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Abstract

Nowadays, Machine Learning (ML) has become one of the most important topics of
research because of the massive use into many applications such as self-driving cars,
speech recognition, email spam recognition and in particular image recognition and
processing.
The involving of the ML in digital image processing can be used for different target
applications, among them for example there are: medical visualization (to improve
the medical imaging), pattern recognition, noise reduction, image enhancement,
and so on.
In this thesis a new type of neural network (NN) for image processing has been used.
In fact, instead of using filters with fixed weights like in standard convolutional
layers, this new NN uses space-variant coefficients. This new convolutional layer
leads to better change its behaviour depending on the spatial characteristic of the
input image. Since the spatial dependence introduces a non-linear behaviour to the
layer, a Non-Linear-Convolution (NLC) replaces the standard linear convolution of
a CNN.
Networks including NLC achieve performance that are comparable or better respect
to the canonical Convolutional Networks, moreover, they require fewer layer and
less input feature respect to the second one.
This thesis works focus on the implementation of the layer of a NLCN into field
programmable gate arrays (FPGAs), which are one of the most important platforms
to accelerate the ML inference. FPGAs, in fact, bring many advantages such as
high parallelism, low power consumption, dedicated optimized hardware for digital
signal processing (DSPs) and so on.
Unfortunately, all these advantages don’t come without a price. In fact, while the
fewer layers of the NLCN respect to the classical CNNs allows to reduce the number
of features (which is an optimal solution for embedded accelerators which have
very reduced resources), the overall complexity of the single layer of the NLCN is
greater respect to the CNNs one.
So, the layer design has been designed to achieve a suitable trade-off between
memory transaction and computation. Indeed, since the memory usage in the NLCN
is mainly related to the space for internal computation, to store the parameters
and to save the intermediate data, some techniques are adopted to find an optimal
balance between off-chip memory transaction and computation. Among them,
there are for example loop tiling and loop unrolling, in which the former allows to
reduce the amount of on-chip memory required into FPGAs and the latter allows
to speed up the execution of nested loops.
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Chapter 1

Introduction

1.1 General principles
In the last years the growing of AI applications has been supported by an intense
research work involved into the creation of new kinds of NN able to perform even
better respect the previous ones. A neural network is a subset of the machine
learning that imitates the behaviour of the human brain in order to solve common
problems, recognize patterns and so on. In fact, an artificial neural network consists
of different node layers, which mimic the way that biological neurons communicate
with one another.

Figure 1.1: Structure of artificial neuron

For any node, or artificial neuron, is associated a set of weights and a threshold.
In cases in which the output of an artificial neuron has a value above the threshold
assigned, the data is propagated to the next nodes, otherwise no data is send.

1



Introduction

Among the different types of neural networks, convolutional neural networks (CNNs)
are usually utilized for pattern recognition, image recognitions, computer vision
and so on.
Typically, a CNN is based on the implementation of:

• Convolutional layer

• Activation function

• Batch normalization

• Pooling layer

• Fully connected layer

Figure 1.2: 2D convolution

Focusing on the convolutional layer, that is the cornerstone of CNNs, the main
elements that characterized this type of layer are the input data or input feature
map, the kernel or filter and the output feature map. Assuming that the input
data is a matrix of pixels in 3D, as consequence it is has three dimensions: height,
width and depth. Taking as example a 2D input data (Figure 1.2), the kernel is

2



Introduction

applied to a portion of the input image, and a dot product between the pixels
and the weights is performed. After that the filter slides along the images by a
stride taking as input another portion of pixels and a new dot product operation is
repeated. As final result, the overall dot products between weights and pixels fill
an output map called output feature map.
In this thesis a new neural network for image processing [1] has been proposed.
As novelty, concerning the convolutional layer, instead of using kernels with fixed
coefficients, it uses, for a given input channel, space-variant weights that depend on
the input data. This allows to better fit the behaviour of the network depending
on the characteristic of the input data. In digital images, in fact, the pixels that
are spatially near the one to each other have high correlated value. Furthermore, in
digital natural images, non-linear functions can better achieve an inter-dependency
respect to the simple convolution-based linear operators and as consequence they
can better exploits the connections with adjacent pixels of an image.
With convolutional neural network (CNN), in fact, there is the necessity to imple-
ment several classical linear convolutional layers in order to perform complex tasks.
Thereafter the output of each layer, in turn, typically goes through a point-wise
non-linear function, such as Sigmoid, Hyperbolic Tangent or ReLU (Rectified Linear
Unit).
On the other hand, the CNNs that use more complicated non-linearities notice an
increase of the complexity of the layer, because on the increase of the number of
parameters needed and on the increase of the execution time both on the training
phase and in the inference phase. So, in the new layer proposed in [1], a non-linear
convolution (NLC) replaces the standard linear convolution. In addition, to main-
tain a suitable dynamic range of the data between input and output features, a
normalization of the spatially varying weights is computed.

1.2 Purpose of the thesis
The aim of this thesis is to study which are the possible optimized HW architectures
of a NLC layer that could be implemented into FPGAs. In fact, this layer is the most
computationally onerous layer of the Non-Linear Convolution Network (NLCN).
Efforts have been made to reduce the number of access to the external memory
connected with the FPGA during the computations. In fact, the exploitation of
on-chip memory reduces the power consumption and the overall latency leading
on a speed-up of the inference task. Unfortunately, since the amount of on-chip
memory inside FPGAs is quite limited, one of the most problem is related to
manage the huge amount of memory that is required to save the space-variant
parameters necessary to perform the non-linear convolution.

3
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1.3 Outline
The chapters of this thesis are organized as follow:

• Chapter 2 gives a more deeply explanation of the architecture of a Non-Linear
Convolutional Layer, explaining the mathematical details inside the layer. For
the sake of simplicity, firstly it has been analyzed a one-channel case and then
it has been generalized to a multi-input-output channel case.

• Chapter 3 exposes an overview of the most important hardware platforms
suitable for the NLC layer implementation, analysing the advantage and
disadvantage for each of these ones. In particular, more attention has been
done on the explanation of the internal architecture of contemporary FPGAs.

• Chapter 4 explains the loop techniques used to optimize the implementation
of a NLC layer in FPGAs. In particular, an overview of the loops variables
which impact on the hardware requirement is listed.

• Chapter 5 explains the implications of the loop variables on the latency, on
the size of the on-chip memory and on the number of accesses to the off-chip
memory.

• Chapter 6 explains a possible scheme of HW accelerator of the NLC layer
into FPGAs. In particular, most of the effort has been addressed on the design
of the PE-Array, which is the computational core that is needed to perform
both the first linear convolution and the second non-linear convolution of the
layer. After that, a simulation of the designed convolutional core is performed
to ensure a correct behaviour.

• Chapter 7 provides a summary of the procedural steps followed to implement
the NLC layer and proposes some steps for future developments.

4



Chapter 2

Non-Linear Convolutional
Layer Architecture

2.1 Basic concepts
In the following subsections 2.1.1 and 2.1.2, it has been reported a briefly explanation
of some basic concepts, in order to better understand the architecture of the NLC
layer.

2.1.1 Classical Linear Convolutional layer
The classical linear convolution layer performs the convolution of the input data.
In a convolution a dot-product is computed between the input image pixels and a
matrix called kernel or filter. The values of this matrix are called weights. The
filter slides along the input data by a stride factor, and the respective convolutions
are then collected into an output array called output feature map. In addition, a
bias term could be added to the output value.

Figure 2.1: 2D convolution example with kernel 3x3 and stride 1

5
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In a one-channel case the equation 2.1.1 describes the 2D convolution operation:

y(i, j) =
WØ

n=0

WØ
m=0

x(i+ n, j +m) · v(n,m) (2.1.1)

where:

• x(i, j) is the input data

• y(i, j) is the output data

• W ×W is the kernel size

• v(n,m) is the weight of the kernel W ×W

As in the equation 2.1.1 , the same principle could be extended to a multi-input-
output channel case:

y(i, j, l) =
KØ

p=0

WØ
n=0

WØ
m=0

x(i+ n, j +m, p) · vl(n,m, p) (2.1.2)

where:

• K is the number of input channels

• l is the index that refers to the output channel, with L desired output channels

Zero padding

By referring to figure 2.1, it can be noticed that the output feature has a smaller
size respect to the input feature. In order to preserve the input dimensions, some
strategies could be adopted to control the output image size. Among them, there
is the zero-padding mechanism, in which zeros are added around the edges of the
input matrix.

6
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Figure 2.2: Zero padding example

Size of the output volume of a convolutional layer
Assuming that Hi, Wi, and Ki are respectively height, width and number of
channels of the input features, the size of the output volume Ho ∗Wo ∗Ko can be
calculated as:

Ho = Hi −W + 2P
S

+ 1 (2.1.3)

Wo = Wi −W + 2P
S

+ 1 (2.1.4)

Ko = Nf (2.1.5)

where:

• W is the width of a square filter

• P is the padding

• S is the stride

• Nf is the number of filters

7
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2.1.2 Activation functions
In order to add non-linearity to the convolutional neural networks, non-linear
functions are added. In fact, without activation functions, a neural network is
just a linear regression model that is not capable of learn the complex pattern
of an input image. These functions are added after convolutional layers or fully
connected layers. The most important activation functions are:

• Rectified Linear Unit (ReLU) I
0 if x ≤ 0
x if x > 0

• Sigmond
σ(x) = 1

1 + e−x

• Hyperbolic tangent
tanh(x) = ex − e−x

ex + e−x

Among them, ReLU is one of the most used activation functions in CNNs because
it has a low computational cost and also because it is capable to reduce the training
time without significantly affecting the accuracy.

ReLU [2]

Sigmond [3]

Hyperbolic tangent [4]

Figure 2.3: Activation Functions

8
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2.2 NLC layer
During the last years, many architectures of convolutional neural networks (CNNs)
have been inspired by models of the primate visual system. This approach has
led to better achieve state-of-the-art performance in the image classification field.
Indeed, in neuroscience, it has been noticed that the response of the visual cells
is based on non-linear operations. Usually, in CNNs, non-linearity is exploited
through the implementation of activation functions, but in the literature, to better
improve the model of the neuron response, different approaches have been used
from the above mentioned.
Since classical convolutional layers are linear systems, their capabilities are quite
limited, so, many research have tried to extend the classical convolution to a form
of non-linear convolution. One of them, for example is by applying the Volterra’s
theory to CNNs by introducing the Volterra Kernels [5].
In [1], instead, a novel non-linear image-processing system is introduced through
the implementation of a non-linear convolutional layer. Starting from a classical
linear convolution, the main idea is related on deriving each weight wn of a filter
through a further linear convolution, as it can be noticed from the equations 2.2.1
and 2.2.2:

y(i) = bÍ +
NØ

n=0
wn · x(i− n) (2.2.1)

wn = bÍÍ
n +

MØ
m=0

wÍ
m,n · x(i−m) (2.2.2)

Substituting equation 2.2.2 in equation 2.2.1, the overall result is expressed by the
following equation:

y(i) = bÍ +
NØ

n=0
[bÍÍ

n +
MØ

m=0
wÍ

m,n · x(i−m)] · x(i− n) (2.2.3)

Moreover, as can be seen, if M is forced to be equal to N, the equation 2.2.3 is
equal to the series of N-size Volterra kernels limited to the second order:

y(i) = h0 +
NØ

n=0
wn · x(i− n) +

NØ
n=0

MØ
m=0

wm,n · x(i−m)x(i− n) + ... (2.2.4)

So, at the end, the proposed non-linear convolutional layer differently from the
standard convolutional layer used in CNNs is capable to change the parameters of
the filters based on the local characteristic of the input image. This novelty acts in
a better way, because it takes into account the very nature of the input data.

9
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2.2.1 Single-input-output channel layer
To better understand the overall NLC layer architecture, this paragraph is focus on
a straightforward example in which only one-input-output channel is considered.
Considering a 2-dimensions input data x(i, j) and output data y(i, j) the non-linear
convolution can be expressed with the following formula:

y(i, j) =
W1Ø
n=0

W1Ø
m=0

x(i+ n− o1, j +m− o1) · vi,j(n,m) (2.2.5)

where:

• o1 = W1−1
2 is the padding added to maintain the output size constant respect

to the input one

As it can be noticed, differently from the equation 2.1.1 of the classical 2D linear
convolution, the weight vi,j(n,m) is space-variant, because his value change varying
the index i and j. So, the weights are strictly related on the value of the pixels of
the input data.
In order to compute the space-variant coefficients, each of the weight vi,j(n,m) of
kernel size W1 ×W1 is computed with a linear classical convolution of the input
feature. The convolution is performed with a kernel of odd size W2 ×W2 that is
filled with fixed trained weights un,m(r, s). Then the weights go through a non-linear
point-wise activation function (i.e. ReLU):

v̂i,j(n,m) = AF (
W2Ø
r=0

W2Ø
s=0

x(i+ r − o2, j + s− o2) · un,m(r, s)) (2.2.6)

where:

• o2 = W2−1
2 is the padding added to maintain the output size constant respect

to the input one

To get the final value of the space-variant weights, a normalization process is needed
to guarantee that the dynamic range of the output feature is controlled, and that
the system gain is suitable:

vi,j(n,m) = v̂i,j(n,m)q
n,m v̂i,j(n,m) + ε

(2.2.7)

or:
vi,j(n,m) = v̂i,j(n,m)q

n,m |v̂i,j(n,m)|+ ε
(2.2.8)

where:

10



Non-Linear Convolutional Layer Architecture

• ε is a small value added to avoid that during the training process the system
gets illegal values

Figure 2.4: Example of single-input-output channel NLC layer

In Figure 2.4, a schematic of the single-input-output channel case of NLC layer
is shown. As it can be noticed, on the bottom-left part of the picture the input
data go through a convolutional stage that computes the input-dependent weights
needed to perform the convolution with space-variant parameters (top-right of the
picture). For the sake of simplicity, only a subset of the W1 ×W1 filters is shown.
In particular, the orange kernel v0,0(:, :), the green kernel v0,1(:, :) and the cyan
kernel vH−1,W −1(:, :) each have W1 ×W1 weights that are taken from the output
feature (properly normalized) of the first convolution at the spatial coordinate
(i = 0, j = 0), (i = 0, j = 1) and (i = H − 1, j = W − 1) respectively.
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2.2.2 Multiple-input-output channel layer

Considering an input data x(i, j, k), where k refers to the selected channel of the
input feature with 0 ≤ k < K, and an output data y(i, j, l), where l refers to
the output channel with 0 ≤ l < L, the same formula 2.2.5 could be extended
considering a multi-input-output channel case:

y(i, j, l) =
KØ

p=0

W1Ø
n=0

W1Ø
m=0

x(i+ n− o1, j +m− o1, p) · vi,j,l(n,m, p) (2.2.9)

Like in a classical convolutional layer, the weights vi,j,l(n,m, p) depend on the
channel k of the input image and on the desired output channel l. In addition,
they also depend on the spatial coordinate i and j, because they are space-variant
parameters.
As for the one channel case, each weight of the kernel of size W1 ×W1 × K is
computed with a further classical convolution followed by an activation function:

v̂i,j,l(n,m, p) = AF (
KØ

q=0

W2Ø
r=0

W2Ø
s=0

x(i+ r − o2, j + s− o2, q) · un,m,p,l(r, s, q)) (2.2.10)

Similarly, a normalization process is needed to keep under control the gain of the
output image:

vi,j,l(n,m, p) = v̂i,j,l(n,m, p)q
n,m,p v̂i,j,l(n,m, p) + ε

(2.2.11)

or:

vi,j,l(n,m, p) = v̂i,j,l(n,m, p)q
n,m,p |v̂i,j,l(n,m, p)|+ ε

(2.2.12)

Now, a further consideration about the implications related to the AF adopted is
discussed below. In fact, with the implementation of an activation function like
the ReLU, which returns only positive value of weights, the NLC layer provides a
spatially variant low-pass version of the input data. So, a normalization process
is necessary to keep unitary the sum of the weights in order to ensure that the
dynamic range of the output image is comparable with the dynamic range of the
input one. In some cases, it is convenient to use AF like tanh() which brings out
both positive and negative weights.
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Figure 2.5: Example of multi-input single-output channel NLC layer

Figure 2.5 shows an example of NLC layer that has as input an image with 3-
channel depth. For the sake of simplicity, only one-output channel is computed.
Viewing the schematic as for the Figure 2.4, on the bottom-left part of the picture
the input-dependent weights are calculated, while on the top-right the non-linear
convolution is performed.

NLC layer vs standard-convolutional layer

Some of the differences between the NLC layer and the standard-convolutional layer
are summarized in this subsection. In particular, table 2.1 makes a comparison on
the number of fixed weights configured during the training phase, while figure 2.6
shows a comparison of the block scheme of the two proposed layers.
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Classical Convolutional
Layer

Non-Linear
Convolutional Layer

Fixed
Weights W 2

1 ×K × L W 2
2 ×W 2

1 ×K2 × L

Table 2.1: Number of fixed weights required by a NLC layer and a Convolutional
layer

Figure 2.6: Comparison of the block scheme between the convolutional layer (A)
and the non-linear convolutional layer (B)
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2.3 NLCN Architectures
A convolutional neural network is based on some building-blocks such as convo-
lutional layers, pooling layers, fully connected layers and so on. CNNs in order
to perform complex real tasks, typically, involve the implementation of several of
these building-blocks.
Usually, a stack of convolutional layers and pooling layer is followed by fully
connected layers.

Figure 2.7: Example of architecture of a CNN [6]

In the same manner, non-linear convolution networks to complete complex problems
need to combine different layers including in particular the NLC layer. Starting
with the fact that NLC layers exploit a better ability of mimic the real behaviour
of biological networks respect to classical convolutional layers, in NLCNs, the
number of layers implemented can be much less respect to the ones implemented
in standard CNNs. As it was reported in [1] , with only 5 layers it is possible to
achieve performances comparable with CNNs that implement dozens of layers.
In the following subparagraph 2.3.1, a briefly overview on the possible strategies to
combine layers in NLCNs has been explained.

2.3.1 Strategies to combine layers in NLCNs

Cascade
This is the most straightforward solution to combine layers, in which non-linear
layers are serially connected on a stack. This strategy, applied in many CNNs, is
affected by a problem called vanishing gradient, specially with deeper networks. Ei-
ther way, due to the quadratic kernel and the limited number of layers implemented,
this problem does not occur in NLCNs.
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Figure 2.8: Cascade Architecture of a NLCN

Cascade + bypass

To mitigate the problem of the vanishing gradient and the relative saturation
problem, in literature many authors [7, 8, 9] add shortcuts connections to skip part
of the network. As it can be notice in Figure 2.9, some direct paths are added to
the cascade architecture. In this way, each layer performs with all the possible
knowledge, because the incoming layer has as input the L output channels and the
K input channels of the previous layer.

Figure 2.9: Cascade + Bypass Architecture of a NLCN
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Cascade + bypass + mixing layer

With the cascade plus bypass layer strategy, the layer of each stage required a greater
number of parameters respect to the previous layer. This is related on the fact that
at each stage the NLC layer has K + L input channels. In particular, by referring
the table 2.1, the number of fixed weights required is quadratically dependent
respect to the number of input channels. This could lead to the saturation of the
computing resources. To prevent this problem, among the possible solutions a
convolutional layer with kernel 1x1 is inserted before a NLC layer. The insertion
of this layer acts as a mixer on the input features because it provides a suitable
linear combination of them.

Figure 2.10: Cascade + Bypass + Mixing Layer Architecture of a NLCN

Strategy to improve Receptive Field

To improve the output efficiency, one of the possible solutions is to enlarge the
portion of input image to analyse. This input area analysed is called receptive
field. Since, enlarging the kernel size the number of parameters grows exponentially
as is described in table 2.1, one possible method is to use a parallel architecture
approach. This architecture uses multiple NLC layers which perform in parallel.
Each NLC layer has different dilation parameters. In fact, in dilated convolutions
the filters are enlarged by a parameter D (Figure 2.11). Using this approach, it is
possible to analyse portion of input features larger than the previous architectures.
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Figure 2.11: Example of kernels with different dilation rates

Figure 2.12: Parallel architecture to improve Receptive Field
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Chapter 3

Hardware Platform for
NLCN Processing

During the last years, in ML algorithms the amount of data to be processed is
become greater and greater. For this reason, much research has been carried
out to develop dedicated hardware accelerator for implementing the chosen NN
architecture. In fact, this approach has led both to speed up the overall execution
and to reduce the power consumption of the inference phase. Currently, in most
of the cases, the training phase is performed by the Graphic Processing Units
(GPUs), which are the most suitable hardware platform due to the flexibility of
the instruction code execution and the high precision format computation. On
the other side, FPGAs and ASICs have become the most important candidate to
accelerate machine learning inference both in the edge and in the cloud. In fact,
while these last ones allow to implement flexible architecture through the custom
logic, CPUs and GPUs are general purpose processors with a fixed architecture.
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Figure 3.1: Flexibility vs efficiency among different hardware platforms [10]

Clearly, each hardware platform has advantages and disadvantages respect to the
other ones. In particular, looking at the flexibility and the efficiency, if the former
grows the latter decrease and vice-versa (Figure 3.1):

• CPU (Central Processing Unit) is an integrated circuit generally composed
of one or more cores that process a flow of instructions. If on one side this
architecture allows the highest flexibility on the executed code, on the other
side the high latency and high-power consumption make of this HW platform
the least suitable regarding the ML inference.

• GPU (Graphic Processing Unit) is an integrated circuit composed of many
cores, but differently from the CPUs, these are optimized to compute high
precision floating point operations. Through the high parallelism and the high
memory bandwidth available, it is possible to compute the inference with
low latency. Unfortunately, the main disadvantage of the GPUs is related
on the huge power consumption which makes inefficient their use in the edge
computing.

• FPGAs (Field Programmable Gate Arrays) are a programmable integrated
circuit that is capable to implement any designed digital architecture. So, if
properly configured, this IC is able to perform ML inference. Moreover, it is
possible to investigate different levels of parallelism trying to better optimize
the data flow. However, the fixed available programmable logic, the on-chip
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memory and the low bandwidth limit the capability of FPGAs to implement
complex architectures. On the other side, the capability to program the
internal logic brings to explore different optimization techniques. Furthermore,
FPGAs have typically a lower power consumption respect to GPUs, which
make them one the most important candidate for the ML inference both in
the edge and in the cloud.

• ASICs (Application Specific Integrated Circuits) are an integrated circuited
that is designed to perform a specific task. This hardware platform offers the
maximum flexibility on the design phase allowing to reach an optimal speed
and a reduced energy consumption. So, if on one side ASICs have low power
consumption and the most optimized data flow for a specific application, on
the other side their architecture is not re.programmable. So, this HW platform
has the lowest flexibility in term of task reconfigurability respect to the other
ones. Moreover, their high design cost makes them less competitive respect to
FPGAs.

Some of the most useful criteria to choose the proper hardware platform are
summarized in the table below:

CPUs GPUs FPGAs ASICs

Power
Consumption high very-high low very-low

Flexibility very-high high medium very-low

Latency very-high medium low very-low

Throughput low high high very-high

Time-to-market low medium medium very-high

Efficiency low medium high very-high

Table 3.1: Comparison between CPUs, GPUs, FPGAs and ASICs

In this thesis, the FPGA has been chosen as the most suitable HW platform to
implement the hardware accelerator of a NLC layer.
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3.1 Architecture of a FPGA

Field Programmable Gate Arrays (FPGAs) are a reprogrammable integrated circuit
that is typically organized on 2D array, in which inside there are some Configurable
Logic Blocks (CLBs) that are the ones that contain the functional logic. After that
there are the CLB interconnections that can be either local or global, depending
on the fact that there is the necessity to connect portions of the FPGA that are
located close or far the one to each other respectively. In the end, there are the I/O
Blocks (IOBs) that are used for connecting the logic array with the outside world.

Figure 3.2: Architecture of a FPGA

CLBs are based on look-up tables, flip-flops, and multiplexers which allow to
implement any kind of combinational or sequential logic. In particular, look-
up tables are the basic kernel for the combinational logic inside FPGAs. As
consequence, the number of available CLBs limits the design implementation,
because the higher is the complexity of the design and the higher is the amount of
hardware resources that is required. Moreover, the architecture of contemporary
FPGAs includes additional logic that allows to better optimize and increase the
computational capability. In Figure 3.3 it is shown an example of contemporary
architecture of a Xilinx FPGA. Respect to the basic FPGA architecture, in fact,
other logic blocks like BRAMs, off-chip memory controllers, DSP blocks, high-speed
transceivers and phase-locked loops (PLLs) are added to the IC.
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Figure 3.3: Architecture of a contemporary FPGA [11]

Block RAM (BRAM) is an on-chip storage element used as Random-Access Memory
(RAM). In fact, in many applications such as signal processing and encryption it is
required to store many data into local buffers which are then used to perform the
dedicated algorithms. In particular, the BRAM can be used as dual-port RAM,
which allows to read different data at the same clock cycle. In fact, this is a very
useful feature used to implement data accumulators.

Figure 3.4: Architecture of a Xilinx DSP slice [11]

Another important additional in contemporary FPGAs is the availability of a cert
limited number of DSPs slices, which are a dedicated and optimized logic that
perform different type of functions. In particular DSPs perform the MAC operation
in an efficient way. Since ML algorithms are based on the massive execution of
MAC operations, the use of DSPs increases the overall performances because they
have low latency and low power consumption.
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Chapter 4

Optimization techniques for
convolution loops in NLC
layers

4.1 A generic scheme of hardware accelerator of
a NLC layer

Compared with a classical CNN, the smaller number of layers of a NLCN provides
to decrease the number of features, leading to reduce the total memory required. So,
if on one side these advantages enhance the implementation of NLCN in embedded
accelerators, on the other side NLC layers require a larger memory addressed to
store the trained parameters and the intermediate results. In fact, even if the
number of layers of a NLCN is fewer respect to a standard CNN, the overall
complexity of a single NLC layer is higher if compared to a standard convolutional
layer.
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Figure 4.1: Comparison of the computational complexity between NLCN and
standard CNN

In particular, a comparison of the number of trained parameters to store for each
layer is shown below:

#ParametersNLCN = W12 ×W22 ×K2 × L (4.1.1)

#ParametersCNN = ((W12 ×K) + 1)× L (4.1.2)

where:

• W 2
1 and W 2

2 are the kernel size

• K is the number of input feature maps

• L is the number of output feature maps

• ‘+1’ refers to the bias term

In fact, apart from the term of the second kernel of size W2 × W2, it can be
noticed that #ParametersNLCN respect to #ParametersCNN has a quadratically
dependence respect to the number of input feature K. This implies that the size of
on-chip memory inside the FPGAs is not big enough to store both data and weights.
In order to better understand where these are actually allocated, in Figure 4.2 it is
shown a typical architecture of hardware accelerator for convolutional layers.
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Figure 4.2: Example of HW accelerator for convolutional layers

As it can be noticed, the memory hierarchy inside HW accelerators can be subdi-
vided in three main levels:

• Registers

• On-chip buffers

• Off-chip memory

In convolutional layers and NLC layers, most of the computationally effort is related
on the product between data and weights and on the accumulation of the relative
result on storage elements. So, the main factors that impact directly on the energy
required per each single MAC operation are related on:

1. the choice of the storage element used to fetch the data

2. the way how efficiently data are reused, and partial sums (psums) are accu-
mulated

So, the purpose of an energy-efficient hardware accelerator should be to compute
the internal operations choosing the data movement with the lowest energy cost.
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Figure 4.3: comparison between read and write of data for MAC operation with
no memory hierarchy (A) and memory hierarchy (B)

Usually, the off-chip memory contains all the data and weights necessary to perform
the inference task. Since, the size of the on-chip memory is quite limited, only a
certain amount of data and weights is fetched from off-chip to on-chip buffers to
compute the convolution operation. These on-chip buffers are then used to feed
the registers and the relative processing elements with the proper data and weights.
So, the main idea is to use on-chip buffers to increase the data reuse, storing the
partial results of the computational logic (Figure 4.3). Once that the processing
elements have completed the assigned tasks, the output results are then stored into
the off-chip memory. As mentioned before, in fact, the introduction of a memory
hierarchy lowers the energy cost required for data movement.

Figure 4.4: Generic memory hierarchy in HW accelerators

27



Optimization techniques for convolution loops in NLC layers

Generally, off-chip memory is a large DRAM, while on-chip buffer is a small SRAM.
In particular, the first has long latency and high-power consumption per access
and the second has small latency and low-power consumption per access. In [12], it
has been compared different models of DRAM and SRAM and it has been shown
that the first has an energy consumption per access that is two or three order of
magnitude higher respect to the second. So, the use of the on-chip buffers with
a proper size combined with some loop optimization strategies lead to increase
the overall performances of the inference task, lowering the latency and the power
consumption.

4.2 Convolution loops in NLC layers
As for standard CNNs, the most recurrent operation that is performed in NLCNs is
the convolution. This operation, in turn, consist of several multiply-and-accumulate
(MAC) operations between the input feature data and the weights. Starting from
the equation 2.2.9, which describe the mathematical behaviour of the NLC layer,
in Figure 4.5 it has been written a pseudocode that indicates all the nested loops
needed to compute the L output feature maps.

Figure 4.5: Pseudocode of the NLC layer
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As it can be noticed, in Figure 4.5 the convolutional loops can be grouped in
different macro loops. In particular, the loops with the suffix ‘A’ refer to the first
convolution that compute the space-variant weights, while the loops that end with
‘B’ refer to the second convolution that use space-variant parameters instead of
fixed weighs. Since zero-padding technique is used to keep constant the output size,
both the first and the second convolution take the input feature maps filled with
zeros around the edge, with a padding factor that depends on the kernel size W1
and W2 respectively. As previously said, the NLC layers spent most of the time to
perform the convolution operation, so, in this thesis main of the effort has been
done to optimize the first and the second convolutional loop. To better understand
the overall nested loops, in the following figures, from a graphic point of view it
has been explained the execution flow through a coloured arrow of the same colour
of the relative loop.

Figure 4.6: Nested loops of the first convolution

In Figure 4.6, it has been shown the first convolution which performs the space-
variant weights. Starting from the left to the right they can be recognized the
input feature maps, the fixed trained weights, and the space-variant parameters
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respectively. Looking at the related nested loops:
• Loop 1A performs the MAC operation between the input feature map and

the kernel of size W2 ×W2

• Loop 2A moves across the channels of the filter and of the input feature maps

• Loop 3A slides along the i and j directions inside one channel of the input
feature map of size HiA and WiA

• Loop 4A moves across the filters to compute the space-variant weights of a
kernel of size W1 ×W1, used then for a specific input channel

• Loop 5A slides across the fixed filters to compute the matrix of space-variant
weights for different input channels

• Loop 6 moves across the fixed filters to compute the input dependent parame-
ters used then to elaborate the different output feature maps

As for the first convolution, in figure 4.7 it has been shown graphically the nested
loops of the second convolution, which performs the output feature maps through
a non-linear convolution operation.

Figure 4.7: Nested loops of the second convolution
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Looking at the related nested loops:

• Loop 1B performs the MAC operation between the input feature map and
the kernel of size W1 ×W1

• Loop 2B moves across the channels of the filter and of the input data

• Loop 3B slides along the i and j directions inside one channel of the input
feature maps of size HiB and WiB. Moreover, since this is a non-linear
convolution, it also moves along the space-variant weights.

• Loop 6 moves across the L output feature maps

4.3 Loop optimization techniques

As in [13, 14], focusing on the NLC layer, three loop optimization techniques are
investigated to optimize the dataflow:

• loop tiling: since on-chip memory on FPGAs is limited, this technique allows
to load on-chip only a portion of the overall data and weights, and for this
reason the data are subdivided in ‘tiles’. However, the tiling section must be
chosen in a way that doesn’t lower the performances of the PEs execution.

Figure 4.8: Loop tiling example

• loop unrolling: in order to speed up the execution of the convolutional loops,
this technique exploits the parallel execution inside loops, reducing the overall
iterations. So, an investigation of the hardware resources available on board
is needed to guarantee the maximum parallelization achievable.
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Figure 4.9: Loop unrolling example

• loop interchange: this loop optimization technique consists on interchanging
the order of execution of the nested loops. This technique combined with
the previous ones allows to exploit the maximum data reused, leading on a
reduction of data movements between off-chip and on-chip memory.

Figure 4.10: Loop interchange example

However, it is important to underline that these techniques do not change the
behaviour of the algorithm. Referring on the pseudocode reported in Figure 4.5,
in order to apply the different loop optimization techniques, it is convenient to
assign some design parameters for each of the nested loops. By changing these
parameters, the implemented layer will change its hardware requirement and the
relative hardware footprint. Moreover, these parameters will directly affect the
time of execution of the inference task.
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Since the number of nested loops is high, it has been decided to list the parameters
for the loops of the first convolution and the loops of the second convolution into
two different tables:

Filter
(Height,
Width)

# Input
Feature
Maps

Input Feature
Map Size

(Height , Width)

Output
Feature

Map Size
# Output Feature Maps

Conv. 1 Loops Loop 1A Loop 2A Loop 3A Loop 3A Loop 4A Loop 5A Loop 6
Loop Parameters W2 , W2 K HiA , WiA Ho , Wo W1 , W1 K L
Loop Tiling (T) Tr, Ts Tq THiA , TWiA THo , TWo TnA , TmA TpA TL
Loop Unrolling (P) Pr , Ps Pq PHiA , PWiA PHo , PWo PnA , PmA PpA PL

Table 4.1: Conv. 1 nested loop parameters

Filter
(Height, Width)

# Input
Feature Maps

Input Feature
Map Size

(Height , Width)

Output Feature
Map Size

# Output
Feature Maps

Conv. 2 Loops Loop 1B Loop 2B Loop 3B Loop 3B Loop 6
Loop Parameters W1 , W1 K HiB , WiB Ho , Wo L
Loop Tiling (T) TnB, TmB TpB THiB , TWiB THo , TWo TL
Loop Unrolling (P) PnB , PmB PpB PHiB , PWiB PHo , PWo PL

Table 4.2: Conv. 2 nested loop parameters

Looking at the tables 4.1 and 4.2, for each loop it has been assigned a tiling and
unrolling variable that is characterized by the T and P prefixes respectively. So, for
instance, looking at the table 4.2 the unrolling variables (PnB, PmB), PpB, (PHiB,
PWiB), (PHo, PWo) and PL will determine the number of parallel operations that
are performed. While the Tiling variable (TnB, TmB), TpB, (THiB, TWiB), (THo,
TWo) and TL will determine the on-chip memory required to store the input data,
the partial results, and the output data. The same principle can be applied to
the variables listed in table 4.1. However, for each nested loop, both tiling and
unrolling variables follow the relation reported below:

1 6 Pparameter 6 Tparameter 6 Parameter (4.3.1)

For example, in Table 4.1 looking at the height and the width of the filter for the
Loop 1A:

1 6 Pr 6 Tr 6 W2 (4.3.2)

1 6 Ps 6 Ts 6 W2 (4.3.3)

33



Optimization techniques for convolution loops in NLC layers

As described in the equations 2.2.9 and 2.2.10, the NLC layer uses the zero-padding
technique to keep constant the output size respect to the input one. So, the
parameters (HiA, WiA) and (HiB, WiB), which are the sizes of the input feature
maps for conv. 1 and conv. 2 respectively, already includes the padding coefficient.
Further, between these proposed variables, some constrains must be applied. In
fact, both on Loop 3A and loop 3B the input and the output feature maps are
related as follow:

Loop Size Loop Tiling (T) Loop Unrolling (P)

Loop 3A HiA = Ho + W2 - 1 THiA = THo + W2 -1 PHiA = PHo
WiA = Wo + W2 – 1 TWiA = TWo + W2 -1 PWiA = PWo

Loop 3B HiB = Ho + W1 - 1 THiB = THo + W1 -1 PHiB = PHo
WiB = Wo + W1 – 1 TWiB = TWo + W1 -1 PWiB = PWo

Table 4.3: Variable constraints on Loop 3A and Loop 3B

4.3.1 Loop Unrolling
To speed-up the time of execution of the NLC layer, a parallelization of the
operations performed is needed. Given a loop, the unroll factor indicates the
number of parallel computations performed at each time. As consequence, by
varying the unroll factor, the hardware resources required will change accordingly
with this one.

• Unroll of the Loop 1A:

Figure 4.11: Unroll of the Loop 1A
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The unroll of the Loop 1A allows to perform in parallel the product between
the weights and the input data within the filter of size W2 ×W2. Since the
unroll variable are Pr and Ps, the number of required multipliers is Pr × Ps.
Moreover, an adder tree is needed to add all the partial products. Finally, an
accumulator is needed to accumulate the partial result at each cycle.

• Unroll of the Loop 2A:

Figure 4.12: Unroll of the Loop 2A

The unroll of the loop 2A allows to perform in parallel the product between
the input data and the weights of different input channels. Given the unroll
variables Pq, the number of multipliers required is Pq. As for the previous
case, an adder tree and an accumulator are required.

• Unroll of the Loop 3A:

Figure 4.13: Unroll of the Loop 3A
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The unroll of the loop 3A allows to perform in parallel multiple s-v weights of a
specific output channel. In order to calculate the PWiA×PHiA output data,
one fixed weight is multiplied for different input data of the same input channel.
In fact, with this architecture one single weight is reused for PWiA× PHiA
times. Moreover, in order to perform the final output values, PWiA× PHiA
accumulators are needed to store the partial sums on-chip.

• Unroll of the Loop 4A:

Figure 4.14: Unroll of the Loop 4A

The unroll of the loop 4A allows to perform in parallel data along different
output channels. With this architecture are computed simultaneously the
space-variant weights that are then used to be multiplied with the input data
of a defined input channel. The structure of the architecture is similar with
the previous one, the only difference is that in this case the input data is
reused PnA × PmA times. For the hardware requirement, the number of
multipliers and accumulators required is equal to PnA× PmA.

• Unroll of the Loop 5A: The unroll of the loop 5A allows to compute in
parallel the space-variant weights that are then used to be multiplied with the
data of different input channels. As before, the scheme of the architecture is
the same. In this case the required multipliers and accumulators are given by
the unroll variable PpA.
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Figure 4.15: Unroll of the Loop 5A

• Unroll of the Loop 6 – Conv. 1:

Figure 4.16: Unroll of the Loop 6 – Conv. 1
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The unroll of the loop 6 for the conv. 1 allows to compute in parallel the s-v
weights used to compute the data of different output channels. The number
of required multipliers and accumulators is equal to the unroll variable PL.

• Unroll of the Loop 1B:

Figure 4.17: Unroll of the Loop 1B

The unroll of the loop 1B allows to perform in parallel the product between
the space-variant weights and the input pixels within the same kernel of size
W1 ×W1. The number of multipliers required is equal to PnB × PmB. All
these partial products are then added together through an adder tree. Finally,
in order to compute the output data, an accumulator is needed to store the
partial results.

• Unroll of the Loop 2B:

Figure 4.18: Unroll of the Loop 2B
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At every cycle, with the unroll of the loop 2B, an output pixel is performed
with the multiplication between the input data and the s-v weights of different
channels. As it can be noticed, the architecture is the same as the previous
one.

• Unroll of the Loop 3B:

Figure 4.19: Unroll of the Loop 3B

Differently from the Loop 3A, the unroll of the loop 3B does not allow to reuse
the same weight to perform simultaneously different output pixels. This is
due to the fact that the second convolution uses space-variant weights instead
of fixed weights. In this architecture the PHiB × PWiB multipliers compute
the partial products that are then stored inside PHiB×PWiB accumulators.

• Unroll of the loop 6 – conv. 2: Finally, the unroll of the loop 6 for the
conv. 2 allows to compute in parallel the output pixels of different output
channels. As it can be noticed, in this architecture the input data can be
reused PL times.
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Figure 4.20: Unroll of the loop 6 – conv. 2

Finally, after viewing all the possible parallel combination both for conv.1 and
conv.2, it can be possible to compute the number of multipliers (#Mul) required
to compute the MAC operations. In fact, #Mul is given by multiplying the unroll
variables listed in table 4.1 and table 4.2.

#Mul_conv1 = Pr · Ps · Pq · PHiA · PW iB · PnA · PmA · PpA · PL (4.3.4)

#Mul_conv2 = PnB · PmB · PpB · PHiB · PW iB · PL (4.3.5)
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4.3.2 Loop Tiling

Since the size of the on-chip memory is quite limited, generally, it is not possible
to store all the data and the weights necessary to compute all the output feature
maps of one NLC layer. So, this brings to store only a portion of data and weights
on-chip. With the loop tiling technique, the volume of the data is subdivided in
’blocks’ which are transferred from off-chip to on-chip and vice-versa. However the
choice of the tiling variables for the different loop parameters determines at least
the minimum size of the on-chip memory required inside the FPGA. In fact, the
on-chip memory is needed to store the input data, the fixed weights, the s-v weights
and the output data. In the following figures are shown the tiling section of data
that are buffered on-chip. All the tiling variables refer to the tables 4.1 and 4.2:

Figure 4.21: Loop tiling of conv.1

Figure 4.22: Loop tiling of conv.2
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In the following tables are listed the minimum size of on-chip memory required to
store the data required to perform the assigned task:

Conv. 1
Data Input mem. TWiA x THiA x Tq x (data_in_datawidth)
Input f.w mem. Tr x Ts x Tq x TnA x TmA x TpA x TL x (f.w_datawidth)
Data Output mem. TWo x THo x TnA x TmA x TpA x TL x (s-v_w_datawidth)

Table 4.4: Buffer size for conv.1

Conv. 2
Data Input mem. THiB x TWiB x TpB x (data_in_datawidth)
Input s-v w mem. TnB x TmB x TpB x THo x TWo x TL x (s-v_w_datawidth)
Data Output mem. TWo x THo x TL x (data_out_datawidth)

Table 4.5: Buffer size for conv.2

4.3.3 Loop Interchange
Differently from standard linear convolutional layers, the NLC layer consists of
a first convolution that computes s-v weights, a point-wise AF, a normalization
process, and a second convolution that uses the s-v weights instead of the fixed
weights. This different structure leads on a more complicated management of the
blocks of data to move. Furtherly, another important question is related on the
on-chip memory that is required to store the s-v weights computed with conv. 1. In
fact, if for the sake of simplicity a multi-input single-output NLC layer is considered,
the data volume of the s-v weights computed is equal to Ho ×Wo ×W 2

1 × K.
Moreover, looking at the equation 2.2.11, to have the normalized weights, the
normalization process requires that for a given vi,j,l(n,m, p) all the s-v weights
v̂i,j,l(n,m, p) with index v̂i,j,l(:, :, :) must be previously computed. So, due to the
data dependencies, this last condition imposes a constraint on the minimum amount
of data (W 2

1 ×K) to be processed before the execution of the conv.2. So, given a
NLC layer with a number of input feature maps and output feature maps, it can
be possible that for the chosen architecture, the input-dependents weights required
cannot be stored all on-chip. For this reason, the order in which the nested loops
are executed has a big impact on the data reuse and on the data dependencies
issue. This leads to two different main categories of possible architectures [15]:

(A) s-v weights stored off-chip: with this architectural solution, part of the s-v
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weights is stored off-chip. In fact, in addition to the data and fixed weights,
the data-bus is involved in the transaction of the s-v weights that increases the
data movement between on-chip and off-chip memory. So, this choice leads to
a lower computation to communication ratio (CCR) coefficient, which is the
ratio between the computational effort and the data transaction between the
off-chip and on-chip memory.

(B) s-v weights stored on-chip: with this architectural solution, all the portion
of s-v weights that is needed to ensure the normalization process is stored on-
chip. With this choice, the data transaction between the on-chip and off-chip
memory is only related on the loading and saving of the input pixels, the fixed
trained weights and the output pixels. So, under the same computational
effort, with this architecture a higher CCR is achieved respect to the previous
case, leading on better performances.

Figure 4.23: s-v weights stored off-chip (A) vs s-v weights stored on-chip (B)
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Chapter 5

Analysis and impact of the
loop variables on a NLC
layer

In this chapter, an analysis on how the principal design variables change by varying
the tiling and unrolling variables is conducted.

5.1 Latency of the System
Referring on the tables 4.1 and 4.2, the number of multiplications that must be
performed in each NLC layer is given by the following equation:

#TOT_M = M_CONV 1 +M_AF_NORM +M_CONV 2 (5.1.1)

Focusing on the multiplications (M_CONV 1) of the first convolution, which
performs the input dependent weights, and on the multiplications (M_CONV 2)
of the non linear convolution, these two terms can be expressed as:

M_CONV 1 = L ·Ho ·Wo ·W 2
1 ·K2 ·W 2

2 (5.1.2)
M_CONV 2 = L ·Ho ·Wo ·W 2

1 ·K (5.1.3)
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So, related on conv.1 and conv.2, the number of executed cycles can be calculated
as the product between the number of inter-tile cycles and the intra-tile cycles. In
particular the inter-tile loop order represents how data are transferred from off-chip
to on-chip, while the intra-tile loop order represent how data are transferred form
on-chip to the PEs.

#intertile_cycles_conv1 =
G

L
TL

H G
Ho

THo

H G
Wo

TWo

H G
W1

TnA

H G
W1

TmA

H

×
G

K
Tq

H G
K

TpA

H G
W2

Tr

H G
W2

Ts

H (5.1.4)
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#cycles_conv1 = #intertile_cycles_conv1×#intratile_cycles_conv1
(5.1.6)

#intertile_cycles_conv2 =
G

L
TL

H G
Ho
THo

H G
Wo
TWo

H G
W1

TnB

H G
W1

TmB

H

×
G

K
TpB

H (5.1.7)

#intratile_cycles_conv2 =
G

TL
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H G
THo

PHo

H G
TWo

PWo

H G
TnB

PnB

H G
TmB

PmB

H

×
G

TpB

PpB

H (5.1.8)

#cycles_conv2 = #intertile_cycles_conv2×#intratile_cycles_conv2
(5.1.9)

As can be seen, if the ratio between the variables is not writable as an integer, the
multipliers and the memory are not completely used. So, for this reason, in order
to minimize the latency it is convenient to impose the unroll and tiling variables
such that:

min

AG
parameter

Tparameter

H
− parameter

Tparameter

B
(5.1.10)
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min

AG
Tparameter

Pparameter

H
− Tparameter

Pparameter

B
(5.1.11)

However, it must be underlined that these equations do not take into account the
other further contributes. One of them is as example the delay introduced per each
data transaction between the off-chip and on-chip memory.

5.2 Size of the on-chip memory
The choice of the target FPGA imposes a constraint on the maximum size of
on-chip memory available. In fact, this last one must be large enough to store the
input pixels, the weights, the spatially variant parameters and the output pixels
needed during the execution of the task. Relating on conv.1 and conv.2, the formula
which is used to compute the size of the on-chip memory can be expressed as:

on_chip_size = I_PXL+ F_W + SV_W +O_PXL (5.2.1)

where:

• I_PXL is the contribute of the input pixels. Under the hypothesis of execute
one convolution between conv.1 and conv.2 at the time, this memory must
be big enough to store the entire data block of input feature maps needed
to perform either conv.1 or conv.2. Referring on the tables 4.4 and 4.5, the
size of this buffer must the maximum between the sizes of the input buffers
required to compute the two convolutions:

I_PXL = MAX(TWiA · THiA · Tq · (data_in_datawidth),
THiB · TWiB · TpB · (data_in_datawidth))

(5.2.2)

• F_W is the contribute of the fixed weights. The storage element must be
big enough to store the tiling block of fixed weights used in conv.1. This size
is taken from table 4.4:

F_W = Tr · Ts · Tq · TnA · TmA · TpA · TL · (fw_datawidth) (5.2.3)

• SV_W is the contribute of the on-chip memory needed to store the spatially
variant weights needed to perform the conv.2. As discussed in 4.3.3, due to
the data dependencies introduced by the normalization process, W 2

1 ×K s-v
weights must be calculated to compute a single output pixel. Based on this
last requirement, if the inter-tile loop 3A and loop 3B are computed as first
the memory required is the following:

SV_W = TWo · THo ·W 2
1 ·K · TL · (sv_w_datawidth) (5.2.4)
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While, for the other combinations of order of execution of inter-tile loops:

SV_W = Wo ·Ho ·W 2
1 ·K · TL · (sv_w_datawidth) (5.2.5)

As it can be noticed the second solution is a sub-optimal solution, because
it requires a huge amount of on-chip memory. To solve this problem, a
possible solution could be to store part of the performed s-v weights off-chip.
Unfortunately, as consequence, this approach increases the number of accesses
to the off-chip memory, lowering the performances.

O_PXL is the contribute of the memory needed to store the partial sums
regarding the conv.2. These last ones are the partial results of the product
between the s-v weights and the input pixels which are accumulated to compute
the output pixels. By referring on the table 4.5:

O_PXL = TWo · THo · TL · (data_out_datawidth) (5.2.6)

5.3 Number of accesses to the off-chip memory
With the hypothesis of using an architectural solution in which all the data and
partial sums are stored on-chip, this section deals with the estimation of the number
of accesses to the off-chip memory. As it was discussed in 4.1, by reducing the
accesses to the off-chip memory, the overall performances increase. For this reason
a data reuse strategy combined with a proper order of execution of the nested loops
is essential to keep the accesses to the off-chip memory as lower as possible. Since
the spatially-variants parameters are all stored on-chip, the accesses to the off-chip
memory are only addresses to fetch the input pixels required to perform the conv.1
and conv.2 and to fetch the fixed weights used in conv.1:

#off_chip_acc = #off_chip_px+ #off_chip_fw (5.3.1)

Regarding the first contribute, its value can be expressed as:

#off_chip_px = #off_chip_px_conv1 + #off_chip_px_conv2 (5.3.2)

where:

• #off_chip_px_conv1 represents the number of accesses to the off-chip
memory needed to fetch the pixels used in conv.1. The following table shows
a subset of the possible values assumed by #off_chip_px_conv1 by varying
the order of execution of the inter-tile nested loops.
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loop executed
before

L3A or L2A
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Table 5.1: Number of accesses to the off-chip memory required to fetch the pixels
needed to perform conv.1 for different order of execution of inter-tile loops

As it can be noticed, the earlier execution of the loops 3A and 2A leads on an
appreciable reduction of the accesses to the off-chip memory.

• #off_chip_px_conv2 represents the number of accesses to the off-chip
memory required to fetch the pixels used in conv.2. Since it is assumed that the
required input dependent weights are stored on-chip, #off_chip_px_conv2
can be expressed as:

#off_chip_px_conv2 =
9
Ho

THo

:
·
9
Wo

TWo

:
·
G
K

TpB

H
·
9
L

TL

:
(5.3.3)

By referring to the equation 5.3.1, the second contribute #off_chip_fw represents
the number of accesses to the off-chip memory needed to fetch the fixed weights
used in conv.1. As previously, the following table shows how #off_chip_fw
changes by varying the order of execution of the inter-tile nested loops.
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loop executed
before L6 or

L5A or L4A or
L2A or L1A
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Table 5.2: Number of accesses to the off-chip memory required to fetch the weights
needed to perform conv.1 for different order of execution of inter-tile loops

As in the previous case, the earlier execution of the loops 6, 5A, 4A, 2A and 1A
leads on a reduction on the number of accesses needed to fetch the fixed weights.
In conclusion, it can be noticed that by interchanging the order of execution of the
inter-tile loops, if on one side #off_chip_px decreases, #off_chip_fw increases.

5.4 Optimal design space exploration for a NCL
layer

The reduction of the accesses to the off-chip memory leads on many advantages,
such as a lower power consumption and a lower latency of the overall execution.
Unfortunately, usually a lower number of accesses leads to increase the required
on-chip memory. So, a trade-off between these two needs to be found to optimize
the design process of a NLC layer.
In order to compute the couple of values (on_chip_size,#off_chip_acc) for
different orders of execution of inter-tile loop and for different values of tiling
parameters, a python script has been written. The script can be found in appendix
A.
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During the execution of the code, given the specific of the NLC layer, sev-
eral nested For loops generate various combinations of the order of execution
of the nested loops and different combinations of tiling variables with range
1 ≤ Tparameter ≤ Parameter. So, at each combination of the previous ones,
the functions ÍOnChipMem()Í and ÍTotAccOffChipMEM()Í compute the size of
the on-chip memory required and the number of accesses to the off-chip memory
respectively. These functions are based on the theory explained in 5.2 and 5.3. The
couples (on_chip_size,#off_chip_acc) generated are then saved on a .csv file.
Finally, these points are plotted in a 2D graph, in which on the y axis and on the
x axis are reported the #off_chip_acc and the on_chip_size respectively.
As example, it has been supposed to explore the design space for a NLC layer with
the following parameters:

Input feature size
(Height x Width x

depth)

Filter W1
(Height x Width)

Filter W2
(Height x Width)

Output
channels

L
NCL layer 512 x 512 x 3 3 x 3 3 x 3 6

Table 5.3: Parameters tested for the optimal design space exploration of a NLC
layer

While, for what concern the datawidth of the input pixels, of the fixed weights, of
the s-v weights and of the output pixels, it has been assumed:

input pixel fix. weight s.v weight output pixel
datawidth 8 bit 16 bit 16 bit 8 bit

Table 5.4: Datawidth for the data used during the design space exploration
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5.4.1 #accesses to off-chip mem. vs on-chip mem. size

In figure 5.1 it has been plotted the #off_chip_acc vs on_chip_size graph for
an optimized and not optimized order of execution of inter-tile loops. As it was
previously discussed, in 5.2 the on-chip memory addressed to store the s-v weights
(SV_W) depends on the loop order. As consequence, fixed the #off_chip_acc, the
blue dots compared with the orange ones require a higher size of on-chip memory.

Figure 5.1: #off_chip_acc vs on_chip_size for an optimized and not optimized
order of execution of inter-tile loops

In the following figures, for the sake of simplicity, they have been plotted only the
couples (on_chip_size,#off_chip_acc) which belong to a optimized loop order
as viewed in figure 5.1.
In figure 5.2 it has been plotted #off_chip_acc vs on_chip_size in function of
Tr ≤ W2 and Ts ≤ W2. As it can be noticed, higher values of Tr × Ts lead to
reduce the accesses to the off-chip memory.
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Figure 5.2: #off_chip_acc vs on_chip_size in function of Tr ≤ W2 and Ts ≤ W2

In figure 5.3 it has been plotted #off_chip_acc vs on_chip_size in function of
Tq ≤ K . As expected, it can be noticed that higher values of input channels Tq
loaded lead to reduce the accesses to the off-chip memory.

Figure 5.3: #off_chip_acc vs on_chip_size in function of Tq ≤ K

In figure 5.4 it has been plotted #off_chip_acc vs on_chip_size in function of
TWo ≤ Wo and THo ≤ Ho . As expected, it can be noticed that higher values of
input data loaded to perform the output TWo× THo lead to reduce the accesses
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to the off-chip memory, but also they lead to increase significantly the on-chip
memory required. So, a trade-off is needed to guarantee that the target FPGA is
capable to store the overall data.

Figure 5.4: #off_chip_acc vs on_chip_size in function of TWo ≤ Wo and
THo ≤ Ho

Figure 5.5: #off_chip_acc vs on_chip_size in function of TnA ≤ W1 and
TmA ≤ W1
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In figure 5.5 it has been plotted #off_chip_acc vs on_chip_size in function of
TnA ≤ W1 and TmA ≤ W1 . As expected, since TnA × TmA is a variable of
#off_chip_acc (tables 5.1 and 5.2 ),it can be noticed that higher values of loaded
fixed weights and loaded pixels needed to perform the space variant weights lead
to reduce the accesses to the off-chip memory.

Figure 5.6: #off_chip_acc vs on_chip_size in function of TpA ≤ K

In figure 5.6 it has been plotted #off_chip_acc vs on_chip_size in function of
of TpA ≤ K . As in the previous case, since TpA is a variable of #off_chip_acc
(tables 5.1 and 5.2 ) , it can be noticed that higher values of loaded fixed weights
and loaded pixels needed to perform the space variant weights lead to reduce the
accesses to the off-chip memory.

In conclusion, the best optimized solution should be the solution which has as
minimum both the on-chip memory size and the number of accesses to the off-chip
memory [14]. However, since on-chip memory for the target FPGA is fixed, a
possible choice could be to fix an upper limit to the maximum on-chip memory
available. After that, the optimal solution will be the solution with the lowest
number of accesses to the off-chip memory among the possible solutions. For
instance, by referring on the previously simulation with the input parameters listed
in 5.3 and 5.4, they have been listed the optimal values of tiling variables in function
of different maximum sizes of on-chip memory:
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Max. on-chip
memory size

#accesses to
off-chip mem. Tr x Ts Tq TWo x THo

TmA
x

TnA
TpA TpB TL

100 KB 3.2E+03 9 3 1617 9 3 3 1
256 KB 1.2E+03 9 3 4257 9 3 3 1
500 KB 5.8E+02 9 3 8481 9 3 3 1
1.0 MB 2.9E+02 9 3 16705 9 3 3 1
1.5 MB 2.2E+02 9 3 24929 9 3 3 1
2.0 MB 1.4E+02 9 3 33153 9 3 3 1

Table 5.5: Optimal tiling variables for different maximum size of on-chip memory
available

Figure 5.7: Optimal design of a NLC layer for different maximum size of on-chip
memory available

As it can be noticed on table 5.5 and figure 5.7, among the optimal solutions,
TWo× THo is the only tuneable parameter. In fact, if this last one term increases
the number of accesses to off-chip memory decreases as consequence, because more
data can be stored and reused on-chip.
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Chapter 6

Proposed NLC layer
Accelerator

Figure 6.1: Generic scheme of NLCN HW accelerator

In this chapter, a proposed NLC layer accelerator is explained. Since the execution of
a NLC layer involves a more complex dataflow respect to the classical convolutional
layer, the use of a soft-processor could benefit on the design process. In fact, this last
one could be addressed to manage the data transaction between off-chip and on-chip
memory (inter-tile loops). With this design strategy, the NLC Accelerator block
will be only addressed on the execution of the convolutions tasks and normalization
process (intra-tile loops).

56



Proposed NLC layer Accelerator

6.1 HW description of a NLC Accelerator block

Figure 6.2: Proposed scheme of NLC accelerator

In figure 6.2 it is shown an example of NLC accelerator block. In particular, this
block deals with the computation of the intra-tile loops described in the pseudocode
4.5. As hypothesis, this architecture is supposed to store on-chip all the input
dependent weights needed to perform the normalization task and the non-linear
convolution. In turn, this HW block is composed of several sub-blocks:

• Data Memory is the memory which stores on-chip the input pixels needed to
perform either the first linear convolution or the second non-linear convolution.

• Fixed Weights Memory is the memory which stores on-chip the portion of
fixed weights needed to perform the first linear convolution.

• Data Dispatcher is the logic block which is addressed to reschedule the
dataflow of the pixels stored on the on-chip memory. In fact, to perform the
convolution operation, the PE-Array needs a proper dataflow of the input
data.

• PE-Array is the logic-block which performs the convolution operation both
for the first linear convolution and for the second non-linear convolution.
However, since only one convolution task at time is performed, to reduce the
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number of PEs as much as possible, it could be possible to share part of the
hardware resources (multipliers and adders).

• S-V Weights Accumulator is the block which accumulates all the partial
sums needed to perform the input dependent weights. Further, this accumula-
tor must be big enough to store all the s-v weights required to perform the
normalization of these without additional data transaction between on-chip
and off-chip memory.

• AF + Normalization Unit is the block which performs the point-wise AF
and the normalization of the space variant weights stored in the s-v weights
accumulator block as described in section 2.2.2

• Output Pixel Accumulator is the block which accumulates all the partial
sums needed to perform the output pixels. These output pixels are computed
by accumulating the partial products which are performed between the input
pixels and the s-v weights, inside the PE-Array block. Once that the value of
the output pixels is valid, these are transferred to the off-chip memory.

• Control Unit is the logic block which is addressed to control the execution
of the tasks inside the NLC Accelerator module. This block communicates
with the soft-processor in order to ensure the correct execution of the assigned
tasks. In particular, a start signal and a done signal are needed. In fact,
these indicates respectively the start condition and the done condition for the
assigned task. Further, to make simply the control of the different tasks, it is
convenient to organize the control unit in a hierarchical structure. In this way,
each sub-control unit will ensure the correct execution of the assigned task.

In particular, the proposed thesis work has been focused on the design of the
PE-Array which is the computational core of the HW accelerator, used to perform
both the first linear convolution (conv.1) and the second non-linear convolution
(conv.2).
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6.2 Proposed HW blocks for Intra-Tile Execu-
tion

Figure 6.3: Loop tiling and interchange applied to the pseudocode of a NLC
Layer

In figure 6.3, loop tiling and loop interchange techniques have been applied to the
pseudocode of a NLC layer. This loop order allows to reuse the input feature map
multiple times, reducing the accesses to the off-chip memory. Differently from the
ideal and optimized inter-tile loops which use the tiling variables shown on table
5.5, this architecture sets the tiling variables TpA, TL, TpB and Tq equal to one,
in order to reduce the architectural complexity as much as possible.
Regarding the intra-tile execution, in order to accelerate the execution of the first
linear convolution and of the second non-linear convolution, it has been chosen to
fully unroll the intra-tile loops 1A (Fig. 4.11), 4A (Fig. 4.14 ) and 1B (Fig. 4.17).
Focusing on the first linear convolution, the fully unrolling of loop 1A allows to
perform in parallel the product between the weights and the input pixels within
the filter of size W2 ×W2, while the fully unrolling of loop 4A allows to reuse
the input pixels to compute in parallel the W1 ×W1 un-normalized space-variant
weights. Focusing on the second non-linear convolution, with intra-tile loop 1B
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fully unrolled, the product between the normalized space-variant weights and the
input pixels of the same input channel is performed in parallel. As consequence the
PEs required to perform the MAC operation needed to execute conv.1 and conv.2
can be derived by the equations 4.3.4 and 4.3.5 as:

#MAC_conv.1 = Pr × Ps × PmA × PnA =
3× 3× 3× 3 = 81

(6.2.1)

#MAC_conv.2 = PmB × PnB = 3× 3 = 9 (6.2.2)

Further, since the first convolution and the second convolution are not performed
in parallel due to the data dependencies, the number of of MAC units can be
reused. As consequence, the number of required MAC unit is equal to the maximum
between the number of MAC units needed to perform conv.1 and conv.2:

#MAC = MAX(#MAC_conv.1,#MAC_conv.2) = 81 (6.2.3)

6.2.1 PE-Array Design (Conv.1 )

Figure 6.4: PE-Array 9× 9 for conv.1
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Relating on the first linear convolution, the portion of input pixels that is stored
on-chip is bring to the PE-Array to perform the convolution operation. At each
clock cycle, the input pixels must be reschedule in a proper order to compute the
required task correctly. While, the 81 fixed weights are stored and kept fixed in
the registers inside the PEs. Looking at the PE-Array, each column of the array
performs the product between the fixed weights and the input pixels of one input
channel. So, each column computes one of the W1 ×W1 un-normalized s-v weights.
Since loop 1A and 5A are fully unrolled, the PE array has W2 ×W2 rows and
W1 ×W1 columns.

Figure 6.5: Example of convolution with multiple output channels

Figure 6.6: Example of convolution with a PE-Array 4× 3
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To better understand the data flow of the PE-Array in conv.1, in figure 6.5 it is
shown a straightforward case. In this case, only for graphic reason, they have been
used 3 filters of size 2× 2, instead of the 9 filters of size 3× 3, and an input map of
size 3× 3. In figure 6.6 at each clock cycle, looking from the left to the right, the
input pixels are send and propagated along the rows of the PE array, while, the
partial sums of each output features are moved downward.

Each of the red, blue and green squares represents one PE. Horizontal and vertical
pipeline stages are added to reduce the critical path. In figure 6.7, it is shown the
schematic of the processing element used to perform the MAC operation. Looking
at the schematic:

• the multiplier MPL performs the product between the input pixel IN_PXL
and the weights W_IN

• the product OUT_MPL is added with the input partial sum PS_IN and the
generated result PS_OUT is then propagated to the next processing element.

Figure 6.7: Processing element of PE-Array
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6.2.2 S-V Weights Accumulator Design (Conv.1 )

Referring on figure 6.6, the partial sums that are computed must be accumulated
to perform the un-normalized weights. Since the PE-Array is composed of W1×W1
columns, 9 accumulators of size THo× TWo×K are needed.

Figure 6.8: Accumulator needed to compute and store the s-v weights

Each accumulator is composed of an adder (ADD_ACC) which upgrades the partial
sum stored in the on-chip memory (MEM_ACC). A multiplexer (MUX_ACC)
is needed to save the correct first partial sum associated to the un-normalized
spatial variant weight. Since the TWo × THo partial sums are provided by the
PE-Array consecutively, the base address needed to store the data is equal to
product TWo · THo · p, with 0 ≤ p < K.

6.2.3 PE-Array Design (Conv.2)

Relating on the second non-linear convolution, the portion of input pixels that
is stored on-chip is bring to the PE-array to perform the non-linear convolution
operation. At each clock cycle, the input pixels must be reschedule in a proper
order in the same way as for the first linear convolution. However, differently from
the previous case, no further weight is loaded to compute the TWo× THo output
pixels, since the TWo× THo×K normalized weights are already stored on-chip.
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Figure 6.9: PE-Array 9× 1 for conv.2

Looking at the PE-Array in figure 6.9, it is composed of W1 ×W1 rows and one
column, since it is performed only one output feature. Further, in comparison
to the previous case, the weights are not kept fixed for each clock cycle during
the execution of the task. This is due to the fact that this PE-Array performs a
non-linear convolution operation.

Figure 6.10: Example of non-linear convolution

To better understand the data flow of this PE-Array, like for the previous case, in
figure 6.10 it is shown a straightforward case. In this example, only for graphic
reason, it has been used a filter of size 2× 2, instead of a filter of size 3× 3, and a
input map of size 3× 3. In figure 6.11, at each clock cycle, looking from the left to
the right, the input pixel and the associated s-v weights are send to the relative
PE, while, the partial sum of each output pixel is moved downward. As mentioned
in the previous sections, since the computational core of the PE is equal both for
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conv.1 and conv.2, part of the PE-Array 9× 9 used for the linear convolution can
be shared to compute the non-linear convolution.

Figure 6.11: Example of non-linear convolution with PE-Array 4× 1
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6.2.4 OFM Accumulator
In order to accumulate all the partial sums needed to compute the final output
pixels, an accumulator of size TWo× THo is needed. The schematic is the same
as the previous described in subsection 6.2.2. In fact, the adder (ADD_ACC)
upgrades the partial sum stored in the on-chip memory (MEM_ACC), while the
multiplexer (MUX_ACC) allows to correctly save the first valid data.

Figure 6.12: Accumulator needed to compute the TWo× THo output pixels
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6.3 Designed NLC Accelerator block Simulation
To test the correct behaviour of the PE-Array both for the first linear convolution
and for the second non-linear convolution, the developed logic blocks have been
simulated with ModelSim, which is a HDL simulator environment.

6.3.1 First linear convolution Simulation

Figure 6.13: Architecture of the PE-Array used to test the intra-tile loops of
conv.1

To test the intra-tile loops of conv.1, it has been developed the architecture show
in figure 6.13. As it can been noticed some registers are added to the input and
to the output of the PE-Array in order to ensure a correct data-flow. In fact, as
it was discussed with the example shown in figure 6.6, the input pixels must be
progressive delayed. Similarly, since the output psum are not aligned, they have
been added a proper number of registers under each PEs column. Clearly, to store
the data performed, the PS1.. PS9 signals must be connected to the S-V Weights
Accumulator. To manage the correct data-flow and synchronize the proposed block
with the execution of the other HW blocks implemented in the HW Accelerator, it
has been developed the control unit CU_2D_ARRAY_CNV1 (Figure 6.14).
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Figure 6.14: CU_2D_ARRAY_CNV1 ASM chart

To correctly start the convolutional operation, an input signal START_STREAM
indicates that the input pixels are ready to be processed. After that the control unit
changes its state from IDLE to START. In this state the internal pipe register of
the PE-Array and the delay unit are enabled. In fact, the delay unit DEL_UNIT_1
is needed to proper synchronize the control unit to enable the data-out valid signal
VPSUM in correspondence of the correct output partial sums performed. In COMP
the PE-Array performs the convolution operation until the signal STOP_STREAM
is asserted. After that, the control unit changes its state from COMP to STOP.
where the delay unit is enabled once more. As before, the delay unit is used to
proper enable the output signal VPSUM for the remaining output data. Finally,
in correspondence of the last valid partial sums the control unit change its state
from WAIT2 to DONE_CONV, where is asserted the DONE signal. In figure 6.15
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it is shown a simulation of the proposed architecture. In the testbench, the clock
has been set to 100 MHz. For this simulation, it has been chosen an input map of
18× 18 pixels.

Figure 6.15: ModelSim simulation of Conv.1

Looking from the left to the right, when START_STREAM signal is asserted (red
circle) the first 9 input pixels are available (IN1, IN2.. IN9). After some clock
cycles the first PmA× PnA = 9 partial sums are computed and the VPSUM is
asserted (blue circle). After that the control unit remains in the COMP state until
the last input data are received. Accordingly, in correspondence of the last 9 input
pixels the input signal STOP_STREAM is asserted (red circle on the right) and
the last data are elaborated. After some clock cycles in correspondence of the last
9 partial sums the DONE signal is asserted (violet circle). After that the control
unit changes its state from DONE_CONV to IDLE.
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6.3.2 Second non-linear convolution Simulation

Figure 6.16: Architecture of the PE-Array used to test the intra-tile loops of
conv.2

To test the intra-tile loops of the non-linear convolution, it has been developed the
architecture shown in figure 6.16. Since conv.1 and conv.2 share the same PE-Array,
the first column is used to perform the PnB × PmB = 9 MAC operation between
the input pixels and the normalized s-v weights. Differently from the previous case
where the weights were fixed during the execution of the task, in this case, since
the proposed non-linear convolution uses space-variant parameters, at each clock
cycles PnB × PmB = 9 s-v weights are updated (SVW_1, SVW_2 ... SVW_9)
together with the relative input pixels (IPX_1, IPX_2 ... IPX_9). This time,
no output registers are needed to align the output partial sums, because only one
column of the array is used. However a delay unit DEL_UNIT_2 is still used,
because the control unit CU_2D_ARRAY_CNV2 needs a synchronization signal
to indicate the correct valid partial sums (VPSUM) referred to the output pixels.
Clearly, to store the data performed, the PS1 signal must be connected to the OFM
Accumulator.
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Figure 6.17: CU_2D_ARRAY_CNV2 ASM chart

The proposed control unit in figure 6.17 is the same of the one proposed for the
first linear convolution. However, the only difference is related on the different
delay unit used to synchronize the execution.
In figure 6.18, it is shown a simulation of the proposed architecture. In the testbench,
the clock has been set to 100 MHz. As for the previous simulation, it has been
chosen an input map of 18× 18 pixels. Looking from the left to the right, when
START_STREAM signal is asserted (red circle) the first 9 input pixels (IN1, IN2
... IN9) and the 9 s-v weights (SVW1, SVW2 ... SVW9) are available. As it can be
noticed, differently from the simulation of the first linear convolution, 9 weights are
upgraded at each clock cycles, because these have a spatial dependence. After some
clock cycles the first partial sum (cyan signal named out1) is available and the
signal VPSUM is asserted (orange circle). After that the control unit remains in the
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COMP state until the last input data are received. As for the previous simulation
the control unit changes its state in the same manner. In fact, in correspondence
of the last 9 input pixels and 9 s-v weights the input signal STOP_STREAM is
asserted (red circle on the right) and the remaining data are elaborated. After some
clock cycles in correspondence of the last partial sum the DONE signal is asserted
(blue circle). After that the control unit changes its state from DONE_CONV to
IDLE.

Figure 6.18: ModelSim simulation of Conv.2

72



Chapter 7

Conclusions

In this thesis work, differently from standard convolutional layer, a new kind of
non-linear convolutional layer has been used. The aim of this thesis has been
addressed on the study of the possible optimized HW architectures of a NLC layer
that could be implemented into FPGAs. In particular, in the first part of the
thesis, starting from the pseudocode of the NLC layer, different loop optimization
techniques have been investigated. These, in fact, allow to optimize both the
time of execution and the data transaction between off-chip memory and on-chip
memory. So, as first step it has been developed an analytical model of the layer in
order to explore the principal design variables such as the number of DSP slices
used, the latency of the system, the size of the on-chip memory and the number
of accesses to the off-chip memory in function of the different loop variables. In
particular, a python script has been developed to investigate among the huge space
of solutions which are the most suitable design solutions that minimized both the
number of accesses to the off-chip memory and the size of the on-chip memory. In
the last part, a proposed HW architecture of the NLC layer has been explained. In
particular, most of the effort has been addressed on the design of the PE-Array
which is the computational core of the HW accelerator.
In this thesis a first study of the possible HW implementation has been done.
however, as future work, one of the possible step could be to implement the
remaining modules and test the overall system on a target FPGA in order to test
the real performances in comparison of the theoretical ones. In particular, great
care must be addressed on the HW module which performs the normalization of
the input dependent parameters.
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Appendix A

A Python script for the
Design Space Exploration of
a NLC layer

1 ’ ’ ’ import l i b r a r i e s ’ ’ ’
2 from gen_seq_loop import LoopCombNLC
3 from LoopInfo import TotAccOffChipMEM , OnChipMem
4 import csv
5

6 ’ ’ ’ NCL l a y e r parameters ’ ’ ’
7 Ho=512 #he ight o f output f e a t u r e
8 Wo=512 #width o f output f e a t u r e
9 W1=3 #kerne l s i z e conv2

10 W2=3 #kerne l s i z e conv1
11 K=3 #input channe l s
12 L=6 #output channe l s
13

14 ’ ’ ’ Datawidth ’ ’ ’
15 data_in_datawidth=8
16 fw_datawidth=16
17 sv_datawidth=16
18 out_datawidth=8
19

20 ’ ’ ’ g ene ra t i on o f the p o s s i b l e order
21 o f execut ion o f the in t e r −t i l e l oops ’ ’ ’
22 loop_comb= LoopCombNLC( )
23

24 out =[ ]
25 f o r index in range (0 , l en ( loop_comb ) ,1 ) :
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26 f o r TL in range (1 ,L+1 ,1) :
27 f o r TmA in range (1 ,W1+1 ,1) :
28 f o r TnA in range (1 ,W1+1 ,1) :
29 f o r THo in range (1 ,Ho+1 ,16) :
30 f o r TWo in range (1 ,Wo+1 ,16) :
31 f o r TpA in range (1 ,K+1 ,1) :
32 f o r Tq in range (1 ,K+1 ,1) :
33 f o r Tr in range (1 ,W2+1 ,1) :
34 f o r Ts in range (1 ,W2+1 ,1) :
35 f o r TpB in range (1 ,K+1 ,1) : \
36 TWi=TWo+W1−1
37 THi=THo+W1−1
38 acc= TotAccOffChipMEM( loop_comb [ index ] , L , TL, W1, TmA, \
39 TnA, Ho , Wo, THo, TWo, K, TpA, Tq , W2, Tr , Ts , TpB)
40 s i z e=OnChipMem(TWi, THi , Tq ,TpB, data_in_datawidth , \
41 Tr , Ts , TnA, TmA, TpA, TL, fw_datawidth , \
42 loop_comb [ index ] , Ho ,Wo,W1,K,TWo,THo, sv_datawidth , \
43 out_datawidth )
44 s i z e=s i z e /(8∗10∗∗6)
45 x_axis=s i z e
46 y_axis=format ( acc , ’ , . 1E ’ )
47 coord inate =[x_axis , y_axis , Tr∗Ts , Tq ,THo∗TWo, TmA∗TnA,TpA,

TpB,TL]
48 out . append ( coord inate )
49

50

51 with open ( ’ loop_comb . csv ’ , ’w ’ ) as f :
52 wr i t e = csv . w r i t e r ( f , d e l i m i t e r=’ ; ’ , l i n e t e r m i n a t o r=’ \n ’ )
53 D e t a i l s =[ ’MEM_SIZE ’ , ’ MEM_ACC’ , ’ TrxTs ’ , ’Tq ’ , ’TWoxTHo ’ , ’TmAxTnA’ ,

’TpA ’ , ’TpB ’ , ’TL ’ ]
54 wr i t e . writerow ( D e t a i l s )
55 wr i t e . wr i terows ( out )

1 ’ ’ ’ import l i b r a r i e s ’ ’ ’
2 import math
3

4 ’ ’ ’ON−CHIP MEM SIZE ’ ’ ’
5 de f OnChipMem(TWi, THi , Tq ,TpB, data_in_datawidth , \
6 Tr , Ts , TnA, TmA, TpA, TL, fw_datawidth , \
7 loop_order , Ho ,Wo,W1,K,TWo,THo, sv_datawidth , \
8 out_datawidth ) :
9 ’ ’ ’

10 t h i s func t i on computes the on−chip memory requ i r ed
11 ’ ’ ’
12 out = I_PXL(TWi, THi , Tq ,TpB, data_in_datawidth ) + \
13 F_W(Tr , Ts , Tq , TnA, TmA, TpA, TL, fw_datawidth ) + \
14 PsumSize ( loop_order , Ho ,Wo,K,W1,TWo,THo,TL, sv_datawidth ) +\
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15 OutBuffer ( loop_order , Ho ,Wo,THo,TWo,TL, out_datawidth )
16

17 re turn out
18

19

20 de f I_PXL(TWi, THi , Tq ,TpB, data_in_datawidth ) :
21 buf f1=TWi ∗ THi ∗ Tq ∗data_in_datawidth
22 buf f2=TWi ∗ THi ∗ TpB ∗data_in_datawidth
23 re turn _max_( buf f1 , bu f f 2 )
24

25 de f F_W(Tr , Ts , Tq , TnA, TmA, TpA, TL, fw_datawidth ) :
26 re turn Tr ∗ Ts∗ Tq∗ TnA ∗ TmA ∗ TpA ∗ TL ∗ fw_datawidth
27

28 de f PsumSize ( loop_order , Ho ,Wo,K,W1,TWo,THo,TL, sv_datawidth ) :
29 i f loop_order [ 0 ] [ 0 ] == ’L3A ’ and loop_order [ 1 ] [ 0 ] == ’L3B ’ :
30 out_size = THo∗TWo∗K∗W1∗W1∗TL∗ sv_datawidth
31 e l s e :
32 out_size = Ho∗Wo∗K∗W1∗W1∗TL∗ sv_datawidth
33 re turn out_size
34

35 de f OutBuffer ( loop_order , Ho ,Wo,THo,TWo,TL, out_datawidth ) :
36 i f loop_order [1 ] [ 0 ]== ’L3B ’ and loop_order [ 0 ] [ 0 ] == ’L3A ’ :
37 out_size = THo ∗ TWo ∗ TL ∗ out_datawidth
38 e l s e :
39 out_size = Wo∗Ho∗TL∗ out_datawidth
40 re turn out_size
41

42 ’ ’ ’#ACCESSES TO OFF−CHIP MEM’ ’ ’
43 de f TotAccOffChipMEM( loop_order , L ,TL,W1,TmA,TnA, Ho ,Wo,THo,TWo,K,TpA,

Tq ,W2, Tr , Ts ,TpB) :
44 ’ ’ ’
45 t h i s func t i on computes the number o f a c c e s s e s to the o f f −chip

memory
46 ’ ’ ’
47 pass
48 tot_acc=AccOffChipFW( loop_order , L ,TL,W1,TmA,TnA, Ho ,Wo,THo,TWo,K,

TpA, Tq ,W2, Tr , Ts )+\
49 AccOffChipPX ( loop_order , L ,TL,W1,TmA,TnA, Ho ,Wo,THo,TWo,K,TpA,TpB,

Tq ,W2, Tr , Ts )
50 re turn tot_acc
51

52

53 de f AccOffChipFW( loop_order , L ,TL,W1,TmA,TnA, Ho ,Wo,THo,TWo,K,TpA, Tq ,W2
, Tr , Ts ) :

54 p={ ’L6 ’ : math . c e i l (L/TL) , ’L5A ’ : math . c e i l (K/TpA) , ’L4A ’ : math . c e i l (
W1/TnA) ∗math . c e i l (W1/TmA) , ’L3A ’ : \

55 math . c e i l (Ho/THo) ∗math . c e i l (Wo/TWo) , ’L2A ’ : math . c e i l (K/Tq) , ’L1A
’ : math . c e i l (W2/Tr) ∗math . c e i l (W2/Ts) }

56 Acc_Fw = p [ ’L6 ’ ] ∗ p [ ’L5A ’ ] ∗ p [ ’L4A ’ ] ∗ p [ ’L2A ’ ] ∗ p [ ’L1A ’ ]
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57 flag_L5A = False
58 flag_L4A = False
59 flag_L2A = False
60 flag_L1A = False
61 f o r loop in loop_order [ 0 ] :
62 i f flag_L5A == False or flag_L4A == False or flag_L2A ==

False or flag_L1A == False :
63 i f loop == ’L5A ’ :
64 flag_L5A = True
65 e l i f loop == ’L4A ’ :
66 flag_L4A = True
67 e l i f loop == ’L2A ’ :
68 flag_L2A = True
69 e l i f loop == ’L1A ’ :
70 flag_L1A = True
71 e l s e :
72 Acc_Fw=Acc_Fw ∗ p [ loop ]
73 re turn Acc_Fw
74

75 de f AccOffChipPX ( loop_order , L ,TL,W1,TmA,TnA, Ho ,Wo,THo,TWo,K,TpA,TpB,
Tq ,W2, Tr , Ts ) :

76 p={ ’L6 ’ : math . c e i l (L/TL) , ’L5A ’ : math . c e i l (K/TpA) , ’L4A ’ : math . c e i l (
W1/TnA) ∗math . c e i l (W1/TmA) , ’L3A ’ : \

77 math . c e i l (Ho/THo) ∗math . c e i l (Wo/TWo) , ’L2A ’ : math . c e i l (K/Tq) , ’L1A
’ : math . c e i l (W2/Tr) ∗math . c e i l (W2/Ts) }

78 Acc_PX_conv1 = p [ ’L6 ’ ] ∗ p [ ’L3A ’ ] ∗ p [ ’L2A ’ ]
79 flag_L3A = False
80 flag_L2A = False
81 f o r loop in loop_order [ 0 ] :
82 i f flag_L3A == False or flag_L2A == False :
83 i f loop == ’L2A ’ :
84 flag_L2A = True
85 e l i f loop == ’L3A ’ :
86 flag_L3A = True
87 e l s e :
88 Acc_PX_conv1=Acc_PX_conv1 ∗ p [ loop ]
89

90 Acc_PX_conv2= math . c e i l (L/TL) ∗math . c e i l (Ho/THo) ∗math . c e i l (Wo/TWo)
∗math . c e i l (K/TpB)

91 Acc_PX = Acc_PX_conv1 + Acc_PX_conv2
92 re turn Acc_PX
93

94 de f _max_(a , b) :
95 i f a>b :
96 out_=a
97 e l s e :
98 out_=b
99 re turn out_
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1 ’ ’ ’ import l i b r a r i e s ’ ’ ’
2 import csv
3

4 de f CheckDif f (G) :
5 ’ ’ ’
6 This func t i on checks i f the items o f the array
7 are a l l d i f f e r e n t the one with each other
8 ’ ’ ’
9 d i f f = Fal se

10 equal = 0
11 f o r f i r in G:
12 f o r s e c in G:
13 i f f i r == sec :
14 equal = equal + 1
15 i f equal == len (G) :
16 d i f f = True
17 re turn d i f f
18

19 de f LoopOrder ( Loops , n=−1, index =[ ] , out_ =[ ] ) :
20 ’ ’ ’
21 This func t i on c r e a t e s a l i s t o f the p o s s i b l e
22 combination o f the loops l i s t e d in the input l i s t Loops
23 ’ ’ ’
24 i f n == −1:
25 out_ =[ ]
26 n = len ( Loops )
27 index = [ None ] ∗ n
28 i f n > 0 :
29 f o r index [ n−1] in range ( l en ( Loops ) ) :
30 LoopOrder ( Loops , n−1, index , out_ )
31 e l s e :
32 i f CheckDif f ( index ) :
33 out =[ ]
34

35 out . c l e a r ( )
36 f o r row in index :
37 out . append ( Loops [ row ] )
38 out_ . append ( out )
39 re turn out_
40

41 de f LoopCombNLC( ) :
42 ’ ’ ’
43 This func t i on c r e a t e s a l i s t o f the p o s s i b l e
44 combination o f the loops l i s t e d in Nest_loop_A
45 and Nest_Loop_B
46 ’ ’ ’
47 Nest_Loop_A=[ ’L5A ’ , ’L4A ’ , ’L3A ’ , ’L2A ’ , ’L1A ’ ]
48 Nest_Loop_B=[ ’L3B ’ , ’L2B ’ , ’L1B ’ ]
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49 Loop_Comb_A=LoopOrder (Nest_Loop_A)
50 Loop_Comb_B=LoopOrder (Nest_Loop_B)
51 Tot_Seq_Loop =[ ]
52 f o r Loop_Seq_A in Loop_Comb_A:
53 f o r Loop_Seq_B in Loop_Comb_B:
54 Loop_AB= [ Loop_Seq_A , Loop_Seq_B ]
55 Tot_Seq_Loop . append (Loop_AB)
56 re turn Tot_Seq_Loop
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