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Summary

The purpose of this dissertation is to provide an on-chip solution for monitoring
and checking in real-time, exploiting event-based sampling to achieve a larger obser-
vation window and reduce the amount of time spent during the hardware debugging.

With the augmentation of design complexity, the contribution of hardware vali-
dation has become extremely relevant. The risk of error is indeed raised because
of tightening timing budgets inside the SoC and electrical issues outside the SoC
(e.g., crosstalk, line attenuation, jitter, etc.).

Unfortunately, the observability of internal signals during the hardware de-
bugging is extremely limited. In the past years, several hardware debugging
methodologies have been implemented to address this problem and, nowadays, the
leading FPGA vendors (such as Xilinx and Altera) provide integrated solutions to
shorten this process.

Embedded Logic Analyzers enable the direct observation of internal signals
without using dedicated output pins, because they exploit serial transmission
interfaces that are already presented on board. However, they suffer from tight
resource limitations that heavily reduce the observation time window and increase
the time needed to track the cause of a malfunction.

On the other hand, External Test Equipment bypasses the issues due to resource
limitation, by routing interesting signals toward output pins. However, this solution
is not suitable for pin-constrained design or wide-bus observation. In addition,
output pins usually do not support higher bandwidths.

Since PLDA is particularly interested in monitoring a specific interface (i.e. the
PIPE interface), it is possible to adopt an event-based approach. Namely, a set of
interesting events is defined and the information is captured and elaborated only
when a precise event or error is detected.

This process highly reduces the amount of data to store, since it is able to select
which information is worth saving. However, a specific-purpose solution is less
flexible and it must be designed to be easily modified to support future releases of
the PCI Express protocol.
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The conducted work is organized into six chapters. Chapter 1 provides some
basic knowledge about the PCI Express. Namely, it illustrates its applications,
it explains how the serial transmission operates and it even explores the PIPE
interface standard. Chapter 2 looks at the state-of-the-art hardware debugging
methodologies currently employed in the ASIC/FPGA development. Hence, it
compares the two main approaches and it analyzes some of the solutions that
are currently employed. Chapter 3 presents the process that aims to identify the
system’s constraints and define the key functionalities to implement. In addition,
it presents the system architecture and the main reasons to adopt it. Chapter 4
illustrates the development of the hardware. In particular, it discusses the design
of each major logic block as well as the verification and validation environments to
test the IP core. Chapter 5 describes the software architecture of the application.
The final chapter resumes the main outcomes achieved during these five months of
internship.

The proposed methodology is conceived during a five-month internship at PLDA,
which aims to shorten the SoC/ASIC/FPGA development cycles during third-party
PCIe PHY integration and validation.

Company

PLDA is a company with over 20 years of experience in the technology market,
with clients in 62 countries and offices in France, Bulgaria, USA and Taiwan. It
designs and develops Semiconductor Intellectual Property (SIP) for high-speed
interconnection (i.e. PCI Express, CXL and CCIX).

I have personally handled both the system development and the project man-
agement. However, my work was reviewed each week by my enterprise tutor, Colin
Gilly, and I was supported by a team of four engineers from PLDA, who were
always willing to help me in case of technical issues.
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Chapter 1

Notions about PCI Express
and PIPE Interface 1

This chapter offers a brief overview of the Peripheral Component Interconnect
Express, commonly known as PCI Express. The first section provides basic
information about this protocol. It starts by presenting its possible applications.
Then, it describes how the serial transmission operates. Finally, it quickly illustrates
the layered structure of PCIe.

Instead, the second section looks into the Physical Layer more deeply. The
interface that must be observed and checked (the PIPE interface) is indeed located
in this layer.

Figure 1.1: PCI Express interface example

1Based on PCI Express Base Specification [1] and Mindshare’s guide about PCI
Express technology [2]
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Notions about PCI Express and PIPE Interface

1.1 PCI Express Fondaments
PCI Express, formally abbreviated PCIe, is an industry-standard high-performance,
general-purpose serial I/O interconnect. Version 1.0 was introduced in 2003 by
PCI-SIG to replace the old standards, PCI and PCI-X (PCI eXtended), which
had reached a practical ceiling on effective bandwidth mainly due to their parallel
architecture.

At present, it is largely employed in consumer, server, or industrial applications.
It has quickly become the interconnect standard to link motherboards to external
peripherals, such as graphic cards, hard disk drives, Wi-Fi, or Ethernet hardware
interfaces.

The PCIe Market Forecast made by Technavio[3] has envisaged a big market’s
growth in the next four years. This expansion is led by the demand for new data
centers, which employ storage technologies with NVMe, a non-volatile memory
interface standard that utilizes PCIe interfaces to SSDs. In addition, data centers
have also started to employ advanced processing techniques that exploit GPUs and
accelerators to support emerging machine learning and artificial intelligence.[4]

1.1.1 PCI Express Link
The physical connection between two PCIe devices is called Link. The communica-
tion is differentially driven and dual-simplex since signals can be sent or received
simultaneously but they pass through different paths.

Figure 1.2: PCI Express Link [2]

A differential send and receive signal pair makes a Lane. One lane is sufficient
for communication between the devices and no other signals are required. However,
a Link can be made up of several lanes.

The number of lanes is called Link width and it is directly proportional to the
link bandwidth. More lanes increase the number of bits that can be sent with each
clock, but as well as cost, space requirement, and power consumption. It is up to
the platform designer to find the correct trade-off.
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Notions about PCI Express and PIPE Interface

Figure 1.3: PCI Express Lane [2]

1.1.2 PCI Express Versions

At the current time, five versions of PCIe have already been released and the
specification of PCI Express 6.0 is on track for being finalized before the end of
2021.[5]

The first generation (Gen1) bit rate is 2.5 GT/s, which means that one lane is
0.25 GB/s. Gen1 indeed employs a 8b/10b encoding, which means it must send
ten bits to transmit a byte of data. Hence, the bit rate is divided by ten to achieve
the one lane throughput .

The higher versions roughly double the bandwidth of the previous PCIe. How-
ever,it is possible to notice from table 1.1 that Gen3 doubles the throughput without
doubling the transfer rate. This outcome is achieved because from Gen3 a different
type of encoding called 128b/130b is used.

Version Introd. Transfer rate Throughput [GB/s]
x1 x2 x4 x8 x16

1.0 2003 2.5 GT/s 0.250 0.500 1.000 2.000 4.000
2.0 2007 5.0 GT/s 0.500 1.000 2.000 4.000 8.000
3.0 2010 8.0 GT/s 0.985 1.969 3.938 7.877 17.754
4.0 2017 16.0 GT/s 1.969 3.938 7.877 17.754 31.508
5.0 2019 32.0 GT/s 3.938 7.877 15.754 31.508 63.015

Table 1.1: Table of PCIe versions and their transfer rate and throughput according
to the Link width.
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Notions about PCI Express and PIPE Interface

All PCI express versions are compatible with one another. However, the maxi-
mum bandwidth of the PCI Express interface is limited by the port with the oldest
version. For instance, if a graphic card that supports PCIe Gen5 is connected to
a motherboard that only supports PCIe Gen2, the maximum bit rate will be 5.0
GT/s because of the motherboard PCIe port.

In order to assure backward compatibility, the PCIe Link is always initialised
in Gen1. Then, if both the devices support higher speeds, a Link Re-Training is
performed to change the Link speed.

1.1.3 PCI Express Serial Transport
PCI and PCI-X had two main problems: a high pin count and a speed limit, as
consequent to the fact that in a parallel bus model the signal flight time must be
smaller than a clock cycle. PCIe overcomes these issues by adopting a serial-based
model.

Moving to a serial transport reduces the pin count because sideband signals are
not necessary anymore. However, the receiver must know the type of information
that has been sent. In PCIe, all transactions are transmitted in defined structures
called packets. Knowing the pattern, the receiver can extract what it needs.

In PCIe, the transmitter embeds the clock built into the data stream, so issues
related to flight time and clock skew are solved, because the clock and data arrive
at the same time. The receiver recovers the clock thanks to a PLL. Since this
PLL continuously tunes the recovered clock, changes of temperature or voltage are
compensated.

Figure 1.4: PCI Express topology example [2]
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Notions about PCI Express and PIPE Interface

1.1.4 PCI Express Topology
Because of the very high speed, the Link must be a point-to-point connection.
However, Bridges and Switches are employed to obtain flexible system topologies.
The definitions of the system elements are as follow:

• The top of the PCIe hierarchy is the CPU, which is connected to the PCIe
buses thanks to the Root Complex.

• Switches provide a fanout or aggregation capability and allow more devices to
be attached to a single PCIe port. They act as packet routers and recognize
which path a given packet will need to take based on its address.

• Bridges provide an interface to other buses, such as PCI, PCI-X, or even
another PCIe bus.

• The endpoint is a device that resides at the bottom of the branches of the
tree topology and implements a single Upstream Port toward the Root.

1.1.5 PCI Express Device Layer
PCI Express is characterized as a layered architecture. This division is made to
simplify the migration to new versions of the specifications.

Figure 1.5: PCI Express Device Layers [2]
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Notions about PCI Express and PIPE Interface

Four main layers are defined. Each layer can be considered as being logically
split into two parts that work independently: a transmit side for outbound traffic
and a receive-side for inbound traffic. In general, the transmitter side of one layer
communicates with the receiver side of the corresponding layer in the other device.

Packets can go through two or more layers, according to the type. Each layer
adds some bits at the beginning and end of the packets. For instance, the Data
Link Layer appends a Sequence Number to TLP packets.

Device Core / Software Layer

The core implements the main functionality of the device. It will be either the
source or the destination of all Requests. It provides information like transaction
type, address, or amount of data to transfer.

Transaction Layer

According to the request generated by the Software Layer, it creates the related
outbound packet. It looks at inbound packets and forwards the information
contained to the Software Layer.

A Transaction is the combination of a Request packet, that submits a command
to the target device, and a Completion packet, sent by the target in return. At
the Transaction Layer, transactions can be grouped into four categories: Memory,
IO, Configuration, and Messages. Transaction Layer handles them by using TLPs
(Transaction Layer Packets).

In addition, this layer provides functionalities concerning:

• The Quality of Service, useful to support time-sensitive transmission. In PCIe,
each packet is prioritized by setting a 3-bit field called Traffic Class (TC).
Each port has multiple buffers, called Virtual Channer (VC). According to
the TC, a packet is placed in the appropriate buffer and a Port Arbitration
manages the VC outputs to provide guaranteed service for a given path.

• The Transaction Ordering, i.e. packets with the same Traffic Class are routed
through the topology in the correct order.

• The Flow Control, namely that a transmitter sends a packet only if there is
enough space in the buffer to receive it. It is completely handled by hardware
and transparent for the software.
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Data Link Layer

This layer manages the creation and the decoding of Data Link Layer Packets
(DLLPs). They are small packets (just 8 bytes) that are responsible for Link
maintenance and management. For instance, they are sent to report the buffer
space, in the PCIe Flow Control mechanism.

The Data Link Layer is in charge of the error detection and correction in the
TLPs. A Link Cyclic Redundancy Code (LCRC) and a Sequence Number are
appended by the Data Link Layer to each outgoing TLP. At the receiver, the LCRC
is checked and if no error is detected, an ACK DLLP is sent in return. Otherwise,
the receiver drops the TLP and it replays a NAK DLLP. The transmitter will be
in charge of resending the packet.

The Data Link Layer is involved in power management too. DLLPs are employed
to communicate the requests and handshakes related to Link and system power
states.

Physical Layer

The Physical Layer is the lowest hierarchical layer. All types of packets are
processed in this layer. It is responsible for several procedures, i.e. byte striping
and scrambling. More detailed information is reported in the next Section

1.2 Physical Layer Overview
The Physical Layer is split into two sections: the logical part and the electrical part.
The Logical Physical Layer is responsible for preparing the outbound packets to be
transmitted and for reversing this process for the inbound packets. The Electrical
Physical Layer is an analog interface, made up of differential drivers and receivers
for each lane.

In the Logical Physical Layer, Start and End characters are added to TLPs and
DLLPs to allow the receiver to detect packet boundaries. Then, each packet is split

Figure 1.6: Flow Control basics [2]
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into bytes that are transmitted by all the lanes independently (a process called
byte striping). The packet is put back together at the receiver.

The Physical Layer is responsible for scrambling each byte before the trans-
mission. Scrambled bytes reduce repetitive patterns on the transmission line, to
decrease cross-talks among lanes or other EMI (Electro-magnetic interference).

1.2.1 Encoding
Before being transmitted, characters are encoded in the Logic Physical Layer. This
encoding is used to achieve different goals.

Firstly, encoding ensures that the data stream has enough edges so that the
receiver can recover the embedded clock. Then, it reduces the drifting voltage that
occurs when the signal average is predominantly one level or the other, so the line
charges up. The encoder compensates for this inequality by adding a disparity bit.
Finally, encoding also facilitates the detection of transmission errors.

For PCIe v1.0 and v2.0, bytes are encoded using 8b/10b, a coding scheme
patented by IBM in 1984 that translates the 8-bit characters into 10-bit symbols.
From PCIe v3.0, 128b/130b encoding is employed.

1.2.2 Ordered Sets
The Logical Physical Layer is responsible for generating and decoding Ordered
Sets. Technically, they are not packets because they do not have any Start or End
characters. However, they have some precise patterns that can be easily detected
by the receiver. Ordered Sets are replicated on all Lanes at the same time because
each Lane is technically independent.

Specification [1] reports different types of Ordered Set. Each one has a different
goal. For instance, TS1 and TS2 Ordered Sets are used for Link initialization and
training. Electrical Idle Ordered Sets are sent to inform the receiver that the Link
passes to a lower-power state. SKP Ordered Sets are used for Clock Tolerance
Compensation.

1.2.3 Link Training and Initialization
The Physical Layer is even responsible for the initialization and training process of
the Link. The Link Training and Status State Machine (LTSSM) automatically
handles this sequence. Namely, to configure and initialize the Link, it must perform
the following tasks:

Bit Lock. In the beginning, the Receiver’s clock is not yet synchronized with one
of the incoming signals. Hence, the receiver must recover the Transmitter’s
clock.
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Figure 1.7: Link Training and Status State Machine (LTSSM) [2]

Symbol/Block Lock. Even if, after the Bit Lock, the receiver can detect the
single bits, it doesn’t know the boundaries of the 10-bit Symbols (PCIe v1.0
or v2.0) or the 130-bit Block (PCIe v3.0 or further). Hence, the transmitter
sends TS Ordered Sets that are easily recognizable, so the receiver can detect
their boundaries.

Link/Lane Number Negotiation. The Downstream Port (the “leader”) assigns
the Link number and Lane number.

Lane Reversal. Sometimes it is easier to inverse the Lane numbers to simplify
the routing and allow the Lanes to be wired directly without crisscrossing.

Polarity Inversion. Even the D+ and D- differential pairs might be inverted.
Each Lane can automatically correct it during the training. Link Data Rate.
To assure backward compatibility, after a reset the Link initialization will
always use the default 2.5 Gbit/s data rate. However, if a higher data rate is
available, it is possible to change the data rate after the initial training.
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Equalization. When the data rate is equal to or greater than 8.0 GT/s, an
Equalization procedure is demanded to meet the signal quality requirements.

Detect The initial state after reset. In this state, a device detects
whether a receiver is present on the other side of the Link.

Polling In this state, Transmitters begin to send TS1 and TS2 Ordered
Sets so that Receivers can use them to:

• Achieve Bit Lock

• Acquire Symbol Lock or Block Lock

• Correct Lane polarity inversion

• Lane available and Lane data rates

Configuration Upstream and Downstream components now play specific roles
as they continue to exchange TS1s and TS2s to:

• Determine Link width

• Assign Lane numbers

• Check for Lane reversal and correct it

• De-skew Lane-to-Lane timing differences

L0 This is the normal, fully active state of a Link when packets
and ordered sets can be exchanged.

Recovery This state is entered when the Link needs re-training, for
instance when errors occur in L0. Bit Lock and Symbol/Block
lock are re-established as in the Polling state, but by taking
much less time.

L0s This state is designed to provide some power savings while
affording a quick recovery time back to L0.

L1 This state provides greater power savings by trading off a
longer recovery time than L0s does.

L2 In this state, the main power is turned off to achieve a greater
power savings.

Loopback This state is used for testing.
Disable This state allows a configured Link to be disabled. In this

state, the Transmitter is in the Electrical Idle state while the
Receiver is in the low impedance state.
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Hot Reset Software can reset a Link by setting the Secondary Bus Reset
bit in the Bridge Control register.

Table 1.2: LTSSM main states

1.2.4 PHY Interface for PCI Express (PIPE)
In the Physical Layer, there is the PHY Interface for PCI Express (PIPE), a
standard defined by Intel to help integration. It indeed enables the development of
functionality equivalent PCI Express, SATA, USB and DisplayPort. [6]

Figure 1.8: PHY and PCIe Controller

Referring specifically to PCI Express, this interface connects the MAC layer
(that is located inside of the PCIe Controller) to the PCIe PHY. At this level, data
are not serialized yet and they are sent (and received) through the TxData (and
RxData). According to the data rate and the PCIe generation, this bus can have 8,
16, 32, or 64 wires.

Signals of the PIPE interface are synchronized with PCLK. This clock is provided
by a PLL that uses the reference clock (CLK) as the source.[6] PCLK frequency
might vary over time, for instance when the data rate is increased during the Link
Re-Training. However, it is possible to find out the PLCK rate by looking at the
signal PLCK_Rate [4:0]. The PCIe Controller also provides the current LTSSM
state and the Equalization phase.

The specification of PCIe PIPE 4.4.1 introduced the Message Bus interface.
This interface provides a way to initiate and participate in non-latency-sensitive
PIPE operations using a small number of wires.[6]
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Figure 1.9: PIPE Interface [6]
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Chapter 2

Analysis of Hardware
Debugging Methodologies

This chapter wants to present the result of the study on hardware debugging
methodologies. In the first place, the design process is described to quickly provide
some context around validation and hardware debugging. Then, the two main
categories of hardware debugging tools are compared to highlight their advantages
and disadvantages. Finally, some specific tools are analyzed to show if they are a
possible solution to monitor and check the PIPE interface.

This chapter notably illustrates the design process of Soft IP on FPGA for two
reasons. Firstly, because the solution to monitor and check the PIPE interface
will be only prototyped on an FPGA, since the internship periodo is too limited.
Secondly, even in ASIC production, the design is often prototyped on FPGA,
because it is more flexible than ASIC, so the time of design, validation, and testing
is strongly reduced. [7] However, the ASIC design process includes some additional
phases that are not described in this thesis.

2.1 Design Process Overview for synthesis on
FPGA

The design flow of a Soft Intellectual Property (SIP) counts four main steps: speci-
fication, RTL design, synthesis, and implementation. However, the augmentation
of design complexity has increased the risk of errors so much that verification and
validation have become extremely relevant and they can take fifty percent of the
design cycle.[7]

The specification is the first step of the process. The engineer must identify the
requirements and the functionalities that the SIP must have. These functionalities
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Figure 2.1: FPGA Design Process

are then described in hardware description languages (HDLs) such as VHDL or
Verilog. HDLs use the register transfer level (RTL) abstraction, which represents
the flow of signals between registers and the logical operation performed by these
signals.[8]

The next step is verification. The goal of the verification technique is to check
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if the implemented design meets specifications before the design is manufactured.
Simulation is used to verify the design behavior. A wide range of stimuli are
applied to the design and the simulated design outputs are compared with the
expected ones. It is an easy way to catch most of the logical errors, especially if
the resulting outputs are well-known. However, an exhaustive check for complex
design is practically unfeasible.[7]

Techniques, such as formal verification, have been conceived to mathematically
prove or disprove the correctness of the design according to a certain formal
specification. There are two main approaches to formal verification. The first one
is equivalence checking and it consists in comparing a reference model with the
targeted design. The other approach is called property (or model) checking. In this
case, it checks the satisfaction of design properties that are formed in a dedicated
verification language.[8]

After the verification, the design description is translated from an HDL descrip-
tion to a gate-level representation or a logic component. This description, however,
is not designed for a specific FPGA. The next phase, called implementation, takes
the netlist and it does the optimization, the placement, and the routing. This
process generates a bitstream file that can be uploaded into the FPGA.Along with
the bitstream file, the synthesis tool provides a report that includes the result of
the Static Timing Analysis.

The Static Timing Analysis computes the critical path. Namely, it calculates all
the delay due by combinational logic between an input and a register, two registers,
or a register and an output. The critical path is the highest delay among those.
If the critical path does not meet the timing constraint, then the design must be
modified to reduce the critical path.

The design is now implemented physically, however, a final step must be per-
formed. Verification cannot, indeed, guarantee that the design is error-free. Simu-
lation (so verification too) is based on models that cannot emulate all the physical
characteristics of the design. Hence, it cannot catch several design problems, such
as timing violation, EMI, or signal integrity issues.[7]

The goal of validation is to identify design bugs that are present in the physical
circuit. Unfortunately, the observability of the internal signals is very limited, and
tracing back the error to the source can be frustrating. Several hardware debugging
methodologies have been conceived to address this problem. In broad terms, they
can be divided into two categories: external test equipment and embedded logic
analyzer.[7]

15



Analysis of Hardware Debugging Methodologies

2.2 Embedded Logic Analyzers
Because capturing data in consecutive clock cycles is essential for identifying the
timing-related bugs, some techniques have been developed to provide real-time
observability of a limited set of internal signals.[8]

Embedded Logic Analyzers rely on on-chip buffers that sample a set of internal
signals. Captured data is then transmitted to the external debug software via a
low bandwidth interface, (e.g. JTAG or UART).

This solution is widely employed because it is usually relatively inexpensive.
Major FPGA vendors, indeed, offer embedded logic analyzer cores free of charge
(e.g. SignalTap from Altera and LogiCORE ILA from Xilinx).[9]

Figure 2.2: Arm ELA600 block diagram [10]

In addition, embedded logic analyzers do not use additional pins, since they
usually exploit serial transmission interfaces that are already present on board.
Conversely, the embedded logic analyzer core must employ part of the internal
FPGA logic resources and memory blocks that could be used to implement the
design. This matter limits the buffer size, so, as a consequence, the observation
window too.[9] In addition, the IO ports usually suffer from bandwidth limitation.

Embedded logic analyzers can only operate in state mode: the core samples
data synchronous to a specified clock that is present in the FPGA design, hence
it can not provide accurate signal timing relationships. And besides, they do not
have a way of correlating the captured information to board-level or system-level
information.[9]

Finally, if it is necessary to change the set of probed signals, the whole design
must be resynthesized. For complex SIP, this process could take from several hours
to even an entire day.
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Tool Name Company
Integrated Logic Analyzer (ILA) Xilinx
SignalTap Intel
XpressAGENT Logic Analyzer PLDA
AXI BFM Monitor Checker PLDA
Arm CoreSight ELA-600 Arm

Table 2.1: Embedded Logic Analyzer examples

2.3 External Test Equipment

Because of the limitations embedded logic analyzers have, sometimes it is preferable
to use some external test equipment (it can be an external logic analyzer, a protocol
analyzer or even an oscilloscope).[9] In this case, interesting signals are routed to
FPGA pins, so that they can be captured by the debug tool.

Figure 2.3: Summit T3-16 PCI Express Protocol Analyzer by LeCroy [11]

This solution does not use FPGA resources, hence there are no strong constraints
on the observation window. However, it requires dedicated output pins. It is an
issue if the design is pin-constrained or whether it is necessary to observe wide
buses.[9]

External test equipment is usually more expensive than an embedded logic
analyzer, nonetheless, it provides more acquisition modes and trigger capabilities.
It implements different trigger state modes and it can capture very long capture
in timing mode with very high resolution. External test equipment also enables
correlating the captured data with other system information.[9]
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Tool Name Company
Summit T3-16 PCI Express Protocol Analyzer LeCroy
Inspector v2.0 PLDA

Table 2.2: External Test Equipment examples

2.4 Integrated Logic Analyzer (ILA) by Xilinx
Xilinx provides the Integrated Logic Analyzer (ILA) in its Vivado Design Suite
as a debug tool for their FPGAs. ILA is made up of an IP core that captures
interesting signals after the detection of a trigger event. These data are consequently
transmitted via JTAG to the computer and it is possible to visualize them as
waveforms in the Vivado Lab interface.[12]

Figure 2.4: ILA Core Symbol [12]

The Vivado GUI allows the user to set the trigger events. The trigger comparator
can detect a precise pattern or an edge transition. Multiple trigger conditions can
be combined using “AND” and “OR” boolean operators.[9]

This tool is normally used at PLDA because it allows the observation of any
FPGA internal signal in real-time. However, the debug process using ILA takes a
considerable amount of time. The constraint on buffer size forces users to select a
limited number of probed signals. This condition turns the debug process into a
cyclic procedure where the engineer selects a few signals, synthesizes the design,
runs the test, and manually analyzes the waveforms. If these signals are not the
cause of the bug, he must select other signals, resynthesize, and so on.

If the problem source is at low level, the debug process could even demand ten
or more cycles. Since only the ILA initial setting and synthesis might take a full
day, tracking back the error source could require 3/4 weeks or even more.
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Figure 2.5: ILA GUI in Vivado Suite

2.5 Inspector for PCI Express by PLDA
The Inspector for PCI Express is a solution conceived by PLDA to observe in
real-time a PCIe link. It is composed of a board that must be plugged between the
Upstream port and the Downstream port. The interposer card analyzes the Link
traffic and sends data to the computer via UART. This information is consequently

Figure 2.6: Inspector for PCIe plugging [13]
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Figure 2.7: Inspector for PCIe GUI [13]

shown by the Inspector software GUI.[13]
In particular, it enables design, test, and validation engineers to:

• Monitor PCIe interface power-on process [13]

• Diagnose PCIe interface PHY and link issues [13]

• Analyze throughput performance in real-time, in the production environment
[13]

• Check PCIe interface reliability [13]

• Perform PCIe interface stress tests and random tests via scripting (exerciser
functionality) [13]

The Inspector is useful to detect link errors, however, it is not able to track back
the cause, because it is not integrated into the same chip of the device under test
(DUT), so it cannot directly probe signals of the PIPE interface.

The Inspector shows the LTSSM state of its Downstream port, but it cannot
ensure consistency with the Upstream port of the DUT. In case of system failure,
the user cannot know when the DUT gets stuck, especially if the Upstream port
employs a PHY different from the one used in the Inspector.
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Figure 2.8: XpressAGENT integration block diagram [PLDA]

2.6 XpressAGENT by PLDA
XpressAGENT is a tool that PLDA is developing to simplify the control management
of PCIe/CXL PHY based subsystems that employ a PLDA Controller. Its main
goal is to save time during the validation by providing relevant functionalities that
should be implemented otherwise by PLDA’s clients.[14]

XpressAGENT can programmatically configure via AMBA interface the PLDA
IP and the PHY for link testing or reliability testing. It can even monitor the
PIPE interface in real-time by logging performance, link states, error events, etc.
Acquired data can be transmitted via UART and visualized on the XpressAGENT
User Interface.[14]

A logic analyzer is implemented in the XpressAGENT IP, as well. It implements
the same functionalities of an ILA, but it can be synthesized even for ASIC
applications.[14] It inherits all the disadvantages of ILA, for instance, the long
debugging time. There is no checking logic implemented in the hardware.

2.7 AXI BFM Monitor by PLDA
In its AXI Bus Functional Model (BFM), PLDA has integrated an AXI Monitor
that ensures the correct behavior of the AXI interface. This submodule samples the
AXI signals, elaborates them in real-time to compute the AXI performance and to
detect any event or errors, then saves these data in memory. Through a backdoor,
the acquired data are transmitted to the computer, where they are translated into
report files, readable by human users.
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Even though this solution employs part of the FPGA resources, it still provides
a wider observation window, because it logs only when an event or an error occurs.
This elaboration optimizes the saved data and reduces the necessary buffer space.
However, this tool is specific for monitoring an AXI interface and it cannot be used
for other purposes.

2.8 Dissertation Motivation
The study of hardware debugging methodologies that are currently used during
the validation has shown that a solution fitted to monitor and check the PIPE
interface does not exist.

The general-purpose tools are too inefficient and they require a debugging time
that is too important. The more specific tools either are not suited for the PIPE
Interface, or they do not provide enough information to track back the cause of
malfunctioning.

Hence, the next chapters will present the process to design a solution that
monitors and checks the behavior of the PIPE interface with the objective to
significantly reduce the hardware debugging time.
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Chapter 3

Definition of the Solution

The research presented in the previous chapter has pointed out the absence of an
efficient solution to monitor and check the PIPE interface, so as to reduce the time
for PCIe PHY integration and validation.

This chapter will, thereby, expose the result of the study aimed at defining a
new product. It will define the product’s objectives, identify its constraints, and
describe the process to select the Minimum Viable Product. Finally, Finally, it
introduces the designed system architecture and it explains the decisions taken.

3.1 Objectives
As analyzed in chapter 2.5, the Inspector for PCIe is a useful tool to detect if the
Link does not work properly. However, it provides high-level information, so a
deeper investigation must be performed to find out the cause of the failure.

Instead, Xilinx ILA or similar Logic Analyzer provide a lot of low-level infor-
mation. Hence, they are indispensable to identify the exact signal that affects the
Link operation. Unfortunately, a large number of signals are involved in the Link
operation and checking them all would require an important amount of time.

Engineer’s experience helps reduce the debugging time, since he is able to select
a smaller group of signals and he utilizes an effective top-down approach. However,
the debugging phase could still take several weeks or even months of investigation.

This investigation time could be significantly reduced by implementing a tool
that monitors and checks the PIPE interface, so as to provide some key information
that allows him to detect the signals to probe in one or two attempts.

Hence, the main goal of this project is to design a new solution to monitor and
check the behavior of the PIPE interface at-speed. This can be more specifically
expressed through four objectives:

PIPE Interface Monitoring: The solution must provide all the information
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about the state of the PIPE Interface and the events that occur that occur
during Link Training and Re-Training.

PIPE Interface Checking: The solution must check protocol requirements and
report whether there are any errors or lockups during Link Training and
Re-Training.

Usability: Users must be able to visualize the test outcomes and interact with
the system through a user interface.

Temporal Relation: The module must provide a time reference to establish a
temporal relation among detected events and errors, so that the user can look
at what happened when the failure occurred.

3.2 Constraints
The product’s constraints are split into two categories: the ones that must be
considered during all the development steps and the ones that must be fulfilled by
the final product.

3.2.1 Prototype Constraints
Synthesizable This tool is meant for hardware debugging, so it must be synthe-

sizable and implementable on an FPGA.

Independent The tool must not be affected by the behavior of the DUT. Hence,
it must:

• Provide an External access
• Employ an unrelated Reset

Transparent The tool must not affect the transmission in any way.

High-Speed Sampling The module must be able to capture all the data and
control signals of the PIPE interface.
Range Sampling Rate from 62.5 MHz to 1 GHz

3.2.2 Final Constraints
Resources Limitation The module must not produce any design constraint for

the DUT, so it can only exploit the spare resources.
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Max Used LUTs (DUT / module) 10%
Max Used BRAMS (DUT / module) 15%
Max Gate Count (DUT / module) 10%

Configurable The design must support all the PIPE configurations of the different
PLDA PCIe Controllers. Notably:

Lane Configuration x1, x2, x4, x8, x16
PIPE Version v5.2
Signaling Rate [GT/s] 2.5, 5.0, 8.0, 16.0, 32.0
Data Path Width 8, 16, 32, 64
Architecture Original PIPE
Elastic Buffer Op Model Nominal Hall Full buffer

Observation Window The module must provide information about an interval
wide enough to observe the link training and retraining.

3.3 Identification of the Minimum Viable
Product (MVP)

Even if the project objectives are defined, they are not exhaustive enough to
describe the specific functionalities of the system. However, PCI Express is a
complex protocol that counts a lot of rules, but the time to deliver the prototype
is quite short1. To be as effective as possible, the functionalities have been defined
using the Minimum Viable Product (MVP) technique.

3.3.1 Minimum Viable Product Definition
The Minimum Viable Product is a concept introduced and popularized by Eric
Ries in his book The Lean Startup[15].

“The minimum viable product is that version of a new product which
allows a team to collect the maximum amount of validated learning about
customers with the least effort.”
Eric Ries [15]

1The duration of the interniship is five months. Two of those have been spent to learn
the PCIe protocol, familiarize with the PLDA environment and study the hardware debugging
methodologies.
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In other words, it is the initial version of a product that implements enough
features to be used by consumers and no more. Future product releases will be
implemented according to the user feedback.[16]

MVP must have three key characteristics:

“It has enough value that people are willing to use it or buy it initially.
It demonstrates enough future benefit to retain early adopters.
It provides a feedback loop to guide future development.”[16]

This method is useful to validate the product idea before making a large
investment. It avoids developing features that consumers do not want, so as to
save and optimize both time and resources.[16]

3.3.2 The selection of functionalities
Firstly, a list of possible functionalities is drawn up by looking at the PCIe
specification[1], the PIPE specification[6], and Mindshare’s guide about PCIe[2].
Then, a hierarchical tree diagram is produced by analyzing the dependencies among
these functionalities (for instance, the module must be able to detect the different
ordered sets to identify most of Link Training events).

This initial draft is presented to different engineers and managers at PLDA to
be reviewed. To avoid a polarized perspective, this small survey targets people
that works in different team (i.e. Design team, Verification team, Validation team
and Advanced Design & Integration (ADI) team). The hierarchical tree diagram is
modified thanks to their feedback. Priorities have been assigned to each feature
in order of complexity. The complexity of both implementation and specifications
have been considered, as too complex specifications could lead to bugs in the
implementation.

Figure 3.1 represents the final version of the hierarchical tree diagram. The ar-
rows represent the dependencies between the functionalities. The priority increases
from the top to the bottom. The highest functionalities are the core features that
must be necessarily implemented in the first release.

Thanks to this diagram, the first two versions of the prototype are set out.
The prototype v1.0 implements the basic features that allows the user to monitor
the behaviour of the PIPE interface and to understand how this tool works. The
version 2.0 adds some key checking functionalities that would significantly help the
validation engineer.

Unfortunately, the prototype v2.0 will most likely not be complete before the
end of the internship, because of the short deadline. However, it could be a future
product development.
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3.4 Requirements
A requirement is a:

“Statement that identifies a product or process operational, functional,
or design characteristic or constraint, which is unambiguous, testable or
measurable, and necessary for product or process acceptability.”[17]

By keeping this definition in mind, the selected functionalities are translated in
an exhaustive list of requirements. Each requirement is enumerated to facilitate
the testing phase.
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Figure 3.1: Functionalities hierarchical tree diagram
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3.5 System Architecture of PIPE Monitor
Checker

The technical specification of the product is delineated, so the system architecture
can be designed by following those guidelines.

The device must be able to monitor and check the internal signals of the PIPE
interface. Since it is not possible to route all of them to dedicated output pins to
observe them externally, then the solution will be on-chip.

Since this tool must be able to monitor and check a wide time interval and
during this period it is not possible a cause of resource limitation to sample and
save all the signals into memory, then signals shall be elaborated and only the
events and errors shall be logged.

Figure 3.2: PIPE Monitor Checker System Architecture

Hence, the product (i.e. the PIPE Monitor Checker) shall consist of:

• a soft IP, directly integrated into the same chip of the DUT, that samples
the PIPE Interface signals and elaborates them to detect errors and events.
Elaborated data is saved in the on-chip RAMs.

29



Definition of the Solution

• a software application that reads data from the IP’s memory via an external
peripheral. The read information is provided to the user thanks to a user
interface.

The prototype is implemented on a Xilinx Virtex UltraScale+ FPGA provided
by PLDA.

3.5.1 Analysis on signal commutation in the PIPE inter-
face

Using the verification environment of the PLDA XpressRICH-AXI2 Controller IP,
it has been possible to simulate the PIPE interface with different configurations
(i.e changing PCIe generation, Link number and PIPE version) and export the
outcomes in vcd format with Questa Advanced Simulator.

A python script has been implemented to take one or more vcd files as input,
count how many times a signal commutes and produce a text file as output. By
giving as input the simulations about PIPE interface, this script shows that most
of PIPE signals commute with a frequency significantly slower than pl_pclk (figure
3.3).
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Figure 3.3: Functionalities hierarchical tree diagram

2XpressRICH-AXI™ is a configurable and scalable PCIe controller Soft IP that provides a
configurable, flexible AMBA AXI interconnect interface to the user. [18]
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The average commutation frequency is computed as:

f s
com(T ) = 1

T

TØ
tk=0

hs
com(tk)

where hs
com(tk) =

I
1 if signal s commutes at the instant tk

0 otherwise

(3.1)

Figure 3.4 shows that, beside the parallel data signals (pl_txdata and pl_rxdata),
the other signals have an average commutation frequency with the order of magni-
tude of MHz or even slower.
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Figure 3.4: Functionalities hierarchical tree diagram

In addition, some of these signals (i.e. pl_ltssm) are widely employed during
the Link Training or in the Recovery state3, but, after these first microseconds,
they remain almost constant (figure 3.5). Hence, if buffers were correctly sized to
store the captured data during the Link Training, even a low-speed interface could
manage the data streaming.

3.5.2 External Interface
The analysis presented in section 3.5.1 has evidenced that a low-speed interface
could manage the transmission if the signal sampling is event-triggered and not
time-triggered.

3In the average commutation frequency graph of figure 3.5, the first peak coincides with the
Link Training. Instead the other two occur when the LTSSM enters in the Recovery state to
increase the Link speed.
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Figure 3.5: Commutation of pl_ltssm (PIPE v5.2 Gen4 x2)

UART standard is chosen for two reasons:

• The board provided by PLDA has already integrated the CP2103 USB to
UART Bridge that allows to communicate the computer via USB.

• Inspector for PCIe from PLDA employs UART too. Hence, it is possible to
adapt its UART transceiver to save time. In addition, PLDA has for the
Inspector a protocol to read or write memory cells via UART.

UART
Baud rate 128 000 bps
Data bits 8 bits
Parity odd
Stop bit 1 bit
No flow control

Table 3.1: Uart Serial Link Configuration
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Chapter 4

Organization of the product
development

This brief chapter summaries the efforts spent in the project management. Notably,
it presents the outcome of the risk analysis and shows the project scheduling.

4.1 Risk Analysis and Risk Management
Risk management is a key procedure of project management. Its goal is to anticipate
a possible negative event by setting up a preventive action to reduce its impact.
So, even if it is impossible to avoid a threat, risk management improves the chance
to complete a project successfully by reducing its consequences. [19]

Risk management process can be split into four steps that must be performed
iteratively during each phase of the project: [19]

Risk Identification Detect and list the sources of risks. This process must be a
key topic in the regular project status and reporting meetings.

Risk Evaluation Estimate the probability that a threat occurs and its possible
impact on the project.

Risk Handling Plan measure and mechanism to reduce the negative consequence
of a possible risk.

Risk Controlling Record and monitor risks and handling mechanisms.

Several models have been developed to analyse and evaluate risks. Some of
them are quantitative and assign numerical values to risk. Others are qualitative
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and employ tools, such as SWOT Analysis1, cause and effect diagrams, or decision
matrix. [20]

For this project, risk analysis is performed by using a quantitative methodology
presented by Alain Humbert during his course of project management at Grenoble
INP ESISAR.

Table 4.1 presents the list of risks identified during this project. Instead, table
4.2 provides the description of the numerical values employed in the risk evaluation.

# DESCRIPTION CATEGORY IMPACT

IM
PA

C
T

LE
V
E
L

P
R
O
B
A
B
IL
IT

Y

C
R
IT

IC
IT

Y

C
O
N
T
R
O
L

R
IS
K

E
X
P
O
SU

R
E

PREVENT. PARADE

1 Lack of experi-
ence and knowl-
edge.

Technical Get stuck
for a
technical
problem.

3 4 7 2 14 Plan ahead the list of
tasks and define the re-
lated tech skills. For
each skill, identify use-
ful resources or key
people. Peer reviews
to prevent possible is-
sues.

2 Time for doing
a task incorrectly
estimate.

Organizational Do not have
enough
time to
actually
achieve all
the planned
goals.

2 4 6 2 12 Trying to always con-
sider the worst-case
scenario to estimate
the time. Have the
project schedule re-
viewed by people
with more experience.
Periodically update
the project schedule.

3 Inability to
work for several
days (i.e serious
illness).

Human Forced
to stop
working
for several
days.

4 1 5 2 10 Always document the
work done, so that an-
other person is able to
complete it.

4 Force to WFH2. External Unable to
go to the
laboratory.

1 5 6 1 6 Assure a remote con-
nection.

5 Loss of motiva-
tion.

Human Loss of effi-
ciency.

2 3 5 2 10 Keep in touch with the
team members. Or-
ganize task that can
be done in parallel
and among which you
can switch to avoid
monotony.

1SWOT Analysis Strength, Weakness, Opportunity, and Threat Analysis
2WFH Work From Home

34



Organization of the product development

6 Get lost. Organizational Loss of effi-
ciency.

2 4 6 1 6 Plan elementary sub-
tasks in the short pe-
riod and track the
completed ones. Pe-
riodically update the
project schedule to al-
ways have the overall
view.

Table 4.1: List of risks

Impact Level Represent the level of impact
on the project

1: very low
2: low

3: medium

4: high
5: very high

Probability Represent the occurrence level
of the risk

1: very low
2: low

3: medium

4: high
5: very high

Criticity = Impact Level + Probability (between 2 and 10)

Control Represent the control level of
the risk

1: heavily controlled
2: moderately controlled

3: sparsely or not controller

Risk Exposure = Control * Criticity (between 2 and 30)

Table 4.2: Description of the numerical values employed in risk evaluation

4.2 Project Development Scheduling
The risk management in section 4.1 has pointed out the necessity of a project
scheduling. It indeed makes the development more smooth, since it delineates
strategy and a logic workflow. Since the beginning of the project, project scheduling
can provide a clear picture of the requirements, by estimating the effort, the
resources and the knowledge necessary to complete a task. [21]

The approach to product development is based on Agile Methodology. The
iterative increments (or Sprints) are identified according to the functionalities
selected in section 3.3. A specified period of time (time box) is assigned to each
increment. During this time box, the feature is designed, implemented and tested.

A detailed scheduling is represented with a GANTT chart, because it allows
following the workflow, as well. Figure 1 synthesizes the project scheduling defined
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at the beginning of the development.

Figure 4.1: Project schedule dated 23/04/2021
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Chapter 5

Development of the on-chip
IP Core

This chapter describes how the IP core works internally and what problems lead to
some specific solution.

The approach to illustrate is top-down and it reflects the real process that has
been followed during the development. Hence, it firstly presents the top architecture.
Then, it shows the logic blocks in charge of monitoring and checking the PIPE
interface. Finally, it explains how the computer can access the RAMs via UART.

The last two sections of this chapter briefly mention how the IP Core has been
tested. Namely, it has been initially verified using simulation, then it has been
prototyped and tested on an FPGA.

5.1 IP Top Architecture
The IP core architecture recalls the one of a conventional logic analyzer. Some
submodules are in charge of sampling the PIPE signals and loading data in BRAM,
whereas the rest of the module handles the stream of data to the host computer
via UART.

Since the goal is to observe the PIPE interface enough to check several use cases,
signals are not directly saved in memory, as the ILA. Instead, data are elaborated,
and they are logged only when an error or a relevant event is detected.

5.1.1 Clock Domain
The selection of the clock domain has been a critical problem. Since PIPE signals
are synchronized with PCLK, using an independent clock would have required
several synchronizers. So, this solution would have taken a lot of resources and
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Figure 5.1: Top Architecture of the PIPE Monitor Checker IP

it would have produced other issues. Specifically, PCLK frequency can vary even
when the device is running, so the module must detect and handle these changes
of frequency to avoid oversampling or missing data.

However, the UART module cannot employ PCLK. Its baud rate is indeed
derived from the frequency of the received clock and the PCLK frequency is too
high compared to the maximum UART baud rate. In addition, PCLK is not
constant and it can be even disabled during specific low-power states. So, if its
frequency changed, the UART transceiver would not be able to communicate
with its pair anymore. Without mentioning that, while PCLK is disabled during
low-power states, the entire tool would not be accessible.

For these reasons, the core is split into two different clock domains: the logic
blocks, that sample and elaborate the PIPE signals, are synchronized with PCLK,
whereas the UART backdoor submodules refer to the constant REFCLK.

This solution is possible, because the submodules synchronized with PCLK only
need to write into memory, instead the UART is only used to read. Hence, the two
clock domains are connected by dual-clock RAMs that allows reading and writing
with different frequencies.

Clock Frequency Monitor

A module, called Clock Frequency Monitor, is added to disable the Logic submodules
when it detects that the PCLK is turned off. In this way, it assures that logics do
not detect any false error or event.
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This module estimates the frequency of PCLK using a counter. A reference
clock with a constant and well-known frequency (REFCLK) is applied as its enable,
whereas PCLK as its clock. Hence, the counter computes the number of PCLK
cycles in a positive semi period of REFCLK. Using this value, it is possible to
derive the PCLK frequency.

COUT = TREF

2 · 1
TP CLK

⇒ fP CLK = COUT

2 fREF (5.1)

However, if the frequency of PCLK is not a multiplier of the REFCLK frequency,
an error is produced on the estimated frequency.

fP CLK + ∆fP CLK = COUT + ∆COUT

2 fREF ⇒ ∆fP CLK = ∆COUT

2 fREF (5.2)

This error is directly proportional to the frequency of REFCLK. So, a frequency
divider is applied to REFCLK to reduce it. In the Clock Frequency Monitor, this
frequency divider is implemented with a simple counter.

Figure 5.2: Clock Frequency Monitor Architecture

pclk

refclk

en

cout 0 1 2 3 4 5 6 7 8 0

dat 8

Figure 5.3: Timing Diagram of the Clock Frequency Monitor signals

5.1.2 Modularity
PCI Express is a protocol that evolves constantly. As written in section 1.1.2,
almost six generations have been released in only eighteen years. This product
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must be able to keep up with changes. Different mechanisms are applied to make
the design as modular as possible and to simplify the integration of new features
or new generations.

First of all, modules are described in Verilog using parameters to be easily
reused with different or new specifications. The global parameters are listed in the
pipemc_config_h.v file, where it is possible to change, for instance, the width and
depth of memories.

Elaborated data is saved into memory as packets, whereas events and errors are
encoded using numerical identifiers. Hence, new events can be easily assigned to
unused code. If all the available numbers are already allocated, it is possible to
increase the size of a specific packet in the pipemc_config_h.v file.

The unit in charge of the signal elaboration is split into different logic blocks
according to the signal that they must monitor. Therefore, a module tracks the
commands sended via Message Bus. Another component decodes the traffic that
flows through TxData and RxData. This division allows modifications of a single
block without affecting the rest of the design.

Lastly, submodules are used to describe tasks that are executed by different
blocks (i.e. memory writing). So, the function must be written, simulated and
verified only once, thus saving time.

5.2 PIPE State Logic

Figure 5.4: PIPE State Logic block

This module oversees the state of the PIPE interface. It tracks when there is a
transition of the LTSSM, or when the equalization phase changes. In these cases, it
generates a packet where it is reported the time when the transaction occurs and
the LTSSM state code, or the equalization phase code (figure 5.5). Then, it sends
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this packet to the Write Memory Controller that saves it into memory.

Figure 5.5: LTSSM/Equalization Phase packet

The PLDA XpressRICH controller encodes the 25 LTSSM substates using 5
bits. Hence, it is possible to employ the unused identifiers to include the four
equalization phases into the 5-bits encoding (table 5.1), especially since LTSSM
state does not change when the equalization phase does.

LTSSM substate Equ.
Phase

ltssm
code

equ_phase
code

LTSSM\Eq.
Phase code

Detect.Quiet hx00 hx00
Detect.Active hx01 hx01
Polling.Active hx02 hx02
Polling.Compliance hx03 hx03
Polling.Configuration hx04 hx04
Config.Linkwidthstart hx05 hx05
Config.Linkwidthaccept hx06 hx06
Config.Lanenumwait hx07 hx07
Config.Lanenumaccept hx08 hx08
Config.Complete hx09 hx09
Config.Idle hx0A hx0A
Recovery.Receiverlock hx0B hx0B
Recovery.Equalization Phase 0 hx0C 00b hx0C
Recovery.Equalization Phase 1 hx0C 01b hx1D
Recovery.Equalization Phase 2 hx0C 10b hx1E
Recovery.Equalization Phase 3 hx0C 11b hx1F
Recovery.Speed hx0D hx0D
Recovery.ReceiverConfig hx0E hx0E
Recovery.Idle hx0F hx0F
L0 hx10 hx10
L0s hx11 hx11
L1.Entry hx12 hx12
L1.Idle hx13 hx13
L2.Idle/L2.Rransmitwake hx14 hx14
Reserved hx15 hx15
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Disable hx16 hx16
Loopback.Entry hx17 hx17
Loopback.Active hx18 hx18
Loopback.Exit hx19 hx19
Hotreset hx1A hx1A

Table 5.1: LTSSM substate and Equalization phases encoding

The PIPE State Logic employs a pipelined architecture that allows it to track
transactions even when they occur each clock cycle (figure 5.6). The latency
introduced by pipelining is constant and well-known, so it can be easily compensated
by the software subsequently .

pclk

gloabl_time_us [26:0] 0000007h

pl_ltssm [4:0] 01h 02h 03h

pl_equ_phase [1:0] 00b

detect_txt_ltssm

trig_write

pkt_ltssm_phase [31:0] 000000E2h 000000E3h

ram_wren

ram_wraddr [3:0] 0h

ram_wrdata [511:0] DATA1 DATA2

Figure 5.6: Timediagram of LTSSM packet generation and logging.

5.2.1 Write Memory Controller
Write Memory Controller is a submodule employed by several logic blocks of PIPE
Monitor Checker. It is in charge of writing packets into memory. In particular, it
generates the correct memory address. If the packet length is different from the
RAM datapath width, it figures which bytes of the line have to be overwritten.
Lastly, it asserts the write enable.

At the moment, the address generation is incremental. Namely, when a line is
complete, the address is increased by one. When the last address is reached, the
memory is considered full and no other packets are saved.

A circular buffer might be implemented in the future to expand the observation
window. In that case, the Write Memory Controller would be responsible for
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watching the Last Read and Last Write memory pointers to generate the correct
address.

By changing the module parameters, it is possible to adapt the packet length
and datapath width. However, the datapath width must be a multiple of the packet
length, because there is no logic implemented to handle the writing of a packet
over two different rows.

5.3 Reported Error Logic

Figure 5.7: Reported Error Logic module

Specification[6] assigns to the PHY the responsibility for detecting different
types of errors on the receiver side (i.e. decode error, elastic buffer overflow, etc.).
When it spots one, it communicates it to the PCIe Controller by using RxStatus
and, in some cases, by placing an EDB symbol in the data stream, instead of the
bad byte. [6]

RxStatus Description2 1 0
0 0 0 Received data OK
0 0 1 SKPOS added
0 1 0 SKPOS removed
0 1 1 Receiver detected
1 0 0 Both 8/10B (128/130B) decode error and

(optionally) Receive Disparity error
1 0 1 Elastic Buffer overflow
1 1 0 Elastic Buffer underflow
1 1 1 Receive disparity error

Table 5.2: RxStatus[2:0] encoding [6]
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The Report Error Logic is in charge of identifying when PHY reports an error
through RxStatus. A simple combinational logic checks RxData and RxStatus and
when it detects an interesting transmission, it asserts a flag. The packet encoder
catches the flag, so it creates a new packet that is therefore saved into memory by
the Writing Memory Controller.

Figure 5.8: Reported Error Packet

5.4 Message Bus Logic

Figure 5.9: Message Bus Logic module

As mentioned in section 1.2.4, the specification of PIPE 4.4.1 introduced an
interface called Message Bus that provides a way to initiate PIPE operations
using a small number of wires. Namely, this interface can be used to set receiver
margin, select transmitter de-emphasis, change elastic buffer depth, or control other
important receiver/transmitter functions.

All controls and status bits related to these PIPE operations are mapped into
8-bit registers that are hosted in 12-bit address space in the PHY and the MAC.
These registers are accessible via read and write commands that are transmitted
by using m2p_msgbus[7:0] and p2m_msgbus[7:0] .
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Encoding Command Cycles to Transmit
4’b0000 NOP 1
4’b0001 write_uncommitted 3
4’b0010 write_committed 3
4’b0011 read 2
4’b0100 read_completion 2
4’b0101 write_ack 1
Others reserved N/A

Table 5.3: Message Bus commands [6]

One of the responsibilities for the Message Bus Logic is to detect when a
command is sent and log this transmission into memory, so as the validation
engineer can check if the configuration via message bug is performed correctly.

Figure 5.10: Message Bus Packet

Since each lane has its own message bus interface, this module is cloned in
Verilog several times using a generate loop construct. Hence, each 16-bit interface
is monitored independently to avoid transmission loss. However, this solution
employs a lot of resources, so a more optimized design should be implemented in
the future version.

Unfortunately, verification and validation tests frequently detect bugs related
to Message Bus. It is indeed a new interface and the new releases of the PIPE
specification added several new functionalities to it. Hence the PLDA design
engineers must often modify the logic in charge of Message Bus and this operation
obviously increases the probability of generating an error.

It is therefore essential to provide an automatic check of the Message Bus
interface. Namely, the Message Bus Logic verifies :

• If the transmitted command exists;

• If the transmitted address points to a register that is not reserved;

• If the Message Bus framing respects the rules defined by the specification[6]:

1. All zeroes must be driven on the message bus when idle. [6]
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2. All idle to non-idle transition indicates the start of a transaction;
a new transaction can start immediately the cycle after the end
of the previous transaction without an intervening idle. [6]

3. The number of cycles to transmit a transaction depends on the
command. [6]

4. The cycles associated with one transaction must be transferred in
contiguous cycles. [6]

Once an error is detected, a packet is generated and it is logged into memory.
Since a command message packet and an error packet are likely created concurrently,
they are saved into two different RAMs.

5.5 Data Logic

Figure 5.11: Data Logic module
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Data Logic is the most complex logic block since it is in charge of monitoring
and checking the traffic through RxData and TxData. It must indeed detect some
key events, such as Symbol Lock and Speed Change.

Data is elaborated several times before being logged. Firstly, signals from
TxData and RxData are sampled and processed by different decoders that detect
any ordered set. In case of detection, a pulse is sent to the Event Detector.

The event detector is in charge of putting together all the information to identify
an event. It looks at the data transmitted with the ordered set and it counts their
number of occurrences, as well. This information is then encoded in a packet and
saved into memory.

At the same time, the Ordered Set encoders check the sequence of symbols and
if they find an error, they send a pulse to the Error Detector. This module is in
charge of creating an error packet when a pulse is received by decoders. It must
also check several rules, such as Electrical Idle Entry Rules, Data Rate Change and
Determination Rules or SKPOS Transmission Rules.

As for the Message Bus Logic, the monitoring and the checking blocks are
separated and they point to two different RAMs, so that an error is correctly logged
even if an event occurs at the same moment. And vice versa.

5.5.1 Shift Registers
Most of the ordered sets are not identifiable by looking at the first symbol. Hence,a
simple combinational block is not enough to detect them.

At first, a finite state machine could seem as a good solution, because they can
easily detect a specific pattern without logging all the symbol sequence. Unfor-
tunately, as mentioned before, the Link speed usually changes during the initial
Link Training and Re-Training. The Link speed, for its part, affects the PIPE data
width, because, when the speed is lower, the PHY and the MAC do not use all the
wires of TxData and RxData.

Looking at the PIPE data width signal (pl_width), the finite state machine is
able to select which wire it must take into account. However, it would need a lot
of states to handle all the possible configurations.

On the other hand, a shift register can easily handle all the possible widths, by
only switching the number of bits to shift. Once all the needed symbols are stored,
the detector can easily check for an ordered set using simple combinational logic.

5.5.2 Data Packet
In some cases, it is necessary to have some relevant data as payload of the packet.
This need forces to have packets of different sizes. Unfortunately, the implemented
Write Memory Controller can handle only packets with the same size.
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Figure 5.12: Data Event Packets

In order to handle bigger data, the information is split into several 32-bit packets
and a buffer is added before the Write Memory Controller to handle the bigger
streaming demand. On the software side, when a packet includes a particular ID
event, the application knows that the payload is contained in the packets of the
next addresses.

Encoding Event
5’h00 Receiver Detection
5’h01 Start Bit/Symbol Lock Sequence
5’h02 Bit/Symbol Lock Complete Successfully
5’h03 Bit/Symbol Lock Failed
5’h04 Link Number assignation
5’h05 Lane Number Assignation
5’h06 Detect a Possible Speed Change
5’h07 Speed Change Request
5’h08 Unexpected change of Link number
5’h09 Unexpected change of Lane number
5’h0A EIEOS Detected
Others Reserved

Table 5.4: Data Event encoding

5.6 Power State Logic
PIPE specification[6] includes even a section related to Power Management. Namely,
MAC can direct PHY to a low power state, so as to perform some power saving
measure.

Specification[6] defines four PHY standard power states:
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Figure 5.13: Power State Logic Module

P0 state It is the PHY power management state for the Link Training and the
normal Link operation.

P0s state PCLK is operational, but the transmit channel is idle.

P1 state Selected internal clocks in the PHY can be turned off, but the PCLK
must remain operational. Both receive and transmit channels are idle.

P2 state Selected internal clocks in the PHY and PCLK can be turned off.

PHY can implement specific PHY power management states [6], if they meet
all the constraints provided in the PCIe Specification[1].

MAC employs PowerDown and PhyStatus signals to direct the PHY in a new
power management state. One of the tasks of Power State Logic is to monitor
these signals to detect when a transaction occurs, so as to save it into memory.

In addition, specification provides different rules that PHY must meet to be
directed in a different power management state. For instance, it must be in a
specific LTSSM state to transit to a low power state. Or PhyStatus must be
asserted or deasserted after a particular event.

Hence, Power State Logic must check all these rules and log if an error occurs.

5.7 AXI to UART
As mentioned in section 3.5.2, the data saved into RAMs can be accessed via
UART.

Inspector for PCIe by PLDA employs UART too, so it is possible to adapt its
UART module for the PIPE Monitor Checker. Namely, the UART Transmitter and
Receiver can be used unmodified, since their main task is to serialize or deserialize
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Figure 5.14: AXI to UART module

the streamed data. Instead, the UART Controller is modified to provide an AXI4
interface.

Three main reasons let to employ an AXI interface: The interface from the
UART controller of Inspector was not standard. An UART module, that provides a
standard interface as AXI, could be more easily reused by PLDA in other IPs. AXI4
Protocol implements Read and Write Bursts, which would improve system reading
and writing performance significantly. The AXI RAM Access module derives from
a module that has already been implemented for the PLDA AXI BFM and that
employs a AXI interface.

As for the Inspector for PCIe, the UART Controller is implemented with a
finite state machine. The task of the UART controller is to handle the application
protocol to access the memory via UART.

The Memory Access protocol is the same which is employed in the Inspector
and that requires to send two packets for each Write/Read access. Namely, the
first packet includes the Write or Read command. The second one provides the
address. In response, the device answers by transmitting the data. Since the RAM
memory width is 512 bit (same as AXI data width), whereas the UART packet is
8-bit, 64 packets are sended in return.

5.8 AXI RAM Access
The goal of AXI RAM Access is to address the Read access to the correct RAM.
Which means that it must decode the global memory address received by the UART
to AXI module in order to assert the proper Read Enable. At the same time, it
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Figure 5.15: AXI RAM Access module

must derive the local address to send with the Read Enable. After that, it must
acquire the proper Read Data and send it to the AXI interface.

Ideally, this task could be performed by using some simple combinational blocks,
such as multiplexers and decoders. Unfortunately, two main issues require a more
complex design:

1. The design timing constraints are quite strict, hence it is necessary to assure
that the critical path of the AXI RAM Access does not affect the maximum
clock frequency at all.

2. The number of RAMs or their sizes will likely change in the future, because
of optimizations or new feature implementations. If the RAM size changes,
then the decoder must be modified, as well. Whereas if it is the number of
RAMs that changes, then multiplexers and decoders must be adapted, hence
almost all the work must be redone.

At PLDA, they usually use Verilog templates to solve issues related to designs
that are affected by different parameters. In short, they write a first draft of the
module, which is then elaborated automatically by a script. According to some
particular parameters, the script adds or modifies some lines and creates the final
Verilog file.

Unfortunately, the time to develop the prototype is not enough to apply this
method, because it required a lot of time to program the script and in particular
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to test it. Hence, as for other modules, parameters and generate blocks have been
exploited to have a customizable module.

Five parameters are at the base the customization:

MEM_ADDR_WIDTH_MAX It is the depth of the biggest RAM. Hence,
it is as well the address width of the biggest RAM.

RAM_1_N It is the number of RAMs that has a depth equal to
MEM_ADDR_WIDTH_MAX.

RAM_2_N It is the pairs of RAMs that have a depth equal to
MEM_ADDR_WIDTH_MAX − 1.

RAM_4_N It is the quartets of RAMs that have a depth equal to
MEM_ADDR_WIDTH_MAX − 2.

RAM_8_N It is the quartets of RAMs that have a depth equal to
MEM_ADDR_WIDTH_MAX − 3.

This escamotage allows to easily derive the width of the global address and it
significantly simplifies the decoding of the global address.

Let’s take an example. If the design needs two 6-bit RAMs, two 5-bit RAMs
and four 4-bit RAMs. Then, the parameters will be:

MEM_ADDR_WIDTH_MAX = 6
RAM_1_N = 2
RAM_2_N = 1
RAM_4_N = 1
RAM_8_N = 0

(5.3)

From this data, it is easy to compute the width of the global address (called for
this example gl_addr)

GL_ADDR_WIDTH = MEM_ADDR_WIDTH_MAX+
+log2 (RAM_1_N + RAM_2_N + RAM_4_N) =

= 6 + log2(2 + 1 + 1) = 8
(5.4)

In addition, an easy relation can be determined between the global address and
the RAMs:

• If gl_addr[7 : 6] = 002, it points to the first 6-bit RAM.

• If gl_addr[7 : 6] = 012, it points to the second 6-bit RAM.

• If gl_addr[7 : 6] = 102, it points to the pair of 5-bit RAMs. Then, the decoder
checks gl_addr[5] to find out which one is involved.
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• If gl_addr[7 : 6] = 112, it points to the quartet of 4-bit RAMs. Then, the
decoder checks gl_addr[5:4].

The local address can be derived from the global address by considering only
the least significant bits.

This decoding algorithm is generalized and written in Verilog.

Listing 5.1: Decoder to generate Read Enable
1 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 // Combinational Logic to Compute RAMs’ Read Enable S i gna l s
3 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 genvar i , j , k , l ;
5

6 generate
7 // Enable f o r with ADDR WIDTH = MEM_ADDR_WIDTH_MAX
8 f o r ( i =0; i < RAM_1_N; i=i +1) begin
9 a s s i gn shared_ram_rden_c [ i ] = ( araddr [MEM_ADDR_WIDTH_MAX +:

ADDR_EXTRA_WIDTH] == i ) ;
10 end
11

12 // Enable f o r with ADDR WIDTH = MEM_ADDR_WIDTH_MAX − 1
13 f o r ( j =0; j < RAM_2_N; j=j+1) begin
14 a s s i gn shared_ram_rden_c [ j + RAM_1_N ] = araddr [

MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N + j ) && araddr
[MEM_ADDR_WIDTH_MAX − 1 +: 1 ] == 1 ’ b0 ;

15 a s s i gn shared_ram_rden_c [ j + RAM_1_N + 1 ] = araddr [
MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N + j ) && araddr
[MEM_ADDR_WIDTH_MAX − 1 +: 1 ] == 1 ’ b1 ;

16 end
17

18 // Enable f o r with ADDR WIDTH = MEM_ADDR_WIDTH_MAX − 2
19 f o r ( k=0; k < RAM_4_N; k=k+1) begin
20 a s s i gn shared_ram_rden_c [ k + RAM_1_N + RAM_2_N ] = araddr [

MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N + RAM_2_N + k)
&& araddr [MEM_ADDR_WIDTH_MAX − 2 +: 2 ] == 2 ’ b00 ;

21 a s s i gn shared_ram_rden_c [ k + RAM_1_N + RAM_2_N + 1 ] = araddr [
MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N + RAM_2_N + k)
&& araddr [MEM_ADDR_WIDTH_MAX − 2 +: 2 ] == 2 ’ b01 ;

22 a s s i gn shared_ram_rden_c [ k + RAM_1_N + RAM_2_N + 2 ] = araddr [
MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N + RAM_2_N + k)
&& araddr [MEM_ADDR_WIDTH_MAX − 2 +: 2 ] == 2 ’ b10 ;

23 a s s i gn shared_ram_rden_c [ k + RAM_1_N + RAM_2_N + 3 ] = araddr [
MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N + RAM_2_N + k)
&& araddr [MEM_ADDR_WIDTH_MAX − 2 +: 2 ] == 2 ’ b11 ;

24 end
25

26 // Enable f o r with ADDR WIDTH = MEM_ADDR_WIDTH_MAX − 3
27 f o r ( l =0; l < RAM_8_N; l=l +1) begin
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28 a s s i gn shared_ram_rden_c [ l + RAM_1_N + RAM_2_N + RAM_4_N ] =
araddr [MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N +
RAM_2_N + RAM_4_N + l ) && araddr [MEM_ADDR_WIDTH_MAX − 3 +: 3 ] ==
3 ’ b000 ;

29 a s s i gn shared_ram_rden_c [ l + RAM_1_N + RAM_2_N + RAM_4_N + 1 ] =
araddr [MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N +
RAM_2_N + RAM_4_N + l ) && araddr [MEM_ADDR_WIDTH_MAX − 3 +: 3 ] ==
3 ’ b001 ;

30 a s s i gn shared_ram_rden_c [ l + RAM_1_N + RAM_2_N + RAM_4_N + 2 ] =
araddr [MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N +
RAM_2_N + RAM_4_N + l ) && araddr [MEM_ADDR_WIDTH_MAX − 3 +: 3 ] ==
3 ’ b010 ;

31 a s s i gn shared_ram_rden_c [ l + RAM_1_N + RAM_2_N + RAM_4_N + 3 ] =
araddr [MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N +
RAM_2_N + RAM_4_N + l ) && araddr [MEM_ADDR_WIDTH_MAX − 3 +: 3 ] ==
3 ’ b011 ;

32 a s s i gn shared_ram_rden_c [ l + RAM_1_N + RAM_2_N + RAM_4_N + 4 ] =
araddr [MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N +
RAM_2_N + RAM_4_N + l ) && araddr [MEM_ADDR_WIDTH_MAX − 3 +: 3 ] ==
3 ’ b100 ;

33 a s s i gn shared_ram_rden_c [ l + RAM_1_N + RAM_2_N + RAM_4_N + 5 ] =
araddr [MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N +
RAM_2_N + RAM_4_N + l ) && araddr [MEM_ADDR_WIDTH_MAX − 3 +: 3 ] ==
3 ’ b101 ;

34 a s s i gn shared_ram_rden_c [ l + RAM_1_N + RAM_2_N + RAM_4_N + 6 ] =
araddr [MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N +
RAM_2_N + RAM_4_N + l ) && araddr [MEM_ADDR_WIDTH_MAX − 3 +: 3 ] ==
3 ’ b110 ;

35 a s s i gn shared_ram_rden_c [ l + RAM_1_N + RAM_2_N + RAM_4_N + 7 ] =
araddr [MEM_ADDR_WIDTH_MAX +: ADDR_EXTRA_WIDTH] == (RAM_1_N +
RAM_2_N + RAM_4_N + l ) && araddr [MEM_ADDR_WIDTH_MAX − 3 +: 3 ] ==
3 ’ b111 ;

36 end
37 endgenerate

On the other hand, in order to solve the timing constraint issues, pipelines have
been introduced both in the decoder and in the multiplexer.

5.9 Internal Registers
Some internal registers have been added to provide some status information about
the PIPE Monitor Checking. In the future releases, these registers might include
even some control bits to configure the device via software.

As RAMs, these registers are accessible via UART. The internal registers list is
shown in table 5.5.

LAST_WRITE register includes all the last addresses that have been written
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Row Name Address Size Description

PIPE_INFO 0x00 512

Parameters of the PIPE interface:
511:29 reserved
28 G_PIPE_INTF
20:27 G_PCIE_NUM_LANES
19:0 G_PIPE_WIDTH

LAST_WRITE 0x01 512

Last Written Address:
511:16 reserved
15:12 Message Bus
11:8 Data Events
7:4 Reported Errors
3:0 LTSSM

TEST_01 0x02 512 Debugging Test Pattern 1
TEST_02 0x03 512 Debugging Test Pattern 2

Table 5.5: Internal Registers

by the monitoring and checking logic blocks. The software application checks this
register to determine which RAM address it must read.

TEST_01 and TEST_02 are registers that contain well-known patterns. There
are useless during the normal PIPE Monitor operation, but they are employed
during the hardware test to check that the UART works properly and it is possible
to correctly read data from memory.

5.10 IP Verification
Some unit tests on the main components are performed to assure that they can
handle some specific use cases. However, it is not enough to assure the correct
operation of the PIPE Monitor Checker.

More comprehensive tests must be performed, hence it has been integrated in
the reference design of the XpressRICH-AXI1 from PLDA. Verification team has
indeed already implemented a verification environment that can be adapted for
the PIPE Monitor Checker.

The verification environment of XpressRICH-AXI has an architecture that
reflects the main rules of the Universal Verification Methodology.

1XpressRICH-AXI™ is a configurable and scalable PCIe controller Soft IP that provides a
configurable, flexible AMBA AXI interconnect interface to the user. [18]
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5.10.1 Universal Verification Methodology (UVM)
Universal Verification Methodology is a standard that has been defined to reduce
the development time of an IP, since it enables designing a modular, scalar and
reusable testbench. [22]

Figure 5.16: Verification Environment

The main UVM components are described hereafter.

Driver is the component that handles a particular interface of the design. It knows
the target protocol and it emulates the device that should communicate with
the DUT. [23]

Sequencer is in charge of generating the requests and responses that the driver
must send to the DUT. [24]

Monitor is the passive component that captures data from the DUT to check its
operation. [25]

Scoreboard is the verification component that checks the operation of DUT. It
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takes the data from the monitor and it compares them with a reference model.
Eventually, it informs if the test is passed or failed. [26]

5.10.2 Verification Environment
The verification environment is presented in figure 5.16.

Drivers and sequencers are the same from XpressRICH-AXI verification envi-
ronment. Instead, the monitor and the scoreboard are designed ad hoc to verify
the functioning of PIPE Monitor Checker.

5.11 Hardware Validation
During the hardware validation, as for the verification phase, the PIPE Monitor
Checker observes the traffic generated by the XpressRICH-AXI, even.

Figure 5.17: Hardware Validation Configuration

The first test is performed to check the correct operation of the UART. Hence,
the PIPE Monitor Checker application is not used and the packets are sent using a
simple serial terminal, called RealTerm.

At first, a read request packet is sent. An ACK packet in return confirms
that the IP Core and the serial terminal share the same UART configuration.
Consequently, an address packet that points to TEST_01 and TEST_02 registers
is transmitted. If the IP Core responds by sending the correct pattern, then it is
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possible to assume that the memory reading via UART works properly and the
software application can be used to test the other functionalities.

The validation environment includes a module between PHY and MAC, called
PIPE Error Generator. Its task is to force signals and emulate possible PIPE
interface errors. However, since the first prototype of PIPE Monitor Checker
implements mostly monitoring functionalities. The Error Generator development
is contemplated for future releases.

5.12 Conclusion
The basic functionalities of the IP core have been developed and tested in simulation
using QuestaSim. It supports all the different lane configurations, PCIe versions
and PIPE widths that have been defined in section 3.2.2. However, the verification
environment is not complete yet. In particular, the automatic checking performed
by the scoreboard is still to be implemented.

The reference design of the XpressRICH-AXI with a PIPE Monitor Checker
integrated in its top module has been successfully synthesized for a single lane
Gen4 configuration.

The resources exploits by the PIPE Monitor Checker for this configuration are:

• 438 LUTs2 out of the 124465 employed by the entire reference design;

• 126 FF3 out of the 126826 employed by the entire reference design;

• 10 kB RAM;

Hence, this tool does not affect the resources exploited by the entire reference
design significantly. The constraint defined in section 3.2.2 is met.

The synthesized design has been eventually programmed in the Xilinx FPGA.
The memory access has been tested successfully using RealTerm. Unfortunately,
due to the end of the internship, the hardware validation is still incomplete.

2LUT Look-Up Table
3FF Flip Flop
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Chapter 6

Development of the
Software Application

This chapter describes the software application of the PIPE Monitor Check. In
particular, it firstly explains more deeply how the protocol application to access
the IP core memory works. Then, it illustrates the software architecture which is
based on Model-ModelView-View (MVVM) design pattern.

Figure 6.1: Interface of Inspector Software [27]

The goals of the PIPE Monitor Checker application are accessing the data inside
of the IP core and presenting this information to the user. Since an application that
provides these same functionalities has been already implemented for the Inspector
for PCIe, it has been decided to adapt the Inspector software to save time.
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The software is written in C#, based on the .NET framework v4.5 and
Windows Presentation Foundation (WPF) User Interface (UI) framework.
(Inspector Software Specification [27])

6.1 Memory Access Protocol
As mentioned in section 5.7, PLDA has implemented an applicative protocol to
access the internal registers of the Inspector for PCIe via UART. PIPE Monitor
Checker employs the same exact protocol to access the RAMs of the IP core.

In this protocol, the software application acts as master and it sends Write/Read
requests to the IP core. Each request is made up of different 8-bit packets that
are sent one by one. IP core checks parity and sends a completion packet for each
received byte to inform whether the transmission has succeeded. In case of failure,
the access is cancelled and the application must repeat the request. [27]

In general, execution flow follows three phases. Firstly, the communication is idle
and the software waits until the serial port is connected. Then, a synchronization
phase is executed to reset the UART controller of the IP core. Eventually, the
software can send the write and read requests. [27]

Name Length Description
SYNC_1 1 byte First message sent to initiate synchronization between

the software and the Interposer. Content: 0xFF
SYNC_2 1 byte Second message sent to initiate synchronization be-

tween the software and the Interposer. Content:
0xFE

SYNC_3 1 byte Third message sent to initiate synchronization between
the software and the Interposer. Content: 0xFD

SYNC_4 1 byte Fourth message sent to initiate synchronization be-
tween the software and the Interposer. Content:
0xFC

WRITE 1 byte Message sent to initiate the write request between the
software and the Interposer. Content: 0x00

READ 1 byte Message sent to initiate the read request between the
software and the Interposer. Content: 0x01

ACK 1 byte

Message sent to acknowledge requests from software
Bit 0: set to 1 if a parity error is detected by HW in
the software request.
Bit 1: set to 1 if a start bit error is detected by HW
in the software request.
Bit 2..7: reserved.
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Table 6.1: Protocol Words [27]

6.1.1 Synchronization phase

Figure 6.2: Synchronization process [27]

During this phase, the software sends a sequence of four SYNC packets. If all
the four transmissions succeed and no error is detected, then the synchronisation is
achieved and the UART controller of the IP core resets. [27]
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The software can start a synchronization at any time to reset the UART
controller, even in the middle of a read access. [27]

6.1.2 Read Access
The software must send a Read command to start a read access. Then, it transmits
the address and it waits to receive the packets with the requested data. As mentioned
before, read and address packets are checked and a completion is transmitted in
return. If an error occurs, the access must be performed a second time. [27]

Figure 6.3: Read access [27]

6.2 Software Architecture
The software architecture is based on Model-ModelView-View (MVVM), an archi-
tectural pattern that is employed in an application to separate the development of
user-interfaces (UI) from that of the business logic and behaviour. [28]

Three components are at the core of MVVM.
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Model is the object that contains the domain-specific data or information, but
they do not handle any formatting of data. [28]

View is the components which users actually interact with. It is in charge of
formatting and presenting data to users. [28]

ModelView is the link between the model and the view. It is a specialized
controller that converts the raw data of the Model into a View information
and helps to maintain the Model updated. [28]

The Model component is written in C# and it is made up of “.cs” files. The
ModelView is composed of “.xalm.cs” files. The View is outlined using XAML,
since it allows to describe:

• The windows layout

• The graphical elements (i.e, Text, Buttons)

• The graphic style

• The data binding among the graphical elements

6.2.1 View Description
The view is described by different XAML files. Each file delines a box of the grind
in the graphic interface.

For the first release of PIPE Monitor Checker, the graphic interface is as simple
as possible. It is split into six boxes and each box shows data from a specific
memory space.

6.2.2 Module Description
Main Module

The purpose of the main module and the interaction among their classes have not
been changed from the Inspector Software.

This module defines the main view file, aggregating all the others, and
the main model. The purpose of the main model is to:

• manage the synchronization process between the Interposer and the
software,

• manage the main cycle, send commands to the Interposer and read
its register values.
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Figure 6.4: XALM files tree

The module contains the following files:

App.xaml: application UI entry point; defines MainWindow as the UI
that is automatically shown when an application starts.

App.xaml.cs: application entry point.
BaseUI.xaml: base for all View descriptions.
BaseUI.xaml.cs: defines common properties for all ViewModel classes.
InspectorModel.cs: implements common properties and services for

all Model classes.
InspectorProperty.cs: extends INotifyPropertyChanged to implement

property updates.
InspectorRegister.cs: defines how to read and write data from/to

Interposer.
InspectorRegisterDecoder.cs: abstract class, defines how to read and

decode data from Interposer

(Inspector Software Specification [27])

Specific Modules

Instead, some new specific modules are implemented to decode and format the
data captured by the IP core.

Let’s take as an example the LTSSM module which is in charge of decoding
the raw data extracted from the LTSSM RAM and presenting the list of detected
transactions in the LTSSM.
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Ltssm.xaml: description of the UI (View part).

Ltssm.xaml.cs: interface between the View and the Model.

LtssmStatesDecoder.cs: instantiates LtssmStatesDecoder to decode data into
LTSSM memory.

LtssmHelpers.cs: defines all LTSSM states.

LtssmModel.cs: model, instantiates the LTSSM decoder.

Figure 6.5: LTSSM module class diagram

Serial Interface

This module handles the communication with the IP core via UART. Since the
PIPE Monitor Checker employs the applicative protocol of the Inspector for PCIe,
this module is almost unchanged.

The modified function is the read access. Since the data width is 512 bit and
the UART can transmit only a byte at a time, the application must wait for 64
packets.

Serial Interface contains the following files:

InspectorInterface.cs: Implement UART applicative protocol.

SerialInterface.cs: drives the UART interface.

SerialPortCfg.cs: defines the parameters of the UART configuration.
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Figure 6.6: Serial Interface module class diagram [27]

6.3 Conclusion
Due to lack of time, the development of the user interface has not been finalised
yet. Namely, most of the decoders have been already implemented, but all the view
files must be entirely written. In addition, no tests were carried out yet.

However, since the software architecture is already designed and the view files
from the Inspector Software Application can be taken as an example to write the
new ones, its finalisation would require approximately one month.
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Chapter 7

Conclusion

The state of the art about hardware debugging has shown how several methodologies
have been developed to simplify this process. However, when a more complex
design is involved, tracking back the cause of an error can take several weeks,
because the amount of signals related to a single function can be huge.

To solve this problem, the dissertation has presented a solution to monitor and
check a specific interface. By knowing the behaviour of this interface, the module
is able to detect a set of events, or to check some possible errors that might occur.
The memory space is thereby optimized, since the module saves only interesting
data.

In addition, even when the provided information is not enough to establish the
exact signal that causes the malfunctioning, the hardware debugging iterations made
with an Embedded Logic Analyzer (such as ILA or SignalSnap) are significantly
reduced, since the group of signals that are likely the cause of the error is highly
bounded.

7.1 Future Improvements
The absence of a user interface significantly jeopardises the usability of the tool,
because the user is forced to manually analyze and decode the saved data. Hence,
the completion of the software application would be certainly the first task to fulfil,
since it would finally provide a first usable prototype.

It is also essential to check the functioning of the tool. Thus, the verification
environment should be complete and some new use cases should be implemented.
Furthermore, once the user interface is available, a comprehensive hardware valida-
tion should be performed.

Some modules of the IP modules could be even optimized to reduce the employed
resources, for instance the Message Bus Logic could become quite consistent, since
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the current solution duplicates the module foreach lane.
Even the AXI RAM Access could be improved, namely a new algorithm could

be designed to have more flexibility in the choice of connected RAMs. Speaking
of memory,a more detailed study should be conducted to define the proper size of
RAMs to allocate. At the moment, a default value is assigned to all the RAMs’
depths and no test has been conducted to check if the memory is enough to monitor
the period of Link Training and Re-Training.

The study about functionalities described in section 3.3 has presented several
new possible features that could be likely developed in the future. Thanks to the
modularity of the architecture, their implementation should not require much time.
The core structure is already working, hence only the detectors must be improved.

At the end of the project, the tool was presented to the engineers of PLDA
and it aroused interest from engineers of the Advanced Design & Integration team,
who proposed to integrate it into the XpressAGENT. Hence, in the future, the
PIPE Monitor Checker could be sold with the XpressAGENT to PLDA’s clients to
simplify the testing of ASIC solutions.
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Appendix A

AMBA AXI protocol

The Advanced extensible Interface (AXI) protocol is part of the ARM Advanced
Microcontroller Bus Architecture (AMBA) specifications, which is an on-chip
interconnect standard introduced by ARM.

Figure A.1: AMBA-based SoC architecture [29]

The objective of AMBA specification is to make an IP technology independent,
so as to be reused across multiple designs. In addition, it offers a large flexibility
to work with different SoCs, since it supports different power, performance and
area requirements. [29]

Besides the AXI protocol, AMBA family includes the Advanced Peripheral Bus
(APB) protocol and the Advanced High-performance Bus (AHB) protocol. APB is
the simpler one. It is designed for low bandwi dth control accesses (such as register
interfaces) and it has low-power consumption. Instead, AHB is pipelined and it is
used for memory access, so it supports wide data bus configuration. [29]

The AXI protocol has been invented to meet the demand for more bandwidth.
Whereas AHB is a single channel bus, AXI is a multi-channel bus and it supports
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full-duplex mode. The communication is indeed handles using five independent
channels:

• Read address channel

• Read data channel

• Write data channel

• Write address channel

• Write response channel

Figure A.2: (a)AXI Read transaction.[30] (b) AXI Write transaction.[30]
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The AXI protocol is strongly transaction-oriented and its topology is based
on master and slave devices. The master is the component that initiates the
transaction, whereas the slave is the components that receives transactions and
responds to them, for instance a microcontroller can be a master component and it
is connected to a memory which is the slave.

"It is possible that a single component can act as both a slave component
and as a master component. For example, a Direct Memory Access (DMA)
component can be a slave component when it is being programmed and
a master component when it is initiating transactions to move data."
(AMBA AXI and ACE Protocol Specification. ARM. [30])

Each AXI transaction complies with a two-way handshakes mechanism which is
based on two signals: VALID and READ. the master asserts the VALID signals
to inform the slave that new address/data are available.[30] The slave asserts
the READY signal to indicate when it is in condition to accept a new incoming
information. The transaction takes place when both VALID and READY signals
are asserted. [30]

AXI protocol specification [30] defines some simple rules:

• A source can assert VALID before READY is asserted.

• Once VALID is asserted, it must remain asserted until the handshake occurs
and the source must keep its information stable.

• A destination can wait for VALID to be asserted before asserting the corre-
sponding READY.

• If READY is asserted, it is possible to deassert READY before VALID is
asserted.

Figure A.3: AXI handshake examples.[30]
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