
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Understanding plant health status from
electrical impedance using Neural

Networks

Supervisors

Prof. Maurizio MARTINA

Prof. Danilo DEMARCHI

Ph.D. Umberto GARLANDO

Candidate

Huicai LIU

Academic year 2020-2021

Summary

This thesis is about an exploration in the world of machine learning to find a way
to predict the health state of a plant, in particular tobacco plants. The prediction
is made possible by using an intrinsic measurement of the plant, which is the
electrical impedance, as well as the surrounding environment, such as temperature,
air humidity, soil moisture, ambient light, and the time when the measurements
are taken.

Nowadays, smart agriculture systems are mainly based on environmental data
sensors and the elaboration of visual data. However, visual sensors and cameras
are expensive, and with the environmental information, the status of the plant
is not directly checked. In order to overcome these limits, some intrinsic value
of the plant should be measured by a simple, low power, and low-cost system.
Students and professors from Politecnico di Torino and Tel Aviv University have
found a new idea by measuring the electric impedance of the stem of a tobacco plant.

Predicting the plant status by knowing stem impedance, module and phase, and
the environmental measurements can be seen as a classification problem. Therefore,
the most suitable machine learning algorithms are the supervised learning ones. The
most common supervised learning algorithms are the k-Nearest neighbor algorithm,
Decision Tree, logistic regression, Support Vector Machine, and Neural Networks.
Finally, Artificial Neural Networks are chosen for this work for many reasons, such
as their ability to learn and model non-linear and complex relationships; they do
not impose any restrictions on the input variables.

Preparing the dataset for the training is one of the most challenging parts,
not only because the sampled data, the inputs, must make sense, but also the
labels, i.e., the outputs, must be correct. The training set is made by the data
from 4 different plants from March 24th to May 4th. The plants’ impedance and
environmental value are saved every hour. In order to label the plants correctly,
the pictures of the plants in this period are looked at one by one, and the health
status is determined based on the leaves conditions of the tobacco plants.

Once the dataset is ready, the neural network has been implemented in Python
by exploiting the open-source library TensorFlow. The model defined is formed by

ii

two hidden layers, each composed of 6 nodes. The performance reached is 78.6%
of training accuracy and 80.8% of testing accuracy. Furthermore, this model is
used to predict the outputs of the data from May 6th to June 7th, reaching 90%
of total accuracy on the four plants. These are not excellent results, but they are
definitively something to say that it may be possible to detect the plant status
with a neural network.

It is interesting to see if it is possible to predict the plant status with only
impedance values. Testing accuracy of 70.6% is reached, but this result is tricky
because there maybe be overfitting. Using this model on the future data from May
6th to June 7th, the performance is terrible, below 40% of accuracy.

In order to prove the importance of the impedance, the “reductio ad absurdum”
approach is used. If the impedance module and phase are not considered as features
for the neural network, they should not affect the performance since they are not
relevant, but instead, the accuracy has dropped to 67%. Maybe it is due to the
reduced number of features; therefore, the other five features were taken off two
by two, leading to ten different combinations. In almost all cases, the accuracy
remains relatively high to 80%. The accuracy decreases to 65% when one of the
two removed features is the soil moisture.

Then three plants are used as training set and the fourth is used for the testing.
Four cases can be considered:

• plant 1 as testing (36.5% of accuracy)

• plant 2 as testing (82.7% of accuracy)

• plant 3 as testing (87.1% of accuracy)

• plant 4 as testing (58.6% of accuracy)

The bad performance is mainly due to each plant’s different impedance module
range for both the first and subsequent networks. For example, during this period,
the impedance of plant 2 remains almost constant while the value of plant 4 increases
since it is getting dry, and even if they are in two different statuses, their impedance
values are very similar. Two different methods are tried to solve this problem. The
first one considers the impedance difference between two adjacent samples as an
additional feature for the training. The second one is to consider the difference
after a polynomial fitting of the data, filtering out the daily cycle variation and
considering only the general trend of the impedance. Nevertheless, unfortunately,
in both cases, the accuracy remains similar to the first implementation.

The authors have also observed the daily variations of the impedance; in partic-
ular, they found out that these variations have two different behaviors when the
plant is healthy and getting dry. This information can be implemented with neural
networks considering the past values of module and phase as features. For example,

iii

Figure 1: Confusion ma-
trix of the testing dataset Figure 2: Predictions of the testing dataset

considering 24 times the module and phase, which means 24 hours of samples, the
neural network reaches a training accuracy of 98.8% and testing accuracy of 98.3%;
the testing results are shown in figures 1 and 2, in the former the confusion matrix
and in the latter a simplified 3-D plot with only three features, where the wrong
predictions can be observed. This type of network also has excellent performances
for future prediction. This approach is also applied to the training with three
plants and testing with the fourth one, but the performances are awful, and the
problem of different modules’ value for different plants is still unsolved.

This thesis work demonstrates the importance of impedance and soil moisture
for detecting a tobacco health status; this result is confirmed by a simple SVM
implementation with a radial basis function kernel. The neural network has reached
significant results, but it is still not ready to be used on an unknown tobacco plant,
which means not used during the training phase. Possible solutions may be training
with samples over a broader period or introducing more features regarding the
plants, such as age or stem radius.

iv

Acknowledgements

“Be Water, My Friend. Empty your mind. Be formless, shapeless, like water. You
put water into a cup, it becomes the cup. You put water into a bottle, it becomes

the bottle. You put it into a teapot, it becomes the teapot. Now water can flow or it
can crash. Be water, my friend.”

B. Lee

I am incredibly grateful to my supervisors, professors Martina, Demarchi, and
Garlando, who gave me the opportunity to work on this subject. Special thanks to
Garlando, who helped, supported, and followed me during all these months.

I’m deeply indebted to my family, my parents, my sisters, and my nephews. No
words can express their presence, what they gave me and allowed me to do.

To Elettra, someone special who never let you down and is always present.

To Pietro, the first person that I met at the university. A friend who taught me
countless things.

Thanks to my old and new roommates, Antonio Francesco, Pierpaolo, Giacomo,
and Paolo. I will never forget the study and gaming nights spent together.

To my old friend Francesco, who I met again at the university after five years of
adventures in that old room. To my colleges Francesco, Francesco, Marco, Edoardo,
Antonio, Alessandro, Paolo, Gaspare. Thank you for the calls and meetings that
lasted an eternity. It was my great pleasure to work with you.

To Fabrizio, with whom you always eat well.
To Malio, Valentino, Federico, Yubo, and Junyi, who are distant but at the

same time are always close.
To Huqing, Jiang and Stefano, with whom I have spent my life in the study

room.
To my friends, Alessio, Simone, Paola e Federica. Thank you for letting me

discover Torino. To Fabrizio, even if you’re a physicist.

v

Table of Contents

List of Tables x

List of Figures xi

Acronyms xv

1 Introduction & Background 1
1.1 Smart agriculture . 1
1.2 Impedance . 3

1.2.1 Impedance measurement . 3
1.2.2 Experimental setup . 4
1.2.3 Impedance variation . 7
1.2.4 Daily cycle variations . 11

1.3 Plants’ dataset . 14

2 Machine learning 18
2.1 Classification of machine learning algorithms 18
2.2 Supervised learning algorithms . 19

2.2.1 Machine learning applications 21
2.2.2 k-Nearest neighbor algorithm 21
2.2.3 Naive Bayes . 23
2.2.4 Decision Tree and Random forest 25
2.2.5 Linear regression . 27
2.2.6 Logistic regression . 29
2.2.7 Support Vector Machine . 31
2.2.8 Neural Networks . 33

3 Neural networks 37
3.1 Number of layers and nodes . 37
3.2 Networks to be implemeted . 38
3.3 Generally labeled dataset . 39

vii

3.3.1 Implementation . 39
3.3.2 Results discussion . 45

3.4 Labeling by hand . 46
3.4.1 Implementation . 49
3.4.2 Results discussion . 49
3.4.3 Optimal model and algorithm hyperparameters 49

3.5 Future predictions . 53
3.5.1 Implementation . 53
3.5.2 Results discussion . 55

3.6 Relevance of the impedance . 55
3.6.1 Implementation with only impedance 55
3.6.2 Implementation without impedance 58

3.7 Three plants for the training phase 59
3.7.1 Implementation . 59
3.7.2 Results discussion . 61

3.8 Impedance difference . 62
3.8.1 Adding the impedance difference 62
3.8.2 Implementation . 63

3.9 Polynomial fitting . 64
3.9.1 Polynomial fitting implementation 64
3.9.2 Implementation . 68

3.10 SVM approach . 69
3.10.1 Implementation . 69

3.11 Neural Network, samples in time 72
3.11.1 Implementation . 72
3.11.2 Future predictions implementation 76
3.11.3 Three plants training . 78

4 Conclusion and Future Perspective 88

5 Manual of the scripts 90
5.1 What the code does . 90
5.2 Add other features to the .csv files 90
5.3 Train a neural network having the data of the plants 91
5.4 Predictions using the model trained before with a new dataset . . . 95
5.5 Training with three plants and testing on the fourth; 97
5.6 Train a SVM model . 98
5.7 Training with more features shifted in time 98
5.8 Future prediction with more features shifted in time 100
5.9 Training with three plants and testing of the fourth with features

shifted in time . 100

viii

Bibliography 104

ix

List of Tables

2.1 Subset of the plant 3 dataset, considering only 4 features 25
2.2 Mean and standard deviation of the features split based on the Status 25
2.3 Probability density function of the features 26

3.1 plant_a0a1_a2a3a4a5a6a7a8a9a10a11a12a13a13_a14a15a16a17.h5, expla-
nation of this filename . 46

3.2 Training of different version of neural networks 51
3.3 Several versions of SVM are trained, considering different combina-

tion of features . 71
3.4 Several neural network are trained considering different numbers of

past samples . 76
3.5 plantxyz_a0_a1_a2_a3_a4_a5_a6_a7_a8_a9_a10_a11.h5, expla-

nation of this filename . 81

x

List of Figures

1 Confusion matrix of the testing dataset iv
2 Predictions of the testing dataset iv

1.1 Experimental setup with four point probe technique. Image from [6]. 3
1.2 Current-Voltage Characteristic of tobacco plant stem. Image from [6]. 4
1.3 Impedance spectrum of a 4 month tobacco plant. Image from [6]. . 5
1.4 Generic sensors setup on breadboard. Image from [9]. 6
1.5 Block diagram of the sensor system. Image from [9]. 6
1.6 Block diagram of impedance measurement system. Image from [9]. . 7
1.7 Impedance measurements and environment sensors for two different

plant. Image from [8]. 8
1.8 Body electrical impedance (modulus and phase angle) for two tomato

plants, regularly watered and not watered respectively at 1kHz.
Image from [8]. 9

1.9 Correlation matrices for water and not watered plants for impedance
at 1 kHz. Image from [8]. 10

1.10 Granger matrices for water and not watered plants for impedance
at 1 kHz. Image from [8]. 11

1.11 Experimental setup for monitoring 4 plants. Image from [7]. 12
1.12 Impedance at different frequencies and environmental data over two

weeks. Image from [7]. 16
1.13 Impedance modulus and phase of a tobacco plant over a week with

environmental data. Image from [7]. 17

2.1 Schematic block of supervised learning approach applied to plant’s
status predictions . 20

2.2 Block diagram of plant’s status predictions 21
2.3 Simplified impedance and soil moisture distribution to explain KNN

with a new data to be predicted . 23
2.4 The prediction of the status of the new data is based on k=3 nearest

neighbor and the result is a healthy plant 23
2.5 Simplified example of decision tree 27

xi

2.6 Hypothetical example of random forest 27
2.7 Graphical representation of the logistic function. Plotted with matlab. 30
2.8 Hyperplanes in plant health prediction problem. Only two features

are considered. 31
2.9 Hyperplane with maximized margin, determined by support vectors. 31
2.10 Hypothetical application of SVM with regularization of plant status

detection . 32
2.11 Artificial neuron with logistic activation function 33
2.12 Example of multi-layer percepton 35

3.1 Picture of the four plants. Date: 31/03/2021 10:28:34 47
3.2 Picture of the four plants. Date: 09/04/2021 11:28:34 48
3.3 Picture of the four plants. Date: 23/04/2021 10:45:48 48
3.4 Training accuracy and validation accuracy. Learning_rate = 0.0001,

epochs = 300 . 52
3.5 Training accuracy and validation accuracy. Learning_rate = 0.0001,

epochs = 300. 53
3.6 Training accuracy and validation accuracy. Learning_rate = 0.0001,

epochs = 1000. 53
3.7 Impedance module of the four plants during the period from 2021-

03-24 to 2021-05-04 . 56
3.8 Impedance phase of the four plants during the period from 2021-03-24

to 2021-05-04 . 57
3.9 Results of the ten different neural networks 58
3.10 Module fitting with a second degree polynomial function. In blue is

the module, and in red, the fitting function 65
3.11 Module fitting with a 8-th degree polynomial function. In blue is

the module, and in red, the fitting function 66
3.12 Module fitting with a 49-th degree polynomial function. In blue is

the module, and in red, the fitting function 66
3.13 Phase fitting with a 49-th degree polynomial function. In blue is the

phase, and in red, the fitting function 67
3.14 Considering a parameter more times. Adding new columns with

past samples of the parameter. 74
3.15 Accuracy of future predictions . 78
3.16 Confusion matrix of the testing set 79
3.17 Predictions of the testing set . 79
3.18 Accuracy of plantxyz_1_1_0_0_0_0_0_0_7_25_15_2.h5 83
3.19 Accuracy of plantxyz_6_6_0_0_0_0_0_0_17_25_15_2.h5 . . . 83
3.20 Accuracy of plantxyz_12_12_0_0_0_0_0_0_29_25_15_2.h5 . . 84
3.21 Accuracy of plantxyz_24_24_0_0_0_0_0_0_53_25_15_2.h5 . . 84

xii

3.22 Accuracy of plantxyz_36_36_0_0_0_0_0_0_77_25_15_2.h5 . . 85
3.23 Accuracy of plantxyz_0_0_1_1_0_0_0_0_7_25_15_2.h5 86
3.24 Accuracy of plantxyz_1_1_1_1_0_0_0_0_7_25_15_2.h5 86
3.25 Accuracy of plantxyz_6_6_6_6_0_0_0_0_7_25_15_2.h5 87
3.26 Accuracy of plantxyz_12_12_12_12_0_0_0_0_7_25_15_2.h5 . 87

xiii

Acronyms

ADC
Analog Digital Converter

AI
Artificial Intelligence

ANN
Artificial Neural Network

CNN
Convolutional Neural Network

GHG
Greenhouse Gas

GPIO
General Purpose Input Output

IoT
Internet of Things

I2C
Inter-Integrated Circuit

KNN
k-Nearest Neighbor

MLP
multi-layer percepton

xv

RBF
Radial Basis Function

SVM
Support Vector Machine

UNEP
United Nations Environment Programme

UN
United Nations

xvi

Chapter 1

Introduction & Background

In the 21st century, the world faces several environmental issues such as global
warming, air pollution, ocean acidification, ocean plastic pollution, GHG emission,
intensive food production, hydric stress and water scarcity, desertification, overpopu-
lation, waste management, and more. These problems and others are well described
in a foresight report published in 2012 by UNEP[1]; in particular, the UN expects
the world population to exceed 9 billion by 2050, which will lead to an increase in
demand for food. However, on the other side the effects of desertification cannot
be neglected[2]. Desertification refers to the persistent degradation of dryland
ecosystems caused mainly by human activities: unsustainable farming that depletes
the nutrients in the soil, mining, overgrazing, clear-cutting of land, when the tree
and plant cover that binds the soil is removed, urbanization, deforestation, and
also excessive watering. Climate change leads to more frequent extreme weather
events such as droughts and coastal surges, and warmer average temperatures
could amplify this soil degradation. In 1994, the United Nations established the
Convention to Combat Desertification (UNCCD), through which 122 countries
have agreed to safeguard arable land, repair degraded land, and manage water
supplies more effectively. Moreover, technology is often an excellent means to
solve problems; today, smart agriculture offers a possible path toward sustainable
agriculture.

1.1 Smart agriculture
Smart agriculture leads to the third revolution in the history of agriculture. It
refers to introducing modern technologies, such as IoT, sensors, location systems,
robots, and artificial intelligence in the farming world. Examples of applications are
the measurements of light, soil moisture, temperature, or the precision irrigation
of the plant roots only when needed based on the environmental condition. The

1

Introduction & Background

goal of smart farming is to increase the quantity and improve the quality of crop
harvest, saving all the resources such as water, energy, fertilizers, pesticides, and
human resources.[3].
An overview of the IoT applications is described in the article [4]. Many countries
such as China, Taiwan, Thailand, Malaysia have developed successful IoT appli-
cations for both precision agriculture and greenhouse monitoring. The former is
based on environmental monitoring, divided into weather, soil conditions, plant
disease, and irrigation. The latter requires high precision controlling, monitoring,
and tracking, which is reached thanks to a real-time monitoring system formed by
a Wireless Sensor Network and a Smart Control Panel. All of these operations are
made possible by the smart agriculture software, examples of open source software
are Tambero, FarmOS, Trimble, Farmathand, Tania and FarmaRexx.
An overview of the plant and environment sensors is presented in the article [5]. The
most common plant sensors are visual sensors. The application of machine learning
algorithms on visual data makes it possible to have high accuracy for classifying
diseased plants and detecting fruit defects. Some researches have demonstrated
that volatile organic compounds emitted by the plants are related to their current
status. For this purpose, some low-cost and mobile sensors have been developed,
such as optical or electrochemical ethylene sensors or jasmonate sensors. A new
kind of sensor is related to the impedance measurement, on which the work of the
current thesis is based. Even if the related researches are at the beginning, it has
great potential since the impedance measurement is a low-power procedure, and
the system could be small and straightforward.
The environmental measurements, as introduced before, are mainly related to
light intensity, temperature, relative humidity, and soil moisture. Knowing these
parameters gives information about the plant’s surroundings and helps understand
the plant’s status. Several solutions and commercial sensors are available for these
tasks.

2

Introduction & Background

1.2 Impedance
As mentioned before, plant sensors are becoming more significant since the envi-
ronment sensors cannot directly detect the status of a plant, such as a disease, a
parasite, or even the death of the plant itself. Among the different kinds of sensors,
new studies about electrical impedance are rising. The impedance studies, proposed
by the authors in [6], [7], [8] and [9], show how the impedance can be measured,
how the watering events are correlated to the plant stem electrical impedance, and
how it depends on the daily activity of the plant. This section is an overview and
summary of these studies, which will be this thesis’s starting point.

1.2.1 Impedance measurement
The method to measure the impedance introduced before is described in detail
in [6]. In this experimental setup, the four-point probe measurement is used. In
general, this technique is commonly used because it can eliminate the contributions
of the contacts. In particular, a known current is injected into the two outer probes,
and the voltage is measured on the inner probes.

The article’s authors measured the stem impedance of a young tobacco plant,
which had 7 mm as diameter. In particular, the four probes, as shown in figure
1.1, were inserted at different positions on the plant stem to a depth of 6.8 mm,
reaching in this way the vascular tissues. The first step was to perform a DC
analysis by applying a voltage in the range 0V-20V and varying the distance d of
the probes.

Figure 1.1: Experimental setup with four point probe technique. Image from [6].

The results are shown in figure 1.2, the stem provides a constant value of
resistance with the DC analysis, and it increases with the distance d between the
inner probes.

3

Introduction & Background

Figure 1.2: Current-Voltage Characteristic of tobacco plant stem. Image from
[6].

After that, an AC analysis was performed, and the spectrum, shown in figure
1.3, has a low pass filter-like behavior; the interesting thing is that the data can be
reasonably fitted with the Randles model.

Usually, the standard four-point probe setups use a professional impedance
analyzer, leading to very high accuracy. Nevertheless, this kind of solution is not
feasible for use in the field, especially in large numbers, and it contradicts what is
said in section 1.1. Fortunately, the authors have solved this problem by proposing
a low-cost end-to-end system. The system is made using Texas Instruments’
LMP91000 AFE potentiostat, Analog Devices’ AD7896 A/D converter(ADC), and
a Raspberry Pi Zero W. The total cost of this setup is around USD 10 (price in
2018).

1.2.2 Experimental setup
The system proposed by the authors in [6] and briefly described in the previous
section(1.2.1) is a good starting point, but it is surely not enough for a smart
agriculture system. The setup shown before was only to measure an electrical
parameter of a plant, but how this parameter is related to its health status and
how the environmental parameters can be measured are still unknown. Luckily,
these works have been done by other authors in [8], [7] and [9].

A first version of the in-vivo monitoring system is well described in [9]. In
particular, the system is made of three generic sensors:

4

Introduction & Background

Figure 1.3: Impedance spectrum of a 4 month tobacco plant. Image from [6].

• HDC2080 (Texas Instruments Ltd)[10]. It is a temperature and relative air
humidity sensor that provides high accuracy measurements with very low-
power consumption. It uses the I2C protocol and the relative humidity is
measured from 0 % to 100 % with a typical accuracy of ±2%, while the
operating temperature range is from -40°C to 85°C with typical accuracy of
± 0.2°C;

• MAX44009 (Maxim Integrated Ltd)[11]. This low-power ambient light sensor
with an internal ADC allows the user to get the ambient light value in lux
directly. It has an ultra-wide 22-bit dynamic range from 0.045 lux to 188000
lux;

• 200SS WATERMARK Sensor (Irrometer Ltd)[12] - It is used for soil moisture
monitoring. This kind of sensor acts as an artificial root, which means that it
exchanges water with the surrounding soil as a plant does. In this way, the
effort required by a plant to extract water from the soil is measured, and no
complicated calibrations for individual sites or different soil are needed.

All these sensors are connected to the GPIO port of a Raspberry Pi using the I2C
protocol as shown in figure 1.4, while the block diagram is shown in figure 1.5. As
can be seen in the figures, the ADS1015 converter is used as a readout circuit for

5

Introduction & Background

the soil moisture sensor. The system is then controlled using a Python interface
developed for data collection and monitoring.

Figure 1.4: Generic sensors setup on breadboard. Image from [9].

Figure 1.5: Block diagram of the sensor system. Image from [9].

It is possible to notice that the system described before contains only environ-
mental sensors; the impedance measurement is done separately but simultaneously.
An impedance analyzer (Agilent 4294a) is connected to the plant stem, and a
designed LabView© software interface is used to control the samples as shown in

6

Introduction & Background

figure 1.6.

Figure 1.6: Block diagram of impedance measurement system. Image from [9].

With this experimental setup, it is then possible to monitor both the environ-
mental changes and the impedance values and, above all, the dependency of the
parameters among them and their variation in time.

1.2.3 Impedance variation
The authors in [8] explored the possibility of optimal green plant irrigation based on
the value of impedance and not only on soil moisture. They tried to find a correlation
between impedance changes and watering events and then the dependence on the
soil moisture value. The experimental setup used by these authors was slightly
different from the one described in the previous section(1.2.2). As shown in figure
1.7 a multiplexing circuit has been introduced in order to monitor with the same
setup two different tomato plants.

For both the plants the environmental parameters and impedance values are
measured, with the difference that the first plant is often watered while the second
one is not.

In figure 1.8, it is possible to notice how the changes in impedance depend on
the watering events. In particular in figure 1.8.a is shown how the watering events,
marked with dashed lines, influence both the value of impedance modulus and soil
moisture. While in figure 1.8.b the dependency between impedance modulus and
soil moisture is observed. In figures 1.8.c and 1.8.d the phases of the measured
impedance are presented. From these graphs it is possible to notice that, in case of

7

Introduction & Background

Figure 1.7: Impedance measurements and environment sensors for two different
plant. Image from [8].

the watered plant, both the modulus (fig. 1.8.a) and the angle (fig 1.8.c) are quite
constant(few kΩ for the modulus). The variations, for both modulus and phase, are
due to a periodic daily behavior of the plant, which is well explained in article [7].
On the right side, when the plant is not watered, a steady (and mostly monotonic)
increase in the impedance up to about one order of magnitude is observed, as well
as a significant and identifiable change in the impedance angle.

The correlation between soil moisture and impedance is then demonstrated
mathematically, following two different paths. The first one exploits the Pearson
correlation coefficients, while the second method is about the Granger causality.
The Pearson coefficient ranges from -1 to 1 and evaluates the linear correlation
among different data series. A correlation coefficient equal to 1 means the strongest
positive correlation, and similarly, the perfect negative correlation is associated with
-1. A coefficient near 0 means that the two quantities are completely uncorrelated.

The coefficients were computed by using the Python Pandas package for both
watered and not watered plants. The results are shown in figure 1.9, it can
be easily noticed that the impedance module and angle are highly correlated.
Furthermore, the soil moisture shows very high values in the not watered case,
while the correlations with the other ambient measurements are almost zero. On
the other side, in the watered case, the correlation with the soil moisture is present
but not very strong; in fact, the impedance is also related to the other parameters.

8

Introduction & Background

Figure 1.8: Body electrical impedance (modulus and phase angle) for two tomato
plants, regularly watered and not watered respectively at 1kHz. Image from [8].

However, in both cases, soil moisture is a crucial parameter for the impedance
values. Nevertheless, this relation doesn’t mean that the stem impedance is highly
related to watering events since the relation between two parameters where one
is affected by the other one is defined as causality. For this purpose, the Granger
causality test has been exploited, but before that, the "difference" technique was
applied to prevent the non-stationarity of the data.

The results are shown in figure 1.10, the matrices should be read in this way: if
the number in the column is smaller than 0.01, then the quantity corresponding to
the column is “Granger causing” the row’s quantity with a 99% confidence level.
Thanks to the matrices, it can be easily observed that the impedance module and
phase are highly dependent on the soil moisture in both watered and not watered

9

Introduction & Background

Figure 1.9: Correlation matrices for water and not watered plants for impedance
at 1 kHz. Image from [8].

cases, while the other metrics show different behaviors in the two experiments.
These studies demonstrated the correlation between the impedance and the

environmental parameters such as soil moisture, ambient light, air humidity, and
temperature and how the impedance depends on the other measurements. Further-
more, the dependency between impedance variations and watering events is proved.
In this way, it is possible to understand when the plants should be watered, leading
to a plant irrigation system.

10

Introduction & Background

Figure 1.10: Granger matrices for water and not watered plants for impedance
at 1 kHz. Image from [8].

1.2.4 Daily cycle variations
As mentioned before, it seems like that the variation of the stem impedance changes
daily; the authors well study this behavior in [7]. The experimental setup used
this time was upgraded; it can measure the impedance and the surroundings of 4
different plants simultaneously as shown in figure 1.11. In this study, four tobacco
plants are monitored; modular, wireless, small, and low-cost data acquisition nodes
are used for environmental measurements. Environmental parameters are measured
every 30 minutes, while the impedance spectrum is sampled every 15 minutes by
a impedance analyzer (Keysight 4294a). Since the same analyzer is used for all
the plants, a multiplexing circuit is needed; therefore, each plant stem impedance
value is stored every hour. A webcam is also connected to the Raspberry Pi for
monitoring visually the plants under test, taking a picture synchronously with the
impedance measurements.

11

Introduction & Background

Figure 1.11: Experimental setup for monitoring 4 plants. Image from [7].

A first analysis has been done in order to find the optimal frequency, figure 1.12
shows impedance modulus and phase variations and environmental data changes
in 2 weeks, the watering event happens after ten days from the beginning, and it
is clearly visible in the moisture chart: the soil moisture is decreasing over time,
which means that it is getting dry. Then a step representing a watering event
appears.

As discussed in section 1.2.3, also in this case, when the soil moisture decreases,
the impedance module increases slowly, neglecting the “bouncing” effect. However,
in this case, the interest is right on this daily "bouncing" effect. It is possible to
notice from the impedance charts that lower frequencies are more appropriate for
measuring the module, while higher ones are more suitable for monitoring the
phase. Therefore a frequency of 10 kHz is chosen as a reasonable trade-off since
the variations are visible for both the values, and the noise effect is reduced for the
angle.

The plant and environmental data at 10 kHz over a week are then plotted in
figure 1.13. Labels are placed in correspondence of minimum and maximum values
in all the curves, and impedance modulus and phase are zoomed to highlight their
trend. In this way, it is visible that all the trends have a bouncing over a day time.

All the sensors are positioned near a window inside a laboratory; the light
intensity reached the maximum peak around midday when the sun hits directly
through the window. The weather in this week of measurements was sunny, and

12

Introduction & Background

temperature data confirm weather information since the average and minimum
temperature are relatively high. In addition, the maximum temperature values
correspond reasonably to light peaks. On the other side, relative humidity behaves
opposite to the temperature, with the maximums in correspondence of temperature
minimum and vice versa.

It is possible to notice that the impedance modulus and phase follow the trend
on the environmental conditions, but there are two different situations based on the
water condition. The first portion is the one before November 8th, in this period,
the plant hydration is regular, and the minimum peaks of both modulus and angle
correspond to about one hour later the maximum peaks of the temperature, and
then they start to increase. In the second phase, when soil moisture is less than -150
kPa, the shapes of modulus and angle change. Narrow negative peaks separate the
high flat portion for the modulus and the low flat portion with high peaks for the
phase. The modulus remains high during the night, and then a steep fall is present
in the early hours of the day when the light starts to appear. The high-temperature
impacts the plant condition, and the modulus rises again: this time, the process
begins far before the temperature peak due to the water stress condition. On the
contrary, the phase shows precisely the opposite behavior, with minimum values
corresponding with modulus maximum.

Thanks to this work, the relation between the plant impedance and the daily
cycle is proved. Therefore, the changes in the impedance, both modulus and phase,
are induced by environmental conditions, in particular, light, temperature, and soil
moisture.

13

Introduction & Background

1.3 Plants’ dataset
The MiNES group, from Politecnico di Torino, provides the data used in this
thesis, particularly those working on the sensor and smart systems for Agrifood.
The experimental setup used by them is constantly being improved. The final
version (November 7th, 2021) can monitor the plant stem impedance and the
surrounding parameters. The impedance module and phase are measured utilizing
an impedance analyzer(Keysight 4294A). The four-probe technique (section 1.2.1)
is applied using two Kelvin’s clips, which are connected to the plant’s stem through
tiny stainless steel needles. The needles, with a diameter of 0.4 mm, are placed
at 5 cm of distance, and the bottom one is placed 3 cm above the ground level.
The system can monitor different plants’ impedance because of a multiplexing
circuit, which a Raspberry Pi controls. In particular, the impedance analyzer is
measuring four plants, and it is connected to a PC, on which a LabVIEW program
manages the measurement procedure and stores impedance spectra. For each plant,
a sensor node is used to monitor the environmental values. The integrated circuit
HDC2080[10] is used for the temperature and air humidity, while the ambient
light is measured with the sensor OPT3001[13]. Both the integrated circuits are
mounted on a small PCB connected to a custom PCB, which in turn is placed on
top of a Raspberry Pi ZERO W. Thanks to this last wireless communication is
possible to configure the nodes and acquire data. The soil moisture is measured
with Irrometer WATERMARK[12], in particular through a resistance value, the
soil water potential is measured in kPa. Since a DC current may damage the sensor,
an AC circuit was developed with a timer in the feedback loop.

In this way, four different plants are monitored by this autonomous system
where two of them are watered regularly, and the others are left to water stress. The
information is sampled every one hour and gathered in four different .csv format
files, one for each plant. To summarizing, in each file, the following measurements
are present:

• air humidity;

• temperature;

• light intensity;

• soil moisture;

• time when the data is sampled;

• impedance modulus

• impedance phase

14

Introduction & Background

The impedances are measured at a frequency of 10.145 kHz. In addition to these
data, also a camera is used to monitor the plants. A picture is taken every 15
minutes; in this way, it will be possible to visually check the plants’ status.

All the studies in this chapter have demonstrated that the stem impedance is
not a “random” electrical parameter. However, somehow, it is linked to the plant’s
health; this makes it possible to check the plant status directly by measuring an
intrinsic parameter of the plant, which is the electrical stem impedance and the
surrounding environmental parameters. It is opportune to find an automatic way to
detect the plant status once the environment and plant measurements are available
for this task. Machine learning algorithms can be an excellent means for the work
of this thesis.

In chapter 2, the world of machine learning is scouted in order to find out the
most suitable machine learning algorithm for the prediction of the plant status.

In chapter 3, the neural networks is explained in detail, then the model is
implemented in Python, and finally the results are discussed. After that, simple
SVM models are implemented in order to confirm the results of the neural networks.
Finally, a new approach is explored. In particular, the same feature is considered
more times by involving the past samples during the training.

Chapter 4 is regarding the conclusion about this thesis work and possible future
works.

In the appendix 5, the instructions to run the implemented Python scripts are
shown.

15

Introduction & Background

Figure 1.12: Impedance at different frequencies and environmental data over two
weeks. Image from [7].

16

Introduction & Background

Figure 1.13: Impedance modulus and phase of a tobacco plant over a week with
environmental data. Image from [7].

17

Chapter 2

Machine learning

Machine learning is a wing of artificial intelligence (AI) and computer science. AI
refers to all those systems that imitate human intelligence using data and algorithms.
While machine learning builds models that make predictions or decisions based on
a training set. Nowadays, ML and AI are everywhere in the daily life of humans:
personal assistants, for example, Siri or Alexa, self-driving cars, recommendation
systems, web search engines, IBM’s Watson, and much more. The term machine
learning was coined for the first time in history by Arthur Samuel in 1959 with
his research about the game of checkers. The research was regarding a checkers
playing program that learned what board positions were good or bad by observing
if that position would lead to loss or to win. The impressive thing was that in the
mid-1970s, his program was able to challenge expert checkers players even if he
was not a very good checkers player. He described machine learning as:

"The field of study that gives computers the ability to learn without being
explicitly programmed"

Tom Mitchell brings a more modern definition: “A computer program is said
to learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with
experience E.”

So, back to the aim of this thesis, the experience E is represented by the data
measured from the plants and the environmental sensors, task T is the prediction
of the status of the plant, and the performance P is the accuracy of the machine
learning algorithm.

2.1 Classification of machine learning algorithms
There are several types of algorithms around, and the goal is to find the most
suitable one to predict the plant status. In general they can be grouped by their

18

Machine learning

learning style[14, 15, 16, 17]:

• supervised learning;

• unsupervised learning;

• semi-supervised learning;

• reinforcement learning.

Supervised learning The machine is trained on labeled data set in order to
classify data or predict outcomes accurately. The training process continues until
the model reaches the desired level of accuracy on the training data. An inferred
function is generated as a result of the training that could be used on new data
sets. This type of algorithm resolves mainly regression or classification problems,
such as e-mail spam detection, speech recognition, or object recognition from an
image.

Unsupervised learning In this case, the input data are not labeled. Therefore
this kind of algorithm is able to find out hidden patterns or data structures without
expensive human labor. Unsupervised learning algorithms are suitable for anomaly
detection, cluster analysis, dimensionality reduction, customer segmentation, and
recommender systems.

Semi-supervised learning For this type of algorithms, the input data is a
mixture of labeled and unlabelled examples. This type of algorithm is necessary
because labeling is relatively expensive in several real situations due to the need
for human resources. Therefore, some data are labeled, and others are not.

Reinforcement learning This is an exciting and particular learning model; it is
not easy to explain and understand. The main idea is that a reinforcement learning
algorithm does not need correct input-output datasets, but it learns continuously
from the interaction with the environment. So this model learns using a trial
and error approach. Examples of applications are computer-played board games,
robotics, and self-driving cars.

2.2 Supervised learning algorithms
The available dataset is composed of samples, each with seven different features,
as described in section 1.3. The machine learning algorithm should be able to
detect the status of health by analyzing the input information. Suppose that each

19

Machine learning

sample is labeled as healthy plant or not-healthy plant, the prediction of the status
of the plant becomes a classification problem, and the most suitable algorithm
belongs to the supervised learning class. The most common supervised learning
algorithms are:

• k-Nearest neighbor algorithm;

• Naive Bayes;

• Decision Tree and Random forest;

• Linear and logistic regression;

• Support vector machine (SVM);

• Neural Networks
A schematic view of a typical supervised learning approach applied to plant

status detection problem is presented in figure 2.1. Once the model has been
trained, it is ready to predict the output of newly sampled data.

Air humidity
Ambient light
Soil moisture
Temperature

Time
Impedance module
Impedance phase

Training data

Labels
Healthy/not-healthy

Machine learning
algorithm

Prediction
/classification

New samples
or

Testing set

Predicted
outputs

Testing accuracy

Figure 2.1: Schematic block of supervised learning approach applied to plant’s
status predictions

So, now the main problem is to choose an algorithm to be implemented that
gives the best performance. Considering that a future application of this work
will be on-field as an IoT node (fig 2.2), power consumption is not a negligible
parameter. The training phase, which is the longest part, could be done on a PC,
and then the trained model is used to predict results employing a MicroController.
Therefore, the performance should consider both the accuracy of the algorithm,
which means the correct prediction rate and its computational cost.

For this purpose, the most common algorithm will be briefly discussed qualita-
tively in the following sections, considering the advantages and disadvantages and
showing some smart agriculture applications or real-world implementations that
could be somehow similar to the health detection problem.

20

Machine learning

Data preparation
Machine learning

algorithm
Training phase

Optimizations

Microcontroller

Stem impedance
and

plant surronding
monitoring

Plant health status
prediction

Figure 2.2: Block diagram of plant’s status predictions

2.2.1 Machine learning applications
Nowadays, machine learning algorithms are already widely used in the farming
world. A fascinating overview is presented in article [18]. The authors have grouped
some applications around; most use algorithms such as artificial neural networks
and support vector machines, but also decision trees and Bayesian models are
helpful. The application can be subdivided into four big fields:

• crop management, most of the applications belong to this category, and it
includes species recognition, weed detection, crop quality, yield prediction,
and disease detection;

• livestock management, which is divided into animal welfare and livestock
production;

• water management;

• soil management.

The applications described in this article and others will be cited in the subsequent
sections of the algorithms’ description.

2.2.2 k-Nearest neighbor algorithm
k-Nearest neighbor is one of the most basic and simple machine learning algorithms
based on the supervised learning method, usually used for classification problems.

21

Machine learning

It is based on the similarity between the new sample and available data. So, this
algorithm stores all the sampled data. When new data occurs, it will be classified
based on the K nearest data labels by computing the Euclidean distance and
counting the number of the data points in each category. Thus, there is no proper
training phase for this algorithm, and the training phase is substituted by storing
data and postponed to the moment of the prediction. Data must be normalized in
order to avoid bias towards any of the inputs features.

In spite of its simplicity, this algorithm has been successful in several classification
problems in different fields[19], such as agriculture for simulating daily precipitations
or for evaluating the forest inventory, where satellite images are used. A software
that exploits KNN for soil water retention has been developed [20]. Thanks to
the KNN, additional data can be included, and this improves estimation for the
site-specific range of soil properties; finance, such as forecasting the stock market,
bank customer profiling, money laundering analyses or credit rating; medical field,
for instance, estimation of the level of glucose in the blood of a diabetic patient,
based on the infrared absorption spectrum of that person’s blood or identification
of prostate cancer risk factors, having clinical and demographic information.

Wisconsin-Madison Breast Cancer Problem An exciting application is de-
scribed in [21] when KNN and fuzzy KNN are used for the Breast Cancer Diagnosis
Problem. The presence of a breast mass may indicate (but not always) cancer.
Fine needle aspiration technique is used for sampling the data such as clump
thickness, uniformity of cell, single epithelial cell size, and more. Each sample
also contains the patient’s ID and is labeled as benign or malign. Fuzzy KNN is a
version that also considers the distances of the k nearest samples; as a result, it
generates smoother borders between classes. Classification result of test set reached
an accuracy above 99%, and results are even better with fuzzy KNN.

To better understand how this algorithm works, a simplified version is shown
graphically in figure 2.3. Only two features, impedance module and soil moisture,
are displayed in the graph. As mentioned in section 1.2, generally, the impedance
module increases when the soil is getting dry, this trend is shown in this figure.
When a new data point must be predicted, distances with all the samples data are
computed, and only the nearest K (K=3 in this example) are considered. Finally,
the prediction is based on the healthy or dry plants among these neighbors(figure
2.4).

KNN is one of the first algorithms implemented in history, all the examples
described are ’old’ implementations before 2010. It is still used today for the
recommendation systems, but it has many disadvantages when the dataset is vast,
since there is no proper training phase, and all the data should be stored. Consider

22

Machine learning

Figure 2.3: Simplified impedance
and soil moisture distribution to ex-
plain KNN with a new data to be pre-
dicted

Figure 2.4: The prediction of the
status of the new data is based on k=3
nearest neighbor and the result is a
healthy plant

N the number of samples and M the number of features. Every time a prediction is
needed, N Euclidean distances, each with M dimensions, must be computed, leading
to O(NM) computational complexity and poor run-time performance. Additional
works are needed to find the best value for K; several simulations should be run,
trying different values for K to find the best out of them.

As mentioned before, the final aim is to use the machine learning algorithm on
the field as an IoT node, probably on a MicroController. So, it must be a low-power
system, and besides, a MicroController has limited memory. Even if this algorithm
has very high accuracy in a particular application, it is not the algorithm that best
suits the plant status detection.

2.2.3 Naive Bayes
Naive Bayes is a straightforward machine learning algorithm used for classification
problems, for instance, spam detection or text classification. Authors in [22] propose
an exciting application. They developed a recommendation system based on Naive
Bayes, which proposes the best crop to be cultivated in a particular season and
region. They considered features like environmental conditions such as soil moisture,
temperature, rainfall and found which among cotton, chilies, maize, and rice is
most suitable for the cultivation

This algorithm is based on Bayes’ theorem, and “naive” indicates the hypothesis
of independence among the features. Bayes’ theorem says that:

P(A|B) = P(B|A) · P(A)
P(B) (2.1)

23

Machine learning

P(A) and P(B) are the probabilities of events A and B, respectively. P(A|B) and
P(B|A) are called conditional probability, the probability of the first event knowing
that the second one is true. Applying the Bayes’ theorem for a classification
problem, the following version can be obtained:

P(class|data) = P(data|class) · P(class)
P(data) (2.2)

Therefore, the prediction of new data is based on the probability obtained with
the training set. Naive Bayes works well with categorical features. Nevertheless,
it is possible to use it for numerical data considering a Gaussian distribution[23],
leading to the so-called Gaussian Naive Bayes. In order to do that, the average
value (2.3) and standard deviation (2.4)should be computed. the probability is
then calculated using the Gaussian distribution formula.

Mean: µ = 1
N

NØ
k=1

xk (2.3)

Standard deviation: σ =

öõõô 1
N − 1

NØ
k=1

(xk − µ)2 (2.4)

It is helpful to apply this algorithm to a small subset of the plants’ data to see
how it works. Ten samples of plant 3 are taken; for simplicity, only 4 features are
considered, as shown in table 2.1.

Since, the plant 3 is watered regularly, the soil moisture value remains almost
constant and relatively high. For both Status cases, the mean and standard
variation of all the features should be computed, shown in table 2.2. To predict
the status output of a new set of data, the probability density function of Normal
distribution(2.5) can be used.

PHD: f(x) = 1
σ

√
2π

e− 1
2 (x−µ

σ
)2 (2.5)

What have to be done is the computation of P(Status=1|X) and P(Status=0|X),
where X represents the features’ value of the new sampled data, namely the last
row of table 2.1.

Given the several probability density functions computed in table 2.3, the prob-
ability density function of the new sample is proportional to their product. In this
case, it can be observed that P(Status=1|X) is much greater than P(Status=0|X).
Therefore, the final prediction of the algorithm is Status = 1, which corresponds to
the real health state of the plant.

It is possible to notice that the prediction output is mainly due to the impedance
module value, and the algorithm seems to be unbalanced; this is one of the reasons

24

Machine learning

Temperature [C]
Air

Humidity
[RH]

Soil
moisture
[kPa]

Impedance
module [Ω] Status

24.47 62.25 -10.56 34479.96 0
25.45 63.19 -10.56 34839.94 0
25.97 60.95 -10.56 34767.41 0
26.46 62.35 -10.56 34123.81 0
28.96 66.44 -10.55 34616.83 0
27.15 61.45 -10.55 27650.08 1
27.11 61.18 -10.56 27967.37 1
28.11 61.36 -11.01 28050.06 1
30.03 57.97 -10.57 28543.6 1
26.82 58.33 -10.56 27922.81 1

Data to be predicted
25.33 62.93 -10.57 29527.26 1

Table 2.1: Subset of the plant 3 dataset, considering only 4 features

Status Value Temperature [C]
Air

Humidity
[RH]

Soil
moisture
[kPa]

Impedance
module [Ω]

0 µ 26.26 63.04 -10.56 34565.59
0 σ 1.679 2.065 0.004 283.34
1 µ 27.84 60.06 -10,65 28026.78
1 σ 1.315 1.750 0.201 325.53

Table 2.2: Mean and standard deviation of the features split based on the Status

why normalization of the data is always recommended. The normalization is
essential not only for Naive Bayes but, in general, for all the machine learning
algorithms. Despite that, Naive Bayes seems to be a suitable algorithm, but, as
said before, Naive indicates independence assumption; but, authors in [8] have
demonstrated precisely the contrary with the Pearson correlation.

2.2.4 Decision Tree and Random forest
Decision Tree is a machine learning algorithm that works very well for classification
problems. The prediction is based on decisions rules coming from the training set.
The second part of the name derives from its graphic representation. The decision
rules can be seen as internal nodes. Starting from the root node, it splits into

25

Machine learning

Probability density function Status = 0 Probability density function Status = 1
f (T=25.33|Status=0) = 0.289 f (T=25.33|Status=1) = 0.028
f (AH=62.93|Status=0) = 0.480 f (AH=62.93|Status=1) = 0.950

f (Sm=-10.57|Status=0) = 0.00364 f (Sm=-10.57|Status=1) = 0.654
f (|Z|=29527.26|Status=0) Ä 3 × 10−72 f (|Z|=29527.26|Status=1) Ä 1

P(Status = 0) = 0.5 P(Status = 1) = 0.5

Table 2.3: Probability density function of the features

different branches leading to the decision nodes. When a node does not represent a
condition anymore, it is called a leaf node, corresponding to the final prediction. To
summarize, decision tree is a set of if-then-else statements, which can be represented
with a flowchart. The model is usually trained with the recursive binary splitting
method, where all the features are considered to generate all the possible splits.
The one with the lowest cost function is chosen. Another problem is regarding
when to stop the tree. A huge tree could lead to overfitting, and two criteria could
be used to prevent overfitting. The first one is to set a minimum number of training
data for each leaf, which means that the splitting stops when the leaf takes less
than a certain number of samples. The second one concerns the maximum depth
of the tree. Furthermore, the pruning technique can reduce the complexity of the
tree, cutting the branches that use less critical features.

Different decision trees are ID3 (Iterative Dichotomiser 3), C4.5, C5.0, and
CART (Classification and regression trees). These versions differ in their learning
style. For instance, ID3, the oldest one, takes only categorical data as features;
trees are left to grow to their maximum possible depth; then, pruning is applied
to prevent overfitting. The others are subsequent versions improving accuracy,
memory, and training cost, arriving at the latest version CART, which also solves
regression problems.

Interesting applications can be found in the medical field. In the article [24], the
authors used decision trees to classify patients into four different levels of severity,
based on 12 symptoms of Covid-19 and the age of the patient. They used two
types of trees, J48 and Hoeffding tree. In both cases, 83% of accuracy is achieved.
An example in a completely different context is the identification of stars and
cosmic-ray using the pictures taken by the Hubble Space Telescope[25]. Using
CART, they have reached an accuracy above 92%.

Back to the problem of plant health prediction, each internal node of the decision
tree could be an environmental measurement or the impedance value. Soil moisture
and impedance module will be the most critical features surely. A very simple view
is shown in figure 2.5 The prediction is based on the impedance module and soil
moisture, and the status depends on two threshold values A and B. In the real

26

Machine learning

application one feature could be present mode times, and the tree is certainly more
complex.

Impedance
module > A

No

HealthySoil moisture > B

Yes

Yes No

HealthyNot-
healthy

Figure 2.5: Simplified example of de-
cision tree

Healthy Not-healthy Healthy

Healthy Healthy Not-healthy

Healthy

Figure 2.6: Hypothetical example of
random forest

As said before, decision trees suffer from overfitting problems. Therefore, the
prediction on unseen data may be terrible. Furthermore, another problem is that
they are very unstable, which means that the noise of the data would lead to a
significant variation of the tree structure. This problem is partially solved using
ensemble learning. Multiple uncorrelated trees are trained, and the final prediction
is based on the majority. This last technique is called Random Forest (figure 2.6),
but it will increase the storage memory and the training cost, which is already high
for a single tree compared to other algorithms.

2.2.5 Linear regression
Linear and logistic regression are based on the same concept. The former, as can be
deduced from the name, is to solve regression problems. In comparison, the latter is
for classification problems. Linear regression takes as input the features and gives
as output a continue value. It is nothing else than a fitting model. Considering n
features, the output prediction y is obtained with equation 2.6, where xj are the
inputs, and θj are the coefficients obtained during the training phase. The sum
can also be expressed in a compact form, i.e., hθ(þx) hypothesis function, where þx
is a vector containing the features.

ŷ = θ0 + θ1x1 + θ2x2 + · · · + θnxn = hθ(þx) (2.6)

It is possible to notice that the name linear comes from the linear relation between
the output and the inputs since xk are at first grade. Consider the case of only one

27

Machine learning

feature x1, the coefficients θ0 and θ1 determine a line that best approximates the
data of the training set.

A set of optimal θk that minimizes the so-called cost function is found during the
training phase. The cost function is used to evaluate the accuracy of the hypothesis
function, computing the difference between ŷ predicted and the actual value of y,
considering all the data in the training set. Suppose a dataset with m samples, the
cost function, also called “Mean Squared Error”, is defined as:

J(θ) = 1
2m

mØ
i=1

(ŷi − yi)2 = 1
2m

mØ
i=1

(hθ(þxi) − yi)2 (2.7)

In order to minimize J(θ), an algorithm called gradient descent is used; it
consists of repeating several steps many times until the cost function converges to
a certain value. In each cycle, new values of θ are updated, as showing in equation
2.8, where θj corresponds to the coefficient to be multiplied to the feature xj. The
symbol “:=” indicates that the value on the right is assigned to what is on the left,
so it is not the equal symbol.

θj := θj − α
∂

∂θj
J(θ) = θj − α

∂

∂θj

1
2m

mØ
i=1

(hθ(þxi) − yi)2 (2.8)

Doing the partial derivative in 2.8, equation 2.9 is obtained. A new notation is
used here, x

(i)
j means the j-th features of the i-th sample. Therefore, x(i) indicates

the i-th sample. This procedure is repeated for all the θj for j from zero up to n.
It is possible to notice that there are n + 1 different j. But the number of features
is only n, x

(i)
0 is equal to 1 for every samples per definition.

θj := θj − α
1
m

mØ
i=1

(hθ(x(i)) − y(i)) · x
(i)
j for j := 0,1...n − 1, n (2.9)

With equation 2.9 it is possible to update the value of θ, and after each cycle
the value of the cost function decreases. However, two problems arise, when to
stop the iterations and what value α should have. The interruption could be
decided by a given value Ô. Therefore the values of θ should be re-computed until
the cost function becomes smaller than Ô. Another more practical way is to plot
the cost function over the number of iterations and see when the cost function
stops to decrease. Alpha is called learning rate, and it influences the step size of
gradient descent in each iteration. If α is set too small, the algorithm may have
slow convergence, which means a long training time. Otherwise, if it is too large,
the algorithm may not converge since the step is too large in every iteration, and
it may never find the minimum.

From equation 2.9, it can be noticed that in every iteration all the data (from
data one to data m) are used to update θ. This procedure is called Batch gradient

28

Machine learning

descent. However, when the training set is very large, using this version of gradient
descent could be very slow and expensive. Another algorithm, called Stochastic
gradient descent, is more suitable for large datasets. This type of gradient descent
requires a random shuffle of the training set, and then only one training sample is
considered a time. Therefore, in each iteration, the θ are updated using only one
sample, and this is repeated for all the data, which means m times. If this is not
enough, the m iterations are repeated more times, as shown below:

1 Repeat more t imes i f needed {
2 f o r i = 1 , . . . ,m {
3 θj := θj − α(hθ(x(i)) − y(i)) · x(i)

j for j := 0,1...n− 1, n
4 }
5 }

There is no for loop for j because all the theta must be updated simultaneously
considering the same hypothesis function. The final result is a cost function near
the global minimum since the data are never considered together. However, it
is much faster than Batch gradient descent. A third version, called Mini-Batch
gradient descent, exists. Basically, b samples are considered in each iteration, where
b is between 1 and m. This algorithm can be much faster than the others if a good
vectorized implementation is used.

A helpful technique that can be applied during the data pre-processing step is
data normalization. The problem is that if the features are on very different ranges,
each feature will converge with a different step size during the iterations in the
gradient descent. Therefore, if all the features have the same range of values, the
training will be much faster. Normalization of the data to a range from 0 to 1 can
be done with the formula:

xÍ = x − xmin
xmax − xmin

(2.10)

When more complex hypothesis functions are needed, the behavior of the fitting
function can be changed using polynomial regression. It consists of adding to the
cost function other terms with a grade greater than one or other functions, such as
sine, cosine, square root functions.

2.2.6 Logistic regression
Logistic regression solves classification problems, so the output prediction is a
binary value that expresses the belonging class. Therefore, the hypothesis function
used in linear regression is not good. The hypothesis function for logistic regression
should give as output a value between 0 and 1. For this purpose, a sigmoid function
is used. A scalar product between two vectors can express the multiplication

29

Machine learning

between features and coefficients. If both θ and x are row vectors, their product
can be expressed as θTx. There are several functions in this class, an example is
the logistic function shown in equation 2.11.

hθ(x) = g(θTx) = 1
1 + e−θT x (2.11)

The graphical representation of the logistic function is shown in figure 2.7. It is
possible to notice that some decision boundaries are needed to get binary output
since the hypothesis function gives continuous values from 0 to 1.

-10 -8 -6 -4 -2 0 2 4 6 8 10
Tx

0

0.2

0.4

0.6

0.8

1

h
(x

)

Logistic function

Figure 2.7: Graphical representation of the logistic function. Plotted with
matlab.

The binary output can be obtained with the following relations:

hθ(x) ≥ 0.5 if θT ≥ 0 ⇒ y = 1 (2.12)

hθ(x) < 0.5 if θT < 0 ⇒ y = 0 (2.13)
Another thing to be changed is the cost function, it is defined in 2.14. In

particular, two different cost function are considered based on the value of the output
y. When yi = 1, log(hθ(x(i))) is taken as cost function otherwise log(1 − hθ(x(i)))
is considered.

J(θ) = − 1
m

mØ
i=1

[y(i)log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i)))] (2.14)

30

Machine learning

Logistic and linear regressions are straightforward algorithms. Their applications
are minimal due to the linearity assumption between output and input. However,
it was important to describe them because many concepts are familiar to SVM and
Neural Network, such as cost function, gradient descent, sigmoid functions; others
are shared by all the algorithms in general, for instance, normalization of the data,
overfitting, and random shuffle of the data.

2.2.7 Support Vector Machine
SVM or large margin classifier has excellent performance for classification problems
since it can learn complex non-linear functions. The prediction of the output is
based on hyperplanes that separate the two classes of data samples. The dimension
of the hyperplanes depends on the number of features. In figure 2.8 2-dimensional
hyperplanes are shown in the plant status detection problem, where only two
features are considered. Therefore, the hyperplanes are simply lines. It would be
hard to represent hyperplanes graphically with a dimension greater than three.

Soil moisture

Im
pe

da
nc

e
m

od
ul

e

Figure 2.8: Hyperplanes in plant
health prediction problem. Only two
features are considered.

Soil moisture

Im
pe

da
nc

e
m

od
ul

e

Support Vectors
{

{Margins

Figure 2.9: Hyperplane with maxi-
mized margin, determined by support
vectors.

An infinite number of hyperplanes are suitable to divide the data into two classes.
The one obtained during the train is the one with the maximum margin for data
samples of both classes (figure 2.9). The margin is the distance between data points
and the hyperplane. The orientation and position of this last depend on the closest
data points, namely the support vectors.

J(θ) = C
mØ
i=1

[y(i)cost1(θTx(i)) + (1 − y(i))cost0(θTx(i))] + 1
2

nØ
j=1

θ2
j (2.15)

31

Machine learning

The hypothesis function does not indicate the probability of belonging to a class
but gives binary values as output. This is possible for the cost function, shown in
equation 2.15, that assumes different forms as in the case of logistic regression. But
instead of the logarithms, two peace wise linear functions are used. If particular:

cost0(z) =

0 if z ≤ −1
1 + z otherwise

cost1(z) =

1 − z if z ≤ 1
0 otherwise

(2.16)
The second term in equation 2.15 is due to a technique called regularization. This

last prevent that the coefficients assume extreme value and significantly reduces
the variance, i.e., the overfitting problem. Therefore, if a data point that highly
reduces the margins is present, setting the parameter C to a low value, this data is
considered an outlier. It is then possible to increase the margin and reduce the
error for unseen data. A possible scenario of applying regularization to status
prediction is shown in figure 2.10.

Soil moisture

Im
pe

da
nc

e
m

od
ul

e

Support Vectors

Outlier

Figure 2.10: Hypothetical application of SVM with regularization of plant status
detection

The algorithm seen so far can solve only linear problems. In order to manage
complex non-linear functions, a concept called kernel is introduced. The argument
of the cost function is a linear combination between coefficient and data examples.
The idea of SVM kernels is to introduce new features to be used during the train,
called similarities. Basically, θTf(x) is used as features, where f(x) is a vector
containing the similarities between the data to be predicted and the data of the
training set. The i-th element fi is defined as fi = similarity(x, x(i)). The vector
f(x) can be computed in several manners, such as polynomial, Gaussian Radial

32

Machine learning

Basis Function, sigmoid and more. For example, Gaussian RBF kernel functions
are defined as follows:

fi = e(−γëx−x(i)ë2) (2.17)

According to the article [18], SVM is widely used in the agriculture field for both
regression and classification problems. Examples of applications are identification
of immature green citrus (80.4% of accuracy); detection of Bakanae disease in rice
seedlings (87.9%); identification of Korla fragrant pears into deciduous-calyx or
persistent-calyx categories (more than 93%); other applications are for livestock
management. For most of the applications, colored digital images or hyperspectral
images are used.

2.2.8 Neural Networks
Neural networks have been around for a long time; in 1958, Frank Rosenblatt
created the first perceptron. Nevertheless, they have become popular recently.
Artificial Neural Network is a machine learning algorithm that is based on brain
information processing. In a human brain, the information is processed as electrical
signals through billions of neurons. A biological neuron’s architecture is very
complicated, but it can be divided into three parts: a cell body with two extensions,
a dendrite, and an axon. The dendrites receive the electrical impulses, elaborated
in the body, and transmitted with the axons. Therefore, two adjacent neurons
can communicate between them through axons and dendrites. In the same way,
artificial neurons process the inputs and give the result as output to other neurons,
the one shown in figure 2.11 is a sigmoid neuron since an activation function is
present. A bias unit with a value of 1 is always present. The inputs are multiplied
by the correspondent weights and sum together. The result is then given to an
activation function generating the output of the neuron.

Bias unit

Figure 2.11: Artificial neuron with logistic activation function

33

Machine learning

More neurons can be put together, forming a neural network. There are many
different types of neural networks, each of them is suitable for particular problems:

• Feedforward neural networks also called MLPs(multi-layer perceptrons);

• CNNs (Convolutional Neural Networks), usually applied to solve problems
such as computer vision and image recognition;

• RNNs (Recurrent neural networks). They exploit feedback loops to predict
future outcomes using time-series data.

Today’s well-known term is deep learning; they are nothing else than a neural
network made of more than three total layers.

The description of neural networks will focus on MLPs since they are the most
suitable for plant status detection. MLPs layers can be classified as:

• input layer: it takes the input variables, and the number of nodes, i.e., neurons,
corresponds to the number of features used during the training phase;

• hidden layer: internal layers of the network. There may be one or more of
these layers, each one with a different number of nodes;

• output layer: a layer of nodes that produce the outputs.

An example of multi-layer perceptron is shown in figure 2.12. This network takes
three inputs, consists of two hidden layers, each with four neurons, and gives two
outputs. Since more layers form this neural network, and each layer contains several
neurons, a matrix notation is needed.

The terms a
(j)
i indicate the output of node i in layer j. In this case, the bias

unit is not shown, but it is always present. Also, the weights are expressed in a
matrix way; the matrix of weights controlling function mapping from layer j to
layer j + 1 is W (j). The elements of this last are w

(j)
ik , which indicates the weight

applied to element k in the layer j to form the node in i in layer j + 1. Therefore,
assuming g(·) a generic activation function, in this example:

a
(2)
1 = g(w(1)

10 x0 + w
(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3)

a
(2)
2 = g(w(1)

20 x0 + w
(1)
21 x1 + w

(1)
22 x2 + w

(1)
23 x3)

a
(2)
3 = g(w(1)

30 x0 + w
(1)
31 x1 + w

(1)
32 x2 + w

(1)
33 x3)

a
(2)
4 = g(w(1)

40 x0 + w
(1)
41 x1 + w

(1)
42 x2 + w

(1)
44 x3)

The same thing can be done for layer 3 and 4, for example the outputs of the
network are:

34

Machine learning

Input layer hidden layers output layer

Figure 2.12: Example of multi-layer percepton

a
(4)
1 = g(w(4)

10 a
(3)
0 + w

(4)
11 a

(3)
1 + w

(4)
12 a

(3)
2 + w

(4)
13 a

(3)
3 + w

(4)
14 a

(3)
4)

a
(4)
2 = g(w(4)

20 a
(3)
0 + w

(4)
21 a

(3)
1 + w

(4)
22 a

(3)
2 + w

(4)
23 a

(3)
3 + w

(4)
14 a

(3)
4)

All these expressions can be written in a compact matrix form such as a(j+1) =
g(W (j)a(j)), considering the inputs x as a(1). It is possible to notice that, calling sj
the number of nodes in the j-th layer, the generic dimension of a matrix W (j) is
sj+1 × sj + 1.

The training phase aims to find the weights for the neural network that min-
imizes the cost function. The cost function is more complicated than in logistic
regression since multiple output nodes should be considered. In order to do that, an
algorithm called backpropagation is exploited. Basically: the weights are initialized
randomly to avoid symmetry during the training; forward propagation is performed,
computing the outputs of the neural network using the training set; the output
error can be computed using the data of the training set; now it is possible to
compute the errors for the previous layers with the transpose matrix of the weight
and derivative of the active function; finally, it is possible to update the weights,
and these steps are repeated several times. A complete mathematical description
is present in Tom Mitchell’s book “Machine Learning” [26].

Following the article [18], ANN is widely used in agriculture. Many exciting
applications are presented; many are regarding detecting diseases exploiting both
ANNs and CNNs, all of which use hyperspectral or typical images. One application
is about identifying and classifying soybean and red and white bean, using vein leaf

35

Machine learning

images and CNN. Other exciting usages concern environment parameters prediction
and estimation, such as temperature, soil temperature, soil moisture, and more.

After this exploration into the world of machine learning, general knowledge
of the various algorithms, their advantages and disadvantages is acquired. The
most suitable algorithms for plant status detection are ANNs and SVMs for their
ability to manage non-linear relations of the data. As introduced in section 1.1,
most of the applications regarding plant health status detection exploit visual data.
Applications that use numerical data concern environmental data prediction and
classification problems in other fields.

In the next chapter, the neural network implementation is described, and a
simple SVM is used to confirm the results obtained with MLPs.

36

Chapter 3

Neural networks

This chapter describes the implementation of neural networks, particularly MLPs,
to detect the plant status. The most important thing is to prepare a reliable
training data set. After that, the number of layers and the number of nodes in
each layer should be decided. Several networks will be implemented in order to see
the influence of different features. Some results of the neural network will also be
confirmed by SVM implementation.

3.1 Number of layers and nodes
The most critical choice for a neural network is to decide the number of hidden layers
and the number of nodes for each layer. Generally, two problems will occur: using
too few neurons in the hidden layer would lead to the so-called underfitting. Using
too many neurons in the hidden layers may lead to overfitting and significantly
increase the computational cost. When overfitting occurs, the network may result
very well for the training set, but it is too specific and could perform poorly for
general test and validation sets.
Some common approaches to choose the optimal number of nodes and layers are
described in article [27]. There is no analytic formula to compute them; it is only
possible to use an experimental approach or trial and error method since every
real application is unique. However in [28] some rules of thumb are presented. It
has been demonstrated that two hidden layers are enough for creating decision
boundaries of any shape. Moreover, for the number of nodes, the following rules of
thumb are shown:

• The number of nodes in the hidden layers should be between the input layer’s
size and the size of the output layer.

• The number of nodes in the hidden layers should be 2/3 the size of the input

37

Neural networks

layer, plus the size of the output layer.

• The number of nodes in the hidden layers should be less than twice the input
layer dimension.

By applying these three rules to the plants’ problem the following numbers are
obtained:

• The number of neurons should be between 7 and 2

• The number of neurons should be 6

• The number of neurons should be less than 14

Starting from these computations and theory background, a neural network
with two hidden layers, each with six neurons, is decided to implement.

3.2 Networks to be implemeted
As mentioned before, several networks will be implemented. In most cases, the
networks will be formed by two hidden layers, each with six nodes. In particular,
the work consists of:

• training of a neural network with 2 hidden layers of sizes 6 and 6. Different
situations will be considered by changing some parameters and removing
various features;

• training of a neural network with 2 hidden layers of sizes 6 and 6. The data
used for the training come from 3 plants from 2021-03-24 to 2021-05-04, and
the testing is done of the fourth plant;

• training of a neural network with 2 hidden layers of sizes 6 and 6. The data
used for the training are from 2021-03-24 to 2021-05-04. The testing is done
of the future plants’ data, i.e., from 2021-05-06 to 2021-06-04;

• the operations above are repeated considering the difference in time of the
impedance as other features.

• the operations above are repeated with impedance module and phase after a
polynomial fitting;

38

Neural networks

3.3 Generally labeled dataset
As said in section 1.3, the available data set is regarding 4 different plants, where
2 of them are watered regularly everyday and 2 are not. In order to apply a
supervised machine learning algorithm, labeling of the data is necessary; the most
simple procedure is to label as healthy all the samples from the two watered plants
(Status = 1) and not-healthy the others (Status = 0). The watered plants are
plants 2 and 3, while the ones letting to dry are enumerated as 1 and 4.

3.3.1 Implementation
The neural network is implemented in Python by exploiting the open source library
TensorFlow. For this part of program the file nn_training.py should be run, this
Python script can be divided into four parts:

1. some parameters are set in order to choose the data files to be imported and
the features to be considered during the training;

2. preparation of the data imported from the files for the training. The dataset
is divided into the training set and testing set;

3. creation of the neural network and training;

4. the network trained is saved in a .h5 format file. Then the accuracy is
computed and saved, with the model information, in a .txt output file.

Parameters setting In the first part of the code, some parameters are defined,
in particular:

• the first parameter is set_by_hand which is set in order to choose how will be
the labeling. If it is equal to 0, the labelling method used is the one described
in 3.3, otherwise a more specific method is used, as described in section 3.4.
The choice of input data files is between two different group of files, based on
set_by_hand;

• the second one is saturation_moisture. When the soil is left to dry, the soil
moisture measured could reach very high negative value, of order of 109, this
could lead to an asymmetry between dry and wet soil. Furthermore, from
the datasheet of watermark, -200kPa is the lowest values that the sensor can
precisely detect. So if this parameter is 1, all the soil moisture with value less
than -200 kPa are saturated to -200kPa, otherwise these values are filtered
out;

39

Neural networks

• the other parameters decide which features will be used during the training of
the neural network, such as temperature, airhumidity, ambientlight, moisture,
date_time, impedance_module, impedance_phase. Other parameters such as
module_difference, phase_difference, module_fit, phase_fit, module_diff_fit and
phase_diff_fit are not used in this part for the training phase, they will be
explained later. Therefore they are set to 0 for now.

Listing 3.1: Parameters setting
1 # ∗∗∗∗∗ Parameters to dec ide the input f i l e s ∗∗∗∗∗
2 set_by_hand = 0 # F i r s t parameter to dec ide i f the p lant s used i s

with exported data or with s t a tu s s e t by hand
3 saturat ion_moisture = 1 # I f t h i s parameter i s equal to zero the

moisture <−200kPa w i l l be
4 # f i l t e r e d out e l s e i t w i l l be sa turated to −200kPa
5 # ∗∗ Decide which f e a t u r e s should be used in the t r a i n i n g phase ∗∗
6 temperature = 1
7 a i rhumid i ty = 1
8 ambient l i ght = 1
9 moisture = 1

10 date_time = 1
11 impedance_module = 1
12 impedance_phase = 1
13 module_di f fe rence = 0
14 phase_d i f f e r ence = 0
15 module_fit=0
16 phase_f i t= 0
17 module_di f f_f i t= 0
18 phase_d i f f_ f i t = 0
19 # Import o f the c o r r e c t f i l e s names
20 i f set_by_hand == 0 :
21 f i l ename_plant1 = ’ . . / data_of_the_plants / data_export_plant1 . csv ’
22 f i l ename_plant2 = ’ . . / data_of_the_plants / data_export_plant2 . csv ’
23 f i l ename_plant3 = ’ . . / data_of_the_plants / data_export_plant3 . csv ’
24 f i l ename_plant4 = ’ . . / data_of_the_plants / data_export_plant4 . csv ’
25 e l s e :
26 f i l ename_plant1 = ’ . . / data_of_the_plants /

data_plant1_03_05_dif f_withf it . csv ’
27 f i l ename_plant2 = ’ . . / data_of_the_plants /

data_plant2_03_05_dif f_withf it . csv ’
28 f i l ename_plant3 = ’ . . / data_of_the_plants /

data_plant3_03_05_dif f_withf it . csv ’
29 f i l ename_plant4 = ’ . . / data_of_the_plants /

data_plant4_03_05_dif f_withf it . csv ’

Data preparation For now, only the file names are known, so some operations
are needed in order to import the data and prepare them for the training phase.

40

Neural networks

For this purpose, two functions are exploited. Both are written in the Python
script import_data.py. The first function, called import_plants(),takes as inputs
the names of the four .csv files and the two parameters set_by_hand and satura-
tion_moisture; it gives as output the data of the four plants as Pandas DataFrame.
The following operations are done inside this function:

• the data are imported as Pandas DataFrame by exploiting the function
pd.read_csv() from Pandas library;

• the plants are labelled generally if set_by_hand is equal to 0, a Status column
is added and it contains zeros if the plant is not watered regularly and ones
otherwise. If the parameter is one, this operation is not done since the Status
column is already present;

• the parameter soil_moisture decides if the values under -200 kPa should be
saturated or filtered out;

• date conversion. The column of the time is in the format yyyy-mm-dd
hh:mm:ss, in order to use this information, the data is converted to a numeric
format by exploiting datetime library, and in particular only the hours and
the minutes are considered. The final value corresponds to hh × 60 + mm.

The second function prepare_samples() takes as inputs the four outputs of
the previous one and the parameters, which decide the features to be used during
the training phase. It gives eight outputs as NumPy data type, one sample data,
and one label for each plant. Inside the function, the features that will not be used
for the training are deleted, the data are converted into Numpy arrays and divided
into labels and samples.

After that, the four plant data are concatenated, shuffled among them, and
normalized to a number from 0 to 1. All these operations are done with Scikit-
learn library. Finally, 80% of the data is used as training set and the remaining as
testing set.

Listing 3.2: Concatenation shuffle and normalization of the data
1 from sk l ea rn . u t i l s import s h u f f l e
2 from sk l ea rn . p r ep ro c e s s i ng import MinMaxScaler
3 from sk l ea rn . mode l_se lect ion import t r a i n _ t e s t _ s p l i t
4

5 # Here the 4 datase t from 4 d i f f e r e n t p lant s are concatenated
6 plant_samples = np . concatenate ((plant_1_samples , plant_2_samples ,

plant_3_samples , plant_4_samples))
7 p lant_ labe l s = np . concatenate ((plant_1_labels , plant_2_labels ,

plant_3_labels , p lant_4_labels))
8

9 #S h u f f l e o f the data s e t

41

Neural networks

10 plant_labe l s , plant_samples = s h u f f l e (p lant_labe l s , plant_samples)
11

12 #Normal izat ion o f the samples
13 s c a l e r = MinMaxScaler (feature_range =(0 ,1)) #the data are normal ized

to the range 0 ,1
14 scaled_plant_samples = s c a l e r . f i t_t rans fo rm (plant_samples)
15 plant_samples_train , plant_samples_test , p lant_labe l s_tra in ,

p l ant_labe l s_te s t = \
16 t r a i n _ t e s t _ s p l i t (scaled_plant_samples , p lant_labe l s ,

t e s t _ s i z e = 0 . 2 , random_state = 4)

Creation and training As mentioned before, the neural network is implemented
by using TensorFlow library. Thanks to this library, it will not be hard to do this
step. The model is first created, defining the number of layers, how many nodes
are in each layer, and the activation function. Then the neural network is trained,
after deciding different parameters, such as the optimizer, the loss computation,
and the metrics to be displayed during the training. For the creation of the
model tf.keras.Sequential is exploited; it allows the addition of a linear stack
of layers to tf.keras.Model. For each layer, it is possible to define an activation
function that transforms the weighted sum to an output, adding non-linearity
to the network. Usually, the activation functions of the hidden layers are the
same, and they differ from the one of the output layer. Many types of activation
functions are available as described in [29]: relu (rectified linear unit) function,
sigmoid function, softmax function, tanh function and more. The relu function is a
piecewise function; it converts all the negative values to zero. While the softmax
function gives a probability distribution as output, the values are between 0 and 1,
and the sum equals 1. In this first implementation, the relu function is assigned to
the hidden layer and the softmax to the output layer. The two outputs indicate
the probability of the plant to be in the two states, respectively. With the summary
method, it is possible to print the summary of the defined model.

In the second part, there is the training of the neural network. The compile
method is used to configure the model for training. The main arguments to
be decided are the optimizer, the loss function, and the metrics. The available
optimizers are described in [30]: SGD, RMSprop, Adam, Adadelta, Adagrad,
Adamax, Nadam, Ftrl. The Adam (Adaptive Moment Estimation) optimizer [31] is
the common choice for deep learning cases since it works empirically very well. It
is a stochastic gradient descent method that takes into account also the moments
of first-order and second-order. The idea comes from a physic concept. Image a
2-D curve surface, and a ball represents the cost function. If the ball is left to
fall, in the end, it will reach the bottom part of the surface, which corresponds to
the global minimum for the cost function. The gradient descent, once it reaches
the minimum, will be stuck there. In contrast, the ball will oscillate several times

42

Neural networks

and stop at the bottom for friction. This idea is applied to gradient descent by
considering the gradient update of the previous step. A mathematical description
is presented in [32]. The previous gradient descent step, also called momentum, is
considered as:

sum_of_gradient = previous_sum_of_gradient × β1 + gradient × (1 − β1)
(3.1)

RMSprop(Root Mean Square Propagation) is also present in Adam optimizer, in
order to accelerate the converge procedure:

sum_of_gradient_squared = previous_sum_of_gradient_squared × β2

+ gradient2 × (1 − β2) (3.2)

Finally the step to update the weights is computed as:

δ = −learning_rate × sum_of_gradientñ
(sum_of_gradient_squared)

(3.3)

weights := weights + δ (3.4)

The root mean square is used to shrink the relevance of the previous gradient.
Therefore, compared to stochastic gradient descent, the Adam optimizer is much
faster, and it gives the possibility to escape from local minima. Default values are
used for β1 = 0.9, β2 = 0.999, Ô = 10−7, which is used to prevent divisions by zero.
While the learning rate is set to 0.0001.

The second parameter to be decided is the loss function [33]. Loss functions
are divided into probabilistic and regression losses. Usually, the cross-entropy
loss is used for classification problems. It can compute the difference between the
probability distribution of the predicted result and the sample label. For this case,
both binary_crossentropy or sparse_ categorical_crossentropy can be used, and the
difference is that the second one is also able to manage multi-class classification
problems.

Finally, the metrics to be displayed during the training have to be chosen [34].
A metric function is used to evaluate the performance of the model, it is similar to
the loss function, but it is not used for the training. The accuracy metric, which
computes how often predictions match labels, is usually chosen for a classification
problem.

The fit method is then used to train the model after setting the algorithm
hyperparameters, such as the validation split, the batch size, which indicates the
number of samples per gradient update, and the number of epochs, where an epoch
is an iteration over the entire training set.

43

Neural networks

Listing 3.3: Creation and training of the neural network
1 ## Creat ion o f the neura l network to be t ra in ed
2 nn_layers = [6 , 6 , 2]
3 model = Sequent i a l ([
4 Dense (un i t s = nn_layers [0] , input_shape=(f ea tu r e_s i z e ,) ,

a c t i v a t i o n=’ r e l u ’) , #t h i s r e p r e s e n t s the second l a y e r
5 Dense (un i t s = nn_layers [1] , a c t i v a t i o n = ’ r e l u ’) ,
6 Dense (un i t s = nn_layers [2] , a c t i v a t i o n = ’ softmax ’)
7])
8 #
9 #model . summary ()

10 #
11 ## Training o f the neura l network
12 epochs_num = 300
13 model . compi le (opt imize r=Adam(l ea rn ing_rate = 0 .0005) , l o s s=’

spa r s e_catego r i ca l_cro s s en t ropy ’ , met r i c s =[’ accuracy ’])
14 h i s t o r y = model . f i t (x=plant_samples_train , y=plant_labe l s_tra in ,

v a l i d a t i o n _ s p l i t =0.1 , batch_size =10, epochs=epochs_num , s h u f f l e=
True , verbose =2)

Running the program, during the training phase, the loss and accuracy of both
training set and validation set are displayed as shown in .

Epoch 296/300
255/255 - 0s - loss: 0.2336 - accuracy: 0.9007 -

val_loss: 0.2006 - val_accuracy: 0.9225
Epoch 297/300
255/255 - 0s - loss: 0.2335 - accuracy: 0.9011 -

val_loss: 0.1996 - val_accuracy: 0.9261
Epoch 298/300
255/255 - 0s - loss: 0.2330 - accuracy: 0.9015 -

val_loss: 0.2003 - val_accuracy: 0.9225
Epoch 299/300
255/255 - 0s - loss: 0.2329 - accuracy: 0.8984 -

val_loss: 0.1992 - val_accuracy: 0.9261
Epoch 300/300
255/255 - 0s - loss: 0.2323 - accuracy: 0.9004 -

val_loss: 0.2003 - val_accuracy: 0.9225
The training has finished, the model is saved in
../Neural_network_trained/plant_01_1111111000000_7662.h5
and the results are saved in
../output_files/output_neuralnetwork.txt

At the end, the model and the results are saved.

Saving model and results Once the training is finished, the model is saved in a
.h5 format file in the directory Neural_network_trained. The filename is some-
thing like plant_a0a1_a2a3a4a5a6a7a8a9a10a11a12a13a13_a14a15a16a17.h5, where each

44

Neural networks

char is a number with a particular meaning, as explained in table 3.1. Then the
results, such as train accuracy, test accuracy and confusion matrices are saved in
a .txt file named output_neuralnetwork.txt in the directory output_files. The
results for this part of implementation are:

The network is saved as:
../Neural_network_trained/plant_01_1111111000000_7662.h5
The overall accuracy of this network is: 0.8983625070581592
The train accuracy is: 0.9015178256265443
The test accuracy is: 0.8857545839210155
The overall confusion matrix is [[1527 245]

[115 1655]]
The train confusion matrix is [[1231 189]

[90 1323]]
The test confusion matrix is [[296 56]

[25 332]]

3.3.2 Results discussion

The test accuracy is similar to the train one, and overall accuracy of 89.8% is
reached. Furthermore, the confusion matrices are also considered since accuracy
will produce misleading results in the case of an unbalanced data set, which means
that the numbers of observations in different classes vary greatly. It is possible to
notice that the number of false positives and false negatives are almost the same.
The accuracy in the two cases, with moisture saturation and not, is almost the same.
Therefore, the soil moisture will always be saturated for future implementations
since this will lead to more data for the training set.

Accuracy of 89.8% is not an excellent result, but it is definitively something to
say that it may be possible to predict the plant status with a neural network. A
doubt that might come to mind is if the labeling method is correct. Reminding
that in this first step, the labels, i.e., the Status column, have been added based
on the watering condition on the plants, the pictures of the plants can be observed
to check if the labels are appropriate.

For this purpose, the picture of the four plants taken on 31/03/2021 at 10:28:34
is shown in figure 3.1. Plant 1, which is not watered, has yellow leaves, while plant
2, which should be healthy, has big green leaves with bright colors. However, plant
3, which was labeled as healthy, and plant 4, which should be dry, are opposite.
That means that the general labeling done in this section is not correct since the
watering events have no immediate effect on the plant status. Therefore, a more
precise and correct labeling method is needed.

45

Neural networks

Character Corresponding parameter value meaning

a0 set_by_hand 0/1
it indicates if the data
used for the training
is set by hand or not

a1 saturation_moisture 0/1

it indicates if the soil
moisture with high
negative value is
filtered out or
saturated

a2 temperature 0/1

if these parameters are
1, the corresponding
measurement is used
as a feature during
the training phase

a3 airhumidity 0/1
a4 ambientlight 0/1
a5 moisture 0/1
a6 date_time 0/1
a7 impedance_module 0/1
a8 impedance_phase 0/1
a9 module_difference 0/1
a10 phase_difference 0/1
a11 module_fit 0/1
a12 phase_fit 0/1
a13 module_diff_fit 0/1
a14 phase_diff_fit 0/1

a15, a16,
a17, a18

nn_layers[]
positive
integer
number

these numbers
represent the number
of nodes in each layer,
input layer, hidden
layers and output

layer

Table 3.1: plant_a0a1_a2a3a4a5a6a7a8a9a10a11a12a13a13_a14a15a16a17.h5, expla-
nation of this filename

3.4 Labeling by hand

Preparing the dataset for the training is one of the most challenging parts, not only
because the sampled data, the inputs, must make sense, but also the labels, i.e.,
the outputs, must be correct. There have been many more or less severe disasters
of machine learning applications in the real world due to a bad learning data set.

In March 2016, Microsoft released on Twitter an AI chatbot called Tay. The
training data was some anonymized public data and material written by comedians.

46

Neural networks

Figure 3.1: Picture of the four plants. Date: 31/03/2021 10:28:34

Then the bot, pretending to be a teen girl, learned and evolved continuously from
its interactions with other users on the social media platform. The result is that
within 16 hours, 95000 tweets were published that quickly became openly racist,
misogynistic, and anti-Semitic.

In 2018, an Uber self-driving car killed a woman that was walking her bike.
The test driver on the car, which had not been properly vetted or trained, was
watching her phone until half a second before the crash. The sensors on the car
had detected the woman six seconds before the collision. However, it could not
identify her as a pedestrian, and the system did not make the correct decision for
action. The system was able to identify a pedestrian or a rider, but it had never
trained for this kind of situation. Machine learning is a powerful tool, helping and
improving humans’ life. Nevertheless, mistakes can lead to useless algorithms or
even irreparable errors.

In order to label the plants correctly, the pictures of the plants in this period
are exploited and looked at one by one, and the health status is determined based
on the leaves conditions of the tobacco plants.

Starting from April 9th, as shown in figure 3.2, the leaves of plant 4 start
becoming yellow, while plant 3 still seems to like dry. From April 23rd, plant 3 has
new green leaves growing on the bottom, so it can be considered healthy from now.
From this date, all the plants’ states are coherent with their watering conditions:

47

Neural networks

plants 2 and 3 are labeled with Status equal to 1 and the others with Status equal
to 0.

Figure 3.2: Picture of the four plants. Date: 09/04/2021 11:28:34

Figure 3.3: Picture of the four plants. Date: 23/04/2021 10:45:48

48

Neural networks

3.4.1 Implementation
Once the correct labels are obtained, the neural network model has been trained
again. For this part, the same Python script as the one described in section 3.3.1
can be used, except in this case, the parameter set_by_hand is set to one. Therefore,
the plants’ data files imported already contain the Status column. Also, in this
case, the trained model is saved in a .h5 format file, and the performance is saved
in the same output file as before, which is output_neuralnetwork.txt.

3.4.2 Results discussion
Here too, 20% of the data are used for the testing and 80% for the train. The
performances reached are 78.6% for the training accuracy and 80.8% for the test
accuracy. It is possible to notice that with the correct labeling, the performance
has even fallen by 10% concerning the previous case; that is because each plant
has a different range of impedance module value, and in the previous case, since
each plant was always labeled with one state, it was as if the label was referring to
which plant the data belongs since it did not correctly indicate the plant status.

3.4.3 Optimal model and algorithm hyperparameters
Until now, neural networks with two hidden layers, each with six neurons, have
been used. A question that arises is if these are the optimal model hyperparameters
for this problem. In order to find the optimal hyperparameters, the GridSearchCV
of sklearn library is exploited. Starting from the computations described in section
3.1, several networks with two hidden layers have been built with the internal
nodes from two to seven. This function trains the neural networks for all the
combinations of the hyperparameters passed as argument, and the one with the
best performance is chosen. The Python script optimal_N_of_layers.py was run
several times, but each time, it gives a different result:

0.60524730637305
{’batch_size’: 10, ’epochs’: 120, ’nn_layer_1’: 6, ’nn_layer_2’: 5}
0.55472052693367
{’batch_size’: 10, ’epochs’: 120, ’nn_layer_1’: 5, ’nn_layer_2’: 4}
0.562247359752655
{’batch_size’: 10, ’epochs’: 120, ’nn_layer_1’: 6, ’nn_layer_2’: 2}
0.6126938939094544
{’batch_size’: 10, ’epochs’: 300, ’nn_layer_1’: 6, ’nn_layer_2’: 6}
0.5764867194571285
{’batch_size’: 10, ’epochs’: 200, ’nn_layer_1’: 5, ’nn_layer_2’: 5}

The numbers represent a parameter called F1 Score, used to evaluate the

49

Neural networks

performance of a machine learning algorithm, it is defined as:

F1 score = 2
1

precision + 1
recall

(3.5)

Therefore, F1 score is the harmonic mean of precision and recall. Precision
indicates the truly positive percentage out of the positive predicted, TP/(TP +
FP). At the same time, recall refers to the rate between true positive and the
total number of positives, corresponding to TP/(TP+FN). Each time the script
indicates a different number of nodes as optimal values. This is due to the local
minima. In each training, a network may stall in a different local minimum, giving
a different performance. In order to solve this problem, the script should be run
many times, but each time 36 neural networks should be trained. Suppose that the
optimal network is decided based on the number of times it results from the script;
for instance, the optimal network is the one that appears five times. In the worst
scenario, the script should be run 36 × 4 + 1 times, supposing each model results
as optimal four times; the 145-th time is needed to decide the optimal parameters.
Each time the script is run, 36 neural networks are trained, so a total of 5220
neural networks are trained. Suppose an average training time of five minutes for
each network, 26100 minutes are required to finish the training of all the networks,
which means 435 hours or more than 18 days. It is not impossible to do that, but
it is not necessary. In order to have an idea of how the number of layers and nodes
affect the neural network performance, some neural networks are trained by hand
using the script nn_training.py:

• a network with two hidden layers, the first one with six nodes and the second
one with four nodes;

• a network with two hidden layers, the first one with four nodes and the second
one with three nodes;

• a network with two hidden layers, the first one with fourteen nodes and the
second one with seven nodes;

• a network with three hidden layers, the first one with fourteen nodes, the
second one with ten nodes, and the third one with six layers;

Each model is trained six times in order to see the effects of local minima; the
results are summarized in table 3.2. It is not very meaningful to compute the
average accuracy of the models trained more times. Therefore, the final accuracy
considered is the maximum testing accuracy.

It is possible to notice that generally, the accuracy increases with the number
of nodes. With a different number of nodes, the accuracy ranges from 71.9% to
82.1%. However, the maximum accuracy is also reached by the network with layers

50

Neural networks

model name training
accuracy

testing
accuracy

maximum
testing
accuracy

plant_11_1111111000000_7642.h5

62.6% 61.1%

73.4%

73.6% 72.1%
67.0% 68.7%
72.2% 71.1%
65.4% 65.2%
73.5% 73.4%

plant_11_1111111000000_7432.h5

59.9% 58.8%

71.9%

69.0% 67.4%
71.5% 71.9%
63.1% 64.7%
69.2% 65.5%
56.6% 54.6%

plant_11_1111111000000_71472.h5

56.4% 56.2%

77.8%

78.7% 74.7%
77.6% 77.8%
73.9% 70.9%
70.7% 71.4%
77.6% 76.2%

plant_11_1111111000000_7141062.h5

78.0% 75.3%

81.4%

70.8% 71.1%
78.5% 76.7%
81.2% 81.4%
77.3% 77.1%
72.6% 69.6%

Table 3.2: Training of different version of neural networks

7-6-6-2. Furthermore, using too many layers and nodes will lead to overfitting.
Therefore, it is not convenient to train a more complex neural network for the same
performance. From now the neural network with layers 7-6-6-2 will always be used.
Note that the 7 is the dimension of the input layer, which depends on the number
of features used during the training phase. Therefore it can change.

Another parameter that could affect the performance is the activation function
for the hidden layers. Till now, the relu function is used; it will be helpful to
train a neural network with a sigmoid activation function. The model is trained
several times, and the following testing accuracy is obtained: 56.4%, 60.8%, 60.7%,
60.1%. Furthermore, it can be observed that the loss is stuck from the first epoch,

51

Neural networks

which means that the accuracy is not improved during the training. So, the relu
activation function is chosen for future models.

The question is if the algorithm hyperparameters, such as the chosen number
of epochs and the learning rate, are suitable values. Now, the learning rate is set
to 0.0001 and the number of epochs to 300. If the learning rate is too low, the
training would be prolonged; otherwise, it could not reach a convergence point.
In order to evaluate these parameters, the cross-validation technique is exploited.
In particular, a part of the training set is used as validation set. Based on the
validation accuracy, the hyperparameters can be tuned. With the intention to
see if the hyperparameters are suitable, the training accuracy and the validation
accuracy are plotted over the epoch. In figure 3.4, the accuracy obtained with
learning rate set to 0.0001 and 300 epochs is shown. It is possible to observe that

0 50 100 150 200 250 300
Epochs

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Training and Validation accuracy
Training accuracy
validation accuracy

Figure 3.4: Training accuracy and validation accuracy. Learning_rate = 0.0001,
epochs = 300

the accuracy increase is relatively fast, so the learning rate is set to a good value.
Therefore, the accuracy becomes flat at the end, which means that the number of
epochs is enough. The learning rate and epochs are set to other values to see their

52

Neural networks

effects on the training. In figure 3.5 the accuracy obtained with learning rate set to
0.00001 and 300 epochs is shown. It is visible that the accuracy is almost constant,
and the number of epochs is not enough. In figure 3.6 the number of epochs is
increased to 1000, and it is still not enough.

0 50 100 150 200 250 300
Epochs

0.545

0.550

0.555

0.560

0.565

0.570

0.575

0.580

0.585

Ac
cu

ra
cy

Training and Validation accuracy

Training accuracy
validation accuracy

Figure 3.5: Training accuracy and
validation accuracy. Learning_rate =
0.0001, epochs = 300.

0 200 400 600 800 1000
Epochs

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Ac
cu

ra
cy

Training and Validation accuracy
Training accuracy
validation accuracy

Figure 3.6: Training accuracy and
validation accuracy. Learning_rate =
0.0001, epochs = 1000.

To summarize, the hyperparameters chosen are good values. Therefore the
learning rate is left to 0.0001; two hidden layers are kept, each with six nodes, and
each model will be trained several times to avoid local minima.

3.5 Future predictions
A possible application of the trained model is to predict the plant’s status for future
data. The idea is to train a neural network with the data of some plants and then
use the trained network to monitor the health status of the same plants. It is not
an optimal method because it means that the neural network should be trained
again when monitoring new plants are required. However, it is an excellent way
to evaluate the performance of the model and to detect overfitting. The trained
model is used to test the data from 2021-05-06 to 2021-06-04.

3.5.1 Implementation
In this step, the script future_predictions.py is exploited, which description can be
divided into four parts:

1. some parameters are set in order to choose the trained model to be imported
and the data file names are defined;

53

Neural networks

2. preparation of the imported data for the testing. A proper normalization for
the data is need;

3. import of the neural network to be tested and computation of the accuracy;

4. the results are saved is a .txt output file.

Parameters setting The parameters which decide the features and the number
of nodes in the two layers are set. These parameters are used to select the trained
neural network to be imported. After that, the file names are defined. Two groups
of file names are needed; the first group is regarding the data used for the training,
the old data. The second one is the file names of the data to be tested;

Data preparation Once the file name are known, two functions, import_plants
and prepare_samples, are exploited to import both the old and new data. In this
case, the normalization is tricky. The normalization of the new samples can not
be done using the data set itself, but the data set used for the training should
be considered since the normalization during the training phase was done in that
way. Otherwise, the neural network will give wrong predictions. Therefore, the
normalization can be expressed as:

xÍ = x − xold−min

xold−max − xold−min
(3.6)

For this reason also the old dataset are imported in this program.

Listing 3.4: Normalization of the testing set
1 scaled_1_samples = (plant_1_samples − np . min (data_plants_old , ax i s =0)

) /(np . max(data_plants_old , ax i s =0) − np . min (data_plants_old , ax i s
=0))

2 scaled_2_samples = (plant_2_samples − np . min (data_plants_old , ax i s =0)
) /(np . max(data_plants_old , ax i s =0) − np . min (data_plants_old , ax i s
=0))

3 scaled_3_samples = (plant_3_samples − np . min (data_plants_old , ax i s =0)
) /(np . max(data_plants_old , ax i s =0) − np . min (data_plants_old , ax i s
=0))

4 scaled_4_samples = (plant_4_samples − np . min (data_plants_old , ax i s =0)
) /(np . max(data_plants_old , ax i s =0) − np . min (data_plants_old , ax i s
=0))

Import of the model and accuracy computation To import the trained
model it is possible to use load_model from Keras. Once the model is obtained ,
the accuracy and confusion matrices of the four plants are computed separately.

54

Neural networks

Saving the testing results Finally, the results are saved in a .txt file called
output_future_prediction.txt in the folder output_files:

The following accuracy is computed with the neural network trained with the
name../Neural_network_trained/plant_11_1111111000000_7662.h5
on the data sampled in the period 06/05/2021 to 07/06/2021

The accuracy of this network on plant 1 in the month of May is: 0.904
The confusion matrix is[[452 48]
[0 0]]

The accuracy of this network on plant 2 in the month of May is: 0.994
The confusion matrix is[[0 0]
[3 497]]

The accuracy of this network on plant 3 in the month of May is: 0.923
The confusion matrix is[[0 0]
[14 179]]

The accuracy of this network on plant 4 in the month of May is: 0.777
The confusion matrix is[[383 110]
[0 0]]

3.5.2 Results discussion
The results reached for future data prediction are outstanding, with more than 90%
for plants 1, 2, and 3. For plant 2, only three wrong predictions out of 500 sampled
data. While plant 4 reaches 78% of accuracy. All these numbers suggest that the
neural network trained in this way can predict the health condition for the same
plants used during the training phase. Nevertheless, the algorithm trained in this
way is not practical in an actual application. However, this is a small achievement
since this method can be used to evaluate the performance of a network detecting
overfitting.

3.6 Relevance of the impedance
As has always been said, this thesis aims to find a way to predict the plant health
status with the impedance value. Other authors have demonstrated the correlation
between impedance and other environmental parameters, but the importance of the
impedance for the machine learning algorithm still needs to be proved. With this
intention, a neural network is trained with only two features: impedance module
and phase.

3.6.1 Implementation with only impedance
The same Python script described in section 3.3.1 can be used. All the parameters
indicating the features are set to zero except the impedance module and impedance
phase. The result is saved in the same output file, i.e., output_neuralnetwork.txt:

55

Neural networks

The network has saved as:
../Neural_network_trained/plant_11_0000011000000_2662.h5
The overall accuracy of this network is: 0.7058159232072275
The train accuracy is: 0.7042004941757853
The test accuracy is: 0.7122708039492243
The overall confusion matrix is[[1529 461]
[581 971]]

The train confusion matrix is[[1214 367]
[471 781]]

The test confusion matrix is[[315 94]
[110 190]]

0 100 200 300 400 500 600 700 800 900
time / hour

0

1

2

3

4

5

Im
pe

da
nc

e
m

od
lu

s/
 O

hm

104 Impedances of four plants

plant 1
plant 2
plant 3
plant 4

Figure 3.7: Impedance module of the four plants during the period from 2021-03-
24 to 2021-05-04

The neural network has an accuracy of 70%. It has reduced by about 10%, but
it is still something to say that detecting the plant status is possible with only
impedance. However, this result could be tricky. It is possible to notice that the
impedance of the plants overlaps in specific periods by observing the impedance
module and phase in figures 3.7 and 3.8. For instance, plants 2 and 4 have very
similar modules even if the two plants are in different health conditions. At the
same time, the phases overlap almost all the time. Therefore, the relatively good
performance reached by the neural network could be due to overfitting. The model
is tested on future data in order to verify if there is really overfitting. The Python
script future_predictions.py, which is described in section 3.5.1 is exploited. Only
the parameters impedance_module and impedance_phase are set to one in order to
import the correct model, and the following results are obtained:

56

Neural networks

0 100 200 300 400 500 600 700 800 900
time / hour

-55

-50

-45

-40

-35
Im

pe
da

nc
e

ph
as

e
Phase of four plants

plant 1
plant 2
plant 3
plant 4

Figure 3.8: Impedance phase of the four plants during the period from 2021-03-24
to 2021-05-04

The following accuracy is computed with the neural network trained with the
name ../Neural_network_trained/plant_11_0000011000000_2662.h5
on the data sampled in the period 06/05/2021 to 07/06/2021

The accuracy of this network on plant 1 in the month of May is: 0.992
The confusion matrix is[[496 4]
[0 0]]

The accuracy of this network on plant 2 in the month of May is: 0.208
The confusion matrix is[[0 0]
[396 104]]

The accuracy of this network on plant 3 in the month of May is: 0.057
The confusion matrix is[[0 0]
[182 11]]

The accuracy of this network on plant 4 in the month of May is: 0.351
The confusion matrix is[[173 320]
[0 0]]

The accuracy of the prediction for plants 2, 3, and 4 is very low. Therefore,
it is possible to conclude that it is impossible to train a neural network with
only impedance since overfitting is present even if the training accuracy is not
relatively high. Another method or approach is necessary to prove the importance
of the impedance and that a neural network with good performance can not be
built only with environmental data. For this purpose, the “reductio ad absurdum”
approach is used. Suppose that the impedance is not essential for the plant status
detection. Therefore, if it is not used during the training phase, the neural network’s
performance will remain almost the same.

57

Neural networks

3.6.2 Implementation without impedance
As said before, training without impedance values is done. Therefore, the features
are only 5, which are the environmental data and the time. The usual script, i.e.,
nn_training.py, is used. The following results are obtained:

The network has saved as:
../Neural_network_trained/plant_11_1111100000000_5662.h5
The overall accuracy of this network is: 0.6716544325239977
The train accuracy is: 0.6703141546064243
The test accuracy is: 0.6770098730606487
The overall confusion matrix is[[1496 494]
[669 883]]

The train confusion matrix is[[1190 398]
[536 709]]

The test confusion matrix is[[306 96]
[133 174]]

The accuracy has dropped by 10%, which means that eliminating the impedance
module and phase from the training has hardly affected the neural network per-
formance. However, this performance loss could be due to the reduced number
of features used during the train. Therefore, several neural networks have been
trained using five features. Two features among soil moisture, temperature, air
humidity, and light intensity, are removed, leading to ten combinations. The results
are shown in figure 3.9. The numbers in the bar graph correspond to the trained

76.3 76.3 73.2
83.2

74.9
59.4

75
64.7

85.2

68.5

1 2 3 4 5 6 7 8 9 10
Trained neural networks

0

20

40

60

80

100

O
ve

ra
ll

ac
cu

ra
cy

Figure 3.9: Results of the ten different neural networks

neural network, in particular:

1. temperature and air humidity are removed from the features;

2. temperature and ambient light are removed from the features;

3. temperature and soil moisture are removed from the features;

58

Neural networks

4. temperature and time are removed from the features;

5. air humidity and ambient light are removed from the features;

6. air humidity and soil moisture are removed from the features;

7. air humidity and time are removed from the features;

8. ambient light and soil moisture are removed from the features;

9. ambient light and time are removed from the features;

10. soil moisture and time are removed from the features;

It is possible to observe that the accuracy remains relatively high to 80% in
almost all the cases. The accuracy decreases to 65% in some cases: when one of
the two features removed is the soil moisture.

Therefore, it is possible to conclude that the impedance module and phase
are two relevant features in a plant detection problem. If they are removed, the
accuracy of the trained neural network drops significantly. Moreover, also the soil
moisture hardly influences the network performance.

3.7 Three plants for the training phase
An optimal way to use a machine learning algorithm is to prepare the model for
use in any situation. It will be beneficial if the model trained with the four plants
can be directly used on-field on any other plants. Since the available data set is
not unlimited, this situation is emulated by training a neural network with three
plants, and then the model is tested on the fourth one.

3.7.1 Implementation
The training and testing are done with Python scripts in the folder Machine
learning. For the training three_plants_train.py is used, this script trains four
models, each one is trained with three different plants. Once the models are
obtained, the script three_plants_accuracy is exploited in order to evaluate the
models’ performance.

Training phase The procedure is very similar to the training of other networks.
In the first part, the data are imported and prepared for the training. Then the
models are defined and trained. Finally, the models are saved as .h5 format files.
The only difference is that now four different datasets are considered, obtained
taking three plants out of four:

59

Neural networks

Listing 3.5: Four different testing set are obtained
1 data_123 = pd . concat ([data_plant1 , data_plant2 , data_plant3]) #data

o f the p lant s 1 2 3
2 data_124 = pd . concat ([data_plant1 , data_plant2 , data_plant4]) #data

o f the p lant s 1 2 4
3 data_134 = pd . concat ([data_plant1 , data_plant3 , data_plant4]) #data

o f the p lant s 1 3 4
4 data_234 = pd . concat ([data_plant2 , data_plant3 , data_plant4]) #data

o f the p lant s 2 3 4

Therefore, for each training set a neural network is trained:

Listing 3.6: Four different networks are trained and saved
1 model123 . compi le (opt imize r=Adam(l ea rn ing_rate = 0 .0001) , l o s s=’

spa r s e_catego r i ca l_cro s s en t ropy ’ , met r i c s =[’ accuracy ’])
2 model123 . f i t (x=scaled_123_samples , y=data_123_labels ,

v a l i d a t i o n _ s p l i t =0.2 , batch_size =10, epochs =200 , s h u f f l e=True ,
verbose =2)

3

4 model124 . compi le (opt imize r=Adam(l ea rn ing_rate = 0 .0001) , l o s s=’
spa r s e_catego r i ca l_cro s s en t ropy ’ , met r i c s =[’ accuracy ’])

5 model124 . f i t (x=scaled_124_samples , y=data_124_labels ,
v a l i d a t i o n _ s p l i t =0.2 , batch_size =10, epochs =200 , s h u f f l e=True ,
verbose =2)

6

7 model134 . compi le (opt imize r=Adam(l ea rn ing_rate = 0 .0001) , l o s s=’
spa r s e_catego r i ca l_cro s s en t ropy ’ , met r i c s =[’ accuracy ’])

8 model134 . f i t (x=scaled_134_samples , y=data_134_labels ,
v a l i d a t i o n _ s p l i t =0.2 , batch_size =10, epochs =200 , s h u f f l e=True ,
verbose =2)

9

10 model234 . compi le (opt imize r=Adam(l ea rn ing_rate = 0 .0001) , l o s s=’
spa r s e_catego r i ca l_cro s s en t ropy ’ , met r i c s =[’ accuracy ’])

11 model234 . f i t (x=scaled_234_samples , y=data_234_labels ,
v a l i d a t i o n _ s p l i t =0.2 , batch_size =10, epochs =200 , s h u f f l e=True ,
verbose =2)

12

13 f i lename_neuralnetwork_1 = ’ Neural_network_trained /
plant_neural_network_123_bh . h5 ’

14 f i lename_neuralnetwork_2 = ’ Neural_network_trained /
plant_neural_network_124_bh . h5 ’

15 f i lename_neuralnetwork_3 = ’ Neural_network_trained /
plant_neural_network_134_bh . h5 ’

16 f i lename_neuralnetwork_4 = ’ Neural_network_trained /
plant_neural_network_234_bh . h5 ’

At the end of the training, each model is saved in a .h5 format file in the folder
Neural_network_trained.

60

Neural networks

Testing phase Once the models are trained, they are tested using the script
three_plants_accuracy. The testing is done on the fourth plant, which is the one
not used during the training. For example, if the model is trained with plants 1, 2,
and 3, then the model is tested on plant 4. A proper normalization is necessary;
the data of plant 4 should be normalized using the minimum and maximum values
of the other plants since they are used during the training phase. The results are
saved in the file output_threeplants.txt in the folder output_files:

Using for the training a network of dimension 7 6 6 2:
Plants 1 2 3 as training
The accuracy of this network is: 0.5857787810383747
The confusion matrix is[[384 135]
[232 135]]

Plants 1 2 4 as training
The accuracy of this network is: 0.8710407239819005
The confusion matrix is[[524 92]
[22 246]]

Plants 1 3 4 as training
The accuracy of this network is: 0.827313769751693
The confusion matrix is[[0 0]
[153 733]]

Plants 2 3 4 as training
The accuracy of this network is: 0.36455981941309257
The confusion matrix is[[292 563]
[0 31]]

3.7.2 Results discussion

The testings, done on plants 2 and 3, when plants 1, 3, 4, and plants 1,2,4 are
used for training, respectively, give pretty good performance. In both cases, the
accuracy is greater than 82%. It means that the idea of preparing a machine
learning algorithm for plant health status detection ready to be used for other
tobacco plants is feasible. However, when plant 4 is used for testing, the accuracy is
only 58.6%, even worse for plant 1. This bad performance is because each plant has
its range of impedance. This problem must be solved in order to reach a reliable
system. For this purpose, two data transformation techniques can be exploited.
The first one is to consider the impedance difference between two adjacent samples
in time as additional features for the training. The second one is regarding a
polynomial fitting that filters out the daily cycle variation of the data, considering
only the general trend of the impedance. Also, in this case, the difference can be
considered.

61

Neural networks

3.8 Impedance difference
The problem of different impedance ranges can be reduced by considering the
impedance variation instead of the value itself. Therefore, the other two columns,
i.e., two new features, should be added to the original plant data. These new
features are the difference of the impedance module and the difference of impedance
phase. Then, it is possible to create new .csv files containing these new columns.
Once the new data are obtained, the usual nn_training.py can be used.

3.8.1 Adding the impedance difference
With the intention to do this step, a new Python script is exploited, which is
diff_considering.py. This script imports the data, computes the difference and saves
the results in new data files. The data are imported exploiting the pd.read_csv
function of Pandas library. Then, the differences are computed and saved with a
custom function called add_difference. This function takes two inputs, the data
frame imported with the Pandas function and the file’s name where the data wants
to be saved. It takes the data frame and generates two NumPy data frames, one
without the first row and one without the last row. After that, they have converted
again into Pandas data frame. Furthermore, two new columns, called module_diff
and phase_diff are computed, making simply the difference between the impedance
modulus columns of the two data frames and the difference between the impedance
phase columns of the two data frames. Finally, the data with new columns are
saved into a new .csv file.

Listing 3.7: Function used to add the difference to the data
1 de f add_di f f e rence (data_plant1 , f i lename_data1_tobesaved) :
2 data_plant_1_n = data_plant1 . to_numpy () #convert the data to

numpy
3 plant1_Nplus1 = np . d e l e t e (data_plant_1_n , 0 , 0)#d e l e t e the f i r s t

row
4 plant1_N = np . d e l e t e (data_plant_1_n , −1 , 0)#d e l e t e the l a s t row
5 #Now the two s t r i n g are converted again in to pandas dataframe
6 data_plant_1_N = pd . DataFrame (data=plant1_N , columns= ["unnamed : 0

" , " unnamed1 " , " Temperature [C] " , " Air Humidity [RH] " , " Ambient
Light [lux] " , " Moisture [KPa] " , " Date " , " impedance_modlus " , "
impedance_phase " , " Status "])

7 #pr in t (data_plant_1_N) #pr in t to see i f the data i s c o r r e c t
8 data_plant_1_Nplus1 = pd . DataFrame (data=plant1_Nplus1 , columns= [

"unnamed : 0 " , " unnamed1 " , " Temperature [C] " , " Air Humidity [RH] " , "
Ambient Light [lux] " , " Moisture [KPa] " , " Date " , " impedance_modlus " , "
impedance_phase " , " Status "])

9 # The impedance d i f f e r e n c e i s computed
10 data_plant_1_Nplus1 [’ module_dif f ’] = data_plant_1_Nplus1 [’

impedance_modlus ’] − data_plant_1_N [’ impedance_modlus ’]

62

Neural networks

11 data_plant_1_Nplus1 [’ phase_di f f ’] = data_plant_1_Nplus1 [’
impedance_phase ’] − data_plant_1_N [’ impedance_phase ’]

12 pr in t (data_plant_1_Nplus1) #pr in t to see i f the data i s c o r r e c t
13 #the u s e l e s s column are de l e t ed
14 data_plant_1_Nplus1 . drop (" unnamed1 " , i n p l a c e=True , ax i s =1)
15 pr in t (data_plant_1_Nplus1) #pr in t to see i f the data i s c o r r e c t
16 #The data with the d i f f e r e n c e i s saved in a new f i l e
17 data_plant_1_Nplus1 . to_csv (f i lename_data1_tobesaved)

This function is called four times, one for each plant. Note that if the original
data frame has N rows, it contains only N-1 rows after the difference computation
since nothing can be subtracted from the first row.

3.8.2 Implementation
Once the data files are ready, the usual script nn_learning.py is exploited, this
time the parameters module_difference and phase_difference shown in table 3.1 are
set to one. The neural network is trained twice. Firstly, using only the difference
computed, the second time considering the impedance module and phase values
as features. The results are saved in the usual file output_neuralnetwork.txt. The
following results are obtained considering only the differences as features:

The network is saved as:
../Neural_network_trained/plant_11_1111100110000_7662.h5
The overall accuracy of this network is: 0.6836445953593662
The train accuracy is: 0.690484612663601
The test accuracy is: 0.6562942008486563
The overall confusion matrix is [[1385 599]
[519 1031]]

The train confusion matrix is [[1123 470]
[405 829]]

The test confusion matrix is [[262 129]
[114 202]]

Considering only the environmental parameters and impedance difference, the
overall accuracy reached by the trained model is around 68.3%. The performance has
deteriorated concerning the case with impedance module and phase as features. It
may be helpful to consider also the impedance module and phase values. Therefore,
the number of features becomes nine, and the following performance is reached:

The network is saved as:
../Neural_network_trained/plant_11_1111111110000_9662.h5
The overall accuracy of this network is: 0.7560837577815507
The train accuracy is: 0.7569862044570216
The test accuracy is: 0.7524752475247525
The overall confusion matrix is [[1285 699]

63

Neural networks

[163 1387]]
The train confusion matrix is [[1024 552]
[135 1116]]

The test confusion matrix is [[261 147]
[28 271]]

The accuracy obtained with this network is 75.6%, higher than the previous
case since impedance module and phase are considered. However, it is still lower
than the case with only impedance and environmental data. From these results,
it is possible to conclude that considering the difference as features for the model
training is not possible to solve the problem of a different range of impedance
values. In the next section, another idea is exploited; a polynomial fitting is applied
to the data to neglect the daily variations.

3.9 Polynomial fitting
It is possible to observe the daily variation of impedance described in [7] in figures
3.8 and 3.7. Perhaps these variations are not useful for plant health condition
detection. Maybe the plant status depends only on the general impedance trend,
and these daily variations are more like additional noise that negatively influences
the performance. With the intention to verify if it is really like this, the data are
fitted with a polynomial function. And then, the difference is computed again.

3.9.1 Polynomial fitting implementation
In order to fit the data, the script curve_fitting.py is exploited. This script is
composed by four parts:

1. Import of the plant data;

2. polynomial fitting of the data;

3. plotting of the figures after the fitting;

4. saving the values in new .csv files.

Import of the data In this part, the names of the data files and the names of
the files to save the results are declared. The data are extracted from the files
by using the usual two functionsimport_plants and prepare_samples. In this
case, the labels and the environmental parameters are not needed. The impedance
module and impedance phase are in the 5-th and 6-th columns, respectively.

64

Neural networks

Polynomial fitting of the data Once the impedance module and phase are
available, a custom function fitting_poly is used to compute the fitted “y”. In
particular, it inputs the grade of the polynomial function for the fitting, the x and
y to be fitted, and the number of the plant to which the data belongs. It returns
two values, x_line which corresponds to x, and the fitting values y_line.

Plots The results obtained in the previous step are used for a graphical view of
the functions. In figure 3.10, it is possible to see how a second-degree polynomial
fits the impedance module; this curve is not sufficient to represent the impedance
variation correctly.

0 200 400 600 800

10000

20000

30000

40000

Plant 1 module fitting with grade 2

0 200 400 600 800

30000

35000

40000

45000
Plant 3 module fitting with grade 2

0 200 400 600 800

25000

30000

35000

40000

45000
Plant 2 module fitting with grade 2

0 200 400 600 800

20000

30000

40000

50000
Plant 4 module fitting with grade 2

Figure 3.10: Module fitting with a second degree polynomial function. In blue is
the module, and in red, the fitting function

Therefore, the polynomial degree has increased up to 8 as shown in figure 3.11.
The situation has improved, but the fitting function is not optimal. When the
impedance variation is speedy, the polynomial function cannot follow its trend,
such as for plants 1 and 4.

In figures 3.12 and 3.13, two 49-th degree polynomial function are used to fitting
the impedance module and phase respectively. A polynomial function with this
degree is suitable for the data fitting since it can reasonably follow the impedance’s
general trend but neglect the daily variation.

65

Neural networks

0 200 400 600 800
0

20000

40000

Plant 1 fitting with grade 8

0 200 400 600 800

30000

35000

40000

45000

Plant 3 fitting with grade 8

0 200 400 600 800

25000

30000

35000

40000

45000
Plant 2 fitting with grade 8

0 200 400 600 800

20000

30000

40000

50000
Plant 4 fitting with grade 8

Figure 3.11: Module fitting with a 8-th degree polynomial function. In blue is
the module, and in red, the fitting function

0 200 400 600 800
0

10000

20000

30000

40000

Plant 1 module fitting with grade 49

0 200 400 600 800

30000

35000

40000

45000
Plant 3 module fitting with grade 49

0 200 400 600 800

25000

30000

35000

40000

45000
Plant 2 module fitting with grade 49

0 200 400 600 800

20000

30000

40000

50000
Plant 4 module fitting with grade 49

Figure 3.12: Module fitting with a 49-th degree polynomial function. In blue is
the module, and in red, the fitting function

66

Neural networks

0 200 400 600 800

80

60

40

20

Plant 1 phase fitting with grade 49

0 200 400 600 800

48

46

44

42

Plant 3 phase fitting with grade 49

0 200 400 600 800

48

46

44

42

Plant 2 phase fitting with grade 49

0 200 400 600 800
48

46

44

42

40
Plant 4 phase fitting with grade 49

Figure 3.13: Phase fitting with a 49-th degree polynomial function. In blue is
the phase, and in red, the fitting function

Saving of the data Finally, the fitting data is saved as additional columns to
the .csv files. With this purpose a custom function add_fit is exploited. It inputs
the Pandas data frame of the plant data, the name of the file where the new data
will be saved, the module, and the phase after the fitting. It simply adds two new
columns module_fitting and phase_fitting containing the values obtained with the
fitting to this Dataframe. And then, the data are saved into a .csv file with the
name passed to the function.

Listing 3.8: Function used to add the data to the files
1 de f add_fit (data_plant1 , f i lename_data1_tobesaved , y_plant_module ,

y_plant_phase) :
2 data_plant_1_N = data_plant1
3 data_plant_1_N [’ module_f i t t ing ’] = y_plant_module
4 data_plant_1_N [’ pha s e_ f i t t i ng ’] = y_plant_phase
5 pr in t (data_plant_1_N) #pr in t to see i f the data i s c o r r e c t
6 #An u s e l e s s column i s de l e t ed
7 data_plant_1_N . drop (" unnamed1 " , i n p l a c e=True , ax i s =1)
8 pr in t (data_plant_1_N) #pr in t to see i f the data i s c o r r e c t
9 #The data a f t e r the f i t t i n g i s saved in a new f i l e

10 data_plant_1_N . to_csv (f i lename_data1_tobesaved)

Once the new data files are available, another script, diff_considering_fitting.py,
is exploited in order to compute the difference of the module and phase after the

67

Neural networks

fitting. This script is almost equal to the one described in section 3.8.1.

3.9.2 Implementation
Now, it is possible to train neural networks considering the fitting values and
their difference as features. The usual script nn_training.py is used, this time the
parameters set to one are module_fit, phase_fit, module_diff_fit and phase_diff_fit.

Firstly, only module_fit, phase_fit and the environmental parameters are set to
one, the following results are obtained:

The network is saved as:
../Neural_network_trained/plant_11_1111100001100_7662.h5
The overall accuracy of this network is: 0.7940011318619129
The train accuracy is: 0.7955429784223559
The test accuracy is: 0.7878359264497878
The overall confusion matrix is [[1469 515]
[213 1337]]

The train confusion matrix is [[1187 411]
[167 1062]]

The test confusion matrix is [[282 104]
[46 275]]

The overall accuracy is 79.4%, compared to the first implementation described
in section 3.4, it is almost the same. It means that the fitting is not much helpful
for improving the performance. It is just more effort for the same performance.
After that, a second attempt is done setting also the parameters module_diff_fit
and phase_diff_fit to one, the performance is the following:

The network is saved as:
../Neural_network_trained/plant_11_1111100001111_9662.h5
The overall accuracy of this network is: 0.7439162422184493
The train accuracy is: 0.7467279801910152
The test accuracy is: 0.7326732673267327
The overall confusion matrix is [[1431 553]
[352 1198]]

The train confusion matrix is [[1145 442]
[274 966]]

The test confusion matrix is [[286 111]
[78 232]]

In this case, the performance is even worse.
Although the performance is similar to the implementation with standard

impedance, this method is not particularly useful because using this algorithm
on-field will be a problem. Suppose that the detection of the status of a plant is
required. The data given to the model is the data after a fitting, but the number of
samples used for the fitting should be defined. It means that the prediction is not

68

Neural networks

possible before collecting a certain number of samples. Moreover, every time that
new data is sampled, the fitting values should be computed again. Unfortunately, it
is possible to conclude that this method does not help improve plant health status
detection’s accuracy. Furthermore, it will also increase the computational cost due
to the data preparation in both the training phase and the prediction moment.

3.10 SVM approach
As explained in section 2.2.7, Support Vector Machine is a machine learning
algorithm that exploits separative hyperplanes to solve classification problems.
Perhaps this algorithm may improve the performance since the number of data
may not be enough to train a neural network properly.

3.10.1 Implementation
The SVM is implemented in Python by exploiting the open-source library Scikit-
learn. In particular, two SVM are implemented, the first one using the linear
kernel and the second one using the Radial Basis Function kernel. A Python
script, svm_train.py, in the folder SVM_training, is exploited. The description
is divided into four parts:

1. some parameters are set in order to choose the data files to be imported and
the features to be considered during the training;

2. preparation of the data imported from the files for the training. The dataset
is divided into the training set and testing set;

3. choose the model to be trained between linear and RBF, creation and training
of the model;

4. the network trained is saved in a .sav format file. Then the accuracy is
computed and saved, with the model information, in a .txt output file.

Parameters setting Firstly, the usual parameters set_by_hand, saturation_moisture
and the features to be used for the training are set. Then the data file names are
obtained.

Data preparation The next thing to do is to import the plants’ data and
prepare them for the training. The usual custom functions import_plants and
prepare_samples are exploited. Then the data are shuffled, normalized, and
divided into training and testing sets.

69

Neural networks

Creation and training The model is implemented using the Scikit-learn
library. In particular the svm.SVC (Support Vector Classification) method is used.
The kernel should be chosen among linear, RBF, sigmoid, poly, and precomputed.
In this implementation, only linear and RBF kernels will be considered:

Listing 3.9: Parameters setting
1 model_type = 0
2 i f model_type == 0 :
3 model_type_name = " l i n e a r "
4 e l i f model_type == 1 :
5 model_type_name = " rb f "
6

7 # Creat ion o f the model to be t ra ined
8 svm_train = svm .SVC(ke rne l= model_type_name)
9 # Training o f the model

10 svm_train . f i t (plant_samples_train , p lant_labe l s_tra in)

Saving model and results Once the model is trained, the accuracy can be
computed. After that, both the model and the performance are saved. The
trained SVM is saved in a .sav format file in the folder SVM_trained, with a
filename like plant_a0a1_a2a3a4a5a6a7a8a9a10a11a12a13a13_a14_a15.sav. The first
two coefficients refer to the parameters set_by_hand and saturation_moisture, the
coefficients from a2 to a13 indicate the features used during the training phase, a14
is the number of features considered, and a15 shows which kernel is used,linear
kernel or an rbf one. At the end, the results are saved in the folder output_files
in the file output_svm.txt. The results obtained with a linear kernel are:

The network has saved as: ../SVM_trained/plant_11_1111111000000_7_linear.sav
The overall accuracy of this network is: 0.5645161290322581
The train accuracy is: 0.561726211531659
The test accuracy is: 0.5756718528995757
The overall confusion matrix is[[1474 510]
[1029 521]]

The train confusion matrix is[[1170 409]
[830 418]]

The test confusion matrix is[[304 101]
[199 103]]

With a linear kernel, only 56.4% of accuracy is reached. This poor performance
can be expected since a linear function cannot describe the relationship between
the inputs and the output. Therefore, an RBF kernel is used. For RBF kernels,
two parameters must be taken into consideration: C (equation 2.15) and gamma
(equation 2.17). The first parameter defines the so-called regularization; low C
means that the decision surface is smooth while a high value of C provides a

70

Neural networks

more precise classification for the training examples, which means the possibility
of overfitting. The second one determines how much influence a single training
example has. For this implementation, standard values are used for both the
parameters [35]. The following results are obtained with an RBF kernel:

The network has saved as: ../SVM_trained/plant_11_1111111000000_7_rbf.sav
The overall accuracy of this network is: 0.7880588568194681
The train accuracy is: 0.7905907322249734
The test accuracy is: 0.7779349363507779
The overall confusion matrix is[[1413 571]
[178 1372]]

The train confusion matrix is[[1142 452]
[140 1093]]

The test confusion matrix is[[271 119]
[38 279]]

The accuracy reached with RBF is 78.8%, now it is possible to train several
models with different combinations of features. A summary is presented in table
3.3.

model name overall
accuracy

training
accuracy

testing
accuracy

plant_11_1111111000000_7_linear.sav 56.4% 56.2% 57.6%
plant_11_1111111000000_7_rbf.sav 78.8% 79.1 % 77.8%
plant_11_1111100000000_5_rbf.sav 66.4% 66.6% 65.6%
plant_11_1111100110000_7_rbf.sav 67.8% 67.7% 68.2%
plant_11_1111111110000_9_rbf.sav 78.1% 78.0% 78.6%
plant_11_1110100000000_4_rbf.sav 59.9% 60.8% 56.6%
plant_11_1111100001100_7_rbf.sav 77.9% 77.8% 78.5%
plant_11_1111100001111_9_rbf.sav 77.9% 77.6% 78.4%

Table 3.3: Several versions of SVM are trained, considering different combination
of features

The accuracy of the model trained with the impedance values is almost equal to
that obtained with the neural network. Around 80% of accuracy decreases to 66%
if the impedance module and phase are not used during the training phase, and the
performance is even worse when soil moisture is removed. When only impedance
difference and the environmental parameters are used for the training, only 67.8%
of accuracy is reached. Furthermore, in the cases where both impedance and
impedance difference are used, before and after the fitting, the accuracy is slightly
lower than 80%. As explained before, it will not be convenient to use impedance
difference and the data after the fitting since they increase the computational cost
in the data processing without improving the performance.

71

Neural networks

It is possible to conclude that the SVM has not led to better performance of neural
networks. However, it was worth implementing Support Vector Machine models
since they have further confirmed the importance of using the impedance values
for the training and the results about the impedance difference and polynomial
fitting found before.

3.11 Neural Network, samples in time
Till now, the impedance values are exploited in order to predict the plants’ status. It
means that each environmental parameter and the impedance value were considered
once. Therefore what influences the output prediction is the actual value of the
impedance. In the article [7], the authors have demonstrated that the plants
have two different behaviors when it is watered and when it is under water-stress
condition. The new idea is to exploit the different variations of the impedance
in these two conditions. For this purpose, more samples of impedance should
be considered during the training. It is like that there is a time window that
considers all the samples in this period, and then the window slides one sample at
a time. Therefore, the environmental values are considered once; the impedance,
the impedance difference, and the impedance after the polynomial fitting can be
considered more times.

Firstly, the performance of the neural network is evaluated. Then, how these
new features will affect the prediction of future data will be observed. Finally, the
neural network will be trained using only three plants and tested on the fourth one.

3.11.1 Implementation
For the first part the Python script nn_training_intime.py in the folder Neu-
ral_network_training_intime is exploited. The description can be divided
into four parts, which are very similar to the previous implementation. The only
difference is that in the data preparation phase, more columns are added, where
each column contains the past samples of a certain feature. In particular:
1. the environmental and impedance parameters are set in order to decide which

values will be used during the training phase and how many times these values
will be taken into consideration;

2. preparation of the data imported from the files for the training. Then, the
dataset is divided into the training and test sets;

3. creation and training of the neural network;

4. the network trained is saved in a .h5 format file. Then the accuracy is
computed and saved, with the model information, in a .txt output file.

72

Neural networks

Parameters setting The usual parameters set_by_hand and soil_moisture are set
to one. Now, the environmental parameters temperature, airhumidity, ambientlight,
moisture, date_time, and the impedance values impedance_module, impedance_phase,
module_difference, phase_difference, module_fit, phase_fit, module_diff_fit and
phase_diff_fit could be an any integer value. This value represents how many
times these features will be used during the training phase. For example, if
impedance_module is set to 3, then it is used as features three times, which means
the n-th sample, the sample n-1 of the previous hour and the sample n-2 of two
hours ago. After that, the file names are imported.

Data preparation The input size of the neural network is computed; it is just
the sum of all the parameters described before. Then, the data are imported
as Pandas data frame using the custom function import_plants. In order to
obtain the new features a custom function add_feature_intime is exploited. This
function takes four inputs: the plant data, the value of the parameter to be added,
the name of the parameter to be added, and the list of the features. It generates
two outputs: the plant data with new features and the updated list of the features.

Listing 3.10: Function add_feature_intime
1 de f add_feature_intime (data_plant , feature_value , feature_name ,

l i s t _ o f _ f e a t u r e s) :
2 feature_name_added = feature_name
3 i f f eature_va lue == 0 :
4 data_plant_np = data_plant . to_numpy ()
5 data_plant = pd . DataFrame (data=data_plant_np , columns=[

l i s t _ o f _ f e a t u r e s])
6 data_plant . drop (feature_name_added , i n p l a c e=True , ax i s =1)
7 l i s t _ o f _ f e a t u r e s . remove (feature_name_added)
8 e l i f f eature_va lue > 1 :
9 f o r i in range (1 , f eature_va lue) :

10 #pr in t (" Cycle number : " + s t r (i) +’\n ’)
11 feature_column = data_plant [[feature_name_added]]
12 feature_column_np = feature_column . to_numpy ()
13 feature_column_np = np . d e l e t e (feature_column_np , −1 , 0)#

d e l e t e the l a s t row
14 feature_column_np = np . i n s e r t (feature_column_np , 0 , 0)
15 data_plant_np = data_plant . to_numpy ()
16 data_plant = pd . DataFrame (data=data_plant_np , columns= [

l i s t _ o f _ f e a t u r e s])
17 feature_name_added = feature_name + ’ _minus ’ + s t r (i)
18 l i s t _ o f _ f e a t u r e s . append (feature_name_added)
19 data_plant [feature_name_added] = feature_column_np
20 re turn data_plant , l i s t _ o f _ f e a t u r e s

If feature_value is zero, it means that the feature indicated by feature_name will
not be used during the training. Therefore, it is eliminated from the data frame,

73

Neural networks

and the corresponding name is removed from the feature list. If feature_value is
one, then nothing is done since it is already present once in the data frame and the
feature list. If this parameter is bigger than one, a for cycle is exploited in order
to add the new columns.

Considering the past samples means that the rows of the corresponding features
should be shifted by one and then added as a new column to the data frame.
Enumerate the rows from 1 to N. The new column is formed by the rows from 1 to
N-1, the second new column from 1 to N-2, and so on. However, in this way, the
new columns have fewer rows. Zeros fill the empty rows. A graphical view can be
seen in figure 3.14, in this example feature_value is set to 4. At the same time, the
feature list is updated, adding the name of the past features.

sample 1

feature_name

sample 2
sample 3
sample 4

sample N-3
sample N-2
sample N-1
sample N

feature_name_minus1

sample 1
sample 2
sample 3
sample 4

sample N-3
sample N-2
sample N-1

0

feature_name_minus2

sample 1
sample 2
sample 3
sample 4

sample N-3
sample N-2

0
0

feature_name_minus3

sample 1
sample 2
sample 3
sample 4

sample N-3

0
0
0

Figure 3.14: Considering a parameter more times. Adding new columns with
past samples of the parameter.

This function can be called also for adding past samples of the environmental
parameters. But in this case only the impedance values are considered more times.
Therefore, this function is called as much as is necessary. Notice that now some
rows are filled by zeros, these zeros are meaningless for the training, so they have
to be removed. The number of rows to be removed corresponds to maximum value
among the parameters temperature, airhumidity, ambientlight, moisture, date_time,
impedance_module, impedance_phase, module_difference, phase_difference, mod-
ule_fit, phase_fit, module_diff_fit and phase_diff_fit minus one. Now, the data are
ready to be shuffled, normalized and divided into training and testing sets.

Creation and training A neural network with two hidden layers is used. Since
now the number of features is much higher than seven, more nodes are used in each

74

Neural networks

layer. However, in order to have a comparison between the neural networks trained
with different number of features, a fixed number of nodes is used, for instance,
twenty-five and fifteen:

Listing 3.11: Creation of the model
1 # Creat ion o f the neura l network
2 nn_layers =[25 ,15 ,2]
3 model = Sequent i a l ()
4 model . add (Dense (nn_layers [0] , a c t i v a t i o n=’ r e l u ’ , input_shape=(

f ea tu r e_s i z e ,)))
5 model . add (Dense (nn_layers [1] , a c t i v a t i o n=’ r e l u ’))
6 model . add (Dense (nn_layers [2] , a c t i v a t i o n=’ softmax ’))
7 #Training o f the model
8 model . compi le (opt imize r=Adam(l ea rn ing_rate = 0 .0005) , l o s s=’

spa r s e_catego r i ca l_cro s s en t ropy ’ , met r i c s =[’ accuracy ’])
9 h i s t o r y = model . f i t (x=plant_samples_train , y=plant_labe l s_tra in ,

v a l i d a t i o n _ s p l i t =0.1 , batch_size =10, epochs =300 , s h u f f l e=True ,
verbose =2)

Saving the model and the results The computed accuracy is saved in the
file output_neuralnetwork_intime.txt in the usual folder output_files. While the
trained model is saved in the folder Neural_network_trained_intime with
the following name:

Listing 3.12: Model filename
1 f i lename_neural_network = ’ . . / Neural_network_trained_intime /plant_ ’+

s t r (set_by_hand) + s t r (saturat ion_moisture) + ’_ ’ + s t r (
temperature) + s t r (a i rhumid i ty) + s t r (ambient l i ght) + s t r (moisture
) + s t r (date_time) + ’_ ’ + s t r (impedance_module) + ’_ ’ + s t r (
impedance_phase) + ’_ ’ + s t r (module_di f f erence) + ’_ ’ + s t r (
phase_d i f f e r ence) + ’_ ’ + s t r (module_fit) + ’_ ’ + s t r (phase_f i t) +

’_ ’ + s t r (module_di f f_f i t) +’_ ’ + s t r (phas e_d i f f_ f i t) + ’_ ’ +
s t r (f e a t u r e _ s i z e) + ’_ ’ + s t r (nn_layers [0]) + ’_ ’ + s t r (nn_layers
[1]) + ’_ ’ + s t r (nn_layers [2]) + ’ . h5 ’

Several neural networks have been trained considering different numbers of
samples in time. For a better comparison, the results obtained with the different
neural networks are summarized in table 3.4.

It is possible to observe how the accuracy is slightly increased in the case
with only one impedance module and one impedance phase concerning the first
implementation with six nodes in each hidden layer. This improvement is because
more nodes are used in this case. Then, it is possible to notice that both the training
accuracy and testing accuracy increase with the number of samples considered.
When 48 samples, which means 48 hours, are considered, the training accuracy
reaches 99.7%, which is an excellent result. Implementing the neural networks in

75

Neural networks

model name training
accuracy

testing
accuracy

plant_11_11111_1_1_0_0_0_0_0_0_
53_25_15_2.h5 94.0% 92.6%

plant_11_11111_6_6_0_0_0_0_0_0_
53_25_15_2.h5 95.6% 94.0%

plant_11_11111_12_12_0_0_0_0_0_0_
53_25_15_2.h5 96.7% 95.0%

plant_11_11111_24_24_0_0_0_0_0_0_
53_25_15_2.h5 97.9% 95.8%

plant_11_11111_36_36_0_0_0_0_0_0_
53_25_15_2.h5 99.3% 98.2%

plant_11_11111_48_48_0_0_0_0_0_0_
53_25_15_2.h5 99.7% 99.4%

Table 3.4: Several neural network are trained considering different numbers of
past samples

this way leads to excellent results. This is another step toward a successful system
for detecting plant health status. However, the testing accuracy is always smaller
than the training accuracy; this brings the possibility of overfitting. To prove that,
the trained models, as usual, are used for testing the future data.

3.11.2 Future predictions implementation
In this step, the Python script in the folder Neural_network_training_intime
is exploited. As usual, the description can be divided into four parts: parameters
setting, import and data preparation, import of the neural network to be tested
and computation of the accuracy, and results saving.

Parameters setting The parameters which decide how many times a value
should be considered are set. Then, these parameters are used to get the data
frame with the added features. They also define the name of the neural network to
be imported. After that, the filenames are defined. Two groups of filenames are
needed; the first group is regarding the data used for the training, the old data.
The second one is the filenames of the data to be saved.

Data preparation After the plants’ data are imported as Pandas data frame,
the function add_feature_intime is exploited several times in order to add the

76

Neural networks

features to the data frame. This procedure is done for both the old and new data.
The old data is used to properly normalize the new data as shown in equation 3.6.

Import of the model and accuracy computation Once the data set is ready;
the model is loaded by using the name defined by the parameters set before. Then,
the testing accuracy on the new data is computed and saved in a .txt format file in
the folder output_files, called output_future_prediction_intime.txt.

Now, the six models trained before are used for testing the future data. In order
to have a better comparison, the results are plotted with bar graphs, shown in
figure 3.15. The number on the x-axis corresponds to the version of the trained
neural networks:

1. model trained with impedance module and phase considered 1 time;

2. model trained with impedance module and phase considered 6 times;

3. model trained with impedance module and phase considered 12 times;

4. model trained with impedance module and phase considered 24 times;

5. model trained with impedance module and phase considered 36 times;

6. model trained with impedance module and phase considered 48 times;

The accuracy is computed separately on the four plants. It is possible to notice
that the performance is relatively good for the first four implementations. While
in the case of 36 and 48 samples in time, the accuracy of plants 1 and 3 drops
significantly.

As expected, the excellent performance of 99.7% and 99.3% of accuracy is
mainly due to overfitting. However, the neural networks trained with 12 and 24
samples are already an outstanding achievement since they also have excellent
performance on the future data. Therefore, there is no need to implement other
neural networks considering the impedance difference and the fitted values. However,
other implementations are necessary to see if it is possible to use the neural network
on unseen tobacco plants. These implementations are explained in the next section.

An interesting to do is to plot the correct and wrong predictions. However,
it is impossible to use all the features since they are much greater than three.
Considering the case of 24 samples, it is possible to plot the testing predictions by
choosing three of the features as the three-axis. In figure 3.17, impedance module,
soil moisture and time are considered. Normalized values are used, and in figure
3.16, the confusion matrix is shown.

77

Neural networks

Prediction on plant 1

90.2 89.4 91.2
77.1

70.8

54.3

1 2 3 4 5 6
Trained neural networks

0

20

40

60

80

100
Ac

cu
ra

cy
Prediction on plant 2

99.4 99.2 98.6 95.4 94 90.7

1 2 3 4 5 6
Trained neural networks

0

20

40

60

80

100

Ac
cu

ra
cy

Prediction on plant 3

93.2 90.3 88.3 91.1

20.5
13.2

1 2 3 4 5 6
Trained neural networks

0

20

40

60

80

100

Ac
cu

ra
cy

Prediction on plant 4

90.8 86.4 85.8 81.2 84.9 89.2

1 2 3 4 5 6
Trained neural networks

0

20

40

60

80

100

Ac
cu

ra
cy

Figure 3.15: Accuracy of future predictions

3.11.3 Three plants training
For this part the Python script Three_plants_training.py in the folder Neu-
ral_network_training_intime is exploited. This script implements four mod-
els taking as training set three plants out of four. And then, predict the health
status of the fourth one, which is the one not used during the training phase. The
description of this script can be divided into four parts:

1. parameters setting and data import;

2. data preparation;

3. models creation, training, and saving;

4. accuracy computation and results saving.

78

Neural networks

Figure 3.16: Confusion
matrix of the testing set Figure 3.17: Predictions of the testing set

Parameters setting As usual, the first step to do is to set some parameters
that import correctly the input files and decide the features to be used for the
training. The two parameters set_by_hand and saturation_moisture are left to
one. Also the environmental parameters temperature, airhumidity, ambientlight,
moisture and date_time are set to 1. What are changed in the different implementa-
tions are the values of impedance_module, impedance_phase, module_difference,
phase_difference, module_fit, phase_fit, module_diff_fit and phase_diff_fit. Each of
them can be any integer value. Then, the correct filenames are imported.

Data preparation The data are imported from the files. Then, the parameters
defined before are used to add the correct past samples and to remove the unused
features by using the custom function add_feature_intime. After that, four
training sets are obtained, choosing three plants out of four. The four training sets
are formed by plants 1, 2, and 3; plants 1, 2, and 4; plants 1, 3, and 4; and plants
2, 3, and 4. These data are shuffled and normalized:

Listing 3.13: Function add_feature_intime
1 # Concatenation o f the data , in order to obta in 4 t r a i n i n g s e t s
2 plant_samples_123 = np . concatenate ((plant_1_samples , plant_2_samples ,

plant_3_samples))
3 plant_labels_123 = np . concatenate ((plant_1_labels , plant_2_labels ,

p lant_3_labels))
4

5 plant_samples_124 = np . concatenate ((plant_1_samples , plant_2_samples ,
plant_4_samples))

79

Neural networks

6 plant_labels_124 = np . concatenate ((plant_1_labels , plant_2_labels ,
p lant_4_labels))

7

8 plant_samples_134 = np . concatenate ((plant_1_samples , plant_3_samples ,
plant_4_samples))

9 plant_labels_134 = np . concatenate ((plant_1_labels , plant_3_labels ,
p lant_4_labels))

10

11 plant_samples_234 = np . concatenate ((plant_2_samples , plant_3_samples ,
plant_4_samples))

12 plant_labels_234 = np . concatenate ((plant_2_labels , plant_3_labels ,
p lant_4_labels))

13

14 #S h u f f l e o f the 4 data s e t s
15 plant_labels_123 , plant_samples_123 = s h u f f l e (plant_labels_123 ,

plant_samples_123)
16 plant_labels_124 , plant_samples_124 = s h u f f l e (plant_labels_124 ,

plant_samples_124)
17 plant_labels_134 , plant_samples_134 = s h u f f l e (plant_labels_134 ,

plant_samples_134)
18 plant_labels_234 , plant_samples_234 = s h u f f l e (plant_labels_234 ,

plant_samples_234)
19

20 #Normal izat ion o f the samples
21 s c a l e r = MinMaxScaler (feature_range =(0 ,1)) #the data are normal ized

to the range 0 ,1
22 scaled_plant_samples_123 = s c a l e r . f i t_t rans fo rm (plant_samples_123)
23 scaled_plant_samples_124 = s c a l e r . f i t_t rans fo rm (plant_samples_124)
24 scaled_plant_samples_134 = s c a l e r . f i t_t rans fo rm (plant_samples_134)
25 scaled_plant_samples_234 = s c a l e r . f i t_t rans fo rm (plant_samples_234)

Model creation Four models are created, each one is trained with one of the
four datasets obtained before. All the neural networks are composed of two
hidden layers, the first one with 25 nodes and the second one with 15 neurons.
After the models have been trained, they are saved in .h5 format files in the
folder Neural_network_trained_intime. The name used for the model is like
plantxyz_a0_a1_a2_a3_a4_a5_a6_a7_a8_a9_a10_a11.h5, the meaning of the
coefficients are explained in table 3.5.

Accuracy computation Once the models have been trained; they are used to
predict the health status of the plant that is not used for the training. For instance,
if plants 1,2 and 3 are used to train the neural network, the model is used to predict
the status of plant 4, if plants 1, 2, and 4 are used to train the neural network, the
model is used to predict the status of plant 3 and so on. The data of the testing
plant should be properly normalized using the data of the other plants, which are

80

Neural networks

Character Corresponding parameter value meaning

xyz - 1, 2, 3, 4

they indicate which
three plants are used
during the training

phase

a0 impedance_module
positive
integer
number

these parameters
indicate which are
used as features for
the training, and how
many times

a1 impedance_phase
positive
integer
number

a2 module_difference
positive
integer
number

a3 phase_difference
positive
integer
number

a4 module_fit
positive
integer
number

a5 phase_fit
positive
integer
number

a6 module_diff_fit
positive
integer
number

a7 phase_diff_fit
positive
integer
number

a8, a9,
a10, a11

nn_layers[]
positive
integer
number

these numbers
represent the number
of nodes in each layer,
input layer, hidden
layers and output

layer

Table 3.5: plantxyz_a0_a1_a2_a3_a4_a5_a6_a7_a8_a9_a10_a11.h5, explana-
tion of this filename

used during the training. After that, both the training and testing accuracy is

81

Neural networks

computed, and saved in the file output_neuralnetwork_intime_threeplants.txt in
the folder output_files.

In sections 3.8 and 3.9, the impedance difference and polynomial fitting are
introduced. They are used to try to improve the neural networks’ performance, but
without success. Now, these values are used to see how they affect the performace of
the networks trained with three plants. Several neural networks are implemented by
changing the parameters impedance_module, impedance_phase, module_difference,
phase_difference, module_fit, phase_fit, module_diff_fit and phase_diff_fit. The
following neural networks are trained, when the parameters are not mentioned,
they are set to zero, remember that the environmental parameters are always set
to one:

• impedance_module = 1, impedance_phase = 1, figure 3.18;

• impedance_module = 6, impedance_phase = 6, figure 3.19;

• impedance_module = 12, impedance_phase = 12, figure 3.20;

• impedance_module = 24, impedance_phase = 24, figure 3.21;

• impedance_module = 36, impedance_phase = 36, figure 3.22;

• module_difference = 1, phase_difference = 1, figure 3.23;

• impedance_module = 1, impedance_phase = 1, module_difference = 1,
phase_difference = 1, figure 3.24;

• impedance_module = 6, impedance_phase = 6, module_difference = 6,
phase_difference = 6, figure 3.25;

• impedance_module = 12, impedance_phase = 12, module_difference = 12,
phase_difference = 12, figure 3.26;

Since there are many implementations, the performance is shown graphically,
in particular with bar graphs. Each bar graph represents a version of the trained
model; the model’s name can be found in the caption. There are four groups of
bars, each group composed of two bars. Each group represents the accuracy of the
model trained with a different group of plants. In blue is the training accuracy,
and in red is the testing accuracy. For instance, the first group is the accuracy of
the model obtained with plants 1, 2, and 3, and the testing is done on plant 4 and
so on.

From figures 3.18, 3.19, 3.20, 3.21 and 3.22, it is possible to notice that increasing
the number of past samples used during the training phase, the training accuracy
increases. However, the testing accuracy remains below 50% in almost all cases. As

82

Neural networks

93.4 90.3
97.2 99.2

55

32.3 28.4 29.2

Test on Plant 4 Test on Plant 3 Test on Plant 2 Test on Plant 1
0

20

40

60

80

100

120
Ac

cu
ra

cy
Training accuracy
Testing accuracy

Figure 3.18: Accuracy of plantxyz_1_1_0_0_0_0_0_0_7_25_15_2.h5

94.5 91.2
98.6 99.8

55.3

33.5
28.6 30

Test on Plant 4 Test on Plant 3 Test on Plant 2 Test on Plant 1
0

20

40

60

80

100

120

Ac
cu

ra
cy

Training accuracy
Testing accuracy

Figure 3.19: Accuracy of plantxyz_6_6_0_0_0_0_0_0_17_25_15_2.h5

explained before, this is mainly due to the different impedance ranges of the plants.
Therefore, the impedance difference has been introduced in order to see if there may
be any improvements. Unfortunately, the impedance difference did not improve the
accuracy of the neural network. However, the impedance difference is not used in
the case of three plants for the training yet. The performance of the neural network

83

Neural networks

97.2 96.1 98.9 99.8

53

31.2 29 25.5

Test on Plant 4 Test on Plant 3 Test on Plant 2 Test on Plant 1
0

20

40

60

80

100

120
Ac

cu
ra

cy
Training accuracy
Testing accuracy

Figure 3.20: Accuracy of plantxyz_12_12_0_0_0_0_0_0_29_25_15_2.h5

98.6
90.6

97.8 99.9

51.2

32.4
38.8

21

Test on Plant 4 Test on Plant 3 Test on Plant 2 Test on Plant 1
0

20

40

60

80

100

120

Ac
cu

ra
cy

Training accuracy
Testing accuracy

Figure 3.21: Accuracy of plantxyz_24_24_0_0_0_0_0_0_53_25_15_2.h5

with trained with only the difference values is shown in figure 3.23. As expected,
the training accuracy is relatively low and so is the testing accuracy. Therefore also
the impedance module and phase are taken into consideration during the training
phase. The results are shown in figure 3.24. The performance is slightly better than
previous implementations but without significant improvements. The number of

84

Neural networks

99.3 98.9 99.4 99.96

60.2

32.6

43.7

17.8

Test on Plant 4 Test on Plant 3 Test on Plant 2 Test on Plant 1
0

20

40

60

80

100

120
Ac

cu
ra

cy
Training accuracy
Testing accuracy

Figure 3.22: Accuracy of plantxyz_36_36_0_0_0_0_0_0_77_25_15_2.h5

past samples is increased up to 6 and 12. The results are shown in figures 3.25 and
3.26. Unlucky, also in these cases, the performance is terrible. The last attempt can
be made considering the values after the polynomial fitting. However, remember
that the polynomial fitting has been introduced to filter out the daily variations
of the plant impedance, obtaining a general trend. On the other hand, the past
samples are introduced to exploit the daily variations; these two methods conflict.
Therefore, it is not very meaningful to implement a neural network applying both
methods.

85

Neural networks

69.4
76.2

86.3

73.3

55.2

30.7

6

31.6

Test on Plant 4 Test on Plant 3 Test on Plant 2 Test on Plant 1
0

20

40

60

80

100

120

Ac
cu

ra
cy

Training accuracy
Testing accuracy

Figure 3.23: Accuracy of plantxyz_0_0_1_1_0_0_0_0_7_25_15_2.h5

88.5 88.1
98.9 99.2

52.8

40.1 40.6
31.1

Test on Plant 4 Test on Plant 3 Test on Plant 2 Test on Plant 1
0

20

40

60

80

100

120

Ac
cu

ra
cy

Training accuracy
Testing accuracy

Figure 3.24: Accuracy of plantxyz_1_1_1_1_0_0_0_0_7_25_15_2.h5

86

Neural networks

98.4 98.8 99.6 99.96

53.1

37.4 40.4 40.4

Test on Plant 4 Test on Plant 3 Test on Plant 2 Test on Plant 1
0

20

40

60

80

100

120

Ac
cu

ra
cy

Training accuracy
Testing accuracy

Figure 3.25: Accuracy of plantxyz_6_6_6_6_0_0_0_0_7_25_15_2.h5

97.1 96.9 97.8 99.7

53.7

40.1

22.7

38.2

Test on Plant 4 Test on Plant 3 Test on Plant 2 Test on Plant 1
0

20

40

60

80

100

120

Ac
cu

ra
cy

Training accuracy
Testing accuracy

Figure 3.26: Accuracy of plantxyz_12_12_12_12_0_0_0_0_7_25_15_2.h5

87

Chapter 4

Conclusion and Future
Perspective

In this dissertation, a way of detecting tobacco plants’ health status is explored. It
was possible thanks to the researches of students and professors from Politecnico
di Torino and Tel Aviv University. They found that the stem electrical impedance
is a relevant quantity related to watering events and the environmental values.
The idea is then to find a way to predict the plant health status by exploiting
these measurements. The machine learning algorithms are exploited, in particular
neural networks and SVM. The dataset provided by the MiNES group has led to
excellent results for the neural networks. Outstanding performance is also obtained
for predictions of future data. It is possible to increase further the accuracy found
in section 3.4 of 10% by tuning the learning rate of the Adam optimizer from 0.0001
to 0.001.

Hopefully, the neural network will be part of an autonomous monitoring system
of the plants in the future. Therefore, the predictions may be used to set the
optimal conditions for the plants automatically. It is beneficial to develop a
prediction system that can be used for any tobacco plant. Since, for now, the
dataset is quite limited, this situation was emulated by training a model with
three plants and testing the trained model on the fourth one. Unfortunately, the
performance reached is abysmal, mainly due to the different impedance ranges of
the plants. Some techniques, such as computing the difference, fitting the data with
a polynomial function, using more samples, were exploited to solve this problem
and improve the accuracy, but it was unsuccessful.

In addition, in this thesis work, the relevance of impedance and soil moisture for
predicting the tobacco plants’ health status is demonstrated by the neural network
implementations and then confirmed by SVM models. Despite the significant
results, the neural network is still not ready to be used on unknown tobacco plants.

88

Conclusion and Future Perspective

More works should be done, and other solutions to the different impedance ranges
problem should be found. A suitable solution is to collect more data both from a
broader period and from more plants. Another solution could be introducing more
features regarding the plants, such as age or stem radius.

A thing to be improved is the labeling method used for the plants. For now,
the plants are classified based on their leaves conditions, in particular their colors.
However, the drying of the leaves and their growth are prolonged processes. There-
fore it is pretty tricky to decide the boundary between healthy and not-healthy
status.

Nevertheless, all in all, this work is a slight step toward a low-power, straight-
forward, economical, smart system. It is hoped that it could be a starting point
for future studies and applications.

89

Chapter 5

Manual of the scripts

5.1 What the code does
Several operations can be done with the Python scripts implemented for this thesis:

1. Add to the .csv files other features, such as impedance difference, impedance
after fitting, impedance difference after fitting;

2. Train a neural network having the data of the plants;

3. Predictions using the model trained before with a new dataset sampled in a
different period;

4. Training with three plants and testing on the forth;

5. Train an SVM model;

6. Training with more features shifted in time;

7. Future prediction with more features shifted in time;

8. Training with three plants and testing of the fourth with features shifted in
time;

5.2 Add other features to the .csv files
When the plants’ data are exported for the first time using the script main.py,
four .csv format files are obtained, one file for each plant. Each file contains
seven columns corresponding to seven values: temperature, air humidity, ambient
light, soil moisture, time, impedance module, and impedance phase. It is pos-
sible to do some data transformation, such as compute the difference between

90

Manual of the scripts

two adjacent impedance values, fit the impedance with a polynomial function,
compute the difference between two adjacent impedance values after the fitting.
Three Python script in the folder Neural_network_training are exploited:
diff_considering.py, curve_fitting.py and diff_considering_fitting.py. These three
scripts should be run in order.

• diff_considering.py: to run this script, the input file names and the output
file names should be decided;

• curve_fitting.py: the input file names are the output file names of the previous
script, output file names, and the grade of the fitting polynomial function
should be decided. Suggested value: grade = 49;

• diff_considering_fitting.py: the input files names should correspond to the
output file names of the previous script. Then, the output file names should
be defined.

After running these scripts, four new .csv files are obtained, one for each plant.
Each file now contains fourteen columns: seven columns for the initial features; two
for impedance module and phase difference; two for the fitted impedance module
and phase, and two for their differences; a first column indicating the number of
samples, this column will be eliminated before the training since it is not helpful.

5.3 Train a neural network having the data of
the plants

With the four data files obtained as described in the previous section, now, it
is possible to train neural networks. With the intention to do that, the script
nn_training.py in the folderNeural_network_training can be used. This script
can train neural networks changing the features used during the training phase,
the structure of the neural networks, such as the number of layers and nodes, and
the algorithm hyperparameters. The parameters are well explained in table 3.1, to
summarize:

• the first two parameters to be set are set_by_hand and saturation_moisture.
Both should be set to one, because with set_by_hand = 0 a wrong labeling
is done for the data, and for saturation_moisture = 1, more samples are
considered.

• the parameters temperature, airhumidity, ambientlight, moisture, date_time,
impedance_module, impedance_phase, module_difference, phase_difference,
module_fit, phase_fit, module_diff_fit and phase_diff_fit decide which are

91

Manual of the scripts

the features to be used for training the neural network. Their values can be 0
or 1, 1 indicates that they will be used for the training and 0 the contrary;

• after that the model hyperparameters can be set, such as the number of layers
and the number of nodes in each layer. Suggested values: number of hidden
layers = 2; first hidden layer with six nodes with ‘relu’ activation function;
second hidden layer with six nodes with ‘relu’ activation function; output layer
with two nodes with ‘softmax’ activation function, since two class are present;

Once the model has been defined, the neural network can be trained, other param-
eters called algorithm hyperparameters should be defined. Suggested values:

• optimizer = Adam with learning rate from 0.0005 to 0.001;

• loss = ‘sparse_categorical_crossentropy’;

• metrics = [‘accuracy’];

• number of epochs around 300 with the learning rate suggested above. A
typical value for batch_size is 10.

After that the model is trained, it is saved as a .h5 format file, and the perfor-
mance are saved in a file in the path ‘../output_files/output_neuralnetwork.txt’.
It is possible to plot the accuracy over epochs, a 3-D graph with right and wrong
prediction of the training and testing sets, and the confusion matrix by setting
plot_accuracy, plot_train_predictions, plot_test_predictions and display_cm respec-
tively.

Example of application Suppose that the neural network is wanted to be
trained with temperature, air humidity, soil moisture, time, light intensity, and
module and phase after fitting, the parameters are set as follows:

Listing 5.1: Parameters setting
1 # ∗∗∗∗∗ Parameters to dec ide the input f i l e s ∗∗∗∗∗
2 set_by_hand = 1 # F i r s t parameter to dec ide i f the p lant s used i s

with exported data or with s t a tu s s e t by hand
3

4 saturat ion_moisture = 1 # I f t h i s parameter i s equal to zero the
moisture <−200kPa w i l l be

5 # f i l t e r e d out e l s e i t w i l l be sa turated to −200kPa
6

7 # ∗∗∗∗∗ Decide which f e a t u r e s should be used in the t r a i n i n g phase
∗∗∗∗∗

8 temperature = 1
9 a i rhumid i ty = 1

10 ambient l i ght = 1

92

Manual of the scripts

11 moisture = 1
12 date_time = 1
13 impedance_module = 0
14 impedance_phase = 0
15 module_di f fe rence = 0
16 phase_d i f f e r ence = 0
17 module_fit = 1
18 phase_f i t = 1
19 module_di f f_f i t= 0
20 phase_d i f f_ f i t = 0

Then, the input filenames are obtained, the parameter set_by_hand choose
which group of files is imported.

Listing 5.2: Filenames of the data
1 # Import o f the c o r r e c t f i l e s names
2 i f set_by_hand == 0 :
3 f i l ename_plant1 = ’ . . / data_of_the_plants / data_export_plant1 . csv ’
4 f i l ename_plant2 = ’ . . / data_of_the_plants / data_export_plant2 . csv ’
5 f i l ename_plant3 = ’ . . / data_of_the_plants / data_export_plant3 . csv ’
6 f i l ename_plant4 = ’ . . / data_of_the_plants / data_export_plant4 . csv ’
7 e l s e :
8 f i l ename_plant1 = ’ . . / data_of_the_plants /

data_plant1_03_05_dif f_withf it . csv ’
9 f i l ename_plant2 = ’ . . / data_of_the_plants /

data_plant2_03_05_dif f_withf it . csv ’
10 f i l ename_plant3 = ’ . . / data_of_the_plants /

data_plant3_03_05_dif f_withf it . csv ’
11 f i l ename_plant4 = ’ . . / data_of_the_plants /

data_plant4_03_05_dif f_withf it . csv ’

Once the filenames are obtained, the data are imported, the correct features are
selected, and the data is converted to a Numpy array. After that, the samples are
shuffled, normalized, and divided into test and training sets. Then, the model is
created. It is possible to define the number of hidden neurons or add new hidden
layers. In this example, two hidden layers, each with 6 neurons, are used. The
activation function chosen for hidden layers is the relu function and softmax for
the output layer.

Listing 5.3: Creation of the model
1 nn_layers = [6 , 6 , 2]
2 model = Sequent i a l ([
3 Dense (un i t s = nn_layers [0] , input_shape=(f ea tu r e_s i z e ,) ,

a c t i v a t i o n=’ r e l u ’) , #t h i s r e p r e s e n t s the second l a y e r
4 Dense (un i t s = nn_layers [1] , a c t i v a t i o n = ’ r e l u ’) ,
5 Dense (un i t s = nn_layers [2] , a c t i v a t i o n = ’ softmax ’)
6])

93

Manual of the scripts

Now, the model is trained with the training samples and training labels obtained
before, the following hyperparameters are used:

Listing 5.4: Training of the model
1 ## Training o f the neura l network
2 epochs_num = 300
3 model . compi le (opt imize r=Adam(l ea rn ing_rate = 0 .0001) , l o s s=’

spa r s e_catego r i ca l_cro s s en t ropy ’ , met r i c s =[’ accuracy ’])
4 h i s t o r y = model . f i t (x=plant_samples_train , y=plant_labe l s_tra in ,

v a l i d a t i o n _ s p l i t =0.1 , batch_size =10, epochs=epochs_num , s h u f f l e=
True , verbose =2)

The filename where the model will be saved is obtained automatically with the
parameters set before:

Listing 5.5: Saving of the model
1 f i lename_neural_network = ’ . . / Neural_network_trained /plant_ ’+ s t r (

set_by_hand) + s t r (saturat ion_moisture) + ’_ ’ + s t r (temperature) +
s t r (a i rhumid i ty) + s t r (ambient l i ght) + s t r (moisture) + s t r (

date_time) + s t r (impedance_module) + s t r (impedance_phase) + s t r (
module_di f f e rence) + s t r (phase_d i f f e r ence) + s t r (module_fit) + s t r
(phase_f i t) + s t r (module_di f f_f i t) + s t r (pha s e_d i f f_ f i t) + ’_ ’ +
s t r (f e a t u r e _ s i z e) + s t r (nn_layers [0]) + s t r (nn_layers [1]) + s t r (
nn_layers [2]) + ’ . h5 ’

2

3 ## Saving the t ra in ed neura l network
4 save_new_model = 1 #I f t h i s parameter i s 1 , the t r a ined model w i l l

ove rwr i t e the p r e v i o u s l y t r a in ed model . Otherwise , i t w i l l be
saved only i f the f i l ename i s not pre sent yet .

5 i f save_new_model == 1 :
6 model . save (f i lename_neural_network)
7 e l s e :
8 i f os . path . i s f i l e (f i lename_neural_network) i s Fa l se :
9 model . save (f i lename_neural_network)

The training and testing results are then saved in a .txt file:

Listing 5.6: Saving of the results
1 # Name o f the . txt f i l e where the r e s u l t s w i l l be saved
2 f i lename_output = ’ . . / ou tpu t_ f i l e s / output_neuralnetwork . txt ’
3 i f os . path . i s f i l e (f i lename_output) i s Fa l se :
4 with open (fi lename_output , ’w ’) as f :
5 f . wr i t e (’The network i s saved as : ’ + fi lename_neural_network

+’ \n ’)
6 f . wr i t e (’The o v e r a l l accuracy o f t h i s network i s : ’ + s t r (

accuracy) + ’ \n ’)
7 f . wr i t e (’The t r a i n accuracy i s : ’ + s t r (accuracy_tra in) + ’ \n

’)

94

Manual of the scripts

8 f . wr i t e (’The t e s t accuracy i s : ’ + s t r (accuracy_test) + ’ \n ’)
9 f . wr i t e (’The o v e r a l l con fu s i on matrix i s ’ + s t r (cm) +’ \n ’)

10 f . wr i t e (’The t r a i n con fus i on matrix i s ’ + s t r (cm_train) +’ \n ’
)

11 f . wr i t e (’The t e s t con fus i on matrix i s ’ + s t r (cm_test) +’ \n ’)
12 f . wr i t e (’

∗∗∗ \n ’)
13 e l s e :
14 with open (fi lename_output , ’ a ’) as f :
15 f . wr i t e (’The network i s saved as : ’ + fi lename_neural_network

+’ \n ’)
16 f . wr i t e (’The o v e r a l l accuracy o f t h i s network i s : ’ + s t r (

accuracy) + ’ \n ’)
17 f . wr i t e (’The t r a i n accuracy i s : ’ + s t r (accuracy_tra in) + ’ \n

’)
18 f . wr i t e (’The t e s t accuracy i s : ’ + s t r (accuracy_test) + ’ \n ’)
19 f . wr i t e (’The o v e r a l l con fu s i on matrix i s ’ + s t r (cm) +’ \n ’)
20 f . wr i t e (’The t r a i n con fus i on matrix i s ’ + s t r (cm_train) +’ \n

’)
21 f . wr i t e (’The t e s t con fus i on matrix i s ’ + s t r (cm_test) +’ \n ’)
22 f . wr i t e (’

∗∗∗ \n ’)

Three plots are generated if the corresponding parameters are set to one, and inside
the .txt file, the following results are saved:

The network is saved as:
../Neural_network_trained/plant_11_1111100001100_7662.h5
The overall accuracy of this network is: 0.6994906621392191
The train accuracy is: 0.7021577644145738
The test accuracy is: 0.6888260254596889
The overall confusion matrix is [[1566 418]
[644 906]]

The train confusion matrix is [[1267 330]
[512 718]]

The test confusion matrix is [[299 88]
[132 188]]

5.4 Predictions using the model trained before
with a new dataset

It is possible to test the model trained and saved in the previous section with a
new data set. In particular, the data of the same plants but in a different future
period is used. In order to do that the Python script future_predictions.py in the
folder Neural_network_training is used. The model is imported by setting the
usual parameters, set_by_hand, saturation_moisture, temperature, etc. With these

95

Manual of the scripts

parameters, the model’s name is obtained. After that, the new file names are needed.
However, the data used for training the model is also needed because the data should
be properly normalized. With all this information, the testing is done, and the re-
sults are saved in the path ‘../output_files/output_future_prediction.txt’.

Example of application The model trained in the previous section is used
now to predict the status of future data. The features’ parameters and the model
hyperparameters are used to generate the corresponding model name:

Listing 5.7: Parameters setting
1 # ∗∗∗∗∗ Parameters to dec ide the input f i l e s ∗∗∗∗∗
2 set_by_hand = 1
3 saturat ion_moisture = 1
4 # ∗∗∗∗∗ Decide which f e a t u r e s should be used in the t r a i n i n g phase

∗∗∗∗∗
5 temperature = 1
6 a i rhumid i ty = 1
7 ambient l i ght = 1
8 moisture = 1
9 date_time = 1

10 impedance_module = 0
11 impedance_phase = 0
12 module_di f fe rence = 1
13 phase_d i f f e r ence = 1
14 module_fit = 0
15 phase_f i t = 0
16 module_di f f_f i t = 0
17 phase_d i f f_ f i t = 0
18 f e a t u r e _ s i z e = temperature + airhumid i ty + ambient l i ght + moisture +

date_time + impedance_module + impedance_phase + module_di f f erence
+ phase_d i f f e r ence + module_fit + phase_f i t + module_di f f_f i t +

phase_d i f f_ f i t
19

20 nn_layers = [6 , 6 , 2]

Two groups of data have to be imported. The first group regards the old data,
namely those used for the training, and the second one is the data to be predicted:

Listing 5.8: Data filenames
1 f i lename_plant1_old = " . . / data_of_the_plants /

data_plant1_03_05_dif f_withf it . csv "
2 f i lename_plant2_old = " . . / data_of_the_plants /

data_plant2_03_05_dif f_withf it . csv "
3 f i lename_plant3_old = " . . / data_of_the_plants /

data_plant3_03_05_dif f_withf it . csv "
4 f i lename_plant4_old = " . . / data_of_the_plants /

data_plant4_03_05_dif f_withf it . csv "

96

Manual of the scripts

5

6 f i l ename_plant1 = " . . / data_of_the_plants /
data_plant1_05_06_dif f_withf it . csv "

7 f i l ename_plant2 = " . . / data_of_the_plants /
data_plant2_05_06_dif f_withf it . csv "

8 f i l ename_plant3 = " . . / data_of_the_plants /
data_plant3_05_06_dif f_withf it . csv "

9 f i l ename_plant4 = " . . / data_of_the_plants /
data_plant4_05_06_dif f_withf it . csv "

Once all is ready, the accuracy is computed and saved in a .txt file:

The following accuracy are computed with the neural network trained with the
name../Neural_network_trained/plant_11_1111100110000_7662.h5
on the data sampled in the period 06/05/2021 to 07/06/2021
The accuracy of this network on plant 1 in the month of May is: 0.98996
The confusion matrix is[[493 5]
[0 0]]

The accuracy of this network on plant 2 in the month of May is: 0.09237
The confusion matrix is[[0 0]
[452 46]]

The accuracy of this network on plant 3 in the month of May is: 0.16230
The confusion matrix is[[0 0]
[160 31]]

The accuracy of this network on plant 4 in the month of May is: 0.86762
The confusion matrix is[[426 65]
[0 0]]

5.5 Training with three plants and testing on the
fourth;

An interesting to do is to test a model on a plant that it has never seen. In order to
do that, three plants are used as the training set, and the fourth one is used for the
testing. For this step two scripts in the folder Machine learning are exploited:
three_plants_train.py and three_plants_accuracy.py. The former is used to train
the models, and the latter to test them.

For the script three_plants_train.py the input file names are needed. The
training uses all seven features: temperature, air humidity, ambient light, soil
moisture, time, impedance module, and impedance phase. Three plants out of four
are used for the training. Therefore four different models can be trained. All the
four neural networks are saved in the folder Network_network_trained.

After the training, the script three_plants_accuracy.py is used to test the
models. The input file names and the model names are needed. After that, the
testing is done, and the results are saved in the file output_threeplants.txt

97

Manual of the scripts

in the folder Neural_network_trained. This is a first version for this type of
implementation; an upgraded version is described in section 5.9.

5.6 Train a SVM model
With the script svm_train.py in the folder SVM_training, it is possible to
implement SVM models. The input data file names are needed, and after that the
usual parameters are set:

• the first two parameters to be set are set_by_hand and saturation_moisture.
Both should be set to one, because with set_by_hand = 0 a wrong labeling
is done for the data, and for saturation_moisture = 1, more samples are
considered.

• the parameters temperature, airhumidity, ambientlight, moisture, date_time,
impedance_module, impedance_phase, module_difference, phase_difference,
module_fit, phase_fit, module_diff_fit and phase_diff_fit decide which are
the features to be used for training the neural network. Their values can be 0
or 1, 1 indicates that they will be used for the training and 0 the contrary;

It is possible to choose the kernel for the SVM to be implemented; only linear
and RBF kernels are present in this script. However, it is possible to add other
kernels inside the if statement. The available kernels are described in [35]. The
hyperparameters such as C and gamma for the RBF kernel are left to standard
values. Once the model is trained, it is saved in the folder SVM_trained, and
the performance is saved in the txt file output_svm.txt in the folder output_files.

5.7 Training with more features shifted in time
The idea is to exploit more impedance data as features, so the N-th impedance
sampled and the one sampled one hour before (sample N-1), two hours before
(N-2), and so on. The Python script nn_training_intime.py in the folder Neu-
ral_network_training_intime is exploited. Since the measurement is exploited
more times, the parameters that decide if the corresponding measurement will be
used for the training can assume any positive integer value. As usual, the param-
eters set_by_hand and saturation_moisture are set to one. In this case, also the
environmental parameters are set to one. Nevertheless, it is possible to change these
values to any integer number by adding in the code a part that calls the custom
function add_feature_intime. The parameters that can be changed in order to
see their effect to the performance on the neural networks are impedance_module,
impedance_phase, module_difference, phase_difference, module_fit, phase_fit, mod-
ule_diff_fit and phase_diff_fit.

98

Manual of the scripts

Before creating the model, it is possible to change the number of layers and
nodes by changing the values of nn_layers[..]. Finally, the trained model is saved
in the folder Neural_network_trained_intime and the results in the file
output_neuralnetwork_intime in the usual folder outputfiles.

At the end, the accuracy over epochs, a 3-D graph with right and wrong
prediction of the training and testing sets, and the confusion matrix are plotted.

Example of application The network is wanted to be trained with the environ-
metal parameters and 24 samples of impedance module and phase. Therefore the
parameters should be set as follows:

Listing 5.9: Parameters setting
1 # ∗∗∗∗∗ Parameters to dec ide the input f i l e s ∗∗∗∗∗
2 set_by_hand = 1 # F i r s t parameter to dec ide i f the p lant s used i s

with exported data or with s t a tu s s e t by hand
3 saturat ion_moisture = 1 # I f t h i s parameter i s equal to zero the

moisture <−200kPa w i l l be f i l t e r e d out e l s e i t w i l l be sa turated
to −200kPa

4

5 # ∗∗∗∗∗ Decide which f e a t u r e s and how many times they w i l l be used in
the t r a i n i n g phase ∗∗∗∗∗

6 temperature = 1
7 a i rhumid i ty = 1
8 ambient l i ght = 1
9 moisture = 1

10 date_time = 1
11 impedance_module = 24
12 impedance_phase = 24
13 module_di f fe rence = 0
14 phase_d i f f e r ence = 0
15 module_fit = 0
16 phase_f i t = 0
17 module_di f f_f i t= 0
18 phase_d i f f_ f i t = 0

After that, the data are imported and prepared adding the new features. Then,
the model is created and trained:

Listing 5.10: Parameters setting
1 # Creat ion o f the neura l network
2 nn_layers =[25 ,15 ,2]
3 model = Sequent i a l ()
4 model . add (Dense (nn_layers [0] , a c t i v a t i o n=’ r e l u ’ , input_shape=(

f ea tu r e_s i z e ,)))
5 model . add (Dense (nn_layers [1] , a c t i v a t i o n=’ r e l u ’))
6 model . add (Dense (nn_layers [2] , a c t i v a t i o n=’ softmax ’))

99

Manual of the scripts

7 model . compi le (opt imize r=Adam(l ea rn ing_rate = 0 .0005) , l o s s=’
spa r s e_catego r i ca l_cro s s en t ropy ’ , met r i c s =[’ accuracy ’])

8 h i s t o r y = model . f i t (x=plant_samples_train , y=plant_labe l s_tra in ,
v a l i d a t i o n _ s p l i t =0.1 , batch_size =10, epochs =300 , s h u f f l e=True ,
verbose =2)

Finally, the results are saved in a .txt file:

The network has saved as:
../Neural_network_trained_intime/plant_11_11111_24_24_0_0_0_0_0_0_53_25_15_2.h5
The overall accuracy of this network is: 0.9869262056943637
The train accuracy is: 0.9880130766436614
The test accuracy is: 0.9825834542815675
The overall confusion matrix is[[1941 20]
[25 1456]]

The train confusion matrix is[[1545 15]
[18 1175]]

The test confusion matrix is[[396 5]
[7 281]]

5.8 Future prediction with more features shifted
in time

A trained model can be used to test the data in a different period. The script
future_prediction.py in the folder Neural_network_training_intime is used.
The parameters are set to generate the model filename and add the features to
the imported data. After the old and new data filenames are obtained, the data
are prepared, and the model is imported. The predictions are saved in the file
output_future_prediction_intime.txt in the folder output_files.

5.9 Training with three plants and testing of the
fourth with features shifted in time

For this part, the script Three_plants_training.py is used. The data filenames
are needed. The usual parameters are used to select which and how many fea-
tures to be used for the training. Four models are saved in the folder Neu-
ral_network_trained_intime and the results are saved in a .txt file called
output_neuralnetwork_intime_threeplants.txt in the folder output_files.

Example of application A neural network is wanted to be trained considering
the environmental parameters, the impedance module and phase, and the module
and phase difference. The environmental parameters are used once, while what

100

Manual of the scripts

regards the impedance is considered twelve times. The parameters should be set as
follows:

Listing 5.11: Parameters setting
1 # ∗∗∗∗∗ Parameters to dec ide the input f i l e s ∗∗∗∗∗
2 set_by_hand = 1 # F i r s t parameter to dec ide i f the p lant s used i s

with exported data or with s t a tu s s e t by hand
3 saturat ion_moisture = 1 # I f t h i s parameter i s equal to zero the

moisture <−200kPa w i l l be
4 # f i l t e r e d out e l s e i t w i l l be sa turated to −200kPa
5

6 # ∗∗∗∗∗ Decide which f e a t u r e s and how many times they w i l l be used in
the t r a i n i n g phase ∗∗∗∗∗

7 temperature = 1
8 a i rhumid i ty = 1
9 ambient l i ght = 1

10 moisture = 1
11 date_time = 1
12 impedance_module = 12
13 impedance_phase = 12
14 module_di f fe rence = 12
15 phase_d i f f e r ence = 12
16 module_fit = 0
17 phase_f i t = 0
18 module_di f f_f i t = 0
19 phase_d i f f_ f i t = 0

Then, the model and algorithm hyperparameters are defined, and the four neural
networks are created and trained:

Listing 5.12: Parameters setting
1 # Creat ion o f the neura l network
2 nn_layers = [2 5 , 15 , 2]
3 #nn_layers = [6 , 6 , 2]
4 #F i r s t model , i t w i l l be t r a ined with the p lant s 123
5 model123 = Sequent i a l ()
6 model123 . add (Dense (nn_layers [0] , a c t i v a t i o n=’ r e l u ’ , input_shape=(

f ea tu r e_s i z e ,)))
7 model123 . add (Dense (nn_layers [1] , a c t i v a t i o n=’ r e l u ’))
8 model123 . add (Dense (nn_layers [2] , a c t i v a t i o n=’ softmax ’))
9

10 #F i r s t model , i t w i l l be t r a ined with the p lant s 124
11 model124 = Sequent i a l ()
12 model124 . add (Dense (nn_layers [0] , a c t i v a t i o n=’ r e l u ’ , input_shape=(

f ea tu r e_s i z e ,)))
13 model124 . add (Dense (nn_layers [1] , a c t i v a t i o n=’ r e l u ’))
14 model124 . add (Dense (nn_layers [2] , a c t i v a t i o n=’ softmax ’))
15

101

Manual of the scripts

16 #F i r s t model , i t w i l l be t r a ined with the p lant s 134
17 model134 = Sequent i a l ()
18 model134 . add (Dense (nn_layers [0] , a c t i v a t i o n=’ r e l u ’ , input_shape=(

f ea tu r e_s i z e ,)))
19 model134 . add (Dense (nn_layers [1] , a c t i v a t i o n=’ r e l u ’))
20 model134 . add (Dense (nn_layers [2] , a c t i v a t i o n=’ softmax ’))
21

22 #F i r s t model , i t w i l l be t r a ined with the p lant s 234
23 model234 = Sequent i a l ()
24 model234 . add (Dense (nn_layers [0] , a c t i v a t i o n=’ r e l u ’ , input_shape=(

f ea tu r e_s i z e ,)))
25 model234 . add (Dense (nn_layers [1] , a c t i v a t i o n=’ r e l u ’))
26 model234 . add (Dense (nn_layers [2] , a c t i v a t i o n=’ softmax ’))

Finally, the four models are tested and the results are saved in a .txt file:

The network saved as:
../Neural_network_trained_intime/plant123_12_12_12_12_0_0_0_0_53_25_15_2.h5
is traing with plants 123

The train accuracy is: 0.9705769965609476
The train confusion matrix is[[1454 4]
[73 1086]]

The test is done on the plant 4:
The test accuracy is: 0.5372279495990836
The test confusion matrix is[[469 46]
[358 0]]

The network saved as:
../Neural_network_trained_intime/plant124_12_12_12_12_0_0_0_0_53_25_15_2.h5
is traing with plants 124

The train accuracy is: 0.9690721649484536
The train confusion matrix is[[1358 12]
[69 1180]]

The test is done on the plant 3:
The test accuracy is: 0.4006888633754305
The test confusion matrix is[[82 521]
[1 267]]

The network saved as:
../Neural_network_trained_intime/plant134_12_12_12_12_0_0_0_0_53_25_15_2.h5
is traing with plants 134

The train accuracy is: 0.9782193351165457
The train confusion matrix is[[1946 27]
[30 614]]

The test is done on the plant 2:
The test accuracy is: 0.2268041237113402
The test confusion matrix is[[0 0]
[675 198]]

102

Manual of the scripts

The network saved as:
../Neural_network_trained_intime/plant234_12_12_12_12_0_0_0_0_53_25_15_2.h5
is traing with plants 234

The train accuracy is: 0.9973251815055407
The train confusion matrix is[[1114 4]
[3 1496]]

The test is done on the plant 4:
The test accuracy is: 0.38258877434135163
The test confusion matrix is[[334 521]
[18 0]]

103

Bibliography

[1] United Nations Environment Programme (UNEP). 21 Issues for the 21st
Century: Result of the UNEP Foresight Process on Emerging Environmental
Issues. UNEP, available here (cit. on p. 1).

[2] Christina Nunez. «Desertification, explained». In: (MAY 31, 2019). url:
https://www.nationalgeographic.com/environment/article/desertif
ication (cit. on p. 1).

[3] Svetla Markova. What is smart agriculture and why smart agriculture is the
future? https://ondo.io/what_is_smart_agriculture/. May 20th, 2020
(cit. on p. 2).

[4] Mohamed Rawidean Mohd Kassim. «IoT Applications in Smart Agriculture:
Issues and Challenges». In: 2020 IEEE Conference on Open Systems (ICOS).
2020, pp. 19–24. doi: 10.1109/ICOS50156.2020.9293672 (cit. on p. 2).

[5] U. Garlando, L. Bar-On, A. Avni, Y. Shacham-Diamand, and D. Demarchi.
«Plants and Environmental Sensors for Smart Agriculture, an Overview». In:
2020 IEEE SENSORS. 2020, pp. 1–4. doi: 10.1109/SENSORS47125.2020.
9278748 (cit. on p. 2).

[6] L. Bar-on, A. Jog, and Y. Shacham-Diamand. «Four Point Probe Electrical
Spectroscopy Based System for Plant Monitoring». In: 2019 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS). 2019, pp. 1–5. doi:
10.1109/ISCAS.2019.8702623 (cit. on pp. 3–5).

[7] Umberto Garlando, Lee Bar-On, Paolo Motto Ros, Alessandro Sanginario,
Stefano Calvo, Maurizio Martina, Adi Avni, Yosi Shacham-Diamand, and
Danilo Demarchi. «Analysis of In Vivo Plant Stem Impedance Variations in
Relation with External Conditions Daily Cycle». In: 2021 IEEE International
Symposium on Circuits and Systems (ISCAS). 2021, pp. 1–5. doi: 10.1109/
ISCAS51556.2021.9401242 (cit. on pp. 3, 4, 8, 11, 12, 16, 17, 64, 72).

104

https://catalogue.unccd.int/377_Foresight_Report-21_Issues_for_the_21st_Century.pdf
https://www.nationalgeographic.com/environment/article/desertification
https://www.nationalgeographic.com/environment/article/desertification
https://ondo.io/what_is_smart_agriculture/
https://doi.org/10.1109/ICOS50156.2020.9293672
https://doi.org/10.1109/SENSORS47125.2020.9278748
https://doi.org/10.1109/SENSORS47125.2020.9278748
https://doi.org/10.1109/ISCAS.2019.8702623
https://doi.org/10.1109/ISCAS51556.2021.9401242
https://doi.org/10.1109/ISCAS51556.2021.9401242

BIBLIOGRAPHY

[8] U. Garlando, L. Bar-On, P. M. Ros, A. Sanginario, S. Peradotto, Y. Shacham-
Diamand, A. Avni, M. Martina, and D. Demarchi. «Towards Optimal Green
Plant Irrigation: Watering and Body Electrical Impedance». In: 2020 IEEE
International Symposium on Circuits and Systems (ISCAS). 2020, pp. 1–5.
doi: 10.1109/ISCAS45731.2020.9181290 (cit. on pp. 3, 4, 7–11, 25).

[9] Lee Bar-On, Sebastian Peradotto, Alessandro Sanginario, Paolo Motto Ros,
Yosi Shacham-Diamand, and Danilo Demarchi. «In-Vivo Monitoring for
Electrical Expression of Plant Living Parameters by an Impedance Lab
System». In: 2019 26th IEEE International Conference on Electronics, Circuits
and Systems (ICECS). 2019, pp. 178–180. doi: 10.1109/ICECS46596.2019.
8964804 (cit. on pp. 3, 4, 6, 7).

[10] HDC2080 Low-Power Humidity and Temperature Digital Sensor data sheet.
Available here. Texas Instruments, May 2018, revised July 2021 (cit. on pp. 5,
14).

[11] MAX44009 Industry’s Lowest Power Ambient Light Sensor with ADC data
sheet. Available here. Maxim Integrated (cit. on p. 5).

[12] WATERMARK Soil Moisture Sensor - Model 200SS. Available here. Irrometer
(cit. on pp. 5, 14).

[13] OPT3001 Ambient Light Sensor (ALS). Available here. Texas Instruments
(cit. on p. 14).

[14] Jason Brownlee. «A Tour of Machine Learning Algorithms». In: (August 12,
2019). url: https://machinelearningmastery.com/a-tour-of-machine-
learning-algorithms/ (cit. on p. 19).

[15] «Types of Machine Learning Algorithms You Should Know». In: () (cit. on
p. 19).

[16] Rares Ivan. «What is Machine Learning?» In: (June 30, 2017). url: https:
//www.cognizantsoftvision.com/blog/what- is- machine- learning/
(cit. on p. 19).

[17] IBM Cloud Education. «Machine Learning». In: (15 July 2020). url: https:
//www.ibm.com/cloud/learn/machine- learning#toc- machine- le-
K7VszOk6 (cit. on p. 19).

[18] Konstantinos G. Liakos, Patrizia Busato, Dimitrios Moshou, Simon Pearson,
and Dionysis Bochtis. «Machine Learning in Agriculture: A Review». In:
Sensors 18.8 (2018). issn: 1424-8220. doi: 10.3390/s18082674. url: https:
//www.mdpi.com/1424-8220/18/8/2674 (cit. on pp. 21, 33, 35).

[19] S.B. Imandoust and Mohammad Bolandraftar. «Application of K-nearest
neighbor (KNN) approach for predicting economic events theoretical back-
ground». In: Int J Eng Res Appl 3 (Jan. 2013), pp. 605–610 (cit. on p. 22).

105

https://doi.org/10.1109/ISCAS45731.2020.9181290
https://doi.org/10.1109/ICECS46596.2019.8964804
https://doi.org/10.1109/ICECS46596.2019.8964804
https://www.ti.com/lit/ds/symlink/hdc2080.pdf
https://datasheets.maximintegrated.com/en/ds/MAX44009.pdf
https://www.irrometer.com/pdf/sensors/403%20WATERMARK%20Sensor-WEB.pdf
https://www.ti.com/lit/ds/symlink/opt3001.pdf?ts=1636307344133
https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/
https://www.cognizantsoftvision.com/blog/what-is-machine-learning/
https://www.cognizantsoftvision.com/blog/what-is-machine-learning/
https://www.ibm.com/cloud/learn/machine-learning#toc-machine-le-K7VszOk6
https://www.ibm.com/cloud/learn/machine-learning#toc-machine-le-K7VszOk6
https://www.ibm.com/cloud/learn/machine-learning#toc-machine-le-K7VszOk6
https://doi.org/10.3390/s18082674
https://www.mdpi.com/1424-8220/18/8/2674
https://www.mdpi.com/1424-8220/18/8/2674

BIBLIOGRAPHY

[20] A. Nemes, R.T. Roberts, W.J. Rawls, Ya.A. Pachepsky, and M.Th. van
Genuchten. «Software to estimate 33 and 1500kPa soil water retention us-
ing the non-parametric k-Nearest Neighbor technique». In: Environmen-
tal Modelling Software 23.2 (2008), pp. 254–255. issn: 1364-8152. doi:
https : / / doi . org / 10 . 1016 / j . envsoft . 2007 . 05 . 018. url: https :
//www.sciencedirect.com/science/article/pii/S1364815207001193
(cit. on p. 22).

[21] M Sarkar and T Y Leong. «Application of K-nearest neighbors algorithm
on breast cancer diagnosis problem». In: Proceedings. AMIA Symposium
(2000), pp. 759–63. url: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC2243774/pdf/procamiasymp00003-0794.pdf (cit. on p. 22).

[22] Rashmi Priya, Dharavath Ramesh, and Ekaansh Khosla. «Crop Prediction
on the Region Belts of India: A Naïve Bayes MapReduce Precision Agri-
cultural Model». In: 2018 International Conference on Advances in Com-
puting, Communications and Informatics (ICACCI). 2018, pp. 99–104. doi:
10.1109/ICACCI.2018.8554948 (cit. on p. 23).

[23] Soumo Chatterjee. «Use Naive Bayes Algorithm for Categorical and Numerical
data classification». In: (Nov 24, 2019). url: https://medium.com/anal
ytics- vidhya/use- naive- bayes- algorithm- for- categorical- and-
numerical-data-classification-935d90ab273f (cit. on p. 24).

[24] Naim Rochmawati, Hanik Badriyah Hidayati, Yuni Yamasari, Wiyli Yustanti,
Lusia Rakhmawati, Hapsari P. A. Tjahyaningtijas, and Yeni Anistyasari.
«Covid Symptom Severity Using Decision Tree». In: 2020 Third International
Conference on Vocational Education and Electrical Engineering (ICVEE).
2020, pp. 1–5. doi: 10.1109/ICVEE50212.2020.9243246 (cit. on p. 26).

[25] Steven Salzberg, Rupali Chandar, Holland Ford, Sreerama K. Murthy, and
Richard White. «Decision trees for automated identification of cosmic-ray
hits in Hubble Space Telescope images». In: 107 (Mar. 1995), p. 279. doi:
10.1086/133551. url: https://doi.org/10.1086/133551 (cit. on p. 26).

[26] Tom M. Mitchell. Machine Learning. New York: McGraw-Hill, 1997. isbn:
978-0-07-042807-2 (cit. on p. 35).

[27] Jason Brownlee. How to Configure the Number of Layers and Nodes in a Neural
Network. https://machinelearningmastery.com/how- to- configure-
the-number-of-layers-and-nodes-in-a-neural-network/. July 27,
2018 (cit. on p. 37).

[28] Jeff Heaton. The Number of Hidden Layers. https://www.heatonresearch.
com/2017/06/01/hidden-layers.html. June 01, 2017 (cit. on p. 37).

[29] Layer activation functions. Available here. Keras (cit. on p. 42).

106

https://doi.org/https://doi.org/10.1016/j.envsoft.2007.05.018
https://www.sciencedirect.com/science/article/pii/S1364815207001193
https://www.sciencedirect.com/science/article/pii/S1364815207001193
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2243774/pdf/procamiasymp00003-0794.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2243774/pdf/procamiasymp00003-0794.pdf
https://doi.org/10.1109/ICACCI.2018.8554948
https://medium.com/analytics-vidhya/use-naive-bayes-algorithm-for-categorical-and-numerical-data-classification-935d90ab273f
https://medium.com/analytics-vidhya/use-naive-bayes-algorithm-for-categorical-and-numerical-data-classification-935d90ab273f
https://medium.com/analytics-vidhya/use-naive-bayes-algorithm-for-categorical-and-numerical-data-classification-935d90ab273f
https://doi.org/10.1109/ICVEE50212.2020.9243246
https://doi.org/10.1086/133551
https://doi.org/10.1086/133551
https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/
https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/
https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://keras.io/api/layers/activations/

BIBLIOGRAPHY

[30] Optimizers. Available here. Keras (cit. on p. 42).
[31] Adam. Available here. Keras (cit. on p. 42).
[32] Lili Jiang. «A Visual Explanation of Gradient Descent Methods (Momentum,

AdaGrad, RMSProp, Adam)». In: (Jun 7, 2020). url: https://towardsda
tascience.com/a-visual-explanation-of-gradient-descent-methods-
momentum-adagrad-rmsprop-adam-f898b102325c (cit. on p. 43).

[33] Losses. Available here. Keras (cit. on p. 43).
[34] Metrics. Available here. Keras (cit. on p. 43).
[35] sklearn.svm.SVC. Available here. scikit-learn (cit. on pp. 71, 98).

107

https://keras.io/api/optimizers/
https://keras.io/api/optimizers/adam/
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://keras.io/api/losses/
https://keras.io/api/metrics/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html##sklearn-svm-svc

	List of Tables
	List of Figures
	Acronyms
	Introduction & Background
	Smart agriculture
	Impedance
	Impedance measurement
	Experimental setup
	Impedance variation
	Daily cycle variations

	Plants' dataset

	Machine learning
	Classification of machine learning algorithms
	Supervised learning algorithms
	Machine learning applications
	k-Nearest neighbor algorithm
	Naive Bayes
	Decision Tree and Random forest
	Linear regression
	Logistic regression
	Support Vector Machine
	Neural Networks

	Neural networks
	Number of layers and nodes
	Networks to be implemeted
	Generally labeled dataset
	Implementation
	Results discussion

	Labeling by hand
	Implementation
	Results discussion
	Optimal model and algorithm hyperparameters

	Future predictions
	Implementation
	Results discussion

	Relevance of the impedance
	Implementation with only impedance
	Implementation without impedance

	Three plants for the training phase
	Implementation
	Results discussion

	Impedance difference
	Adding the impedance difference
	Implementation

	Polynomial fitting
	Polynomial fitting implementation
	Implementation

	SVM approach
	Implementation

	Neural Network, samples in time
	Implementation
	Future predictions implementation
	Three plants training

	Conclusion and Future Perspective
	Manual of the scripts
	What the code does
	Add other features to the .csv files
	Train a neural network having the data of the plants
	Predictions using the model trained before with a new dataset
	Training with three plants and testing on the fourth;
	Train a SVM model
	Training with more features shifted in time
	Future prediction with more features shifted in time
	Training with three plants and testing of the fourth with features shifted in time

	Bibliography

