructions in place of normal store or load instructions
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Figure 4.4: Construction of the PRNG function.

Figure 4.5: Encryption of multiple registers.
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with the same arguments when compatible registers (64-bit general-purpose registers) are
spilled (and the processor supports ARM PA).

However, storeRegToStackSlot or loadRegFromStackSlot are used also by other
passes (for example, the register scavenger). Modifying those functions is thus a good ap-
proach, because in a single modification, all spills inserted by all stages are encompassed,
even though the principal stage inserting spills will always be the register allocator.

A new pass has been inserted in the compilation pipeline after register allocation (pre-
sented in Section 2.5.4) to expand those instructions. In this function pass, all basic blocks
in the function are searched for the two novel pseudo-instructions and, if found, they are
expanded one by one. During the expansion of SecureReload instructions the implemen-
tation also has to modify the AST by splitting the basic block containing SecureReload
and also insert a new basic block to call the error-handling function __stack_chk_fail.

After elaboration of a function, it might happen that a function has several of these
newly-added basic blocks that only contain BL __stack_chk_fail. This is not an issue, as
LLVM automatically removes duplicates towards the end of compilation in order to reduce
code size.

The MAC is stored on a 32-bit stack slot, so it can fit without wasting space. Un-
fortunately, this requires the emission of additional instructions to shift X15, as PACGA
computes the MAC on the high word of the result register. An alternative implementation
could speed up MAC handling but sacrifice stack space.

Details on how the two pseudo-instructions are expanded are shown in Figure 4.6. It
is possible to notice how the routine-calling instruction BL is placed at the end of the
function. This is not by chance: microprocessors are normally faster in executing the
instruction following a conditional jump with respect to the one pointed by the jump.
This happens because while the branch condition is evaluated, the following instruction is
elaborated. LLVM generates code like this because, in the implementation, the “successful”
branch (i.e., the execution path where the MAC check passes) is marked as much more
probable in order to favor execution in this case.

In short, the code is optimized for the case when all MAC checks pass, as this is what has
to be prioritized: favoring instead the “fail” path would not improve the user experience,
as the application is anyway terminating.

In order to calculate and check the MAC, two additional registers are needed. In
this implementation, X14 and X15 have been reserved for the exclusive use of the register
protector. This implementation choice was made because LLVM takes for granted that the
spilling and reloading instructions only use the register being transferred, which is not the
case in our implementation. Changing this behavior in LLVM was deemed too challenging
for the purposes of this thesis, but represents a possible improvement over the current state
of the spill protector.

MAC generation for an in-function spill is a single instruction that takes 4cc (clock
cycles) to execute [23] [5]. The process is further slowed down by the necessity to store the
MAC in memory.

During prologue and epilogue, it is not actually necessary to reserve any register, as the
function code (that the compiler will compile so that it leverages on all available registers
for performance) is not executing yet (or anymore). It has been chosen to anyway stick to
X14 and X15 to be consistent with the in-function spill protector.

When a MAC check fails, it means that possibly an attack is in progress (it could also

36



4.3 – Implementation Details

...code...

SecureSpill X0, %stack.1

...code...

SecureReload X0, %stack.1

...code...

...code...
STR X0, %stack.1
PACGA X15, X0, SP
LSR X15, #32
STR W15, %stack.2
...code...
LDR X0, %stack.1
LDR W14, %stack.2
LSL X14, #32
PACGA X15, X0, SP
CMP X14, X15
B.NE check_fail
...code...

check_fail:
BL __stack_chk_fail

Figure 4.6: Before and after pseudo-instruction expansion with only integrity protection
active. Note how addresses are not yet defined, as frame finalization will be done later in
the compilation pipeline.

leaf_function:
PACGA X15, X25, SP
EOR X15, X15, X15, LSR #32
EOR X15, X28, X15
PACGA X15, X27, X15
PACGA X15, X26, X15
STR X15, [SP, #-48]!
STP X28, X27, [SP, #16]
STP X26, X25, [SP, #32]

...function code...
(a) prologue

...function code...

STR X8, [X0]
LDP X26, X25, [SP, #32]
LDP X28, X27, [SP, #16]
LDR X15, [SP], #48
PACGA X14, X25, SP
EOR X14, X14, X14, LSR #32
EOR X14, X28, X14
PACGA X14, X27, X14
PACGA X14, X26, X14
CMP X14, X15
B.NE MAC_FAIL
RET

.MAC_FAIL:
BL __stack_chk_fail

(b) epilogue

Figure 4.7: Prologue and epilogue as generated with integrity protection active in a leaf
function using X25-X27 among the CSRs.

just be a memory corrupting bug in the program, but that has to be avoided in any case
as explained in Chapter 2). The MAC scheme adopted cannot detect what changed from
when the integrity code was computed, so the safest thing to do is to terminate the program
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immediately. For this, __stack_chk_fail is called. In Linux, this function prints a static
error message and then exit the program.

In the case of CSRs, it is not necessary to insert pseudo-instructions and later expand
them, as CSRs spilling and reloading code is generated in a specific place inside LLVM,
namely emitPrologue and emitEpilogue. These generic functions are declared for any
target supported by LLVM, and are in charge of generating the prologue (epilogue) code for
a specific function in the given basic block. As in the case of AArch64 prologue and epilogue
generation is a complex matter, it has been decided decided to inject the code alongside
CSR handling routines: spillCalleeSavedRegisters and restoreCalleeSavedRegisters.

These functions are tasked with generating the code to store and load CSRs, and are de-
clared withing the frame lowering (i.e., frame finalization) file AArch64FrameLowering.cpp.
When the –aarch64-integrity-protect-csr option is passed to the backend, and a suit-
able environment is found (spilled CSRs are 64-bit GPRs and the processors supports ARM
PA) instructions to compute and check the tag are inserted in the prologue and epilogue
of the function (see Figure 4.7). In case the function is not a leaf function, LR and FP
counts as CSR in LLVM, so they are protected as well by the MAC. For leaf functions,
those registers are not spilled so they can be considered safe.

When calculating the MAC over CSRs, X15 is marked as CSR so that LLVM will
automatically save and reload it to/from a stack slot when the implementation needs it.
Obviously, X15 is not included in the MAC calculation even though LLVM considers it a
CSR.

MAC calculation for CSRs takes up 3cc/CSR on average. Also, the instructions are
inserted in a portion of code such that the liveness tracking information of the “default”
prologue and epilogue does not need to change. When LLVM spills CSRs it marks them
as killed in the IR: this means that those registers are available to be overwritten in the
following instructions. At the same time, LLVM marks registers reloaded in the epilogue
as defined, so the spill protector can read from them later, and the liveness analysis of
CSRs will not be affected by the spilling protection system.

4.3.2 Alternative Implementation
For the MAC computation X15 is not strictly needed as it is possible to just generate the
MAC in the same register that is being spilled, overwriting it once it is already stored to
memory in a fashion similar to Listing 4.8a.

Additionally, it is possible to reserve only a single register (instead of two) if one can
assure the application to be single-threaded. An example can be seen in Listing 4.8b, and
an explanation as of why this was not implemented follows.

To check the MAC, only one additional register is needed when the application is
single-threaded, but we need to assume an attacker cannot write to process memory while
the check is being done. This is a reasonable assumption if the attacker relies on some
vulnerability in the compiled program to modify memory, as there is no unsafe instruction
between the two register reloads that could lead to that scenario occurring.

If the applications was multithreaded and the alternative reload would be in use, there
is the possibility (even if small) that a different thread than the one executing the reload
could corrupt the spilled register between the two LDR X25 (according to the example
at Figure 4.8b): the thread checking the MAC would see that the tag is correct before
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STR X25 , [SP , #16]
PACGA X25 , X25 , SP
STR X25 , [SP , #24]

(a) Alternative spill

LDR X25 , [SP , #16]
LDR X15 , [SP , #24]
PACGA X25 , X25 , SP
CMP X15 , X25
B.NE checkfailed
LDR X25 , [SP , #16]
...

checkfailed :
BL

__stack_chk_failed

(b) Alternative reload

Figure 4.8: Alternative implementations ideas of spill and reload, respectively

loading X25 again from memory, but not computing anymore its associated MAC, thus
experiencing a time-of-check-to-time-of-use race condition [8].

The alternative reload has been discarded because it requires more memory accesses
than the one eventually developed, and because it would work only in single threaded
scenarios, significantly reducing the applications where this implementation could be put
to use.

Once (at least) a register is reserved, it becomes straightforward to see the drawbacks
of the alternative spill code: it would render all the instructions data-dependent on X25,
slowing down the processor pipeline. As a nice side-effect of always using X15, there is also
the plus of having a more easily-readable LLVM codebase.

4.3.3 Encryption
For encryption, the spilled registers are XORed with a random bit stream generated (32
bit at a time) with PACGA. Each spill “session” inside a function is paired with a different
initialization vector (IV) of 16 bits.

The IV, calculated at compile time with a hash function over the data indicated in the
design (Figure 4.3), is stored in a register with a MOVZ instruction which, in contrast to most
other AArch64 instructions, permits transferring a 16-bit immediate in one go. Recall that
an immediate is a numeric value stored directly in the machine instruction, thus rendering
it immediately available, contrarily to values stored in registers or even memory.

The main downside of encrypting with random bits generated in this way is that PACGA
only generates 32 pseudo-random bits. Therefore, in order to completely mask a register,
it has to be run twice: this means the process is at least 50% slower than it would have to
be with 64-bit support.

For in-functions spills, the encryption code is generated when --aarch64-enable-spill
-encryption is passed to the backend. The code is added during the function pass
AArch64SpillProtection, while expanding the pseudo-instructions that were already used
for enforcing integrity protection.

The CSRs encryption code is generated, when the –aarch64-encrypt-csr is present,
before the registers are authenticated in the prologue and after a successful MAC check
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in the epilogue. The code generated is similar to the one present in Listing 4.1 where,
similarly to Figure 4.7 registers X25 to X28 are CSRs for this function.

MOV X15 , #272 ; 272 = trim(h( function_id , FI))
PACGA X15 , X15 , SP ; Generation of 1st keystream block.
EOR X25 , X25 , X15 ; Masking the high word of 1st CSR.
PACGA X15 , X15 , SP ; Generation of 2nd keystream block.
EOR X25 , X25 , X15 , LSR #32 ; Masking the low word of 1st CSR.
PACGA X15 , X15 , SP ; |
EOR X26 , X26 , X15 ; |
PACGA X15 , X15 , SP ; | Encryption of 2nd CSR.
EOR X26 , X26 , X15 , LSR #32 ; |__
PACGA X15 , X15 , SP ; |
EOR X27 , X27 , X15 ; |
PACGA X15 , X15 , SP ; | Encryption of 3rd CSR.
EOR X27 , X27 , X15 , LSR #32 ; |__
PACGA X15 , X15 , SP ; |
EOR X28 , X28 , X15 ; |
PACGA X15 , X15 , SP ; | Encryption of 4th CSR.
EOR X28 , X28 , X15 , LSR #32 ; |

Listing 4.1: Function prologue extract encrypting CSRs

Note that in stream ciphers the same algorithm of encryption (i.e., XORing the keystream
to the plain text) is used in decryption, so the code in Listing 4.1 is used by the function
also in the epilogue.

It can be also noted how this process is cumbersome: if PACGA takes 4 clock cycles to
execute, and MOV and EOR (the XOR instruction) takes one then the process to encrypt n
CSRs takes c clock cycles, as defined below.

c = n(2 · PACGAt + 2 · EORt) + MOVt

= n(2 · 4 + 2 · 1) + 1
= 10n + 1

4.4 Security Evaluation
4.4.1 Spill Tampering Detection
Our solution generates code to calculate and store an integrity check value alongside spilled
registers, be them Callee-Saved Registers or spills due to register pressure.

Attackers can swap spilled values with their MACs among themselves, but they are
limited to functions that are executed with the same Stack Pointer value. When encryption
is used, the register values are masked in a way tailored to each specific function instance by
combining the MAC frame index, the function signature and SP. In this case, according to
the well known birthday paradox [39] attack, an opponent has to collect about 216 = 65536
valid MACs before finding a collision with a non-negligible probability and be able to swap
two spills without the spill protector not being able to notice.

Note also that the attacker has only one try when tampering with program memory, as
the program aborts on a MAC mismatch.

40



4.4 – Security Evaluation

4.4.2 Improvements
The implementation presents some margin for improvement:

• The register allocator does not take into account the registers used/defined by the
spilling instruction, instead taking for granted that only the register being transferred
is the one used. This is important also in case someone wants to implement a spill
protector for some other architecture;

• Unless encrypted, in-function spilled register values can be swapped, alongside their
MAC, inside functions that have the same SP value. The attack surface is still reduced
with respect to not having a spill protector;

• Unless encrypted, spilled CSRs values are interchangeable between different functions
as long as the two functions have same SP value in the prologue/epilogue (i.e., the
same SP value in their parent function) and the spilled CSRs are the same ones. See
Figure 4.9 for a practical example.

int parent_funct (int x, int y) {
int i, n;
for (i = 0; i < 10; i++) {

n = vulnerable_funct_1(x);
x /= 7;
vulnerable_funct_2(y, &x);
vulnerable_funct_3(y, n, x);

}
}

←

←
←

Figure 4.9: The functions indicated by the arrow will have the same value of SP during
execution of the prologue and epilogue. If they spill the same CSRs, their values could be
swapped among functions without the spill protector being able to notice.
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4.5 Experimental Results
To evaluate the performance of the developed spill protector, the SPEC CPU benchmark
1 has been used. At its current version, SPEC (Standard Performance Evaluation Corpo-
ration) CPU 2017 is essentially a program capable of orchestrating building and running
a preselected variety of open source programs of which it contains the sources, comparing
their output to predefined ones which are known to be correct.

Among the different test suites, it has been chosen to use intrate, as this suite is the
one that performs benchmarks on the integer throughput of the system. This suite puts
special pressure on integer registers inside the processor.

The current implementation is still on a prototype level, and not all complex tests run
to completion. Work is being done to solve these issues but reported in this thesis are only
the tests that complete.

4.5.1 Executable Size

binary name no protection integrity encryption+integrity
perlbench_r_base 3.0MB 3.3MB (+11.5%) 3.9MB (+31.7%)
cpugcc_r_base 11MB 13MB (+14.7%) 15MB (+41.3%)
mcf_r_base 688KB 696KB (+1.10%) 712KB (+3.49%)
omnetpp_r_base 2.6MB 3.0MB (+16.2%) 3.8MB (+50.2%)
cpuxalan_r_base 6.5MB 7.3MB (+12.2%) 8.9MB (+37.5%)
imagevalidate_525_base 623KB 627KB (+0.60%) 631KB (+1.29%)
ldecod_r_base 1.3MB 1.4MB (+8.10%) 1.6MB (+22.5%)
x264_r_base 1.3MB 1.4MB (+7.90%) 1.5MB (+19.0%)
deepsjeng_r_base 112KB 124KB (+10.8%) 144KB (+28.8%)
xz_r_base 793KB 821KB (+3.50%) 877KB (+10.6%)

Table 4.1: Executable sizes with different levels of protection applied.

The increased sizes of compiled executables can be seen in Table 4.1.
This outcome is expected, as essentially the spill protector replaces single instructions

with a series of different instructions whenever a spill occurs.
It can be noticed how the increase of instructions is particularly relevant for encryption:

on average, the code is:

• 7.9% bigger with only integrity protection active (with respect to no protection).

• 24.5% bigger with both integrity protection and encryption active (with respect to
no protection).

These figures are large when compared to other means of protection presented in Chap-
ter 3 which are already in use (stack canaries and SCS). This illustrates the fact that this

1https://www.spec.org/cpu2017/
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work pinpoints a security issue that is prevalent, but often overlooked in prior microarchi-
tectural security work: register spills are very common in compilation, and their presence
is a potential integrity and also confidentiality risk.

It has to be taken into account that this design defends against modification (and
optionally eavesdropping) of all register spills: this comprises also the return address LR
and the frame pointer FP. This implies that, when this solution is used, the traditional way
of using ARM PA to sign the return address is not as necessary.

When reading Table 4.1, one has also to take into account how executable size influences
its running speed in the processor: apart from the larger number of instructions, the
instruction cache (a fast memory that holds the instructions that probably will be executed
next) will more frequently empty, thus requiring access to memory to be refilled.

Another aspect that can be noticed is how broad the size increase is among the selected
executables: regarding integrity, the observed minimum is +0.60%, while the maximum
is +16.2%, more than double. This aspect directly derives from how much an executable
is in need of registers during its lifetime as a process. A program like omnetpp_r_base,
which performs simulations of a large Ethernet network clearly needs to elaborate more
data at the same time than a program such as imagevalidate_525_base, which is used
by the x264_r benchmark just to check if the reencoded video is valid. A value such as the
latter shows that the program in question could almost run entirely on the CPU without
utilizing memory for spilling, while the former would benefit considerably if the number of
registers on the CPU were higher.
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Chapter 5

Conclusions and Future Work

In this thesis, we presented a register spill protector based on LLVM 12, capable of recog-
nizing when registers spills of any kind have been modified during their stay in memory.
Registers can optionally be encrypted to ensure confidentiality, rendering attackers without
a clue of what is being stored within them.

Compiled executables are somewhat larger than the unprotected ones, especially when
both encryption and integrity protection are employed, increasing their size by about 25%.

Unfortunately, it is not possible at the moment to obtain a performance speed evaluation
as the spill protector, at its present form, produces files which are not executable when the
source code is substantial. With this implementation completely working, programmers
would be able to protect their developed code against attacks targeting the local stack
(notably the return address and frame pointer therein stored) while also preventing the
modification of integer variables that are spilled on the stack, thus reducing the attack
surface for DOP.

5.1 Future Work
There are a number of improvements that can be applied to the work presented in this
thesis:

• LLVM register allocators could become aware of what instruction is selected to spill
or reload a register. In this way, spill protectors could avoid reserving registers on
the machine, but rely instead on the register allocator to know that once a register
has to be spilled another one (or two) needs to be available. This could possibly be
done also by modifying the Live Register Analysis pass (Section 2.5.5).

• Preventing the possibility of swapping spilled registers (and their MAC) in different
functions at the same stack level or within the same function when no encryption is
used. This could be done by XORing a number unique to the spill in the modifier SP
prior MAC generation.

• Preventing CSR MAC swapping between different functions at the same parent SP
value when CSR encryption is not in use. To implement this is necessary to move the
MAC calculation at the end of the prologue rather than its beginning. The matter
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is more complicated at the epilogue where calculation still has to be done before SP
gets updated but after CSRs are reloaded. In both cases it is needed to alter how
LLVM sets liveness flags for instructions in the prologue and epilogue.

• Rendering the protection selectable on a per-variable or per-function basis rather than
either enabling or disabling it globally for all spills: to alleviate the overhead, it should
be possible to selectively decide which variable or function to protect with keywords
in the source code. There could be also different keywords depending on if the pro-
grammer desires integrity protection only or also encryption. In order to do this one
would have to modify an LLVM frontend to introduce new attributes that have to be
maintained and caught in the backend to selectively apply the instrumentation.
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